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I. PLANCKIAN SCATTERING FROM
PEIERLS TO THE PRESENT

A. The Planckian timescale

The timescale

τPl ¼
ℏ

kBT
ð1Þ

has long been known to control the electronic dynamics of the
cuprate strange metal, as probed by optics (Collins et al.,
1989; Orenstein et al., 1990; van der Marel et al., 2003),
photoemission (Valla et al., 1999), and, more recently,
analysis of dc transport data (Legros et al., 2019). This
timescale has also long been associated with quantum
criticality (Chakravarty, Halperin, and Nelson, 1988;
Chakravarty, Halperin, and Nelson, 1989) and known to
bound the validity of a Boltzmann description of transport
(Peierls, 1934b, 1996). It was first termed “Planckian” in the
analysis by Zaanen (2004) of an observed correlation between
the superfluid stiffness and the resistivity at the superconduct-
ing transition temperature in several cuprates (Homes et al.,
2004). The name Planckian references the necessarily quan-
tum-mechanical origin of τPl but also evokes the idea of a
shortest possible timescale, by analogy with the “Planck” time
in quantum gravity. This is the notion that suitably defined
timescales τ should obey the “Planckian bound”

τ ≳ τPl: ð2Þ

A bound of the form of Eq. (2) was previously suggested in
Sec. 2.2 of Sachdev (2011), with τ the phase coherence time in
quantum critical systems. We refer here to fast decay rates

REVIEWS OF MODERN PHYSICS, VOLUME 94, OCTOBER–DECEMBER 2022

0034-6861=2022=94(4)=041002(27) 041002-1 © 2022 American Physical Society

https://orcid.org/0000-0001-8000-4949
https://crossmark.crossref.org/dialog/?doi=10.1103/RevModPhys.94.041002&domain=pdf&date_stamp=2022-11-30
https://doi.org/10.1103/RevModPhys.94.041002
https://doi.org/10.1103/RevModPhys.94.041002
https://doi.org/10.1103/RevModPhys.94.041002
https://doi.org/10.1103/RevModPhys.94.041002


1=τ ≫ 1=τPl as “super-Planckian,” while slow decay rates
1=τ ≪ 1=τPl are “sub-Planckian.”
An important point becomes apparent when one examines

Eq. (2): The finite quasiparticle lifetime due to elastic
scattering from disorder at T ¼ 0, which is responsible for
the residual resistivity of metals, necessarily violates the
Planckian bound because 1=τPl → 0 as T → 0. This super-
Planckian decay rate arises because the single-particle Bloch
states are a broad superposition of the single-particle energy
eigenstates due to explicitly broken lattice translation invari-
ance. This broadening is unrelated to many-body interactions
and suggests that a Planckian bound should apply only to
inelastic dynamics that is capable of redistributing energy
between particles and thermalizing the system. We return to
this point in Sec. II.
In Secs. I.B and I.C we describe two significantly different

mechanisms leading to a Planckian electronic lifetime: quan-
tum criticality and scattering by lattice vibrations. While
quantum criticality has links with Planckian transport below
a system-dependent characteristic temperature, Planckian
transport due to electron-phonon scattering sets in above
one. Even allowing for a low Bloch-Grüneisen temperature
(Hwang and Das Sarma, 2019), phonon scattering cannot
explain observed T-linear scattering down to zero temper-
ature. Therefore, both mechanisms are likely to be present in
unconventional metals (Mousatov and Hartnoll, 2021). See
Fig. 1 for an illustration of this likelihood. If there are indeed
different scattering mechanisms at work, Fig. 1 raises the
question of how these mechanisms manage to seamlessly

“pass the baton” without any feature or regime of additive
scattering. As noted by Bruin et al. (2013), it is tempting to
rationalize this observation by postulating the existence of a
universality that transcends microsopic detail. Such a postu-
late, however, raises at least as many questions as it answers.
In the remainder of this Colloquium we further assess whether
the evidence supports the notion of universal Planckian
behavior and discuss possible origins for it.

B. Planckian scattering and quantum criticality

It is natural to associate the Planckian time with quantum
criticality, as emphasized by Sachdev (2011). Quantum
critical systems exhibit an accumulation of low energy modes
such that there is an emergent scaling symmetry at small
frequencies ω under ω → λω. Because temperature appears in
the partition function as a weighting of states by their energy,
low temperatures must also scale as T → λT. It follows that, in
the absence of other scaling variables such as wave vector,
dimensionless physical observables are scaling functions
Fðℏω=kBTÞ ¼ FðωτPlÞ. If such a function does not have
large or small dimensionless numbers in it, it necessarily
varies over Planckian times. That is, τPl is the characteristic
timescale of a quantum critical system below some character-
istic energy scale where scale invariance emerges. This
expectation is confirmed by explicit computations in models
of quantum critical magnets and superfluids (Sachdev, 2011).
Scaling of observables with ω=T has been reported in several
measurements of strange metals, including photoemission
(Valla et al., 1999; Reber et al., 2019), neutron scattering
(Keimer et al., 1992; Aeppli et al., 1997; Schröder et al.,
2000), and optical conductivity (van der Marel et al., 2003;
Prochaska et al., 2020). These results are suggestive of
quantum criticality at work, as is the widespread conjunction
of strange metallicity with quantum critical points (Sachdev
and Keimer, 2011).
However, there are also some general obstacles that arise in

attempting to deduce Planckian transport as a consequence of
quantum criticality. In metals, low energy fermionic excita-
tions are supported on a nontrivial locus in momentum space
(the Fermi surface), while low energy excitations of the
bosonic order parameter typically are either long wavelength
or supported close to a specific density wave ordering vector.
This kinematic tension causes difficulties for the theoretical
description of these systems and also, as we later see, weakens
the direct imprint of criticality on transport. For recent
discussions on theoretical approaches, including comparison
to Monte Carlo numerics, see Berg et al. (2019) and Klein
et al. (2020). We now discuss two elementary considerations
for transport.
First, long-wavelength critical modes cause only small-

angle scattering of the short-wavelength fermions, and this
scattering does not degrade current efficiently.1 We can
illustrate this phenomenon with a ferromagnetic quantum

FIG. 1. T-linear resistivity from Tc ≈ 7 up to 700 K in
Bi2Sr2CuO6þδ. ARPES measurements of the nodal electrons,
which are believed to control transport, show a feature in their
dispersion due to coupling to a known optical phonon in this
material at around 63 meV (Graf et al., 2008). We indicate the
corresponding temperature scale as ð1=3ÞTph, where T-linear
scattering by this mode is expected to set in. Below this
temperature the resistivity is not due to conventional electron-
phonon scattering by this mode. At temperatures above Tph,
scattering by this phonon mode becomes increasingly elastic, as
further discussed in Sec. III.C. This plot schematically illustrates
that different mechanisms for T-linear resistivity with the same
slope may plausibly be at work in a given unconventional metal.
From Martin et al., 1990.

1Exceptions to this statement may occur if there are sharp
cornerlike features in the Fermi surface, as these allow small changes
in momentum (i.e., going across the corner) to give rise to large
changes in current.
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phase transition in three dimensions. While this critical point
is preempted by a first order transition (Brando et al., 2016),
the “preasymptotic” scaling regime is both under theoretical
control [see Sec. 18 of Sachdev (2011)] and corroborated
experimentally (Smith et al., 2008). The Landau-damped
bosonic order parameter has a z ¼ 3 dynamic scaling
ω ∼ k3. Scattering from this order parameter is seen to lead
to a marginal zero temperature fermionic self-energy
Σ ∼ ω logω. However, the resistivity is ρ ∼ T5=3. A factor
of T duly comes from the inverse quasiparticle lifetime, while
a small-angle factor comes from the momentum exchanged
between the fermion and the boson: ðΔkÞ2 ∼ ω2=3

bos ∼ T2=3.
Quantum criticality, therefore, does not automatically imply
T-linear resistivity. The two-dimensional marginal Fermi
liquid of Varma et al. (1989) has the same electronic self-
energy but evades the small-angle factor in the resistivity by
postulating critical scattering over a temperature-independent
range of momenta. This then leads to T-linear transport. We
discuss Planckian transport in marginal Fermi liquids in more
depth in Sec. III.D. More general critical scenarios may
similarly lead to T-linear transport at intermediate temper-
atures if the momentum transfer to the critical boson becomes
large relative to the scales of the Fermi surface geometry,
again evading small-angle factors. This effect may underpin
the T-linear resistivity reported in numerical studies of
nematic quantum criticality (Lederer et al., 2017).
Second, critical density wave modes only efficiently scatter

“hot spots” on the Fermi surface that are connected by the
ordering vector. It is well known that fermions at the hot spots
will be short-circuited in transport probes by longer lived and
less heavy “cold” fermions that are not efficiently scattered by
the critical mode (Hlubina and Rice, 1995; Rosch, 1999).
Again the resistivity is not necessarily T linear. It may be
possible for the cold fermions to become “lukewarm”
(Hartnoll et al., 2011) through interactions with the hot spot
excitations. In this way the influence of the quantum critical
modes is indirectly felt around the entire Fermi surface. In
particular, a sufficiently strong peak in the density of states at
hot spots can induce marginal Fermi-liquid behavior over the
entire Fermi surface due to cold fermions scattering into the
hot spots (Mousatov, Berg, and Hartnoll, 2020). Finite wave
vector fluctuations have also been argued to influence the
entire Fermi surface (Caprara et al., 2022).
The previous considerations demonstrate that, while there

are clear empirical and theoretical links between quantum
criticality and Planckian timescales, quantum criticality alone
is not sufficient to give Planckian transport. Neither is it
necessary, as we now discuss.

C. Planckian scattering from phonons in conventional metals

Although the modern interest in Planckian scattering was
stimulated by the study of strange metals and often associated
with quantum criticality, it has a far longer history than that, in
a different setting. Peierls noted in 1934 that conventional
metallic elements at room temperature host Planckian elec-
trons (Peierls, 1934b, 1996). We reproduce his numbers in
Table I. Decades later, Devillers (1984) identified Planckian
scattering at room temperature in more than 20 elements and
compounds. The appearance of the Planckian time in both

conventional and unconventional metals was first emphasized
by Bruin et al. (2013).
The Planckian lifetime in these cases arises due to scattering

of electrons by classical phonons. A given phonon mode with
frequency ωk is classical, i.e., macroscopically populated, at
temperatures kBT ≳ ℏωk. Typically, enough phonons are
classical for the resistivity to become T linear above some
fraction of the Bloch-Grüneisen temperature T ≳ ð1=3ÞTBG
(in metals with large Fermi surfaces TBG ≈ TD, the Debye
temperature). It was recognized early on that this “high-
temperature” T-linear scattering rate is rooted in the equi-
partition theorem for classical atomic vibrations. See
Sec. VII.1 of Mott and Jones (1958) for an early discussion
that attributed this observation to a paper by Wien (1913).
Specifically, the strength of scattering of electrons by a
thermally vibrating atom is

jVj2 ∼ hðΔxÞ2i ∼ kBT
K

: ð3Þ

In Eq. (3) Δx is the displacement from equilibrium and K is
the atomic spring constant. The growth of this strength of
scattering is responsible for the increasing resistivity. In three
dimensions Eq. (3) can be interpreted as a geometric cross
section of the vibrating atom.
A more accurate calculation must account for the wave

nature of the electrons and phonons, leading to the well-
known Bloch-Grüneisen theory. From this perspective the
T-linear scattering (3) originates from the large number of
phonon quanta nph ∝ T corresponding to classical atomic
vibrations. For a large Fermi surface with kF ∼ 1=a, with a the
lattice spacing, the inverse electronic lifetime is found to be of
the order of

1

τ
∼

D2

Ka2EF

kBT
ℏ

: ð4Þ

In Eq. (4) D is the deformation potential, Ka2 is the atomic
binding energy, and EF ∼ ℏv⋆FkF is the renormalized Fermi
energy. It is notable that Eq. (4) does not depend on the ion
mass, and, in particular, remains finite if the ion mass is taken
to infinity and all scattering becomes elastic. Because all
lattice energy scales are ultimately rooted in the electronic
dynamics that holds the atoms together, one can crudely
estimate [cf. Sec. 6.6 of Peierls (1996)] that D ∼ Ka2 ∼ EF.
This leads to a Planckian inverse lifetime τ−1 ∼ kBT=ℏ.
An important point here is that, despite the short and

ℏ-dependent lifetime τ ∼ τPl, the mean free path is long:
l ¼ v⋆Fτ ∼ ðaEF=ℏÞℏ=kBT ¼ aEF=kBT ≫ a. This is because
the Fermi velocity is large and has a quantum-mechanical
origin in the Pauli exclusion principle. That is, the electrons
undergo many collisions per unit time because they move
quickly. This is a difference with many unconventional

TABLE I. Planckian elements at room temperature, as estimated in
1934 by Peierls (1934b).

Element Ag Au Cs Cu K Li Mg Na Rb

τPl=τ 0.51 0.76 0.95 0.64 0.51 1.7 0.95 0.70 0.76
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Planckian materials that have short mean free paths and slower
velocities (Bruin et al., 2013).
The previous estimates suggest that parametrically super-

Planckian scattering could in principle arise in this context if
the three energy scales D, Ka2, and EF become significantly
different. For example, the electron-phonon coupling might be
sufficiently strong (or there might be a complicated unit cell
with many atoms or, more generally, a large scattering phase
space) that the effective value of D is large. Alternatively, EF
might be renormalized down to a small value. Indeed, in
conventional superconductors such as Pb and Nb the electron-
phonon coupling is an order of magnitude larger than in the
metals listed in Table I; see Allen (1999). At the highest
temperatures this fact directly translates into super-Planckian
scattering of the electrons. However, as we elaborate on in
Secs. II and III.C, this high-temperature scattering is elastic
(for the electrons) and therefore not subject to a Planckian
bound. At lower temperatures of the order of the Debye scale,
the scattering becomes inelastic. To obtain the physical
electronic lifetime at these temperatures, it is important to
account for the temperature-dependent electronic mass
renormalization; see Sec. III. Because of this renormalization,
while the slope of the T-linear resistivity is constant through
the Debye scale, the physical scattering rate is not. As we
explain in Sec. III.B, the mass renormalization is large when
the coupling is large and tends to restore a Planckian scattering
rate. Using the measured low-temperature renormalized mass
in the Drude formula gives us 1=τ ≈ 3=τPl in Pb and Nb (Bruin
et al., 2013).

D. Planckian times from Drude analyses (and beyond)

Although an analysis of dc transport is far from the most
direct way to access information about Planckian timescales,
as thoroughly discussed in Sec. IV, the field at present is in the
common situation in which more dc transport data exist for
systems of interest than data from other probes, supplying
motivation for its assembly and analysis. In this section we
summarize the results of a body of work that has extracted a
timescale τ using the following Drude formula for the dc
conductivity: σ ¼ ne2τ=m⋆.2 As we explain in Sec. IV.A, this
formula can and must be refined to appropriately average over
the contribution of light and heavy carriers. The essential
point, however, is that to estimate a timescale in this way one

needs to know the ratio of the charge density n to the effective
mass m⋆.
Several classes of materials with T-linear resistivity were

considered by Bruin et al. (2013), who used masses and
densities obtained from low-temperature quantum oscilla-
tions. In addition to some conventional metals discussed
in Sec. I.C, these included the heavy fermion materials
UPt3, CeCoIn5, and CeRu2Si2; the ruthenate Sr3Ru2O7; the
pnictide BaFe2ðP0.3As0.7Þ2; and the organic superconductor
ðTMTSFÞ2PF6. Over the range of temperatures considered,
the resistivity has the form ρ ¼ ρo þ A1T. The constant offset
ρo is often small in these materials and is subtracted out before
the Drude analysis is performed. Such subtractions are
commonly done in the analysis of experimental data and
implicitly make a physical distinction between elastic and
inelastic scattering. As mentioned in Sec. I.A and further
discussed in Sec. II, the Planckian limit is expected to apply
only to inelastic scattering, so this subtraction is well
founded.3 It was found that all of the materials considered
yielded a Planckian timescale from this analysis, as shown in
Table II.
Several of the materials considered by Bruin et al. (2013)

were “bad metals,” with short mean free paths at high
temperature (Emery and Kivelson, 1995). The ubiquity of
the Planckian timescale among bad metals led to the sugges-
tion that a Planckian bound might control the incoherent
dynamics capable of surpassing the Mott-Ioffe-Regel limit
kFl ≳ 1 (Hartnoll, 2015). The relation between the Mott-
Ioffe-Regel and Planckian limits is the topic of Sec. II.
A further example of a widely studied high-temperature bad

metal with T-linear resistivity is VO2 above the metal-
insulator transition (Allen et al., 1993). The lifetime has been
extracted both from the optical conductivity and from dc
Drude analyses (Qazilbash et al., 2006, 2007; Lee et al.,
2017). In the absence of quantum oscillations, masses have
been estimated from both thermopower and optical measure-
ments, while the density was estimated from both the Hall
conductivity and the expected number of conduction elec-
trons. While there was not perfect quantitative agreement

TABLE II. Planckian unconventional metals, as estimated from a
dc Drude analysis by Bruin et al. (2013). The precise compounds are
given in the main text. The same analysis estimated the values in Cu,
Ag, Au, Al, and Pd to be comparable to those quoted in Table I,
while, as noted in Sec. I.C, the values for Nb and Pb are closer to
τPl=τ ≈ 3.

Sr327 Ba122 TMTSF UPt3 Ce115 Ce122

τPl=τ 1.5 2.2 0.9 1.1 1.0 1.1

2The analyses that follow were criticized for using the renormal-
ized mass to extract a timescale from the Drude formula (Sadovskii,
2020, 2021; Varma, 2020). We believe that this criticism is
misplaced. It is a true statement that, with assumptions that are
extensively discussed in Secs. III and IV, the conductivity can be
expressed in terms of the bare mass and the imaginary part of the
single-particle self-energy Σ00. This formal object may be an interest-
ing quantity vis-à-vis Planckian bounds but is different than the
physical scattering rate that sets the timescale over which things
happen to the particle. The physical single-particle lifetime is
determined by the pole of the full fermion Green’s function; see
Eq. (10). To extract this timescale, one must use the renormalized
mass in the Drude formula, as was correctly done in the analyses that
follow.

3A simple subtraction assumes that elastic and inelastic scattering
processes are additive and that the temperature-independent term is
indeed due to disorder. While the validity of this assumption is not
clear a priori in unconventional metals, which may not admit a
quasiparticle description, controlled disordering of cuprates has
shown that Matthiessen’s rule is obeyed in weakly disordered,
T-linear transport regimes (Valles et al., 1989; Walker, Mackenzie,
and Cooper, 1995; Fukuzumi et al., 1996; Rullier-Albenque et al.,
2000; Clayhold et al., 2010).
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between the estimates and the Drude peak was not a simple
Lorentzian, the analyses consistently suggested an inverse
lifetime with τPl=τ of the order of 10, potentially making VO2

the most super-Planckian of analyzed unconventional metals.
In the opposite regime of low temperatures, a Drude

analysis of dc transport in several families of overdoped
cuprates (Bi-2212, Bi-2201, LSCO, Nd-LSCO, PCCO, and
LCCO) was performed by Legros et al. (2019). These
materials all show a resistivity ρ ¼ ρo þ A1T as T → 0, with
a magnetic field suppressing superconductivity. The residual
term ρo is subtracted off, as previously described. In most
cases the carrier masses were estimated from measurements of
the specific heat and densities were obtained from the
expected Luttinger count. The slope of the T-linear resistivity
per CuO2 plane increases when the doping is lowered and is
significantly larger for hole-doped compared to electron-
doped materials. These same trends were seen to occur in
the effective mass such that a Planckian timescale was
obtained from the Drude formula in all cases, as shown in
Table III. An interesting complication that arises in this
analysis is that in some cases the effective mass is logarithmi-
cally temperature dependent over the range of interest. We
further discuss this fact in Secs. III.D and IV.A. Finally,
Legros et al. (2019) noted that because the low-temperature
T-linear term in the resistivity continuously vanishes for
sufficient overdoping (Cooper et al., 2009), as a function
of doping the T-linear lifetime fills out the bounded range
0 ≤ τPl=τ ≲ 1. Planckian scattering is reached for slightly
overdoped samples and does not appear to be exceeded.
Twisted bilayer graphene is a platform for strongly corre-

lated electron dynamics where the carrier density and effective
mass are independently tunable and measurable by quantum
oscillations (Cao et al., 2018; Cao, Fatemi et al., 2018). Strong
T-linear resistivity was observed in the vicinity of the
correlated insulating state at half filling (Polshyn et al.,
2019; Cao et al., 2020). A Drude analysis close to the
“magic” twist angle using densities and masses from quantum
oscillations found values of 1=τ varying over almost an order
of magnitude yet bounded by τPl=τ ≲ 1.6 (Cao et al., 2020).
That work furthermore noted that the observed Planckian
bound in this system becomes more noteworthy when
contextualized by the T-linear resistivity of monolayer gra-
phene, which has a scattering rate that is 2 orders of magnitude
smaller. It has been argued, however, that strong electron-
phonon scattering is expected as the magic angle is
approached (Wu, Hwang, and Das Sarma, 2019) due to EF
becoming small in Eq. (4).

The iron chalcogenide FeSe1−xSx shows T-linear resis-
tivity across its phase diagram above a temperature T1. When
superconductivity is suppressed with a magnetic field, T1

collapses from around 10 K at x ¼ 0 to zero temperature at a
critical xc ≈ 0.16. A Drude analysis of the T-linear
regime, grounded in quantum oscillation data, found a
Planckian lifetime τ ≈ τPl across the entire range 0 ≤ x ≤
0.25 (Licciardello, Buhot et al., 2019).
The previously mentioned Drude analyses each associate a

single timescale to the metal, averaging the transport proper-
ties around the Fermi surface and on different Fermi sheets;
see Sec. IV.A for more details. It is not clear whether this
averaged timescale has any intrinsic meaning; see Haldane
(2018) for a discussion of this point. Perhaps it is best
regarded as an empirical fact that a well-defined analysis
procedure applied to a large range of materials consistently
reveals a Planckian scattering rate. Measurements of angle-
dependent magnetoresistance in principle contain information
about the dependence of the transport lifetime around the
Fermi surface that can be extracted with a Boltzmann analysis
of the resistivity data. This technique has been applied
to cuprates with a T-linear scattering component by Abdel-
Jawad et al. (2006) and Grissonnanche et al. (2021). In
particular, Grissonnanche et al. (2021) reported that close to
the pseudogap critical doping in Nd-LSCO there is an
isotropic Planckian lifetime superimposed on a highly aniso-
tropic elastic scattering rate.
An important aspect of the apparent universality that

emerges from the full set of Drude analyses reviewed in this
section is the range of circumstances in which T-linear
resistivity is observed. In tuned quantum critical systems it
appears at low temperatures, extending below 100 mK in
some cases, while in conventional metals and some cuprates it
is seen up to nearly 1000 K. This is certainly consistent with
the previously mentioned suggestion that the linear power law
and quasiuniversal scattering rate may have some independ-
ence from the microscopic details of the scattering that
causes it.

E. Heat transport and phonons

In addition to potentially scattering electrons, phonons in
unconventional metals are unconventional in their own right,
as noted early on by Allen et al. (1994). Furthermore, the large
Lorenz ratio of cuprates at high temperatures suggests that
phonons play an important role in heat transport in these
materials (Allen et al., 1994; Minami et al., 2003; Yan, Zhou,
and Goodenough, 2004; Matusiak and Wolf, 2005; Xu et al.,
2021). This stands in contrast to standard metals, in which
heat is carried mostly by electrons and is possible partly
because the lower Fermi velocities in correlated systems
reduce the electronic contribution to heat transport. Heat
transport in several cuprates has recently been revisited in
the light of possible Planckian bounds (Zhang, Levenson-Falk
et al., 2017; Zhang, Kountz, Levenson-Falk et al., 2019). The
thermal diffusivity at high temperatures was found to be
Dth ¼ ð1=3Þv2sτ, with τ ≈ 15τPl and vs the speed of sound.
The appearance of the sound speed, as well as the longer
phonon lifetimes, is consistent with a dominant role for
phonons in heat transport. It was estimated that the phonon

TABLE III. Planckian overdoped cuprates as estimated from a dc
Drude analysis of the T → 0 resistivity by Legros et al. (2019).
Bi-2212, Bi-2201, LSCO, Nd-LSCO, PCCO, and LCCO are abbre-
viations for Bi2Sr2CaCu2O8þδ, Bi2Sr2CuO6þδ, La2−xSrxCuO4,
La1.6−xNd0.4SrxCuO4, Pr2−xCexCuO4�δ, and La2−xCexCuO4, re-
spectively. See Table 1 of Legros et al. (2019) for the corresponding
doping for each material.

Bi-2212 Bi-2201 LSCO Nd-LSCO PCCO LCCO

τPl=τ 1.1 1.0 0.9 0.7 0.8 1.2
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mean free path becomes short at high temperatures, mirroring
the bad metallic behavior of the Planckian charge carriers in
the same material. This led to the notion of an incoherent
electron-phonon “soup” controlled by Planckian dissipa-
tion (Zhang, Levenson-Falk et al., 2017; Zhang, Kountz,
Levenson-Falk et al., 2019).
Further supporting the role of phonons, but possibly going

against the necessity of an electron-phonon soup, the behavior
Dth ∼ v2sτPl is also widely seen in crystalline insulators at high
temperatures (Behnia and Kapitulnik, 2019; Zhang, Kountz,
Behnia, and Kapitulnik, 2019; Mousatov and Hartnoll, 2020;
Martelli et al., 2021; Xu et al., 2021). In the insulators heat is
certainly carried by phonons and the T-linear decay rate arises
from lattice anharmonicity. As with the previously discussed
cuprates, most crystalline insulators at high temperatures
have phonons with lifetimes that are longer than τPl by a
factor of 10 or more. Nonetheless, the complex insulator
MgSiO3 (Zhang, Allen et al., 2017), for example, seems to
host genuinely Planckian phonons with short mean free paths.
Thus, not only is a Planckian bound obeyed in all crystalline
insulators for which the analysis has been performed, but these
systems also push up against the bound.
Moving beyond insulators, heavily doped semiconductors

give a conventional setting where phonons dominate
heat transport in the presence of charge carriers. A careful
comparative analysis of thermal diffusivity in cuprates and
heavily doped semiconductors points to the importance of the
electron-phonon interaction in both classes of material and is
consistent with a Planckian electron-phonon contribution to
the high-temperature scattering rate of electrons in cuprates
(Mousatov and Hartnoll, 2021).

F. Parallel with the conjectured viscosity bound

The original discussion of Planckian transport in cuprates
(Zaanen, 2004) drew an implicit parallel with a lower bound
on the shear viscosity over entropy density η=s ≳ ℏ=kB
conjectured in the same year (Kovtun, Son, and Starinets,
2005). This connection was elaborated more explicitly by
Sachdev and Keimer (2011), Bruin et al. (2013), Hartnoll
(2015), and Zaanen et al. (2015), as we now explain. First, the
most substantive evidence for the viscosity bound came from a
holographic computation in a relativistic plasma (Policastro,
Son, and Starinets, 2001) where the coupling strength could
be taken to infinity, but the ratio η=s remained bounded away
from zero. Second, the quark-gluon plasma was measured to
have η=s ∼ ℏ=kB (Song et al., 2011). In relativistic plasmas
the shear viscosity over entropy density ratio controls trans-
verse momentum diffusion according to D⊥ ¼ c2η=sT. Here
c is the speed of light. When the diffusivity is written as
D⊥ ¼ ð1=3Þc2τ, in this context the viscosity bound becomes
the Planckian bound (2).
While many simple nonrelativistic media do obey the η=s

bound (Kovtun, Son, and Starinets, 2005), the transverse
momentum diffusivity in these systems is insteadD⊥ ¼ η=mn,
with mn the mass density. The nonrelativistic momentum
diffusivity η=mn appears to be more universally bounded than
η=s in nonrelativistic systems, for reasons that are unrelated to
Planckian scattering (Trachenko and Brazhkin, 2020;
Trachenko, Brazhkin, and Baggioli, 2020). The possibility

that viscous effects are relevant for strange metal transport
(Zaanen, 2019) is logically distinct from the presence of
Planckian dissipation in such systems and will need to be
investigated by spatially resolved probes. In this Colloquium
we are not suggesting that viscosity and momentum diffusion
per se are relevant to strange metals, but rather that Planckian
dissipation may be an overarching principle leaving its finger-
prints on diverse observables in diverse fields of physics.

II. DISTINCTION BETWEEN PLANCKIAN AND
MOTT-IOFFE-REGEL BOUNDS

To examine the physics of a possible Planckian bound, it is
fruitful to contrast it with the widely discussed Mott-Ioffe-
Regel limit (Gunnarsson, Calandra, and Han, 2003; Hussey,
Takenaka, and Takagi, 2004). The Mott-Ioffe-Regel limit is a
condition for transport in a metal to admit a description in
terms of particlelike electronic excitations. The limit is most
sharply formulated when the quasiparticles undergo elastic
collisions so that the single-particle states have a well-defined
energy. In this case the primary requirement for a semi-
classical Boltzmann description of transport is the ability to
form localized wave packets from superpositions of the
single-particle Bloch states. To obtain an electronic quasipar-
ticle with mean free path l and Fermi wave vector kF, it must
be possible to form superpositions with uncertainties in
position and wave vector Δx ≲ l and Δk≲ kF, respectively.
The uncertainty principle requires l≳ 1=kF, which is one
version of the Mott-Ioffe-Regel limit. Another, weaker,
version of the Mott-Ioffe-Regel limit is that the width of
Bloch states making up the quasiparticle is bounded by the
size of the Brillouin zone (Δk ≲ 1=a), which leads to l ≳ a.
Once Δk ∼ 1=a it is natural for interband transitions to
become important; cf. Chakraborty and Allen (1979).
The Planckian bound is instead intrinsically tied up with

inelastic scattering. This bound was also first discussed as a
condition for the validity of a Boltzmann description of
dynamics (Peierls, 1934b, 1996). Suppose that elastic colli-
sions have been accounted for, leading to long-lived single-
particle energy eigenstates given by superpositions of Bloch
states. One can subsequently introduce interactions that
allow energy to be transferred between these single-particle
states on an inelastic timescale τinel. This scattering leads to a
width ΔE in the single-particle energy. If the scattering rate
1=τinel ≳ kBT=ℏ, then the uncertainty principle implies that
ΔE≳ kBT. That is, the uncertainty in the single-particle
energy is greater than the width of the Fermi-Dirac distribu-
tion, which is inconsistent with drawing the electrons from
that distribution. It follows that a Boltzmann description in
terms of single-particle states requires τinel ≳ τPl. This uncer-
tainty principle perspective on the Planckian bound was more
recently noted by Devillers (1984), while the difference with
the Mott-Ioffe-Regel limit was emphasized by Hartnoll
(2015). Both limits first arise as conditions for the validity
of a Boltzmann description: the Mott-Ioffe-Regel limit con-
cerns the ability to form coherent particles from superposi-
tions of Bloch states, with a spread in wave vector, while the
Planckian limit is about the ability of quasiparticles to retain
their existence in the face of inelastic many-body scattering,
which causes a spread in energy.
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The separation into elastic and inelastic scattering is clearest
when the elastic scattering is a temperature-independent,
additive contribution due to disorder: 1=τ∼1=τelasþ1=τinel.
As mentioned in footnote 3, disorder scattering is observed to
give such an additive contribution to the resistivity in T-linear
transport regimes of weakly disordered cuprates. This pre-
sumably elastic contribution, which is responsible for the
residual resistivity at T ¼ 0, can then be subtracted, as was
done in the Drude analyses discussed in Sec. I.D. This
subtraction is important because the elastic lifetime is not
subject to a Planckian bound. As noted in Sec. I.A, single-
particle Bloch states are not energy eigenstates once lattice
translation invariance is broken and can correspondingly be
short-lived even in noninteracting systems. The residual
resistivity then arises because simple transport observables
interrogate the system in the “wrong” (Bloch, noneigenstate)
single-particle basis. In general, however, it is not possible to
perform such a subtraction in a model-independent way. For
example, in Sec. III.C we recall that scattering from phonons
at high temperatures is elastic with a temperature-dependent
scattering rate. The difficulty with isolating the “inelastic” part
of scattering motivates a more many-body perspective on this
problem that we turn to shortly.
It is well known that the Mott-Ioffe-Regel limit can be

violated in nonsaturating bad metals (Emery and Kivelson,
1995; Gunnarsson, Calandra, and Han, 2003; Hussey,
Takenaka, and Takagi, 2004). This has led to an extensive
effort to characterize transport beyond the Boltzmann para-
digm, without a notion of a mean free path. For example,
Mukerjee, Oganesyan, and Huse (2006) developed a “stat-
istical” description of nonquasiparticle high-temperature
transport, while Lucas (2019) gave a nonquasiparticle per-
spective on the distinction between elastic and inelastic
dynamics. The proposal that we set out to examine in this
Colloquium is that some version of a Planckian bound holds
independently of the existence of well-defined quasiparticles.
An important piece of this proposal is that the inelastic
lifetime of quasiparticles is an avatar of a more basic
many-body timescale: the equilibration time.

A. Equilibration time

In thermal equilibrium much of the complexity of many-
body dynamics is universally subsumed into a small number
of variables, such as the temperature T and charge density n.
The next most universal question one can ask concerns the
approach in time to thermal equilibrium. Given a perturbation
of the thermal state, how quickly can equilibrium be reestab-
lished? More precisely, the interesting question to ask is how
quickly local thermal equilibrium can be reestablished. The
answer to the latter question will define an intrinsic timescale
that does not depend on the size of the system. In this section
we aim to give a self-contained introduction to the key
concepts of equilibration length and local equilibration time.
These can be thought of as generalizations of the notion of
inelastic quasiparticle mean free path and lifetime, respec-
tively. In Sec. II.B we explain that the equilibration length and
time are bounded by basic properties of the thermal state. That
is, they are subject to constraints that transcend any given
description of transport, quasiparticles or no quasiparticles. It

is possible, therefore, that at least some of the Planckian
timescales appearing in electronic transport reflect a potential
Planckian bound on the local equilibration time.
If a many-body system has microscopic interactions that

are local in space, then its thermal state has an “equilibration
length” leq. Physically, leq is the linear size of the smallest
region that is able to maintain thermal equilibrium with
itself. For example, in a quasiparticle system leq will be a
few times the inelastic mean free path. Different regions of
size leq can independently establish different local temper-
atures TðxÞ and densities nðxÞ. The time taken for such a
region to reach local thermal equilibrium will define the
equilibration time τeq.
After τeq the locally thermalized TðxÞ and nðxÞ, which

vary on scales greater than leq, relax to global thermal
equilibrium via diffusion of the heat and charge.4 We
discuss diffusion, including possible bounds on the diffu-
sivity, in Appendix A. Global thermal equilibrium is not
reached until diffusion extends across the entire system
at the long Thouless time τTh ¼ L2=D, with L the spatial
extent of the system and D the diffusivity. In contrast
to the local equilibration time, this is not an intrinsic
timescale. The overall picture is that there are fast, expo-
nential in time processes leading to local thermal equilib-
rium followed by slower power law processes describing the
diffusive approach to global equilibrium.5 The local equili-
bration time τeq characterizes the slowest of the fast

4This is the case insofar as the electronic degrees of freedom form
a closed quantum system. Once the lattice degrees of freedom are
included, there will be linearly dispersing sound modes in addition to
charge diffusion. These will dominate global equilibration at suffi-
ciently long distances. The role of the lattice in global equilibration
raises the question of whether it is consistent to restrict attention to
the electronic subsystem in considering local equilibration. To
address this question, we can ask about the local equilibration of
the combined electron-lattice system. In a conventional Bloch-
Grüneisen description, above the Debye temperature at least, the
exchange of energy between the electronic and lattice subsystems is
the bottleneck for local equilibration of the combined system (Allen,
1987). Consistent with this picture, time-resolved photoemission
experiments in cuprates have suggested that the electronic subsystem
locally equilibrates on a faster timescale than energy is exchanged
with the lattice (Perfetti et al., 2007; Dal Conte et al., 2015; Rameau
et al., 2016; Konstantinova et al., 2018). This fact in turn suggests
that it is indeed consistent for one to consider the equilibration time of
the electronic subsystem, which is viewed as a closed quantum
system. However, even if interactions with the lattice do not transfer
energy out of the electronic subsystem efficiently, they can still (as
discussed in Sec. I.C) produce important collision processes that
strongly degrade electronic single-particle Bloch states. When this
scattering is significant (as in conventional metals), electronic
equilibration must be understood to occur in the presence of these
external processes, which can be viewed as loosely analogous to
disorder scattering.

5However, fluctuations in the late time diffusive dynamics will
mix with the decay of generic local quantities, leading to power law
rather than exponential decay (Chen-Lin, Delacrétaz, and Hartnoll,
2019; Delacretaz, 2020). How to disentangle the fluctuation effects
remains an important open problem.
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processes, the last decay to occur before the dynamics
becomes diffusive.

B. Constraints on equilibration as possible
routes to a Planckian bound

The notion that τeq may be subject to a Planckian bound
is supported by the fact that local equilibration cannot
happen arbitrarily quickly, as interactions are needed to
distribute energy between the various degrees of freedom.
A simple many-body uncertainty principle argument given
in Appendix B.1 constrains how fast a region of size leq
can evolve in terms of the largest local coupling J in a
lattice Hamiltonian with locally bounded energies:

τeq ≳ ℏ
J
: ð5Þ

Equation (5) is a microscopic bound that is weaker than
the Planckian bound at temperatures well below the “band-
width” J. The main point, however, is that the equilibration
rate is fundamentally bounded in this context. Establishing a
Planckian bound would therefore be a question of im-
proving this constraint, rather than starting from scratch.
Furthermore, if T-linear scattering survives up to temper-
atures that are some fraction of the bandwidth, as is seen in
high-temperature quantum Monte Carlo studies of the
Hubbard model (Huang et al., 2019), then Eq. (5) will be
violated once kBT ∼ J unless there is a Planckian bound on
the numerical prefactor of the T-linear scattering. Thus,
Eq. (5) may be a hint of a Planckian bound. Indeed, it is
likely that it will be possible to strengthen the many-body
uncertainty principle argument at low temperatures and to
Hamiltonians that are not locally bounded. For example, the
mathematical origin of the Planckian bound on the Lyapunov
exponent (see Sec. V) has the flavor of a many-body
uncertainty principle. In essence, the proof works by showing
that functions with an “energy width” (formally, a periodicity
in imaginary time) set by the temperature cannot vary on
faster than Planckian timescales (Maldacena, Shenker, and
Stanford, 2016). Further discussions of the role of the
Planckian time in thermal equilibration were given by
Goldstein, Hara, and Tasaki (2015), Nussinov (2020),
Nussinov and Chakrabarty (2021), and Pappalardi, Foini,
and Kurchan (2021).
A distinct fundamental constraint on local equilibration was

articulated by Delacrétaz et al. (2018). This constraint relates
more naturally to leq than to τeq. We correspondingly see that
it leads to a version of the Mott-Ioffe-Regel limit that is
formulated without reference to quasiparticles, potentially
providing insight into the nature of bad metals. The starting
point is that locally thermalized regions of finite size leq will
experience thermal fluctuations. The smaller the region is, the
larger the fluctuations. Intuitively, these fluctuations cannot
become too large if local equilibrium is to be meaningful, and
this leads to a lower bound on leq. Simple estimates given in
Appendix B.2 suggest that for fermions with density n in d
dimensions one must have

nld
eq ≳ 1: ð6Þ

Equation (6) is the intuitive statement that for a region to be
able to self-thermalize it should contain more than one
particle.6

For degenerate fermions n ∼ kdF, and hence Eq. (6) becomes
a version of the Mott-Ioffe-Regel limit kFleq ≳ 1. In bad
metals some length scale l extracted from transport strongly
violates the Mott-Ioffe-Regel limit, while leq must still obey
Eq. (6). It follows that in these cases l ≪ leq. This hierarchy
suggests that the transport length l is not directly related to
equilibrating electronic dynamics in bad metals. In regard to
this point note that measurements of spin (Sommer et al.,
2011; Luciuk et al., 2017; Enss and Thywissen, 2019) and
momentum (Cao et al., 2011; Bohlen et al., 2020) transport in
degenerate Fermi liquids tuned to unitarity using trapped
ultracold atoms do show saturation at the Mott-Ioffe-Regel
limit. However, once the ultracold atoms are placed in a rigid
optical lattice the nonsaturating behavior can arise (Brown
et al., 2019; Xu et al., 2019). This possibly suggests that the
finite bandwidth due to the lattice is an essential ingredient for
producing bad metals. In condensed matter systems, scattering
by lattice vibrations at high temperatures furthermore gives a
natural mechanism to disassociate equilibration and transport
length scales, as discussed in footnote 4 and in Sec. III.C.

III. QUASIPARTICLE LIFETIME IN A METAL

While the equilibration time is a conceptually useful
quantity to have in mind, it has not been directly measured
in condensed matter systems. However, many existing
measurements do reveal characteristic timescales in a metal.
In this section we discuss single-particle electronic dynamics
as probed by angle-resolved photoemission (Damascelli,
Hussain, and Shen, 2003; Sunko, 2019), while Sec. IV
considers transport dynamics. As described in Sec. II, elastic
scattering produces a broadening Δk in wave vector due to
momentum-position uncertainty. An intrinsic broadening Δω
in frequency, in contrast, requires a single-particle energy-time
uncertainty from inelastic many-body equilibration. However,
photoemission and transport probe Bloch states with definite
wave vectors. Owing to the elastic broadening Δk, Bloch
states are a superposition of single-particle eigenstates. For
this reason, these measurements will observe a broadeningΔω
in frequency that is unrelated to many-body equilibration.
Therefore, for the measured electronic timescales to give
reasonable estimates of the equilibration time, elastic scatter-
ing must be negligible (or it must be possible to subtract it
out). Furthermore, the electrons must be able to self-equili-
brate prior to equilibrating with a larger lattice system; see
footnote 4. Once these conditions are met, the unstable state
created by exciting a single electron or an electron-hole pair
will decay by all channels that are available, including (unless

6For conformal field theories arising at bosonic quantum critical
points, the corresponding constraint is sld

eq ≳ 1, with s the entropy
density (Delacrétaz et al., 2018). In a conformal field theory s ∼
ðkBT=ℏcÞd and leq ∼ cτeq, with c the effective speed of light. The
fluctuation bound therefore becomes the Planckian bound τeq ≳
ℏ=kBT in this case, which is consistent with the explicit computations
given by Sachdev (2011).
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excluded by some symmetry) the slowest of the fast processes
that determine the local equilibration time. This fact provides a
link between the Planckian observations summarized in
Sec. I and the potential bounds on dissipation discussed
in Sec. II.
As discussed in Sec. II, single-particle stateswith aPlanckian

lifetime are on the verge of dissolving into an inherently many-
body state that is beyond a Boltzmann-type description of
dynamics. The idea of a Planckian quasiparticle lifetime may
therefore seem to be inconsistent. There are two points to make
here. First, a timescale can still be estimated from the width of
peaks in single-particle spectral functions, regardless of
whether these peaks are the correct starting point to describe
collective processes such as transport. Second, there appear to
be circumstances where a quasiparticle description survives in
T-linear transport regimes. This can occur due to simplifica-
tions in the dynamics (such as the hierarchy between phonon
and electronic energy scales discussed in Sec. III.B) or because
a temperature-dependent effective mass leads to sub-Planckian
decay rates even while the resistivity is T linear (as is the case,
marginally, in the marginal Fermi liquid discussed in
Sec. III.D). In this section, therefore, we characterize quasi-
particle timescales starting with the single-particle electronic
Green’s function. Concise introductions to the aspects of
Green’s functions that we later use were provided by
Damascelli, Hussain, and Shen (2003) and Sunko (2019).
The full electronic retarded Green’s function is

GRðω; kÞ ¼ 1

ω − ϵk − Σðω; kÞ : ð7Þ

In Eq. (7) ϵk is the bare electronic dispersion and Σðω; kÞ is the
self-energy. There are no assumptions going into Eq. (7),
although writing the Green’s function in this form is likely to
be useful only if the self-energy has a simple structure, as in
the case of the quasiparticles discussed shortly. As a counter-
example, in a Luttinger liquid the electronic Green’s function
contains dispersing power law singularites GRðω; kÞ∼
ðω − vkÞδ (Schönhammer, 2004), which are not sensibly put
in the form of Eq. (7). The full Green’s function is, in principle,
directly accessible through angle-resolved photoemission
experiments (Damascelli, Hussain, and Shen, 2003; Sunko,
2019). The self-energy can be split into real and imaginary parts
Σ ¼ Σ0 þ iΣ00 that obey the Kramers-Kronig relation

Σ0ðω; kÞ ¼ P
π

Z
∞

−∞

Σ00ðω0; kÞ
ω0 − ω

dω0: ð8Þ

In Eq. (8) P denotes the principal value of the integral.
At low energies, compared to the underlying bare electronic

energy scales often only the spectral weight close to the Fermi
surface is important. When this is the case, one can expand the
dispersion and self-energy about the Fermi surface to obtain
the following simpler “quasiparticle” Green’s function with a
Lorentzian form:

ϵk ¼ vFk⊥þ��� ;
Σðω;kÞ¼ iΣ00ð0;kFÞþω∂ωΣ0ð0;kFÞþk⊥∇kΣ0ð0;kFÞþ � � � :

ð9Þ

In Eq. (9) k⊥ is a vector orthogonal to the Fermi surface with
magnitude the distance to the Fermi surface, vF is the Fermi
velocity, and kF is the Fermi wave vector. All of these
quantities, in general, can vary around the Fermi surface.
We denote Σo ¼ Σð0; kFÞ in the following. Using the expan-
sion (9) in the Green’s function (7) gives

GRðω; kÞ ¼ Z
ω − v⋆Fk⊥ þ i=τ

; ð10Þ

where

Z¼ 1

1−∂ωΣ0
o
; v⋆F ¼ZðvFþ∇kΣ0

oÞ;
1

τ
¼−ZΣ00

o: ð11Þ

These quantities will also, in general, vary around the Fermi
surface. The assumptions leading to Eq. (10) are that low
energy electronic physics occurs close to a Fermi surface and
that all quantities admit an analytic expansion in small ω and
k⊥ close to the Fermi surface. The latter assumption will be
true at nonzero temperatures. In a quantum critical regime,
however, nonanalytic behavior can develop at relatively low
frequencies ℏω ∼ kBT. This can have important conse-
quences: If the self-energy has a nontrivial frequency depend-
ence over the width 1=τ of the single-particle peak (i.e., the
peak is not a Lorentzian), then it is not possible to deduce an
unambiguous unique lifetime for the quasiparticle.
In Eq. (10) the immediately physical timescale is τ. Upon

Fourier transforming the Green’s function this is seen to be the
time over which a quasiparticle excitation decays. We see in
Eq. (11) that in general this time is not equal to the imaginary
part of the self-energy at the Fermi surface Σ00

o, due to the
factor of the quasiparticle residue Z.
The Kramers-Kronig relation (8) implies that (being careful

when taking the derivative of the principal value P)

1

Z
¼ 1 −

∂Σ0

∂ω

����
ω¼0

¼ 1 −
P
π

Z
∞

−∞

Σ00ðω; kFÞ − Σ00
o

ω2
dω: ð12Þ

Note that Σ00 < 0 in the conventions used. The physical
content of Eq. (12) is that, even while a low-frequency
electron cannot be efficiently scattered by high-frequency
degrees of freedom, these “fast” modes renormalize the
effective medium through which the electron moves. Both
Σ00
o and Z appear in the physical single-particle decay rate 1=τ

in Eq. (11).
In several important circumstances the modes scattering the

electrons have a slower characteristic velocity than the
electrons themselves, resulting in ∇kΣ0

o ≪ vF in Eq. (11).
This is the case for scattering by acoustic phonons because the
sound speed is less than the Fermi velocity. In such cases the
shift by ∇kΣ0

o may be dropped and the Fermi velocity is
simply multiplicatively renormalized by Z. We may then also
identify this factor as the following mass renormalization:

m⋆
m

¼ jvFj
jv⋆Fj

¼ 1

Z
ð∇kΣ0

o ≪ vFÞ. ð13Þ

The expression for 1=τ in Eq. (11) does not depend upon this
additional simplification.
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It is instructive to see how the physical timescale τ relates to
the Planckian bound in two simple and widely discussed
models of T-linear resistivity: electron-phonon systems and
the marginal Fermi liquid. We do this in Secs. III.A–III.E. In
both cases we see that at the lower end of the temperature
range showing T-linear resistivity the physical lifetime auto-
matically obeys the Planckian bound, while at high temper-
atures a Planckian bound on the lifetime requires a bound on
the magnitude of a dimensionless coupling constant that
controls the strength of the microscopic scattering.

A. Electron-phonon interactions revisited

In this section we continue the discussion of electron-
phonon interactions begun in Sec. I.C, now accounting for the
renormalization of the electronic quasiparticle residue due to
the phonons. We just saw in Eq. (11) that consideration of this
effect is important to obtain the physical lifetime of the
electrons and will modify Eq. (4) for 1=τ.
To illustrate the physical points in a simple and explicit

setting, consider the scattering of electrons by an Einstein
phonon at frequency ωph.

7 The imaginary part of the self-
energy is [from Sec. 7.4.2 of Mahan (2000)]

Σ00ðωÞ ¼ πλe-phωph

X
�

�fðω ∓ ωphÞbð�ωphÞ
fðωÞ : ð14Þ

In Eq. (14) λe-ph is a dimensionless effective electron-phonon
coupling incorporating a factor of the density of states at the
Fermi surface; this is essentially the prefactor in Eq. (4). The
factor of π in Eq. (14) gives the conventional normalization
of λe-ph. The functions fðxÞ ¼ 1=ðeℏx=kBT þ 1Þ and bðxÞ ¼
1=ðeℏx=kBT − 1Þ are the Fermi-Dirac and Bose-Einstein
distributions, respectively. The frequencies ω and ωph are
assumed to be small compared to the Fermi energy, and there
is no momentum dependence in the self-energy.
At low temperatures T ≪ Tph (with kBTph ¼ ℏωph) the

function Σ00ðωÞ in Eq. (14) vanishes for jωj < ωph and is
constant outside this range. As temperature is increased the
dip at small ω becomes less pronounced until, at T ≫ Tph, the
function is simply flat; see Fig. 2. This is physically trans-
parent: at low temperatures the electron needs to have
frequency ωph to be able to emit a phonon. At high temper-
atures all electrons are able to do this. The unrenormalized
scattering rate at the Fermi surface following from Eq. (14) is

−Σ00
o ¼ 2πλe-phωphcsch

Tph

T
; ð15Þ

which is T linear for T ≳ ð1=3ÞTph ≡ To, leading to a T-linear
resistivity shown in Fig. 3.

To obtain the physical scattering rate 1=τ, we must multiply
Eq. (15) by the residue Z, which can be computed from Σ00ðωÞ
using the Kramers-Kronig integral (12). The range of the
integral can be taken to infinity when ωph and T are well below
the Fermi energy, because the integral converges at high
frequency. We separately discuss temperatures close to the
lower end of the T-linear regime T ∼ To and high temper-
atures T ≫ To.

B. Planckian bound around the phonon energy scale

At the lower end of the T-linear temperature range
(T ¼ To), the Kramers-Kronig integral gives the physical
inverse lifetime

FIG. 2. Imaginary part of the self-energy (14) due to scattering
by an Einstein phonon, normalized at large frequencies. From
bottom to top, temperatures are T=Tph ¼ 0.1, 0.3, 0.4, 0.5, 0.7, 1,
3. At low temperatures no scattering occurs below the frequency
ωph, while at high temperatures all frequencies are scattered.
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FIG. 3. Inverse quasiparticle lifetime as a function of temper-
ature due to scattering by an Einstein phonon, following from
Eq. (14). The electron-phonon coupling is 2πλe-ph ¼ 5 (top
curve) and 2πλe-ph ¼ 1 (bottom curve). The dashed line shows
the Planckian rate. Inset: corresponding resistivity. The resistivity
is T linear for T ≳ ð1=3ÞTph with a slope proportional to the
coupling. Even with the larger coupling, however, the inverse
lifetime becomes sub-Planckian for T ≲ Tph due to a temper-
ature-dependent mass renormalization.

7The physics is qualitatively similar for dispersive phonons. The
main difference is that T-linear scattering occurs above roughly
ð1=3ÞTBG, where the Bloch-Grüneisen temperature for acoustic
phonons with the sound speed vs is kBTBG ∼ ℏvskF. This can be
lower than the Debye temperature if the Fermi surface is small, such
that kF ≪ 1=a. See Hwang and Das Sarma (2019) for a recent
discussion.
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1

τðToÞ
≈
0.63λe-phωph

1þ 2.3λe-ph
≤ 0.81

kBTo

ℏ
∼

1

τPlðToÞ
: ð16Þ

The numerical factors in Eq. (16) are obtained using the
illustrative Einstein phonon expression (14) and should not be
quantitatively compared to experiment. The important point is
that the physical lifetime of electrons scattering from phonons
is Planckian bounded at the lower end of the temperature
range showing T-linear scattering (and indeed for all
T ≲ Tph). Equation (16) shows that, at these temperatures,
the possible hierarchies of energy scales discussed in Sec. I.C
that would lead to a large λe-ph do not in fact lead to super-
Planckian decay rates. Many conventional metals have 2πλe-ph
of order 1 and therefore do not probe this effect. However, as
noted in Sec. I.C, conventional superconductors such as Pb
and Nb have a bare 2πλe-ph that is an order of magnitude larger
(Allen, 1999). As suggested by Eq. (16), significant low-
temperature mass renormalization in these cases ensures that
the physical lifetime at T ≲ Tph is nonetheless within an order
1 numerical factor of the Planckian time (Bruin et al., 2013).
In Sec. II we explained that Planckian single-particle

lifetimes suggest a breakdown of the Boltzmann description
of dynamics, raising the question of whether the previously
mentioned simple scattering estimate of a Planckian lifetime is
self-consistent. Furthermore, if λe-ph becomes too large, then
higher order scattering processes may be important. Prange
and Kadanoff (1964) argued that the standard Boltzmann
transport equations apply to electronic excitations that have
been strongly broadened by phonon scattering. Their argu-
ments were based on the hierarchy of energy scales Tph ≪ TF,
which means that while characteristic phonon wave vectors
are comparable to electronic ones, phonon energies are much
smaller. This suggests several simplifying approximations,
first noted by Migdal (1958), including the fact that the
electron self-energy depends more strongly on energy
(where it varies on the scale Tph) than on momentum (where
it varies over lattice scales). The Migdal approximation has,
however, recently been shown to already give qualitatively
incorrect results at relatively small values of the electron-
phonon coupling in the context of Migdal-Eliashberg theory
(Esterlis et al., 2018; Chubukov et al., 2020). The missing
physical ingredient is the tendency toward polaron formation
at large coupling. Electron-phonon transport theory in this
regime (T ∼ Tph with 2πλe-ph ∼ 1) should be revisited in the
light of those results. Recent works have studied Planckian
transport by polarons (Mishchenko et al., 2019; Zhou and
Bernardi, 2019).

C. Emergent elastic scattering at high temperatures

At high temperatures (T ≫ Tph), there are two important
differences from the previous discussion. First, phonons do
not efficiently renormalize the quasiparticle residue. This is
because the phonon frequency, bounded above by ωph, is not
fast enough to renormalize the medium experienced by the hot
electrons at these temperatures. Mathematically, from the
Kramers-Kronig relation it is found that at temperatures T ≫
Tph the correction to 1=Z due to phonons vanishes as 1=T2.
The physical decay rate is then simply the bare one

1

τ

����
T≫Tph

≈ −Σ00
o ≈ 2πλe-ph

kBT
ℏ

: ð17Þ

A Planckian bound on the physical lifetime at these higher
temperatures would then require the coupling itself to be
bounded: 2πλe-ph ≲ 1. We have already noted that this bound
can be somewhat violated, even while it is saturated by many
conventional metals. Second, the decay of single-particle
Bloch states due to phonon scattering, however, is not in
fact subject to a Planckian bound in this high-temperature
regime, as we now explain. It follows that λe-ph need not be
bounded, at least not for this reason.8 The argument that we
give essentially follows Peierls [see Peierls (1934a) or Sec. 6.8
of Peierls (1996)], who attributed it to Landau.
At sufficiently high temperatures scattering by phonons is

approximately elastic, in the sense that the highly energetic
electrons do not lose a significant fraction of their energy in
emitting or absorbing a phonon with energy ℏωph. Thus, the
phonons effectively create a static disordered background
potential for the electrons. Electronic motion can be described
in terms of the single-particle eigenstates for motion in this
effective potential, which are superpositions of Bloch states.
This superposition fully accounts for the elastic part of the
scattering. The remaining inelastic part will then cause
interactions between these single-particle states. However,
when the scattering is predominantly elastic, the energy spread
in the single-particle states induced by the inelastic many-
body interactions will be small and, in particular, less than the
width of the Fermi-Dirac distribution. As for the elastic
disorder scattering discussed in Sec. II, the only constraint
for a Boltzmann description is the ability to form coherent
wave packets. There is no requirement for a Planckian bound
and, indeed, a controlled large-N model of electron-phonon
interactions with transport lifetimes violating the Planckian
bound in such a regime was constructed by Werman and
Berg (2016).
Figure 3 illustrates both the intermediate- and high-temper-

ature regimes discussed. The resistivity is T linear for T ≳
ð1=3ÞTph and is insensitive to the increasingly elastic nature of
the scattering; cf. Fig. 1. This is because, as we comment in
Sec. IV, the renormalization of the effective mass, and hence
the factor of ð1þ 2.3λe-phÞ−1 in Eq. (16), cancels from the
resistivity. The physical quasiparticle lifetime is, however,
sensitive to mass renormalization. When the electron-phonon
coupling is large, the high-temperature elastic scattering in
Eq. (17) can be super-Planckian, but mass renormalization

8However, the electron-phonon coupling controls the equilibration
rate of the combined electronic and lattice system when the
bottleneck for equilibration is the exchange of energy between the
two subsystems (Allen, 1987). In these circumstances a Planckian
bound on the full equilibration time will upper bound λe-ph, as noted
by Abrikosov (1988). Furthermore, it was recently shown that
bipolaron formation prevents metallic transport with a large elec-
tron-phonon coupling (Murthy et al., 2021). Finally, it may also be
that large values of the electron-phonon coupling are excluded for
other reasons, such as “quantum engineering” constraints on the
stability of the crystal that are extrinsic to the electron-phonon
dynamics.
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drives the scattering rate toward or below the Planckian bound
in the inelastic regime T ≲ Tph, as we saw in Eq. (16).

D. Quasiparticle lifetime in a marginal Fermi liquid

The marginal Fermi liquid (MFL) was originally postulated
as a phenomenological description of the cuprates (Varma
et al., 1989). However, it has now been shown to result
from a number of explicit microscopic models and, as later
described, its predicted relationship between T-linear resis-
tivity and logarithmic electronic heat capacity has been widely
observed. It has the self-energy

Σ00ðωÞ ¼ −λmaxðjωj; kBT=ℏÞ: ð18Þ

In Eq. (18) λ is again a dimensionless coupling constant. The
self-energy has no strong dependence on momentum, a feature
that the MFL shares with the case of scattering by phonons
that we just discussed. We recalled in Sec. I.B that a MFL can
be obtained by scattering fermions from a critical bosonic
mode with low energy spectral weight spread over a range of
momenta, avoiding small-angle suppression of the scattering
in the transport lifetime.
The form of Eq. (18) is assumed to hold over the range

0 ≤ jωj < ω⋆ for some cutoff frequency ω⋆. The correspond-
ing cutoff temperature is T⋆ ¼ ℏω⋆=kB, with T-linear resis-
tivity found below the temperature T⋆. As emphasized in
Sec. I.C, this stands in contrast to the case of scattering by
phonons. Using Eq. (18) in the Kramers-Kronig integral (12)
implies that at temperatures well below the cutoff

1

Z

����
T≪T⋆

¼ 1þ 2λ

π
log

T⋆
T

þ � � � : ð19Þ

The ellipsis refers to nonuniversal terms, coming from
frequencies around or above the cutoff, that do shift the
mass but are small compared to the singular term shown when
T ≪ T⋆. As further discussed in Sec. III.E, the residue
[Eq. (19)] implies a logarithmic enhancement of the specific
heat coefficient c=T at low temperatures. It is indeed the case

that in many quantum critical metals a low-temperature
T-linear resistivity is observed to coexist with a logarithmic
specific heat. An illustrative example is shown in Fig. 4. Other
examples include the ruthenate Sr3Ru2O7 (Rost et al., 2011),
the cuprates Eu-LSCO and Nd-LSCO (Daou et al., 2009;
Michon et al., 2019), and several heavy fermion materials
(Löhneysen et al., 1994; Trovarelli et al., 2000; Bianchi et al.,
2003), although the analysis of these cuprates and ruthenate
are complicated by nearby van Hove–like features in the band
structure that can also logarithmically enhance the specific
heat. In such quantum critical phase diagrams, detuning
from the critical point gaps the bosonic mode and hence
introduces a lower cutoff Δ on the range of frequencies and
temperatures over which the MFL form (18) holds. At the
critical point Δ → 0.
From Eq. (18) at ω ¼ 0 and Eq. (19), the physical life-

time (11) is

1

τ

����
T≪T⋆

¼ λ

1þ ð2λ=πÞ logðT⋆=TÞ
kBT
ℏ

≤
1.57

logðT⋆=TÞ
kBT
ℏ

:

ð20Þ

Therefore, the physical decay rate of a MFL is Planckian
bounded; in fact it obeys a logarithmically stronger bound at
low temperatures.9 The fact that the physical scattering rate is
driven logarithmically small relative to the Planckian rate at
low temperatures should facilitate a Boltzmann description of
transport. A Planckian rate (up to a logarithm) is achieved
when the singular correction dominates Z: at sufficiently low
temperatures or for large λ. This may be a plausible origin for
several of the observed Planckian scattering rates in strange
metals, as further discussed in Sec. IV. We also recall in
Sec. IV that the residue Z does not appear in the resistivity,
which therefore remains T linear with no logarithmic

CeRh6Ge4

FIG. 4. T-linear resistivity and logarithmically enhanced specific heat upon tuning the ferromagnetic heavy fermion CeRh6Ge4 to a
quantum critical point (Shen et al., 2020). Left panel: n represented as the logarithmic derivative of the resistivity (i.e., n ¼ 1 is T linear),
given as a function of pressure and temperature. Right panel: the resistivity and specific heat as a function of temperature at the critical
pressure.

9However, if Σ00 ¼ −λmaxðjωj; αkBT=ℏÞ, then the dimensionless
number αwill be multiplied by the physical decay rate (20). In at least
one microscopic realization of a MFL (Mousatov, Berg, and Hartnoll,
2020), α ∼ 1.
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correction. The decay rate (20) together with the correspond-
ing resistivity is shown in Fig. 5.
As temperatures are increased to T⋆, the scattering rate (20)

increases relative to the Planckian rate. That is, τPl=τ increases
with temperature. In terms of a Planckian bound, the more
dangerous regime is at high temperatures. This fact is
illustrated in Fig. 5. If Eq. (20) is extrapolated to estimate
the value at the cutoff temperature T⋆, the inverse lifetime will
be roughly the bare scattering rate

1

τðT⋆Þ
≈ −Σ00

o ¼ λ
kBT
ℏ

: ð21Þ

For Eq. (21) to obey a Planckian bound, the coupling itself
must be bounded: λ≲ 1.10 Because a MFL has, presumably, a
purely electronic origin, it is plausible that the coupling is
indeed subject to a many-body constraint. In Sec. III.E we
outline a possible (and to our knowledge new) entropic
argument for such a bound on the coupling.

E. Entropic scattering bound in a marginal Fermi liquid

We have recently realized that if interactions are too strong
over a wide temperature range, they lead to an accumulation of

entropy that is inconsistent with the microscopic Hilbert space
of the system. This will be the case insofar as the electronic
dynamics is captured by a lattice model with a finite “on-site”
Hilbert space dimension, such as the Hubbard model. The
strength of scattering, as measured by the imaginary part of
the self-energy, is related via the Kramers-Kronig relation to
the renormalized residue Z. When the momentum dependence
of the self-energy can be neglected, this quantity in turn
controls the renormalization of the Fermi velocity, and hence
the density of states at the Fermi surface N⋆ð0Þ and thereby
the specific heat c. As an estimate,

c
T
∼ k2BN⋆ð0Þ ∼

k2Bk
d−1
F

ℏv⋆F
∝

1

Z
: ð22Þ

In Eq. (22) d is the number of spatial dimensions. In particular,
according to the Kramers-Kronig relation (12), when the
scattering is large the specific heat also becomes large.
The integral of the specific heat up to any finite cutoff T⋆ is

bounded by the infinite temperature entropy density

Z
T⋆

0

cðTÞ
T

dT ≤
kB logD

ad
: ð23Þ

In Eq. (23) D is the dimension of the local on-site Hilbert
space (D ¼ 4 if the states at any given site are no particle,
spin-up, spin-down, and two particles as in the Hubbard
model) and ad denotes the volume of a lattice cell in d-
dimensional real space.
The previous comments are general; in the remainder of this

section we specialize to the case where a marginal Fermi
liquid arises in such a lattice model below the temperature T⋆.
A MFL can be thought of as the minimal possible disruption
to Fermi-liquid theory. In particular, as we previously dis-
cussed, the MFL quasiparticle specific heat to be used in
Eq. (23) deviates only logarithmically from the Sommerfeld

FIG. 5. Left panel: MFL decay rate (20) as a function of temperature for λ ¼ 0.3, 1, 3 (bottom to top). The dashed line shows the
Planckian rate. At T ≪ T⋆ the decay rate is sub-Planckian, but for a large coupling λ the Planckian limit can be surpassed as temperature
is increased. Inset: corresponding T-linear resistivity with a slope proportional to λ. Right panel: temperature evolution of 1=τ (dotted
line), m⋆ ∝ 1=Z (dashed line), and ρ ∝ m⋆=τ (solid line) for λ ¼ 3.

10The description in terms of the original electronic quasiparticles
may break down at these temperatures once λ becomes large. This
allows an alternative possibility that, as occurs in strong-weak
coupling dualities, a different (“dual”) slowly thermalizing descrip-
tion will emerge at large λ in terms of new collective variables.
Dualities are a clear instance where higher order processes beyond
simple scattering are important for understanding the reorganization
of degrees of freedom and the corresponding fundamental constraints
on the coupling constants. Furthermore, even without the emergence
of dual quasiparticle degrees of freedom, higher order processes may
lead to a saturation of the scattering cross section, as occurs in the
low-T scattering of a unitary Fermi gas (Enss and Thywissen, 2019).
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behavior. This follows from the logarithmic form (19) of the
residue for T < T⋆. We neglect here a possible additional
contribution to the specific heat from the emergent collective
bosonic mode responsible for the MFL scattering. Because
such a contribution would “eat up” part of the microscopic
entropy, including it would only strengthen the bound that
we obtain on the quasiparticle specific heat. Stronger non-
Fermi-liquid behavior can be expected to lead to stronger
divergences of c=T at low temperatures, and hence poten-
tially a stronger bound. To our knowledge this has not been
observed.
The logarithmic temperature dependence of c=T in a MFL

does not make an important difference to the integrated
specific heat. The main point is that if the MFL coupling λ
becomes large, then the quasiparticle specific heat c ∝ λ. With
a large Fermi surface in two dimensions (i.e., setting
kF ∼ 1=a), the bound (23) is seen to imply that

λ≲ TF

T⋆
: ð24Þ

In Eq. (24) TF ∼ ℏvFkF=kB is the bare Fermi temperature. If
the MFL behavior extends to this scale such that T⋆ ∼ TF,
then the bound requires λ ≲ 1. As just discussed, this is the
condition for the MFL to obey the Planckian bound at high
temperatures. Super-Planckian scattering is allowed by this
argument if the temperature range of strong scattering is
significantly reduced such that T⋆ ≪ TF.

11 From this point of
view, Eq. (24) can also be read as an upper bound on T⋆
given λ.
The entropic bound just described becomes weak in large-

N theories of the type discussed in Sec. V. Such models have
many degrees of freedom per site, so D ∼ N in Eq. (23).
These models are effective theories where each site represents
a coarse graining of many microscopic sites. Nonetheless,
these effective theories miss microscopic entropy constraints
of the kind that we have described. This fact may deserve
further consideration. The previously presented entropic
argument is also more difficult to apply to the electron-
phonon problem. The phonon entropy diverges logarithmi-
cally at high temperatures and at intermediate temperatures
may not be separable from the electronic entropy, especially
if the electron-phonon coupling is large. However, the general
point that causality relates the real and imaginary parts of the
self-energy opens the way, potentially, to other versions of
entropy-driven bounds, something that we believe merits
future attention.

IV. TRANSPORT LIFETIMES

Although the quasiparticle lifetime is in principle accessi-
ble from analysis of angle-resolved photoemission spectra
(Damascelli, Hussain, and Shen, 2003; Sunko, 2019),

photoemission experiments are restricted for practical reasons
to a subset of the systems in which Planckian dissipation has
been reported. As shown in Sec. I.D, extensive experimental
data instead come from transport measurements, particularly
those of dc transport, providing motivation for a more detailed
discussion of transport lifetimes.
Transport is concerned with the dynamics of conserved

densities and currents. We focus here on electrical transport,
for which the basic object is the dynamical conductivity σðωÞ,
which can be directly measured by optical experiments (Basov
et al., 2011). The ω → 0 limit is also accessed by dc transport
measurements. In this section we consider the differences
between transport and quasiparticle lifetimes. It is important to
be aware of the potential pitfalls of associating one too naively
with the other.
Shining light onto a metal excites electron-hole pairs that

will then dissipate. The conductivity is therefore a two-particle
Green’s function. The dissipation of an electron-hole pair is
not, in general, reducible to that of the electron and the hole
separately. For example, the electron and hole can interact via
phonon exchange. The extent to which two-particle dynamics
is not reducible to one-particle dynamics is captured by vertex
corrections. The full dissipative dynamical conductivity can
be written as

Re σijðωÞ ¼
4e2

ℏ

Z
ddk
ð2πÞd vFi

Z
dΩ
π

Γjðk;Ω;Ωþ ωÞAðk;ΩÞ

× Aðk;Ωþ ωÞ fðΩÞ − fðΩþ ωÞ
ω

: ð25Þ

The spectral weight Aðk;ΩÞ ¼ ImGRðk;ΩÞ, using the full
Green’s function (7). The electron and hole have a relative
momentum 2k, a relative energy 2Ω, and a net energy ω.
Equation (25) is somewhat schematic; a more detailed
description of the structure of the vertex function Γjðk;Ω;Ωþ
ωÞ can be found in Secs. 8.1.2 and 8.4.2 of Mahan (2000). The
bare Fermi velocity vF appears explicitly in Eq. (25) from the
microscopic definition of the current operator. The vertex
function is seen to give an additional k- and Ω-dependent
weighting of the dissipative channels available to the electron-
hole pair, amounting to a quantum distribution function for
current-carrying electron-hole pairs.
In general the dynamical conductivity σðωÞ is complicated

and there is not a unique timescale that can be extracted. We
now describe assumptions that lead to a simpleminded Drude
peak whose width defines a transport lifetime. In particular,
suppose that the processes dominating the conductivity
integral (25) occur close to the Fermi surface. This assumption
has two parts. First, the full Green’s function can be expanded
about the Fermi surface to give the simpler quasiparticle
Green’s function (10). This can be problematic. Even when
the external frequency ω is small, the electron frequency Ω
can take values of the order of the temperature. We noted in
our discussion of Eq. (11) that this is large enough to
invalidate the low-frequency expansion of the Green’s func-
tion for quantum critical electrons. Second, assume that the
vertex function can be evaluated on the Fermi surface in the
sense that Γjðk;Ω;ωÞ → ΓjðkF;Ω;ωÞ. With these assump-
tions it is simple to perform the k⊥ integral (orthogonal to the

11Alternatively, the onset of a low entropy regime could cut off the
integral in Eq. (23) at low temperatures. Note that ordering typically
redistributes but does not reduce the total entropy below the ordering
temperature; see Stewart (1984), Hartnoll and Pourhasan (2012), and
Petrovic et al. (2001).
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Fermi surface).12 To keep the formulas cleaner in this purely
illustrative treatment, we assume an isotropic Fermi surface.
One obtains

Re σðωÞ ¼ 2e2

dð2πÞd
AFS

ℏv⋆F
ṽ⋆2F ΓðωÞτ

1þ ðτω=2Þ2 : ð26Þ

In Eq. (26) AFS is the area of the Fermi surface and
ṽ⋆F ≡ ZvF ¼ v⋆F − Z∇kΣ0

o; see Eq. (11). ṽ⋆F is equal to the
renormalized Fermi velocity v⋆F only when there is no k⊥
dependence of the self-energy. The factor of 2 in the Drude
peak denominator is because the electron and hole are both
excited with half the energy of the frequency-dependent
source. Finally, we define the vertex weighting

ΓðωÞ ¼ 1

vF

Z
dΩΓðkF;Ω;Ωþ ωÞ fðΩÞ − fðΩþ ωÞ

ω
.

Even with the previous assumptions about dominance
of near–Fermi surface physics, the function ΓðωÞ in
Eq. (26) is rather unconstrained in general. The Drude formula
is obtained if the electron and hole are uncorrelated such that
ΓðωÞ ¼ 1. Further assuming for simplicity that the k⊥
dependence of the self-energy can be neglected such that
ṽ⋆F ¼ v⋆F in Eq. (26), one obtains

Re σðωÞ ¼ ne2

m⋆
τ

1þ ðτω=2Þ2 : ð27Þ

The mass m⋆ ¼ ℏkF=v⋆F and the electron density n ∝ kdF. The
most immediate conclusion from Eq. (27) is that it is the
renormalized, physical decay rate 1=τ that sets the width of
the Drude peak (and not the bare quantity Σ00

o). In this
simplified model, isotropic and without vertex corrections,
the peak in the dynamical conductivity is twice the width of
the single-particle peak. The ω → 0 limit of Eq. (27) is13

σ ¼ ne2τ
m⋆

: ð28Þ

The dc conductivity can equivalently be written (in the highly
simplified setting currently being discussed) in terms of
unrenormalized quantities as σ ¼ ne2=mjΣ00

oj, with the factors
of Z cancelling out. The renormalized mass m⋆ is the one
measured by quantum oscillations and the specific heat
(insofar as these measure single-particle properties). Using

the physical mass m⋆ in a dc Drude analysis will extract the
physical timescale τ. This procedure is widely used in
determining the T2 scattering rate in Fermi liquids, as
discussed in Appendix C.
Correlations between the electron and hole, captured by

ΓðωÞ, are important when there are scattering processes that
can strongly degrade a given single-particle Bloch state
without significantly degrading the current. For example,
small-angle scattering does not efficiently degrade current.
A second example is that umklapp scattering, as opposed to
momentum-conserving normal scattering, is necessary in
order to fully degrade the current as long as the metal is
not compensated, i.e., does not have equal densities of
electrons and holes. The role of vertex corrections for
small-angle scattering was discussed in Sec. 8.4.2 of
Mahan (2000) and for umklapp scattering in Maslov and
Chubukov (2017).14 The vertex weighting function ΓðωÞ
essentially counts the fraction of scattering processes that
degrade current when the electron-hole pair has total energyω.
In the simplest circumstances, this effect amounts to a shift

τ → τtr ð29Þ

in the dynamical and dc conductivities (27) and (28). A well-
known instance of the difference between the single-particle
lifetime τ and the transport lifetime τtr is for scattering by
phonons at low temperatures, where the scattering rate
T3 → T5. We saw in Sec. I.B that quantum critical metals
with scattering by long-wavelength critical bosons have an
analogous shift T → T1þ2=z, with z the dynamic critical
exponent (and a MFL has z ¼ ∞).
Even when, after allowing for the shift of Eq. (29) in the

lifetime, the dynamical conductivity retains the Lorentzian
form of Eq. (27), the vertex function has every right to change
the weight of the Lorentzian (the “Drude weight”). That is, the
effective mass m⋆ that appears in the Drude formula need not
be the single-particle renormalized mass. One cannot, there-
fore, in general extract τtr from dc measurements alone. While
this vertex-induced renormalization of the Drude weight has
been argued to be small when the electronic self-energy has
only weak momentum dependence (i.e., is local), recent
numerical results on the Hubbard model at high temperatures
found otherwise (Vučičević et al., 2019).
In summary, there are many obstacles to the existence of an

unambiguously defined, unique transport lifetime. We have
already noted in Sec. III that single-particle lifetimes are not
well defined if the self-energy depends strongly on frequency.
In this section we have seen that even if the single-particle12That is,

Z
∞

−∞
dk⊥

Zτ
1þ τ2ðω − v⋆Fk⊥Þ2

Zτ
1þ τ2ðωþΩ − v⋆Fk⊥Þ2

¼ πZ2τ

2v⋆F
1

1þ ðτω=2Þ2 :

13We reintroduced the density n in Eq. (27) to connect to the Drude
formula (28). Note that all low energy scattering takes place at the
Fermi surface. It is therefore more physically transparent to write the
dc conductivity as σ ¼ ð1=dÞe2v⋆2F N⋆ð0Þτ, with N⋆ð0Þ the renor-
malized density of states at the Fermi surface.

14In Sec. I.B we noted that quantum criticality commonly leads to
small-angle scattering. Furthermore, quantum critical scattering is
often momentum conserving, so the effective critical theory has an
emergent conserved momentum and an infinite conductivity. Non-
critical umklapp processes (or disorder) must then be incorporated,
again weakening the link between criticality and transport (Maslov,
Yudson, and Chubukov, 2011; Pal, Yudson, and Maslov, 2012). A
powerful technique for incorporating momentum relaxation is the
memory matrix formalism (Jung and Rosch, 2007; Hartnoll and
Hofman, 2012; Hartnoll et al., 2014).
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lifetime is well defined, the transport lifetime may not be if the
vertex function (which is an eminently physical quantity) is
nontrivial. And finally, even if the dynamical conductivity is
Lorentzian such that there is a well-defined transport lifetime,
in general this cannot be determined from dc measurements
because there will be an unknown renormalization of the
Drude weight.
These difficulties suggest that, in the absence of an under-

standing of what is causing the Planckian behavior of many
unconventional metals, the Drude analyses summarized in
Sec. I.D should be interpreted as an informed dimensional
analysis in which measured quantities fσ; n; m⋆g are used to
define a timescale. This timescale is then taken to be a proxy
for the equilibration time. It may be that, a posteriori, it is
understood that the underlying scattering in these systems is
something relatively simple (such as phononlike15 or some
version of a MFL). The robustness of the Planckian lifetime
extracted from the Drude analyses in Sec. I.D may perhaps be
taken as indirect evidence for a simple underlying mechanism.
In this case, it may be possible to elevate these analyses to a
precise science.

A. Drude analyses revisited: Value of the effective mass

With all the caveats discussed thus far in Sec. IV in mind,
here we discuss several more prosaic issues that are pertinent
to the Drude analyses of Sec. I.D. These are primarily related
to the value of the effective mass that should be used.
To estimate a timescale τ using the Drude formula (28),

measurements are needed of the resistivity, the effective mass
m⋆, and the density n. The resistivity is unambiguous. The
density is also straightforward, in principle at least. The
Luttinger count fixes the density in terms of the number of
itinerant carriers, which may be known a priori. Quantum
oscillations provide a direct experimental probe of the density.
The frequency of the oscillations is determined by the cross-
sectional area of the Fermi surface (Onsager, 1952). In two
dimensions summing the areas of the observed Fermi surface
sheets directly gives the density. While the Hall coefficient is
sometimes used as a proxy for the density, in the weak field
limit that is typically accessible it is sensitive to both the
nature of scattering and the Fermi surface geometry, as done
by Ong (1991), and furthermore cannot account for the
simultaneous presence of both electrons and holes.
The effective mass is more complicated because it can vary

around the Fermi surface and between different sheets. This
fact becomes significant if the Fermi surface develops large
mass hot spots or “hot pockets” close to a quantum critical
point. Two commonly used probes to estimate the effective
mass are quantum oscillations and the specific heat. The
amplitude of quantum oscillations depends on the cyclotron
mass (Lifshitz and Kosevich, 1956), while the specific heat
depends on the density of states at the Fermi surface; see
Eq. (22). Both of these quantities are sensitive to an averaged
mass around the Fermi surface hm⋆iFS, while dc transport

instead depends on the average of the inverse mass hm−1⋆ iFS if
the timescale τ is kept uniform. In particular, heavy regions of
the Fermi surface are not important for transport but can
potentially dominate these probes.
Quantum oscillations have the advantage of separating out

the contributions from distinct Fermi sheets; these correspond
to different oscillation frequencies. This is especially helpful
in cases such as Sr3Ru2O7, where a single sheet develops a
large density of states due to incipient quantum criticality
(Tamai et al., 2008; Mercure et al., 2010). The carriers in the
heavy sheet do not contribute significantly to transport but can
dominate the specific heat (Rost et al., 2011; Mousatov, Berg,
and Hartnoll, 2020). In these circumstances the total specific
heat will not extract the correct averaged mass for use in the
Drude formula. Quantum oscillations will instead determine
sheetwise masses m⋆i and densities ni that can be used to
define a timescale as (Bruin et al., 2013)

1

τ
¼ e2

σ

X
i

ni
m⋆i

: ð30Þ

In Eq. (30) heavy sheets (which might not even be detected by
quantum oscillations) are correctly seen to give a suppressed
contribution to the transport lifetime. As noted in Sec. I.D,
Eq. (30) involves a further approximation in which a unique
timescale is associated with the entire Fermi surface. This
level of averaging is unavoidable in the Drude approach and is
less likely to introduce large errors to the analysis than a
procedure in which an overall average mass is obtained from
the heat capacity. In heavy fermion compounds (which in
reality are heavy and light fermion compounds), the estimate
involving only the heat capacity can be a source of serious
errors.
An effective mass can also be found from analyses of

optical data for σðωÞ as it enters the Drude weight in Eq. (27).
Such an analysis will simultaneously determine a transport
timescale. Even if the Drude peak is not Lorentzian, estima-
tion of a timescale and weight from optical data offers an
opportunity to cross-check the values of both quantities
obtained from the dc Drude analysis. It is important, however,
to allow for the possibility that the optical data should be
analyzed as a sum of Drude peaks, especially in multiband
compounds [see Wang et al. (2021) for a two-Drude analysis
of the T2 resistivity regime of several ruthenates].
Even if sheet-by-sheet carrier densities and masses can be

obtained from quantum oscillations, there is another potential
concern. The amplitude of quantum oscillations decays
exponentially with temperature and with the effective mass
m⋆. For this reason the values of the mass and density used in
the Drude analyses of Bruin et al. (2013) and Licciardello,
Buhot et al. (2019) are extracted from a low-temperature
Fermi-liquid-like regime with a T2 resistivity. In contrast,
T-linear resistivity sets in at temperatures T > TΔ ≡ Δ=kB for
some energy scale Δ. The objective is to obtain the transport
timescale for this higher temperature regime. One must worry,
therefore, about the possible temperature dependence of the
Drude weight ne2=m⋆. The more plausible source of temper-
ature dependence is the effective mass. There are two potential
issues: temperature dependence of m⋆ in the low-temperature

15It need not literally be phonons that provide the scattering. For
example, there may be circumstances where spins can play a similar
role.
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(putatively Fermi-liquid) T2 regime and temperature depend-
ence in the high-temperature T-linear regime. We consider
these in turn, with the discussion summarized in Fig. 6.
In a Fermi liquid the imaginary part of the self-energy

takes an especially simple form Σ00
FL ∝ ðπkBTÞ2 þ ðℏωÞ2; see

Chubukov and Maslov (2012). This means that the quantity
that appears in the Kramers-Kronig integral (12) for the
effective mass [Σ00

FLðωÞ − Σ00
FLð0Þ ∝ ω2] is indeed independent

of temperature. However, if T-linear scattering sets in above
TΔ, then Σ00 will differ from Σ00

FL above that temperature. It is
likely then that its frequency dependence will also differ at
frequencies greater than Δ=ℏ (for example, this would be the
case for a MFL). Assuming that Σ00 ¼Σ00

FL for maxðℏω;kBTÞ<
Δ, one obtains the change in the effective mass over the Fermi-
liquid temperature range as

m⋆ðTΔÞ −m⋆ð0Þ ¼ −
1

π

Z
ω⋆

Δ=ℏ

Σ00ðω; TΔÞ − Σ00
FLðω; TΔÞ

ω2
dω:

ð31Þ

In Eq. (31) ω⋆ is a high-frequency cutoff like the one
introduced in Sec. III.D. The temperature dependence implied
by Eq. (31) will be weak if the full scattering rate Σ00 only
starts to differ significantly from Σ00

FL at frequencies somewhat
above Δ=ℏ, so the difference Σ00 − Σ00

FL is suppressed by a
factor of 1=ω2 in Eq. (31). There is no evidence for a
temperature dependence of the mass in specific heat data in
low-temperature Fermi-liquid regimes (Aoki et al., 1998;
Bianchi et al., 2003; Rost et al., 2011), although the presence
of a phonon contribution to the specific heat can complicate
the analysis. It is interesting to view this absence of effective
mass temperature dependence in light of Eq. (31) and to
search for possible temperature dependence using probes such

as the Knight shift that do not have a phonon contribution. In
addition to introducing temperature dependence, the high-
frequency modes renormalize the low-temperature mass
m⋆ð0Þ. This low-temperature mass obeys the Kadowaki-
Woods relation, as discussed in Appendix C.
For T > TΔ (i.e., in the T-linear regime), there is every

reason to expect the effective mass to be temperature depen-
dent. We saw in Sec. III that this was the case for scattering
both by phonons and in a MFL. Strong temperature depend-
ence of the effective mass in T-linear transport regimes has
also been found in dynamical mean field theory (DMFT)
studies of correlated Hubbard model–like systems (Deng
et al., 2013, 2014; Xu, Haule, and Kotliar, 2013; Deng,
Haule, and Kotliar, 2016). As in the case of a MFL, as noted in
Sec. III.D, the temperature-dependent mass in the DMFT
studies helps one to restore a quasiparticle description. If there
is indeed no temperature dependence in the mass for T < TΔ,
then by continuity the low-temperature mass m⋆ð0Þ extracted
from quantum oscillations should correspond to the mass
just inside the lower end of the T-linear regime.16 This is
shown in Fig. 6. We have seen that, in simple models for both
conventional (Sec. III.B) and unconventional (Sec. III.D)
T-linear transport, the physical lifetime is automatically
Planckian bounded at the lower temperature end. These (or
similar) models may therefore offer the simplest explanation
for many of the experimentally reported Planckian lifetimes.
As discussed in Sec. III, the mass renormalization in simple

models of T-linear quasiparticle lifetimes becomes weaker at
higher temperatures. The slope of the resistivity does not
change, which means that if such simple models are correct
the physical scattering rate is becoming stronger at high
temperatures. Given that the scattering rate is already esti-
mated, per the just-given discussion, to be Planckian at the
lower end of the T-linear temperature range, there is the
distinct possibility of super-Planckian scattering at high
temperatures. To probe this possibility directly it will be
necessary to measure the effective mass (or otherwise extract a
lifetime) at high temperatures in the T-linear transport regime.
Although photoemission data already exist in the relevant
regimes for materials such as cuprates (Sobota, He, and Shen,
2021), no such effects have, to our knowledge, been con-
vincingly observed to date.
A dc Drude analysis at high temperatures in niobium-doped

strontium titanate (using a high-temperature effective mass
obtained from the thermopower relative to a low-temperature
mass determined by quantum oscillations) led to a claim of
strongly super-Planckian decay rates at high temperatures
(Collignon et al., 2020). A recent reanalysis, however,
suggests that timescales do not in fact become super-
Planckian (Nazaryan and Feigelman, 2021). In any case,
the electrons are nondegenerate at these high temperatures
and the estimated decay rate becomes 1=τ ∼ T2.5. Given the
unusual temperature dependence of many quantities, the
nature of charge transport in this regime needs to be better

T

Likely T-dependent
effective mass

Likely T-independent
e ective mass

Mass
divergence

Mass measured by
quantum oscillations

Planckian scattering
observed

FIG. 6. Schematic diagram showing the evolution of the
effective mass as a function of the temperature and tuning
parameter. Quantum oscillations measure the low-temperature
mass, while Planckian scattering is claimed at the lower end of
the T-linear transport regime. Note that observed mass diver-
gences as the critical point is approached at low temperatures do
not necessarily correspond to the quasiparticles that dominate
transport.

16This continuity argument assumes that strong mass renormal-
ization does not begin in the Fermi-liquid regime immediately below
TΔ. Especially in a MFL, where mass renormalization is only
logarithmic, this would seem to be a reasonable assumption.
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understood before reliable conclusions can be drawn about the
meaning of timescales extracted from conventional formulas.

B. Relation of T-linear resistivity to
more general transport behavior

Our discussion has focused mostly on systems exhibiting
T-linear resistivity at low temperatures. These are plausibly
the simplest unconventional metals, wherein quasiparticle
concepts such as an effective mass may continue to be useful.
To establish the existence of truly universal bounds on
dissipation it will ultimately be necessary to grapple with
strongly incoherent regimes of transport. These include heavy
fermion systems at higher temperatures, underdoped cuprates,
and other systems close to Mott transitions. A Planckian
analysis of transport in these cases will require a careful
identification of the effective density of charge carriers, and
possibly a detailed understanding of the transport mechanism.
A more cautious step beyond pure T-linear resistivity

involves situations where T linearity occurs in conjunction
with a Fermi-liquid-like T2 behavior. Indeed, one of the
original motivations for a Planckian bound was the observa-
tion that, in many of the materials with phase diagrams like
that sketched in Fig. 6, the resistivity in the T-linear regime is
lower than the extrapolation of the T2 term to these temper-
atures (Bruin et al., 2013). In such cases the T-linear
resistivity is observed to be Planckian, a phenomenology
naturally associated with a bound. This behavior is illustrated
in the left panel of Fig. 7.
In other cases, however, the resistivity takes the additive

form ρ ∼ T þ T2. As with the purely T-linear regimes, this
behavior can arise over different temperature ranges. For
example, in overdoped cuprates it is seen down to low
temperatures (Mackenzie et al., 1996; Cooper et al., 2009),
while in the ruthenate Sr2RuO4 it emerges above a low-
temperature Fermi-liquid regime with purely T2 resistivity

(Tyler et al., 1998). The first point to make is that the simplest
framework for understanding such behavior is a current
carried by well-defined quasiparticles that undergo two
additive scattering mechanisms. The second point is that
there may seem to be some tension between the idea that
the T-linear scattering is maximally dissipative and the fact
that it is possible to “add” to it. A closely related objection was
made by Greene et al. (2020), and subsequently Poniatowski
et al. (2021) claimed that an overdoped electron-doped
cuprate has τPl=τ ∼ 4 at room temperature. We show these
data in Fig. 7 (right panel). For that system and the others
mentioned here, however, the T-linear and T2 components
have comparable magnitudes over the temperature ranges in
question and there does not appear to be any strongly super-
Planckian scattering. Looking forward, these may be espe-
cially interesting regimes in which to tease apart some of the
different notions we have discussed throughout this
Colloquium relating to Planckian bounds: the need for careful
low-temperature characterization of the effective mass using
quantum oscillations, the possible temperature dependence of
the mass, and the distinction between elastic and inelastic
contributions to scattering.

V. QUANTUM LYAPUNOV EXPONENT AND
BUTTERFLY VELOCITY

The only rigorous Planckian bound that has been proven to
date is on the quantum Lyapunov exponent λL (Maldacena,
Shenker, and Stanford, 2016), which characterizes the onset of
many-body quantum scrambling. As explained shortly, this
exponent is probably not directly related to transport or
equilibration in the previously described experimental sys-
tems. Nonetheless, the bound on λL is an important proof of
principle success for the program of establishing fundamental
bounds on many-body quantum dynamics. Furthermore, the
quantum Lyapunov bound has driven the (re)emergence of

FIG. 7. Left panel: a low-temperature T2 scattering rate crosses over to a high-temperature T-linear scattering rate in Sr3Ru2O7 at a
field B ¼ 7.4 T (Bruin et al., 2013). The solid line is the data and the dashed line is the extrapolation of the low-temperature behavior.
Here the strong low-temperature growth of the scattering rate is cut off by Planckian scattering. Right panel: a low-temperature T-linear
scattering rate (Legros et al., 2019) crosses over to a high-temperature T2 scattering rate (Poniatowski et al., 2021) in LCCO at x ¼ 0.16.
Here the high-temperature scattering rate rises above the low-temperature Planckian scattering. The T ¼ 0 scattering rate has been
subtracted in both cases. For Sr3Ru2O7 the masses and densities used to extract a scattering rate from transport have been obtained from
quantum oscillations (Bruin et al., 2013). In the absence of quantum oscillation data on LCCO, the masses were estimated from quantum
oscillations in Nd2−xCexCuO4 (Legros et al., 2019). This procedure introduces some uncertainty in the density.
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Sachdev-Ye-Kitaev (SYK) models (Sachdev and Ye, 1993;
Kitaev, 2015; Maldacena and Stanford, 2016) as a class of
controlled theories of nonquasiparticle transport [relevant
work predating the current interest was given by Parcollet
and Georges (1999)].
This section is, by necessity, not self-contained. We discuss

how the concepts of the Lyapunov exponent and butterfly
velocity (neither of which we define explicitly) may be
relevant to Planckian dissipation and how holographic and
SYK models give theoretically controlled nonquasiparticle
realizations of various ideas that have appeared throughout
this Colloquium. For more extensive reviews of these topics,
see Liu and Sonner (2020) and Chowdhury et al. (2021).
The quantum Lyapunov bound states that (Maldacena,

Shenker, and Stanford, 2016)

λL ≡ 1

τL
≤
2π

τPl
: ð32Þ

In essence, Eq. (32) is a bound on how quickly an operator can
grow under Heisenberg time evolution. Operator growth is a
quantum-mechanical measure of the dynamical scrambling of
information in phase space. As discussed by Khemani, Huse,
and Nahum (2018)) and references therein, this bounded
timescale is defined only for large-N (or otherwise semi-
classical) theories because, for an operator to exhibit well-
defined exponential growth, it must have a large enough “on-
site” phase space to grow into. This limits the direct
applicability of the result to many condensed matter systems
that have small on-site Hilbert spaces. This limitation can be
evaded, however, if operators are able to grow sufficiently
rapidly in space, as now discussed.
In addition to on-site growth, operators can also grow in

space. In systems with spatially local microscopic inter-
actions, the butterfly velocity vB (Shenker and Stanford,
2014; Roberts, Stanford, and Susskind, 2015) defines a light
cone that bounds the speed of operator growth in space
(Khemani, Huse, and Nahum, 2018). A sufficiently large
butterfly velocity can allow exponential operator growth even
in systems with a small on-site Hilbert space (Keselman, Nie,
and Berg, 2021). It has been argued that the butterfly velocity
is a temperature-dependent refinement of the more micro-
scopic Lieb-Robinson velocity, and hence a more physically
relevant velocity at low temperatures (Roberts and Swingle,
2016). Despite its name’s referring to the “butterfly effect,” vB
is formally nonzero in noninteracting systems, and further-
more the operator growth light front has the same form in
chaotic and certain nonchaotic “interacting” integrable spin
chains (Gopalakrishnan et al., 2018).
Blake (2016a, 2016b) showed that in various strongly

nonquasiparticle and Planckian holographic models the dif-
fusivity has the form D ¼ αv2BτPl, with α a constant that does
not depend strongly on microscopic data. This fact supported
the idea that the butterfly velocity defines a physically relevant
nonquasiparticle velocity. Further works established that the
butterfly velocity specifically controls heat diffusion in holo-
graphic (Baggioli et al., 2017; Blake, Davison, and Sachdev,
2017; Blake and Donos, 2017) and SYK (Davison et al.,
2017; Gu, Qi, and Stanford, 2017; Guo, Gu, and Sachdev,
2019) models of Planckian transport. It has been argued

(Blake, Lee, and Liu, 2018; Blake and Liu, 2021) that this
relationship can arise as a consequence of these models
being “maximally chaotic,” i.e., saturating the bound (32).
In maximally chaotic theories the energy dynamics is inti-
mately tied up with quantum chaos. The importance of the
holographic and SYK-type models is that they bring out
simplifications in quantum dynamics that arise in a non-
quasiparticle Planckian limit that is strictly the opposite of the
conventional weakly interacting quasiparticle regime. Various
other classes of large-N models have also exhibited a close
connection between energy diffusion and the butterfly velo-
city (Patel and Sachdev, 2017; Patel et al., 2017; Werman,
Kivelson, and Berg, 2017). This connection can be broken if a
small number of fast modes dominate heat transport but inherit
chaotic properties from a strongly interacting large-N bath
(Tulipman and Berg, 2021).
Several of the just-mentioned works found that energy

diffusion was related to the Lyapunov time as D ¼ v2BτL.
However, inhomogeneous SYK chains offer a counterexam-
ple to this connection (Gu, Lucas, and Qi, 2017). In
Appendix A we argue that the equilibration time is the more
natural timescale to control transport. While both τeq and τL
are Planckian in the simplest holographic and SYK models,
they can also be distinct (Hartman, Hartnoll, and Mahajan,
2017; Davison, Gentle, and Goutéraux, 2019). Lucas (2019)
and Chen, Gu, and Lucas (2020) developed a picture of
equilibration as operator growth that straddled the two
timescales.
A systemic overview of the large and developing literature

on SYK models of non-Fermi liquids is beyond the scope of
our discussion. We simply note some points of connection
between this literature and the subject of Planckian bounds.
Song, Jian, and Balents (2017) showed that a heavy Fermi
liquid emerged at low temperatures from an incoherent
T-linear metal. We discuss the relation of strong scattering
regimes to low-temperature mass renormalization in Secs. III
and IV.A and, in particular, the associated buildup of entropy
in Sec. III.E. Guo, Gu, and Sachdev (2019) showed that T-
linear transport in the incoherent regime is related to strong
operator growth, while transport in T-linear regimes due to
phonon scattering is not. This is due to the disjunction
between equilibration and transport in the high-temperature
elastic regimes of phonon scattering discussed in Sec. III.C;
cf. also Lucas (2019). Chowdhury et al. (2018) found various
non-Fermi-liquid regimes in which the mass renormalization
enforces a Planckian bound on physical transport lifetimes,
as in our discussion in Secs. III.B and III.D. Robustly
Planckian physical lifetimes were obtained by Patel and
Sachdev (2019) from a model with a smeared out Fermi
surface, whose similarities to a phenomenological “flat
band” theory in which Planckian dissipation has also been
analyzed (Shaginyan et al., 2019) have been noted (Volovik,
2019). Controlled theories of a Planckian marginal Fermi
liquid considered in Sec. III.D were obtained by Aldape et al.
(2020) and Esterlis et al. (2021) by performing certain
averages on a large-N model of fermionic quantum critical-
ity. A marginal Fermi liquid was also obtained by Cha,
Wentzell et al. (2020) at a critical point describing the
quantum melting of a spin glass phase into a Fermi liquid.
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Tulipman and Berg (2020) avoided super-Planckian scatter-
ing in a model of strongly anharmonic phonons owing to the
onset of a glass phase, possibly giving an instance of a
“quantum engineering” constraint of the kind mentioned in
footnote 8. Cha, Patel et al. (2020) described a model
exhibiting “slope invariance” of the T-linear resistivity
between physically distinct regimes as the temperature
crosses the Hubbard-U scale (with hopping t ≪ U), thereby
providing a high-temperature analog of the phenomenon
illustrated in Fig. 1.

VI. IMPLICATIONS OF A BOUND ON DISSIPATION

In this section we offer some thoughts on future work and
argue that bounds, such as a possible Planckian bound, have a
double role. First, a useful bound expresses a limitation on
physical processes, providing insight where a first principles
approach to a given system may not be possible or available.
Second, a bound can provide a hint of deeper understanding
that may not have been fully developed yet. Both of these
dimensions are illustrated with the example of the Carnot
bound on the efficiency of a heat engine in terms of the
maximal accessible temperature difference. That bound con-
tains a core truth about the working of engines that transcends
any particular engineering design. It is rooted in the laws of
thermodynamics, one of the most noteworthy theories in
the history of physics. Carnot and his contemporaries were
driven by engineering, little knowing that the laws that they
deduced from careful observations of the “classical” world
would end up as a governing framework for many-body
quantum mechanics.
We have described how the dissipative dynamics of

several families of unconventional metals appear to be
governed by a Planckian timescale. In many cases there is
neither a unique compelling candidate for a mode causing the
T-linear transport nor a theoretical framework for computing
the effects of the underlying scattering in a way that is both
controlled and realistic. We have deliberately aired the
complications and caveats associated with microscopic
modeling and, indeed, the interpretation of experimental
data. We have done so partly to give as complete an account
of the difficulties and subtleties as we can, but also to
demonstrate what might be the central point of the entire
field: These difficulties make the simplicity of the observed
Planckian timescale all the more notable. This fact strength-
ens the possibility that the ubiquity of the Planckian time-
scale reflects a quantum-mechanical limitation on the rate of
dissipation.
The simplest point that we have made is that inelastic

interactions renormalize the quasiparticle mass in tandem with
scattering the quasiparticles. The Kramers-Kronig relations tie
these two effects together and naturally lead to a Planckian
bound on the physical quasiparticle lifetime in temperature
regimes that have been probed experimentally. The bound is
saturated in the limit of strong interactions.
Although the previous statements are couched in

quasiparticle language, they may reflect a more general
physical principle. We have suggested that some of the
observed Planckian transport lifetimes are a manifestation of
an underlying timescale for many-body equilibration. The

equilibration time and length are fundamental quantities for
nonzero temperature many-body dynamics but have rarely
been directly probed in condensed matter experiments. We
have given arguments suggesting that neither of these
quantities can become arbitrarily small. This is a question
not of the validity of any given description but of the
consistency of the thermal state itself. These quantities are
therefore promising starting points for formulating bounds
on dynamics, and we have discussed some routes toward
achieving this. It would also be desirable to directly measure
the equilibration time and length, possibly using ultrafast
spectroscopy (Orenstein, 2012), or by characterizing the
nature of fluctuations in the thermal state [perhaps taking
inspiration from experiments on ultracold atomic systems
(Gross and Bloch, 2017), such as those conducted by Gring
et al. (2012), Trotzky et al. (2012), Clos et al. (2016),
Kaufman et al. (2016), and Tang et al. (2018)] or from
measurements of spatially resolved transport; cf. Huang and
Lucas (2021). For low-temperature Planckian materials,
these timescales and length scales may not be prohibitively
short.
Suppose that there is, at least under some circumstances, a

Planckian bound on quantum dynamics. Its existence will not
in itself explain why systems are widely observed to saturate
it. We have highlighted the consequences of a bounded
entropy; a possibly interesting future direction is that transport
can often be formulated as a variational principle in which the
dynamics extremizes the rate of entropy production, subject to
certain constraints. See Ziman (1956) for Boltzmann transport
and Lucas and Hartnoll (2017) for inhomogeneous hydro-
dynamics. This may suggest that dissipative timescales will
push up against a fundamental bound once all other bottle-
necks, including weak interactions between quasiparticles, are
removed.
On the other hand, if a quasiparticle description is admis-

sible, then a different strategy may be more urgent. One
should identify simple, realistic, and material-specific scatter-
ing mechanisms for T-linear transport. The two case studies of
quasiparticle Planckian transport that we have presented,
phonons and the marginal Fermi liquid, may perhaps be a
source of inspiration in this endeavor. One would also like to
identify quasiparticle frameworks that allow different scatter-
ing mechanisms to exchange dominance without producing
features in the resistivity. Many microscopic quasiparticle
scattering mechanisms have been suggested over the years,
but it is fair to conclude that this problem has not been solved
in general. At the same time, simple quantum-tuned phase
diagrams like that shown in Fig. 4 have been observed in an
increasingly wide range of materials (Sachdev and Keimer,
2011). Explaining these phase diagrams in detail, taking
advantage of simultaneous transport and thermodynamic data
and using de Haas–van Alphen oscillation data to carefully
account for the multiband nature of many of these systems, is
likely to provide strong constraints on theories of the under-
lying scattering. In this Colloquium we have not addressed the
rich phenomenology of magnetotransport (Hayes et al., 2016;
Giraldo-Gallo et al., 2018; Licciardello et al., 2019; Sarkar
et al., 2019; Ayres et al., 2020; Huang et al., 2020;
Maksimovic et al., 2020; Nakajima et al., 2020) or low-
temperature thermal (Michon et al., 2018) or thermoelectric
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(Collignon et al., 2021; Jin et al., 2021) transport that has been
experimentally demonstrated in Planckian systems. These will
likely also provide a fruitful hunting ground for future
theories.
In summary, we believe that a Planckian bound of some

kind plausibly exists. Theoretically establishing such a bound
may entail the development of a quantum many-body “boot-
strap” program, in the spirit of the highly successful use of
bounds as organizing principles in critical systems (Poland
and Simmons-Duffin, 2016). Experimentally, there is a need
for more spectroscopic data, particularly from the de Haas–
van Alphen effect, optical conductivity, and angle-resolved
photoemission spectroscopy, on candidate Planckian systems.
We hope that this Colloquium will stimulate further research
into this interesting issue.
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APPENDIX A: DIFFUSIVE TIMESCALES AND
DIFFUSION BOUNDS

In Sec. II.A we considered equilibration from the perspec-
tive of fast locally thermalizing processes. The subsequent
diffusive evolution is more universal yet also contains a trace
of the underlying fast dynamics in the value of the diffusivity
itself. The diffusivity, furthermore, is an unambiguously
defined and measurable transport coefficient. This fact is
especially important in strongly incoherent regimes, where it
may not be possible to define an effective mass and hence
extract a timescale from transport. For this reason bounds have
also been proposed on the diffusivity directly (Kovtun, Son,
and Starinets, 2005; Hartnoll, 2015; Hartman, Hartnoll, and
Mahajan, 2017), as discussed in this appendix.
We first explain why the diffusivity is naturally related to

the underlying scales τeq and leq. Inhomogeneities in the
energy and charge density with small wave number k
necessarily decay slowly because the homogeneous k → 0
quantities (total energy and charge) cannot decay at all. Within
linear response (i.e., for inhomogeneities with small

amplitude) and focusing on charge dynamics17 for concrete-
ness, this slowness is expressed as an expansion in gradients

∂n
∂t

¼ D2∇2nþD4∇4nþ � � � : ðA1Þ

In Eq. (A1) D2 ¼ D is simply the usual diffusivity. For
Eq. (A1) to make sense, there must be a characteristic length
scale above which it is possible to neglect the higher derivative
terms. This is the thermalization length leq. Higher derivative
corrections to the diffusion equation are suppressed at small
wave number by leq∇ ≪ 1. This can be made explicit by
writing D2n ¼ l2n

eq=τ2n, where all the timescales τ2n are
comparable. In particular, the diffusivity D ¼ l2

eq=τ2. These
expressions, however, are not immediately useful because the
timescales that appear will typically not be independent of leq.
For example, leq might be the quasiparticle mean free path
and τ2n of the order of the quasiparticle lifetime τqp. These are
related by the quasiparticle velocity vqp. It is more instructive
in this case to write the diffusivity as D ∼ v2qpτqp.
Even without quasiparticles, the length scale in the dif-

fusivity can be eliminated in favor of a velocity. Building on
this perspective, Hartman, Hartnoll, and Mahajan (2017),
Lucas (2017), and Han and Hartnoll (2018) argued that the
diffusivity can always be upper bounded by writing it as
follows in terms of a certain many-body velocity v and the
equilibration time18:

D≲ v2τeq: ðA2Þ

Introducing a velocity is well founded physically because, in
many cases, the underlying microscopic dynamics proceeds
ballistically. In particular, the ballistic growth of operators in
space discussed in Sec. V leads to a microscopic “light-cone”
causality constraint. Requiring that it should not be possible to
diffuse outside the light cone at early times leads one to
Eq. (A2). This logic is especially clear at high temperatures,
where the relevant velocity is v ¼ vLR, the Lieb-Robinson

17This is the charge dynamics prior to incorporating long-range
electromagnetic interactions. Long-range Coulomb interactions
screen charge fluctuations that therefore decay exponentially quickly
in time rather than diffuse. However, even in the presence of such
Coulomb interactions it remains the case that the measured conduc-
tivity is given by σ ¼ χD, with both the charge compressibility χ and
the diffusivity D intrinsic properties of the electronic system prior to
the inclusion of long-range interactions. Different experimental
probes will measure either the screened or unscreened Green’s
functions for the charge density. Screening complicates the
direct measurement of the charge diffusivity in a metal, although
this was recently achieved in magic-angle twisted bilayer graphene
(Park et al., 2021).

18If momentum is close to being conserved (such as when
umklapp scattering is weak), then the equilibration time that controls
the validity of the diffusive description of charge transport, and hence
enters the bound (A2), is not the local equilibration time but rather the
timescale at which diffusion crosses over to linearly dispersing sound
propagation (Hartman, Hartnoll, and Mahajan, 2017). As momentum
becomes increasingly conserved, both D and this τeq diverge in
Eq. (A2).
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velocity (Lieb and Robinson, 1972; Hastings, 2010), which
sets an absolute speed limit to dynamics in local Hamiltonians.
This is a physical velocity at high temperatures; see Brown
et al. (2019) for a measurement of diffusion at high temper-
atures with D ∼ v2LRτeq. Away from high temperatures the
relevant velocity is conceptually close to the butterfly velocity
vB (discussed in Sec. V) but not identical to it. This point was
discussed by Hartman, Hartnoll, and Mahajan (2017) and
Lucas (2017) and explored in holographic models by Baggioli
and Li (2020), Arean et al. (2021), Jeong, Kim, and Sun
(2021), and Wu, Baggioli, and Li (2021).
It has also been proposed, in the spirit of Planckian bounds,

that the diffusivity obeys a lower bound D≳ v2τPl (Hartnoll,
2015). Unlike in the case of the previously discussed upper
bound, a many-body velocity v that could make this lower
bound work in general has not been identified. For example,
as discussed in the main text, in cases where quasiparticles
undergo elastic scattering, the quasiparticle lifetime τqp can
be much shorter than the Planckian time. For the diffusivity
D ∼ v2qpτqp to obey the bound in such cases, it is necessary
that v ≪ vqp. A small v is also necessary close to localized
phases in order to avoid potential counterexamples such as
charge transport in large-U Hubbard-like models (Pakhira
and McKenzie, 2015).
Challenges for lower bounds on the diffusivity also arise in

systems with a large number of degrees of freedom. If all of
these degrees of freedom contribute to thermodynamics while
only a few contribute to transport, the diffusivity is small. This
fact is known to lead to violations of the η=s bound, as
mentioned in the original paper on the subject (Kovtun, Son,
and Starinets, 2005). Wu and Sau (2021) constructed a model
in which a large number N of incoherent optical phonons
dominate the specific heat c, while only a single acoustic
mode, with speed vs and lifetime τph, contributes signifi-
cantly to the thermal conductivity κ. In this model the thermal
diffusivity Dth ¼ κ=c ∼ 1=Nv2sτph. Even if τph is much
larger than τPl, the diffusivity can be driven small by taking
N large. If such situations can be incorporated into a lower
bound on diffusivity, a small velocity will again likely be
required (v ≪ vs).
Finally, note that the upper bound (A2) on the diffusivity

can also be read as a lower bound on the equilibration time.
This perspective is useful if something is known about the
diffusivity, and Delacretaz et al. (2021) used it to establish a
stronger-than-Planckian lower bound on τeq in certain slowly
thermalizing two-dimensional systems.

APPENDIX B: ARGUMENTS FOR CONSTRAINTS ON
THERMALIZATION

1. Uncertainty principle constraint

Here we give the details of the many-body uncertainty
principle argument leading to Eq. (5). Consider a region of
linear size leq and recall from Sec. II.A that such a region is
able to thermalize itself on the timescale τeq. The largest
spread of energies that is available in the region is
ΔE≲ Jðleq=aÞd. Here a is the lattice spacing, d is the space
dimension, and J is the maximal energy range available at a
single site. This argument requires a bounded on-site Hilbert

space, excluding phonons. The uncertainty principle there-
fore implies that Jðleq=aÞdτeq ≳ ℏ. Furthermore, the local
equilibration time cannot be shorter than the fastest time over
which information can traverse the region. The maximal
physical velocity in a lattice system with spatially local
interactions is the Lieb-Robinson velocity vLR ∼ Ja=ℏ (Lieb
and Robinson, 1972; Hastings, 2010). Here we assume that
the maximal “hopping” energy is comparable to the range of
on-site energies J. Using τeq ≥ leq=vLR to eliminate leq in
the previously mentioned uncertainty relation leads one to

τeq ≳ ℏ
J
: ðB1Þ

As discussed in the main text, it is likely that this argument
could be improved at low temperatures because the range of
on-site energies that can participate in the dynamics close to a
low-temperture thermal state will likely be narrower than the
microscopic value J. It may also be possible to improve the
argument at low temperatures using the equilibration velocity
(see Appendix A) to relate leq and τeq. This velocity will often
be less than the microscopic Lieb-Robinson velocity.

2. Bounding thermal fluctuations

Here we give details of the arguments leading to Eq. (6) and
footnote 6. As stated in the main text, the locally thermalized
regions of finite size leq will experience thermal fluctuations.
The consequences of large fluctuations become especially
sharp for operators that are bounded from below, such as the
energy and particle number densities. If the variance in these
quantities is larger than the distance of the thermal expectation
value from the allowed minimum, then the microscopic
positivity constraint is violated in a certain superposition of
thermal microstates (Delacrétaz et al., 2018).
The energy in a thermalized region is E ¼ ϵld

eq, with
energy density ϵ normalized such that ϵ ¼ 0 in the ground
state. The variance of the energy in the region is given by
varðEÞ ¼ kBT2cld

eq, with c the specific heat. Therefore,
imposing varðEÞ≲ E2 gives

ld
eq ≳ c

kB

ðkBTÞ2
ϵ2

: ðB2Þ

Similarly, the variance for the particle number N ¼ nld
eq in

the region is varðNÞ ¼ kBTχld
eq, with χ ¼ dn=dμ the charge

compressibility. Again the particle number is to be normal-
ized such that n ¼ 0 is the lower bound. Bounding the
variance in this case requires

ld
eq ≳ kBTχ

n2
: ðB3Þ

Both Eqs. (B2) and (B3) lower bound the equilibration time
because τeq ≥ leq=vLR, with vLR the maximal velocity dis-
cussed in Appendix A. For degenerate electrons, these lower
bounds are weaker than Planckian bounds because n, ϵ, and χ
are temperature independent, while c ∼ T. The right-hand
sides of the bounds therefore become small at low temper-
atures. However, as stated in footnote 6, a Planckian bound is
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obtained from Eq. (B2) in regimes where the thermodynamics
is dominated by conformal field theory behavior (such as
close to a bosonic quantum critical point). ϵ ∼ Tdþ1 and c ∼ Td

and the bound then becomes τeq ≳ ℏ=kBT. Herewe assume that
the temperature-independent scales making up the units in ϵ, c,
and vLR are comparable. Delacrétaz et al. (2018) obtained this
Planckian bound from within a field theory analysis, where
positivity of energy is more subtle.
For fermions around and above the degeneracy temperature

TF, the compressibility kBTχ ∼ n and hence the bound (B3)
becomes nld

eq ≳ 1. Because leq is expected to decrease with
increasing temperature in a metal, this bound likely also holds
at lower temperatures where the fermions are degenerate.
While this represents a strictly unjustified logical leap, the
bound is also (as noted in the main text) the intuitive statement
that for a region to be able to self-thermalize it should contain
more than one particle. This is the statement of Eq. (6) in the
main text.

APPENDIX C: THE KADOWAKI-WOODS RATIO

In the main text we discussed mass renormalization.
An important additional perspective on the role of mass
renormalization in transport comes from the Kadowaki-
Woods ratio. In a Fermi liquid the resistivity ρ ¼ AT2 and
the specific heat coefficient γ ¼ c=T is temperature indepen-
dent. The Kadowaki-Woods ratio A=γ2 was observed to be
roughly the same across different heavy fermion materials,
even though strong mass renormalization meant that A and γ
separately varied over orders of magnitude (Kadowaki and
Woods, 1986). We recalled in Eq. (22) that γ ∝ 1=Z ∝ m⋆.
The observation therefore implies that the resistivity coeffi-
cient A ∝ m2⋆. As discussed in the main text, in materials with
multiple sheets it is prudent to obtain m⋆ from quantum
oscillations rather than the specific heat; the ratio A=γ2 need
not stay constant for mass divergences associated with a heavy
sheet that does not contribute to transport (Mousatov, Berg,
and Hartnoll, 2020).
We first summarize the argument given by Miyake,

Matsuura, and Varma (1989) and Jacko, Fjærestad, and
Powell (2009), which shows that, with certain assumptions,
the scaling A ∝ m2⋆ in a Fermi liquid follows from the
Kramers-Kronig relation. We recalled in Sec. IV.A that in a
Fermi liquid

Σ00ðωÞ ¼ −α2½ω2 þ ðπkBT=ℏÞ2� ðC1Þ

for frequencies 0 ≤ jωj < ωc. If the strength of scattering is
“order 1” at the cutoff ωc, then one expects α2 ∝ 1=ω2

c .
We assume this scaling in the following. Using Eq. (C1)
in the Kramers-Kronig relation (12) gives the mass
renormalization

m⋆
m

¼ 1þ 2α2ωc

π
∝

1

ωc
: ðC2Þ

In the second step we assume that the mass renormalization
dominates the bare term. The relation ωc ∝ 1=m⋆ implies
that the cutoff is proportional to the renormalized Fermi
energy EF⋆. Finally, we must also assume that jΣ00ðωÞj does

not continue increasing beyond the cutoff frequency ωc.
With that assumption, while the contribution from high
frequencies ω > ωc may alter the coefficient of the correc-
tion in Eq. (C2), they will not change its dependence on ωc.
Thus, we conclude that α2 ∝ 1=ω2

c ∝ m2⋆.
Recall from the discussion following Eq. (28) that the

resistivity can be written in terms of unrenormalized quantities
as ρ ¼ mjΣ00ð0Þj=ne2. Using the self-energy (C1) gives

ρ ∝ α2T2 ∝ m2⋆T2; ðC3Þ

which is the desired result. Writing ρ ∝ m⋆=τ in terms of the
physical mass and scattering rate gives

1

τ
∝ m⋆T2 ∝

T
EF⋆

kBT
ℏ

≪
1

τPl
: ðC4Þ

This expression for the quasiparticle lifetime agrees with the
result obtained from a simpleminded Fermi golden rule
scattering computation that uses the renormalized mass to
obtain the scattering phase space and an electronic scattering
strength that is order 1 in units of the renormalized mass. It
serves as an illustration of the point made in Sec. IV: to extract
the physical lifetime in a Drude-style analysis, the renormal-
ized mass should be used.
This simpleminded perspective can be legimitized

from the viewpoint of the Wilsonian renormalization group,
as we now explain. The computation of the decay rate
involves modes only within an energy width T of the Fermi
surface. One may obtain an effective Hamiltonian for these
low energy modes by integrating out all modes at energies
above T. If the temperature T ≪ ωc, this integration
over modes with frequencies from T to ωc accounts for
essentially the entire mass renormalization (C2). The effec-
tive low energy Hamiltonian therefore contains the renor-
malized mass m⋆, which should then be included both in
Fermi’s golden rule and in the Drude formula. If one finally
assumes that the low energy Hamiltonian is “natural” (that
is, all dimensionless coupling constants in the effective
theory are order 1), then one obtains Eq. (C4) as well
as ρ ∝ m2⋆T2.
We now consider the case where the Fermi liquid arises

below a collapsing “quantum critical fan,” as in Fig. 6. Away
from the quantum critical point, the critical modes are
gapped at an energy scale Δ. In the low-temperture
Fermi-liquid regime T ≪ Δ, the critical modes can be
integrated out along with the high energy electronic modes
to give an effective Hamiltonian for physics at energy
scale T, where all high energy dynamics have been sub-
sumed into the renormalized mass m⋆. The result ρ ∝ m2⋆T2

will then follow as previously. Consistent with this con-
clusion, measurements in the iron-based superconductor
BaFe2ðAs1−xPxÞ2 (Walmsley et al., 2013; Analytis et al.,
2014) and in the heavy fermion material CeRhIn5 (Shishido
et al., 2005; Knebel et al., 2008) suggest that the coefficient
of the Fermi liquid T2 resistivity does indeed suitably track
the divergence of the effective mass, as measured by
quantum oscillations, upon approaching the critical point
at fixed low temperature.
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Arean, D., R. A. Davison, B. Goutéraux, and K. Suzuki, 2021, Phys.
Rev. X 11, 031024.

Ayres, J., et al., 2020, arXiv:2012.01208.
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