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Abstract
In the context of stochastic choice, we introduce an individual decision model that admits a cardinal
notion of peer influence. The model presumes that individual choice is not only determined by
idiosyncratic evaluations of alternatives but also by the influence of the observed behavior of others.
We establish that the equilibrium defined by the model is unique, stable, and falsifiable. Moreover, the
underlying preferences and influence parameters as well as the structure of the underlying network
are uniquely identified from, arguably, limited data. The baseline model includes two individuals
with conformity motives. Generalizations to multi-individual settings and negative interactions are
also introduced and analyzed. (JEL: D01, D91)
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1. Introduction

It is a well-established fact that individual choices are directly influenced by the
choices of one’s peers.1 Identification of peer influence out of observable behavior
has been a challenging problem for social scientists for decades.2 At the heart of this
issue lies Manski’s reflection problem (Manski 1993): Behavioral similarities among
peers can be caused by correlated unobserved or observed characteristics as well as
peer influence. Distinguishing between these effects is not straightforward due to the
simultaneity in the behavior of interacting individuals. This paper provides a novel
approach to the identification of peer influence by focusing on the microfoundations
of interaction rather than adopting ex-post estimation techniques. We introduce a
simple model of decision-making for interacting individuals that enables inference of
underlying unobserved parameters out of observable behavior.

The novelty in our approach lies in the introduction of a new source of variation for
social interaction models. Specifically, we vary the set of available options from which
individuals choose. Without any variation in the choice set, the reflection problem
cannot be solved. However, with minimal variation, such as observations from two
choice sets rather than one, it becomes possible to identify the social influence. For
instance, consider two friends, Dan and Bob, and their choices on daily exercise
routines during a countrywide lockdown due to a pandemic. Under strict government
rules, they can choose to either exercise at home or go for a walk outside. Let Dan
choose to exercise at home 71% of the time and go for a walk for 29%, whereas these
frequencies would be 78% and 22% for Bob, respectively. Reflection problem emerges
exactly at this point, where an outside observer cannot tell whether these friends are
behaving similarly because they are influencing each other or they indeed have similar
preferences (and/or backgrounds); and hence, they would have also behaved the same
way without interaction. Without any further information, an outside observer cannot
differentiate between these two scenarios. In order to overcome the reflection problem
and identify peer effects out of observable behavior, our methodology suggests to
exploit the changes in these individuals’ behaviors over a new choice set. For instance,
when the lockdown is over and the updated government regulations allow also for
exercising in the gym. These individuals’ behaviors under these two scenarios, that
is, (exercise at home and go for a walk) and (exercise at home, go for a walk, and
go to gym), are sufficient for our identification strategy to identify the peer effects as

1. There is an abundance of evidence corroborating peer influence in a variety of social contexts:
Peer behavior has a significant influence not only on a student’s school achievement (Calvo-Armengol,
Patacchini, and Zenou 2009), but also on social behaviors such as consumption of recreational activities,
drinking, smoking, etc. (Sacerdote 2011). High productivity co-workers are found to increase one’s own
productivity (Mas and Moretti 2009). Involvement in crime (Glaeser, Sacerdote, and Scheinkman 1996),
job search (Topa 2001), adolescent pregnancy (Case and Katz 1991), and college major choice (De Giorgi,
Pellizzari, and Redaelli 2010) are other prominent examples in which social interactions are shown to be
crucial constituents of individual behavior.

2. See Blume et al. (2011), Bramoullé, Djebbari, and Fortin (2020) for early and recent reviews of
literature, respectively.

D
ow

nloaded from
 https://academ

ic.oup.com
/jeea/article/21/1/135/6587054 by guest on 13 February 2023



Chambers, Cuhadaroglu, and Masatlioglu Behavioral Influence 137

long as the observed choices are consistent with our model, as we will illustrate after
introducing the model briefly.3

Our main contribution is to provide an intuitive and tractable decision model
that affords a meaningful and measurable definition of “influence” as derived from
choice behavior alone. Our model consists of two essential parameters: an individual
preference parameter and an individual influence parameter. The latter captures
interdependence of behavior across individuals and can accommodate different values
for different peers, enabling heterogeneity of peer effects. The individual preference
parameter is more standard. It can be interpreted as the intrinsic utility of the underlying
alternatives; the subjective value of the alternatives absent any social effects.4 Social
influence transpires through the observed behavior of the other individual(s), where
subjective value of each alternative is adjusted by a weighted version of the observed
behavior of others regarding that alternative. As a result of this weighted aggregation
process, individual choice behavior reflects the relative utility of each alternative in a
given menu altered by social influence. More precisely, the choice frequency of each
alternative from a menu is equal to the relative utility of this alternative under social
influence, with respect to all other available alternatives.

Our identification strategy exploits the change in choice frequencies when a new
alternative is introduced in order to pin down the peer influence and the underlying
preferences. Going back to the example of exercise behavior, let us observe that once the
government regulations allow for going to the gym, Dan and Bob’s behaviors change as
follows: Dan exercises at home 60% of the time, goes for a walk for 26%; and goes to the
gym for 14%, whereas these frequencies are 70%; 19%; and 11% for Bob, respectively.
This pair of behaviors is consistent with our model (as described in Section 2.3),
hence, we can reveal the underlying preferences and the interaction parameters
uniquely, overcoming the reflection problem. Interestingly, our identification strategy
(as described in Section 2.2) implies that although Dan and Bob’s choice frequencies
are aligned over exercise options, their idiosyncratic preferences are not aligned. For
Bob, indeed, the intrinsic utility of home exercise is the highest and going for a walk
is the lowest, whereas for Dan, the exact opposite holds. However, Bob’s behavior
has a great influence on Dan. To be precise, conformity with Bob’s behavior is five
times more important to Dan than his own subjective evaluation, whereas for Bob, his
own evaluation and Dan’s behavior are equivalently important.5 Thus, thanks to our

3. Although variation of choice sets is a standard tool for revelation in choice theory, it has not been
commonly adopted outside this literature. One exception would be the identification of differentiated
product models in IO as in Berry, Levinsohn, and Pakes (2004).

4. In social interactions literature, the non-influence parameters that affect individual behavior are defined
via types of variables such as predetermined social factors, including gender, age, race, etc. Our model
abstracts away from these effects, classifying them under the individual preference parameter.

5. Section 2.1 introduces our model formally, but as described above two critical parameters constitute
the primitives. In this example, the preference parameters, the intrinsic utility weights of exercise at
home, go for a walk, go to gym, for Dan and Bob are 0:1; 0:3; 0:6 and 0:8; 0:08; 0:12, respectively, with
corresponding interaction parameters 5 and 1.
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identification strategy, we can deduce that strong conformity motives have resulted in
the observed behavior.

Our model is a stochastic choice model that assumes consistent behavior across all
budget sets. Critically, this menu variability grants us unique identification (or point
identification, as coined in the econometrics literature). Moreover, our identification
strategy does not suffer from a common handicap of identification in revealed
preference or decision-theoretic models: arguably unrealistic data requirements. Many
choice theoretic models require a rich dataset, typically individual choices from all
menus, for identification purposes.6 As we show in Section 2.2, observations from only
two menus are sufficient for unique identification for our baseline model, involving
two individuals. For identification of influence networks involving more than two
individuals, observations from two menus can still be sufficient as long as there are
sufficiently many alternatives in the menus. We elaborate more on this in Section 3.

We establish in Section 2.3 that our model is falsifiable by providing its empirical
content in terms of choice. Three behavioral properties are sufficient to characterize
the model. All of these properties are built around a cross-elasticity type parameter that
evaluates the relative rate of change in the individual choice frequency of an alternative
as a response to a comparative change in the behavior of the other individual(s). In
contrast to standard models of individual choice, this influence parameter is derived
from the choice behaviors of all of the individuals jointly, as opposed to the behavior
of only one individual. Hence, these characterizing properties are entirely novel.

The parameters of our model define an “equilibrium”, where the choice behavior
of each individual is a function of idiosyncratic utility and influence parameters, as
well as the behavior of the other individual(s). Unlike many other discrete choice
models (Brock and Durlauf 2001; Blume et al. 2011), the equilibrium defined by our
model is unique. Moreover, it is also stable in the sense that a dynamic adjustment
procedure always tends to this unique equilibrium. In other words, if we believe
that each individual aggregates behaviorally according to our procedure, we should
expect their behavior to conform to our model in the long run. There are two critical
implications of this result. The first implication is more practical: If one individual
mistakenly chooses, or one of them misobserves the other’s choices at some period in
time, then their behavior will still revert to the predictions of our model in the long
run. Second and more importantly, identification of the underlying parameters from
dynamic data is also possible. Then, in the absence of equilibrium choice behavior,
we can use a similar identification strategy over consecutive choice data. Section 2.4
elaborates on this.

Our baseline model involves two individuals with conformity motives, as in the
example above. An action’s choice probability increases as the action is chosen more
frequently by one’s peers. However, our model easily adapts to more individuals and
accommodates other types of interaction. We present two simple extensions. The first

6. For a recent exception to this common trend as well as a discussion on the topic, see Dardanoni et al.
(2020).
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incorporates multi-individual interaction, where individuals have different degrees of
influence on the behaviors of their peers; and the second is “negative” influence, where
the choice probability decreases as it is chosen more frequently by some peers.

We provide three distinct and well-known social influence settings, where the
behavior produced by our model can be reproduced under certain assumptions. We
refer to these as “foundational justifications” for our model, since each of them can
be seen as an economic mechanism underlying our model of influence. The first
of those incorporates strategic interactions, introducing a simultaneous game setting
whose Quantal Response Equilibrium happens to coincide with our model, whereas
the second one is utility maximization in a discrete choice setting with peer effects.
The last mechanism is a basic naive learning set up as in DeGroot (1974). All of these
models are distinguished from our model as we use menu variability in our setting.

The organization of this paper is as follows. The next subsection is devoted to
literature review. Section 2 presents a detailed analysis of the baseline model with
two individuals with conformity motives, including identification, falsifiability, and
stability results, as well as the foundational justifications. Section 3 introduces the
generalization to multi-individual settings. Section 4 concludes. All proofs are left
to an appendix. The incorporation of negative influence to dual and multi-individual
models is left to the Online Appendix.

Related Literature. Economics research on the identification of social interactions
has mainly utilized econometric tools and techniques. Most of these studies employ
linear social interaction models (Manski 1993; Blume et al. 2011, 2015; Jackson
2011), where the individual utility of an action is defined as a linear additive function
with two components: an individual private utility and a social utility. Blume et al.
(2015) provide micro-foundations to these linear interaction models by showing that,
under certain parametric assumptions, they can be reproduced as the Bayesian–Nash
equilibrium of an incomplete information game where individuals choose an action to
maximize their expected utility given their type and the public types of others.7 Calvo-
Armengol, Patacchini, and Zenou (2009) investigate the effects of the structure of
social networks and show that an underlying peer effects game rationalizes individual
outcomes, where at the Nash equilibrium each outcome is proportional to the centrality
of the individual within the network.

Linear social interaction models are defined for continuous choice variables. An
alternative to this has been developed by incorporating the linear additive utility
function with interaction effects into a discrete choice setting (Blume 1993; Brock
and Durlauf 2001, 2006). Binary or multinomial discrete choice models with social
interactions make use of random field models to study the equilibrium. Three critical
assumptions ensure the tractability of the model. First, the assumption of constant
strategic complementarity: The cross-partial of social utility is a positive constant
that is the same for all individuals. Second, rational expectations: The expected

7. For identification strategies without parametric assumptions, see Brock and Durlauf (2007).
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average behavior is simply the objective average behavior. Finally, the error terms
follow a relevant extreme value distribution. These assumptions are sufficient to
produce individual choice outcomes that are consistent with logistic choice with
multiple equilibria. The majority of these papers assume large populations in order
to justify the assumption that each individual ignores the effect of their own choice
on the average choice of the society. An exception to this is Soetevent and Kooreman
(2007), where they consider interaction in small groups in which the choices of other
individuals are fully observable. Thus, the choice of an individual directly depends on
the observed behavior of the others. Our model also uses this intuition. Indeed, under
certain assumptions, the behavior produced by a multinomial discrete choice model
with social interactions coincides with the behavior produced by our baseline model.
This requires a different error distribution than the one commonly assumed for those
works. We clarify this connection in Section 2.5.

In this strand of literature, social interactions have typically been taken to be
generated by group specific averages. Incorporating network theory into the study
of the identification of social interactions has enabled a much richer analysis of
the microstructure of interactions. Early works on this assumed a known network
structure, based on common observables or self-reported, elicited data (Bramoullé,
Djebbari, and Fortin 2009; De Giorgi, Pellizzari, and Redaelli 2010; Lee, Liu, and Lin
2010). However, both of these methods bear shortcomings for econometric methods
or practical reasons related to collecting data (De Paula 2017). A first improvement
on this was suggested by Blume et al. (2015) by assuming only partial information on
the structure of the underlying network. De Paula, Rasul, and Souza (2019) advance
on this by assuming no a priori information on the network structure and provide
sufficient conditions for full identification of social interactions with panel data. Our
paper is complementary to this literature since our general model also encompasses
an influence network, where the structure of the relations does not need to be known a
priori. Instead, it is fully revealed by the behaviors thanks to our identification strategy.

It is important to note that many theoretical models for identification of peer
influence are restricted by strategic complementarity (Blume 1993; Brock and
Durlauf 2001, 2006; Blume et al. 2011):8 Individual utility over an action increases
with the number of peers taking the action, explaining mostly conformity-type
behavior. However, empirical evidence points out to negative interactions as well. For
instance, Glaeser, Sacerdote, and Scheinkman (1996) suggest the existence of negative
interactions among criminals due to competition for resources. Bhatia and Wang
(2011) study peer effects in physicians’ prescription behaviors and find a significantly
negative effect on each other’s prescription behaviors, partly explained by observational
learning and congestion effects. Foster and Rosenzweig (1995) find evidence of a
negative relation between the experimental technology adoption rates of farmers and

8. Exemptions to this include structural models to identification such as Bramoullé, Djebbari, and
Fortin (2009), Cohen-Cole, Liu, and Zenou (2018). Bramoullé (2007) studies the effect of the structure
of the network on equilibrium behavior for games of anti-coordination, where there are incentives to
anti-coordinate.
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their neighbors. As we show in an extension in Online Appendix D, our model can
accommodate certain types of negative interactions.

The use of choice theoretic tools to study social interactions is quite recent. As far
as we know, the first choice-theoretic work investigating influence across individuals
is Cuhadaroglu (2017). This work introduces a deterministic model of two stage
optimization where the first stage involves the maximization of own preferences
(transitive but not necessarily complete), and the second stage accommodates social
influence to further refine first stage outcomes. Recently, two contemporaneous studies
incorporate choice theoretic analysis to identification of peer effects. Borah and Kops
(2018) and Kashaev and Lazzati (2021) both propose decision procedures in group
settings that make use of “a consideration set” approach. Borah and Kops (2018)
propose a two stage mechanism, where the first stage is devoted to the formation of
consideration sets with those alternatives that are chosen sufficiently enough by the
members of peers, and the second stage is devoted to preference maximization. Kashaev
and Lazzati (2021) incorporate random consideration sets into the dynamic model of
social interactions of Blume (1993). The main difference of our work from these
models is about the channel through which others’ behavior influences the individual.
Our model presumes that social influence alters one’s behavior via preferences, whereas
those two papers assume a limitation of the choice set due to social influence.9

Fershtman and Segal (2018) also consider a social interaction set up, where
individual behavior not only depends on one’s own preferences but also on the behavior
of other agents in an expected utility framework. A social influence function converts
the private utility of the agent and the observable utilities of everyone else to an
observable utility for the agent. They study certain properties of social influence
functions and their implications for the equilibrium without proposing an explicit
behavioral model.

Finally, our work is related to the literature discussing the revealed preference
implications of solution concepts in games; for example, Sprumont (2000), Lee (2012).
One interpretation of the mathematics of our model is to formalize, for each choice set,
a game and a solution concept. Thus, our model provides observable predictions of our
concept as strategy sets vary. The aforementioned papers also study the predictions of
game theory as strategy sets vary. In a similar fashion, our work is also linked to the
literature on estimation and inference in discrete games, with the main difference being
that, rather than relying on parametric or structural estimation techniques, our main tool
of inference is revealed preference. For early works on estimation in discrete games see
Bresnahan and Reiss (1991), Kooreman (1994); for inference in large discrete games

9. Many findings from social psychology or experimental economics literatures support the notion
that social influence alters one’s preferences. For instance, Kremer and Levy (2008) show that alcohol
consumption by one roommate is more likely to influence the alcohol consumption of another roommate
via a preference change rather than a modification of the choice set. According to the notion of
(mis)identification in social psychology, when some alternatives become identified with certain identities,
they become more likely to be preferred by aspiring individuals, whereas despising individuals avoid them
in order not to be misindentified (Berger 2016).
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see Menzel (2016); and for non-parametric estimation in non-cooperative games see
Haile and Tamer (2003).

2. Behavioral Influence

2.1. The Model

Let X be a finite set of alternatives with jX j > 2. A stochastic choice rule is a map
p W 2X n f∅g ! [S�X�CC.S/ such that for all S � X , p.S/ 2 �CC.S/.10

We propose a simple model of influence. There are two individuals, 1 and 2.
Each individual is influenced by the choices of the other individual. The observable
behavior is a pair of stochastic choice rules .p1; p2/; where pi stands for individual
i’s choices. We use the notation i; j 2 f1; 2g with i ¤ j for the individuals in general.
Then, pi .x; S/ stands for the probability of individual i choosing alternative x from
S , certainly with

P
x2S pi .x; S/ D 1.

The primitives of our setting are idiosyncratic weights and influence parameters.
Let wi 2 �CC.X/, so that wi .x/ measures the idiosyncratic weight of the available
alternatives for individual i . These can be interpreted as intrinsic utilities of the
alternatives absent any social influence effects as in the Luce model.11 We postulate that
the choice behavior of individual j regarding an alternative x 2 S directly influences
individual i’s evaluation of that alternative for the same choice set. Specifically, we
assume the utility of agent i from choosing alternative x from budget S is given by

wi .x/ C ˛ipj .x; S/;

where ˛i measures the degree of influence of j on i . For the baseline model, we assume
that ˛i � 0, hence, ˛i acts as a conformity parameter. The higher the probability that
j chooses x from S , the higher is i’s evaluation of x in S . The value of x is influenced
by the choice probability of others in a linear fashion. Hence, our formulation is in
line with the classical linear interaction models such as Manski (1993), Blume et al.
(2011, 2015). The choice probabilities are given by the normalized utility values as in
the Luce model. Formally,

DEFINITION 1. .p1; p2/ has a dual interaction representation if there exist w1; w2 2
�CC and ˛1; ˛2 2 <C such that

pi .x; S/ D wi .x/ C ˛ipj .x; S/P
y2S

Œwi .y/ C ˛ipj .y; S/�
(1)

for all x 2 S; S 2 2X n ∅ and i; j 2 f1; 2g with j ¤ i .

10. The notation �
CC

refers to the set of probability distributions with full support. We denoteP
x2S

f .x/ by f .S/ for any function f on X .

11. A stochastic choice rule p has a Luce representation (Luce 1959), if there exists a weight distribution
w 2 �

CC
.X/ such that p.x; S/ D w.x/=

P
y2S

w.y/ for all x 2 S; S 2 2X n ∅ . This ratio of relative
weights is known as the “Luce ratio.”
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When .p1; p2/ has a dual interaction representation with parameters
.w1; w2; ˛1; ˛2/, we say that .w1; w2; ˛1; ˛2/ represent .p1; p2/.

Dual interaction model defines an equilibrium, where the stochastic choice behavior
of the agents ends up being contingent on each other in a particular way.12 Different
cognitive and/or interactive mechanisms may lead to the equilibrium granted by this
model. For now, we abstract away from these underlying processes and instead focus
on identification and characterization.13

In our model, each pi is only defined implicitly by the procedure in equation (1).
p2 needs to be known in order to determine p1 and vice versa. However, given
.w1; w2; ˛1; ˛2/, we can obtain an explicit representation by solving the system of
simultaneous equations, arriving at

pi .x; S/ � �i .S/
wi .x/P

x2S

wi .x/
C .1 � �i .S//

wj .x/P
x2S

wj .x/
(2)

for �i .S/ 2 .0; 1/ defined as

�i .S/ D wi .S/Œwj .S/ C ˛j �

wi .S/wj .S/ C ˛iwj .S/ C ˛j wi .S/
;

where wi .S/ stands for
P

x2S wi .x/. Equation (2) helps to explain why we think
of ˛i as a measure of influence. The stochastic choice of i from choice set S is,
geometrically, a convex combination of i’s Luce choices and j ’s Luce choices. As
˛i increases, this combination tends to be closer to j ’s Luce choices. In other words,
the more the peer influence is, the higher is the weight attached to the peer’s Luce
ratio. In the extreme case, when ˛i D 0, �i .S/ is equal to 1, independent of the budget
set, and the model boils down to the standard Luce model.14 In general, each pi can
be expressed as a linear combination of the Luce ratios, where, crucially, the weights
in the combination depend on S . Observe that this is “as if” each individual knows
exactly not only her own intrinsic utilities but also those of the other individual, which
are not necessarily observable. Notice that in our original formulation, each individual

12. It is also possible to think of individuals as if adjusting their behavior according to their beliefs about
the behavior of their peer, rather than the behavior itself. Under an assumption of rational expectations, as
it is common in social interactions literature (Blume et al. 2011), the beliefs happen to coincide with actual
behavior. This interpretation is entirely in line with our model. However, since our main goal is to focus
on the identification of underlying unobservable parameters out of the observable behavior, we choose not
to include this additional dimension.

13. Section 2.5 introduces several prominent examples to these underlying mechanisms.

14. It is worth noting that p
i

consistent with dual interaction model does not satisfy IIA, the characterizing
property of the Luce model, .p

i
.x; S/=p

i
.y; S/ D p

i
.x; T /=p

i
.y; T / for all S; T and x; y 2 .S \ T )) in

general; it only does so when ˛
i

D 0 or ˛
i

! 1. In the former, there is no influence, hence, i behaves
according to w

i
, whereas in the latter, i fully mimics j . For an example to the violation of IIA by the dual

interaction model, see the example given in the introduction

p
Dan

.home; fhome; walkg/

p
Dan

.walk; fhome; walkg/
D 0:71

0:29
¤ 0:60

0:26
D p

Dan
.home; fhome; walk; gymg/

p
Dan

.walk; fhome; walk; gymg/
:
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utilizes each other’s observable choice behavior rather than their unobservable Luce
weights. We believe influence based on observed behavior rather than an unobserved
parameter is behaviorally and procedurally more plausible.15

Another important implication of this formulation is about uniqueness of the
behavior produced, which is not obvious from the equilibrium description of the
model. Since .p1; p2/ can explicitly be expressed as functions of the parameters,
for a given .w1; w2; ˛1; ˛2/, there is a unique pair .p1; p2/ consistent with the dual
interaction model. In other words, our model corresponds to a unique equilibrium.16

2.2. Identification

Assume we observe .p1; p2/ that has a dual interaction representation. How can we
identify the underlying preferences and interaction parameters? A powerful feature
of our model is that our identification strategy requires observation of behavior from
only two menus: The universal set X and any menu S that has at least two distinct
alternatives, say x and y. To see how, first define for each i D 1; 2, for any pair .x; S/

with x 2 S , di W .x; S/ 7! <, by

di .x; S/ WD pi .x; S/ � pi .x; X/:

The quantity di .x; S/ is simply the change in the probability of i’s choosing x as
the set X shrinks to S . With ˛i � 0, this change is always non-negative, with the
interpretation that in a larger set, there are more alternatives from which to choose.17

In the dual interaction model, this change is governed by two separate effects. First,
there is the individual effect. A larger set includes more alternatives, rendering any
given alternative relatively less attractive. Second, there is also a social influence
effect imposed by the change of the other individual’s choice probability, dj .x; S/.
With ˛i > 0, as the set enlarges, this indirect effect contributes to the loss in choice
probability of any given alternative. Let us decompose di .x; S/ into these two effects
explicitly for the model

di .x; S/ D pi .x; S/ � pi .x; X/

D 1 � wi .S/

1 C ˛i

pi .x; S/ C wi .S/ C ˛i

1 C ˛i

pi .x; S/ � 1 C ˛i

1 C ˛i

pi .x; X/

15. See Section 4 for further discussion on an alternative model that refers to a convex combination of
Luce choices with set independent weights.

16. Let us also finally note that although we restrict our attention to strictly positive stochastic choice
rules (hence, considered w

i
.�/ 2 .0; 1/), it is possible to extend the model to allow w

i
.�/ 2 Œ0; 1�. In this

case two additional properties dealing with 0 probabilities are required for characterization of the model.
Although this is a rather straightforward extension, the proof becomes tedious; hence, we choose the
restricted setting. The proof is available upon request.

17. Indeed, this refers to the well-known regularity property (Block and Marschak 1960).
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D 1 � wi .S/

1 C ˛i

pi .x; S/ C wi .x/ C ˛ipj .x; S/

1 C ˛i

� wi .x/ C ˛ipj .x; X/

1 C ˛i

D 1 � wi .S/

1 C ˛i

pi .x; S/„ ƒ‚ …
individual

C ˛i

1 C ˛i

dj .x; S/„ ƒ‚ …
social influence

;

where the pi .�/s in the second and third components in the second line are replaced
with the corresponding descriptions of the model in the third line. Notice what is
captured by the individual counterpart. In Luce’s model, this loss is equal to

d.x; S/ D Op.x; S/ � Op.x; X/ D w.x/

w.S/
� w.x/ D .1 � w.S// Op.x; S/;

where Op.x; S/ is the corresponding Luce probability. In our decomposition, the
individual counterpart captures a similar effect, but weighted by 1=.1 C ˛i /.

We make use of this decomposition to infer ˛i . One way of achieving this is to
make use of a normalization and the decomposition of di .y; S/ to cancel out the
individual counterparts. To this end, take an alternative y 2 S n fxg and normalize
both of the decompositions by the respective observed probabilities as follows and
take the difference:

di .x; S/

pi .x; S/
D

1�w
i
.S/

1C˛
i

pi .x; S/

pi .x; S/
C

˛
i

1C˛
i

dj .x; S/

pi .x; S/

di .y; S/

pi .y; S/
D

1�w
i
.S/

1C˛
i

pi .y; S/

pi .y; S/
C

˛
i

1C˛
i

dj .y; S/

pi .y; S/

di .x; S/

pi .x; S/
� di .y; S/

pi .y; S/
D ˛i

1 C ˛i

�
dj .x; S/

pi .x; S/
� dj .y; S/

pi .y; S/

�
: (3)

Equation (3) reveals ˛i uniquely whenever there exists .x; y; S/ such that
dj .x; S/=pi .x; S/ � dj .y; S/=pi .y; S/ ¤ 0. Within the proof of Theorem 1, we show
that there always exist .x; y; S/ such that this condition holds, as long as p1 ¤ p2.
For the inference of wi .x/, we simply make use of the description of the model for
choices from X , yielding: wi .x/ D pi .x; X/ C ˛i .pi .x; X/ � pj .x; X//: Obviously
each wi .x/ is identified uniquely with

P
X wi .x/ D 1. Let us state these results in a

proposition for completeness purposes.

PROPOSITION 1. Let p1 ¤ p2 and .p1; p2/ have a dual interaction representation.
Then, .w1; w2; ˛1; ˛2/ that represent .p1; p2/ are identified uniquely.

Identification above relies on the availability of data from two sets, the universal set
X and any other menu S with at least two alternatives. This begs the question whether
it is possible to do any inference when choices from X are not available? Indeed, it is
possible to recover the parameters from pairs of sets as long as they have at least two
common elements, although the identification strategy gets slightly more complicated.
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To see how, let any two distinct sets S; T with x; y 2 S \ T and S [ T D X and
reproduce equation (3) for any two such S; T , as di .x; S; T / D pi .x; S/ � pi .x; T /

Dwi .T / � wi .S/

wi .T / C ˛i

pi .x; S/ C wi .x/ C ˛ipj .x; S/

wi .T / C ˛i

� wi .x/ C ˛ipj .x; T /

wi .T / C ˛i

D wi .T / � wi .S/

wi .T / C ˛i

pi .x; S/„ ƒ‚ …
individual

C ˛i

wi .T / C ˛i

dj .x; S; T /„ ƒ‚ …
social influence

:

Normalizing the decompositions for distinct x; y 2 S and taking the difference
will result in

di .x; S; T /

pi .x; S/
� di .y; S; T /

pi .y; S/
D ˛i

wi .T / C ˛i„ ƒ‚ …
�

i
.x;y;S;T /

�
dj .x; S; T /

pi .x; S/
� dj .y; S; T /

pi .y; S/

�
:

Thus, two identifying equations are

�i .x; y; S; T / D ˛i

wi .T / C ˛i

and �i .x; y; T; S/ D ˛i

wi .S/ C ˛i

: (4)

Unlike the case with data from X , we now have one too many parameters for unique
identification only from �i s. The third identity, we need comes from the normalization
assumption wi .X/ D 1. Yet as the behavior from X is not observed, we need to
decompose it consistently over S and T . Since wi .S/ C wi .T n S/ D 1, by definition
of the model wi .x/ D Œ˛i C wi .T /�pi .x; T / � ˛ipj .x; T / yields

wi .T n S/ D Œ˛i C wi .T /�
X

x2T nS

pi .x; T / � ˛i

X
x2T nS

pj .x; T / D 1 � wi .S/;

resulting in the last equation sufficient for unique identification combined with the two
above.

We shall note that the requirement S [ T D X is not strictly necessary for
identification without choice data from X . Since we cannot speculate about underlying
parameters without observing some data involving all variables, the identification
requires some observations covering X . Specifically, in addition to identification
equations (4), more data revealing wi .S [ T / is required. Whenever S [ T D X ,
the normalization wi .X/ D 1 comes to aid. Whenever S [ T ¤ X , any additional
observation revealing wi .X n .S [ T // should be sufficient for identification of ˛1

and ˛2.

2.3. Falsifiability

For identification, we assumed a pair of choice behaviors .p1; p2/ consistent with
the dual interaction model. We now need to express explicitly how one can detect
the consistency of the data with the model. In other words for given .p1; p2/, which
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properties of these behaviors ensure that these two individuals are behaving as if they
are choosing according to dual interaction model?

We have three falsifiable characterizing properties built around the decomposition
of di .x; S/ into individual and social counterparts as we have used in Section 2.2.
Specifically, for any S ¤ X and x 2 S , di .x; S/ is composed of two counterparts:
the individual effect (as there are more options in X than S for i’s attraction) and the
social influence effect (same goes for j ’s attraction).

Our characterizing properties build on the premise that one can eliminate the
unobserved individual effects for x 2 S by cancelling them out with those of di .y; S/

for some distinct y 2 S . The remainder will then be a function of the social influence
effect. Specifically, it will be a linear function. Formally, take any S and x; y 2 S with
dj .x; S/=pi .x; S/ � dj .y; S/=pi .y; S/ ¤ 0 and define ˇi .x; y; S/ as follows:

di .x; S/

pi .x; S/
� di .y; S/

pi .y; S/
D ˇi .x; y; S/

�
dj .x; S/

pi .x; S/
� dj .y; S/

pi .y; S/

�
: (5)

Three properties that impose conditions on these two variables ˇ1.x; y; S/ and
ˇ2.x; y; S/ are sufficient for the characterization of the dual interaction model.

Independence [I]. ˇi .x; y; S/.WD ˇi / is independent of S; x; y. Moreover, ˇi

satisfies equation (5) for all S ¤ X and distinct x; y 2 S .

Uniform Boundedness [UB]. ˇi .x; y; S/ < minz2X

n
p

i
.z;X/

p
j

.z;X/

o
for all S and distinct

x; y 2 S .

Non-negativeness [Nn]. ˇi .x; y; S/ � 0 for all S and distinct x; y 2 S .

Independence is the property that restores the additive linear influence structure
among individuals. ˇi .x; y; S/ is defined for all those observations with a non-zero
dj .x; S/=pi .x; S/ � dj .y; S/=pi .y; S/. The first part of Independence ensures that
ˇi .x; y; S/ is indeed constant across observations, hence, defining ˇi . The second part
of Independence guarantees that this ˇi satifies equation (5) even for those observations
with dj .x; S/=pi .x; S/ � dj .y; S/=pi .y; S/ D 0. Uniform Boundedness guarantees
that idiosyncratic evaluations of alternatives, wi , are positive. This is due to the
choice of ˛i WD ˇi=.1 � ˇi / and wi .x/ WD pi .x; X/ C ˛i .pi .x; X/ � pj .x; X//, as
revealed in Section 2.2. These two equations jointly imply

pi .x; X/

pj .x; X/
D wi .x/ C ˛ipj .x; X/

.1 C ˛i /pj .x; X/
D wi .x/

.1 C ˛i /pj .x; X/
C ˛i

1 C ˛i

:

Hence, by UB

ˇi D ˛i

1 C ˛i

< min
x2X

(
wi .x/

.1 C ˛i /pj .x; X/
C ˛i

1 C ˛i

)
;

ensures that wi .x/ > 0 for all x. And finally, Non-negativeness restricts the interaction
among individuals to conformity behavior rather than diversification.
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The characterization result is stated for pairs of stochastic choice rules with some
variation in the overall behavior, that is, p1 ¤ p2. This is because having exactly the
same behavior in any choice set might be due to identical preferences of 1 and 2, that
is, w1 D w2; or it might be because one of the individuals only cares about imitating
the other individual. It is not possible to distinguish between these cases without any
additional information, such as their choice behavior in isolation.

THEOREM 1. Let p1 ¤ p2. Then, .p1; p2/ has a dual interaction representation if
and only if it satisfies Independence, Uniform Boundedness, and Non-negativeness.

The proof constructs the model thanks to the structure granted by Independence
and by the help of restrictions imposed by the remaining two axioms. We
take ˛i .x; y; S/ WD ˛i D ˇi=.1 � ˇi / (well-defined by the first two properties and
non-negative by the latter two) and wi .x/ WD pi .x; X/ C ˛i .pi .x; X/ � pj .x; X//

(positive by Uniform Boundedness). We then show that for any S and x; y 2 S ,
Independence builds up to

pi .x; S/

pi .y; S/
D wi .x/ C ˛ipj .x; S/

wi .y/ C ˛ipj .y; S/
:

The fact that this holds for each pair of alternatives immediately gives us the dual
interaction model.

Theorem 1 is a strong result. Three properties over ˇi .�/ are necessary and sufficient
to confirm if two individuals are choosing consistently with the dual interaction model.
This becomes a straightforward falsification exercise for an observable pair of choice
behaviors, .p1; p2/, as ˇi .�/ is merely derived from data. Independence is a property
very much in the spirit of “constant ratio” properties such as Luce’s IIA. IIA requires
that the ratio of choice frequencies of any two alternatives is constant across sets.
Similarly, Independence requires that the ratio given by ˇi .�/ for any two alternatives
is constant across sets. Certainly, what is captured by ˇi is not as straightforward to see
as Luce’s ratio; however, we argue that there is subtle behavioral content to ˇi . Observe
that, di .x; S/=pi .x; S/ is the percentage decrease in agent i’s choice probability of
x in expanding S to X . So, di .x; S/=pi .x; S/ � di .y; S/=pi .y; S/ is a differential
in percentage changes. On the other hand, dj .x; S/=pi .x; S/ � dj .y; S/=pi .y; S/

reflects a differential in percentage changes for agent j , normalized by the choice
probabilities of i . Thus, the ratio of these two differentials in percentage changes,
that is, ˇi .x; y; S/, acts like a differential cross-elasticity of choice probabilities in
expanding the set S to X . Independence fixes this differential cross-elasticity for
different menus, while the other two properties bound it.

2.4. Stability

The dual interaction model involves an adjustment procedure, where an individual’s
evaluation of an alternative is adjusted by the other’s behavior as well as the
level of susceptibility to influence. We now embed this adjustment procedure in a
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dynamic setting, where individuals start interaction from possibly unrelated behaviors.
Specifically, let .pt

1; pt
2/ denote the behaviors of 1 and 2 at period t > 0 and assume

that their initial behaviors .p1
1 ; p1

2/ are given. One can think of new roommates or
teenagers just enrolled in a new school as examples. Below we show that although these
individuals start interacting from possibly unrelated behaviors, as long as they adjust
consistently, eventually they converge to .p�

1 ; p�
2 /, the unique pair of behaviors that

the model yields for the given set of parameters. In other words, the behavior produced
by the dual interaction model constitutes a stable equilibrium when embedded in a
dynamic environment.

THEOREM 2. Take wi 2 �CC.X/, ˛i � 0, p�
i .S/ 2 �CC.S/ for all S 2 2X n f¿g

and for each i 2 f1; 2g and let .w1; w2; ˛1; ˛2/ represent .p�
1 ; p�

2 /. Further, let
.p1

1 ; p1
2/ 2 �.S/ � �.S/. Define for each i 2 f1; 2g and t � 2, pt

i .�; S/ 2 �.S/ via

pt
i .x; S/ � wi .x/ C ˛ip

t�1
j .x; S/P

y2S wi .y/ C ˛ip
t�1
j .y; S/

:

Then, for each i 2 f1; 2g, limt!1 pt
i D p�

i .

An interesting implication of this dynamic environment involves identification.
Although the observed behavior changes over time, because it changes in a consistent
way, our identification strategy still holds for the underlying preferences and interaction
parameters .w1; w2; ˛1; ˛2/. Similar to the static setting, the data requirement is
minimal: Only choice behavior from two different sets need be observed. However,
since now observations are from different time periods, the inference of ˛i demands
data from two successive periods.

PROPOSITION 2. Let .pt�1
1 ; pt�1

2 ; pt
1; pt

2/ such that for each i 2 f1; 2g and
pt

i .�; S/ 2 �.S/

pt
i .x; S/ � wi .x/ C ˛ip

t�1
j .x; S/P

y2S wi .y/ C ˛ip
t�1
j .y; S/

:

Then, .w1; w2; ˛1; ˛2/ that represent .p1; p2/ are identified uniquely.

2.5. Foundations

Why does the dual interaction model make sense as a decision procedure that
incorporates social influence? We provide three different foundational justifications,
three different mechanisms that produce behavior consistent with the dual interaction
model. Each environment differs from the classical stochastic choice setting. To this
end, we strip the menu-richness of the choice argument away and focus on a single
budget set, say X . We suppress the menu dependence in the notation of this subsection.
All of the following can be reproduced for any menu S .
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The first mechanism, we introduce reproduces dual interaction as the equilibrium
of a game, whereas the second one incorporates individual utility maximization in a
discrete choice setting with peer effects. The main link between these two and our
model is built around the use of a logistic distribution. However, as we show in the
third mechanism, the logistic set up is dispensable. This last part introduces a simple
naive learning mechanism that also reproduces dual interaction behavior in the limit.

2.5.1. Game Theoretic Foundations. Dual interaction model envisions individual
behavior contingent on peer behavior, which naturally relates to a game set up. Thus,
the first question we investigate is whether the pair of behaviors produced by the dual
interaction model could also be rationalized by an underlying game. Indeed, we show
that, a very specific solution concept for normal form games, the quantal response
equilibrium (McKelvey and Palfrey 1995), also reproduces the behavior granted by
our model. To see this, consider a normal form game with two players 1 and 2,
with S D S1 � S2 D X � X as the set of strategy profiles and si represents a pure
strategy for player i . Let †i denotes the set of probability distributions over Si and
an element �i 2 †i is a mixed strategy, and �i .si / is the probability that player i

chooses pure strategy si with † as the set of mixed strategy profiles. The pay-off
functions ui W S ! < are such that ui .x; y/ represents the utility of player i when
player 1 consumes x and player 2 consumes y. In particular, assume that u1.s/ D
u1.x; y/ D w1.x/ C ˛11fx D yg and u2.s/ D u2.x; y/ D w2.y/ C ˛21fy D xg. In
other words, each player receives a consumption utility wi .x/ and additional utility ˛i

when their consumptions match. With positive ˛, this corresponds to a very simple form
of pay-off function for conformity games. For instance, consider classroom behavior
of students: Asking a question “feels easier” when someone else does so (Alessio and
Kilgour 2011) or negative behavior such as aggression becomes more rewarding in the
presence of aggressive peers (Hanish et al. 2005).

Hence, for each mixed-strategy profile � 2 †, player i’s expected payoff is
ui .�/ D P

s2S �i .si /�j .sj /ui .s/; and the expected payoff for adopting the pure
strategy si when the other player uses �j is ui .si ; �j / D P

s
j

2S
j

�j .sj /ui .si ; sj / D
�j .si /.wi .si / C ˛i / C .1 � �j .si //wi .si / D wi .si / C ˛i�j .si /. Under the assump-
tion that Ui .si ; �j / D ui .si ; �j /"is with i.i.d. Log-logistic errors (i.e. log "i follows
a Type 1 extreme value distribution), the QRE outcome coincides with .p1; p2/ of
the dual interaction model. The standard stochastic derivation is provided in Online
Appendix B.

Two caveats must be mentioned: First, the QRE is a prediction for a single game,
whereas the testable implications of our model derive their power from the ability to
observe behavior across choice sets. Indeed, QRE affords basically no predictions on a
single-game (much like classical choice theory generates no predictions from a single
budget). See, for example, Haile, Hortaçsu, and Kosenok (2008). Thus, a suitable
extension of the notion of QRE across game forms must be described.18 Second, our

18. In particular, one must take care to ensure the error distributions across game forms coincide in a
natural way.
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model results from a very specific choice of error distribution (one of the parameters
of the QRE model) and a very specific choice of utility (the other main parameter). To
sum up, the behavior produced by our model may be viewed as being rationalized by a
particular choice of game forms and the logit QRE solution concept, suitably extended
to across games. We believe exploration of similar results for generic games of peer
influence with standard equilibrium concepts remains as an interesting open question
outside the scope of this paper.19

2.5.2. Random Utility with Linear Social Interactions. The standard econometric
tools to study social interactions include discrete choice models with peer effects
(Blume 1993; Brock and Durlauf 2001, 2006). These models regard individual utility
as a linear additive function of observed and unobserved individual characteristics as
well as social influence. Under the assumption of i.i.d. extreme value unobserved
characteristics, utility maximization yields choice frequencies as a function of
individual characteristics and social influence. The dual interaction model can also
be reproduced in a multinomial discrete choice setting. Two specific assumptions are
sufficient to achieve this: a logarithmic transformation of the utility and a relevant
extreme value distribution. To see how this works, assume a multiplicative form for
individual utility as follows:

Ui .x/ D Vi .x/"i .x/ where Vi .x/ D wi .x/ C ˛ipj .x/:

Similar to the previous subsection (and as by step by step derivation provided in
Online Appendix B), under the assumption that "i follows a log-logistic distribution,
maximization of log Ui .x/ results in pi .x/, exactly as given by the dual interaction
model. Thus, a logarithmic transformation of the individual utility and a relevant
extreme value distribution for the error terms in a discrete choice setting with social
interactions lead to the behavior described by the dual interaction model.

According to Blume et al. (2011) empirical challenges to identification of social
interactions are broadly grouped under three categories: (i) simultaneous equation
problem: How to differentiate the direct interdependencies between choices from the
effects of predetermined social factors; (ii) unobserved group-level characteristics;
and (iii) endogeneity of reference groups and self-selection. The primary aim of our
social interaction model for identification purposes is the revelation of the direct
interdependencies between choices. Those are captured by the interaction parameter,
˛i . Since our model lives in a two-parameter world, all other effects are left to be
captured by the preference parameter wi . This approach enables us to tackle the
simultaneous equation problem of (i), “the reflection problem”, by identifying the

19. The extensive literature on peer influence games over social networks (Ballester, Calvó-Armengol,
and Zenou 2006; Calvo-Armengol, Patacchini, and Zenou 2009) does not provide an immediate answer to
this question, mostly because the multi-variate discrete nature of our setting and the assumption that main
observables are stochastic choice outcomes over different menus.
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endogenous effects and abstracting away from observed or unobserved group level
characteristics, namely, contextual and correlated effects.20

In order to address challenges belonging to (ii) or (iii) and investigate the effects of
predetermined social factors, one approach could be further exploring heterogeneities
over wi (and/or ˛i ). For instance, take the issue of homophily, the tendency to create
social ties with people who are similar to one’s self (McPherson, Smith-Lovin, and
Cook 2001; Blackwell and Lichter 2004; Currarini, Jackson, and Pin 2009). This is
an endogenous reference group formation problem and is not immediate to identify
out of observable behavior. However, our model reduces homophily to the similarity
of underlying wi parameters for people with high ˛i values. In other words, our
identification strategy can be helpful to identify homophilic interactions by comparing
the revealed wi ’s. Certainly, this becomes a more interesting question in a multi-
individual setting, as we explore in Section 3.

One final potential challenge that may arise in our setting but not listed explicitly
within the above categories is due to the exogenous menu variation across individuals.
We assume that individuals choose from the same menus of alternatives, and our
entire identification strategy is based on menu variation. However, in cases the menus
available to individuals are correlated with the idiosyncratic unobservables, this critical
assumption fails. Hence, the dual interaction representation will not be useful for
identification with endogenous menu variation.

2.5.3. Naive Learning with Anchors. The previous two subsections have explored the
rational and/or strategic motivations underlying dual interaction mechanism. However,
adopting the behavior dictated by the dual interaction model does not necessitate
adopting standard notions of full rationality. Indeed, dual interaction model can also
be reproduced in a particular boundedly rational learning setting. The most well-known
model of naive learning over social networks, the DeGroot model, envisions a non-
Bayesian updating of individual beliefs by repeatedly taking weighted averages of one’s
neighbors’ beliefs (DeGroot 1974; Golub and Jackson 2010). The behavior produced
by the dual interaction model is observationally equivalent to the limit of a DeGroot
updating process with anchors. In this setting, w1 and w2 act as anchors, as innate
preferences/beliefs that do not change over time. At each point in time, the individuals
update their behavior by taking a weighted average of their peers’ behavior and their
own anchor, with time invariant weighting. In the limit, this updating converges to the
behavior produced by the dual interaction model. We leave the detailed derivation of
this mechanism to Online Appendix C.

Overall, these three settings indicate that behavior postulated by our model can be
justified by an underlying utility maximization as well as a naive learning mechanism.
The main difference of our model lies in the menu variability of our setting. Our model
is a stochastic choice model that assumes consistent behavior across menus. Critically,

20. See Brock and Durlauf (2007) for identification of correlated effects in discrete choice social
interaction models and Bramoullé, Djebbari, and Fortin (2020) for a recent survey of the methods developed
to address it.
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this menu variability grants us unique identification of the underlying unobserved
parameters.

3. Multi-Agent Interaction

One of the strengths of our model is that it is easily generalizable to multi-individual
setting with more intricate forms of social interactions. We can easily capture the
heterogeneities that drive different behavioral outcomes in a social context. Not
only individuals have different preferences but they also have different levels of
susceptibility to influence. Or similarly, different people might influence an individual
in different ways. The generalization of our model to multi-individual setting allow
for these variations, by providing a complementary approach to the identification of
social interactions over social networks. In particular, it allows the identification of a
weighted social network from choice behavior.

Early works on social networks have assumed known network structure, based on
common observables or self-reported, elicited data (Bramoullé, Djebbari, and Fortin
2009; De Giorgi, Pellizzari, and Redaelli 2010; Lee, Liu, and Lin 2010), that is,
rather costly to collect (De Paula 2017). A first improvement on this was suggested
by Blume et al. (2015) by assuming only partial information on the structure of
the underlying network. De Paula, Rasul, and Souza (2019) advance on this by
assuming no a priori information on the network structure and provide sufficient
conditions for full identification of social interactions with panel data. Similarly, our
generalized model does not require any exogenous network structure. On the contrary,
our representation theorem reveals the unknown network of social influence in addition
to individual preferences and influence patterns. Specifically, given the behavior of a
group of individuals that is consistent with our characterizing properties, we can
uniquely identify the underlying preferences, represented by wi , and the interaction
pattern, represented by ˛ij , capturing how individual i is influenced by the behavior
of individual j for all pairs of individuals i and j . Note that the interaction between i

and j might be asymmetric, that is, ˛ij need not be equal to ˛j i .
Let us now formally introduce the multi-individual model. Let N denote a set of

n < C1 individuals interacting. As before, for each choice problem, S 2 2X n ∅, we
observe agent i’s stochastic choice, pi .x; S/. Let p�i .x; S/ 2 <n�1 denote the vector
of pj .x; S/ and d�i .x; S/ 2 <n�1 the vector of dj .x; S/ for all j ¤ i .

DEFINITION 2. .p1; p2; : : : ; pn/ has a social interaction representation if for each
i 2 N there exist wi 2 �CC.X/ and ˛i 2 <n�1C such that

pi .x; S/ D wi .x/ C ˛i � p�i .x; S/P
y2S Œwi .y/ C ˛i � p�i .y; S/�

for all x 2 S and for all S .
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The parameter ˛i captures different levels of susceptibility to influence from
different individuals, that is, agent i can be influenced differently by different j ’s. Let
˛ij denotes the entry of ˛i relating to the influence of individual j on i . If ˛ij D 0 for
all j ¤ i , then once again i’s choice behavior reduces down to the Luce.

The identification strategy and the characterizing properties are similar to those of
the baseline model. Notice that for any S ¤ X , and any two distinct x; y 2 S , now
there might be multiple vectors � i 2 <n�1 satisfying the following equation:

� i �
�

d�i .x; S/

pi .x; S/
� d�i .y; S/

pi .y; S/

�
D di .x; S/

pi .x; S/
� di .y; S/

pi .y; S/
: (6)

We will be interested in the ones that satisfy it for all observations.

Bi D f� i 2 <n�1 j� i solves .6/ for any S and distinct x; y 2 Sg
The first characterizing property ensures that Bi is non-empty; hence, there is

at least one solution to the system of equations given by equation (6) for all S and
x; y 2 S . The last one puts bounds on it.

N-Independence [N-I]. Bi is non-empty.

N-Positive Uniform Boundedness. [N-PUB]. pi .z; X/ > � i � p�i .z; X/ for some
� i 2 Bi with � i 2 <n�1C , for all z 2 X .

N-Independence implies that there exists a vector, say ˇi , that satisfies equation
(6) independent of S; x; y. As before, ˛i is to be identified from ˇi . Specifically,
˛ij D ˇij =.1 �P

j ¤i ˇij /. However, unique identification requires more than two
observations this time, simply because there are more unknowns now. Indeed,
equation (6) has .n � 1/ unknowns, ˛ij for each j ¤ i . Hence, the number of linearly
independent equations required to solve the system is .n � 1/. Notice that this does
not mean we necessarily need data from .n � 1/ different menus. All that is required
is .n � 1/ observations; data from two different menus is sufficient as long as there are
at least .n � 1/ common pairs of alternatives in these two menus.21

Unique identification of the underlying preferences is then achieved via

wi .x/ D pi .x; X/ C
X
j ¤i

˛ij Œpi .x; X/ � pj .x; X/�: (7)

21. Notice that with n individuals, there are n.n � 1/ unknown interaction parameters. Full identification
of these requires .n � 1/ independent identification equations given by equation (6), which corresponds
to observations of .n � 1/ pairs of alternatives from at least two different menus. For instance with four
individuals, to point identify twelve interaction parameters, observations from p

i
.fx; y; zg/ and p

i
.X/

with jX j � 4 are sufficient (conditional on linear independence). When the number of alternatives in X

is not high enough to consider different pairs, it is possible to use the same pairs of alternatives from
a larger number of menus. With 10 individuals, to identify 90 interaction parameters, observations from
p

i
.fx; y; z; t; ug and p

i
.X/ with jX j � 6 are sufficient as well as p

i
.fx; y; zg/, p

i
.fx; y; tg/, p

i
.fx; z; tg/

and p
i
.X/ with jX j � 4.

D
ow

nloaded from
 https://academ

ic.oup.com
/jeea/article/21/1/135/6587054 by guest on 13 February 2023



Chambers, Cuhadaroglu, and Masatlioglu Behavioral Influence 155

THEOREM 3. Let fpigi2N . Then, fpigi2N has a social interaction representation if
and only if N-Independence and N-Positive Uniform Boundedness hold.

As before, the equilibrium defined by the model always exists and is unique.
Moreover, when embedded in a dynamic adjustment process, as in Section 2.4, the
limit behavior happens to be the equilibrium defined by our model. The following
theorem formalizes these.

THEOREM 4. Take wi 2 �CC.X/; ˛ij � 0 for all i; j 2 f1; 2; : : : ; ng with i ¤ j .

Then, there is a unique .p�
1 ; : : : ; p�

N / 2 �CC.S/N for which

p�
i .x; S/ D wi .x/ C ˛i � p��i .x; S/P

y2S Œwi .y/ C ˛i � p��i .y; S/�

and for any .p1
1.�; S/; : : : ; p1

N .�; S// 2 �CC.S/N , the iterative map

pt
i .x; S/ D wi .x/ C ˛i � pt�1�i .x; S/P

y2S Œwi .y/ C ˛i � pt�1�i .y; S/�

converges to .p�
1 ; : : : ; p�

N /.

4. Concluding Remarks

The identification of social interactions from observable behavior is an important and
highly topical agenda for economists. We believe that the use of choice theoretic
tools to study social interactions introduces a new perspective to this problem that has
traditionally been dealt with mostly econometric tools.

Exploiting standard choice theoretic tools, this model, and others, should prove
useful for the identification of unobservable underlying interaction structures and
parameters out of observable behavior. The strength of our identification strategy
relies on the novel source of variation we have introduced: The variation of the choice
sets. Whether the same insight can be applied into more general settings of interaction
constitutes an interesting future research avenue. One potential way to generalize our
model is via more flexible definitions of individual utilities a la Luce

pi .x; S/ D Ui .xjS; ˛i ; pj /P
y2S Ui .yjS; ˛i ; pj /

;

where Ui .xjS; ˛i ; pj / represents agent i’s utility when she chooses alternative x

from budget S . In this paper, we aimed to come up with a particular Ui .�/ that
produces .p1; p2/ (i) that is unique for a given set of parameters, (ii) out of which
the underlying parameters can be revealed uniquely with an arguably small amount of
data, (iii) that is axiomatizable, hence falsifiable, (iv) that is stable when accommodated
within a dynamic adjustment process, and (v) that can be produced as the outcome
of well-known interaction mechanisms such as a game, parametric social interaction
models, or social learning, under appropriate assumptions. Our model assumes that
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Ui .xjS; ˛i ; pj / is a linear combination of the intrinsic utility and the choice probability
of the other. This linearity, combined with the asymmetric role played by the self versus
influence over different menus grants us the unique identification. One interesting close
alternative would be

U �
i .xjS; ˛i ; pj / D wi .x/ C ˛iwi .S/

1 � ˛i

pj .x; S/:

According to this formulation, the decision maker inherently places different weights
on the choice probability of others across different menus. What makes this formulation
interesting is that it boils down to a convex combination of two Luce models as follows:

pi .x; S/ D �i

wi .x/P
y2S wi .y/

C .1 � �i /
wj .x/P

y2S wj .y/
;

where �i D .1 � ˛i /=.1 � ˛i˛j /. However, this model does not always lend itself to
unique identification of the underlying parameters out of observable behavior. We hope
that similar results can be obtained by studying different forms of utility, which extend
the insights of this paper.

Appendix: Proofs

Proof of Theorem 1.

.)/ Let .p1; p2/ with p1 ¤ p2 have a dual interaction representation with

.w1; w2; ˛1; ˛2/.
First, we assume that ˇi is well-defined and show that equation (5) holds

for all x; y and S . Define ˇi W� .˛i /=.1 C ˛i /. Then, ˇi Œdj .x; S/=pi .x; S/ �
dj .y; S/=pi .y; S/� is equal to

D ˛i

1 C ˛i

�
pj .x; S/ � pj .x; X/

pi .x; S/
� pj .y; S/ � pj .y; X/

pi .y; S/

�

D wi .x/ C ˛ipj .x; S/ � wi .x/ � ˛ipj .x; X/

.1 C ˛i /pi .x; S/

� wi .y/ C ˛ipj .y; S/ � wi .x/ � ˛ipj .y; X/

.1 C ˛i /pi .y; S/

D .wi .S/ C ˛i /pi .x; S/ � .1 C ˛i /pi .x; X/

.1 C ˛i /pi .x; S/

� .wi .S/ C ˛i /pi .y; S/ � .1 C ˛i /pi .y; X/

.1 C ˛i /pi .y; S/
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D pi .y; X/

pi .y; S/
� pi .x; X/

pi .x; S/

D di .x; S/

pi .x; S/
� di .y; S/

pi .y; S/
:

Since this holds for all S ¤ X and distinct x; y 2 S , equation (5) holds for all x; y

and S .
Now, we show that ˇi is indeed well-defined. We have three exhaustive cases.

Fix i; j 2 f1; 2g with i ¤ j and first let ˛i ¤ 0. We will show that for some
S ¤ X and distinct x; y, we have dj .x; S/=pi .x; S/ � dj .y; S/=pi .y; S/ ¤ 0,
hence, ˇi .x; y; S/ exists. Assume for a contradiction that dj .x; S/=pi .x; S/ �
dj .y; S/=pi .y; S/ D 0 for all S and distinct x; y. Then,

dj .x; S/

pi .x; S/
� dj .y; S/

pi .y; S/
D 0 ) pj .x; S/ � pj .x; X/

pi .x; S/
D pj .y; S/ � pj .y; X/

pi .y; S/

) ˛ipj .x; S/ � ˛ipj .x; X/

pi .x; S/

D ˛ipj .y; S/ � ˛ipj .y; X/

pi .y; S/

) wi .x/ C ˛ipj .x; S/ � wi .x/ � ˛ipj .x; X/

pi .x; S/

D wi .y/ C ˛ipj .y; S/ � wi .y/ � ˛ipj .y; X/

pi .y; S/

) Œwi .S/ C ˛i �pi .x; S/ � Œ1 C ˛i �pi .x; X/

pi .x; S/

D Œwi .S/ C ˛i �pi .y; S/ � Œ1 C ˛i �pi .y; X/

pi .y; S/

) pi .x; X/

pi .x; S/
D pi .y; X/

pi .y; S/
:

But since this holds for all S; x; y, then IIA would be satisfied, establishing
a contradiction with ˛i ¤ 0. Now consider ˛i D 0 and ˛j ¤ 0. Then, pi has a
Luce representation and di .x; S/=pi .x; S/ � di .y; S/=pi .y; S/ D 0 for all S and
x; y 2 S . We now show that for some S and distinct x; y 2 S , dj .x; S/=pi .x; S/ �
dj .y; S/=pi .y; S/ ¤ 0 so that I is satisfied for ˇi D ˛i=.1 C ˛i / D 0. Assume
for a contradiction that for all S and distinct x; y 2 S , dj .x; S/=pi .x; S/ �
dj .y; S/=pi .y; S/ D 0. Since ˛j ¤ 0, we have

˛j

1 C ˛j

 
di .x; S/

pj .x; S/
� di .y; S/

pj .y; S/

!
D dj .x; S/

pj .x; S/
� dj .y; S/

pj .y; S/
(A.1)
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for all S and distinct x; y 2 S , as we have shown above. Take S and
x; y 2 S with di .x; S/=pj .x; S/ ¤ di .y; S/=pj .y; S/ and substitute dj .x; S/ by
dj .y; S/pi .x; S/=pi .y; S/ in equation (A.1):

˛j

1 C ˛j

 
di .x; S/

pj .x; S/
� di .y; S/

pj .y; S/

!
D dj .y; S/pi .x; S/

pj .x; S/pi .y; S/
� dj .y; S/

pj .y; S/

˛j

1 C ˛j

 
di .x; S/

pj .x; S/
� di .y; S/

pj .y; S/

!

D dj .y; S/pi .x; S/pj .y; S/ � dj .y; S/pj .x; S/pi .y; S/

pj .x; S/pi .y; S/pj .y; S/

˛j

1 C ˛j

D dj .y; S/Œpi .x; S/pj .y; S/ � pi .y; S/pj .x; S/�

pi .y; S/Œdi .x; S/pj .y; S/ � di .y; S/pj .x; S/�
:

As pi has a Luce representation, di .x; S/ D pi .x; S/.1 � wi .S//. We can then
simplify the expression as follows:

˛j

1 C ˛j

D dj .y; S/

pi .y; S/.1 � wi .S//
D dj .y; S/

di .y; S/
:

But then,

˛j

1 C ˛j

D dj .y; S/

di .y; S/
) ˛j pi .y; S/ � ˛j pi .y; X/

1 C ˛j

D pj .y; S/ � pj .y; X/

) wj .y/ C ˛j pi .y; S/ � wj .y/ � ˛j pi .y; X/

1 C ˛j

D pj .y; S/ � pj .y; X/

) pj .y; S/Œwj .S/ C ˛j � � pj .y; X/Œ1 C ˛j �

1 C ˛j

D pj .y; S/ � pj .y; X/

) pj .y; S/Œwj .S/ C ˛j �

1 C ˛j

� pj .y; X/ D pj .y; S/ � pj .y; X/:

Contradiction since wj .S/ ¤ 1.
Finally, let ˛i D ˛j D 0. We claim that there exists S and distinct x; y 2 S

such that dj .x; S/=pi .x; S/ � dj .y; S/=pi .y; S/ ¤ 0 so that ˇi D ˛i=.1 C ˛i / D 0

solves equation (5) for all S and distinct x; y 2 S . Assume for a contradiction not.
Since pj allows a Luce representation, dj .x; S/ D .1 � wj .S//pj .x; S/. But then,

dj .x; S/

pi .x; S/
D dj .y; S/

pi .y; S/
) pj .x; S/

pi .x; S/
D pj .y; S/

pi .y; S/
:

Since this would be the case for all S and x; y 2 S , we would have pi D pj ,
contradiction. Thus, we have established I for all cases with ˇi � ˇi .x; y; S/ D
˛i=.1 C ˛i /.
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Nn follows directly. UB follows from wi .x/ > 0 for all x, since wi .x/ D .1 C
˛i /pi .x; X/ � ˛ipj .x; X/. Then, we have pi .x; X/=pj .x; X/ > ˇi , establishing
necessity.

.(/ Let p1 ¤ p2 satisfy the axioms. Now define ˇi � ˇi .x; y; S/ by I. UB implies
ˇi ¤ 1 since otherwise 1 < pi .x; X/=pj .x; X/ for all x 2 X yields pi .x; X/ >

pj .x; X/, from which it follows that 1 D P
x2X pi .x; X/ >

P
x2X pj .x; X/ D 1,

a contradiction. Since ˇi ¤ 1, define ˛i WD ˇi=.1 � ˇi /.
We claim that ˛i � 0. Observe that by UB, ˇi < 1. Joint with Nn, this means

ˇi 2 Œ0; 1/. Hence, it follows that ˛i D ˇi=.1 � ˇi / � 0.
Next, we define weights for each alternative

wi .x/ � pi .x; X/ C ˛i .pi .x; X/ � pj .x; X//:

Observe that
P

x2X wi .x/ D 1.
Now take any S ¤ X with distinct x; y 2 S . Then,

di .x; S/

pi .x; S/
� di .y; S/

pi .y; S/
D ˛i

1 C ˛i

�
dj .x; S/

pi .x; S/
� dj .y; S/

pi .y; S/

�
pi .y; X/

pi .y; S/
� pi .x; X/

pi .x; S/
D ˛i

�
dj .x; S/ � di .x; S/

pi .x; S/
� dj .y; S/ � di .y; S/

pi .y; S/

�
pi .x; X/ C ˛idj .x; S/ � ˛idi .x; S/

pi .x; S/
D pi .y; X/ C ˛idj .y; S/ � ˛idi .y; S/

pi .y; S/
:

Now add ˛i to both sides of this equality and notice that as �˛idi .x; S/

C ˛ipi .x; S/ D ˛ipi .x; X/, the numerators of both of the sides are non-zero. Hence,

pi .x; S/

pi .y; S/
D pi .x; X/ C ˛idj .x; S/ � ˛idi .x; S/ C ˛ipi .x; S/

pj .y; X/ C ˛idj .y; S/ � ˛idi .y; S/ C ˛ipi .y; S/

Dpi .x; X/ C ˛i .pi .x; X/ � pj .x; X// C ˛ipj .x; S/

pi .x; X/ C ˛i .pi .x; X/ � pj .x; X// C ˛ipj .x; S/

Dwi .x/ C ˛ipj .x; S/

wi .y/ C ˛ipj .y; S/
:

Observe in particular that this equality holds even in the case x D y. Now, for any
x; y 2 S , we have

pi .y; S/ D pi .x; S/
wi .y/ C ˛ipj .y; S/

wi .x/ C ˛ipj .x; S/

so that

X
y2S

pi .y; S/ D
X
y2S

pi .x; S/
wi .y/ C ˛ipj .y; S/

wi .x/ C ˛ipj .x; S/
:
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Conclude

1 D pi .x; S/

P
y2S .wi .y/ C ˛ipj .y; S//

wi .x/ C ˛ipj .x; S/
:

Consequently,

pi .x; S/ D wi .x/ C ˛ipj .x; S/P
y2S .wi .y/ C ˛ipj .y; S//

:

We finally show that wi .x/ > 0 for all x 2 X . For all x 2 X , pi .x; X/=pj .x; X/ >

ˇi D ˛i=.1 C ˛i /. Here, we obtain .˛i C 1/pi .x; X/ > ˛ipj .x; X/ for all x.
Consequently, wi .x/ D pi .x; X/ C ˛i Œpi .x; X/ � pj .x; X/� > 0 for all x. �

Sketch of the Proof of Theorem 2.

Theorem 2 is a special case of Theorem 4 (and Theorem D.2 in Online Appendix D), but
there is an especially simple way to grasp the argument, based on contraction mapping.
Construct the map f W �.S/ � �.S/ ! �.S/ � �.S/, defined by fi .p/ � .wi C
˛ipj /=.wi .S/ C ˛i /. Under the complete metric defined by d..p; p0/; .q; q0// D
maxfkp � p0k; kq � q0kg, this map is a contraction with modulus maxi .˛i=.wi .S/ C
˛i // < 1, yielding convergence to p�

i as defined. The detailed proof of a more general
result is provided as the proof of Theorem D.2 in Online Appendix D. �

Proof of Proposition 2.

Let .pt�1
1 ; pt�1

2 ; pt
1; pt

2/ as defined. Now, let us reproduce equation (3) for this dynamic
environment. Take any S ¤ X with x; y 2 S such that

d t�1
j .x; S/

pt
i .x; S/

� d t�1
j .y; S/

pt
i .y; S/

¤ 0

and let

ˇi .x; y; S/ D
d t

i .x; S/

pt
i .x; S/

� d t
i .y; S/

pt
i .y; S/

d t�1
j .x; S/

pt
i .x; S/

� d t�1
j .y; S/

pt
i .y; S/

:

(If there does not exist such S , then ˛i is revealed as equal to 0, as per argumentation
given in the proof of Theorem 1.)

Now, decompose d t
i .x; S/ D pt

i .x; S/ � pt
i .x; X/ as before

D1 � wi .S/

1 C ˛i

pt
i .x; S/ C wi .S/ C ˛i

1 C ˛i

pt
i .x; S/ � 1 C ˛i

1 C ˛i

pt
i .x; X/

D1 � wi .S/

1 C ˛i

pt
i .x; S/ C wi .x/ C ˛ip

t�1
j .x; S/

1 C ˛i

� wi .x/ C ˛ip
t�1
j .x; X/

1 C ˛i

;
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which finally leads to

D 1 � wi .S/

1 C ˛i

pt
i .x; S/„ ƒ‚ …

individual

C ˛i

1 C ˛i

d t�1
j .x; S/„ ƒ‚ …

social influence

:

The difference between normalized decompositions for distinct x; y 2 S yields

d t
i .x; S/

pt
i .x; S/

� d t
i .y; S/

pt
i .y; S/

D ˛i

1 C ˛i

"
d t�1

j .x; S/

pt
i .x; S/

� d t�1
j .y; S/

pt
i .y; S/

#
:

Hence, we have ˇi .x; y; S/ D ˛i=.1 C ˛i / as before. Identification of wi .x/ is
achieved viawi .x/ D .1 C ˛i /p

t
i .x; X/ � ˛ip

t�1
j .x; X/: �

Proof of Theorem 3.

.)/ Let .p1; p2; : : : ; pn/ be a social interaction model. For any i , define ˇi 2 Rn�1

such that ˇij D ˛ij =.1 CP
j ¤i ˛ij / for all j ¤ i . We will first show ˇi 2 Bi .

First, let ˛ij D 0 for all i and j with i ¤ j . Then, for all i , pi has
a Luce representation and hence, di .x; S/ D .1 � wi .S//pi .x; S/. Moreover,
di .x; S/=pi .x; S/ � di .y; S/=pi .y; S/ D 0 for all S and distinct x; y. Hence, ˇi D 0

is an element in Bi .
Now, let ˛i ¤ 0 for some i . Take any S and any distinct x; y 2 S . Then,

ˇi �
�

d
�i

.x;S/

p
i
.x;S/

� d
�i

.y;S/

p
i
.y;S/

�
is equal to

D
X

j

ˇij .pj .x; S/ � pj .x; X//

pi .x; S/
�
X

j

ˇij .pj .y; S/ � pj .y; X//

pi .y; S/

D
X

j

˛ij .pj .x; S/ � pj .x; X// 
1 CP

j

˛ij

!
pi .x; S/

�
X

j

˛ij .pj .y; S/ � pj .y; X// 
1 CP

j

˛ij

!
pi .y; S/

D
wi .x/ CP

j

˛ij pj .x; S/ � wi .x/ �P
j

˛ij pj .x; X/ 
1 CP

j

˛ij

!
pi .x; S/

�
wi .y/ CP

j

˛ij pj .y; S/ � wi .y/ �P
j

˛ij pj .y; X/ 
1 CP

j

˛ij

!
pi .y; S/
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and hence,

D
pi .x; S/

"
wi .S/ CP

j

˛ij

#
� pi .x; X/

"
1 CP

j

˛ij

#
 

1 CP
j

˛ij

!
pi .x; S/

�
pi .y; S/

"
wi .S/ CP

j

˛ij

#
� pi .y; X/

"
1 CP

j

˛ij

#
 

1 CP
j

˛ij

!
pi .y; S/

D

"
wi .S/ CP

j

˛ij

#
 

1 CP
j

˛ij

! � pi .x; X/

pi .x; S/
�

"
wi .S/ CP

j

˛ij

#
 

1 CP
j

˛ij

! C pi .y; X/

pi .y; S/

D pi .y; X/

pi .y; S/
� pi .x; X/

pi .x; S/
;

establishing ˇi 2 Bi .
Certainly, ˇi 2 Rn�1C as ˛ij � 0 for all i; j with i ¤ j . N-PUB then follows from

wi .x/ > 0 for all x, since wi .x/ D pi .x; X/ CP
j ¤i ˛ij .pi .x; X/ � pj .x; X// >

0 ) .1 CP
j ¤i ˛ij /pi .x; X/ >

P
j ¤i ˛ij pj .x; X/ ) pi .x; X/ > ˇi � p�i .x; X/.

.(/ Take .p1; p2; : : : ; pn/ satisfying our axioms. Take any i 2 N , x; y and S

and by N-I, take ˇi 2 Bi , which also satisfies N-PUB. Further, define ˛i 2 Rn�1

such that ˛ij D ˇij =.1 �P
j ¤i ˇij /. We first show that ˛i is well-defined and non-

negative since
P

j ¤i ˇij < 1. This is because by N-PUB, pi .x; X/ > ˇi � p�i .x; X/

for all x, we have 1 D P
x2X pi .x; X/ >

P
x2X ˇi � p�i .x; X/ D P

j ¤i ˇij . Hence,
˛i 2 Rn�1C is well-defined for all ˇi as claimed.

Notice we then have Œ1=.1 CP
j ¤i ˛ij /�˛i D ˇi : Now define wi .x/ WD

pi .x; X/ C ˛i � Œpi .x; X/1 � p�i .x; X/�; where 1 2 Rn�1 is a vector of ones and
observe thatX

x2X

wi .x/ D
X
x2X

�
pi .x; X/ C ˛i � Œpi .x; X/1 � p�i .x; X/�

	

D 1 C ˛i �
"X

x2X

pi .x; X/1 �
X
x2X

p�i .x; X/

#

D 1 C ˛i .1 � 1/ D 1:
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By N-I,

1

1 CP
j ¤i ˛ij

˛i �
�

d�i .x; S/

pi .x; S/
� d�i .y; S/

pi .y; S/

�
D pi .y; X/

pi .y; S/
� pi .x; X/

pi .x; S/

.1 CP
j ¤i ˛ij /pi .x; X/ C ˛i � p�i .x; S/ � ˛i � p�i .x; X/

pi .x; S/

D .1 CP
j ¤i ˛ij /pi .y; X/

pi .y; S/
C ˛i � p�i .y; S/ � ˛i � p�i .y; X/

pi .y; S/
:

Notice that numerators in both of the sides are positive since pj .x; S/ > pj .x; X/

for all j; x and S . Hence,

pi .x; S/

pi .y; S/
D pi .x; X/ C ˛i � Œpi .x; X/1 � p�i .x; X/� C ˛i � p�i .x; S/

pi .y; X/ C ˛i � Œpi .y; X/1 � p�i .y; X/� C ˛i � p�i .y; S/

D wi .x/ C ˛i � p�i .x; S/

wi .y/ C ˛i � p�i .y; S/
:

But then, since this claim holds for all y 2 S :

pi .y; S/ D pi .x; S/
wi .y/ C ˛i � p�i .y; S/

wi .x/ C ˛i � p�i .x; S/X
y2S

pi .y; S/ D
X
y2S

pi .x; S/
wi .y/ C ˛i � p�i .y; S/

wi .x/ C ˛i � p�i .x; S/

1 D pi .x; S/

P
y2S Œ.wi .y/ C ˛i � p�i .y; S/�

wi .x/ C ˛i � p�i .x; S/

pi .x; S/ D wi .x/ C ˛i � p�i .x; S/P
y2S Œwi .y/ C ˛i � p�i .y; S/�

:

We finally show that wi .x/ > 0 for all x 2 X . This is established by N-PUB. Since
pi .x; X/ > ˇip�i .x; X/ and 1 CP

j ¤i ˛ij > 0, then, .1 CP
j ¤i ˛ij /pi .x; X/ >

˛ip�i .x; X/ ) wi .x/ > 0. �

Sketch of the Proof of Theorem 4.

Similar to Theorem 2, the proof of this theorem follows from Theorem D.2 in
Online Appendix D. Rather than directly use a contraction mapping, the argument
leverages results from the theory of matrices. A certain class of iterative linear matrix
equations is known to converge as required when the eigenvalues of the relevant
matrix have absolute value less than 1. The argument is based on the generalization
of the function f constructed in the sketch of the proof of Theorem 2 to multiple
individuals: The proof verifies that we can write f W Qi �.S/ ! Q

i �.S/ in the form
f .p/ D Ap C b for some p 2 R

jN jjS j, A 2 R
jN jjS j�jN jjS j, and b 2 R

jN jjS j. We then
make use of the model assumptions to establish that all eigenvalues of A have absolute
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value less than 1, by a classical result on matrices sometimes called the Gershgorin
circle theorem. The extensive proof can be found as the proof of Theorem D.2 in
Online Appendix D. �
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Bramoullé, Yann (2007). “Anti-Coordination and Social Interactions.” Games and Economic
Behavior, 58, 30–49.
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