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ABSTRACT

We examine the effectiveness of identifying distinct evolutionary histories in IlustrisTNG-100 galaxies using unsupervised
machine learning with Gaussian mixture models. We focus on how clustering compressed metallicity histories and star formation
histories produces sub-population of galaxies with distinct evolutionary properties (for both halo mass assembly and merger
histories). By contrast, clustering with photometric colours fails to resolve such histories. We identify several populations of
interest that reflect a variety of evolutionary scenarios supported by the literature. Notably, we identify a population of galaxies
inhabiting the upper red sequence, M, > 10'° M, that has a significantly higher ex-situ merger mass fraction present at fixed
masses and a star formation history that has yet to fully quench, in contrast to an overlapping, satellite-dominated population
along the red sequence, which is distinctly quiescent. Extending the clustering to study four clusters instead of three further
divides quiescent galaxies, whereas star-forming ones are mostly contained in a single cluster, demonstrating a variety of
supported pathways to quenching. In addition to these populations, we identify a handful of populations from our other clusters
that are readily applicable to observational surveys, including a population related to post-starburst galaxies, allowing for possible

extensions of this work in an observational context, and to corroborate results within the IlustrisTNG ecosystem.
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1 INTRODUCTION

In concordance cosmology, galaxies form within dark matter haloes
and follow hierarchical evolutionary histories (Cole et al. 2000).
The so-called galaxy—halo connection is an umbrella term that
attempts to capture the complex relationship between the evolution
of galaxies and their haloes (e.g. Wechsler & Tinker 2018). For
example, the observed spatial distribution of galaxies is reasonably
well modelled by populating dark matter haloes of different masses
(and other properties, such as age) with different types of galaxies
(e.g. Zehavi et al. 2005; Guo et al. 2014), and the role of mergers
— a prominent prediction of hierarchical structure formation — has
long been considered in the growth of galaxies (e.g. Wake et al.
2006; Bundy et al. 2009; Tojeiro et al. 2012; Moustakas et al. 2013),
galaxy morphological transformation (e.g. Bertone & Conselice
2009; Martin et al. 2018), the quenching of star formation (e.g.
Pawlik et al. 2018), or the onset of active galactic nuclei (AGNs)
(e.g. Villforth et al. 2014). However, the evolution of haloes is not
directly observable, and the evolution of galaxies is only partially
observable: star formation and metallicity histories give key insights
into major evolutionary events, but do not account for the entirety
of it. Cosmological hydrodynamic simulations have shown that
star formation histories (SFHs) are extraordinarily sensitive to a
variety of factors and consequently produce a large scatter driven
by these parameters, rendering evolutionary descriptions incomplete
(e.g. Lagos et al. 2016; Diemer et al. 2017; Cochrane & Best 2018).
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Simulations allow for non-observable halo and galaxy properties to
be considered in the context of their evolution; e.g. dark matter, local
environment, halo concentration, and halo mass assembly histories
(MAHSs) have been successfully modelled. As a consequence, as
simulated galaxies begin to match observed galaxies on a range
of properties and redshifts (e.g. Henriques et al. 2015; Pillepich
et al. 2017a; Davé et al. 2019), questions regarding the impact
of halo evolution on the evolutionary histories of galaxies can be
explored. Given the large parameter space that galaxy observables
occupy, simulations can be used to explore emergent relationships
between different parameters, which were not originally considered
(e.g. Tojeiro et al. 2017).

Simulations like IllustrisTNG (Nelson et al. 2017, 2018; Pillepich
et al. 2017b; Springel et al. 2017; Marinacci et al. 2018; Naiman
et al. 2018), EAGLE (Schaye et al. 2014), and SIMBA (Davé et al.
2019), and their associated bodies of literature present a remarkable
opportunity, as they contain thousands of simulated galaxies, with
a multitude of observable and non-observable parameters, governed
by a vast array of non-linear, multivariate relationships. This has led
to work that explored the use of unsupervised learning techniques
to uncover data-driven relationships that we would not be privy
to a priori. One source of success was in applying dimensionality
reduction, through the form of principal component analysis (PCA),
which has seen application to a wide variety of fields in astrophysics
and in galaxy evolution. Dimensionality reduction can result in the
discovery of physically driven mechanisms present in galaxies and
allows us to quantify them. Lagos et al. (2016), through use of
PCA, uncovered a ‘fundamental plane’ of star-forming galaxies,
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driven by a correlation between the star formation rate, the neutral
gas fraction, and the stellar mass. These three variables were seen
to account for the majority of the variance seen in galaxies, and
the authors were able to interpret the shape of this fundamental
plane as a result of the self-regulation of the galaxies’ star formation
rates. Another example of the use of PCA in studying relationships
between galaxy observables is Cochrane & Best (2018), which again
employed EAGLE simulation data to study connections between the
star formation rate, dark matter halo mass, and stellar mass across
redshifts. These connections were further examined by splitting of
galaxies as centrals or satellites, and according to their stellar mass.
This sort of analysis is pertinent for us given that it directly links
the SFH with halo parameters, and the PCA seems to suggest a
few physically driven mechanisms at work. The relative strength of
this M,.—M;,—SFR relation varies based on the galaxy’s mass and
central/satellite status, which implies that the driving variables of
the SFH, and their link to the halo, might vary based on the type of
galaxy, in addition to highlighting differences in quenching regimes.

The scatter in SFHs, for galaxies of similar mass, has also been
studied using simulations. Sparre et al. (2015), using PCA on the
Iustris simulation, argue that variability on scales above or below
500 Myr is likely related to different processes, with halo assembly
histories responsible for long time-scale variations and gas accretion
for short time-scale effects. Diemer et al. (2017) fitting SFHs using
log-normals found that the scatter in SFHs could not be uniquely
determined by a single parameter. Cohn (2018), building off of this
work, compared Diemer et al.’s (2017) lognormal model to that
developed with PCA. Although PCA is able to reproduce simulated
SFHs, the authors point out that the underlying assumption of PCA
— that scatter seen in the simulation is but a deviation from a single
underlying SFH — is unlikely to be true. Rather, Cohn states: ‘It is
possible to group galaxies into more than two sub-families, with
each sub-family having similar integrated SFR histories’. Additional
support for this diversity of groups of formation histories is seen in
Carnall et al. (2018). Taken together, these studies propose that we do
not interpret formation histories and their scatter as deviations from
a single, underlying, general SFH, but instead consider the existence
of a series of sub-families, each with different SFHs, and scatter. This
is where the case for unsupervised learning via clustering is strong:
as small populations can contribute little to the overall variance, but
can be distinct and of astrophysical interest.

This sensitivity problem is not unique to SFHs. Halo assembly
histories have consistently demonstrated a multivariate sensitivity
to other parameters. Wang et al. (2020) underscore the impor-
tance of parametrizing the MAH, as even the occurrence of mi-
nor merger events along the evolutionary history of the halo can
drastically alter its structure. They note even small amounts of
accretion can alter the concentration, therein driving the scatter
in the MAH, further affecting other halo parameters. Obreschkow
et al. (2020) and Chen et al. (2020) both emphasize the im-
portance of using the full merger tree for understanding halo
evolution, outlining a major challenge in linking the MAHS to
SFHs, as even subtle differences in parametrization can have drastic
effects.

The sensitivity of MAHSs also affects the baryonic components
of galaxies. Rey, Pontzen & Saintonge (2019) find that MAHs are
enormously sensitive to initial conditions, and that this sensitivity is
extremely influential on the SFH. In particular, they propose that the
larger scatter in SFHs may be partially driven by the sensitivity of
MAHs to parameters surrounding mergers.

Chen et al. (2020) address the sheer diversity of non-observable
parameters that can be used to describe dark matter haloes and
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their MAHs. They outline a variety of possible parametrizations
of the MAH of haloes and uncover a tight correlation between the
MAH of the halo and its concentration. Their analysis finds that
more than 80 per cent of the variance is explained by the MAH. As
stated previously, this means that the scatter of SFHs is not wholly
determined by baryonic processes, as the halo assembly history also
influences the scatter seen in the SFHs, illustrating the influence the
galaxy—halo connection has on these sensitive parameters.

In this paper, we will use the IllustrisTNG-100 simulation to
explore a wide array of observable properties, including but not
limited to SFHs, and use non-supervised machine learning (clus-
tering) to identify sub-families (clusters) of galaxies. Critically, we
will develop an analysis that allows us to take advantage of the
observability of star formation and metallicity histories (see Hahn
et al. 2022) and, through clustering, allows us to directly identify
sub-populations of interest in future surveys. This work does not
rank observables used in clustering per se, but instead focuses on
the populations of interest that may be extracted. Given existing
literature on the driving variables of dark matter haloes, we then aim
to link these identified sub-families to different features of the MAH
of the dark matter haloes and other halo parameters. Our research
questions are as follows: (1) Can non-supervised clustering using
galaxy observables reveal distinct populations in terms of their dark
matter evolution? (2) How do those populations change according to
the observables being clustered?

We consider two classes of observables: optical broad-band
colours and compressed star formation and chemical enrichment
histories. Time-resolved star formation and metallicity histories are
often obtained from optical spectra, sometimes in conjunction with
broad-band photometry (e.g. Tojeiro et al. 2017; Carnall et al. 2018;
Hahn et al. 2022). Evidence shows that the addition of spectra has
an important impact on the fitting process, either by mitigating the
effects of the chosen priors or parametrization (Hahn et al. 2022) or by
significantly sharpening the posteriors (Wild et al. 2020). We might
therefore expect that clustering using star formation and metallicity
histories allows a more detailed separation of galaxy populations.

This paper is organized as follows: Section 2 will detail the
conceptual framework of unsupervised learning and the specific
techniques used in this work. Section 3 will describe the data
pipeline used to extract IllustrisSTNG-100 data and the subsequent
steps needed for use in our clustering, and describe the motivation
for these steps, as well as the framework used to select the number
of clusters. Section 4 will describe the results of our clustering
and highlight the demographics of the sub-populations identified,
and how these populations relate to the evolutionary history of
these galaxies’ dark matter haloes and merger histories. Section 5
will describe the characteristics of the sub-populations previously
identified and place these results in context of the literature and
discuss the role of different data sets. Section 6 will present the main
conclusions of this work and outline areas that are promising for
future work, both in the context of existing simulations and with
observational data.

2 MACHINE LEARNING FRAMEWORK

Unsupervised learning was favoured here over more traditional forms
of machine learning (e.g. supervised) owing to the transferability of
results from observables to non-observables. By clustering, cluster
membership can then be cross-referenced with dark matter halo
properties of the IllustrisTNG simulation, without ever using them
as a clustering variable, allowing us to probe the link between
observables and dark matter halo features.
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Clustering algorithms are effective at identifying distinct popula-
tions within a data set, defined here as populations that separate in
a given parameter space. They are chosen over e.g. PCA for their
ability to identify small distinct populations that may not contribute
meaningfully to data set variance, but might otherwise be of interest
to us.

2.1 Dimensionality reduction

The primary objective of dimensionality reduction is to represent
a large, multivariate data set in a lower dimensional space. This
is primarily achieved by constructing a basis that will adequately
represent a D-dimensional data set in d dimensions. Two common
methods of achieving this are via PCA and non-negative matrix
factorization (NMF), both of which are methods that decompose the
data into a series of basis vectors.

The use of dimensionality reduction with our IllustrisTNG data
was strongly motivated by our interest in the star formation and
metallicity histories and their roles in determining different sub-
populations. The distribution of stellar ages and their metallicity
can be recovered from the simulation with almost arbitrarily high
resolution, making the problem intractable from a clustering per-
spective. At the same time, Hahn et al. (2022) demonstrate the
validity of using compressed star formation and metallicity histories
as the basis vectors for a non-parametric model of the spectral energy
distribution (SED) of galaxies. NMF coefficients are being directly
fitted to 10 million low-redshift galaxies observed by the Dark Energy
Spectroscopic Instrument (Hahn et al. 2022), creating a population of
real galaxies with which our results can be compared. We use NMF
components to represent the star formation and metallicity histories
and smoothed on scales of 414 Myr (three bins), to construct our
basis.

In addition, we use PCA to gauge the distinctness of the clusters
we produce, by comparing the basis vectors. We refer the reader to
Shlens’s (2014) tutorial and Ivezi¢ et al.’s (2014) section on PCA
for a detailed overview. For NMF, we refer the reader to Ivezié
et al. (2014) and Zhu (2016), as this method has often seen use in
representing galaxy SEDs, among other applications, and provides a
technical overview. For both of these methods, we made use of the
built-in implementations ofterred by sklearn (Pedregosa et al. 2011).

2.2 Expectation maximization

As described in Section 3, we ultimately settled on a Gaussian mix-
ture model (GMM) as our clustering algorithm of choice. We made
use of the implementation of GMM offered by sklearn (Pedregosa
et al. 2011). Expectation maximization (EM) is the core method that
governs clustering in several algorithms, including GMM. Here, we
overview its underlying concept.

EM works by making an initial estimate of the posterior probability
[the probability of a data vector x; being in cluster j: p(j|x;)], which can
then be used to find the corresponding parameters of the distribution.
Using these parameters, the probability is updated (the expectation
step). These steps are repeated until it converges on a local maximum,
which effectively means that each data vector, x;, now has an
associated cluster membership, j. In the case of GMM, p(jlx;) is a
Gaussian, but this takes on a more general form for other algorithms
using EM, with starting point being the partial derivatives of the log
likelihood of a given probability distribution (being Gaussian in this
case).

See Cohn (2018) for a caution against modelling individual SFHs
as perturbations around a single mean.
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Table 1. Table of supplementary catalogues used for variables either in
the clustering, or in post-clustering analysis. Catalogues cited as advised
by IlustrisTNG. Catalogue G is from Rodriguez-Gomez et al. (2015, 2016,
2017), and catalogue K is from Nelson et al. (2017) and sources therein.
The photometry and colours from catalogue K use ugriz Sloan Digital Sky
Survey (SDSS) rest-frame bands and a separate entry of UJV bands (rest
frame, but not used for this analysis). The dust model accounts for effects of
obscuration, and is specifically model ‘C” from Nelson et al. (2017), which is
their resolved dust model. For z = 0, this photometry is provided as a series
of absolute magnitudes.

Catalogue index Catalogue name Variables used

G Stellar assembly fInSits fOulgal 5 st fStripped
K SDSS photometry, SDSS ugri magnitudes
colours, and mock fibre
spectra

3 METHODS

MlustrisTNG is a suite of 29 cosmological hydrodynamic simulations
of assorted volume, mass, and resolution. All IllustrisTNG simula-
tions assume the Planck 2015 ACDM cosmological model (i.e. 2, =
0.3089, Q4 = 0.6911, Q;, = 0.0486, Hy = 67.74 km s~! Mpc™!)
(Pillepich et al. 2017a).

The public data sets are divided into 100 ‘snapshots’ in time,
covering a redshift range of 0-20, with a mean separation in time
of 137.6 Myr. Each halo has an associated merger tree, detailing the
properties of the numerous progenitors of the halo at prior snapshots
of the simulation (Jiang & van den Bosch 2014; Nelson et al. 2019).
This work considers the mass assembly and merger history of central
haloes along the main progenitor branch (MPB) of the tree, i.e. the
history specific to the most massive halo at each snapshot.

IlustrisTNG is run on three volumes. The runs are denoted as
TNG-50, TNG-100, and TNG-300, which are approximately 50,
100, and 300 Mpc across, respectively. TNG-300 has the largest
sample of galaxies, at the cost of the lowest resolution, suited for
high-mass objects. By contrast, TNG-50 is more suited for studying
internal processes of galaxies and the structures of individual sub-
haloes (Nelson et al. 2018). We opted to use the TNG-100 simulation,
balancing statistics with resolution. IllustrisTNG incorporates super-
massive black hole feedback, primordial magnetic fields, and an
upgraded galaxy evolution model (see Nelson et al. 2018 for details).

3.1 Data extraction: baryonic properties

We took a mass cut of galaxies of log M,/ Mg > 9.5 at the final
snapshot (z = 0), giving a total of 12 535 galaxies.

We extracted the ages and metallicity of all stellar particles bound
to each sub-halo in our sample, up to two effective radii. The SFHs
were computed as the mass formed in each of 100 bins of lookback
time, linearly spaced between O and the age of the Universe at z =
0. The metallicity histories were computed by taking the the mass-
weighted metallicity in the same bins. Metallicity is defined as the
mass fraction in elements heavier than He. We complemented our
data with TNG public catalogues; these are summarized in Table 1.

3.2 Pre-processing

We compressed the SFHs using NMF, in order to reduce the
dimensionality of our data. We prefer to use NMF over, for example,
PCA, due to the non-negativity constraints on the basis vectors.
Doing so allows us to interpret basis vectors physically, as stellar
mass or metallicity.
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Selected galaxies: Full SFH vs NMF reconstruction, bin size = 0.137999 Gyr
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Figure 1. Plot of three reconstructed SFHs and metallicity histories, smoothed and decomposed into four NMF components. Generally, the overall behaviour
of the SFHs is captured, and the integrated stellar mass of the reconstruction is consistent with the original integrated stellar mass of Fig. 2.

To ensure that the NMF preserves the major features and re-
lationships in the SFHs, we normalize the star formation using
a maximum absolute value normalization. This ensures that the
maximal value of an individual galaxy’s SFH is 1 and minimum is
at 0.

We determined the number of components needed by comparing
NMF-reconstructed SFHs with the originals. At around four compo-
nents, we are able to sufficiently reconstruct most SFHs (see Fig. 1).
Their integral gives a stellar mass within 0.1 dex of the original, in
line with observational uncertainties (see Fig. 2). Specifically, we
find only 2 galaxies with integrated stellar masses away from the
original by 0.2 dex, and 47 away from the original by 0.1 dex. None

exceeds a deviation of 0.21 dex. This methodology was extended to
metallicity histories, where we again found four components as being
sufficient in representing the majority of metallicity histories. While
we expect that a higher number of components would be needed to fit
individual galaxies [e.g. Hahn et al. (2022) require a stochastic burst
in addition to four smooth NMF components in order to reproduce
realistic galaxies], populations of galaxies can be described by a
smaller number of smooth components (Chaves-Montero & Hearin
2021).

Additional parametrizations for star formation and metallicity
histories were explored, e.g. taking mass-weighted means of the
metallicity, identifying the peak of the formation histories, comparing
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Figure 2. A normalized histogram of the integrated SFHs, comparing
between the original SFHs and the reconstructed ones. Most (99 per cent)
fall within the threshold of 0.1 dex, with only a handful exceeding that, the
greatest by no more than 0.21 dex. The galaxy number does not correspond
to the subhalo ID.

the timing of these peaks, and the net change in SFH between
adjacent bins. Ultimately, while incorporating these parameters did
contribute to an interesting set of clusters, we found these clusters
could be partially reproduced through using a smaller parameter
space, populated by NMF representations of the star formation and
metallicity histories.

3.3 Data extraction: dark matter properties

We use the halo MAHs as computed in Chittenden & Tojeiro (2022)
and summarize how they are computed in this section.

The dark matter halo’s mass accretion rate is defined using the
Friends-of-Friends (FoF) group mass enclosed within a sphere whose
density is 200 times the cosmic critical density at the given time, and
whose radius is defined accordingly. We convert this to the rate of
accretion onto the halo by finite differencing along the MPB with
respect to the time #; at each snapshot, per equation (1).

M, (t;) — My(ti—1)

My (t;) = pR—
i — i

)

The amplitude and geometry of such accretion rates are useful
indicators of the manner of ongoing halo formation. Smooth accre-
tion of dark matter is usually characterized by small gradients in the
accretion rate, whereas merger events present more instantaneous or
sharply rising peaks.
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3.4 Defining clusters

We considered and tested a number of clustering algorithms. We
did this by clustering a subset of our parameter space: the peak star
formation rate, mass-weighted mean metallicity, and stellar mass —
a compressed representation of the parameter space we wanted to
explore. We found that GMMs were preferable, as the cluster labels
they produced cluster with distinct populations that aligned with the
results of visual inspection, which is feasible in a low-dimensional
parameter space. Next, we had to decide on the number of clusters,
as EM algorithms like GMM require this to be dictated a priori.
Scoring metrics assign a score to a set of clusters, according to
Pedregosa et al.’s (2011) implementation of the Silhouette score
(Rousseeuw 1987), Calinski—Harabasz index (Caliniski & Harabasz
1974), and the Davies—Bouldin Index (Davies & Bouldin 1979).
Although scoring metrics attempt to determine the optimal number
of clusters, their accuracy is questionable — in our tests, different
metrics often produce different results. Instead, we developed a
‘consensus framework’ consisting of the following steps:

(1) Clustering the entire data set with N = 2 Mpc clusters, where
Mgc is the number of clusters as recommended by the Bayesian
information criterion (BIC). BIC assumes a Gaussian distribution,
and penalizes overfitting; therefore, the number of components that
extremizes the BIC is the upper limit, as it assumes fully Gaussian
data (Ivezi¢ et al. 2014).

(ii) Scores are computed for different metrics (Silhouette score,
Calinski—Harabasz index, and the Davies—Bouldin index). Each
recommends a certain number of clusters.

(iii) If the number of clusters suggested by all three metrics is the
same, then there is a clear agreement on the clustering, and we run
through it with the validation set to verify and use it as the definitive
set of clusters.

(iv) If the number of clusters is in agreement, but not in consensus
(i.e. a 2-1 vote), we use the validity index, a scoring system defined
by Moulavi et al. (2014). If there is still no agreement, then it merits
further visual inspection. A final decision is made based on visual
inspection.

We consistently found three and four clusters as being a well-
supported choice. It also produced clusters whose parameter distri-
bution appeared reasonable under visual inspection. The selection of
three or four clusters is not wholly authoritative, as other clusterings
could still be found to have distinct populations — the number of
suggested clusters ranged from 2 to 5, depending on the score.

We argue that our methodology supports the choice of three and
four clusters, which we also confirmed by investigating if they are
distinct via PCA.

We ran PCA on each cluster and on the entire population of
galaxies. Comparing the eigenvectors in each case allows us to
determine whether the sub-population being surveyed is distinct from
the overall population.

Fig. 3 demonstrates this process. We first sub-divide our data
set into four populations, each with a corresponding number of
galaxies as in our clusters, but the galaxies themselves randomly
selected. We then run a Monte Carlo simulation of the PCA on these
facsimile sub-population, recording their eigenvectors. We then take
our clusters and run PCA on each of them, in the same manner
(50 000 times for each sub-population). We ran it 50 000 times for
the randomly sampled subsets (black), and the clustered populations
(colour) in the resulting eigenvectors are plotted in Fig. 3. Seeing
how the distributions of both the random sub-sample’s PCA and
the corresponding sub-population’s PCA vary, we can then conclude
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Figure 3. Comparison of the PCA eigenvectors of both a given cluster (run 50 000 times) and a randomized subset of galaxies from IllustrisSTNG. The shaded
regions are the 5th/95th percentiles and demonstrate that each cluster consists of populations whose PCA components do not fully overlap with each other, nor
do they resemble the general population of 12 535 galaxies used. This is how we establish that the sub-populations (as identified by our clusters) are distinct.
The dark lines and their shaded regions are random equivalents of a selected population (i.e. a random subsample of galaxies, selected without the cluster labels,
was selected and run through the same procedure, to demonstrate that the populations identified differ from a random subsample).

that these populations are considered ‘distinct’. Although only shown
here for one case, we perform an equivalent PCA on all cluster sets
detailed in the next section.

3.5 Procedure

Our analysis worked in two stages. First, we determined clusters
with ‘observables’ from IllustrisTNG. We defined sets of clusters
based on the NMF compression of star formation and metallicity
histories and/or optical colour — see Table 2 for a summary. Secondly,

we linked these clusters to dark matter halo parameters: the mass-
weighted age, the halo MAH, the stellar in/ex-situ mass fractions,
and the dark matter fraction.

We also select for central and satellite galaxies by defining centrals
as the most massive subhalo in a given group in the FoF haloes
group catalogue. All other galaxies are treated as satellites. The
breakdown of centrals and satellites is outlined in Table 3. We can
then cluster the data and determine the cluster labels for the full data
set and apply the central/satellite splits. We evaluated the similarity
of these distributions by also comparing the results of a two-sided
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Table 2. Key features of each cluster set: their dimensionality (number
of parameters clustered), the number of clusters produced, and a short
description of the parameter space.

Case Number of clusters  Dimensions Description

A 3 3 Populations from clustering
three photometric colours u
—g,g—r,andr —i.
Populations from clustering
NMEF compressions of star
formation and metallicity
histories.

Populations from clustering
with parameter space of cases
A and B.

Populations from clustering
three photometric colours u
—g,g—r,andr —i.
Populations from clustering
NMF compressions of star
formation and metallicity
histories.

Populations from clustering
with parameter space of cases
D and E.

Table 3. Summary table of each of the six cases explored in this work. Here,
we enumerate the number of galaxies that were identified in a given case as
central or satellite, and their breakdown across clusters. While there are some
differences between our major cases of interest (cases B, C, E, and F), we
can see some analogous features. In particular, the satellite dominance of one
of the clustered populations, typically inhabiting the lower red sequence, is
readily apparent for cases B and C.

Case Cluster Ncentrals Nsaellites %Centrals %Satellites
A 1 1043 2048 33.74 66.26
A 2 4523 1628 73.53 26.47
A 3 1671 1622 50.74 49.26
B 1 390 1464 21.04 78.96
B 2 5200 2696 65.86 34.14
B 3 1647 1138 59.14 40.86
C 1 5193 2333 69.00 31.00
C 2 760 1723 30.61 69.39
C 3 1284 1242 50.83 49.17
D 1 179 372 32.49 67.51
D 2 930 1830 33.70 66.30
D 3 5121 1879 73.16 26.84
D 4 1007 1217 45.28 54.72
E 1 3369 1737 65.98 34.02
E 2 96 701 12.05 87.95
E 3 2804 1664 62.76 37.24
E 4 968 1196 44.73 55.27
F 1 5022 2259 68.97 31.03
F 2 714 1091 39.56 60.44
F 3 1405 1245 53.02 46.98
F 4 96 703 12.02 87.98

Kolmogorov—Smirnov (KS) test on the ex-situ mass fractions from
mergers. This is because almost all the galaxies in our population
have a non-zero ex-situ mass fraction from mergers, so comparing
the KS test result for these statistics is critical. Our criterion for
similarity was defined as the two-sided KS test producing a p-value
of greater than 0.05.
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4 RESULTS

Fig. 4 visualizes all of our cluster sets (as described in Table 2) as
colour—stellar mass plots. Stellar mass was not used in the clustering,
and optical g — r colour was only used in some of the sets. We show
a colour—stellar mass diagram to situate the discussion, which we
will often phrase in terms of a red sequence, a blue cloud, or a
green valley. We outline the general description of each case and
cluster in Tables 3 and 4, and a breakdown of their central/satellite
membership.

For a more exhaustive overview of each section, we refer the reader
to the subsections below. We ordered these subsections based on their
importance to our task of identifying distinct populations.

Throughout our discussion of each set of clusters, we will refer to
plots of mean SFHs, metallicity histories, halo assembly histories,
and histograms of the fraction of stellar mass assembled ex-situ by
mergers and flybys. We diminish the role of stellar mass in our results
by focusing our discussion — and our plots — in a fixed stellar mass
interval, corresponding to 10-11 in log M,/M. This interval samples
most of our clusters well while avoiding the extremes of the galaxy
population. We have kept a consistent colour scheme in all plots,
such that red represents the most quenched population, blue the most
star-forming population, and green the remaining population. In the
case of four clusters, we have represented the new population in pink.

We found that clusters determined using the star formation and
metallicity histories were especially effective in identifying popu-
lations with distinct evolutionary histories. By contrast, clustering
with broad-band colours while effective in differentiating between
different SFHs was not as effective in distinguishing other evolution-
ary aspects. Here, we will highlight the different clusters we found
and summarize their features, both observable and non-observable,
and how that distinguishes their respective evolutionary histories.
We find that cases A and D with photometric colours produce only
superficial distinctions in their populations as we discuss below. We
also find that case C fails the two-sided KS test, as the probability of
two distributions being drawn from the same probability distribution
function is significant (p > 0.05). For case F, this complicates
comparisons with case C, so we opt to study cases B and E in
greater detail, and place them first in this section.

4.1 NMF-derived clusters — case B

The mean star formation and metallicity histories of each cluster are
shown in Fig. 5, the dark matter halo assembly histories in Fig. 6,
and the fraction of mass accreted by mergers and flybys in Fig. 8.
In the colour—mass diagram (Fig. 4), we found that the clusters split
along the lines of a star-forming, blue cloud population of galaxies
(cluster 2), with two other clusters coming from a split in the ‘red
sequence’ population of quiescent galaxies, largely corresponding to
their stellar mass, but not entirely driven by it. In the mass range of
10-11 dex, one such sub-population (cluster 1) is satellite dominated
(78.96 per cent) with a late peak in its MAH at approximately 6 Gyr
in lookback time, while the other is primarily dominated by central
galaxies with a consistently higher ex-situ mass fraction, sourced
from mergers (cluster 3); see Fig. 8 for reference. Moreover, the
mass-weighted ages of the stellar matter and the dark matter haloes
can be taken in contrast with each other to highlight differences in the
formation histories of these populations. In cluster 1, the halo mass-
weighted age is 7.681’{:‘5 Gyr, whereas its stellar mass-weighted age
is 9.917}35 Gyr, indicating that most of the star formation seems
to precede significant growth of the final halo. As convention, we
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Figure 4. Colour—mass plot of the six different cases we explored in detail. This plot serves to situate the reader, covering the different clusterings we explored.
These cases were the clusters that emerge when clustering u — g, g — r, and r — i colours (left column), as well as NMF-4 component representations of the
star formation and metallicity history (middle column), and the result of clustering the latter together (right column). The top row focuses on cases with three
clusters, and the bottom row focuses on cases with four clusters. Generally speaking, while there are a great deal of similarities between cases, this colour—mass
plot only serves to situate the reader, as other metrics were needed to quantify the differences in these evolutionary histories. The black lines denote the mass

range used for our fixed-mass figures.

Table 4. Summary table of the populations identified in Fig. 4, and the general descriptions of each of the clusters produced by our GMM. See Section 4 for a

qualitative breakdown.

Case Cluster 1 Cluster 2 Cluster 3 Cluster 4

A Red sequence population of Blue cloud population of galaxies: ~Green valley population of
galaxies: quiescent and high g — r  star-forming and younger. galaxies.
colour.

B Low-mass red sequence Blue cloud, primarily populated High-mass red sequence
population of galaxies mostly with star-forming galaxies and population, tapers off below
satellite dominated, with some some galaxies inhabiting the stellar masses of 10.5 dex, with
overlap with cluster 3 in terms of ~ ‘green valley’. considerable overlap with cluster
mass, but with some drastic 1 of this population. Primarily
differences in its evolutionary dominated by centrals.
history.

C Blue cloud population of Red sequence population of Green valley population of
star-forming galaxies. galaxies, mostly quiescent. star-forming galaxies.

D Sub-population of blue cloud Red sequence population of Blue cloud population of galaxies: Green valley population of
population of galaxies, across galaxies: quiescent and high g — r  star-forming and younger. galaxies in addition to some
various masses and parts of the colour. redder galaxies.
colour gradient.

E Blue cloud population of galaxies. Very red subset of the red Green valley population, with Mostly red sequence galaxies
Relatively active star-forming sequence. Predominantly lower some galaxies from upper red ranging from low to high mass.
population. mass galaxies up until 11 dex. sequence.

F Blue cloud population of galaxies, Portion of the red sequence across A segment of the red sequence, Segment of lower red
generally a star-forming all masses, excludes less red across all masses, notably sequence, typically a much
population. portion. Relatively narrow range excludes some redder, less redder population (in terms of

of g — r colour.

massive galaxies.

g — rcolour).
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Figure 5. Case B: Clusters generated using smoothed NMF components
of the star formation and metallicity histories. The ensuing populations are
distinct in terms of both metallicity histories and SFHs, with the most striking
feature being a division of the red sequence, with the upper portion (higher
mass) having yet to fully quench, even along a fixed mass interval. Galaxies
in this upper population (cluster 3) clearly seem to be experiencing something
that prevents them from quenching as quickly as those seen in cluster 1. See
Section 5 for more details.

denote the mass-weighted quantities with their mean age and their
16th/84th percentiles.

4.2 NMF-derived clusters — case E

By re-running the clustering for four clusters, we can explore what
additional sub-populations might be lurking in our data set, and
what features might distinguish them. The mean star formation and
metallicity histories of each cluster are shown in Fig. 9, the dark
matter halo assembly histories in Fig. 7, and the fraction of mass
accreted by mergers and flybys in Fig. 11. It is important to note that
adding a cluster means that the data set as a whole is re-clustered,
meaning that some of the populations identified in a three-cluster
case may not persist in a four-cluster case.

Adding a fourth cluster produces a population that begins to
significantly quench 8-6 Gyr ago, using Fig. 9 as a reference. This
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Figure 6. Case B: Median MAHs of the dark matter haloes of the galaxies
from case B, with 1o values shaded in. Here, we find that like all other
cases, the greatest differences can be seen in the halo MAH of the satellite
galaxies of a given cluster, rather than their centrals. We find that besides a
slight variation in the overlap of median histories of clusters 1 and 3 for their
centrals, the histories of the central galaxies barely vary, peaking early and
diminishing as we approach the present. By contrast, the satellites in each
of these clusters have distinct periods of time at which their MAHs peak
(lower panel). The satellite-dominated population of cluster 1 peaks the most
recently, approximately 6 Gyr ago. Meanwhile, merger-rich cluster 3 peaks
further in the past, at 8 Gyr lookback time. These peaks might be suggestive
of a period of more active mergers occurring for these respective galaxies,
per Fig. 5 at these times. It is also demonstrative of the underlying differences
identified by our clustering. Note that the solid line is a median.

also means we get a population quenching 5-2 Gyr ago, and another
just beginning to quench around 0.5-1 Gyr ago. The final population
best fits the characteristics of a blue cloud population: star formation
is continuing relatively unabated.

This sub-population that quenched long before the others is
extremely satellite dominated (87.95 per cent) compared to the other
populations, but also a relatively small sub-population (797 galaxies
out of a set of 12 535; see Table 4). It has the greatest difference
in median ex-situ mass fraction for mergers (half an order of
magnitude), and second largest for flybys, indicating that this is a
population where mergers play a critical role in its evolution, and
is more akin to other populations that are merger driven, i.e. cluster
4. What is notable as well, considering clusters 1, 2, and 3, is that
while the mean SFHs all peak at similar times, their quenching time-
scale as a population varies greatly. Moreover, we find in terms of
mass-weighted ages for the halo and stellar mass, only clusters 1
and 3 have an older mass-weighted stellar age than halo age, with a
difference of over 3 Gyr for cluster 1. This seems to indicate that most
of the stars have formed prior to the final halo being fully assembled.
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Figure 7. Case E: Median MAHs of the dark matter haloes of the galaxies
from case E. Here, we find that like all other cases, the greatest differences can
be seen in the halo MAH of the satellite galaxies of a given cluster, rather than
their centrals. In fixing for stellar mass, we find that the satellites in cluster 2
have the most recent peak in their assembly history around 5 Gyr ago, cluster
4 has a peak around 8 Gyr ago, and clusters 1 and 3 have overlapping peaks
around 10-11 Gyr ago. A point of contrast is comparing these recent peaks
in the median MAH with the SFHs in Fig. 9, which are indicator of the role
this growth in the halo plays in the stellar evolution. We explore this in detail
in Section 5.

By contrast, a blue cloud population has significantly younger stars
than its halo’s mass-weighted age, indicative of the opposite. Given
there is also a distinct lack of overlap between the two quenched
populations (clusters 1 and 3), per Fig. 9, it is interesting that these
populations have galaxies peaking at similar times of their SFH, but
quenching across a wide range of time-scales.

When we end up increasing the number of clusters to 4, we
found that this new population ends up selecting for galaxies that
are relatively lower in mass, but are very extinct, and very much
dominated by satellites.

As in the other populations, the mass-weighted age of the halo
is older than the stellar matter. In the high ex-situ mass fraction
population, this amounts to ages of 8.681070 and 8.277112 Gyr, ages
that practically overlap, indicating that these mergers would play a
role in star formation and evolution.

In focusing on the non-observable quantities, we find the distribu-
tion of satellite galaxies in these two populations to be of interest, as
the older population (cluster 1) is distinctly dominated by satellites,
and has a smaller flyby and merger ex-sifu fraction than cluster
3, which is split more evenly in terms of their central/satellite
demographics. This demonstrates that the addition of a single
cluster reveals interesting populations with characteristic features,
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Figure 8. Case B: Distribution of ex-situ mass fraction from mergers (left
column) and flyby events/ongoing mergers (right column) from IllustrisTNG-
100 galaxies, split by cluster membership. Both the centrals and satellites in
quiescent populations like clusters 1 and 3 for case B have very distinct
peaks in the merger mass fraction and flyby/ongoing merger mass fraction
distributions, which are distinct between centrals and satellites. Notably, it
seems that galaxies in cluster 3 of case B, especially central galaxies, are
likely to source an order of magnitude or more of their ex-situ mass fraction
from mergers than galaxies in the other sub-populations. Considering this
in conjunction with the mean SFHs of Fig. 5, this suggests the role mergers
might play in the rate of quenching of these galaxies. While these distributions
do shift when fixing for mass, the distributions are still distinct.

namely the sheer diversity of quiescent galaxies, possibly linked
with different evolutionary histories. This is discussed in Section 5.

4.3 Colour-based clusters — case A

In case A, we cluster based on optical colour only and consider
three clusters. We found that while there were superficial differences
seen in the colour-mass diagram (Fig. 4), these did not extend to
differences in the stellar evolution or, more importantly, the ex-
situ mass fractions and the MAH. The metallicity histories, unlike
the SFHs, overlap significantly. The ex-situ merger mass fraction
medians between the blue cloud of cluster 2 and the green valley of
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Figure 9. Case E: Plot of mean SFH and metallicity histories with 1o regions
shaded in, with clusters generated using smoothed NMF components of the
star formation and metallicity histories. The ensuing populations are distinct
in terms of both metallicity histories and SFHs. The most striking feature is
the split of these means: three out of the four populations are at some stage of
quenching, with two of them having decisively quenched (clusters 2 and 4).

cluster3are —1.06 and —1.11 versus —1.09 and —1.21 for central and
satellite sub-population, respectively, and —3.02 and —3.18 versus
—2.99, —3.20 for flyby mass fractions. The overall distributions are
very similar as well, underscoring that these populations are not
really as distinct as the rest. This distinction criterion is ultimately
qualitative.

In contrast to the populations discussed in the previous subsec-
tions, here we highlight the limitations in distinguishing between
galaxies across parameters ranging from observables (metallicity
histories) to intrinsic parameters (dark matter halo MAH and merger
histories).

4.4 Colour-based clusters — case D

In case D, we cluster based on optical colour only, but now consider
four clusters. The mean star formation and metallicity histories of
each cluster are shown in Fig. 10.
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Figure 10. Case D: Plot of mean SFH and metallicity histories with lo
regions shaded in, with clusters generated using photometric colours. The
ensuing populations are not as distinct as in other cases discussed (e.g. Figs 5—
9), but special attention should be paid to cluster 1’s late evolution in the
last few Gyr. As we argue in Section 5, this could serve as a shorthand
for identifying post-starburst galaxies. These galaxies possess: an interesting
evolutionary history, as evidenced by its ex-sifu mass fractions.

While clustering with only photometric colours does not really
allow us to uncover much about the dark matter halo’s evolutionary
history, the four-cluster case produced novel populations with distinct
features that are worth examining in an observational context. In the
discussion we will opine on some possible characteristics, but here
we will summarize the key attributes. The clusters in this case are very
similar to those of case A, with a star-forming population, a quiescent
one, and a population that inhabits in between (green valley). The
added caveat is that the last population incorporates some lower mass
and redder galaxies, and that the last cluster (cluster 3) incorporates
a subset of galaxies from the ‘blue cloud’. What is apparent with
cluster 1’s galaxies is that while these galaxies at fixed masses have
similar star formation and metallicity histories, they tend to slightly
exceed cluster 3’s average in SFH and metallicity history in the last
2 Gyr (Fig. 10). Their ex-sifu mass fraction distribution is unique in
that the merger mass fraction has a similar median as cluster 1, but

£20Z Aey 61 uo Jasn Aselqi] smaipuy 1S 10 AlsiaAlun A 6595869/85/S/b/2ZS/8101NB/SBIUW/WOD dNo-oIWapeoe//:sdny WoJj papeojumoq


art/stad015_f9.eps
art/stad015_f10.eps

Unsupervised learning of IllustrisTNG populations

Ex-situ mass fraction
from flybys case: E

Ex-situ mass fraction
from mergers case: E

2504
[ cluster 1 [ cluster1
cluster 1 1004 cluster 1
2004 satellites satellites
] central ] central
% median -0.94 2 800 T median 294
% ol satellite % 7777777 satellite
80150 median -1.04 o median -3.03
[ [
S 3]
—E 1004 jg
£ £
3 3
=2 =2
501

-6 -5 -4 -3 -2 -1
Log(Merger Mass Fraction)

-8 -7 -6 =5 —4 -3 =2 —1
Log(Flyby Mass Fraction)

cluster 2 cluster 2
404 cluster 2 307 cluster 2
satellites satellites
9 cent!ral £ 954 cent_ral
= median -1.07 < median -2.96
= 30+ satellite = satellite
o | : 50204 - ;
o median -1.43 o median -3.71
S S i
Ny s i
é 20 }é 15 |
2 = 10 :
=2 g = H
10’7#?& |
; 5 |
0+H—=—= ‘ ' H—— ‘
-6 -5 -4 -3 -2 -1 -8 -7 -6 -5 —4 =3 -2 -1
Log(Merger Mass Fraction) Log(Flyby Mass Fraction)
=04 T
250 [ cluster 3 [ cluster 3
cluster 3 150+ cluster 3
. satellites satellites
4 2007 central £ 125 central
'g median -1.21 'g median -3.09
- satellite - satellite
S1504 median -1.28 U-L &1007 - median -3.30
5 5 U
o] g 75 U
2100 2 i
Z: Z: 504
254
0+
-6 -5 -4 -3 -2 -1 -8 -7 -6 -5 -4 -3 -2 -1
Log(Merger Mass Fraction) Log(Flyby Mass Fraction)
1504 1 cluster 4 -94 [—J cluster 4
? cluster 4 0 cluster 4
. E tellites 604 E atellites
9 1254 central ] v central
= median -0.78 = median -2.39
- Ilit 8 50 tellit
= 1004 . sate_l e il R satellite n
f_” median -1.10 f_” median -3.28
5 | 5 40 t ﬂ
5" 250 '
Es £
= 50 = 1

l .
-8 -7 -6 -5 -4 -3 -2 —1
Log(Flyby Mass Fraction)

-6 -5 -4 -3 -2 -1
Log(Merger Mass Fraction)

Figure 11. Case E: Distribution of log ex-situ mass fraction from mergers
Jm (left column) and flyby events fgyby (right column) from IlustrisTNG-
100 galaxies, split by cluster membership. Cluster 4 is notable in that the
distribution of fryby across centrals and satellites has different medians and
peaks around —2 and —3, respectively — a stark contrast to other quenched
populations (clusters 2 and 3), whose friyby is not as decoupled. This indicates
mergers might play a role in delaying quenching in cluster 4 compared to
the other populations. Of interest is cluster 3, whose wide spread in the
distribution of fyy might be indicative of differences in the merger history
compared to other clusters. One could posit that it challenges whether or not
this population is actually a green valley population, as mergers are expected
to be a key component in the transition from blue to red populations.
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the flyby mass fraction is considerably higher, median value of —2.45
for satellites and —3.08 for centrals, indicating that unlike any of the
populations found in this clustering or cases B and E, the satellites are
sourcing more of their ex-sifu mass fraction from flybys than centrals,
and the distribution is almost bimodal. This must be taken with the
caveat of relatively low statistics, with only 551 galaxies total in the
population and it being (67.51 per cent) satellite dominated, versus
66.30 per cent for the red sequence and 26.84 per cent for the blue
cloud population. We discuss the potential this population has as a
shorthand for identifying post-starburst (PSB) galaxy populations in
our discussion.

4.5 Colour- and NMF-derived clusters — case C

We explored the clusters that would emerge if we combine the
parameter spaces used in previous sections: NMF representations
of star formation and metallicity histories alongside photometric
colours. Our reasoning was twofold: to explore the overall utility
of photometric colours as additional parameters, and to highlight
additional sub-populations of interest.

Despite the fact that populations produced greatly resembling
those found in case A in the colour-mass diagram, we find that
unlike case A, these populations have distinct metallicity and SFHs
— demonstrating that the clustering adroitly differentiates between
different star formation and metallicity history profiles. Notably, the
green valley population (cluster 3) quenches along a distinct time-
scale compared to the redder galaxies of cluster 2 (starts quenching
around 1 Gyr lookback time versus 6.5 Gyr lookback time). This
distinction is also readily apparent in the metallicity history, which
has each population peaking at different times for its metallicity
history, demonstrating the diversity of each population’s chemical
enrichment. We can also extend this analysis to non-observable
parameters, which were a source of contention in using the clusters
produced by case A. For the ex-sifu mass fractions, we find that the
addition of NMF components to our colour clusters does noticeably
alter the composition. However, these changes do still come with
some of the issues initially raised. The largest change is seen in the
distributions of the flyby and merger mass fractions of galaxies in
the green valley, cluster 3.

Here, we find that the two-sided KS test gives its only significance
(p > 0.05), with a p = 0.2 for overlap between clusters 2 and 3. This
underscores existing doubts we had about this population, as it shows
that there is a significant probability of these two populations being
the same. The decision regarding distinct populations is ultimately
qualitative, but we use this as grounds to favour case B over case C
as being a much more distinct population, which is the ultimate goal
of this paper: distinct populations.

4.6 Colour- and NMF-derived clusters — case F

For the final case, we explore the addition of a fourth cluster to the
parameter space used in case C.

We find that this new cluster produces a population that is
extremely satellite dominated, and occupies a low mass, but very
quiescent branch of the red sequence. This is underscored by the
distinctly sharp peaks in its star formation and metallicity history, and
rapid quenching of this population, with its mean having quenched
by 6-7 Gyr lookback time.

We find that clusters 2 and 3 have strongly overlapping medians
for their ex-situ merger mass fractions (—0.82, —1.12 for centrals
and satellites versus —0.99 and —1.21), with the overall distribution
of flyby mass fractions between the two populations being similar.
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For cluster 3, the distribution of log flyby mass fraction is overall
bimodal, as in case C with peaks at approximately —3.5 and —1.5.
There is a larger proportion of central galaxies at lower merger mass
fractions than in the red sequence population, indicative of a broader
distribution. Compared to case E, clusters 2 and 3 are qualitatively
too similar.

5 DISCUSSION

5.1 The effectiveness of using photometric colours versus NMF

While SFHs are an important marker of stellar and baryonic evolution
within galaxies, as we show, they do not tell us everything. Cases
A and D demonstrate the failure of colour-based clusters to produce
a clear distinction beyond the SFHs. Examining the mean SFHs
reveals an overlap between populations, and looking at the mass-
weighted ages of the stellar and halo components, we find for case A,
stellar mass-weighted ages of 9.48+14, 6.247587 " and 7.017)1 Gyr
for each of its clusters, and mass-weighted mean metallicities of
0.02175:0022 1 0.01775:9922 " and 0.0197008 Z,. Similarly for case
D: 6.08" ¢, 9.55%137, 7.0170%5, and 7.72%1(5 Gyr for each of
its clusters, and mass-weighted mean metallicities of 0.02275:90}!,
0.02075:0052 10017709924 - and 0.02070003 Zo.

When we consider non-observables, we consistently see overlap
in the ex-sifu mass fractions and median MAHs in the photometry-
only clusters, further reinforcing that the divisions produced here do
not capture the differences in evolutionary histories we are looking
for and find in other clusters. Particularly, looking at the ex-situ
mass fraction for case A, between clusters 2 and 3, we find that the
overall distributions for both of these populations peak at very similar
log mass fractions, with overlapping medians for flyby and merger
mass fractions (—1.06, —1.11 versus —1.09 and —1.21 for mergers,
—3.02 and —3.18 versus —2.99 and —3.20 for flybys). This is even
more pronounced in case D, where clusters 1 and 3 have overlapping
merger mass fractions, with overlapping medians for both the centrals
and satellites in these populations (—0.88 and —1.20 for cluster 1,
—0.83 and —1.18 for cluster 3).

One population that is of lingering interest, and that we address
later, is cluster 1 of case D. This is a sub-population of galaxies
whose SFH and position on the M, — (G — R) colour plot greatly
resemble those of the ‘blue cloud’ galaxies identified in cluster 2,
but is a satellite-dominated population, with a significantly larger
ex-situ mass fraction from flybys than cluster 2, particularly from
its satellites (median value of —2.45 versus —3.27). In addition,
the mean star formation and metallicity histories for this population
exhibit a notable peak in the last 2 Gyr of lookback time — indicative
of the presence of stars of that age. This population is exclusive to
this clustering (four clusters, using broad-band colours only). Partly,
this will be driven by the fact that our NMF basis does not have the
resolution at young ages to reliably pick up this population. Colours,
on the other hand, are particularly sensitive to the SFH in the last Gyr
(Chaves-Montero & Hearin 2020), and can be combined effectively
to identify PSB galaxies (Wild et al. 2014). The sensitivity of optical
broad-band colours to recent star formation combined with the heavy
compression of SFHs into four NMF basis (with poor resolution at
late times) likely explains why we can pick up this population more
easily in case D. As we discuss later, this population can be linked
to PSB galaxies identified elsewhere in the literature.

In contrast to these cases, cases B and E host significant differences
in their mean star formation and metallicity histories (see Figs 5
and 9). This also manifests in the mass-weighted ages of the stellar

and halo components: 9.917]3% Gyr for cluster 1, 6.261052 Gyr for
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cluster 2, and 8.27112 Gyr for cluster 3, and 7.687 ]33 Gyr for cluster
1, 9.0970% Gyr for cluster 2, and 8.88%)79 Gyr for cluster 3 of
case B, respectively; and 5.81103 Gyr for cluster 1, 10.59002 Gyr
for cluster 2, 7.22707%Gyr for cluster 3, and 9.32%]7%2 Gyr for
cluster 4. and 9.1970%} Gyr for cluster 1, 7.087)75 Gyr for cluster 2,
8.93%037 Gyr for cluster 3, and 8.487)]; Gyr for cluster 4 of case E,
respectively. Note how the satellite-dominated population of cluster
1 has, on average, a younger halo than its stars. This is the first of
many indicators about how the differences uncovered extend beyond
the parameters we clustered.

5.2 Analysing non-observables to distinguish between
evolutionary histories

Non-observable parameters, such as the merger history, dark matter
halo MAH, ex-situ mass fractions, and mean mass-weighted ages, re-
veals important information regarding the demographics of galaxies
in the populations of the cases we identified, and how they behave.

In this section, we will focus on analysing in detail the populations
revealed in cases B and E. The results with colour clustering (cases A
and D) have shown while clustering with photometric colours does
yield some superficial differences in the populations identified, the
most interesting were found with clusterings that made use of star
formation and metallicity histories. Our preference of cases B and E
over cases C and F stems from case C having one population where
it had a significant (p > 0.05) p-value from a two-sided KS test,
meaning that the distributions studied (ex-sifu merger mass fraction)
of two populations had a very high probability of being similar.

The populations identified in cases B and E are distinct and
highlight how the existence of a green valley is not that well
supported, as splitting along the red sequence, roughly based on
the central—satellite status of a galaxy, reveals much more substantial
information about its evolutionary history, as corroborated by signif-
icant differences in the ex-situ mass fraction (mergers) and MAH.

5.2.1 Case B: three cluster populations

Case B results in a single star-forming population identified, cluster
2, the remaining two splitting along the red sequence. When we keep
stellar mass fixed, we find significant differences in their mean SFHs
and metallicity histories. Specifically, while both peak at a similar
time, the time it takes for the mean SFH to drop to zero differs greatly
(Fig. 5). This is supported by a difference seen in the MAH and ex-
situ mass fractions — where the redder, more satellite-dominated
population (78.96 per cent) of cluster 1 has a similar distribution of
ex-situ mass fraction between centrals and satellites, cluster 3, the
higher mass end of the red sequence, has centrals with a higher ex-
situ mass fraction, its distribution peaking at a larger fraction (Fig. 8).
This indicates that these centrals are sourcing a greater proportion of
their ex-sifu mass from mergers and that mergers in cluster 3 seem
to allow star formation to continue for so long compared to galaxies
of a similar mass in cluster 1.

The median MAHs complicate this picture, particularly when
comparing the satellite sub-population, which seem to have a ‘late
peak’, coinciding at around 6 Gyr ago for cluster 1, 8-9 Gyr for cluster
3 (Fig. 6). This means that a major change happened in cluster 1, often
after star formation stopped, whereas in cluster 3, this seems to have
preceded quenching. The halo’s mass-weighted age is 7.681’}3‘% Gyr,
the stellar mass-weighted age is 9.917]3) Gyr in cluster 1 versus
8.88107) and 8.27" 1|2 Gyr, respectively, for cluster 3. This signals
that most of the stellar mass formed long before the halo gained all
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its mass. This is contrary to other populations and, when contrasted
with cluster 3, seems to indicate how mergers might have allowed
the quenching to be delayed and forestalled with mergers or how
mergers brought in gas or younger stellar populations. So clearly, the
satellite-dominated case has older stars on average than the halo it
inhabits, but centrally dominated populations do not. The blue cloud
population has a larger gap in its age, like cluster 1, but cluster 3,
despite inhabiting the red sequence like cluster 1, has an overlapping
range of ages, with the stars being a little younger than the halo.

This could corroborate the peak seen in the MAH of cluster 1
(Fig. 6) but raises significant questions about the merger history of
these populations, which could be explored in a later work.

5.2.2 Case E: four cluster population

In case E, we aimed to explore how the clustering changes when we
re-cluster the population and allow for four populations instead of
three.

Interesting information can be gleaned when we examine indica-
tors of the halo’s evolution and merger histories. The median MAHs
of these satellite galaxies of these three populations (clusters 2, 3,
and 4) peak at 5, 9, and 8 Gyr ago in lookback time, approximately.
By 5 Gyr ago, cluster 2 is almost entirely quenched, making it appear
to be a more exaggerated version of cluster 1 from case B — satellite
dominated, visible shift in halo assembly history after quenching.
Meanwhile, the peak in the other two suggests that much like what
was discussed in case B, something is a bit different with satellite
galaxies here.

Extending to ex-situ mass fractions, we find that cluster 4 is
the population with a distribution of ex-sifu mass fraction that is
significantly greater than the rest, both in overall distribution and
in its merger mass fraction medians (—1.10 and —0.78 for satellite
and central). What is even more notable is the order of magnitude
difference seen in ex-situ mass fractions of clusters 2 and 4 from
flybys, between centrals and satellites, with centrals in both cases
having a distribution peaking at a higher mass fraction than satellites.
This indicates that the centrals in both cases are evolving slightly
differently when compared to cluster 3. Mergers clearly play a critical
role in these populations. With such a critical difference seen in the
flyby fraction for cluster 4 compared to the rest, this seems to indicate
that the quenched galaxies here are possibly undergoing more
significant interactions. This further motivates additional exploration
of the merger histories of these populations in a future paper.

Examining the mass-weighted ages of the stellar and halo com-
ponents reveals a similar pattern as in case B: the redder and the
more satellite dominated, the younger the halo is with respect to the
stellar component (7.087130 Gyr versus 10.607032 Gyr for cluster
2, 8.48107] Gyr versus 9.337 |55 Gyr for cluster 4 and 8.937027 Gyr
versus 7.22f8;;g Gyr for cluster 3). Interestingly, even though cluster
2 is much more quenched, since it is largely satellite dominated, its
mass-weighted age for the halo is lower than that for cluster 4, which
is more closely dominated by centrals. In addition, the stars in cluster
2 are older than those in cluster 4. This further motivates the need of
a detailed study of the merger histories of these galaxies. However,
we have already shown how this clustering is an effective proxy for
extracting populations with very distinct features, for both the stellar
and halo components.

Regarding the relationship between case E’s clusters and case
B’s clusters, we examined the overlap fraction of these populations:
What percentage of galaxies in a particular cluster for case E came
from a particular cluster in case B. We found that > 99 per cent of
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galaxies in cluster 1 in case E came from cluster 2 in case B, and
in cluster 2 of case E 99 per cent of galaxies came from cluster 1 in
case B, and an additional 1 per cent from cluster 3. Cluster 3 sourced
63 per cent from cluster 2 and 37 per cent from cluster 3. For cluster
4, it sourced 49 per cent from cluster 1 and 51 per cent from cluster
3. This highlights that the galaxies identified in cluster 1, the very
quenched population, were a mostly satellite subset identified in case
B’s clustering.

It is worth noting that for future works, the implemen-
tation of normalization is particularly important. We normal-
ized the smoothed SFHs with a max-abs normalization as
sklearn.prepreprocessing.normalize allows you to choose which axis
to normalize along, whereas its scaler object implementation does
not for the maximum absolute value scaling. Normalizing each
SFH between O and 1 produced the results here. With the scaler
object, it does not. This aligns with earlier caveats that clustering can
produce unstable populations, so it is worth noting that the extremely
quenched population is liable to change under the implementation of
a specific normalization used.

5.3 Links with known populations

The largest takeaway is that the clustering is effective at identifying
and navigating sub-population of the red sequence, and isolating
populations with a relatively unique set of formation histories. What
is notable is the split in the red sequence of quiescent galaxies seems
to be largely driven by the central/satellite status, and their ex-sifu
merger mass fraction, as demonstrated in case B, which explored
populations produced from clustering NMF components of the star
formation and metallicity histories of IllustrisSTNG galaxies, into
three selected populations. These populations are defined by a split
between star-forming and quiescent galaxies (cluster 2 versus clusters
1 and 3), and an additional split between the satellite-dominated
quiescent population of cluster 1 and the upper mass branch of the
red sequence, cluster 3, characterized by its large ex-situ merger
mass fraction (Figs 5 and 8). Cluster 1 is a population whose largest
event for its dark matter haloes occurs around 5-6 Gyr ago, with
significant growth in the halo mass seen in the satellite galaxies of
this satellite-dominated population, largely after the population has
begun to quench. By contrast, cluster 3, the more centrally dominated
quiescent population, is characterized by a more gradual reduction
in its SFH, potentially indicative of the role major mergers might
play in shaping the rate at which these galaxies might quench, as
described by Hani et al. (2020) and Quai et al. (2021).

Expanding the number of clusters for the same parameter space
as above to 4 (case E), we find a parallel to the work of Hani
et al. (2020) and Quai et al. (2021) regarding the role of SFHs
and mergers, where for star-forming galaxies, major mergers tend
to have a significant impact in increasing the star formation rate in
the period following a merger, albeit with the possibility of further
hastening any quenching that might follow compared to their control
group. This higher merger mass fraction might place a constraint
on the local environment of these galaxies, as Oh et al. (2019) find
for clusters of galaxies, where only recently accreted galaxies show
observational evidence of merger-induced changes. For the former,
satellite-dominated quiescent population, similarities can be seen
with Donnari et al. (2020) and Oh et al. (2019), where pre-processing
and infall can help account for the quenching of these galaxies.

Little differentiation emerges within the blue cloud population, and
instead we get three populations at three different stages of quench-
ing. Comparing the mean SFHs, we note a significant split across
clusters 2, 3, and 4. While cluster 3 could be classified as a population
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that is not fully quenched, the quenching time-scale between clusters
2 and 4 can be clearly seen in Fig. 9. Cluster 2’s mean star formation
seems to quench from 6 to 9 Gyr ago, whereas that of cluster 4
starts quench around 2-5 Gyr ago. This older population is signif-
icantly dominated by satellites (87.95 per cent for cluster 2, versus
55.27 per cent for cluster 4 and 37.24 per cent for cluster 3), indicating
that cluster 2 is a population that is truly red and dead, and primarily
satellite. Of note is how the key discriminants of a given galaxy in
Donnari et al.’s (2020) work produce populations that align with ours:
whether it quenched before infalling as a satellite, or following an
infall event whose 16/84th percentile intervals for the SFHs of cases
B and E resemble periods when different populations of satellites
quenching at different times in Donnari et al. (2020; see Figs 5
and 9).

In cases E and F, the addition of a fourth cluster reveals an
extremely quenched, satellite-dominated population inhabiting the
red sequence. By contrast, doing so for the colour-based clusters, i.e.
case D, reveals an interesting subset of the ‘blue cloud’ population
of star-forming galaxies.

In addition to a late peak in the star formation and metallicity
histories in Fig. 10, a few more features of this population stand out
to reinforce this picture: we find that satellites in cluster 1 have a
significantly larger ex-situ mass fraction from flybys (median: —2.45
for satellites and —3.08 for centrals, versus medians of —3.09 for
centrals and —3.27 for satellites in cluster 3) than the blue cluster,
and that unlike any other population, the ex-situ fraction is larger
for the satellite sub-population than centrals. These ex-situ fractions
are remarkably similar to the green valley population of cluster 4
(—2.58, —3.09 central and satellite medians).

Looking at the halo and stellar mass-weighted ages, we find
that cluster 1 has a mean halo mass-weighted age of 8.347)3] and
6.0711-12 Gyr for the mean stellar mass-weighted age, very similar
to cluster 3’s 9.17%03> and 6.3670 55 Gyr, respectively. Altogether,
this paints the picture of this population being an interesting approx-
imation of a PSB galaxy: a galaxy where its star formation has just
ceased, and is about to transition onto the red sequence, potentially
with the ex-situ mass fraction information being a key indicator of
the role of mergers in this transition. Given that this population was
found using photometric colours, it demonstrates the potential of
this method even in surveys where we would have no access to star
formation and metallicity histories (see Wild et al. 2014).

Clusters such as cluster 3 in case B and cluster 3 in case E, with
galaxies that inhabit the red sequence but have a larger ex-situ merger
fraction than others, have been seemingly able to extend their star-
forming epoch as a consequence of these mergers, either through
shocking existing gas or through possible pre-processing and infall
of neighbouring galaxies (Donnari et al. 2020). In either case, this link
between mergers and delayed quenching is of interest, and additional
works in the literature support the link between major mergers and
their role in driving and suppressing star formation in these galaxies.
Since this work is not primarily focused on merger histories, and
rather just identifying distinct evolutionary histories, we present this
topic as an area of interest for a follow-up investigation.

5.4 Areas of future work

The absence of a ‘green valley’ population is notable, as the clustering
largely divides galaxies that might be considered green valley (i.e.
those seen in case A) between clusters 1 and 3. The slow quenching
of cluster 3 bears a notable similarity to the quenching described
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by Schawinski et al. (2014) of quiescent galaxies. Moreover, the
split evolutionary tracks identified in Trayford et al. (2016) draw
an interesting parallel as well to the variety of quenched populations
found in cases B and E. Exploring the way these populations manifest
in non-optical wavelengths would also be an area of interest, building
upon the criticisms of the green valley presented by Eales et al.
(2018).

Pertinent questions are raised in works like Weigel et al. (2017),
Zinger et al. (2020), Pawlik et al. (2019), and Wilkinson, Pimbblet &
Stott (2017), among others, such as the relevance of major mergers
in driving the evolution of these galaxies and the role AGNs might
play in regulating the dispersal of gas in these galaxies. Of particular
interest is Donnari et al.’s (2020) series of papers, which explored
the role of pre-processing, and would serve as an effective and direct
test of the ability of these sub-populations in replicating the results
of simulation-based work using only ‘observable’ parameters. In
particular, points (i)—(iii) of Donnari et al.’s (2020) conclusion bear
a striking resemblance to the sub-populations of galaxies we have
described in cases B and E: that of lower mass, satellite-dominated
populations that are largely quenched, with an associated accretion
time of 4-6 Gyr, possibly linked to an infall event, with the exception
of bluer galaxies. They also identified galaxies along the upper mass
range of the red sequence, where above log M,./Mg = 10, the satellite
population is largely quenched, further highlighting the similarities of
those satellites and the satellite-dominated sub-population from case
B. Finally, to quote Donnari et al. (2020): ‘While, as expected, the
quenched fractions of IllustrisTNG central and satellite galaxies are
generally lower at higher redshifts (Fig. 2), frequent manifestations of
environmental processes in hosts more massive than about 10'3 Mg,
are already in place at z ~ 1 and the bulk of the z = 0 group and cluster
quenched satellites ceased their star formation many billion years
ago: 6-10, 1-7, and 4-8 Gyr ago (16th—84th percentiles) for satellites
that quenched as centrals, in their current host, or as satellites before
falling into it, respectively’. This describes populations that greatly
resemble our own yet again; the population quenching at 1-7 Gyr
ago resembles that of cluster 3 in case B: a central-dominated host
population, whereas the 6—10 and 4-8 Gyr ago intervals resemble
cluster 1 in case B, or they can be further delineated when applying
these intervals to case E.

Their work’s conclusion is in tandem with one of our own: that
satellite galaxies have a diverse range of paths to quenching, and for
us, in several different clusterings, that diversity is captured by some
of our clusters.

We have only briefly touched upon the merger histories of these
clusters, and would encourage the reader to consider exploring
some of the questions regarding the histories presented by these
clusters. In particular, how closely do the identified sub-populations
correlate with differences in environment? This is relevant given
some identified links between environment and the number of
associated mergers, especially for more massive galaxies (e.g. Yoon,
Im & Kim 2017), which highlights how below masses of log M,/Mg
> 11.0 the number of mergers a given galaxy experiences ceases to
correlate with local density. The application of these populations,
when cross-referenced with environmental data from TNG-100,
could help provide insights as to the extent these clusters might
trace out the environmental dependence of these populations.

Moreover, as we discussed in an earlier section, we have also traced
out a testable shorthand for identifying potential PSB galaxies and
generating broad predictions about their non-observable properties
just from using photometric colours in our clustering. This population
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is satellite dominated, with a large ex-situ mass fraction. We will
explore the link between traditional PSB galaxies and this population
in a follow-up paper.

6 CONCLUSION

We extracted a series of ‘observable’ parameters from the
IustrisTNG-100 simulation, and clustered them with a GMM,
studying a variety of parametrizations with different clusters. We
focused on clustering with the photometric colours u — g, g — 7,
r — i, and NMF representations of the extracted star formation and
metallicity histories. We ultimately found that in terms of effectively
identifying populations with distinct evolutionary histories, the use of
the star formation and metallicity histories was indispensable. Using
these parameters in our clustering produced clusters with distinct
histories associated with the dark matter haloes of these galaxies. In
particular, we found that cases B and E produced the most distinct
of these evolutionary histories, as seen in Section 5 and Figs 5, 6, 8,
and 9.

We highlight case B as the most significant sub-population of
interest in this analysis, owing to distinct splits seen in the SFHs and
metallicity of the populations, this distinction extended to differences
found in the halo and evolutionary components, i.e. the ex-sifu mass
fractions, the MAH, and the mass-weighted ages of the stellar and
halo components. The most consequential split found in this three-
cluster case is between the populations that inhabit the red sequence:
a lower mass, satellite-dominated one, and a higher mass central-
dominated one. Taking what was discussed in Section 5 we concluded
that they had significantly different evolutionary histories.

Case E is interesting owing to the distinct populations it identifies
primarily within the red sequence, and as an examplar of how
adding an extra cluster to our algorithm alters the populations
initially discussed in case B. We found three populations at varying
degrees of quenching, and a single star-forming population. Two of
these populations, clusters 2 and 4 are definitively quenched, and
within distinct windows of time. The earlier it quenched, the more
satellite dominated the population is. Interestingly, when comparing
the mean mass-weighted ages of the stellar and halo mass, these
two populations have older stellar mass-weighted ages than the halo
mass-weighted ages, whereas the opposite is true for the other two
populations. This is indicative of a major difference in the role
mergers play in the evolution of these populations.

Case D, while producing populations not as distinct as those in
cases B and E, is notable in what we found in cluster 1, a population
that could be potentially described as related to PSB galaxies, given
the spike in its star formation and metallicity histories, and we only
needed photometric colours to identify it, and has some unique
features in its ex-sifu mass fraction and recent stellar evolutionary
history.

We summarize the key conclusions below:

(i) The cases that made use of the star formation and metallicity
histories in their clustering produced results that had notable dif-
ferences in the distribution of the in/ex-situ mass fraction, merger
history, and halo mass assembly history, indicative of the depth of
the differences between clusters.

(ii) The populations identified in cases B, C, E, and F also echo
a point raised elsewhere in the literature, where satellite galaxies in
particular seem to follow a diverse range of pathways to quenching
in the present day, and that these pathways are reflected by the sub-
population identified in case E, and cases B and C to a lesser extent:
as the 84/16th percentile intervals given by Donnari et al. (2020)
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closely resemble those seen for the quiescent populations of case
E. This also suggests the link between infall and the populations
identified by these clusters.

(iii) The populations identified by our clustering show that the red
sequence of quiescent galaxies is split into a central-dominated sub-
population and a satellite-dominated one. The satellite-dominated
one can be further split if we examine these populations with four
clusters instead of three (i.e. case E), with differences between the
mass-weighted ages of the halo and stellar component hinting at
different modes of quenching.

(iv) While colour-based clusterings did not produce populations
that were as distinct as those in cases B, C, E, and F, there are still
populations of interest, namely case D, cluster 1, where clustering
with broad-band photometric colours for four populations produces
a subset of star-forming galaxies that are of potential observational
interest. This cluster, cluster 1, is a subset of the star-forming ‘blue
cloud’ population, but with relatively recent spike in its star formation
and metallicity history (Fig. 10), and with considerable differences in
its ex-situ mass fraction that could suggest a merger/flyby-rich subset
of galaxies in the blue cloud. We argue that this population bears some
notable similarities to PSB galaxies that have been found elsewhere
in the literature, their precise relationship with PSB galaxies needs
to be characterized.

(v) Our clusterings in cases B and E underscore that the most
important and distinct divisions of galaxies do not necessarily
reproduce a green valley population as identified elsewhere in the
literature, rather it shows that the red sequence is an incredibly
diverse population with a variety of evolutionary histories giving
rise to those galaxies.

We have identified a number of populations that are of interest
for future work, in the context of other cosmological hydrodynamic
simulations, where the populations we identified can be compared to
the carefully selected ones seen in the literature (e.g. Wilkinson et al.
2017; Hani et al. 2020; Quai et al. 2021), or they can be extended
into an observational context, testing the general predictive power of
these populations, and the simulation they were calibrated on, and
juxtaposed with existing work that has attempted to do so (Donnari
et al. 2020).

This work has demonstrated that the incorporation of quantities
such as the star formation and metallicity histories of galaxies
provides valuable insight into their evolutionary histories that
exceeds what could be found using photometric colours. While
these clusterings are not necessarily the best possible divisions
of galaxies by evolutionary histories, they do have some distinct
features that are of interest. The utility provided by these SFHs
and metallicity histories also underscores that the effort to extract
those histories is not wasted, and that with these full histories of
star formation and chemical enrichment, they can be leveraged
to explore the evolutionary histories of these galaxies. Of course,
it remains to be seen how an analysis on real data compares
to the clusters we find here. We leave a detailed comparison
between data and different cosmological simulations for a future

paper.
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