
(a), (b): Analytical (red) and asymptotic (blue)

version of function !ϕ and its first derivative

w.r.t. to z plotted for a single Fourier mode.

The x-axis displays height 𝑧 from photosphere

into the corona.

(c), (d): Aboslute error between the red and

the blue function from above. We see the

greatest error occuring around 𝑧!.

(e), (f): Error plots from above zoomed .

(g), (h): Maximum difference in plasma

pressure and density for different choices of

∆z. In red ∆z = 0.1, in blue ∆z = 0.05 and in

green ∆z = 0.02
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I. INTRODUCTION

• Coronal magnetic field models have to rely on

extrapolation methods using photospheric

magnetograms as boundary conditions

• The non-force-free lower regions of the solar

atmosphere require magnetohydrostatic (MHS) field

models instead of force-free extrapolation methods [Wiegelmann et al. (2017)]

III. MAGNETOHYDROSTATIC EQUATIONS

Magnetohydrostatic equation: j×B − ∇p − ρ∇Ψ = 0

Ampere’s Law: ∇×B = µ!j

Solenoidal constraint: ∇ 5 B = 0

Force-free fields: j×B = 0 ⇒ µ! = α r B

Non-force free fields: Current density has a component perpendicular to the magnetic field

vector!

A transition from non-force-free to force-free (photosphere to corona) with increasing height z can be modelled

by incorporating a function F = f z B" into the current density:

µ!j = αB + ∇× F<z

In our case we use a hyperbolic tangent height profile as “switch-off”-function:

f z = a 1 − b tanh(
z − z!
∆z

)

Plot (i) below [Neukirch and Wiegelmann (2019)] shows this height profile and also alternative (linear and

exponential) versions of f as used by e.g. Low (1991).

IV. METHOD

• The analytical solution of the MHS model using a

current density as defined on the left involves

special functions (hypergeometric) [see Neukirch

and Wiegelmann (2019)]

• Routines for the calculation of these are available,

but can affect both the speed and the numerical

accuracy of the calculations

• The asymptotic behaviour of this solution can be

used to numerically approximate it through

exponential functions aiming to improve the

numerical efficiency

V. RESULTS

• Model includes transition from non-force-free to

force-free using a special function that allows for

more flexibility

• Asymptotic approximation of hypergeometric

function performs well

• Error in ρ and p small in relevant parameter

regimes [see (g), (h)], in B of the order of 10!"

• Asymptotic calculation of the magnetic field

improves running time of code
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II. THEORY

• Numerical methods to calculate MHS solutions can deal with non-

linear problems and provide accurate models

• Analytical three-dimensional MHS equilibria can be used as a

numerically “cheaper” complementary method

• We discuss a family of analytical MHS equilibria that allows for a

transition from a non-force-free region to a force-free region


