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Current sheets are regions of space in which the current density is very localised and varies

strongly in one spatial direction. Equilibrium particle distribution functions are known for force-

free current sheets and lead to spatial density and temperature structures which are either con-

stant in space or vary symmetrically. Recent observations of current sheets in the solar wind

have shown systematic asymmetries in particle density and temperature while the pressure re-

mains constant (further references in [1]). In this contribution we describe a systematic approach

to finding distribution functions for this specific case. This mathematical foundation has been

used to show why examples mentioned in Neukirch et al. (2020) [1] succeed and how it can be

used to find new ones. The latter is not a straightforward process: even if a function satisfies all

mathematical requirements, it can still be unreasonable in a physical sense.

Figure 1: Dependence of the full particle distribution function fs = f f f ,s +∆ fs on vx (for vy = vz = 0) at three

different positions z/L = −0.5 (top row), z/L = 0.0 (middle row) and z/L = 0.5 (bottom row) for g2 with k2 (far

left) and k3 (second from right). The same for ∆ fs alone (k2 second from left, k3 far right). Here ε = 0.01 and

u0/vth =−3.9 ·10−3.

Due to the one-dimensional nature of the current sheet models one can find equilibrium dis-



tribution functions of the form

f ≡ f (H, px, py)

where H = 1
2mv2 +qφ is the Hamiltonian with v2 = v2

x + v2
y + v2

z and px = mvx +qAx and py =

mvy +qAy are the canonical momenta in x and y direction. We start from a known distribution

function for the force-free Harris sheet [2]. In order to model the observed asymmetric variations

in density and temperature Neukirch et al. (2020) [1] have added a term ∆ f to the force-free

Harris sheet distribution function, leading to

f = f f f +∆ f

where ∆ f adds a spatial asymmetry to the number density, but does not contribute to the current

density, i.e. satisfies ∫
∆ f d3v 6= 0,

and ∫
v∆ f d3v = 0. (1)

As seen in Neukirch et. al (2020) [1] one possible class of functions for ∆ f is of separable form,

such that ∆ f ≡ ∆ f (H, px) = g(H)k(px) with ∂∆ f/∂ px = g(H)k′(px). Different approaches to

find suitable pairs of g(H) and k(px) exist of which we have focussed on an ansatz using Fourier

transformation. Let φ = 0 and G∈C2(R) with g(H) = G′′(H). Let F be an appropriate function

with F(qAx− px) = G
(
(px−qAx)

2/(2m)
)
, then condition (1) can be written as

0 =
∫

∞

−∞

k′(px)F(qAx− px)d px

which is an integral of convolution type. Therefore, it’s Fourier transform is given by the product

of the Fourier transforms of k′ and F individually:

k̂′(u) · F̂(u) = 0 (2)

where the Fourier transform is indicated by ˆ . Neukirch et al. (2020) [1] have proposed com-

binations of k1(px) = C1 px, k2(px) =
1
ω

sin(ω px) and k3(px) =
1
ω

exp(ω px) with g1(H) =

K(e−aH − ce−bH) and g2(H) = K(a− bH)e−bH . The Fourier transform approach can be used

to derive these functions but we have shown that trigonometric and exponential forms of k

imply asymmetries that are not consistent with observations (see [1]). Figure 1 shows the de-

pendence of the full particle distribution functions and its asymmetric contribution on vx for

specific values of z and Figure 2 shows the related asymmetric density and temperature profiles.



Figure 2: Asymmetric density and temperature profiles

resulting from the theoretical model for k2 on the top and

k3 on the bottom (identical for with g1 and g2 in both

cases). (ε = 0.01)

We can use condition (2) to find new

pairs of functions. The function δ (H0 −H)

has been studied as the H-dependent part

of the distribution function in Wilson and

Neukirch (2011) [3]. Inspired by this we

set g(H) = δ (H0−H) in our separable ap-

proach and find F̂ = ((4mπ3)−1 sin(2πγu)−

γ(2mπ2)−1ucos(2πγu))/u3. Then we choose

k̂′ such that equation (2) vanishes. Avoiding

the singularity of F̂ at u = 0 we focus on the

case u 6= 0. In this case the roots of F̂ are

defined by (2π)−1 tan(2πβu)− βu = 0. So-

lutions for this equation exists but cannot be

determined analytically, so we remain by say-

ing that if u∗ is one of these roots we can

choose k̂′(u) = δ (u− u∗) and hence we ob-

tain k(px) =
1

2πiu∗ exp(2πiu∗px). We note that

major problems of this example are caused by

the derivatives of the delta dirac function that

can lead to the distribution function not being

zero and that prevents the boundary conditions from being satisfied. We clearly have ∆ f larger

than zero at all times, which using an alternative k of trigonometric origin would not be given.

Substituting the dirac delta function and the exponential directly into the condition on the cur-

rent density we notice that this condition can never be satisfied. If g is a dirac delta function our

condition can be written as∫
∞

−∞

k′(px)(H0−Hmin)θ(H0−Hmin)d px = 0

which can, in the case k′ ≡ exp, never vanish because θ(x)> 0 for all x and (H0−Hmin) has the

same sign for all px. So possibilities for k′ only include functions that are odd with respect to vx,

but if k attains negative values the full particle distribution function might not remain positive

everywhere. In conclusion this example is not suitable as ∆ f in a physical sense, even though

the mathematical side can be worked out fully by numerical methods.

Alternatively, we can choose both Fourier transforms in condition (2) directly and then deter-

mine g and k. This "inverse" approach is more difficult to apply compared to the one described



above and it leaves it more unpredictable if the resulting pair of functions will make sense phys-

ically. As an example we combined Heaviside functions with an exponential function and an

arbitrary function h given by F̂(u) = θ(u− u0)e−au2
and k̂′(u) = θ(u1− u)h(u) with u0 and

u1 such that equation 2 is satisfied. This choice leads to k and g being defined through exp(x),

erf(x) and Ei(x). In this case particle density and pressure tensor contribution of ∆ f include

integrating products of these special functions, which either do not exist or in the best case need

to be determined numerically.

We have introduced a mathematically systematic approach to finding distribution functions

that lead to asymmetries in density and temperature. Using a separable representation and

Fourier transformation we have found examples of distribution functions that are mathemati-

cally correct but do not fulfil all physical requirements, e.g. boundary conditions. In this context

numerical methods to solve special function integrals and approximations of functions such as

the delta function could be tried.
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