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Abstract: Three heteronuclear bimetallic complexes [Cu(MeOH)(L)Ln(NO3)3] (1-Ce; Ln = Ce, 1-Pr;
Ln = Pr, and 1-Nd; Ln = Nd) were prepared using H2L (1,3-bis[(3-methoxysalicylidene)amino]-2,2-
dimethylpropane) in methanol, affording the complexes as green crystalline materials. These can be
prepared in a one-pot synthesis from 2,2-dimethylpropan-1,3-diamine, o-vanillin, copper(II) nitrate,
and Ln(III) nitrate (Ln = Ce, Pr, Nd). X-ray crystallography, high-resolution mass spectrometry, and
UV-vis spectroscopy were used to characterize the bimetallic complexes. All three complexes showed
the copper center adopting a five-coordinate square pyramidal geometry and the lanthanoid cation
adopting a ten-coordinate geometry.
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1. Introduction

Heteronuclear complexes containing both 3d- and 4f -metal ions are of wide interest
due to their probable magnetic, electronic, and luminescent properties [1–3], as well as
their uses in metal-organic frameworks and polymers [4,5]. The hexadenatate ligand
1,3-bis[(3-methoxysalicylidene)amino]-2,2-dimethylpropane (H2L) contains two distinct
sites for metal coordination [6]: an internal site with four chelating centers (two N- and
two O- donors) and an outer site with four O- donors. This versatile ligand has been
reported in many coordination complexes, often as mononuclear or dinuclear complexes,
and has shown use in catalysis [7–9]. As a result of the flexibility of the ligand, the outer
coordination site can easily accommodate large f -block cations. Early work on complexes
of L coordinated to both a 3d- and a 4f -metal was focused on gaining an understanding
of the magnetic properties and behavior of 3d-4f complexes, [10–15] but that has been
followed more recently by studies on their uses as single-molecule magnets [16–20] and
photoluminescent [21] properties.

Herein, we report three bimetallic complexes of L, [Cu(MeOH)(L)Ln(NO3)3] (Ln = Ce,
Pr, Nd). The sequential addition of copper(II) nitrate to H2L, followed by either cerium(III),
praseodymium, or neodymium(III) nitrate affords high yields of 1-Ce, 1-Pr, and 1-Nd,
respectively. The slow evaporation of a methanolic solution of each complex leads to the
formation of dark green crystals.

2. Results
2.1. Synthesis and Characterization

The hexadentate ligand H2L can be prepared in a good yield (89%) from the reaction of
2,2-dimethylpropan-1,3-diamine with o-vanillin in methanol at ambient conditions, accord-
ing to the reported method [22] (Scheme 1). The ligand can be isolated and characterized,
or the synthesis of 1-Ce, 1-Pr, and 1-Nd can be completed in a “one-pot” method by the
slow addition of a methanolic solution of copper(II) nitrate, followed by the addition of a
methanolic solution of either cerium(III), praseodymium, or neodymium(III) nitrate around
20 min after the addition of the copper. The solids are isolated as green powders via
filtration. Crystals suitable for single crystal X-ray diffraction are grown from the slow
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evaporation of a saturated solution of 1-Ce, 1-Pr, or 1-Nd in methanol. The compounds
are air- and moisture-stable as solids and show no signs of degradation or aerial oxidation
after several months.
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Scheme 1. Preparation of H2L and bimetallic complexes.

The solution state 1H and 13C DEPTQ NMR spectra of H2L confirm the identity of
the ligand and match well with the known literature data [6,23]. The most deshielded
environment is the phenolic proton at δH 13.87 ppm, followed by the imine proton at δH
8.53 ppm, with the most shielded environments being the two methyl groups on the propyl
chain at δH 0.99 ppm.

The infrared spectra of the bimetallic complexes (1-Ce, 1-Pr, and 1-Nd) confirm the
inclusion of the nitrato ligands bonded to the lanthanoid ion, as they show the promi-
nent wide bands at ca. 1520–1390 cm−1 corresponding to ν(N=O) and νas(NO2). The
νs(NO2) bands between 1060 and 1000 cm−1 are characteristic of the nitrato ligand chelat-
ing in a bidentate mode [24,25]. The C=N stretching vibrations are also observed around
1630–1620 cm−1 in H2L and all three bimetallic complexes. The overlay of the IR spectra
of 1-Ce, 1-Pr, and 1-Nd (Figure S9, see supporting information) shows there is very little
difference between these complexes.

The UV-vis spectrum of H2L shows two strong bands at λmax 326 (π → π*) and
419 (n→ π*) nm, with molar extinction coefficients (ε) of 3461 and 2917 mol dm−3 cm−1,
respectively [8]. The UV-vis spectra of 1-Ce, 1-Pr, and 1-Nd are very similar with only minor
differences in the λmax values of 629, 631, and 633 nm, respectively. These peaks also have
very similar molar extinction coefficients (ε) of ca. 52–54 mol dm−1 cm−1, corresponding to
d→ d transitions. In the spectrum of 1-Nd, sharp bands at 525, 581, 736, 797, and 870 nm
can be identified arising from the weak, Laporte-forbidden, f –f transitions, with the most
intense of these being the 4I9/2 → 4G5/2 transition at 581 nm [26].

The high-resolution mass spectra of 1-Ce, 1-Pr, and 1-Nd show the characteristic
molecular ions expected. The HRMS shows peaks at m/z 694.9838, 695.9863, and 698.9879
corresponding to [CuCe(L)(NO3)2], [CuPr(L)(NO3)2], and [CuNd(L)(NO3)2] fragments,
respectively. These show the isotope pattern expected from the inclusion of Ce, Pr, and Nd
in these complexes.

2.2. X-ray Structures

Crystals of 1-Ce, 1-Pr, and 1-Nd are grown by the slow evaporation of a saturated
solution of the complex in methanol. The three structures show the copper(II) center adopts
a five-coordinate square pyramidal geometry in the inner coordination site of L, with
methanol taking up the axial coordination site. The lanthanoid ion (Ce(III) in 1-Ce, Pr(III)
in 1-Pr, and Nd(III) in 1-Nd) occupies the outer coordination site, adopting a ten-coordinate
geometry, with four M–O bonds to the ligand, and six M–O bonds to the nitrato ligands
(Figure 1). There are minor differences in the structure and packing of 1-Nd; however,
1-Ce and 1-Pr are isostructural. Powder X-ray diffraction (PXRD) data are collected on the
as-prepared samples of all three complexes at ambient temperature. A comparison of these
PXRD patterns to those calculated from the single crystal structures (Figures S1 and S2)
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confirms both the purity of the complexes, and that the structures in the bulk match those
of the crystals.
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placement ellipsoids are set at the 50% probability level. Images of 1-Ce and 1-Pr can be seen
in Figure S26.

In complex 1-Ce, the copper is coordinated by two nitrogen and two phenolic oxygen
donors (Table 1). The methanolic Cu1–O41 bond length is elongated relative to the other Cu–
O bonds at 2.341(2) Å, typical of tetragonal distortions associated with copper(II) ions. The
square pyramidal geometry is slightly distorted (Table 1) due to the constraints imposed
by the ligand. The bond lengths and angles about copper show no significant changes
between 1-Ce and 1-Pr. The Cu–N and Cu–O bond lengths do not change in 1-Nd (Table 1),
although a slightly wider range of angles is seen.

The Ln–O bonds to the phenolate oxygen atoms (O8/O18) are marginally shorter
by around 0.12 Å than the bonds to the methoxy group (O9/O19) (Table 1). The cerium
coordination sphere is completed by three κ2-O-binding nitrato ligands with Ce–O bond
lengths ranging from 2.5511(17) Å to 2.6371(18) Å. In 1-Pr and 1-Nd, there are no significant
changes or deviations in bond lengths or angles when compared to 1-Ce.
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Table 1. Selected bond lengths (Å) and angles (degrees) for compounds 1-Ce, 1-Pr, and 1-Nd.

1-Ce 1-Pr 1-Nd

Cu1–N1 2.0020(19) 2.0039(17) 1.997(2)
Cu1–N5 1.9579(19) 1.9560(17) 1.974(2)
Cu1–O8 1.9534(15) 1.9536(14) 1.9589(17)
Cu1–O18 1.9689(15) 1.9634(14) 1.9639(18)
Cu1–O41 2.3400(17) 2.3404(15) 2.3436(19)
Ln1–O8 2.4313(15) 2.4155(14) 2.4113(18)
Ln1–O9 2.5912(16) 2.5789(14) 2.5391(17)

Ln1–O18 2.4663(15) 2.4520(14) 2.4468(17)
Ln1–O19 2.6243(16) 2.6122(14) 2.5766(19)

Cu1· · ·Ln1 3.5896(4) 3.5747(4) 3.5758(6)
N1–Cu1–N5 96.02(8) 96.14(7) 96.68(9)
O8–Cu1–O18 80.00(6) 79.82(6) 78.67(7)
O8–Ln1–O18 61.96(5) 62.16(5) 61.57(6)
O9–Ln1–O19 148.10(5) 148.06(5) 149.70(6)

The distances between the copper and the lanthanoid atoms are very similar at
3.5896(4), 3.5747(4), and 3.5758(6) Å, for 1-Ce, 1-Pr, and 1-Nd, respectively. This is just out
with the sum of their van der Waals radii (3.4 Å for Cu· · ·Ce, Cu· · ·Pr, and Cu· · ·Nd),
meaning there is little interaction between the two elements [27].

In 1-Ce and 1-Pr, the ligand is slightly more distorted than in 1-Nd, as shown by the
angle between the mean planes of the phenyl rings increasing from 13.96(13)◦ in 1-Nd to
27.87(13)◦ in 1-Ce and 27.37(11)◦ in 1-Pr. There are some significant differences in the long-
range order between the two structure-types observed. The most significant of these is that
the methanol ligand coordinates to the copper at a different orientation, changing the result-
ing hydrogen-bonding pattern. In 1-Ce and 1-Pr, the dominant hydrogen-bonding pattern
is from the hydroxyl of the methanol to one of the nitrato ligands (O41–H41· · ·O33A(-X, -Y,
-Z+1)), forming centrosymmetric dimers with H· · ·O 2.08 Å, and the corresponding O· · ·O
of 2.912(3) and 2.915(2) Å (Figure 2) for 1-Ce and 1-Pr, respectively.
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In contrast, in 1-Nd, while hydrogen bonds again form between the methanol lig-
and and a nitrato ligand (O41–H41· · ·O11A(X-1, Y, Z)), their relative orientations result
in the formation of 1D chains running along the a-axis, with H· · ·O of 2.09 Å and the
corresponding O· · ·O of 2.914(3) Å (Figure 3).
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The packing in 1-Ce also results in 1D chains along the a-axis; however, these arise
from weak CH· · ·O interactions between C16–H16· · ·O13, in contrast to 1-Nd (Figure S20).
There are other weaker CH· · ·O interactions in 1-Ce resulting in the formation of different
dimers in the crystal. One set occurs between C2–H2A· · ·O41, another between C15–
H15C· · ·O12, and a final one between C20–H20· · ·O23 (Figures S21–S23). Identical weak
chain- and dimer-forming interactions can be seen in 1-Pr. However, in 1-Nd, due to
the different orientation of the methanol ligand, all CH· · ·O interactions form dimers.
There are three sets of interactions, and two of these work cooperatively; C13–H13B and
C41–H41B interact jointly with O33, while the other dimer-forming interaction is between
C20–H20· · ·O23 (Figures S24 and S25).

The packing is generally the same in 1-Ce, 1-Pr, and 1-Nd; however, there is a different
combined pattern of interactions resulting in 1-Ce/1-Pr forming a 3D network, with 1-Nd
forming 2D interacting sheets in the ab plane with no significant interactions between them.
This suggests that the dominant factor in the packing of these structures is the geometric
arrangement of packing the molecules together, with different interactions arising from
minor geometric changes, rather than a different set of interactions leading to differences
in packing.

There are twenty complexes of the form [M3d(solvent)(L)M4f (NO3)3] in the Cam-
bridge Structural Database [28]. Of the six complexes where M3d is Cu(II), the f -block
metals present are Gd–Er, and the copper-coordinating solvents are either acetone or
water [10,16,17]. There are also two complexes where the coordinating solvent is methanol,
bound to Co(II) [14], or Fe(II) [13]. None of these complexes show an isostructural unit
cell to those of 1-Ce, 1-Pr, and 1-Nd, although many of them are isostructural with each
other. Most of these complexes show the ligands in a relatively planar arrangement (angles
between the phenyl ring mean planes of 2.99–10.76◦), with the exception of the copper-
aqua complex which has a less-planar ligand (angle between the phenyl ring mean planes
21.48◦) [16], although it is not distorted to the extent seen in 1-Ce and 1-Pr. The dimethyl-
propane group of L takes the expected orientation in these complexes, with the methyl
group on the face opposite the coordinated solvent molecule. The one exception to this is
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the copper-aqua complex, which has them pointing to the same face as the coordinated
water, and then forming a weak intramolecular CH· · ·O interaction. The majority of these
complexes do not show the same patterns of interactions as complexes 1-Ce, 1-Pr, and
1-Nd. With no functionality to form conventional hydrogen bonds, the only interactions
possible for the acetone complexes are weak CH· · ·O interactions, which give rise to 3D
networks. The copper-aqua complex forms both intra- and intermolecular hydrogen bonds,
which give rise to one-dimensional chains running along the b-axis. These are linked into
three dimensions via weak CH· · ·O interactions. The Fe(II)-methanol complex shows
a similar pattern of interactions to the copper-aqua complex; forming one-dimensional
hydrogen-bonded chains along the a-axis, which are linked into a 3D network by weak
CH· · ·O interactions. However, many of these interactions are mediated by additional
non-coordinated methanol solvent molecules. In contrast, the Co(II)-methanol complex
shows hydrogen-bonded dimers similar to those seen in 1-Ce and 1-Pr; however, these are
then linked into 2D sheets in the (1 0 -1) plane by weak CH· · ·O interactions.

3. Materials and Methods
3.1. General Considerations

All synthetic manipulations were performed in air. Each apparatus was dried in an
oven (ca. 110 ◦C) prior to use. Solvents and chemicals were used as provided without
further purification. IR spectra were recorded on a Perkin Elmer Spectrum Two instrument
with DTGS detector and diamond ATR attachment. UV-vis spectra were acquired as
solutions in methanol with a 1 cm path length in the range 850–300 nm using a Shimadzu
spectrophotometer. The HRMS data were acquired from the University of St Andrews
Mass Spectrometry Service. All NMR spectra were recorded using a Bruker Avance II
400 (MHz) spectrometer at 20 ◦C. Assignments of 1H and 13C NMR spectra were made in
conjunction with the appropriate two-dimensional experiments. The 13C NMR spectrum
was recorded using the DEPTQ-135 pulse sequence with broadband proton decoupling.
Tetramethylsilane was used as an external standard (δH, δC 0.00 ppm). Chemical shifts (δ)
are given in parts per million (ppm) relative to the solvent peaks. Coupling constants (J)
are given in Hertz (Hz). Spectra were analyzed using the MestReNova software package.

3.2. Syntheses
3.2.1. Synthesis of H2L

This was prepared using an adapted version of the literature method [22]. A solution
of o-vanillin (2.00 g, 13.2 mmol) in methanol (20 mL) was prepared. To this, a solution
of 2,2-dimethylpropan-1,3-diamine (0.68 g, 6.6 mmol) in methanol (10 mL) was added
dropwise, with continuous stirring over 10 min, forming a bright yellow solution. After
30 min, the volatiles were removed under reduced pressure and the oily liquid left to stand
for 24 h. After this time, solid H2L was isolated as a yellow powder (2.34 g 97%).

The NMR numbering scheme is provided in Figure 4. 1H NMR (400.3 MHz, d6-DMSO)
δH 13.87 (2H, s, H-12), 8.53 (2H, s, H-4), 7.06–7.01 (4H, m, H-8,10), 6.81 (2H, t, 3JHH 7.9 Hz,
H-9), 3.78 (6H, s, H-11), 3.49 (4H, s, H-3), 0.99 (6H, s, H-1). 13C DEPTQ (100.6 MHz, d6-
DMSO) δC 167.3 (s, C-4), 152.2 (s, qC-6), 148.5 (s, qC-7), 123.6 (s, C-10), 118.7 (s, qC-5), 118.2
(s, C-9), 115.2 (s, C-8), 67.1 (s, C-3), 36.2 (s, qC-2), 24.1 (s, C-1). IR: νmax (ATR/cm−1) 3008w
(νC–H), 2959w (νC–H), 2838w (νC–H), 1628s (νC=N), 1470s, 1394m, 1339m, 1248vs (νC–O),
1168m (νC–O), 1078s, 1038s, 974m, 872m, 783s, 741s, 727s, 637m. UV-vis: λmax (MeOH)/nm
(ε dm3 mol–1 cm−1) 326 (3461, π→ π*), 419 (2917, n→ π*).
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3.2.2. One-Pot Synthesis of 1-Ce, 1-Pr, and 1-Nd

A solution of o-vanillin (1.00 g, 6.6 mmol) in methanol (10 mL) was prepared. To
this, a solution of 2,2-dimethylpropan-1,3-diamine (0.34 g, 3.3 mmol) in methanol (5 mL)
was added dropwise, with continuous stirring, over 10 min. Separately, solutions of
copper(II) nitrate trihydrate (0.80 g, 3.3 mmol), cerium(III) nitrate hexahydrate (1.95 g
4.4 mmol) (for 1-Ce), praseodymium(III) nitrate hexahydrate (1.95 g, 4.4 mmol) (for
1-Pr), or neodymium(III) nitrate hexahydrate (1.96 g, 4.4 mmol) (for 1-Nd), were prepared.

After the bright yellow H2L solution had been stirred for 30 min, the blue copper
solution was added dropwise over 10 min, giving a dark green solution. This was allowed
to stir for a further 20 min before either the cerium, praseodymium, or neodymium solution
was added dropwise over 15 min. After stirring for 1 h, the solution was filtered under
a vacuum to afford 1-Ce, 1-Pr, or 1-Nd as a green powder (1-Ce: 1.76 g, 67%; 1-Pr: 1.59 g,
61%; 1-Nd: 1.96 g, 75%).

3.2.3. Analytical Data for 1-Ce

HRMS (ES+): m/z (%) Calcd. for C21H24N4O10CuCe: 694.9843, found: 694.9838
[M–NO3–MeOH] (100). IR: νmax (ATR/cm−1) 3464w, 2954w (νC–H), 1623m (νC=N), 1466s
(νN=O, νNO2), 1292s, 1230s, 1102w, 1063m (νNO2), 1003m, 973m, 933m, 853m, 816m, 778w,
733s, 646m, 619m. UV-vis: λmax (MeOH)/nm (ε dm3 mol−1 cm−1) 629 (52).

3.2.4. Analytical Data for 1-Pr

HRMS (ES+): m/z (%) Calcd. for C21H24N4O10CuPr: 695.9865, found: 695.9863 [M–
NO3–MeOH] (100). IR: νmax (ATR/cm−1) 3469w, 2955w (νC–H), 1623m (νC=N), 1467s (νN=O,
νNO2), 1293s, 1229s, 1102w, 1064m (νNO2), 1000m, 973m, 934m, 853m, 816m, 778w, 734s,
646m, 619m. UV-vis: λmax (MeOH)/nm (ε dm3 mol−1 cm−1) 631 (54).

3.2.5. Analytical Data for 1-Nd

HRMS (ES+): m/z (%) Calcd. for C21H24N4O10CuNd: 698.9866, found: 698.9879
[M–NO3–MeOH] (100). IR: νmax (ATR/cm−1) 3464w, 2954w (νC–H), 1623m (νC=N), 1466s
(νN=O, νNO2), 1292s, 1230s, 1102w, 1063m (νNO2), 1003m, 973m, 933m, 853m, 816m, 778w,
733s, 646m, 619m. UV-vis: λmax (MeOH)/nm (ε dm3 mol−1 cm−1) 633 (53).

3.2.6. Crystallographic Details

Ambient temperature powder X-ray diffraction (PXRD) data were collected on a
PANalytical Empyrean Diffractometer in Bragg-Brentano geometry using Cu Kα1 radiation
(λ = 1.54060 Å). Data were collected in the range of 5◦ to 70◦, with a step size of 0.017◦, and
a time per step of 0.94 s.

Green X-ray quality crystals of 1-Ce, 1-Pr, and 1-Nd were grown from the slow evap-
oration of a saturated solution of the complex in methanol at ambient conditions. X-ray
diffraction data for all three compounds were collected at 173 K using a Rigaku FR-X
Ultrahigh Brilliance Microfocus RA generator/confocal optics with XtaLAB P200 diffrac-
tometer [Mo Kα radiation (λ = 0.71075 Å)]. Intensity data were collected using ω steps
accumulating area detector images spanning at least a hemisphere of reciprocal space.
Data for all compounds analyzed were collected and processed (including correction for
Lorentz, polarization, and absorption) using CrystalClear [29]. Structures were solved
by Patterson methods (PATTY [30]) and refined by full-matrix least-squares against F2
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(SHELXL-2018/3) [31]. Non-hydrogen atoms were refined anisotropically, and hydrogen
atoms were refined using a riding model. All calculations were performed using the Crys-
talStructure interface [32]. Selected crystallographic data are presented in Table S1. CCDC
2224393-2224395 contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/structures.

4. Conclusions

The tetradentate ligand H2L has been used to prepare three novel complexes contain-
ing both a 3d- and 4f -metal (3d = Cu, 4f = Ce, Pr, Nd). The complexes were characterized
by single-crystal X-ray diffraction, UV-vis spectrophotometry, mass spectrometry, and IR
spectroscopy. The copper center adopted a square pyramidal geometry with one molecule
of methanol coordinating. The lanthanoid element adopted a 10-coordinate geometry with
four M–O bonds to H2L, and six M–O bonds to the nitrato ligands.

Supplementary Materials: The following supporting information can be downloaded online. Figures
S1–S2: PXRD patterns of 1-Ce, 1-Pr, 1Nd; Figure S3: 1H NMR spectrum of H2L; Figure S4: 13C DEPTQ
NMR spectrum of H2L; Figures S5–S9: IR spectra of reported compounds; Figures S10–S15: HRMS
spectra of bimetallic complexes; Figures S16–S19: UV-vis spectra of reported compounds; Figures
S20–S26: Additional interactions in the solid-state; Table S1: Selected crystallographic data; Video S1:
Structures 360◦ rotation movie; CIF files of 1-Ce, 1-Pr, and 1-Nd.
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