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Abstract 
Natural selection acts on developmentally constructed phenotypes, but how does development affect evolution? This question prompts a 
simultaneous consideration of development and evolution. However, there has been a lack of general mathematical frameworks mechanistically 
integrating the two, which may have inhibited progress on the question. Here, we use a new mathematical framework that mechanistically 
integrates development into evolution to analyse how development affects evolution. We show that, while selection pushes genotypic and 
phenotypic evolution up the fitness landscape, development determines the admissible evolutionary pathway, such that evolutionary outcomes 
occur at path peaks rather than landscape peaks. Changes in development can generate path peaks, triggering genotypic or phenotypic diver-
sification, even on constant, single-peak landscapes. Phenotypic plasticity, niche construction, extra-genetic inheritance, and developmental 
bias alter the evolutionary path and hence the outcome. Thus, extra-genetic inheritance can have permanent evolutionary effects by changing 
the developmental constraints, even if extra-genetically acquired elements are not transmitted to future generations. Selective development, 
whereby phenotype construction points in the adaptive direction, may induce adaptive or maladaptive evolution depending on the developmen-
tal constraints. Moreover, developmental propagation of phenotypic effects over age enables the evolution of negative senescence. Overall, we 
find that development plays a major evolutionary role.
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Development may be defined as the process that constructs 
the phenotype across the lifespan. Natural selection must then 
act upon what development constructs, raising the question 
of how development affects evolution. Addressing this ques-
tion might benefit from an integrated consideration of de-
velopment and evolution, attending to both the mechanisms 
of evolution and the mechanisms of development. Efforts to 
address this question have increasingly invoked a need for a 
synthesis analogous to the modern synthesis between natural 
selection and genetics of the early twentieth century (Alberch 
et al., 1979; Goldschmidt, 1940; Gould, 1980; Gould & 
Lewontin, 1979; Laland et al., 2014, 2015; Pigliucci, 2007; 
Pigliucci & Müller, 2010; Waddington, 1957; West-Eberhard, 
2003). Key early steps in the modern synthesis involved the 
formulation of general mathematical frameworks that inte-
grated the mechanisms of natural selection and inheritance, 
namely, population and quantitative genetics. Similarly, gen-
eral mathematical frameworks integrating the mechanisms of 
development into evolution might help advance our under-
standing of the evolutionary effects of development. Large 
bodies of empirical and theoretical research, as well as entire 
scientific journals and scientific societies have been increas-
ingly devoted to establish the effects of development on evo-
lution from different angles (Carroll, 2008; Müller, 2007; 
Schlosser & Wagner, 2004; Wagner, 2005). However, despite 
steady growth in research efforts on this topic, there remains 
a lack of general mathematical frameworks synthesizing the 
mechanisms of development and evolution.

One of the available frameworks, namely quantitative 
genetics, provides some of the still fundamental understanding 

of how development affects evolution. Stemming from Fisher 
(1918), quantitative genetics describes development by relat-
ing genotype to phenotype in terms of regression coefficients 
(i.e., Fisher’s additive effects of allelic substitution). From 
this basis, quantitative genetics established a basic principle 
of adaptation for phenotypic evolution as the climbing of an 
adaptive topography (Lande, 1979). According to this princi-
ple, under certain assumptions, evolution by natural selection 
can be seen as the climbing of a fitness landscape over pheno-
type space, where selection pushes evolution in the direction 
of steepest ascent in the landscape and genetic covariation 
may divert evolution in a less steep direction. This principle 
indicates that development affects evolution by shaping the 
genetic covariation upon which selection acts, where this 
covariation is quantified by the G matrix (Charlesworth et 
al., 1982; Cheverud, 1984; Klingenberg, 2010; Lande, 1979; 
Maynard Smith et al., 1985). This perspective gives devel-
opment two fundamental possibilities. First, if development 
yields genetic variation in all directions of phenotype space 
(such that G is non-singular), then development may affect 
the direction of evolution but evolutionary outcomes still 
occur at peaks of the fitness landscape. Second, if develop-
ment yields no genetic variation in some directions of phe-
notype space (such that G is singular), then evolution can 
stop away from fitness landscape peaks in which case devel-
opment not only affects the direction of evolution but may 
also affect where the evolutionary outcomes are in the fit-
ness landscape (Altenberg, 1995; Houle, 1991; Kirkpatrick & 
Lofsvold, 1992). The first possibility gives development a rel-
atively minor role in evolution, as in such case selection alone 
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pre-defines the evolutionary outcomes (i.e., landscape peaks) 
and development can at most only influence which outcome 
is achieved. Instead, the second possibility might give devel-
opment a relatively major evolutionary role, as selection and 
development would jointly define the evolutionary outcomes 
(i.e., away from landscape peaks).

Progress on establishing which of the two possibilities 
is the case has been difficult. Despite substantial research 
effort, the answer has remained uncertain, in part due to 
the difficulties of empirically establishing whether G is sin-
gular (Kirkpatrick, 2009). More fundamentally, one reason 
for this uncertainty may have been that equations describing 
phenotypic evolution have been derived from a regression 
description of development, where trait values are regressed 
on gene content, yielding a regression-based understanding 
of genetic covariation (Fisher, 1918; Lande, 1979). Since 
regression describes relationships regardless of their under-
lying mechanisms, this approach to genetic covariation may 
have limited a mechanistic understanding of the nature of 
genetic covariation arising from development. In principle, a 
mechanistic integration of development into evolution could 
yield a mechanistic understanding of genetic covariation 
and of the G-matrix.

The task of devising a general mathematical framework that 
mechanistically integrates development into evolution would 
involve many complexities, which has likely contributed to 
the persistent lack of such a framework. Calls for synthesis 
between developmental and evolutionary biology have asked 
for consideration of the mechanistic basis of phenotype con-
struction, non-linear genotype-phenotype maps, gene-gene 
and gene-environment interactions, non-normal distribu-
tions, far-from-equilibrium evolutionary dynamics, dynamic 
fitness landscapes, evolution and the nature of the G-matrix, 
evolvability and epigenetics, and a variety of other complexi-
ties (Pigliucci, 2007; Pigliucci & Schlichting, 1997). Calls for 
integration of development into evolution have also high-
lighted several developmental factors—namely phenotypic 
plasticity (West-Eberhard, 2003), niche construction (Odling-
Smee et al., 1996), extra-genetic inheritance (Jablonka & 
Lamb, 2014), and developmental bias (Arthur, 2004)—as 
possibly having important, yet unrecognised, evolutionary 
consequences (Laland et al., 2014, 2015). Mathematical 
frameworks and specific mathematical models integrating 
some of these complexities have become available in recent 
decades (Caswell, 2001; Chantepie & Chevin, 2020; Day & 
Bonduriansky, 2011; Dieckmann & Law, 1996; Engen & Sæ 
ther, 2021; Hansen & Wagner, 2001; Lande, 2019; Mullon & 
Lehmann, 2018). Additionally, theoretical research has often 
used individual-based simulations integrating some these 
complexities (Jones et al., 2014a; Miloco & Salazar-Ciudad, 
2022; Salazar-Ciudad & Marín-Riera, 2013; Watson et al., 
2013). However, it is of particular interest to obtain general 
mathematical frameworks mechanistically integrating devel-
opment into evolution to seek deeper insight—general in the 
sense of encompassing a broad class of models. Despite the 
progress made, a synthetic mathematical framework unify-
ing these complexities in a general and tractable manner had 
remained unavailable until recently.

A new mathematical framework (González-Forero, 2021) 
integrates mechanistic development into evolution while 
incorporating the elements listed in the previous paragraph 
by building upon many advances in evolutionary model-
ling over the last decades (Caswell, 2001; Dieckmann & 

Law, 1996) (and references in González-Forero, 2021). This 
framework integrates conceptual and mathematical advances 
from adaptive dynamics (Dieckmann & Law, 1996), matrix 
population models (Caswell, 2001), and optimal control 
theory as used in life-history theory (Schaffer, 1983; Sydsæ 
ter et al., 2008). The framework yields formulas that relate 
mechanistic descriptions of development to genetic covari-
ation and to plastic change separate from selection. Here 
we use this framework to analyze how development affects 
evolution. This analysis sharpens the principle of adaptation 
as the climbing of a fitness landscape and provides insights 
into a wide array of long-standing questions. We focus on 
developing conceptual understanding and refer the reader to 
González-Forero (2021) for technical details.

Methods
An overview of the framework is the following. The frame-
work is based on standard assumptions of adaptive dynamics 
(Dieckmann & Law, 1996; Metz et al., 1996). It considers 
a resident (i.e., wild type) population where individuals can 
be of different ages (i.e., it is age structured), reproduction is 
clonal for simplicity, whereby offspring receive the same gen-
otype of their parent, and individuals can interact socially but 
only with non-relatives for simplicity. The genetic architecture 
(e.g., number of loci, ploidy, or linkage) need not be specified 
given our assumption of clonal reproduction, but it may be 
specified in particular models. Each individual has three types 
of age-specific traits that we let take continuous values to take 
derivatives. First, individuals have genotypic traits, which we 
refer to as the genotype and which are directly specified by 
genes. For instance, genotypic traits may be a continuous 
representation of nucleotide sequence or may be life-history 
traits assumed to be under direct genetic control. Genotypic 
traits correspond to control variables in the terminology 
of optimal control theory. Second, individuals have pheno-
typic traits, which we refer to as the phenotype and which 
are constructed over life depending on the genotype, devel-
opmental history, environment, social interactions, and their 
interaction, and where such phenotype construction is subject 
to developmental constraints. For instance, phenotypic traits 
include morphology and behavior. Phenotypic traits corre-
spond to state variables in the terminology of optimal control 
theory. Third, individuals have environmental traits, which 
we refer to as the environment and which describe the indi-
vidual’s local environment, possibly modified by the individ-
ual, social partners, sources exogenous to the population, and 
their interaction, and where such environmental alteration is 
subject to environmental constraints. For instance, environ-
mental traits include the individual’s ambient temperature or 
humidity, which the individual may adjust, such as by roost-
ing in the shade. This terminology contrasts with standard 
adaptive dynamics terminology, which would call genotypic 
traits phenotypes while here the phenotype is only traits that 
are developed; also standard adaptive dynamics terminology 
would define the environment as global, including everything 
outside the individual while here the environment is only local 
to the individual to model niche construction. Once the resi-
dent population achieves carrying capacity, rare mutant indi-
viduals arise who have a marginally different genotype from 
the resident genotype, drawn from an unbiased distribution 
of the deviation of mutant genotypes from the resident. Thus, 
we assume mutation is rare, weak, and unbiased. Population 
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dynamics is deterministic so the only source of stochasticity 
is mutation. We assume that if rare mutants increase in fre-
quency, they achieve fixation, which establishes a new resi-
dent, thus yielding evolutionary change.

The framework uses the following notation. The geno-
type across all genotypic traits for a mutant individual of age 
a ∈ {1, . . . ,Na} is described by the vector ya = (y1a, . . . , yNga)

ᵀ 
of Ng genotypic traits (control variables; e.g., yia may be a con-
tinuous variable representing—via a differentiable approxi-
mation of the Heaviside step function—whether nucleotide 
I = ceil(i/n) is present at locus J = i− floor((i− 1)/n)n at 
age a for n loci). While the genotype of an individual may 
often be constant with age, we let it depend on age as geno-
typic traits vary with age in life-history models. The phe-
notype of a mutant individual of age a is described by the 
vector xa = (x1a, . . . , xNpa)

ᵀ of Np phenotypic traits (state 
variables; e.g., xia may be the size of trait i at age a). The 
environment of a mutant individual of age a is described by 
the vector εa = (ε1a, . . . , εNea)

ᵀ of Ne mutually independent 
environmental traits (e.g., εia may be the temperature experi-
enced at age a). A mutant individual’s phenotype, genotype, 
and environment across all ages are described respectively by 
the block-column vectors x = (x1; . . . ; xNa), y = (y1; . . . ; yNa)
, and ε = (ε1; . . . ; εNa) (the semicolon indicates a linebreak). 
The framework finds that two aggregates of traits have spe-
cial importance. First, we aggregate genotype and phenotype 
into a single vector called the “geno-phenotype” (Feldman & 
Zhivotovsky, 1992 use the term phenogenotype). Thus, the 
geno-phenotype of a mutant individual of age a is described 
by za = (xa; ya). The mutant geno-phenotype across all 
ages is z = (x; y). Second, we similarly aggregate genotype, 
phenotype, and environment into a single vector called the 
“geno-envo-phenotype”. The geno-envo-phenotype of a 
mutant individual of age a is described by the block-column 
vector ma = (za; εa). The mutant geno-envo-phenotype across 
all ages is m = (z; ε). Resident variables are denoted analo-
gously with an overbar (e.g., z̄). We assume that the mutant 
genotype y is a random variable, whose deviation from the 
resident is given by the mutational distribution M(y− ȳ) with 
mean zero and vanishingly small and unbiased variance (i.e., 
0 < tr(cov[y, y]) � 1 and M is even).

To mechanistically incorporate development, we describe 
an individual’s phenotype at a given age as a function of her 
genotype, phenotype, and environment at the immediately 
preceding age and of the social interactions experienced at 
that age. Thus, the phenotype of a mutant individual at age a 
+ 1 satisfies the developmental constraint

xa+1 = ga(ma, z̄), (1)

where the developmental map 
ga(ma, z̄) = (g1a(ma, z̄), . . . , gNpa(ma, z̄))

ᵀ depends on the 
mutant’s genotype, phenotype, and environment at age a and 
on the genotype and phenotype of social partners of any age. 
For simplicity, we assume that the developmentally initial 
phenotype x1 is constant. We also assume that the genotype 
y is developmentally independent, that is, each yia is entirely 
determined by the relevant genotypic trait (e.g., nucleotide 
presence at the relevant locus) but is not influenced by other 
genotypic traits (e.g., nucleotide presence at other loci), the 
phenotype, or environment (i.e., in the terminology of opti-
mal control theory, we assume open-loop control; Sydsæ ter 
et al., 2008). Equation (1) is a constraint in that the pheno-
type x cannot take arbitrary values but only those satisfying 

that equation. The developmental map can evolve and take 
any (differentiable) form as the genotype, phenotype, and 
environment evolve. The developmental map can also change 
over development (i.e., the functions ga may be different to gj 
for j �= a), for example, with metamorphosis.

To mechanistically incorporate niche construction and 
plasticity, we describe an individual’s environment as a func-
tion of the genotype and phenotype of the individual or social 
partners, and of processes exogenous to the population. The 
dependence of the environment on the genotype and pheno-
type of herself and social partners can describe niche con-
struction by her or her social partners. The dependence of 
the environment on exogenous processes can describe, for 
instance, eutrophication or climate change caused by mem-
bers of other species. For simplicity, we assume that exoge-
nous environmental change is slow to allow the population to 
achieve the carrying capacity. Thus, a mutant’s environment 
at age a satisfies the environmental constraint

εa = ha(za, z̄, τ), (2)

where the environmental map 
ha(za, z̄, τ) = (h1a(za, z̄, τ), . . . , hNea(za, z̄, τ))

ᵀ depends on 
the mutant’s genotype and phenotype at that age (e.g., from 
behavioural choice or environmental modification), on her 
social partners’ genotypes and phenotypes at any age (e.g., 
from social niche construction), and on the evolutionary time 
τ  due to exogenous environmental change. The environment 
can then change over development (i.e., εa may be different 
from εj for a �= j) and evolution (either as the population 
evolves or due to exogenous causes). Equation (2) is also a 
constraint in that the environment ε can only take values 
allowed by that equation. Although social interactions are 
part of the environment (εa depends on ̄z), the developmental 
map (1) may also directly depend on social interactions to 
allow for modelling social interactions without having to also 
consider environmental traits. A mutant’s fertility fa(ma, m̄) 
and survival probability pa(ma, m̄) at age a depend on her 
genotype, phenotype, and environment at that age, and on the 
genotype, phenotype, and environment of her social partners 
of any age.

The developmental constraint (1) incorporates: develop-
mental bias, in that the phenotype x may be predisposed to 
develop in certain ways; phenotypic plasticity, in that the 
same genotype y can generate a different phenotype x under 
a different environment ε; adaptive phenotypic plasticity, 
for example, via somatic selection or reinforcement learning 
(e.g., if gia is proportional to the gradient ∂gja/∂xia of a mate-
rial payoff gja earned at age a that increases fitness); niche 
construction, in that environmental traits depend on devel-
opmentally constructed traits of the individual and social 
partners; and extra-genetic inheritance, in that an individu-
al’s phenotype at age a + 1 can be an identical or modified 
copy of non-relatives’ phenotypes—this includes Jablonka 
& Lamb’s (2014) notion that extra-genetic inheritance 
involves the copying or reconstruction of others’ phenotype 
rather than their genotype. Thus, the developmental con-
straint (1) formalizes Maynard Smith et al.’s (1985) verbal 
definition of developmental constraints, according to which 
such constraints are “biases on the production of variant 
phenotypes or limitations on phenotypic variability caused 
by the structure, character, composition, or dynamics of the 
developmental system”. Moreover, the developmental con-
straint (1) can evolve as explained above, be non-linear, and 
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mechanistically describe development, gene-gene interaction, 
and gene-environment interaction. To explore suggestions of 
adaptation without selection (Laland et al., 2015), we allow 
for the possibility that the developmental map ga depends on 
the selection gradient ∂w/∂za (defined below), in which case 
we say that development is selective whereby development 
has information about the adaptive direction. Allowing for 
selective development does not violate the assumptions of 
the developmental constraint (1), even though such perfectly 
idealised selective development may be biologically infeasible. 
Mechanistically, selective development might occur to some 
extent with individual or social learning, or with somatic 
selection (West-Eberhard, 2003).

The framework describes the evolutionary developmental 
(evo-devo) dynamics as follows. At each evolutionary time 
τ , the developmental dynamics of the resident phenotype 
are given by the developmental constraint (1) evaluated at 
the resident genotype. In turn, the evolutionary dynamics of 
the resident genotype are given by the canonical equation of 
adaptive dynamics (Dieckmann & Law, 1996; Dieckmann et 
al., 2006; Durinx et al., 2008)

∆ȳ
∆τ

= ιHy
dw
dy

.
(3)

Throughout, derivatives are evaluated at y = ȳ and are in 
matrix calculus notation (Supplementary Material section 
S1; we use an equal sign in Equation (3) and evolutionarily 
dynamic equations below but they are strictly first-order 
approximations). The evo-devo dynamics are thus given 
by the evolutionary dynamics of the genotype (Equation 3) 
and the concomitant developmental dynamics of the pheno-
type (Equation 1) (a juxtaposition already used by Parvinen 
et al., 2013 and Metz et al., 2016). The right-hand side of 
Equation (3) has three components. First, ι is a non-nega-
tive scalar measuring mutational input, which is propor-
tional to the mutation rate and the carrying capacity. Second, 
Hy = cov[y, y] is the mutational covariance matrix (H for 
heredity). Third, dw/dy is the total selection gradient of the 
genotype, which measures total genotypic selection, that is, 
total directional selection on genes considering the ability 
of genes to affect the phenotype (from the chain rule, the 
total derivative of a function f (x, y) with respect to y, where 
x = g(y), is df/dy = (∂f/∂x)(dx/dy) + ∂f/∂y). In contrast, 
∂w/∂y measures direct directional selection on genes with-
out considering such ability (∂w/∂y is traditionally assumed 
zero, but is not zero in standard life-history models where the 
genotype modulates resource allocation to fertility and is thus 
under direct selection; González-Forero, 2021). Thus, ∂w/∂y 
is a vector that points in the direction of steepest increase in 
fitness in genotype space without constraints, whereas dw/dy 
is a vector that points in the direction of steepest increase in 
fitness in genotype space subject to the developmental (1) and 
environmental (2) constraints. González-Forero (2021) finds 
closed-form formulas for the total selection gradient of the 
genotype. Because of age-structure, a mutant’s relative fitness 
is

w =

Na∑
a=1

wa =
1
T

Na∑
a=1

(φafa + πapa),
(4)

where wa is the mutant’s relative fitness at age a, T is gener-
ation time, and φa and πa are the forces (Hamilton, 1966) of 
selection on fertility and survival at age a (given in Equations 

S5 in the Supplementary Material). The quantities T, φa, and 
πa depend on resident but not mutant values. The total selec-
tion gradient of the genotype is a form of Caswell’s (1982, 
2001) total derivative of fitness, Charlesworth’s (1994) total 
differential of the population’s growth rate, van Tienderen’s 
(1995) integrated sensitivity of the population’s growth rate, 
and Morrissey’s (2014, 2015) extended selection gradient.

Results
Recovery of classic but insufficient results
We investigate how development as described by Equation 
(1) affects evolution by analysing dynamically sufficient 
equations describing the long-term evolution of a developed 
phenotype x̄ as the climbing of a fitness landscape. Before 
arriving at such equations, we first describe a mechanistic 
version of the Lande (1979) equation and explain why it is 
generally insufficient to describe long-term evolution of devel-
oped phenotypes.

Assume for now that there is (i) no niche construction 
(∂εᵀ/∂z = 0), (ii) no social development (dxᵀ/dz̄ = 0), (iii) 
no exogenous environmental change (∂ε/∂τ = 0), and (iv) 
no direct genotypic selection (∂w/∂y = 0). Then, González-
Forero (2021) shows that the (expected) evolutionary dynam-
ics of the resident phenotype (as ∆τ → 0) satisfy

dx̄
dτ

= ιHx
∂w
∂x

, (5)

where Hx guarantees that the developmental constraint (1) 
is satisfied at all times. The right-hand side of Equation (5) 
has two different components relative to those of Equation 
(3). First, ∂w/∂x corresponds to Lande’s selection gradient, 
which measures direct directional selection on the phenotype: 
it is a vector that points in the direction of steepest increase 
in fitness in phenotype space without constraints. Second, 
Equation (5) depends on the mechanistic additive genetic 
covariance matrix of the phenotype

Hx = cov[bx, bx] =
dx
dyᵀ

Hy
dxᵀ

dy
,

(6)

where the mechanistic breeding value of x is defined as

bx = x̄+
dx
dyᵀ

(y− ȳ).
(7)

The key difference of Equation (7) with breeding value is 
that the latter is defined using a matrix of regression coef-
ficients in place of dx/dyᵀ (Lynch & Walsh, 1998; Walsh & 
Lynch, 2018). Such regression coefficients are Fisher’s (1918) 
additive effects of allelic substitution and the matrix formed 
by them is Wagner’s (1984) developmental matrix. Whereas 
such regression coefficients are obtained via least squares, the 
matrix dx/dyᵀ is obtained from the mechanistic description 
of development in Equations (1) and (2). Thus, the matrix 
dx/dyᵀ is a mechanistic counterpart of both Fisher’s (1918) 
additive effects of allelic substitution and Wagner’s (1984) 
developmental matrix. Consequently, Hx is a mechanistic 
counterpart of Lande’s (1979) G-matrix. González-Forero 
(2021) obtained closed-form formulas for dx/dyᵀ from the 
developmental (1) and environmental (2) constraints, which 
allow for a mechanistic understanding of genetic covari-
ation. The fact that mechanistic breeding value is obtained 
from dx/dyᵀ rather than regression coefficients means that 
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breeding value and mechanistic breeding value have different 
properties. In particular, while breeding value is uncorrelated 
with the residual of predicting the phenotype because of least 
squares, mechanistic breeding value can be correlated with 
the residual (i.e., for a single developed trait x = bx + ex with 
residual ex, but possibly cov[x, ex] �= 0). Consequently, the 
classic partition of phenotypic variance into additive genetic 
and “environmental” variances does not hold with mechanis-
tic breeding value. Hence, narrow-sense mechanistic herita-
bility of a single developed trait x defined with the traditional 
formula var[bx]/var[x] can be greater than one.

Equation (5) may then be understood as a mechanistic Lande 
(1979) equation, apart from some differences due to our adap-
tive dynamics assumptions but these differences do not affect the 
points we make. Indeed, the expression for relative fitness (4) has 
the form of that in the Lande (1982) equation for quantitative 
genetics under age structure. The expression for the mechanistic 
additive genetic covariance matrix of the phenotype (6) has the 
same form of previous expressions obtained under quantitative 
genetics assumptions, which in place of our closed-form deriva-
tives had regression coefficients or derivatives of unknown form 
(see Equation II of Fisher, 1918, Equation + of Wagner, 1984, 
Equation 3.5b of Barton & Turelli, 1987, and Equation 4.23b 
of Lynch & Walsh, 1998; see also Equation 22a of Lande, 1980, 
Equation 3 of Wagner, 1989, and Equation 9 of Charlesworth, 
1990). While in quantitative genetics the matrix corresponding 
to Hy would describe the realized standing variation in gene 
content, here Hy describes the expected variation in genotype 
due only to mutation in the current evolutionary time and so we 
call it the mutational covariance matrix. This different meaning 
of Hy in the two frameworks does not mean that Hy in our 
framework induces absolute constraints that are absent under 
quantitative genetics assumptions: our definition of Hy allows 
for mutational variation in all directions of genotype space, or 
only in some directions (i.e., Hy may be full rank, or less than 
full rank), as in quantitative genetics. While Lande’s (1979) G 
matrix is the covariance matrix of breeding values of the pheno-
types, Hx is the covariance matrix of the mechanistic breeding 
values of the phenotypes. Mechanistic breeding value (7) is the 
first-order estimate of the phenotype with respect to genotype as 
predictor, which corresponds to the quantitative genetics notion 
of breeding value as the best linear estimate of the phenotype 
with respect to gene content as predictor (Falconer & Mackay, 
1996; Lynch & Walsh, 1998). Hence, genotypic traits play here 
an analogous role to that of gene content in quantitative genet-
ics in that they emerge as the relevant first-order predictor of the 
phenotype to describe inheritance.

In contrast to the Lande (1979) equation, the mechanis-
tic Lande Equation (5) has been derived from a mechanis-
tic account of development so we have formulas to relate 
development (1) to mechanistic breeding value and so to 
mechanistic genetic covariation Hx . These formulas guaran-
tee that the developmental (1) and environmental (2) con-
straints are satisfied at all times. The formulas show that 
Hx = Hx(x̄, ȳ) is generally a function of the resident geno-
type ȳ, in particular, if the development map is non-linear, in 
which case the developmental matrix dxᵀ/dy depends on ȳ
. Specifically, gene-gene interaction (products between y’s in 
the developmental map), gene-phenotype interaction (prod-
ucts between y’s and x’s), and gene-environment interaction 
(products between y’s and ε’s) cause the resident genotype ȳ 
to remain in dxᵀ/dy. Thus, in general, the right-hand side of 
the mechanistic Lande Equation (5) depends on the resident 

genotype ȳ if the mutation rate, carrying capacity, muta-
tional covariation Hy, the developmental matrix dxᵀ/dy, or 
direct phenotypic selection ∂w/∂x depend on the resident 
genotype ȳ. Consequently, Equation (5) is under-determined 
as it generally depends on the resident genotype but does not 
describe the evolutionary dynamics of the resident genotype. 
Hence, Equation (5) cannot be used alone to describe the 
evolutionary dynamics of the resident phenotype in general.

This problem equally applies to the Lande equation. Since 
breeding value depends on the regression coefficients of phe-
notype on gene content at the current time, such regression 
coefficients depend on the current state of the population, 
including allele frequency. Thus, the Lande equation depends 
on allele frequency but it does not describe allele frequency 
change. The standard approach to address this problem is to 
assume Fisher’s (1918) infinitesimal model, whereby each phe-
notype is controlled by an arbitrarily large number of loci so 
in the short term allele frequency change per locus is negligible 
(Barton et al., 2017; Hill, 2017; Walsh & Lynch, 2018). Then, 
G is assumed constant or its evolution is described by the 
Bulmer equation, which considers change in G due to change 
in linkage disequilibrium while still assuming negligible allele 
frequency change (Barton et al., 2017; Lande & Arnold, 1983; 
Turelli, 1988). Such an approach allows for the Lande equa-
tion to describe evolution only in the short term, where allele 
frequency change per locus remains negligible (Barton et al., 
2017). However, long-term evolution involves non-negligible 
allele frequency change, thus limiting the ability of the Lande 
equation to describe long-term phenotypic evolution.

In turn, the canonical equation of adaptive dynamics 
(Dieckmann & Law, 1996) describes long-term phenotype 
evolution, but where the phenotype does not have develop-
mental constraints. In our terminology, the canonical equa-
tion of adaptive dynamics describes the long-term evolution 
of genotypic traits, which do not have developmental con-
straints (Equation 3; Dieckmann & Law, 1996). Thus, the 
canonical equation does not describe the long-term evolution 
of developed traits as an adaptive topography. The canonical 
equation for function-valued traits (Dieckmann et al., 2006) 
describes the evolution of genotypic traits that can affect the 
construction of phenotypic traits (Parvinen et al., 2013), but 
this equation still describes evolution in gradient form only 
for genotypic traits, not phenotypic traits (i.e., not for state 
variables; indeed, given the age-block-structure of y, Equation 
(3) may be understood as the canonical equation for func-
tion-valued traits in discrete age). Equations describing the 
long-term evolution in gradient form of phenotypic traits (i.e., 
with explicit developmental constraints, that is, of state vari-
ables) such as Equation (5), where formulas for Hx guarantee 
that the developmental constraints are met, do not seem to 
have been available until recently (González-Forero, 2021). 
Yet, the dynamic insufficiency of Equation (5) limits its ability 
to describe the evolution of developed traits in a fitness land-
scape. (For a different view of how the canonical and Lande 
equations are related see pp. 1084-1086 of Geritz et al., 2016).

Development blocks evolutionary change
Even though the mechanistic Lande Equation (5) is insuffi-
cient to describe the long-term evolution of developed pheno-
types particularly if development is non-linear, such equation 
can be extended to allow for this.

To see this, remove the assumption (iv) above, and still 
assume that there is (i) no niche construction (∂εᵀ/∂z = 0), 
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(ii) no social development (dxᵀ/dz̄ = 0), and (iii) no exog-
enous environmental change (∂ε/∂τ = 0). Then, González-
Forero (2021) shows that the evolutionary dynamics of the 
resident phenotype and genotype are given by

dz̄
dτ

= ιHz
∂w
∂z

, (8)

where Hz guarantees that the developmental constraint 
(1) is satisfied at all times. Equation (8) now depends on 
the mechanistic additive genetic covariance matrix of the 
geno-phenotype

Hz = cov[bz, bz] =
dz
dyᵀ

Hy
dzᵀ

dy
,

(9)

where the mechanistic breeding value bz of the geno-pheno-
type is given by Equation (7) replacing x with z.

Equation (8) is an extended mechanistic Lande equation 
that, in contrast to the Lande equation or its mechanistic 
counterpart (5), is dynamically sufficient and so describes 
the long-term evolution of developed traits as an adaptive 
topography. Equation (8) is dynamically sufficient because it 
describes the dynamics of all the variables involved by simul-
taneously describing genotypic and phenotypic evolution 
since z = (x; y) includes both genotype and phenotype. In 
particular, the matrix Hz = Hz(x̄, ȳ) is still a function of the 
resident phenotype and genotype, but now the evolutionary 
dynamics of both are described by Equation (8). The right-
hand side of Equation (8) may also be a function of the resi-
dent environmental traits, but because of assumptions (i) and 
(iii), niche construction and exogenous environmental change 
are absent so the environment remains constant.

As Equation (8) describes the long-term evolution of devel-
oped traits as an adaptive topography, we can now use it to 
analyse the effect of development on genetic covariation and 
evolution. A biologically crucial property of Equation (8) is 
that it implies that there are always absolute genetic con-
straints to adaptation within the assumptions made (absolute 
constraints mean that the constraining matrix is singular; 
Houle, 2001; Klingenberg, 2005, 2010). Indeed, Equation 
(8) simultaneously describes genotypic and phenotypic evolu-
tion, so the climbing of the fitness landscape is in geno-pheno-
type space rather than only phenotype space as in the Lande 
equation. Yet, because the geno-phenotype z contains the 
genotype y, genetic covariation in geno-phenotype is abso-
lutely constrained by the genotypic space (i.e., Hz is always 
singular because dzᵀ/dy has fewer rows than columns). That 
is, to achieve dynamic sufficiency, one cannot generally con-
sider any traits for evolutionary analysis, but must consider 
both the phenotype and genotype, and since the phenotype 
and genotype are related by development, genetic covari-
ation in geno-phenotype space is absolutely constrained to 
the region where the relationship between the two is met. 
Thus, there cannot be genetic variation in as many direc-
tions in geno-phenotype space as there are phenotypes across 
life (i.e., Hz has at least NaNp eigenvalues that are exactly 
zero). Along such directions evolutionary change is blocked 
(i.e., along the directions of the eigenvectors corresponding 
to the zero eigenvalues of Hz). In this sense, development 
can be seen as blocking evolutionary change in some direc-
tions. Therefore, evolutionary stasis (dz̄/dτ = 0) can occur 
away from landscape peaks, where direct directional selec-
tion persists (∂w/∂z �= 0; see also Houle, 1991; Kirkpatrick 
& Lofsvold, 1992, and Altenberg, 1995). Thus, consideration 

of direct directional selection alone (∂w/∂z) is not sufficient 
for predicting possible evolutionary outcomes, which depend 
also on Hz. Predicting evolutionary outcomes still depends on 
Hz even if there is no genotypic selection (i.e., if ∂w/∂y = 0).

The singularity of Hz and generalizations thereof has 
important implications, which we detail below. One imme-
diate implication is that, without absolute mutational con-
straints (i.e., if Hy is non-singular), evolutionary outcomes 
are jointly defined by direct selection and development as 
described by dxᵀ/dy, which is influenced by gene-gene, 
gene-phenotype, and gene-environment interactions. Another 
immediate implication is that this singularity may help 
explain common empirical observations of evolutionary 
stasis in wild populations despite directional selection and 
genetic variation, termed the “paradox of stasis” (Kingsolver 
& Diamond, 2011; Kirkpatrick, 2009; Merilä et al., 2001). 
Because Hz is singular, evolutionary stasis is expected to gen-
erally occur with persistent directional selection and genetic 
variation, although there are other explanations for the para-
dox of stasis, including measurement error (Estes & Arnold, 
2007; Haller & Hendry, 2013; Merilä et al., 2001; Morrissey, 
2015).

Even though plasticity may be present in the extended 
mechanistic Lande Equation (8), plasticity has no evolu-
tionary effect under the assumptions made in that equation. 
Indeed, the formulas for Hz show that, under the framework’s 
assumptions, plasticity (i.e., ∂zᵀ/∂ε) only affects the evolu-
tionary dynamics by interacting with niche construction or 
exogenous environmental change (see below). Thus, although 
in Equation (8) there may be plasticity, it has no effect since 
by assumptions (i) and (iii) niche construction and exogenous 
environmental change are absent so the environment remains 
constant, but plasticity requires environmental change.

Development determines the path
While development can be seen as blocking evolutionary 
change, development can be more specifically seen as deter-
mining the admissible evolutionary path. This is because one 
must follow the evolution of the genotype and phenotype 
for a dynamically sufficient phenotypic adaptive topography, 
and the phenotype is related to the genotype by the devel-
opmental constraint (1) along which evolution is allowed. 
Consequently, if there are no absolute mutational constraints 
and no exogenous environmental change, development and 
selection jointly define the evolutionary equilibria and devel-
opment determines which of these equilibria are admissible.

To see this, continue to assume that there is (i) no niche 
construction (∂εᵀ/∂z = 0), (ii) no social development 
(dxᵀ/dz̄ = 0), and (iii) no exogenous environmental change 
(∂ε/∂τ = 0). Then, the evolutionary dynamics of the resident 
phenotype and genotype are equivalently given by

dz̄
dτ

= ιHzy
dw
dy

,
(10)

where Hzy guarantees that the developmental constraint (1) 
is satisfied at all times. This equation is closely related to 
Morrissey’s (2014) Equation 4 but they differ as Morrissey’s 
equation is for the evolutionary change of the phenotype with 
linear development rather than geno-phenotype with possibly 
non-linear development, considers the total selection gradient 
of the phenotype rather than the genotype, considers regres-
sion-based rather than mechanistic genetic covariation (if the 
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classic partition of phenotypic variance is to hold), and is 
dynamically insufficient as it is a rearrangement of the Lande 
(1979) equation. Equation (10) depends on the total selection 
gradient of the genotype, which under assumptions (i–iii), is

dw
dy

=
dzᵀ

dy
∂w
∂z

=
∂w
∂y

+
dxᵀ

dy
∂w
∂x

.
(11)

Thus, total genotypic selection depends on the developmental 
matrix dxᵀ/dy (see Figure S1 for a description of all the fac-
tors affecting total genotypic selection removing assumptions 
i-iii). Equation (10) also depends on the mechanistic additive 
genetic cross-covariance matrix between the geno-phenotype 
and genotype

Hzy = cov[bz, by] =
dz
dyᵀ

Hy. (12)

Crucially, the transpose matrix of the total effects of genotype 
on geno-phenotype, dz/dyᵀ, is non-singular because the gen-
otype is developmentally independent by assumption. Thus, 
Equation (10) implies that evolutionary stasis occurs when 
total genotypic selection vanishes (dw/dy = 0) if there are no 
absolute mutational constraints. That is, total genotypic selec-
tion can identify evolutionary equilibria, even though direct 
directional selection typically cannot. Because total genotypic 
selection depends on the developmental matrix (Equation 
11), this is a different way of showing that evolutionary equi-
libria are generally defined jointly by direct selection and 
development if there are no absolute mutational constraints. 
Moreover, there are always an infinite number of evolution-
ary equilibria, because dw/dy = 0 provides fewer equations 
than those in dz̄/dτ = 0. Since the developmental constraint 
(1) must be satisfied at all times, this constraints provides the 
remaining equations and the admissible evolutionary trajec-
tory. That is, the developmental constraints not only influence 
the evolutionary equilibria, but also provide the admissible 
evolutionary trajectory and so the admissible equilibria.

To gain intuition, consider the following simple example. 
Let there be one phenotype x and one genotypic trait y, and 
let age structure be collapsed such that development occurs 
instantaneously. Collapsing age structure is a heuristic simpli-
fication, but doing so makes x and y scalars, which can then 
be easily visualised. Also, let there be no social interactions, 
no niche construction, no exogenous environmental change, 
and no density dependence. By removing social interactions 
and density dependence, the latter of which is also a heuristic 
simplification, evolutionary change can be not only abstractly 
but also visually described as the climbing of a fitness land-
scape. The extended mechanistic Lande Equation (8) states 
that selection can be seen as “pushing” the geno-phenotype 
uphill on the fitness landscape in geno-phenotype space in 
the direction of steepest ascent, whereas genetic covariation 
diverts evolutionary change in a possibly less steep direction. 
If genetic constraints on the traits considered were not abso-
lute (here, if Hz were non-singular), the population would 
eventually reach a landscape peak, which is commonly 
implicitly or explicitly assumed. Yet, as the traits considered 
must be both the genotype and the phenotype arising from 
the developmental constraint (1), genetic constraints are nec-
essarily absolute (i.e., Hz is singular). Hence, evolution is 
restricted to an admissible path on the landscape where the 
developmental constraint is met (Figure 1a–c; the computer 
code used to generate all the figures is in the Supplementary 
Data). Adaptive evolution may thus be understood as the 

climbing of the fitness landscape along an admissible path 
determined by development. The evolutionary process even-
tually reaches a path peak if there are no absolute mutational 
constraints (Figure 1a–c). Formally, a path peak is a point in 
geno-phenotype space where the developmental constraints 
are met and fitness is locally and totally maximized with 
respect to genotype: here “totally” means after substituting 
in the fitness function for both the developmental and envi-
ronmental constraints. Selection response vanishes at path 
peaks which are not necessarily landscape peaks (Figure 
1a–c). The admissible path yields an elevation profile of fit-
ness, namely, the total fitness landscape of the genotype, on 
which adaptation is constrained to occur, and can have peaks 
and valleys created by the developmental map (Figure 1d–f). 
Hence, selection pushes the genotype uphill on the total fit-
ness landscape of the genotype, but in this profiled landscape 
evolutionary change is not blocked provided that there are 
no absolute mutational constraints. Consequently, without 
absolute mutational constraints, evolutionary stasis gener-
ally occurs at a peak on the total fitness landscape of the 
genotype, even though this does not generally correspond to 
a peak on the fitness landscape of the phenotype and geno-
type. The Hz-matrix evolves as an emergent property as the 
resident phenotype and genotype evolve, and genetic vari-
ances and covariances may substantially increase or decrease 
if development is non-linear (consistent with previous indi-
vidual-based simulations; Miloco & Salazar-Ciudad, 2022), 
rather than being approximately constant as is often con-
sidered under short-term evolution with an infinite number 
of loci (Barton et al., 2017; Fisher, 1918) which we do not 
assume (Figure 1g–i). Ultimately, development constrains the 
path of adaptation and thus defines its outcome jointly with 
selection (Figure 1j–l). Overall, development has a permanent 
dual role in adaptation by influencing evolutionary equilib-
ria (blue lines in Figure 1j–l) and determining the admissible 
evolutionary path (red line in Figure 1j–l).

That evolution stops at path peaks rather than landscape 
peaks may help explain abundant empirical data. Empirical 
estimation of selection has found that direct stabilizing 
selection is rare relative to direct directional selection across 
thousands of estimates in more than 50 species (Kingsolver 
& Diamond, 2011; Kingsolver et al., 2001). The rarity of 
stabilizing selection has been puzzling under the common 
assumption that evolutionary outcomes occur at landscape 
peaks, where stabilizing selection is prevalent (Charlesworth 
et al., 1982; Walsh & Lynch, 2018). In contrast, the rarity of 
stabilizing selection is consistent with evolutionary outcomes 
necessarily occurring at path peaks. Indeed, if path peaks 
occur outside landscape peaks, evolutionary outcomes occur 
with persistent direct directional selection (Altenberg, 1995; 
Houle, 1991; Kirkpatrick & Lofsvold, 1992) and relatively 
weak direct stabilizing selection (because direct stabilizing 
selection is relatively strong only near landscape peaks). Thus, 
evolution generally stopping at path peaks outside landscape 
peaks may help explain the otherwise puzzling observation 
of rare stabilizing selection. There are other explanations for 
the rarity of stabilizing selection (Haller & Hendry, 2013; 
Morrissey, 2015), and Morrissey’s is closely related to ours.

Development can drive diversification
The evolution of phenotypic and genetic diversity is typi-
cally explained in terms of selection or drift (Doebeli, 2011; 
Gavrilets & Losos, 2009), but the relevance of development 
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has been less clear. We find that development can drive the 
evolution of phenotypic and genotypic diversity, even in 
a constant, single-peak fitness landscape, where selection 

provides an evolutionary force while development translates 
it into diversification. This can happen in two ways. First, if 
the developmental map changes inducing a shifted path peak, 

Figure 1. Development determines the evolutionary path. a–c, Fitness landscape for a phenotype x and a genotype y, with three developmental 
maps. The developmental map determines the path on the landscape as x can only take values along the path. d–f, The total fitness landscape of 
the genotype gives the elevation profile considering developmental and environmental constraints. g–i, Mechanistic additive genetic covariances 
depend on the developmental map and evolve as the genotype evolves. j–l, The evolutionary dynamics occur along the developmental constraint 
(red; gray arrows are parallel or antiparallel to leading eigenvectors of Hz, called “genetic lines of least resistance”; Schluter, 1996). Evolutionary 
outcomes (black dots) occur at path peaks and thus depend on development. Evolutionary equilibria (blue) are infinite in number because Hz is 
singular and occur when total genotypic selection vanishes despite persistent direct selection. The intersection of the developmental map and 
evolutionary equilibria yields the admissible evolutionary equilibria. Different developmental maps yield different evolutionary trajectories and 
outcomes with the same single-peak landscape. Developmental bias is quantified by the slope of the red line (∂x/∂y ). Evolutionary change satisfies 
dz̄/dτ = Hz∂w/∂z, where Hz = (dz/dy)Hy(dzᵀ/dy) = (dx/dy , 1)ᵀHy(dx/dy , 1) = Hy((dx/dy)

2, dx/dy ; dx/dy , 1) = (Hx ,Hxy ;Hx ,,Hy) which is 
singular. Hence, the mechanistic additive genetic variance of x is Hy(dx/dy)

2 . The total effects of a mutant’s genotype on her geno-phenotype are 
dzᵀ/dy = (dx/dy , dy/dy) = (dx/dy , 1) . Fitness is w(x, y) = exp(−x2 − y2) and mutational variance is Hy = 0.01 (so that 0 < tr(Hy) � 1). As we 
use our heuristic assumptions of collapsed age structure and no density dependence, we use here a simpler fitness function than that in Equation (4). 
Functional forms are chosen for illustration.
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the population can evolve different phenotypes and genotypes 
(Figure 2a–f). Second, the developmental map may change, 
generating new path peaks, if it is or becomes non-linear, such 
that the population may evolve different phenotypes and 
genotypes depending on the initial conditions (Figure 2g–l). 
Diversification may then occur if a population subdivides and 
one of the descendant populations undergoes changes in their 
developmental map due to changes in its genotype, environ-
ment, or how the phenotype is constructed. Mathematically, 
multiple path peaks can arise from non-linear development 
because it can generate bifurcations altering the number of 
admissible evolutionary equilibria even though the number of 
evolutionary equilibria remains the same (i.e., infinite). This is 
a form of evolutionary branching (Geritz et al., 1998), which 
may be called evo-devo branching, where the admissible path 
creates a valley in the total fitness landscape of the genotype 
so there is disruptive total genotypic selection (Figure 1e; see 
also Morrissey, 2015 where stabilizing total selection is ana-
lysed). There may not be a valley in the fitness landscape so 
no disruptive direct selection on the phenotype or genotype 
(Figure 1b) as evo-devo branching only requires disruptive 
total genotypic selection possibly created by development 
rather than direct disruptive selection. Thus, evo-devo branch-
ing may occur in situations where evolutionary branching 
driven by direct disruptive selection would not occur. Hence, 
development can lead to phenotypic and genotypic diversi-
fication, even with a constant single-peak fitness landscape 
in geno-phenotype or phenotype space. Consequently, pheno-
typic and genotypic diversification might arise from the evo-
lution of development.

Our analysis partly substantiates a classic explanation of 
punctuated equilibria in terms of developmental constraints, 
an explanation that has been dismissed in the light of pre-
vious theory. Punctuated equilibria refer to long periods of 
morphological stasis alternated by periods of rapid change as 
observed in the fossil record (Eldredge & Gould, 1972; Hunt 
et al., 2015). The dominant explanation for punctuated equi-
libria is that fitness landscapes remain relatively invariant for 
long periods so there is stabilizing selection for long periods 
at an unconstrained optimum, and fitness landscapes subse-
quently undergo substantial change particularly during adap-
tive radiations triggering directional selection (Charlesworth 
et al., 1982; Walsh & Lynch, 2018). A classic alternative 
explanation is that (a) developmental constraints prevent 
change for long periods and (b) revolutions in the develop-
mental program bring sudden change (Gould, 1980). The 
ability of constraints to prevent change has been thought to 
be refuted by the common observation of selection response, 
sometimes under seeming developmental constraints (Beldade 
et al., 2002), while revolutions in the developmental program 
have been refuted on other grounds (Charlesworth et al., 
1982; Eldredge et al., 2005; Klingenberg, 2010). Our anal-
ysis substantiates the view that developmental constraints 
may prevent change for long periods, despite possible selec-
tion response: indeed, even if developmental constraints halt 
a population at a path peak, selection response is possible 
since path peaks may change, either by change in the path 
(e.g., by change in the genotype, environment, or how the 
phenotype is constructed) or the landscape (e.g., by artificial 
selection as in Beldade et al., 2002). Thus, available evidence 
does not necessarily rule out that developmental constraints 
can prevent change for long periods in some directions. 
Moreover, punctuated equilibria could arise by change in 

the developmental map, rather than only by change of the 
fitness landscape. In particular, gradual change in the devel-
opmental map as the genotype, phenotype, or environment 
gradually evolve may yield sudden path-peak creation events 
(sudden since such events are bifurcations, which are sudden 
by definition; Figure 2g–l; see also Figure 3.4 of Metz, 2011). 
Path-peak creation events yielding sudden phenotypic diversi-
fication might then generate punctuated equilibria, arising by 
gradual evolution of the developmental map, without revolu-
tions in the developmental program. Furthermore, by shift-
ing the admissible path, the evolution of development may 
similarly lead to the crossing of valleys in a multi-peak fitness 
landscape in geno-phenotype space if a path peak moves from 
a landscape peak to another. 

Niche construction reshapes the path
Niche construction—whereby organisms affect their envi-
ronment—has been suggested to be a developmental fac-
tor having major evolutionary effects (Laland et al., 2014, 
2015; Odling-Smee et al., 1996). How does niche construc-
tion affect evolution? We find that niche construction has a 
dual effect on adaptation. First, niche construction (∂εᵀ/∂z)  
reshapes the fitness landscape as previously known (Laland 
et al., 2014, 2015; Odling-Smee et al., 1996). Second, niche 
construction reshapes the path on the landscape by altering 
absolute genetic constraints.

To see this, we relax the assumption that niche construction 
is absent (∂εᵀ/∂z �= 0), while maintaining our assumptions 
of (ii) no social development (dxᵀ/dz̄ = 0), and (iii) no exog-
enous environmental change (∂ε/∂τ = 0). The evolutionary 
dynamics of the resident phenotype and genotype are then 
given by

dz̄
dτ

= ιHz
δw
δz

, (13)

where Hz guarantees that the developmental constraint (1) is 
met at all times. Equation (13) depends on the total immedi-
ate selection gradient of the phenotype and genotype

δw
δz

=
∂w
∂z

+
∂εᵀ

∂z
∂w
∂ε

, (14)

which measures total immediate selection considering envi-
ronmental constraints but not developmental constraints. So, 
selection pushes uphill, no longer on the fitness landscape that 
ignores environmental constraints, but on the reshaped total 
immediate fitness landscape that considers such constraints 
(Figure 3a–e). Equation (14) shows that such reshaping of the 
fitness landscape is done by the interaction of niche construc-
tion and environmental sensitivity of selection (∂w/∂ε) (a 
term coined by Chevin et al., 2010 for a more specific notion). 
The total immediate fitness landscape can have new peaks and 
valleys relative to the fitness landscape. Additionally, Equation 
(13) depends on Hz, which still has the form in Equation (9) 
so it is still singular but now depends on the interaction of 
niche construction and plasticity (∂xᵀ/∂ε). Thus, develop-
ment determines the path on the total immediate fitness land-
scape, but now this path is reshaped by the interaction of 
niche construction and plasticity (Figure 3f–j). Consequently, 
niche construction reshapes the fitness landscape by interact-
ing with environmental sensitivity of selection, and reshapes 
the admissible path on the landscape by interacting with 
phenotypic plasticity. Thus, niche construction affects both 
selection and development, where selection and development 
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jointly determine the evolutionary outcomes if there are no 
absolute mutational constraints.

Equation (13) could also be seen as corresponding to 
an extended Lande equation describing genotypic and 

phenotypic evolution where environmental traits are not 
explicitly considered in a quantitative genetics analysis. Now, 
Equation (13) generally depends on the resident environment 
ε̄, which evolves due to niche construction. Provided that the 

Figure 2. Development-driven diversification. Development may drive phenotypic and genotypic diversification in two ways. First, by shifting path peaks 
(a–f). Second, by creating path peaks (g–l). The evolutionary dynamics are given as in the legend of Figure 1. As c changes, development g changes, but 
total developmental bias dx/dy  does not change, so the evolutionary equilibria remain the same (blue); however, the admissible evolutionary equilibria 
do change (open and solid circles) and so does the outcome even though the fitness landscape is constant and single peaked.
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environmental map is known or assumed, the environment is 
then known so Equation (13) still yields a dynamically suffi-
cient description of long-term phenotypic evolution despite 
environmental evolution. Yet, if one is interested in under-
standing how the evolution of the environment proceeds 
on the fitness landscape, an equation describing the evolu-
tion of the environment in gradient form would be needed. 
González-Forero (2021) derives such an equation, showing it 
has the form of a further extended mechanistic Lande equa-
tion describing the evolutionary dynamics of the geno-en-
vo-phenotype with an associated mechanistic additive genetic 
covariance matrix that is also necessarily singular for the 
same reasons given above.

Social development alters the outcome
Extra-genetic inheritance, including social learning and epi-
genetic inheritance, has also been suggested to be a devel-
opmental factor having major evolutionary effects (Baldwin, 
1896; Laland et al., 2014, 2015). Current understanding is 
that extra-genetic inheritance has only transient evolutionary 
effects if elements so inherited are transmitted over only a 
few generations (Beltran et al., 2020; Charlesworth et al., 
2017; Jablonka & Lamb, 2014; Walsh & Lynch, 2018). 
For instance, the permanent evolutionary effects discussed 
by Day & Bonduriansky (2011) and Bonduriansky & Day 
(2018) involve the co-evolution of genetic and extra-genetic 
elements, which requires transmission of extra-genetic ele-
ments over multiple generations. In contrast, we find that 
extra-genetic inheritance can have permanent evolutionary 
effects even without transmission of extra-genetic elements 
over multiple generations, because it changes development 
and so the absolute genetic constraints and the admissible 
evolutionary path.

Extra-genetic inheritance can be seen as a particular form 
of social development (dxᵀ/dz̄ �= 0), where the developed 

phenotype depends on the phenotype and genotype of social 
partners. For instance, acquiring a skill or epimark from a 
role model or a parent, respectively, involves an interaction 
between the recipient and donor, and these extra-genetic 
elements affect the subsequent phenotype of the individual 
(although recall we assume that social interactions are only 
with non-relatives for simplicity). Social development can 
also mechanistically describe both indirect genetic effects, 
where the genes of social partners affect an individual’s phe-
notype (Moore et al., 1997), and social phenotypic effects that 
need not stem from genes (e.g., if the individual’s developed 
traits depend on social partners’ environmentally induced 
developed traits). How does social development, including 
extra-genetic inheritance, affect evolution? We find that, since 
it alters the developmental map, social development alters 
the evolutionary outcome (i.e., the admissible evolution-
ary equilibria) by altering the admissible evolutionary path 
without necessarily altering the evolutionary equilibria them-
selves. Thus, extra-genetically inherited elements can have 
permanent evolutionary effects without being transmitted 
over many generations. What is needed is that the ability to 
acquire the (possibly evolving) extra-genetic element persists 
over many generations so that individuals have a consistently 
socially altered development over many generations. To see 
this, consider the following.

Social development introduces a complication to evolu-
tionary analysis as follows: With social development, the 
developed phenotype depends on the frequency of other 
phenotypes and genotypes and even if a phenotype is fixed 
in the population, offspring may develop a different pheno-
type if the fixed parental phenotype developed in a different 
social context (i.e., the phenotype is frequency dependent and 
may not breed true despite clonal reproduction). We han-
dle this complication with the following notions. We say a 
genotype, phenotype, and environment m∗∗ = (x∗∗; y∗∗; ε∗∗) 

Figure 3. Niche construction reshapes the fitness landscape and the evolutionary path. a–e, There is niche construction by the phenotype x which 
non-linearly affects the environmental trait ε, which in turn increases fitness. a, Fitness landscape vs. phenotype, genotype, and environment. Slices 
for constant environment (yellow) and for the environmental constraint (green) are, respectively, shown in b and c. The interaction of niche construction 
(∂ε/∂x ) and environmental sensitivity of selection (∂w/∂ε) reshapes the landscape (from b to c) by affecting total immediate selection δw/δz but it 
does not affect genetic covariation Hz. f–j, There is niche construction by the genotype y which linearly affects the environmental trait ε, which in turn 
increases the phenotype. The interaction of niche construction (∂ε/∂y ) and plasticity (∂x/∂ε) reshapes the path (from g to h). This interaction affects 
genetic covariation Hz but does not affect total immediate selection δw/δz. In all panels, evolutionary change satisfies dz̄/dτ = Hzδw/δz, where 
δw/δz = ∂w/∂z+ (∂ε/∂z)(∂w/∂ε) and Hz is given in Figure 1. In a–e, dx/dy = ∂x/∂y , whereas in f–j, dx/dy = ∂x/∂y + (∂ε/∂y)(∂x/∂ε).

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/article/77/2/562/6955321 by guest on 09 February 2023



573

is a socio-devo equilibrium if and only if an individual with 
such genotype and environment developing in the context of 
individuals having such genotype, phenotype, and environ-
ment develops their same phenotype. A socio-devo equilib-
rium is socio-devo stable if and only if socio-devo dynamics 
are locally stable to small perturbations in the phenotype 
(González-Forero, 2021). A phenotype in socio-devo stable 
equilibrium breeds true when fixed. Although social develop-
ment can yield socio-devo unstable phenotypes, our analyses 
apply only to socio-devo stable phenotypes (which are guar-
anteed to be so if all the eigenvalues of dx/dx̄ᵀ have absolute 
value strictly less than one, which we assume).

Thus, for socio-devo stable phenotypes, their evolutionary 
dynamics are described by the following equations. Allowing 
for niche construction (∂εᵀ/∂z �= 0) and social development 
(dxᵀ/dz̄ �= 0), but assuming (iii) that there is no exogenous 
environmental change (∂ε/∂τ = 0), then the evolutionary 
dynamics of the resident phenotype and genotype are given 
by

dz̄
dτ

= ιLz
δw
δz

= ιLzy
dw
dy

,
(15)

where both Lz and Lzy guarantee that the developmental 
constraint (1) is met at all times. This equation now depends 
on the mechanistic additive socio-genetic cross-covariance 
matrix of the geno-phenotype (L for legacy)

Lz = cov[bsz, bz] =
sz
syᵀ

Hy
dzᵀ

dy
,

(16)

where the stabilized mechanistic breeding value of z is defined 
as

bsz = z̄+
sz
syᵀ

(y− ȳ).
(17)

The matrix sz/syᵀ is the stabilized total derivative of z with 
respect to yᵀ, which measures the total effects of yᵀ on z after 
the effects of social development have stabilized in the popu-
lation; sz/syᵀ reduces to dz/dyᵀ if development is not social. 
The Lz-matrix generalizes Hz by including the effects of social 
development, so if development is non-social Lz reduces to 
Hz (Lz is analogous to another generalization of the G-matrix 
used in the indirect genetic effects literature; Moore et al., 
1997). As for Hz, the matrix Lz is always singular because 
the geno-phenotype contains the genotype (i.e., because 
dzᵀ/dy has fewer rows than columns). Hence, also under 
social development, evolutionary stasis can generally occur 
with persistent total immediate selection on the phenotype 
and genotype. In turn, the second equality in Equation (15) 
depends on the additive socio-genetic cross-covariance matrix 
between the geno-phenotype and genotype

Lzy = cov[bsz, by] =
sz
syᵀ

Hy, (18)

which generalizes the corresponding matrix Hzy we had in 
Equation (12) to consider social development. Similarly to Hzy,  
this matrix Lzy is non-singular if Hy is non-singular because 
the genotype is developmentally independent by assumption. 
Thus, evolutionary equilibria still occur when total genotypic 
selection vanishes (dw/dy = 0) if there are no absolute muta-
tional constraints.

The singularity of Lz entails that social development, 
including extra-genetic inheritance, may alter both the evo-
lutionary equilibria (by altering dw/dy) and the admissible 

path (by altering Lzy; Figure 4). Note that ȳ in Figure 4a,b can 
be interpreted as being an extra-genetically acquired element 
that modifies development, but such acquired effect is not 
transmitted to future generations as the individual transmits 
the y it has. Yet, such extra-genetically acquired element alters 
the developmental constraint and evolutionary equilibria, 
thus altering the evolutionary outcome relative to that with-
out extra-genetic inheritance (Figure 1a,d,g,j). Alternatively, 
social development may not affect the evolutionary equilib-
ria if total genotypic selection dw/dy is independent of social 
partners’ geno-phenotype ̄z , but social development may still 
affect the admissible evolutionary path given by the devel-
opmental constraint in Equation (1) (by altering only Lzy; 
Figure 5). Similarly, ȳ in Figure 5a,b can also be interpreted 
as being an extra-genetically acquired element that modifies 
development, but it is not transmitted to future generations 
and still alters the evolutionary outcome relative to that 
without extra-genetic inheritance (Figure 1b,e,h,k). Indeed, 
in both cases, social development (e.g., extra-genetic inher-
itance) affects the evolutionary path and so the admissible 
evolutionary equilibria and hence the evolutionary outcome. 
Mathematically, this results because Lz is singular, so chang-
ing the path generally changes the outcome. Thus, because Lz 
is singular, extra-genetic inheritance can have permanent evo-
lutionary effects even if extra-genetically acquired elements 
are not transmitted to other individuals.

When social development alters only the admissible path, 
it does so because of social developmental bias (∂xᵀ/∂z̄; e.g., 
extra-genetic inheritance and indirect-genetic effects), and/
or the interaction of social niche construction (∂εᵀ/∂z̄) and 
plasticity (∂xᵀ/∂ε) (from Layer 3, Equation 3 of González-
Forero, 2021).

Plastic response alters the path
Research on the evolutionary effects of plasticity has inten-
sified, with a particular focus on whether adaptive plastic 
change precedes genetic evolution (Waddington, 1961; West-
Eberhard, 2003). How does plasticity affect evolution? We 
find that plasticity also has a dual evolutionary effect. First, 
we saw that plasticity (∂xᵀ/∂ε) alters the evolutionary path 
by interacting with niche construction (i.e., endogenous envi-
ronmental change; ∂εᵀ/∂z). This is because niche construc-
tion alters the environment, which through plasticity alters 
the developed phenotype and so the evolutionary path (by 
altering Lz). Second, plasticity alters the evolutionary path 
by interacting with exogenous environmental change (e.g., 
eutrophication or climate change caused by other species; 
∂ε/∂τ ). This is similarly because exogenous environmen-
tal change alters the environment, which through plasticity 
alters the developed phenotype and so the evolutionary path 
(but not by directly altering Lz). With exogenous environ-
mental change, the evolutionary dynamics comprise selection 
response and exogenous plastic response (see also Chevin et 
al., 2010), the latter of which modifies the developmental map 
and thus the evolutionary path as evolutionary time advances. 
Through exogenous plastic response, the evolutionary effects 
of development go beyond modulating genetic covariation. 
Exogenous plastic response has some ability to increase adap-
tation separate from selection response via selective develop-
ment, although this ability is limited in various ways.

To see this, assume now that there is niche construc-
tion (∂εᵀ/∂z �= 0), social development (dxᵀ/dz̄ �= 0), and 
exogenous environmental change (∂ε/∂τ �= 0). Then, the 
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574 González-Forero

evolutionary dynamics of the resident phenotype and geno-
type are given by

dz̄
dτ

= ιLz
δw
δz

+
sz
sεᵀ

∂ε

∂τ
= ιLzy

dw
dy

+
sz
sεᵀ

∂ε

∂τ
.

(19)

The matrix sz/sεᵀ describes what we call stabilized plasticity 
of the phenotype and genotype. Stabilized plasticity includes 
the effects of socio-devo stabilization and reduces to total 
plasticity dz/dεᵀ if development is non-social. The first term 
in Equation (19) is selection response (ιLzδw/δz) whereas the 

Figure 4. Social development alters the evolutionary outcome. a, b, There is social development, particularly social developmental bias from the 
genotype (∂x/∂ȳ �= 0). Here social development introduces a non-linearity relative to the developmental map of Figure 1a,d,g,j, which changes the 
evolutionary equilibria (blue), admissible path (red), and outcome (solid dot). c, d, As in a, b, but there is social developmental bias from the phenotype 
(∂x/∂x̄ �= 0). The developmental map is that of a, b replacing ȳ  with x̄ . This also changes the evolutionary equilibria, admissible path, and outcome. In 
all panels, evolutionary change satisfies dz̄/dτ = Lz∂w/∂z , where w(x, y) = exp(−x2 − y2) and Lz = (sz/sy)Hy(dzᵀ/dy) = (Lx , Lxy ; Lyx , Ly),  
with sz/sy = (sx/sy ; 1). For a, b, sx/sy = dx/dy + dx/dȳ  (from Layer 5, Equation 2a in González-Forero, 2021). Similarly, for c–d, 
sx/sy = (1− ∂x/∂x̄)−1dx/dy , with dzᵀ/dy  and sx/sy  evaluated at the socio-devo equilibrium x** that solves x∗∗ = g(y , x∗∗). Since development 
is social, a fitness landscape visualization as in Figure 1a is not possible. In c, the stream plot (gray arrows) is only locally accurate around the 
developmental constraint where the socio-devo equilibrium holds. The 1/2 in the developmental constraint is used to meet the assumption |dx/dx̄| < 1 
but does not affect the points made.

Figure 5. Social development can alter the evolutionary outcome without altering evolutionary equilibria. The plots are as in Figure 4, except that 
now the developmental maps are a linear modification of those in Figure 1b,e,h,k. Relative to that figure, social development does not alter total 
developmental bias dx/dy  so it does not affect evolutionary equilibria (blue). However, social development affects the admissible path (red) and so the 
evolutionary outcome (solid dot). Note Lx can be negative in b as it gives the covariance between the stabilized mechanistic breeding value of x and 
the mechanistic breeding value of x (in contrast, Hx gives the variance of the mechanistic breeding value of x, which is non-negative). The 4/5 in the 
developmental constraint is used to meet the assumption |dx/dx̄| < 1 but does not affect the points made.
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second term is exogenous plastic response ((sz/sεᵀ)(∂ε/∂τ)),  
which makes the developmental map evolve as the envi-
ronment exogenously changes (Figure 6). Equation (19) 
shows that exogenous plastic response can induce selec-
tion response, which allows for plastic change to preceed 
genetic change (Waddington, 1961; West-Eberhard, 2003). 
For example, if the population is at a path peak so there is 
no selection response (Lzδw/δz = 0) and there is exogenous 
plastic response, this generally changes the path thus inducing 
future selection response (e.g., in Figure 6a, selection response 
is absent at the two path peaks at x = 1/2 at τ = 0, but envi-
ronmental change and plasticity change the path thereby cre-
ating selection response at these points and the path peaks 
move approximately to x = 0 and x = 0.18 at τ = 1000 in 
Figure 6c). In the idealized case where development is selec-
tive in the sense that the developmental map is a function 
of the selection gradient, stabilized plasticity can depend on 
the selection gradient. With selective development, exogenous 
plastic response can induce evolution either towards or away 
landscape peaks depending on the developmental constraints 
and initial conditions, as the population is trapped in local 
peaks of the total fitness landscape of the genotype (Figure 6). 
Exogenous plastic response with selective development has a 
limited ability to induce evolution toward a landscape peak 
since plasticity must depend on developmental-past envi-
ronments, which induces a developmental lag in the plastic 
response (Supplementary Material section S2). Additionally, 
exogenous plastic response with selective development may 
induce evolution away a landscape peak when the rate of 
environmental change switches sign (Supplementary Material 
section S2).

Development enables negative senescence
Thus far, we have considered evolutionary effects of develop-
ment that occur even without considering that development 
takes time. Indeed, in our illustrative examples we have let 
age structure be collapsed so development happens instan-
taneously. We now show that explicit consideration of age 
progression in development may help explain an otherwise 
puzzling ageing pattern.

Individuals may show senescence as they age, that is, 
decreasing survival or fertility after the onset of reproduction. 
Leading hypotheses for the evolution of senescence are based 
on the fact that the forces of selection decline with age (φa and 
πa in Equation (4), and Equations S8 in the Supplementary 
Material; Hamilton, 1966). For example, if a mutation has 
a beneficial effect on survival or fertility early in life and a 
pleiotropic, deleterious effect of similar magnitude late in life, 
the mutation would be favoured (Medawar, 1952; Williams, 
1957). The universality of declining forces of selection has 
suggested that senescence should be universal (Hamilton, 
1966), at least for organisms with a bodily reset at conception 
(Lehtonen, 2020). However, empirical research has increas-
ingly reported organisms with negative senescence (Jones et 
al., 2014b), that is, where survival or fertility increase with age 
after the onset of reproduction, and models have suggested 
that this may stem from indeterminate growth (Lehtonen, 
2020; Vaupel et al., 2004).

Consistently with the latter, we find that developmental 
propagation—whereby an early-acting mutation has a large 
phenotypic effect late in life—can drive the evolution of neg-
ative senescence. For example, if a mutation in genotypic trait 

i has a deleterious effect on survival or fertility at an early age 
a, so that δwa/δyia < 0, and a pleiotropic, beneficial effect on 
survival or fertility of similar magnitude at a later age j>a, 
so that δwj/δxkj > 0 for phenotype k, then total immediate 
selection is weaker at the later age because of declining selec-
tion forces (i.e., |δwa/δyia| ≥ |δwj/δxkj|). Yet, crucially, such 
late-beneficial mutation is still favoured if total genotypic 
selection on it is positive, that is, if

dw
dyia

=
δwa

δyia
+

dxkj
dyia

δwj

δxkj
> 0

(20)

(Supplementary Material section S3), where the effect of the 
early mutation on the late phenotype is

dxkj
dyia

=
δxᵀa+1

δyia

( j−2∏
i=a+1

δxᵀi+1

δxi

)
δxkj
δxj−1 (21)

(from Equation C17 of González-Forero, 2021). This effect 
of the early mutation on the late phenotype may increase 
(or decrease) with the phenotype age j because of develop-
mental propagation of phenotypic effects as age advances, 
a propagation that is described by the term in parentheses 
in Equation (21): in particular, indeterminate growth allows 
for indefinite developmental propagation. So total genotypic 
selection may increase with the age j at which the pleiotro-
pic effect is expressed. Consequently, a mutation with late 
beneficial effects may be favoured despite early deleterious 
effects. Thus, developmental propagation may enable selec-
tion to shape traits at advanced age, allowing for adaptive 
evolution of increasing survival or fertility as ageing proceeds 
despite decreasing selection forces after the onset of reproduc-
tion. This suggests that allowing for developmental propaga-
tion in models with explicit development in which negative 
senescence fails to evolve (Nelson & Masel, 2017) might still 
enable negative senescence (perhaps via cell maintenance).

Discussion
Evolution by natural selection can be understood as the 
climbing of a fitness landscape under some assumptions. 
This was first established for genetic evolution (Wright, 
1937) and was later established for phenotypic evolution 
under the tacit assumption that there is negligible genetic 
evolution (Barton et al., 2017; Hill, 2017; Lande, 1976, 
1979; Walsh & Lynch, 2018). However, long-term pheno-
typic evolution involves non-negligible genetic evolution. 
We have shown that understanding long-term phenotypic 
evolution as the climbing of a fitness landscape requires 
that genotypic and phenotypic evolution are considered 
simultaneously. Doing so necessarily makes the associated 
constraining matrix (H, L, or G) singular because the phe-
notype is related to the genotype via development. Thus, 
long-term phenotypic evolution necessarily involves abso-
lute genetic constraints, where the evolutionary path is 
given by the developmental process that associates genes 
to phenotype.

Consequently, we have shown that development affects 
evolution by determining the evolutionary path. This 
sharpens the basic principle of adaptation as the climbing 
of the fitness landscape (Lande, 1979) (sensu Dieckmann 
& Law, 1996), such that evolutionary outcomes occur 
at best at peaks on the path rather than on the landscape. 
Developmental constraints thus stop evolution at path 
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Figure 6. Exogenous plastic response changes the evolutionary path. We let there be exogenous environmental change and plasticity, but no 
social development, so Lz reduces to Hz and no niche construction, so plasticity does not affect Hz but only the exogenous plastic response. 
For illustration, development is selective by letting plasticity equal the selection gradient at the optimal phenotype, ∂x/∂ε = ∂w(0, y)/∂y . a–l, 
Exogenous environmental change induces exogenous plastic response which raises part of the path on the landscape. m, Resulting evolutionary 
dynamics showing that selective development induces some evolutionary trajectories to converge to the landscape peak, whereas others do not 
by getting trapped in another path peak due to their initial condition. Evolutionary change satisfies dz̄/dτ = Hz∂w/∂z+ (dz/dε)(∂ε/∂τ), where 
dz/dε = (dx/dε; dy/dε) = (∂x/∂ε; 0) and Hz is given in Figure 1. Fitness is w(x, y) = exp(−x2 − y2).
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peaks that can happen mid-way on a fitness slope. Hence, 
selection and development jointly define the evolutionary 
outcomes if there are no absolute mutational constraints. 
Selective development, if feasible, can bring some of the path 
closer to the landscape peak by means of exogenous plastic 
response. Our findings substantiate several although not all 
intuitions previously given in relation to the role of devel-
opment in evolution (Gould & Lewontin, 1979; Jablonka 
& Lamb, 2014; Laland et al., 2014, 2015; Pigliucci, 2007; 
Waddington, 1959; West-Eberhard, 2003). In particular, 
seemingly disparate development-related factors previously 
suggested to be evolutionarily important (Laland et al., 2014, 
2015)—namely phenotypic plasticity (West-Eberhard, 2003), 
niche construction (Odling-Smee et al., 1996), extra-genetic 
inheritance (Jablonka & Lamb, 2014), and developmental 
bias (Arthur, 2004)—variously alter development, and so the 
absolute genetic constraints and consequently the evolution-
ary outcome. Our analysis offers answers to various major 
questions, namely the origin of diversity, the punctuated fos-
sil record, the paradox of stasis, the rarity of stabilizing selec-
tion, and the origin of negative senescence. Our observations 
entail that an understanding of development is instrumen-
tal for evolutionary understanding: change in development 
alone changes evolutionary outcomes by changing absolute 
socio-genetic constraints (Lz), even if direct (∂w/∂z) or total 
(dw/dz or dw/dy) selection remain constant (Figure 5). 
These observations call for empirical estimation of develop-
mental maps, for instance, via the rapidly developing meth-
ods to estimate dynamic equations from data (Brunton et al., 
2016; Ghadami & Epureanu, 2022, and papers in the special 
issue, Schmidt & Lipson, 2009). Overall, our analysis finds 
that development has major evolutionary consequences.
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