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Coronal magnetic field models have to rely on extrapolation methods using photospheric

magnetograms as boundary conditions. In recent years, due to the increased resolution of ob-

servations and the need to resolve non-force-free lower regions of the solar atmosphere, there

have been increased efforts to use MHS field models instead of force-free methods. Although

numerical methods can deal with non-linear problems and provide accurate models, analytical

three-dimensional MHS equilibria can be used as a numerically relatively “cheap” complemen-

tary method. We discuss a family of analytical MHS equilibria that allows for a transition from

a non-force-free to a force-free region based on the MHS equations

j×B−∇p−ρ∇Ψ = 0, ∇×B = µ0j, ∇ ·B = 0

and the current density being represented by µ0j = αB+∇×(F ẑ) with F = f (z)Bz (see e.g. [1,

2]) using standard notation. Such that the dependence of the non-force-free part of j with height

z is controlled by f (z). Neukirch and Raststätter (1999) [3] have shown that for a magnetic field

of the form

B = ∇× [∇× (Φẑ)]+α∇× (Φẑ)

a solution is given by

Φ =
∫∫

∞

−∞

Φ̄(z;kx,ky)exp [i(kxx+ kyy)]dkxdky (1)

where Φ̄ obeys the differential equation

d2Φ̄

dz2 +
[
α

2− k2 + k2 f (z)
]

Φ̄ = 0 (2)

with k2 = k2
x + k2

y (see [4]). If periodic boundary conditions in x and y are imposed kx and ky

take on discrete values and the integrals in Eq. (1) are represented by infinite sums. Neukirch

and Wiegelmann (2019) [4] have used f (z) = a [1−b tanh((z− z0)/∆z)] where a and b control

the magnitude of f in the domains z−z0
∆z � 0 and z−z0

∆z � 0, z0 is the centre of the transitional

region and ∆z controls the width over which the transition happens. Hence, (2) becomes

d2Φ̄

dz2 +

[
α

2− k2 (1−a)− k2ab tanh
(

z− z0

∆z

)]
Φ̄ = 0 (3)



Neukirch and Wiegelmann (2019) [4] have used the hypergeometric function 2F1(a,b,c;z) (see

[5]) to find a solution of (3) given by

Φ̄ =Ãη
δ̃ (1−η)γ̃

2F1

(
γ̃ + δ̃ +1, γ̃ + δ̃ ,2δ̃ +1,η

)
+ B̃η

−δ̃ (1−η)γ̃
2F1

(
γ̃− δ̃ +1, γ̃− δ̃ ,1−2δ̃ ,η

)
with γ̃ =

√
C2 and δ̃ =

√
C1 and C1,2 =

1
4

[
k̄2 (1−a±ab)+ ᾱ2]with k̄ = k∆z and ᾱ = α∆z. The

constants Ã and B̃ are determined by the boundary conditions. While routines for the calculation

of the hypergeometric function 2F1 are available, these can affect both the speed and the accu-

racy of the calculations. Therefore, we look into the asymptotic behaviour of this solution in or-

der to approximate it through exponential functions aiming to improve the numerical efficiency.

Figure 1: From [4]. Different versions of f (z) . The

exponential profile was introduced by Low (1991, 1992)

[1, 2] and is applied successfully frequently. The hyper-

bolic tangent profile allows for more flexibility and unlike

the Low solution reaches a purely force-free state eventu-

ally.

We define ω = z−z0
∆z . For small ∆z the value

of the hyperbolic tangent depends on the sign

of its argument. Hence, we distinguish be-

tween z− z0 > 0 and z− z0 < 0. Eq. (3) then

reduces to

d2Φ̄

dz2 +
[
α

2− k2 (1−a±ab)
]

Φ̄ = 0 (4)

where we have +ab for positive z− z0 and

−ab for negative z− z0 . We define

−4C± = α
2− k2 (1−a±ab)

We define
√

C+ = δ and
√

C− = γ and as-

sume C+,C−> 0. A solution of Eq. (4) is then

given by

Φ̄ =

Aexp(2δ z)+Bexp(−2δ z) , z− z0 > 0

A′ sinh(2γz)+B′ cosh(2γz) , z− z0 < 0

We consider a coordinate transformation and apply the following boundary conditions: (1) As z

goes to infinity we want Φ to vanish. (2) We want Φ to be a continuously differentiable function.

(3) We want Φ̄≡ 1 at z = 0 = zmin < z0. Then we have

Φ̄ =
1
D

exp
(
−2δ

∆z (z− z0)
)
, z− z0 > 0

δ

γ
sinh

(
2γ

∆z(z0− z)
)
+ cosh

(
2γ

∆z(z0− z)
)
, z− z0 < 0



Figure 2: Φ and dΦ/dz for n = 10, α = 0.5, a = 0.24, b = 1.0, z0 = 0.2 and ∆z = 0.02.

and

Φ̄
′ =− 1

D


2δ

∆z exp
(
−2δ

∆z (z− z0)
)
, z− z0 > 0

δ

γ

2γ

∆z cosh
(

2γ

∆z(z0− z)
)
+ 2γ

∆z sinh
(

2γ

∆z(z0− z)
)
, z− z0 < 0

In Figure 2 we see the asymptotic solution in red and the analytic solution in blue plotted for

the tenth Fourier mode in an MHS setting (a = 0.24, α = 0.5). The largest difference occurs

around z0 and generally in the MHS part of the model rather than in the force-free part of the

model. While the maximum errors of order of 1 in the derivative are large - even when put in

relation to the values of the function itself - we keep in mind that we are more interested in

the error that occurs in the field lines and in the plasma parameters when calculated with the

red instead of the blue function. In Figure 3 we see the maximum absolute difference between

the plasma parameters calculated with the exact solution and calculated with the asymptotic

solution. The red graph has been calculated with ∆z = 0.1, blue with ∆z = 0.05 and green with

∆z = 0.02. We see that the error in pressure and density are of the magnitude of 10−4 and 10−3,

respectively. For both quantities the error decreases with decreasing value of ∆z. This implies

that we are able to use ∆z to control the error in the plasma parameters. In this setting 0.01 on

the z−scale (so relevant for z0 and ∆z) corresponds to 100 kilometres in the solar atmosphere.

So far, we have modelled magnetic field lines on periodic boundary conditions. The calcula-

tion using the asymptotic Φ is at least six times faster than using the original solution and

component-wise comparison of the magnetic field vectors for the exact and the asymptotic

model has shown that their average difference is of the order of 10−6. In conclusion, we are us-

ing a magnetic field model for the solar atmosphere that includes the transition from non-force-



free to force-free (from photosphere to corona) using a special function that allows for more

flexibility than commonly used methods. We substituted the exact solution with its asymptotic

approximation, which improved the efficiency of the model without compromising on accuracy.

Figure 3: Maximum differences in pressure and density

between the two models with α = 0.5, a = 0.24, b = 1.0,

nresol = 30, n f = 20, z0 = 0.4, ∆z = 0.1,0.05,0.02. The

x axis represents the height z from photosphere to corona.

We plan to test the code with different

boundary magnetic fields, e.g. unbalanced or

multi-source. Ultimately, we intend to apply

our model to observational data and to com-

pare those results with results obtained using

solutions for other functions f (z) (e.g. [1, 2]).
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