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Abstract7

(1) Hidden Markov models (HMMs) and their extensions are attractive methods for analysing ecological8

data where noisy, multivariate measurements are made of a hidden, ecological process, and where9

this hidden process is represented by a sequence of discrete states. Yet, as these models become10

more complex and challenging to understand, it is important to consider what pitfalls these methods11

have and what opportunities there are for future research to address these pitfalls.12

(2) In this paper, we review �ve lesser known pitfalls one can encounter when using HMMs or their13

extensions to solve ecological problems: (1) violation of the snapshot property in continuous-14

time HMMs; (2) biased inference from hierarchical HMMs when applied to temporally misaligned15

processes; (3) sensitive inference from using random e�ects to partially pool across heterogeneous16

individuals; (4) computational burden when using HMMs to approximate models with continuous17

state spaces; and (5) di�culty linking the hidden process to space or environment.18

(3) This review is for ecologists and ecological statisticians familiar with HMMs, but who may be less19

aware of the problems that arise in more specialised applications. We demonstrate how each pitfall20

arises, by simulation or example, and discuss why this pitfall is important to consider. Along with21
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identifying the problems, we highlight potential research opportunities and o�er ideas that may22

help alleviate these pitfalls.23

(4) Each of the methods we review are solutions to current ecological research problems. We intend24

for this paper to heighten awareness of the pitfalls ecologists may encounter when applying these25

more advanced methods, but we also hope that by highlighting future research opportunities, we26

can inspire ecological statisticians to weaken these pitfalls and provide improved methods.27

Keywords: animal movement, continuous time, hidden Markov model, hierarchical model, population28

ecology, random e�ects, state space models, time series29

1 Introduction30

The statistical methods used in ecology are becoming increasingly complex. What statistical and31

computational pitfalls do these methods have? What future research opportunities are there for these32

methods to be improved? In this paper, we discuss these two questions for a popular class of statistical33

models: hidden Markov models (HMMs; Zucchini et al., 2017).34

HMMs are widely applied in ecology, from individual-level to ecosystem-level modelling (see McClintock35

et al. (2020) for a comprehensive overview of the application of HMMs in ecology). Their intuitive structure36

often corresponds with our conceptual models for ecological systems: there is a hidden process unfolding37

over time from which we obtain noisy, multivariate observations. In their commonest form, HMMs consist38

of two time series (St,Yt), in discrete time, where St is a hidden (unobserved) state that can take one of a39

�nite number of values and Yt is a collection of observed variables whose distribution we assume depends40

on the hidden state St, termed its state-dependent distribution. Crucially, it is assumed the observations41

are independent given the states. Over time, states evolve as a Markov process which is described by a42

transition probability matrix Γt whose (i, j)th entry is the probability that St+1 = j given St = i. Key43
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properties of HMMs are that they commonly deal with observations in regular, discrete time; the state, St,44

switches between a pre-speci�ed �nite number of possible values; and there are computationally e�cient45

algorithms to quickly �t HMMs to large amounts of data.46

The successful application of HMMs in ecology has inspired further use that goes beyond the standard47

application of HMMs, and it is these extended uses that this paper will discuss (Readers unfamiliar with48

HMMs are encouraged to consult McClintock et al. (2020) or Zucchini et al. (2017) for an introduction).49

We consider �ve extended uses of HMMs: (1) HMMs in continuous-time; (2) hierarchical HMMs; (3)50

HMMs with random e�ects; (4) approximating state space models with HMMs; and (5) two-stage analyses51

of decoded states from HMMs. Each extended use adds complexity to what is already a complex statistical52

analysis and so we ask the two questions above: what pitfalls are revealed and what future research53

opportunities are there? We hope this discussion will serve two audiences. For ecologists familiar with54

HMMs, it provides a statistical overview of more advanced uses of HMMs, focusing on what possible55

problems a practitioner may encounter. For statistical ecologists or ecological statisticians, we hope this56

paper serves as a resource to inspire future research, either to weaken the pitfalls we highlight in HMMs57

or to introduce alternative methods to solve these problems.58

2 Continuous-time hidden Markov models59

2.1 Introduction60

A continuous-time HMM has the same dependence structure as a discrete-time HMM, but the underlying61

state St of the system is determined by a continuous-time Markov chain. An N -state continuous-time62

Markov chain is de�ned by an N ×N transition rate matrix,63
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Q =



−q1 q12 · · · q1N

q21 −q2 · · · q2N

...
... . . . ...

qN1 qN2 · · · −qN


where qi =

∑
j 6=i qij for all i. The time spent in each state i follows an exponential distribution64

with mean 1/qi. The non-diagonal elements of the matrix are strictly positive and proportional to the65

transition probabilities out of state i (within each row). For any given time interval of length ∆ > 0, the66

corresponding transition probability matrix over that time interval can be computed from the transition67

rate matrix with a matrix exponential:68

Γ∆ = eQ∆. (1)

The key property of continuous-time HMMs is that they do not require observations made at regular time69

intervals, and the times of observations do not need to match the times of state transitions. A schematic70

representation of the dependence structure of a continuous-time HMM is shown in Fig. 1.71

state

observation

t1 = 1 t2 = 2 t3 = 3 t1 t2 t3 t4

τ1 τ2 τ3

Fig. 1. Comparison of dependence graphs for discrete-time (left) and continuous-time (right) HMMs. In both cases, the distribution of

an observation only depends on the current value of the state. The key di�erence is that, in a continuous-time HMM, the times of state

transitions (τ1, τ2, . . . ) and the times of observation (t1, t2, . . . ) do not need to match, and both may be irregularly spaced.

Continuous-time HMMs have been popular in medical statistics, in particular to study disease progres-72

sion in patients from consultations done at irregular time intervals (e.g., Jackson et al., 2003; Bureau et al.,73
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2003; Liu et al., 2015). However, they remain rare in ecological studies, despite their broad applicability74

to irregular data sets. We posit that they have been underutilised because the mathematical theory75

behind continuous-time Markov processes is less intuitive than its counterpart in discrete time, and76

because of the apparent lack of accessible software to readily apply this method. However, much of the77

inferential framework developed for discrete-time HMMs can also be used in continuous time, based on78

the relationship between transition rates and transition probabilities in Equation (1). This includes the79

forward algorithm and the Viterbi algorithm (Zucchini et al., 2017). In many situations, the implementation80

of a continuous-time HMM is virtually identical to that of a discrete-time HMM, with the only di�erence81

being that the likelihood function is parametrised in terms of transition rates. Yet, it is once you move82

from discrete to continuous time that a central property of HMMs becomes less intuitive: the snapshot83

property.84

2.2 Pitfall: snapshot property violation85

The snapshot property is satis�ed if the value of the observation process at time t only depends on the86

state at that time, rather than on past values of the state (Patterson et al., 2017). In discrete-time, this is a87

well-understood assumption; however, in continuous-time, state transitions could happen at any time (Fig.88

1). Continuous-time HMMs are therefore only suitable when the distribution of each observation does89

not depend on the intermediate sequence of switches that have occurred since the previous observation.90

When this is not the case, the snapshot property may still be a reasonable approximation if observations91

occur at a high temporal resolution relative to the scale of state switching, i.e., if only a small proportion92

of observation intervals contain state switches. We illustrate this below using simulations.93

One context where the snapshot property is usually violated is state-switching models based on94

relatively infrequent observations of animal locations or velocities, because these variables depend on the95
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behaviour of the animal over the whole time interval between observations rather than at the time of96

observation (Blackwell et al., 2016; Patterson et al., 2017; Michelot and Blackwell, 2019). We therefore97

investigated the approximation error arising from using a continuous-time HMM in cases where the98

snapshot property is not satis�ed. As a simple example of a movement model, we considered a 2-state99

Brownian motion process with no drift, where the di�usion parameter was small in state St = 1 (slow100

movement) and large in St = 2 (fast movement). To facilitate interpretation of the simulations, we used101

parameters estimated from a real data set of Antarctic petrels (Thalassoica antarctica) from the Movebank102

data repository (Descamps et al., 2016a,b). The di�usion parameters estimated from the petrel data were103

(σ1, σ2) = (1.2, 14.9) (i.e., mean distance travelled over 1 hour was 1.5km in state 1 and 18.7km in state104

2), and the transition rates were q12 = 0.29, and q21 = 0.33 (i.e., expected dwelling time was 3.4h in state105

1 and 3h in state 2). The details of the petrel analysis and the formulation of the Brownian motion are106

given in Section S1.1 of the Supplementary Material.107

We generated data using those parameters and mimicked the real-life scenario where the behavioural108

switching times are unknown, to evaluate the error caused by violations of the snapshot property. We then109

assessed the performance of the approximation based on bias between true and estimated parameters, and110

on the proportion of correctly-estimated states, for di�erent time intervals of observation. The simulation111

procedure is described in Section S1.2 of the Supplementary Material, and the results are shown in Fig. 2.112

As expected, the approximation error increases with the mean time interval because more switches can113

occur between observations (but each observation is assumed to only depend on the state active at that114

time).115

The performance of the continuous-time HMM methodology in contexts where the snapshot property116

does not hold depends on the time scale at which the hidden states occur (i.e., on the transition rates)117

relative to the time scale of the observations. Our results support an intuitive rule of thumb for determining118
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Fig. 2. Results of continuous-time HMM simulation study. Estimated parameters σ1 (a) and σ2 (b), and state estimate accuracy (c) for

simulated data with di�erent mean time intervals, from 0.25h to 16h. Each box contains 200 replications, for each simulation scenario.

whether or not any given sampling interval may reasonably satisfy the snapshot property:119

∆ ≤ 1

maxi (qi)
, (2)

i.e., the mean time interval of observation should be shorter than the shortest expected dwelling time120

(3h in our example). However, as with all HMMs, performance will also depend on the amount of121

state-dependent observation distribution overlap, serial correlation in the hidden state sequence, and122

other properties of the data (e.g. Zucchini et al., 2017; McClintock, 2021). These results suggest that123

continuous-time HMMs should not be applied naively in ecological studies where the snapshot property124

is known to be violated, in particular when the time intervals of observations are long relative to the time125

scale of the state process.126

2.3 Opportunities127

Our simulation results indicated that it is important to consider whether or not the snapshot property is128

reasonably satis�ed when using continuous-time HMMs for ecological data. Continuous-time HMMs129

have recently been proposed for the analysis of capture-recapture data (Choquet et al., 2017; Mews et al.,130

2020a), where the observation is a categorical variable which indicates whether an animal was captured131

or not at a given capture occasion, and the hidden state is the existential state of that animal (usually132
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“alive” or “dead”). The probability of capturing the animal at time t only depends on whether the animal is133

alive at time t, rather than on whether it was alive over the whole interval since the last capture occasion,134

and the system therefore has the snapshot property. Continuous-time HMMs are a natural framework135

for this type of data because capture occasions are often irregular in time. Similarly, HMMs developed136

for occupancy data could be extended to the continuous-time case, because the observation (“detected”137

or “not detected”) does not depend on the history of the state process, conditional on the current state138

(“present” or “absent”; see Royle and Kéry, 2007; MacKenzie et al., 2018).139

For other types of data where the snapshot property cannot be satis�ed by study design (e.g., by ensuring140

time intervals are su�ciently short relative to the transition rates), there are existing remedies. One141

option is to augment the data with missing observation times (thereby yielding su�ciently short intervals)142

and then integrate over the missing observations during model �tting. This integration is relatively143

straightforward in Bayesian analysis (e.g., Gelman et al., 2013) and maximum likelihood analyses using144

expectation-maximization algorithms (e.g., McLachlan and Krishnan, 2007). When the forward algorithm145

is used to maximize the likelihood directly, multiple imputation methods can account for the missing146

observations (e.g. Rubin, 2004; McClintock, 2017). These approaches are approximate but relatively easy147

to implement. The challenge with exact methods is that the state transition times are unknown. An148

exact but relatively di�cult method to implement is the integrated continuous-time HMM (Blackwell,149

2018), which is a Bayesian approach that utilizes the e�cient forward algorithm to estimate the whole150

state process together with the model parameters. Further development of exact methods that e�ciently151

account for violations of the snapshot property is a promising area of future research.152

While discrete-time HMMs for ecological data have been widely applied and extended in recent decades153

(e.g. McClintock et al., 2020), continuous-time HMMs have received far less attention. This is unfortunate154

because many types of ecological data are collected in continuous time, but are then “shoe-horned” into a155
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discrete-time framework for analysis (e.g. Borchers et al., 2014; McClintock et al., 2014). Although they156

have not yet seen wide use by ecologists, there are several R (R Core Team, 2020) packages that make157

continuous-time HMMs readily applicable to ecological data sets that satisfy the snapshot property. In158

particular, the package msm includes many common observation distributions and allows for covariate159

dependence in the model parameters (Jackson, 2011). More recently, the package momentuHMM has160

been extended to accommodate continuous-time HMMs, with an emphasis on observation distributions161

commonly used in animal movement behaviour models for biotelemetry data (McClintock and Michelot,162

2018). Other options include HMMCont, which is limited to normally-distributed observations (Beketov,163

2014), and JAGS using the msm module (Plummer, 2017). In addition to re�nements that can more164

e�ciently account for violations of the snapshot property, there remain many opportunities to develop165

continuous-time analogues to recent extensions of discrete-time HMMs, including semi-Markov models166

(e.g. Langrock and Zucchini, 2011), hierarchical HMMs (e.g. Fine et al., 1998, see Section 3), random e�ects167

(e.g. Altman, 2007, see Section 4), and covariates that vary in continuous time (e.g. Mews et al., 2020a).168

Such developments will help improve continuous-time HMMs for ecology and facilitate their application169

to a broad range of systems and taxa.170

3 Hierarchical hidden Markov models171

3.1 Introduction172

Hierarchical HMMs (HHMMs; Fine et al., 1998) extend basic HMMs by having multiple processes operate173

at di�erent time scales (Leos-Barajas et al., 2017; Adam et al., 2019). The key property of HHMMs is that174

they model multi-scale data jointly (e.g. hourly step lengths from GPS tags and accelerations recorded175

from accelerometers several times per second), that are driven by multiple hidden Markov chains that176

evolve at di�erent time scales (e.g. behavioural state each hour and within that behavioural substate each177
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second). They are already successfully applied in ecology, e.g., to the dive behaviour of harbour porpoises178

(Leos-Barajas et al., 2017; Sacchi and Swallow, 2021), to horizontal and vertical movements of Atlantic179

cod (Adam et al., 2019) and white sharks (Aquino-Baleytó et al., 2021), and to the kinematic movements180

of northern resident killer whales (Sidrow et al., 2021).181

In their simplest form, HHMMs have two hierarchical hidden processes, each of which operates at182

a di�erent time scale: (1) a coarse-scale (e.g. hours) hidden process St for coarse-scale time t and (2) a183

�ne-scale (e.g. seconds) hidden process St,t∗ for �ne-scale time t∗ within coarse-scale time t. Each of these184

hidden processes has its own transition probability matrix and each can have an associated observation185

process for observations that occur at either coarse-scale or �ne-scale resolution. Essentially, if the186

coarse-scale state process has N states, the �ne-scale observations are modelled by N di�erent �ne-scale187

HMMs. The coarse-scale state that is active determines which �ne-scale HMM models the �ne-scale188

observations. As the �ne-scale observations do not only depend on the �ne-scale state process but also189

on the coarse-scale state process, HHMMs can capture how switches between �ne-scale behaviours190

depend on the coarse-scale behavioural mode. This added �exibility can then better capture how animals191

determine their behaviour in both the short and long term (Adam et al., 2019).192

3.2 Pitfalls193

Not all multi-scale data follow the dependence structure assumed by HHMMs. As described in Section 3.1,194

a central assumption is that the coarse-scale observations and the �ne-scale observations are ultimately195

driven by a coarse-scale state process; the dependence structure is thus determined by the resolution196

of the coarse-scale observations (see Fig. 3 (a) for an illustration of two state processes that satisfy this197

assumption). Consider a scenario with coarse-scale step lengths observed once per hour and �ne-scale198

accelerations observed once per second. HHMMs assume that given the coarse-scale state for that hour,199
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Fig. 3. Illustration of the state processes of an HHMM where the processes are aligned (a) and where this assumption is violated (b). A

typical example for the latter scenario is an animal that performs (moderately) fast movements during the �rst few minutes of an hour that

is, overall, characterised by resting behaviour, or no (slow) movements during an hour that is, overall, characterised by transiting behaviour

(red-shaded areas). Hourly segments are indicated by vertical lines.

the accelerations during that entire hour arise from a single �ne-scale HMM; in the next hour, the coarse-200

scale state may change and so the accelerations may arise from a di�erent HMM. The important insight201

is that the accelerations cannot arise from two di�erent �ne-scale HMMs within the same hour.202

While this assumption is reasonable in many scenarios, it may be questionable in other applications.203

An animal can perform (moderately) fast movements during the �rst few minutes of an hour that is,204

overall, characterised by resting behaviour, or no (slow) movements during the �rst few minutes of an205

hour that is, overall, characterised by transiting behaviour (see the red-shaded areas in Fig. 3 (b) for an206

illustration of such a scenario). Similarly, the �ne-scale observations are not necessarily driven by the207

same coarse-scale state process as the coarse-scale observations. Accelerations can be driven by other208

behaviours than resting and transiting, which drive step lengths and turning angles. In both examples,209

multi-scale data do not follow the dependence structure that is assumed by HHMMs.210

To show the consequences of such a violation of the dependence structure, we conducted a simulation211

experiment (further details on the simulation procedure are provided in Section S2.1 of the Supplementary212

Material). Over 200 replications, we simulated a 2-state coarse-scale process on the hourly scale with213
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1000 observations of step length and turning angle, and a 2-state �ne-scale process with 100 observations214

of acceleration. We then progressively shifted the �ne-scale process by 0, 5, 10, 15, and 20 observations215

and computed the percentage bias in parameter estimates (full descriptions of the parameters are provided216

in Section S2.1 of the Supplementary Material). While we used deterministic shifts, in practice, they can217

also be probabilistically. In that regard, the deterministic shifts used for the simulation experiment can be218

thought of as being exemplary of a probabilistic shifting process with mean equal to the deterministic219

shifts and small variance. For probabilistic shifting processes with large variance, or scenarios where the220

�ne-scale HMMs change probabilistically within a coarse-scale state, we expect that HHMMs often fail to221

infer distinct behavioural modes at the �ne scale, as all �ne-scale behaviours occur within all coarse-scale222

states, i.e., the two processes are less correlated. In such cases, separate HMMs for the two processes223

should be preferred over HHMMs. All models were �t using the R package momentuHMM (McClintock224

and Michelot, 2018).225

Example results are displayed in Fig. 4 (full results are displayed in Section S2.2 of the Supplementary226

Material). Clearly, when the observations were simulated as assumed by the HHMM (i.e., without shifting227

the �ne-scale process), the estimates are unbiased; however, the question is how severe the bias increases228

as the �ne-scale state process is shifted. While the bias remains relatively small for small shifts, it increases229

sharply with shifting of the �ne-scale process. This severe bias is due to the fact that each of the two230

�ne-scale HMMs must accommodate observations within each hour that truly belong to the alternate231

�ne-scale HMM: a restriction imposed by having an hourly coarse-scale process.232

As a consequence, ecological interpretations of the state-dependent distributions can be di�cult to233

elicit (in the above example, for instance, the true within-state variance of the accelerations is much234

smaller than the estimated one, simply because of the temporal regularity of the observations and the235

dependence structure of the HHMM). Furthermore, pitfalls regarding model selection, which are often236
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Fig. 4. Sample of results from the simulation experiment. Displayed is the percentage bias obtained across all 200 replications. The means of

the accelerations under state i associated with �ne-scale HMM k are denoted by µ(k)∗
i (panels (a) and (b)); the corresponding variances are

denoted by σ(k)∗
i (panels (c) and (d)). Full results are displayed in Section S2.2 of the Supplementary Material.

problematic even in basic HMMs (Pohle et al., 2017), can be exacerbated in HHMMs. In this example, it is237

likely a 4-state �ne-scale process will be preferred: two to represent the true process and two to represent238

the unintended overlap of the two processes. This can cause misleading ecological conclusions about239

patterns in animal behaviour.240

3.3 Opportunities and future prospects241

Recent advances in bio-logging technology have led to the ability to track animals for increasingly long242

time periods at increasingly �ne temporal resolutions (Kays et al., 2015; Lennox et al., 2017). As these243

data are often collected by multiple sensors with di�erent sampling frequencies (e.g., GPS tags, dive244

loggers, or accelerometers), HHMMs provide a natural framework to jointly model these data and make245
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inference on the multi-scale nature of animal behaviour depicted by these new types of data. However, as246

demonstrated in Section 3.2, the true data-generating processes underlying these multi-scale data do not247

necessarily follow the assumed dependence structure and thus the model can misconstrue inference on248

the underlying behavioural processes.249

To best exploit the opportunities o�ered by multi-scale data using HHMMs, more �exible dependence250

structures are needed. There are three possible approaches that future research could pursue: (1) estimate251

the optimal resolution of the coarse-scale state process and compute coarse-scale observations on this252

time interval, rather than have this be determined by the sampling protocol; (2) develop models where253

switches between coarse-scale states and �ne-scale HMMs is smoother and not a binary change; or (3)254

allow the time spent in each coarse-scale state to depend on the �ne-scale state-switching dynamics255

and the �ne-scale observations. If such extensions can overcome the problems outlined in this section,256

HHMMs have the opportunity to become a promising tool to draw a complete picture of animal behaviour,257

where an animal’s movement decisions made at various time scales, ranging from seasonal migration258

over diurnal activity to movements of individual body parts, can all be modelled in a joint modelling259

framework.260

4 Random Effects261

4.1 Introduction262

HMMs are often used to make inference on multiple time series of data where each arises from a di�erent263

sampling unit (e.g., movement data from di�erent animals or abundance indices from di�erent populations).264

One aim in such studies is to elicit common patterns that are exhibited across sampling units, for example,265

the relationship between an animal’s movement and an environmental covariate.266
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It is common in this case to assume complete pooling of the parameters of the HMM for ease of267

interpretability, that is, one assumes the state-dependent distributions, the state-switching dynamics, and268

all parameters are the same across all sampling units. Nonetheless, ecological sampling units are often269

heterogeneous and so models that do not account for this variation can be too in�exible and lead to invalid270

inference. There are two alternatives to complete pooling: no pooling, where essentially one �ts a separate271

HMM to each sampling unit and forgoes the ability to infer common patterns statistically, or partial pooling.272

Partial pooling refers to including random e�ects, either continuous-valued or discrete-valued (Zucchini273

et al., 2017; McClintock, 2021), in the observation or state processes to account for the heterogeneity among274

sampling units. McClintock (2021) conducted an in-depth simulation to demonstrate when inclusion of275

random e�ects on the state-switching process would a�ect inference and state prediction. For this reason,276

we focus on when random e�ects are included on the state-dependent distributions instead.277

As an example, consider the garter snake movement data set in Leos-Barajas et al. (2017) where a278

time series of observed distances moved was recorded for multiple snakes. Suppose a priori we expect279

3 underlying states, but know the movements under these states may vary by snake. We can model280

these data as a 3-state HMM where the state-dependent distributions are gamma distributions with mean281

µi,n and standard deviation σi,n for states n = 1, 2, 3 and snakes i = 1, . . . , K . For complete pooling,282

one would assume µ1,n = µ2,n = . . . = µK,n for all n (and similarly for σ). For no pooling, one would283

estimate each mean and standard deviation separately for each snake and state. For partial pooling, one284

could assume a hierarchical model where there is a population-level parameter, e.g. µn for state n, and285

each snake’s individual-level parameter varies around this population-level mean with some standard286

deviation τn for state n, i.e. µk,n ∼ N(µn, τn). This is the simplest way to partially pool across individuals,287

but it can lead to an unexpected pitfall: the added �exibility can over�t to certain individuals and make288

interpretation of the underlying states at the population-level di�cult.289
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4.2 Pitfall290

At present, when including random e�ects in HMMs, two key assumptions are implicitly made (i) the K291

individual time series exhibit the same number of distinct states N and (ii) the ecological interpretation of292

the states is consistent across sampling units. That is, state n across all individuals should be comparable293

and serve as a proxy for the same latent ecological behavior. However, in practice, there is seldom a way to294

know a priori if all individuals exhibited the same number of states during the period of their observation295

or if the states are estimable given the data collected. Random e�ect modelling, as currently developed for296

HMMs, can account for individual heterogeneity, but does not have any theoretical grounding to prevent297

their accommodation of this heterogeneity from deforming interpretation of the population-level states.298

Even when the model assumed is correct, one may be unable to recover the true parameter values (see299

Section S3 of the Supplementary Material).300

This is a key pitfall in HMMs. The di�culties that arise when accounting for individual heterogeneity301

in the state-dependent distributions stem from a lack of estimability and interpretability of the states302

across individuals. Thus, as it stands, partial pooling may not allow researchers to understand individual303

heterogeneity exhibited in the population of interest by simply incorporating random e�ects as this can304

lead to inaccurate inference due to a lack of estimability of the state-dependent parameters.305

For the garter snake movement example, Fig. 5 displays the estimated state-dependent distributions of306

four snakes, along with 95% pointwise credible intervals, for the model with complete pooling and partial307

pooling of the means. Estimated state-dependent distributions for all snakes are provided in Section S3 of308

the Supplementary Material. Across both models, the population level estimates of the state-dependent309

distributions demonstrate three distinct states (more details in Leos-Barajas et al. (2017)), yet there are310

clear di�erences (especially in state 2) indicating the possible importance of accounting for individual311
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variation. However, the individual-speci�c state-dependent distributions in the partial pooling model312

demonstrate crucial di�erences which are challenging to address. For example, for many individuals313

(e.g. snakes 1 and 18) there is a large overlap between state 1 and state 2 distributions, e.g. µk,2, for314

k ∈ {1, . . . , K}, have lower bounds as small as 0.04, compared to a 95% credible interval for µ2 of (0.11,315

0.20). This raises a question: are we capturing true di�erences across states in individuals, or are we316

over-�tting, or are the individual-speci�c parameters not estimable? At present, there is no mechanism in317

random e�ect modelling for HMMs to address this question without simply making more assumptions.318

4.3 Opportunities319

Inclusion of random e�ects in a HMM provides opportunities to learn about individual heterogeneity,320

personality, and preference within a given population of interest. However, we demonstrate that even321

under correct model speci�cation, a HMM with random e�ects in the observation process may not be able322

to recover the true individual-speci�c state-dependent distributions and can lead to biased inferences for323

the state-switching dynamics (see Section S3 of the Supplementary Material). As such, one opportunity is324

to understand under which experimental designs a HMM with random e�ects is estimable.325

In addition to tackling the issue of estimability, another opportunity is to develop methodology that326

better respects the usual aim of using a HMM: to discern individual-speci�c state-dependent distributions327

that are di�erent enough from one another across states and are coherent with the population-level328

inference. In Fig. 5, the densities for state 1 and 2 have more overlap than is present in the population level329

estimates, even when the aim is to capture three distinct states. Enforcing this criteria may be possible330

via selection of informative prior distributions, if inference is conducted in a Bayesian framework, or331

appropriate regularization, constructed through the elicitation of domain expertise. For instance, one332
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Fig. 5. Estimated state-dependent distributions, unweighted, for models with complete pooling (a) and partial pooling (b) of the state-

dependent means, along with 95% pointwise credible intervals.

possibility is to assign an informative prior on the di�erence between µn+1− µn, for n ∈ {1, . . . , N − 1},333

in order to enforce separation between densities.334

If further research into the methodological development of HMMs with random e�ects proves to335

provide robust results for a variety of real-world data collection scenarios, it opens up the opportunity for336
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HMMs to provide insights into individual-speci�c movement dynamics and how distinct animal behaviors337

manifest across a population.338

5 Continuous State Spaces339

In a HMM, the underlying state St takes one of a �nite number of values; however, HMMs can be used340

for approximate inference when St varies over an in�nite number of states (Zucchini et al., 2017). Models341

where St varies in a continuous state space are called “state space models" (SSMs) (Auger-Méthé et al.,342

2021). The connection between state space models, hidden Markov models, and discretisation is well343

known (Kitagawa, 1987; Anderson-Sprecher and Ledolter, 1991). In ecology, the approximate HMMs are344

used to model animal movement (Pedersen et al., 2011), population dynamics (Besbeas and Morgan, 2019),345

distance sampling sightings (Glennie et al., 2021), missing continuous covariates in capture-recapture346

(Langrock and King, 2013), and for moving activity centres in spatial capture-recapture (Glennie et al.,347

2019). Yet, the method remains an obscurity for many ecological statisticians, e.g., Patterson et al. (2017),348

in a review of animal movement modelling, described it as “underutilized".349

In this section, we describe the ideas involved when approximating a SSM with a HMM, the current350

pitfalls of this method, and the opportunities improving this method can bring to ecological applications.351

5.1 Example352

In this section, we provide an example of constructing an approximate HMM for a continuous-time,353

state-switching animal movement SSM. This is to introduce the reader to the important ideas behind this354

method. The idea is to break the continuous hidden state in the SSM into a discrete, binned state for a355

HMM. We use continuous-time, state-switching animal movement with Brownian motion as an example356

(Pedersen et al., 2011), where the data consist of observations of the animal’s location over (possibly357

irregular) time. We assume an animal has two latent behavioural states and the di�usion rate depends358
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on its behaviour. The hidden variable in this SSM is the animal’s location in 2D space coupled with its359

behavioural state. Fig. 6 (Panel b) shows an example where 2D space has been split into a 5 × 2 grid.360

The approximate HMM will have 20 hidden states in this case as each hidden state represents where the361

animal is on the 2D grid and what behaviour the animal is in.362

Once the states are de�ned for the HMM, the transition probability matrix or, if working in continuous363

time, transition rate matrix is de�ned. The transition probabilities must be derived from the parameters364

and state process in the SSM. If one can compute from the SSM the transition probabilities in continuous365

space (as in Mews et al., 2020b) then one can compute the transition probabilities directly in the discrete366

space. However, this is not always possible, e.g., with spatially-varying SSMs or state-switching SSMs.367

Following Pedersen et al. (2011), we can derive a transition rate matrix for the HMM that mimics the368

state process of the SSM using a partial di�erential equation (PDE; e.g. see Okubo and Levin, 2001). There369

are several methods (e.g., �nite di�erencing, �nite volume, or �nite element) to convert this PDE into a370

transition matrix (Quarteroni and Valli, 2008). The parameters of the SSM determine the switching rates371

for the approximating HMM. Fig. 6 (Panel a) shows an example of a derived transition rate matrix for a372

behaviour-switching Brownian motion model on the 5× 2 grid. Note that for most PDE methods the373

derived transition matrix is sparse (i.e. most of its entries are zero).374

Once the transition matrix over the grid is speci�ed, one can �t the approximate HMM in the usual375

way and estimate the parameters of the SSM. Fig. 6 (Panel c) shows two examples of using a derived376

transition rate matrix to update the probability distribution over the 2D-behaviour space. Section S4377

of the Supplementary Material provides a full example of building HMM approximations from PDEs,378

including all code for constructing the necessary matrices and computing the likelihood.379
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Fig. 6. Example of hidden Markov model for state-switching animal movement over 2D (x, y) space: (a) the transition rate matrix derived

from the continuous-space, continuous-time partial di�erential equation model (Pedersen et al., 2011) where non-zero entries are coloured

and some rows and columns are numbered to indicate what grid cell in 2D-behaviour space (Panel b) they refer to, solid lines demarcate

blocks of the matrix corresponding to di�erent behavioural states and dotted lines demarcate blocks corresponding to grid cells with di�erent

y values; (b) the 2D-behaviour space the transition rate matrix corresponds to with 2 behavioural states, each with 5 grid cells in the x

direction and 2 in the y direction, each grid cell is numbered and has colouring to depict the initial distribution of an animal over this

space (here the animal is in grid cell 3 in behaviour 1 with probability 1) and the predicted distribution of the animal’s location after 1 time

unit (greater transparency indicates less probability mass); (c) a numerical example with 1 behavioural state using a higher grid resolution

with an initial distribution of the animal in a single grid cell with probability 1 and the predicted distribution one time unit later under 2D

Brownian motion, see Section S4 of the Supplementary Material for the code to compute this approximation.
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5.2 Pitfalls380

The biggest pitfall to using approximate HMMs to �t SSMs is the curse of dimensionality. For higher381

dimensional hidden processes (e.g. where an animal’s location and velocity are both hidden, a four-382

dimensional space), the number of states in the HMM quickly becomes computationally infeasible. For383

animal movement models, this inhibits the maximum number of behavioural states one can consider and384

precludes the possibility of incorporating directional persistence. For population dynamics, this limits385

the number of groups in age-structured models. Though this curse is unavoidable, future research could386

alleviate it: irregular gridding of the latent space can focus inference on important parts (Pedersen and387

Weng, 2013), only parts of the space can be updated when necessary, parallelised sparse matrix-vector388

products and sparse matrix exponential methods can be more fully exploited (Sidje, 1998; Sherlock, 2021),389

or sparse grids can reduce the number of states without compromising accuracy (Garcke, 2012). Many390

of these proposed ideas for future research have direct analogy with extensions of simulation-based391

methods.392

The second pitfall is encountered when deciding whether to compute the transition probabilities directly393

or by PDE. Both have limitations. The direct approach requires a known solution to the SSM and, for394

large state-spaces, a threshold be set such that transition probabilities below that threshold are taken to be395

zero as computing all pairwise transition probabilities is infeasible. The PDE approach has the advantage396

that the transition rate matrix’s sparsity is �xed no matter the time interval between observations and no397

thresholding is necessary; however, the PDE approach is, at present, limited to SSM with Gaussian state398

processes and requires one to compute a sparse matrix exponential. Future research is needed to expand399

one or both of these approaches to a wider range of SSMs.400
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The �nal pitfall concerns the PDE approach in particular. The transition rate matrix is derived using PDE401

techniques from applied mathematics. These techniques are designed to compute an accurate solution402

to the PDE given the parameters are known. In ecological applications, however, the aim is di�erent:403

to compute the solution many times and to determine the optimal parameters for the PDE given the404

data. Some techniques suitable for the former purpose may be subtly unsuitable for the latter, e.g., when405

dealing with arti�cial di�usion or cross-di�usion (Quarteroni and Valli, 2008). In Section S4.4 of the406

Supplementary Material, we show an example of this problem for directed animal movement. Future407

research should consider the e�ect this may have on inference: most applications of the PDE method in408

ecology have investigated the e�cacy of state prediction and not parameter recovery (Gatti et al., 2021).409

5.3 Opportunities410

This method could have wide application in ecology if future research into its pitfalls led to improved411

computational and statistical implementation. To show this, we consider three areas where this method412

has shown some promise, but could be further exploited: animal movement, population dynamics, and413

encounter modelling.414

For animal movement, our example described one possible approach (Pedersen et al., 2008; Thygesen415

et al., 2009; Pedersen et al., 2011). It continues to be used (Jonsen et al., 2013; Braun et al., 2018; Haase416

et al., 2021), but only in limited contexts (focusing on light-based geolocation). Despite this, the �exibility417

of the HMM approach o�ers solutions to many common modelling needs that arise with animal telemetry:418

non-Gaussian, multivariate observations are easily accommodated, unlike common alternatives based419

on Kalman �ltering (Johnson et al., 2008); continuous-time behaviour-switching can be accounted for420

and inference on where, not just when, behaviours are exhibited is possible (Pedersen et al., 2011), while421

alternatives make it more di�cult to make this connection (see Section 6); barriers and obstacles to422
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movement (e.g., land for marine animals) are trivially accounted for, while this remains di�cult for423

simulation-based techniques; and environmental covariates can drive step-selection in continuous time,424

similar to continuous-time discrete-space models (Hanks et al., 2015), but with �exibility to include425

behaviour-switching and link movement to a continuous-space model.426

For population dynamics, De Valpine and Hastings (2002) introduced a discrete-time HMM approxima-427

tion to general state-space population dynamics models. Besbeas and Morgan (2019) and Besbeas and428

Morgan (2020) generalise the approach and make the connection to HMMs explicit. These approaches429

di�er from the example in Section 5.1: they do not consider continuous-time and compute transition430

probabilities directly rather than via a PDE. The advantage of the HMM approach is the ability to model431

nonlinear dynamics that the standard Kalman �lter cannot accommodate. It also allows for multivariate432

observations on population dynamics to be incorporated into a single model. Note that the state-switching433

models, continuous-time modelling, or sparse matrix algorithms, all present in the animal movement434

applications of this method, are yet to be fully explored for population dynamics models.435

For encounter models, we refer to applications where animal movement is inferred from encounters436

animals have with detectors, e.g., human observers, cameras, or acoustic devices. The approximate HMM437

is easily extended to allow for custom detection models. As with telemetry data, these detections can438

be used to infer individual animal movement (Pedersen and Weng, 2013; Dorazio and Price, 2019). Yet,439

more powerfully, these individual animal movement models can be incorporated into population-level440

models such as distance sampling or spatial capture-recapture (e.g. McClintock et al., 2021). In each of441

these methods, a critical quantity is the probability any given animal in the population could be detected.442

When animals can move, this detection probability is calculated by averaging over all the possible (yet443

unobserved) paths an individual animal could have travelled. This is precisely the quantity the forward444

algorithm for HMMs can be used to compute. This approach has been taken to incorporate animal445
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movement into both distance sampling (Glennie et al., 2021) and spatial capture-recapture (Glennie et al.,446

2019). Furthermore, this methods provides the opportunity to build a general statistical approach to447

encounter modelling (Gurarie and Ovaskainen, 2013).448

6 Spatial analysis and spatial interpretation of decoded states449

Inferring the behavioural state of an animal based on telemetry data is an increasingly popular application450

of HMMs in ecology. Telemetry data are primarily made up of geographical locations, which are inherently451

spatial, and HMMs for such data often characterise animal movement as a time series of steps and turns452

(e.g. Langrock et al., 2012), either on the plane (2D) or in a volume (3D). Inferences from movement HMMs453

can therefore assign behavioural states to spatial locations, which can be visualised in space by plotting454

the predicted state assignments on a map. Under these basic HMMs, the model is blind to the spatial455

mechanisms that give rise to certain behaviours. The spatial locations of the decoded states are therefore456

irrelevant to the model, but highly relevant to the ecological application, and the ecological interpretation457

of decoded states. A common extension to bring spatial mechanism into the model is to incorporate458

spatial covariate e�ects on the transition probabilities or parameters of the state-dependent observation459

distributions (e.g. Morales et al., 2004; Langrock et al., 2012; McClintock et al., 2012; Rivest et al., 2016; Mul460

et al., 2020). This creates an explicit link between space and movement behaviour. The pitfall, however,461

with this approach is that the appropriate structure for a given research question can quickly lead to a462

model that is very complex, has a large number of parameters, and whose results are di�cult to interpret.463

For these reasons, an attractive alternative is a two-stage approach, where a relatively simple HMM is464

�rst used to get state assignments for spatial locations, and post-hoc analyses are conducted to infer the465

relationship between the states and the spatial context in which they occur (e.g. Breed et al., 2009; Nickel466
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et al., 2021). Though this is a simpler approach, there has been little research into how best to build a467

statistically robust and rigorous two-stage model.468

To illustrate the pitfall in using HMMs to make spatial inferences and spatially interpreting the decodes469

states, we present a case study where HMMs were used to make inferences about animal movement from470

tracking data, and secondary spatial analyses were carried out to address speci�c spatial, ecological and471

behavioural questions.472

6.1 Pitfall example: Do hummingbirds use landmarks to remember spatial locations?473

The movement trajectories of fourteen rufous hummingbirds (Selasphorus rufus) were recorded in three-474

dimensions during a �eld experiment (Westcastle Valley, Canadian Rockies, Alberta, Canada, May-July475

2014) to investigate spatial memory and learning. The data (step length, pitch angle, yaw angle) were476

analysed in (Pritchard et al., 2021) using a HMM, with distance to the location where a �ower-shaped477

feeder was previously situated, and the presence or absence of landmarks, as covariates on the transition478

probability matrix.479

The objective of the study was to gain a better understanding of how hummingbirds learn rewarding480

spatial locations, and as such there was an interest in where, with respect to the feeder and landmarks,481

certain movement behaviours occurred, as illustrated in Fig. 7. Knowing if birds were more likely to482

display targeted searching behaviour in particular parts of space would allow inferences about what483

speci�c features were learned and remembered. Hypothesis tests (t-tests) were carried out to determine484

whether inferred searching state locations and stops made by experienced birds (with several prior visits485

to the feeder in the presence of landmarks) were closer to the feeder location than would have been486

expected by chance, compared to naive birds with a single prior visit. While this is a reasonable approach487
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and provides some insight into where behaviours occur, it does not fully utilise the information contained488

in the spatial distribution of states, or account for uncertainty in the state assignments.489

Fig. 7. The spatial distribution of locations assigned the searching state for naive birds, who only had one prior visit to the feeder (asterisk)

before it was removed, and experienced birds who had several prior visits. The black squares mark the location of two arti�cial landmarks

that were present during the experiment, while the feeder had been removed. The colour brightness gives the state probability, to convey

uncertainty in state assignments.

6.2 Opportunities490

This pitfall is at odds with what many, if not most, ecological and conservation science studies want to491

achieve when analysing telemetry data: an understanding of why behaviours occur where they do. In492

addition, the most easily implemented conservation and management interventions are often place-based,493

for example Marine Protected Areas. To inform place-based management decisions with inferences494

from movement HMMs, we must be able to identify both important habitat (e.g. stop-over sites) and495

the behaviour(s) associated with it (e.g. migration). This is key for identifying what parts of space have496

disproportionate functional value to an animal population and deserve further protection or management497

(Lennox et al., 2019). Extending the use of HMMs to better answer these questions or promoting alternative498

methods will have widespread impact on conservation practice, feeding into policy and management499
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decisions about place- and time-based conservation of wildlife, as well as their spatial and temporal500

exposure to risk.501

There are two questions any such proposed extension must address: (1) How can spatial inference502

on behavioural state be made rigorously and robustly? (2) How can uncertainty in state be accounted503

for? For HMMs, future research could consider a more re�ned two-stage approach (e.g. taking predicted504

states, or, repeatedly drawing from the predicted state probabilities from a HMM and then performing505

spatial analyses), implementing carefully thought-through spatio-temporal transition probability matrices506

and/or observation distributions where interpretability permits, or exploiting the existing ability to507

make spatial inference with continuous-space HMMs (as described in Section 5). In the hummingbird508

example, the spatial research question could have instead been addressed within the HMM by including509

an interaction term between level of experience and distance to the �ower on the state transitions. It is510

possible, however, that alternative, explicitly spatial methods, such as continuous-time discrete-space511

models (Hanks et al., 2015) or Langevin di�usion models (Michelot et al., 2019), could be extended to512

multiple behavioural states, thereby yielding state-speci�c utilization distributions that could inform513

behaviour- and place-based management decisions. Such extensions could be embedded within the514

continuous-time HMM framework by formulating the observation distribution accordingly, possibly515

using a discrete-time approximation (e.g. Equation (S1) in Section S1.1 of the Supplementary Material), as516

has been recently done (e.g. momentuHMM version 2.0.0; McClintock and Michelot, 2018).517

7 Conclusion518

Hidden Markov models are a versatile class of models that will continue to be developed for and applied519

to ecological problems. In this review, we have highlighted capabilities of HMMs that could be fruitful for520

ecological applications, but where one must be aware of current statistical and computational pitfalls.521
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HMMs are becoming more complex in structure to better realise the potential of the more heterogeneous,522

multi-scale, multi-dimensional data being collected and the more detailed research questions being asked.523

This can make HMMs a valuable tool to capture a wide variety of observations, to model multiple processes524

acting at di�erence scales, to describe individual and population-level e�ects, and to link state-switching525

to space as well as time. With these developments, however, come greater di�culties in interpreting these526

models, justifying their assumptions, and �tting these models with current computational capabilities. We527

hope this paper heightens awareness of the trouble more complex models can bring and what opportunities528

for future solutions these problems can inspire.529
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