

Coronal Magnetic Field Extrapolation Using a Specific Family of Analytical 3D MHS Equilibria

University of St Andrews

Lilli Nadol¹, Thomas Neukirch¹, Thomas Wiegelmann² ¹ School of Mathematics and Statistics, University of St Andrews, St Andrews, UK ²Max-Planck-Institute for Solar System Research, Göttingen, Germany

liversity of St Andrew

I. INTRODUCTION

- Coronal magnetic field models have to rely on methods using photospheric extrapolation magnetograms as boundary conditions
- The non-force-free lower regions of the solar atmosphere require magnetohydrostatic (MHS) field models instead of force-free extrapolation methods

II. THEORY

- Numerical methods to calculate MHS solutions can deal with non-
- linear problems and provide accurate models
- Analytical three-dimensional MHS equilibria can be used as a numerically "cheaper" complementary method
- We discuss a family of analytical MHS equilibria that allows for a transition from a non-force-free region to a force-free region

III. MAGNETOHYDROSTATIC EQUATIONS

Magnetohydrostatic equation:

Ampere's Law:

Solenoidal constraint:

Force-free fields:

Non-force free fields:

 $\mathbf{j} \times \mathbf{B} - \nabla \mathbf{p} - \rho \nabla \Psi = \mathbf{0}$ $\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$ $\nabla \cdot \mathbf{B} = \mathbf{0}$ $j \times B = 0 \Rightarrow \mu_0 = \alpha(r)B$ Current density has a component perpendicular to the magnetic field vector!

A transition from non-force-free to force-free (photosphere to corona) with increasing height z can be modelled by incorporating a function $F = f(z)B_z$ into the current density:

 $\mu_0 \mathbf{j} = \alpha \mathbf{B} + \nabla \times (\mathbf{F} \hat{\mathbf{z}})$

In our case we use a hyperbolic tangent height profile as "switch-off"-function:

 $f(z) = a \left[1 - b \tanh(\frac{z - z_0}{\Lambda z}) \right]$

Plot (i) below [Neukirch and Wiegelmann (2019)] shows this height profile and also alternative (linear and

IV. METHOD

• The analytical solution of the MHS model using a current density as defined on the left involves special functions (hypergeometric) [see Neukirch and Wiegelmann (2019)]

• Routines for the calculation of these are available, but can affect both the speed and the numerical accuracy of the calculations

• The asymptotic behaviour of this solution can be used to numerically approximate it through exponential functions aiming to improve the

exponential) versions of f as used by e.g. Low (1991).

numerical efficiency

(a), (b): Analytical (red) and asymptotic (blue) version of function ϕ and its first derivative w.r.t. to z plotted for a single Fourier mode. The x-axis displays height z from photosphere

V. RESULTS

- Model includes transition from non-force-free to force-free using a special function that allows for more flexibility
- Asymptotic approximation of hypergeometric function performs well
- Error in ρ and p small in relevant parameter regimes [see (g), (h)], in B of the order of 10^{-6}
- Asymptotic calculation of the magnetic field improves running time of code

REFERENCES

into the corona.

(c), (d): Aboslute error between the red and

the blue function from above. We see the

greatest error occuring around z_0 .

(e), (f): Error plots from above zoomed.

(h): Maximum difference in plasma (g),

pressure and density for different choices of

 Δz . In red $\Delta z = 0.1$, in blue $\Delta z = 0.05$ and in

green $\Delta z = 0.02$

1. Low, B. (1991), 'Three-dimensional structures of magnetostatic atmospheres. iii-a general formulation', The Astrophysical Journal 370, 427–434.

- 2. Low, B. (1992), 'Three-dimensional structures of magnetostatic atmospheres. ivmagnetic structures over a solar active region', The Astrophysical Journal 399, 300-312.
- 3. Neukirch, T. & Rastätter, L. (1999), 'A new method for calculating a special class of self-consistent three-dimensional magnetohydrostatic equilibria', Astronomy and Astrophysics 348, 1000–1004.
- 4. Neukirch, T. & Wiegelmann, T. (2019), 'Analytical three-dimensional magnetohydrostatic equilibrium solutions for magnetic field extrapolation allowing a transition from non-force-free to force-free magnetic fields', Solar Physics 294(12), 1–18.
- 5. Wiegelmann, T., Petrie, G. J. & Riley, P. (2017), 'Coronal magnetic field models', Space Science Reviews 210(1), 249–274.

The University of St Andrews is a charity registered in Scotland, No: SC013532