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Abstract. Co-locating the gross tumour volume (GTV) on cone-beam computed tomog-
raphy (CBCT) of non small cell lung cancer (NSCLC) patients receiving radiotherapy
(RT) is difficult because of the lack of image contrast between the tumour and surround-
ing tissue. This paper presents a new image analysis approach, based on second-order
statistics acquired from grey level co-occurrence matrices (GLCM) combined with level
sets, for assisting clinicians in identifying the GTV on CBCT images. To demonstrate
the potential of the approach planning CT images from 50 NSCLC patients were rigidly
registered with CBCT images from fractions 1 and 10. Image texture analysis was com-
bined with two level set methodologies and used to automatically identify the GTV on
the registered CBCT images. The Dice correlation coefficients (µ± σ) calculated between
the clinician-defined and image analysis defined GTV on the planning CT and the CBCT
for three different parameterisations of the model were: 0.69±0.19, 0.63±0.17, 0.86±0.13
on fraction 1 CBCT images and 0.70± 0.17, 0.62± 0.15, 0.86± 0.12 on fraction 10 CBCT
images. This preliminary data suggests that the image analysis approach presented may
have potential for clinicians in identifying the GTV in low contrast CBCT images of
NSCLC patients. Additional validation and further work, particularly in overcoming the
lack of gold standard reference images, are required to progress this approach.
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1 Introduction

In 2014, there were 46,400 new cases of lung cancer in the United Kingdom (UK) and 35,900
deaths were directly attributable to this disease [1]. Treatment options include radiotherapy
(RT) in which a high radiation dose is delivered to cancerous tissue whilst the radiation dose
to healthy tissue is minimised [2]. In radiation treatment planning, manual segmentation of the
region of interest is typically based on the visual evaluation of CT images. The correctness of
the delineated volume is depending on the capability to visualise the tumour and identify its
surrounding regions.
At time-of-treatment CBCT images are used for patient alignment by identifying the position of
landmarks such as bone [3]. However, establishing the location of the GTV on CBCT images is
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extremely challenging because of the poor soft tissue contrast. Furthermore, it is currently not
feasible to estimate changes in the GTV on CBCT that are because of the disease progression
or in response to radiation treatment. These problems limit the use of CBCT in NSCLC for
adapting, or personalising treatment, where the planned dose to healthy tissue and the planned
dose to the tumour are preserved.

The utilization of image semi-automatic or fully-automatic segmentation techniques can
assist in improving the accuracy and decreasing the length of time conjugated determining radi-
ation target volume and organs at risk (OAR) of damage from radiation. However, segmenting
tumours, and OARs, on CT and CBCT images is challenging and the purpose of this work was
to develop a radiomics-based approach for analysis of CBCT images for (1) automatically iden-
tifying the GTV on follow-up images (CBCT) and (2) detecting significant changes in shape
and size indicative of progression of disease or radiotherapy response. In relation to this, a
bespoke image segmentation framework was developed that combined image texture analysis
with level set analysis, which is shown in Figure 1. The framework has the potential to lead to
improvements in radiation targeting when the morphology of the tumour has changed, which
could be practice changing. At present changes in tumour morphology are analysed after specific
fractions of RT throughout the course of treatment [4]. Here this was done at the 10th day of
treatment, that is the fraction 10 (#10), when a volumetric CBCT image set was acquired and
algorithm applied. The central hypothesis proposed here was that the texture of a cancerous
region changes in response to radiation, which can be detected by texture/radiomics analysis.
To ensure that the radiomics analysis was performed only on the tumour volume an exquisite
level set model introduced in [5], that merges two or more different techniques of level set in
parallel, was used.

In this paper, an overview of the proposed technique is presented in section 2 and the
framework for monitoring NSCLC cancer. Further on, this section provides a focused literature
review covering the texture analysis and level set models used. Section 3 provides details of the
dataset, including contouring information, and the registration procedure used. Finally, section 4
presents the results obtained following application of the framework to a large cohort of patients
and ground truth data, which was available for one of the patients.

2 Overview of the combined level set model with texture analysis

The proposed framework in monitoring lung cancer during RT is shown in Figure 1. The process
begins with the registration of the CBCT acquired at fraction 1, (#1) to the planning CT image
on which the GTV is defined. This provides a set of parameters for starting the combined level
set with texture analysis for segmentation of CBCT #1. A Dice similarity coefficient, typically
greater than 90%, is then used to assess the similarity between the GTV on the planning CT and
the CBCT. Such a high value is used because the CBCT #1 images are acquired before radiation
therapy started and therefore before any change in shape as a result of radiation. A similar
approach was used for the segmentation of the GTV on CBCT #10 and on the planning-CT
images, however, because this CBCT scan takes place at the 10th day of treatment. Therefore,
less similarity is expected between CBCT images and the planning CT. Consequently, the Dice
score value was reduced to 70%. With these settings if the likeliness and correspondence is far
more than the selected threshold, therefore radiotherapy should be continued but if far less, it is
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an indication that there has been a significant change in the GTV and repositioning, or further
investigation, is required.

Fig. 1: The proposed framework for tracking the effect of treatment for the lung cancer during radiation
therapy using a combined level set technique with texture analysis, which can be used for detecting
large deviations in the GTV on CBCT images.

There are many different level set techniques each with propagation characteristics that may
be suited to particular applications and there are several review articles covering the use of these
techniques in different imaging applications. These include region based image segmentation in
[6], medical imaging in [7] and [8], optimal design and inverse problems in [9], piecewise constant
applications in [10], deformable models in [11] and [12]. There are also comprehensive reviews
covering more general level set applications in [13], [14], [15] and [16]. What is common in all of
these articles is that each path is powerful to a particular application but not for every types of
images, which is a problem in complex medical images.

In general, a level set technique defines an evolving boundary by setting up a zero level set for
a higher dimension for φ function. The z axis which represent the height of the level set represents
the minimum distance at each point in the Cartesian coordinate from the contour C. To begin
this propagating function we need to initialize it. An initial value for initialization process is
needed which can be selected semi-automatically or fully-automatically. Also, depending on
the two or multiple number of different regions or phases required in the image segmentation
task, the initial values are needed. The two-phase level set models patrician the image into two
different regions without overlapping pixels. While multi-phase level set (three or four-phase)
patrician the image into multiple regions (three or four phases respectively) by utilizing two
unrelated level set models together. Re-initialization is recurred during evolution to withhold
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the happening of sharp corners. This can be done by computing new values of φ based on the
defined speed function.

Chan and Vese extended the Osher-Sethian model in the 1990s by using the energy minimiza-
tion term which provides automatic segmentation of interior regions [17]. This is accomplished
by using a technique introduced by Mumford-Shah [18] based on the piecewise constant and
piecewise smooth optimal approximations. In [17], further modifications resulted in a level set
method in two-phase for two-region segmentation which does not have the edges like the primary
representation of level set. The Chan-Vese model in two-phase measures the mean intensity val-
ues for each one of the two phases which are the inside and outside of the segmentation region
in the image. In 2000, Chan and Vese extended the two-phase model for the applications of
vector-valued images, that performed steadily on the noisy images [19]. The vector-valued based
model is commonly used in coloured or texture imaging and video image processing for tracking
objects and texture images. They even extended their model further in 2002 to a multi-phase
level set model that calculates the log numbers of the level set functions to segment n regions
by using piecewise constant [20]. The initialization of each level set Multi-Phase Chan-Vese
function is done independently and separately but the same function for level set is used for all
initialisations.

The Li level set model is another popular and robust model, which has developed different
forms based on gradient flow for overcoming the intensity inhomogeneity as an edge based
method in level set [21,22,23]. Li’s model applies the energy minimization procedure used in
snake model, by minimizing the fitting energy of the segmentation.

2.1 Parallel Vector-Valued Level Set Model

We recently proposed a novel level set model in [5] which had the least amount of dependency
to the parameter setting. This model is most useful for the type of image where there is a lack
the ground truth information. This model takes advantage of the presence of existing models by
combining them in vector-valued imaging or multi-phase. Also, level set in segmentation of the
tumour infiltration boundary showed robust performance in construction of radiotherapy target
volumes [24].

Here, texture analysis was implemented as a pre-segmentation technique before applying
the main segmentation model based on the level set. It has been previously reported that the
healthy tissues’ texture is distinct from the texture of cancerous tissues [25] and the texture may
also change within these regions during the course of radiotherapy. There are many different
ways of calculating texture features such as [26], [27], [28] and [29]. In this paper, second-order
statistics were applied using the GLCM approach. In 1979, first introduced by Haralick [26], this
statistical measurements are used to compute the 2nd-order statistical features for texture and
commonly 14 features are calculated. A modified GLCM approach proposed by Randen [30],
which uses histogram-equalising, was also used in this work.

3 Tests conducted on NSCLC cohort

Images from 50 patients suffered from lung cancer and been treated with RT at the Edinburgh
Cancer Centre, Edinburgh, UK between 2010 and 2011 were used in this study. Planning CT
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images were available for all patients and CBCT images acquired at #1 and #10. All CT images
were acquired with 512×512 pixels with the pixel size of 0.977mm×0.977mm. All CBCT images
were acquired with 384 × 384 pixels with the pixel size of 1.172mm×1.172mm. The quantity of
slices for the CT and CBCT images which contain the tumour volume was different in the dataset
for different patients. A radiation oncologist evaluated all images and the outlined the GTV,
clinical tumour volume (CTV), planning tumour volume (PTV) and organs at risk (OAR).

Special attention was given to CBCT #10, which is the point where the patient has received
approximately 30% of their treatment and where an indication of response to treatment would
be extremely valuable. In Figure 2, the planning-CT and its corresponding CBCT #1 and #10
for one of the patients in the dataset are shown. In Figure 2 a red contour illustrates the GTV
on the CT and CBCT images. This figure highlights the difference in tumour volume between
these images.

Fig. 2: Mapping of the GTV over the course of treatment: a. single slice of the planning-CT along the
red contour for GTV boundry, b. CBCT #1 acquired before any radiotherapy is given(thirteen days
after the planning CT) and c. the CBCT #10, 26 days after the initial planning CT.

3.1 Registration CBCT to CT

Registration is an essential and important step in medical image processing. This assists the clini-
cians to evaluate different images acquired at different time intervals or from different modalities.
Also, it is very difficult to extract the translation between different images to align them prop-
erly. In RT, radiographers acquire the CBCT images and file the change in the position of a
patient with its relevant planning-CT. They need to register CBCT images to the planning-CT
images before radiating the patient. Having access to this transformation matrix for the reg-
istration is essential in mapping the GTV delineated by the clinicians on the planning-CT to
CBCT images.

The image registration process of CBCT with the CT by a radiographer results in a trans-
formation matrix, which was considered as the clinical gold standard transform. This trans-
formation matrix consists of 3 different transformations. When CBCT are translated to CT
coordinate, first a transformation is needed to bring them to the centre of the CBCT. After
this, they can be translated based on the image by considering patient orientation and patient
position.



6 R. Rahmat et al.

Then, the file stored from the radiology translation attached to the CBCT can be extracted.
This provides the distance between CBCT and CT in different rectangular coordinate space to
translate the CBCT into the origin of CT’s space. The final affine transform in this translation
is using the meta data of the CT images which recorded the position of the patient during
scanning in regards to their origin of CT space. The meta data for the CBCT data also have the
information needed for this affine transform in terms of rotation and translation of the patient
position compared to their planning-CT scan.

As shown in Figure 3, three affine transforms of T1, T2 and T3 are performed. These 4 × 4
matrices are the main components needed to map between the CBCT and CT images. Both of
T1 and T2 matrices are computed based on Equation 1 using meta data embedded in the DICOM
images from the reference and target images respectively. The final metric of T3 is extracted
from the reference coordinate system (RCS) that are provided by the meta data embedded in
the CBCT’s DICOM images.

Fig. 3: The process of CBCT image registration to planning-CT images is performed using the RT
information determined by radiographers at time-of-treatment. The translation between the planning-
CT which is the reference image to the CBCT which are the target image as well as their RCS which
are embedded in the image meta information are all used to find the transformation matrix of image
registration. In this illustration T1 refers to the affine transform of planning-CT to the RCS, T2 shows
the CBCT to RCS transformation and T3 provides the final transformation from the RCS of the CBCT
images to the RCS of the CT image.

T1 =


Xx∆i Yx∆j 0 Sx

Xy∆i Yy∆j 0 Sy

Xz∆i Yz∆j 0 Sz

0 0 0 1

 (1)

Sx, Sy and Sz are the elements of this matrix which are obtained from the DICOM tag for
the Image Position Patient, that provides the distance from the RCS origin mm. Also, Xx, Xy

and Xx show the first three elements in the DICOM Image Orientation Patient. Yx, Yy and Yz
are the final three elements of the DICOM Image Orientation Patient. The values of ∆i and ∆j
refer to the pixel size in each image, which are also embedded in the DICOM meta information.
At last, by measuring the T3 based on the RT registration file recorded by the radiographers,
we can calculate the final transformation needed for this registration T. Equation 2 shows this
rigid registration to calculate the T which is the gold standard in this process.

T = T−1
1 T3T2 (2)

From the initial planning CT scan to radiotherapy at each fraction patients are positioned
in exactly the same way. Throughout treatment patients are aligned to reference tattoos made
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on the skin surface, which make lateral adjustments straightforward through couch shifts. No
rotational adjustment was made for the cohort of patients used here.

4 Results and Discussion

Radiomics provides a nice range of 1st order, 2nd order statistical features to exploit the relation-
ships between image voxels,size and shape based–features, image intensity histogram feature and
fractal features [31,32,33]. We have selected the 2nd order Haralick features in 3D lung volumes
to calculate feature maps in voxel-based [34,35].

Fig. 4: Haralick texture results for one of the dataset patient’s CBCT #1, F1: angular second moment,
F2: contrast, F3: correlation, F4: variance, F5: inverse difference moment, F6: sum average, F7: sum
variance, F8: sum Entropy, F9: entropy, F10: difference variance, F11: difference entropy, F12: infor-
mation measures of correlation, F13: information measures of correlation and F14: maximal correlation
coefficient.
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To identify the best texture features the GLCM approach was applied in four symmetric
directions in a 5 × 5 region. Feature values were equalised to enable comparison and CBCT
images were converted to unit8 format. Of the fourteen texture features, several were found to
be highly correlated, which would result in a low-qulaity input for level set convergence. The
best texture feature that could be combined with Chan-Vese method was found to be the sum
variance, which had the best distributed intensity levels among all texture images. Figure 4
illustrates the fourteen Haralick texture images the GTV of CTV shown in red. It also shows,
the histogram and the equalised histogram image of CBCT #1 for each texture image. From this
figure, we can see that F7 which is the sum variance is the single texture image with an smooth
histogram. F7 texture image also shows the tumour boundaries are more visible compared to
other features.

Figure 4 also shows that many of the features are not suitable for this experiment. For
instance, F14 and F12 feature may interrupt the effect of other features when they are merged
together. This can be explained as these texture features have a narrow span of intensity values
as shown in F1, F3, F5, F8, F9, F11, F12, F13 and F14. On the other hand F7 can provide
adequate intensity variation and saves more of the dynamic range of the change in intensity as
shown in Figure 4.

Fig. 5: A comparison of applying the proposed level set model on the registered CBCT images as well
as applying them on their textured images for 5 different patients, a. CBCT image in full size with
the GTV and level set segmentation contour, b. CBCT image cropped to illustrate better the level set
segmentation performance and c. The texture (sum variance) image cropped showing the segmentation
contour obtained from applying level set on this image (red contour demonstrates level set and blue
contour shows GTV).
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Figure 5 illustrates five different patients having CBCT images and their segmentations
obtained by Chan-Vese level set in absence and presence of applying sum variance texture on
the image. In column b, we can see the segmentation outcome of level set on the CBCT images
compared to column c when level set was applied on the texture image (sum variance). Among
all of the 14 Haralick texture features used on this data, the sum variance regularly provide the
finest results. Figure 5 shows that there is a small tumour for Patient 3 which was not detected
by the clinicians while the proposed method of level set combined with sum variance detected
it. Texture images are more probable to provide a premier starting point for the level set as the
target region (cancerous cells and tissues around them) is changing during RT.

4.1 Assessing the clinical performance without a ground truth

One of the challenges of this work was the absence of ground truth on the true location of the
GTV on the CBCT images. In other words, how do we know which method for automatically
identifying the GTV is the best? To investigate this further and to investigate the impact
of different parameterisations of the model on the final GTV contour different combinations
were tested and the results presented to an experienced a radiation oncologist. The different
combinations tested were:

1. Sum variance + Parallel level set (Model 1)
2. Sum variance + Chan–Vese level set (Model 2)
3. Sum variance + Li level set (Model 3)

The performance of the proposed combined models, is illustrated in Figure 6, depends on
three factors: initialisation of the GTV, the calculated sum variance image and the parameters
selection. The parameter tuning is an important aspect of level set models, accordingly selecting
these parameters can affect the convergence of level set.

Fig. 6: Three best selected segmentations by the oncologist. Blue contour is GTV, pink refers to Model
1, red is Model 2 and yellow is Model 3.
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Figure 7 shows the observation obtained from comparing the calculated Dice score among
segmentation models and their planning-CT GTV for the whole dataset. The results for all of
the fifty patients were provided to the oncologist on CBCT #10. From this comparison we can
conclude that Model 2 could obtain the highest Dice score for that reveals the inability of it
to depart from its initial point. Model 3 performs the best implementation of the segmentation
taks on these images with more than 50% likeliness to the GTV on planning-CT.

Fig. 7: The stability of our proposed level set models on CBCT #10 by evaluating the Dice score for
the whole dataset (consisting of 10 patients) versus their GTV. All models were selected by the clinical
oncologist. Model 2 is providing more satisfactory results than Model 3 and Model 1.

The position of the tumour in the lungs and its volume effect the outcome of the proposed
combined model. Smaller tumours and more superior tumours in the lungs can be less influenced
by patient breathing. Consequently the images are less affected or deformed in the breathing
phases. The oncologist noted that any of our combined proposed model of level set and texture
can be incorrect when the Dice score is small because the GTV could suffer precision. To evaluate
this further the approach was tested in non-medical images.

4.2 Accessing performance on non-medical data with a ground truth

The proficiency of our proposed models was evaluated on non-medical images for the purpose of
establishing accuracy and overall performance. The non-medical images were selected from the
literature on level set papers which have ground truth data. The results are shown in Figure 8
as Cha-Vese, Li and Parallel (combined Li and Chan-Vese) level set methods.

Fig. 8: Images of non-medical shapes: a. spiral, b. paper-spiral, c. gourd and d. shapes, used for the
segmentation with different level set methods: Chan-Vese [17], Li [21] and parallel level set [5].
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Fig. 9: Testing proposed texture+level set models (Model 1, Model 2 and Model 3) compared to the
level set models without combining them with texture (Chan-Vese [17], Li [21] and parallel level set [5]),
on four non-medical images which they all possess a ground truth: a. gourd, b. spiral, c. shapes and d.
gradient-ball.

The presence of ground truth on the non-medical dataset provides a better evaluation on a
more comprehensive and quantitative demonstration. The results in Figure 9 show the ability of
the models (Model 1, Model 2 and Model 3) in segmentation and the improvement of the level
set methods when combined with texture feature.

5 Conclusion

Assessing lung cancer patients during radiotherapy is very challenging because of the lack of
contrast on CBCT images. With further validation the proposed approach for automatically
evaluating non-small cell lung tumours using CBCT images has the potential to help oncologists
for improving their assessment for the shape and size of tumours during a course of radiotherapy.
However, there are multiple factors that must be considered when combining texture and a level
set model. One of the most important factors is the importance of selecting the proper model
that can functionally be combined and provide acceptable results on CBCT images of the lungs.
The other important matter is related to the initialisation of the proposed models, where the
level set performance is very much related to it. The final and most critical problem was selecting
the parameters for the level set models that can impact its performance.
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