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ABSTRACT 59 

The world’s largest tropical peatland complex is found in the central Congo Basin. 60 

However, there is a lack of in situ measurements needed to understand the peat’s 61 

distribution and the amount of carbon stored in it. So far, peat in this region has only 62 

been sampled in largely rain-fed interfluvial basins in the north of the Republic of the 63 

Congo. Here we present the first extensive field surveys of peat in the Democratic 64 

Republic of the Congo, which covers two-thirds of the estimated peatland area, 65 

including from previously undocumented river-influenced settings. We use field data 66 

from both countries to compute the first spatial models of peat thickness (mean 1.7 ± 67 

0.9 m; maximum 5.6 m) and peat carbon density (mean 1,712 ± 634 Mg C ha-1; 68 

maximum 3,970 Mg C ha-1) for the basin. We show that the peatland complex covers 69 

167,600 km2, 15% more than previously estimated, and that 29.0 Pg C is stored 70 

belowground in peat across the region (95% confidence interval, 26.3-32.2 Pg C). Our 71 

measurement-based constraints give high confidence of globally significant peat 72 

carbon stocks in the central Congo Basin, totalling approximately one-third of the 73 

world’s tropical peat carbon. Only 8% of this peat carbon lies within nationally 74 

protected areas, suggesting its vulnerability to future land-use change.   75 
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MAIN TEXT 76 

Peatlands cover just 3% of Earth’s land surface1, yet store an estimated 600 Pg of 77 

carbon (C)2,3, approximately one-third of Earth’s soil carbon4. While most peatlands 78 

are located in the temperate and boreal zones1, recent research is revealing the 79 

existence of tropical peatlands with high carbon densities1,2,5,6. Tropical peatlands are 80 

vulnerable to drainage and drying, with subsequent fires resulting in large carbon 81 

emissions from degraded peatlands, particularly in Southeast Asia3,6–8.  82 

 83 

In the central depression of the Congo basin (the ‘Cuvette Centrale’) the only field-84 

verified peatland map to date reported that peat underlies 145,500 km2 of swamp 85 

forests, making this the world’s largest tropical peatland complex9. The field data used 86 

in this estimate are from northern Republic of the Congo (ROC), yet two-thirds of the 87 

central Congo Basin peatlands are predicted to be found in neighbouring Democratic 88 

Republic of the Congo (DRC)9, sometimes hundreds of kilometres from existing field 89 

data (Figure 1a). Similarly, peat carbon stocks are estimated to be 30.6 Pg C, but the 90 

lower confidence interval is just 6 Pg C (ref. 9). Thus, it is unclear if the central Congo 91 

peatlands are truly as extensive or deep as suggested, and it is unclear whether they 92 

store globally significant quantities of carbon. 93 

  94 

Uncertainties are further compounded by a limited understanding of the processes 95 

that determine peat formation in central Congo, particularly hydrology9,10. Peat has 96 

only been systematically documented in interfluvial basins in ROC9,11, where an 97 

absence of annual flood waves9, modest domes12, and remotely-sensed water-table 98 

depths13 all suggest peatlands are largely rain-fed and receive little river water input. 99 

However, peat is also predicted in other hydro-geomorphological settings9, including 100 
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what appear to be river-influenced regions close to the Congo River mainstem and 101 

dendritic-patterned valley-floors along some of its left-bank tributaries9 (Figure 1a). 102 

These areas of swamp forest are likely seasonally inundated14 to depths up to 1.5 m 103 

during the main wet season15, suggesting seasonal river flooding and/or upland runoff 104 

as key sources of water. Whether peat accumulates under these river-influenced 105 

conditions is currently unknown.  106 

 107 

Here, we present the first in situ data on peat presence, thickness, and carbon density 108 

(mass per unit area) from the central Congo Basin in DRC. We specifically investigated 109 

the river-influenced swamp forests along the Congo River and its Ruki, Busira and 110 

Ikelemba tributaries that contrast with previous data collection from interfluvial basins9 111 

(Figure 1a). Every 250 m along 18 transects, we recorded vegetation characteristics, 112 

peat presence and thickness. We targeted a first group of ten transects in locations 113 

highly likely to contain peat, to help test hypotheses (detailed in Supplementary Table 114 

1) about the role of vegetation, surface wetness, nutrient status, and topography in 115 

peat accumulation. To improve mapping capabilities, we sampled a second group of 116 

eight transects specifically to test preliminary maps that gave conflicting results or 117 

suspected false predictions of peat presence (detailed in Supplementary Table 1). We 118 

combine these new field measurements from DRC with previous transect records in 119 

ROC using the same protocols9 and other ground-truth data (Supplementary Table 2) 120 

to produce (i) a second-generation map of peatland extent, (ii) a first-generation map 121 

of peat thickness, and (iii) a first-generation map of belowground peat carbon density 122 

for the central Congo Basin. These maps enable us to compute the first well-123 

constrained estimate of total belowground peat carbon stocks in the world’s largest 124 

tropical peatland complex. 125 
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 126 

Mapping peatland extent 127 

We found peat along all ten hypothesis–testing transects in DRC that were predicted 128 

to be peatlands9. Our new field data shows that extensive carbon-rich peatlands are 129 

present in the forested wetlands of the DRC’s Cuvette Centrale, including in 130 

geomorphologically distinct river-influenced regions predicted as peatlands by Dargie 131 

et al.9.  132 

 133 

The best-performing algorithm (Maximum Likelihood classifier, based on its ability to 134 

most accurately predict in regions with no training data; see Methods) was run 1,000 135 

times on nine remotely-sensed datasets, using a random two-thirds of 1,736 ground-136 

truth datapoints each time (Extended Data Figure 1), giving a median total peatland 137 

area for the central Congo Basin of 167,600 km2 (95% CI, 159,400-175,100 km2). This 138 

is 15% higher than the previous estimate9. We found that 90% of all pixels that are 139 

predicted as peat in the median map result were predicted as peat in at least 950 out 140 

of 1,000 runs (i.e., with ≥ 95% probability, either as hardwood- or palm-dominated peat 141 

swamp forest; Figure 1b), showing that peat predictions are consistent across model 142 

runs and thus are robust. Overall model performance, using the Matthews correlation 143 

coefficient, is 78.0% (95% CI, 74.2-81.6%).  144 

 145 

Comparing our field results with the original first-generation map9 shows that of the 146 

382 locations assessed across DRC, 77.7% were correctly classified as either being 147 

peat swamp or not by the first-generation map9. Comparing our new map with the first-148 

generation map9 shows large areas of agreement (white in Figure 1c). However, we 149 

predict areas of peat which were previously not mapped9, particularly around Lake 150 
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Mai-Ndombe and the Ngiri and upper Congo/Lulonga Rivers in DRC (red in Figure 151 

1c). In addition, small areas of previously predicted peat deposits9 are no longer 152 

predicted by our new model, particularly along the Sangha and Likouala-Mossaka 153 

Rivers in ROC (blue in Figure 1c). These areas of difference are likely areas of high 154 

uncertainty and should therefore be priorities for future fieldwork. 155 

 156 

More formally, we compare our new second-generation map with the original map9 157 

using balanced accuracy (BA), which is similar to Matthews correlation coefficient but 158 

better suited for comparison across different datasets16. For our new map, median BA 159 

is 91.9% (95% CI, 90.2-93.6%), compared with 89.8% (86.0-93.4%) for the first-160 

generation map9. The substantially smaller BA interval indicates improved confidence 161 

in our new peatland map, despite only a small increase in median BA. This is likely 162 

due to the effect of our larger sample size being partly offset by an increase in its 163 

spatial extent and ecological diversity, particularly data from the Congo River region, 164 

where all algorithms that we tested are underperforming (Supplementary Table 3). 165 

Overall, our in situ data from DRC, including from river-influenced settings that are 166 

being reported for the first time, confirm the central Congo Basin peatlands as the 167 

world’s largest tropical peatland complex, and that DRC and ROC are the second and 168 

third most important countries in the tropics for peatland area after Indonesia5, 169 

respectively (Extended Data Figure 2). 170 

 171 

Mapping peat thickness and carbon density 172 

We measured peat thickness at 238 locations in DRC (including 59 laboratory-verified 173 

measurements; Extended Data Figure 3), finding a mean (± s.d.) thickness of 2.4 (± 174 

1.6) m and a maximum of 6.4 m. This shows that river-influenced peatlands can attain 175 
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similar peat thickness as rain-fed interfluvial basins reported in ROC9 (Table 1). There 176 

is no uniform increase in peat thickness with distance from the peatland margin 177 

(Extended Data Figure 4), with linear regression being only a modest fit (R2 = 41.0%; 178 

RMSE = 1.21 m). Thus, we developed a Random Forest (RF) regression to estimate 179 

peat thickness, using 463 thickness measurements across both countries. Our final 180 

RF model includes four predictors after variable selection (see Methods): distance 181 

from the peatland margin, precipitation seasonality, climatic water balance 182 

(precipitation minus potential evapotranspiration), and distance from the nearest 183 

drainage point (R2 = 93.4%; RMSE = 0.42 m). The RF model outperforms multiple 184 

linear regression with interactions using the same four variables (adj-R2 = 73.6%, 185 

RMSE = 0.80 m; Extended Data Figure 5). 186 

 187 

Spatially, we predict thick peat deposits in the centres of the largest interfluvial basins 188 

(far from peatland margins), and in smaller, river-influenced valley-floor peatlands 189 

along the Ruki/Busira Rivers (Figure 2a). The river valley’s thick deposits are most 190 

likely driven by greater climatic water balance and lower precipitation seasonality in 191 

the eastern part of the Cuvette Centrale region (Extended Data Figure 6), plus 192 

potentially greater water inputs from nearby higher ground, which offsets the shorter 193 

distances from peatland margins. Our modelled results are consistent with our field 194 

data, as the two deepest peat cores are from the interfluvial Centre transect in ROC 195 

(5.9 m), and the river-influenced Bondamba transect on the Busira River in DRC (6.4 196 

m). Overall, mean (± s.d.) modelled peat thickness (1.7 ± 0.9 m) is lower than our field 197 

measurements (2.4 ± 1.5 m; Table 1), as expected given our linear transects, which 198 

oversample deeper peat at the centre relative to the periphery in approximately ovoid 199 

peatlands. Areas of high uncertainty in peat thickness occur where distance from the 200 
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margin is uncertain (Figure 2b). Our results contrast strongly with an “expert system 201 

approach” that assigned peat thickness values based on hydrological terrain relief 202 

alone and estimated a thickness of 6.5 ± 3.5 m for the central Congo Basin 203 

peatlands17, compared to our field-derived estimate of 1.7 ± 0.9 m (Figure 2a). 204 

 205 

After distance from the margin, precipitation seasonality and climatic water balance 206 

are the most important predictors of peat thickness in the RF model, reflecting the 207 

relative importance of rainfall inputs in peat accumulation in central Congo. This 208 

appears to differ from smaller-scale assessments in temperate18 or other tropical 209 

peatlands19, where surface topography (elevation and slope) are primary predictors of 210 

peat thickness. However, this is potentially merely an artefact of the spatial scale of 211 

the studies, as climate only varies over large scales. Alternatively, the relatively low 212 

rainfall in the central Congo Basin (~1700 mm yr-1), compared to other tropical 213 

peatland regions (e.g., ~2,500-3,000 mm yr-1 in Northwest Amazonia and Southeast 214 

Asia)9,20, may mean that peat thickness is more strongly related to climate in central 215 

Congo, as it implies greater exposure to (seasonal) drought conditions that may cross 216 

thresholds that negatively impact peat accumulation rates. 217 

 218 

Peat bulk density measured across the central Congo Basin is 0.17 ± 0.06 g cm-3 219 

(mean ± s.d.; n = 80 cores), and mean carbon concentration is 55.7 ± 3.2 % (n = 80; 220 

56.6 [± 4.5] % for the 22 well-sampled cores). While peat bulk density is significantly 221 

lower in largely river-influenced sites than in rain-fed interfluvial basins (P < 0.01), no 222 

significant difference between these peatland types is found for either peat carbon 223 

concentration or carbon density (mass per unit area; Table 1).  224 

 225 
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We used the peat thickness, bulk density, and carbon concentration measurements to 226 

construct a linear peat thickness-carbon density regression (Extended Data Figure 7). 227 

We applied this regression model to our peat thickness map to spatially model carbon 228 

stocks per unit area (Figure 3a). Modelled belowground peat carbon density for the 229 

central Congo Basin is 1,712 ± 634 Mg C ha-1, similar to the field-measured mean of 230 

1,741 ± 1,186 Mg C ha-1 (mean ± s.d., n = 80; Table 1). This carbon density is 231 

approximately nine times the mean carbon stored in aboveground live tree biomass of 232 

African tropical moist forests (~198 Mg C ha-1)21. Compared with recently mapped 233 

peatlands in the lowland Peruvian Amazon (mean 867 Mg C ha-1)22, the central Congo 234 

peatlands store almost twice as much carbon per hectare. Spatial patterns of peat 235 

carbon density (Figure 3a) and uncertainty (Figure 3b) follow similar patterns as peat 236 

thickness (Figures 2a and 2b).  237 

 238 

Estimating basin-wide peat carbon stocks 239 

Median estimated total peat carbon stock in the central Congo Basin is 29.0 Pg (95% 240 

CI, 26.3-32.2; Extended Data Figure 8a), based on bootstrapping the area estimate 241 

and peat thickness-carbon density regression. This is similar to the median 30.6 Pg C 242 

reported by Dargie et al.9, but their lower 95% confidence interval was 6.3 Pg, which 243 

our study increases to 26.3 Pg. This constraint on the carbon stock estimate is possible 244 

because our larger field-based dataset allows a spatial modelling approach, so that 245 

we can sum carbon density across all peat pixels. Therefore, the possibility of low 246 

values of carbon storage in the central Congo peatlands can now confidently be 247 

discarded. 248 

 249 
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Our new results show that the central Congo Basin peatlands are a globally important 250 

carbon stock, harbouring approximately one-third of all the carbon stored in the world’s 251 

tropical peatlands5,9. About two-thirds of this peat carbon is in DRC (19.6 Pg C; 95% 252 

CI, 17.9-21.9), and one-third in ROC (9.3 Pg C; 95% CI, 8.4-10.2; Extended Data 253 

Figure 2), which is equivalent to approximately 82% and 238% of each country’s 254 

aboveground forest carbon stock, respectively23. The high peat carbon stocks are 255 

found across several administrative regions in both countries, with the largest stocks 256 

in DRC’s Équateur province (Extended Data Figure 2). Sensitivity analysis shows that 257 

uncertainty in total peat carbon stock is now mostly driven by uncertainty in peatland 258 

area (Extended Data Figure 8b). 259 

 260 

Because the central Congo peatlands are relatively undisturbed24,25, our new maps of 261 

peatland extent, thickness and carbon density form a baseline description for the 262 

decade 2000-2010, given the remotely-sensed data used. Today, the peatlands of the 263 

central Congo Basin are threatened by hydrocarbon exploration, logging, palm oil 264 

plantations, hydroelectric dams and climate change24,26. While the peatlands are 265 

largely within a UN Ramsar Convention transboundary wetland designation, we 266 

estimate that only 2.4 Pg C in peat, just 8% of total stocks, currently lies within formal 267 

national-level protected areas (Extended Data Figures 9 and 10). Meanwhile, logging, 268 

mining, or palm oil concessions together overlie 7.4 Pg C in peat, or 26% of total stocks 269 

(Extended Data Figures 9 and 10), while hydrocarbon concessions cover almost the 270 

entire peatland complex24,26. 271 

 272 

Keeping the central Congo Basin peatlands wet is vital to prevent peat carbon being 273 

released to the atmosphere. The identification of extensive river-influenced peatlands 274 
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suggests that there is more than one geomorphological setting where peat is found in 275 

the central Congo Basin. Further work is required to understand both the sources and 276 

flows of water in these river-influenced peatlands, specifically the relative contributions 277 

of water from precipitation, riverbank overflow, and run-off from higher ground to peat 278 

formation and maintenance. Given the current areas of formal protection of peatlands 279 

are largely centred around interfluvial basins, we suggest that additional protective 280 

measures will be needed to safeguard the newly identified river-influenced peatlands 281 

of the central Congo Basin. Keeping the central Congo peatlands free from 282 

disturbance would also help protect the rich biodiversity, including forest elephants, 283 

lowland gorillas, chimpanzees and bonobos24,27,28, that form part of this globally 284 

important, but threatened ecosystem.  285 
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METHODS 286 

 287 

Field data collection 288 

Fieldwork was conducted in DRC between January 2018 and March 2020. Ten 289 

transects (4-11 km long) were installed, identical to Dargie et al.’s approach9, in 290 

locations that were highly likely to be peatland. These were selected to help test 291 

hypotheses about the role of vegetation, surface wetness, nutrient status, and 292 

topography in peat accumulation (Figure 1a; Supplementary Table 1). A further eight 293 

transects (0.5-3 km long) were installed to assess our peat mapping capabilities 294 

(Figure 1a; Supplementary Table 1). 295 

 296 

Every 250 m along each transect, landcover was classified as one of six classes: 297 

water, savanna, terra firme forest, non-peat forming seasonally inundated forest, 298 

hardwood-dominated peat swamp forests, or palm-dominated peat swamp forests. 299 

Peat swamp forest was classified as palm-dominated when > 50% of the canopy, 300 

estimated by eye, were palms (commonly Raphia laurentii or Raphia sese). In addition, 301 

several ground-truth points were collected at locations in the vicinity of each transect 302 

from the clearly identifiable landcover classes water, savanna, or terra firme forest. 303 

 304 

Peat presence/absence was recorded every 250 m along all transects, and peat 305 

thickness (if present) was measured by inserting metal poles into the ground until the 306 

poles were prevented from going any further by the underlying mineral layer, identical 307 

to Dargie et al.’s pole-method9. Additionally, a core of the full peat profile was extracted 308 

every kilometre along the ten hypothesis-testing transects, if peat was present, with a 309 
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Russian-type corer (52-mm stainless steel Eijkelkamp model); these 63 cores were 310 

sealed in plastic for laboratory analysis.  311 

 312 

Peat thickness laboratory measurements 313 

Peat was defined as having an organic matter (OM) content of ≥ 65% and a thickness 314 

of ≥ 0.3 m (sensu Dargie et al.9). Therefore, down-core OM content of all 63 cores was 315 

analysed to measure peat thickness. The organic matter content of each 0.1-m thick 316 

peat sample was estimated via Loss-On-Ignition (LOI), whereby samples were heated 317 

at 550°C for 4h. The mass fraction lost after heating was used as an estimate of total 318 

OM content (% of mass). Peat thickness was defined as the deepest 0.1-m with OM 319 

≥ 65%, after which there is a transition to mineral soil. Samples below this depth were 320 

excluded from further analysis. Rare mineral intrusions into the peat layer above this 321 

depth, where OM < 65% for a sample within the peat column, were retained for further 322 

analysis. In total, 59 out of 63 collected cores had LOI-verified peat thickness ≥ 0.3 m.  323 

 324 

The pole-method used to estimate peat thickness in the field was calibrated against 325 

LOI-verified measurements, by fitting a linear regression model between all LOI-326 

verified and pole-method peat thickness measurements sampled at the same location 327 

(93 sites across ROC and DRC, including 37 from ref. 9). Three measurements from 328 

DRC with a Cook’s distance > 4x the mean Cook’s distance were excluded as 329 

influential outliers. Mean pole-method offset was significantly higher along the DRC 330 

transects (0.94 m) than along those in ROC (0.48 m; P < 0.001), due to the presence 331 

of softer alluvium substrate in river-influenced sites in DRC. We therefore added this 332 

grouping as a categorical variable to the regression. The resulting model (adj-R2 = 333 

0.95, P < 0.001; Extended Data Figure 3) was used to correct all pole-method 334 
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measurements in each group for which no LOI-verified thickness was available: 335 

corrected peat thickness = -0.1760 + 0.8626 x (pole-method thickness) – 0.3284 x 336 

(country), with country dummy coded as: ROC (0) and DRC (1). 337 

 338 

Carbon density estimates 339 

To calculate carbon density (mass per unit area), estimates of carbon storage in each 340 

0.1-m thick peat sample (thickness × bulk density × carbon concentration) were 341 

summed to provide an estimate of total carbon density per core (in Mg C ha−1), 342 

identical to Dargie et al.9. We estimated carbon density for 80 peat cores (OM ≥ 65%, 343 

thickness ≥ 0.3 m), located every other kilometre along 18 transects, including 37 344 

cores from the ten transects used for hypothesis testing in DRC, and 43 cores from 345 

transects in ROC9. 346 

 347 

Peat thickness of the 80 cores was obtained by laboratory LOI. To estimate peat bulk 348 

density, every other 0.1-m down-core, samples of a known peat volume were weighed 349 

after being dried for 24h at 105°C (n = 906). Bulk density (in g cm−3) was then 350 

calculated by dividing the dry sample mass (in g) by the volume of the sample taken 351 

from the peat corer dimensions (in cm3). Within each core, linear interpolation was 352 

used to estimate bulk density for the alternate 0.1m-thick samples of the core that were 353 

not measured.  354 

 355 

For total carbon concentration (%), only the deepest core per transect, plus additional 356 

deep cores from the Lokolama transect (1) in DRC and Ekolongouma transect (3) in 357 

ROC (22 in total, 11 from DRC and 11 from ROC9) were sampled down-core. Every 358 

other 0.1-m thick sample was measured using an elemental analyser (Elementar Vario 359 
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MICRO Cube with thermal conductivity detection for all cores, except those from 360 

Boboka, Lobaka and Ipombo transects, which were analysed using Sercon ANCA 361 

GSL with isotope-ratio mass spectrometer detection, due to COVID-19 disruption). All 362 

samples (n = 422) were pre-dried for 48h at 40°C and ground to < 100 μm using a 363 

MM301 mixer mill. Again, linear interpolation was used within each core for the 364 

alternate samples that were not measured.  365 

 366 

The remaining 58 cores had less-intensive carbon concentration sampling. We 367 

therefore interpolated the carbon concentration for each 0.1-m thick sample, because 368 

well-sampled cores show a consistent pattern with depth: an increase to a depth of 369 

about 0.5 m, followed by a long, very weak decline, and finally a strong decline over 370 

the deepest approximately 0.5 m of the core9. We used segmented regression on the 371 

22 well-sampled cores (segmented package in R, version 1.3-1) to parameterize the 372 

three sections of the core, using the means of these relationships to interpolate carbon 373 

concentrations for the remaining 58 cores, following Dargie et al.9. 374 

 375 

To estimate carbon density from modelled peat thickness across the basin, we 376 

developed a regression model between peat thickness and per-unit-area carbon 377 

density using the 80 sampled cores. We compared linear regressions for normal, 378 

logarithmic-, and square root-transformed peat thickness, selecting the model with 379 

lowest AICc and highest R2. A linear model with square root-transformed peat 380 

thickness was found to provide the best fit (R2 = 0.86; P < 0.001; Extended Data Figure 381 

7). Bootstrapping was applied (boot package in R, version 1.3-25) to assess 382 

uncertainty around the regression. 383 

 384 
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Modelling peatland extent 385 

Satellites cannot detect peat directly. We therefore mapped vegetation and used field-386 

based associations between peat and vegetation to infer peat presence9,29. Five 387 

landcover classes were used for the purpose of peatland mapping: water, savanna, 388 

palm-dominated peat swamp forest, hardwood-dominated peat swamp forest, and 389 

non-peat forming forest. In this classification, field recordings of non-peat forming 390 

seasonally inundated forest (< 30 cm thickness of ≥ 65% OM) were grouped together 391 

with field recordings of terra firme forest, which also does not form peat, to form the 392 

non-peat forming forest class. Our field recordings of hardwood- or palm-dominated 393 

peat swamp forest, by definition, consist of all forest sites that form peat, including any 394 

seasonally inundated forest that forms peat (≥ 30 cm of ≥ 65% OM). 395 

 396 

A total of 1,736 ground-truth datapoints was used: 172 in water, 476 in savanna, 632 397 

in non-peat forming forest (97 non-peat forming seasonally inundated forest, and 535 398 

terra firme forest), 188 in palm-dominated peat swamp forest, and 268 in hardwood-399 

dominated peat swamp forest (Extended Data Figure 1). This data comes from eight 400 

sources (Supplementary Table 2). First, ground-truth locations collected for this study 401 

using a GPS (Garmin GPSMAP 64s) at all transect sites in DRC for which a landcover 402 

class was determined (382 points). Second, published ground-truth data from nine 403 

transects in ROC (292 points)9. Third, 299 GPS locations of known savanna and terra 404 

firme forest landcover classes from archaeological research databases across the 405 

basin30,31. Fourth, 191 GPS locations from permanent long-term forest inventory plots 406 

of the African Tropical Rainforest Observation Network (AfriTRON), mostly from terra 407 

firme forest32, retrieved from the ForestPlots database33,34. Fifth, 229 GPS datapoints 408 

from terra firme forest or savanna locations in and around Lomami National Park (pers. 409 
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comm., R.B., G.I. and A. C-S.). Sixth, 24 published savanna datapoints in and around 410 

Lomami NP35. Seventh, 23 published locations of savanna, terra firme forest, palm- or 411 

hardwood-dominated peat swamp forest in DRC11. Eighth, 296 datapoints from 412 

Google Earth for unambiguous savanna and water sites (middle of lakes or rivers), 413 

distributed across the region. 414 

 415 

We used nine remote sensing products to map peat-associated vegetation 416 

(Supplementary Figure 1).  Eight of these are identical to those used by Dargie et al.9: 417 

three optical products (Landsat 7 ETM+ bands 5 [SWIR 1], 4 [NIR], and 3 [Red]); three 418 

L-band Synthetic Aperture Radar products (ALOS PALSAR HV, HH, and HV/HH); and 419 

two topographic products (SRTM DEM [Digital Elevation Model] void-filled with ASTER 420 

GDEM v2 data, and slope; acquisition date 2000). To this, we added a HAND-index 421 

(Height Above Nearest Drainage point), which significantly improved model 422 

performances (median Matthews correlation coefficient [MCC]: 79.7%, compared with 423 

77.8% or 75.6% for just DEM or HAND alone, respectively; P < 0.001).  424 

 425 

HAND was derived from the SRTM DEM with Clubb et al.’s algorigthm36, using the 426 

HydroSHEDS global river network at 15s resolution as reference product37. Alternative 427 

NASADEM- or MERIT DEM-derived38–40 combinations of DEM, HAND and slope were 428 

tested with an initial subset of data in R, while keeping all other remote sensing 429 

products the same (median MCC: 79.0% and 75.1%, respectively), but did not 430 

significantly improve model performance compared with SRTM-derived products 431 

(80.9% median MCC; P < 0.001). 432 

 433 
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The Landsat bands are pre-processed, seamless cloud-free mosaics for ROC 434 

(composite of three years, 2000, 2005, 2010) and DRC (composite of six years, 2005-435 

2010)41. These mosaics performed better than more recent basin-wide automated 436 

cloud-free Sentinel-2 mosaics that we developed (bands 5, 8A, 11; composite of five 437 

years, 2016-2020), likely because they contain less directional reflectance artefacts 438 

(the median MCC of 80.9% for the pre-processed Landsat mosaics is significantly 439 

higher than the 78.1% for our Sentinel-2 mosaics, P < 0.005).  440 

 441 

The ALOS PALSAR radar bands are mosaics of mean values of annual JAXA 442 

composites for the years 2007-2010 (ref. 9). More recent radar data (ALOS 2-PALSAR 443 

2 HV, HH, HV/HH; 2015-2017) did not significantly improve model performances 444 

(median MCC 80.9% and 80.6%, respectively; P < 0.01). All remote sensing products 445 

were resized to a common 50 m grid, using a cubic convolution resampling method.  446 

 447 

We then tested which classification algorithm to use, as more sophisticated algorithms 448 

might improve overall accuracy against our training dataset, but might also reduce 449 

regional accuracy of the map in areas far from test data, critical in this case given large 450 

areas of the central Congo peatland region remain unsampled.  451 

 452 

Three supervised classification algorithms were tested in order of increasing 453 

complexity: Maximum Likelihood (ML), Support Vector Machine (SVM) and Random 454 

Forest (RF). We assessed each classifier using both a random and spatial cross-455 

validation (CV) approach42–44. Random CV was implemented using stratified two-456 

thirds Monte Carlo selection, whereby we 1,000 times randomly selected two-thirds of 457 
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all datapoints per class as training data, to be evaluated against the remaining one-458 

third per class as testing data.  459 

 460 

Spatial CV was implemented by grouping all transects datapoints in four distinct hydro-461 

geomorphological regions: (i) transects perpendicular to the blackwater Likouala-aux-462 

Herbes River (n  = 179 datapoints); (ii) transects perpendicular to the white-water 463 

Ubangi River (n = 113); (iii) transects perpendicular to the Congo River, intermediate 464 

between black and white-water (n = 123); and (iv) transects perpendicular to the 465 

blackwater Ruki, Busira and Ikelemba Rivers, plus other nearby transects (collectively 466 

named the Ruki group; n = 258). To each group we added ground-truth datapoints 467 

from other non-transect data sources (Supplementary Table 2) that belonged to the 468 

same map regions (n = 82, 27, 20, 113, respectively). We then tested 1,000 times how 469 

well each classifier performs in each of the four regions, when trained only on a 470 

stratified two-thirds Monte Carlo selection of the remaining datapoints (i.e., datapoints 471 

from the three other regional transect groups), plus ground-truth datapoints not 472 

associated with or near any transect group (n = 821; for example, the savanna and 473 

terra firme forest datapoints in Lomami National Park in DRC which are far [> 300 km] 474 

from any transect group). 475 

 476 

Model performance was based on Matthews correlation coefficient (MCC) for binary 477 

peat/non-peat predictions (hardwood- and palm-dominated peat swamp forest classes 478 

combined into one peat class; water, savanna and non-peat forming forest combined 479 

into one non-peat class). We compared MCC, rather than popular metrics such as 480 

Cohen’s kappa, F1-score or accuracy, because it is thought to be the most reliable 481 

evaluation metric for binary classifications45,46. We also computed balanced accuracy 482 
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(BA) from random cross-validation to compare with the first-generation map. While 483 

less robust than MCC, BA is independent of imbalances in the prevalence of 484 

positives/negatives in the data, thus allowing better comparison between classifiers 485 

trained on different datasets16. The best estimate of each accuracy metric or area 486 

estimate per model or region is the median value of 1,000 runs, alongside a 95% 487 

confidence interval. 488 

 489 

In the case of SVM and RF, random CV models were implemented in Google Earth 490 

Engine (GEE)47 using all nine remote sensing products. However, because ML is 491 

currently not supported by GEE, random CV with this algorithm was implemented in 492 

IDL-ENVI software (version 8.7-5.5), using a principal component analysis (PCA) to 493 

reduce the nine remote sensing products to six uncorrelated principal components to 494 

reduce computation time. All spatial CV models were implemented in R (superClass 495 

function from the RStoolbox package, version 0.2.6), with PCA also applied in the case 496 

of ML only. All RF models were trained using 500 trees, with three input products used 497 

at each split in the forest (the default, the square root of the number of variables). All 498 

SVM model were implemented with a radial basis function kernel, with all other 499 

parameters set to default values.  500 

 501 

Comparison of the ML, SVM and RF models with Dargie et al.’s model performance9, 502 

using balanced accuracy from random cross-validation, shows improved results only 503 

in the case of the ML classifier (Supplementary Table 3). Comparing MCC using the 504 

spatial CV approach, we found that the ML algorithm is also most transferable to 505 

regions for which we lack training data. While RF gives slightly better MCC with 506 

random CV, when no regions are omitted, spatial CV shows particularly poor predictive 507 
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performance of this algorithm for the Congo and Ruki regions, when trained on data 508 

from the other regions. SVM has lowest MCC of all three classifiers with random CV, 509 

and also performs worst of all three in the Congo region with spatial CV.   510 

 511 

Additionally, applying spatial CV to the largely interfluvial basin region (ROC transects; 512 

n = 401), and the largely river-influenced region (DRC transects; n = 540), also shows 513 

RF performs poorly (Supplementary Table 3). This further supports selecting the ML 514 

algorithm to produce our second-generation peat extent map of the central Congo 515 

peatlands. The final peatland extent estimate is then obtained as the median value 516 

(alongside 95% confidence interval) out of the combined hardwood- and palm-517 

dominated peat swamp forest extent from 1,000 ML runs, each time trained with two-518 

thirds of the ground-truth data. 519 

 520 

Modelling peat thickness 521 

A map of distance from the peatland margins was developed in GEE using the median 522 

ML peat probability map, i.e. the ML map with a 50% peat probability threshold (> 500 523 

hardwood- or palm-dominated peat swamp predictions out of 1,000 runs). For each 524 

peat pixel in this binary classification, a cost function was used to calculate the 525 

Euclidean distance to the nearest non-peat pixel, after speckle and noise were 526 

removed using a 5x5 squared-kernel majority filter. Using this distance map, transects 527 

were found to have markedly different relationships between peat thickness and 528 

distance from the peatland margin, i.e. different slopes (n = 18, P < 0.001, Extended 529 

Data Figure 4). The modest linear fit (R2 = 41.0%; RMSE = 1.21 m) cautions against 530 

a uniform regression between peat thickness and distance from the margin across the 531 

basin.  532 
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 533 

Instead, we developed a spatially-explicit Random Forest regression model to predict 534 

peat thickness, derived from 14 remotely-sensed potential covariates that may explain 535 

variation in peat thickness. These 14 variables included the nine optical, radar and 536 

topographic products used in the peatland extent analysis, as well as distance from 537 

the peatland margin, distance from the nearest drainage point (same reference 538 

network as for HAND)37, precipitation seasonality48, climatic water balance (mean 539 

annual precipitation48 minus mean annual potential evapotranspiration49), and live 540 

woody aboveground biomass50. Ten of these variables were found to be significantly 541 

correlated with peat thickness (Kendall's τ, P < 0.01): all three optical bands, all three 542 

radar bands, distance from the peatland margin, distance from the nearest drainage 543 

point, precipitation seasonality, and climatic water balance. Applying stepwise 544 

backward selection, we tested combinations of these ten predictors by each time 545 

dropping one predictor out of the model in order from low to high variable importance, 546 

selecting as the best model the one with highest median R2 and lowest median root 547 

mean square error (RMSE) obtained from 100 random (two-thirds) cross-validations. 548 

The importance of each variable was assessed by calculating Mean Decrease Impurity 549 

(MDI), the total decrease in the residual sum of squares of the regression after splitting 550 

on that variable, averaged over all decision trees in the random forest. Median MDI 551 

was calculated for each variable based on 100 random (two-thirds) cross-validations 552 

of the overall model containing all ten significant predictors.  553 

 554 

The best model contained four predictors: distance from the peatland margin, distance 555 

to the nearest drainage point, climatic water balance (all positively correlated with peat 556 

thickness; Kendall's τ coefficient = 0.49, 0.15 and 0.13, respectively; P < 0.001 for all), 557 
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and precipitation seasonality (negatively correlated with thickness; Kendall's τ = -0.11, 558 

P < 0.01); see Extended Data Figure 6 for their spatial variability.  559 

 560 

The RF regression was implemented in GEE with 500 trees and all other parameters 561 

set to default values. Predictor variables were resampled to 50 m resolution. As 562 

training data, we included all LOI-verified and corrected pole-method thickness 563 

measurements that fell within the masked map of > 50% peat probability (n = 463), 564 

including thickness > 0 and < 0.3 m from non-peat sites that could improve predictions 565 

of shallow peat deposits near the margins (n = 12).  566 

 567 

Our final RF model (R2 = 93.4%, RMSE = 0.42 m) had consistently smaller residuals 568 

compared to a multiple linear regression model containing the same four predictors 569 

with interaction effects (adj-R2 = 73.6%, RMSE = 0.80 m; Extended Data Figure 5). It 570 

also performed better when testing out-of-sample performance, using 100 random 571 

two-thirds cross-validations of training data (median R2 = 82.2%, RMSE = 0.68 m; and 572 

median adj-R2 = 73.6%, RMSE = 0.85 m; for RF model and multiple linear regression, 573 

respectively). 574 

 575 

For uncertainty on our thickness predictions, we first estimated area uncertainty by 576 

creating 100 different maps of distance from the peat margin, by randomly selecting 577 

(with replacement) a minimum peat probability threshold > 0% and ˂ 100%, removing 578 

speckle and noise, and re-calculating the closest distance to the nearest non-peat 579 

pixel. We then combined the 100 distance maps each time with the three other 580 

selected predictors (precipitation seasonality, climatic water balance, distance from 581 

nearest drainage point) as input in a RF model to develop 100 different peat thickness 582 
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maps. For these model runs, we included all available thickness measurements (> 0 583 

m) that fell within each specific distance map. Each output map was masked to an 584 

area ≥ 0.3 m thickness, consistent with our peat definition.  A map of median peat 585 

thickness (Figure 3a) and relative uncertainty (± half the width of the 95% CI as 586 

percentage of the median; Figure 3b) was then calculated for each pixel based on the 587 

100 available thickness estimates. 588 

 589 

Carbon stock estimates 590 

We mapped carbon density across the central Congo Basin in GEE, by applying 20 591 

bootstrapped thickness-carbon regressions that were normally distributed around the 592 

best fit (Extended Data Figure 7 6) to the 100 peat thickness maps from the RF 593 

regression model, generating a map of median carbon density out of 2,000 estimates 594 

(Figure 3a), together with relative uncertainty (± half the width of the 95% CI as 595 

percentage of the median; Figure 3b).  596 

 597 

Total peat carbon stocks were computed in GEE by summing carbon density (in Mg 598 

ha-1) over all 50 m grid squares defined as peat. To assess uncertainty around this 599 

estimate, we again combined the 100 peat thickness maps (i.e., uncertainty from area 600 

and thickness), with 20 bootstrapped thickness-carbon regressions (i.e., uncertainty 601 

from carbon density, including bulk density and carbon concentration). We thus 602 

obtained 2,000 peat carbon stock estimates for the total central Congo Basin peatland 603 

complex, which were used to estimate the mean, median and 95% CI (Extended Data 604 

Figure 8a).  605 

 606 
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Regional carbon stock estimates were similarly obtained for each sub-national 607 

administrative region (departments in ROC and provinces in DRC; Extended Data 608 

Figure 2), as well as national-level protected areas (national parks and 609 

nature/biosphere/community reserves)51 and logging52,53, mining54,55 and palm oil56–58 610 

concessions (Extended Data Figures 9 and 10). As hydrocarbon concessions cover 611 

almost the whole peatlands area24,26, they cover almost 100% of the central Congo 612 

peat carbon stocks.   613 

 614 

Sensitivity analysis was performed by bootstrapping either the area, thickness, or 615 

carbon density component, whilst keeping the others constant (Extended Data Figure 616 

8b). For area, we bootstrapped 100 randomly selected peatland area estimates; for 617 

thickness, 100 randomly selected two-thirds subsets of all thickness measurements; 618 

for carbon density, 20 normally distributed regression equations from the bootstrapped 619 

thickness-carbon relationship. 620 

  621 
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DATA AVAILABILITY 622 

All map results from this study are available for download as raster files from 623 

https://congopeat.net/maps/. The supporting ground-truth data, peat thickness 624 

measurements, and carbon density measurements are available from 625 

https://github.com/CongoPeat/Peatland-mapping.git . The remote sensing datasets 626 

used are available for download from 627 

https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf_e.htm (ALOS PALSAR and ALOS-2 628 

PALSAR-2 25 m HV and HH data), http://osfac.net/ (OSFAC ROC and DRC 60 m 629 

Landsat ETM+ bands 5, 4 and 3 mosaics), and http://earthexplorer.usgs.gov/ (SRTM 630 

DEM 1-arc second and ASTER GDEM v2 1-arc second data). 631 

 632 

 633 

CODE AVAILABILITY 634 

The IDL-ENVI script to run the Maximum Likelihood peatland extent model is 635 

available from https://github.com/CongoPeat/Peatland-mapping.git. The scripts to 636 

run the peat thickness model and carbon stock calculations are available on Google 637 

Earth Engine:  638 

https://code.earthengine.google.com/?accept_repo=users/gybjc/Central_Congo_Pea639 

tlands_2022. All R code is available from the corresponding author upon request. 640 

  641 
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TABLES 675 

 676 

Table 1 | Field-measured and spatially modelled estimates of peat thickness, bulk density, carbon concentration, and 677 

carbon density in the central Congo Basin peatland complex. 678 

 Field measurements ⃰   Spatial model † 

Peat thickness  
(m) # 

Peat bulk density  
(g cm-3) § 

Peat carbon concentration  
(%) ‡ 

Peat carbon density  
(Mg C ha-1) ‡  

Peat thickness  
(m) ¶ 

Peat carbon density  
(Mg C ha-1) $ 

Mean  
± s.d. 

Median 
 

Max Mean  
± s.d. 

Median 
 

Min Max Mean  
± s.d. 

Median 
 

Min Max Mean  
± s.d. 

Median Max Mean  
± s.d. 

Median Max Mean  
± s.d. 

Median 
 

Max 

Interfluvial basin 
peatlands (ROC) 

2.4  

(1.5) 

2.1 5.9 

 

0.19 

(0.06) 

0.19 0.10 0.31 56.2 

(2.7) 

56.5 49.6 61.8 1,619 

(810) 

1,640 3,183 1.7  

(0.9) 

1.3 5.4 1,653 

(687) 

1,402 3,852 

River-influenced 
peatlands (DRC) 

2.4 

(1.6) 

2.0 6.4 

 

0.15 

(0.07) 

0.15 0.02 0.33 55.0 

(3.6) 

55.8 42.0 59.2 1,883  

(1,511) 

1,762 5,162 1.8  

(0.8) 

1.6  5.6 1,740 

(604) 

1,697 3,970 

Central Congo  
Basin peatlands 
(ROC + DRC) 

2.4 

(1.5) 

2.0 6.4 0.17 

(0.06) 

0.17 0.02 0.33 55.7 

(3.2) 

56.3 42.0 61.8 1,741 

(1,186) 

1,700 5,162 1.7 

(0.9) 

1.6  5.6 1,712  

(634) 

1,661  3,970 

* Field measurement statistics include either the Likouala-aux-Herbes and Ubangi River groups of transects only (‘Interfluvial 679 

basin peatlands’), or the Congo and Ruki River groups of transects only (‘River-influenced peatlands’), or all groups (‘Central 680 

Congo Basin peatlands’).  681 

† Spatial model statistics include all 50 m resolution pixels mapped in either Republic of the Congo only (ROC), Democratic 682 

Republic of the Congo only (DRC), or both countries (ROC + DRC).  683 
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# In situ measurements (laboratory and corrected pole-methods) from 213, 238 and 451 locations in ROC (ref. 9), DRC (this 684 

study) and combined, respectively. Peat is ≥ 0.3 m thickness and ≥ 65% organic matter. 685 

§ n = 43, 37, and 80 well-sampled cores in ROC (ref. 9), DRC (this study) and combined, respectively, based on 0.1-m thick 686 

samples. 687 

‡ n = 43, 37, and 80 well-sampled and interpolated cores in ROC (ref. 9), DRC (this study) and combined, respectively, based 688 

on 0.1-m thick samples.  689 

¶ Median estimate from 100 thickness estimates per 50 m resolution pixel across the median extent map, with thickness 690 

estimated from 100 RF regression models trained with four predictor variables, each with a randomly selected Maximum 691 

Likelihood peat probability threshold to derive distance from the peatland margin. 692 

$ Median estimate from 2,000 carbon density estimates per 50 m resolution pixel across the median peat area map, with 693 

carbon density estimates derived from 20 normally distributed thickness-carbon regressions (Extended Data Figure 7) applied 694 

to 100 peat thickness estimates.   695 
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FIGURE LEGENDS/CAPTIONS 696 

 697 

Figure 1: Maps of field sampling locations (a), peat swamp forest predictions 698 

from this study (b), and a comparison of our predictions with a previous map9 699 

(c). a, Points indicate transects, coloured by region. The Congo and Ruki River 700 

regional groups appear to be in largely river-influenced peatlands, predominating in 701 

DRC, sampled for this study. The Likouala-aux-Herbes and Ubangi River regional 702 

groups are in largely rain-fed interfluvial basins, predominating in ROC, from Ref. 9. 703 

The base map, in green, shows the first-generation peat swamp forest map9. Inset: 704 

Location of central Congo Basin peatlands. b, Predicted landcover classes across the 705 

central Congo Basin as the most likely class per pixel (>50%), using a legend identical 706 

to Ref. 9 to facilitate comparison. c, Peat swamp forest predictions from this study and 707 

Ref. 9 using the most likely class per pixel. White indicates peat in both studies; red 708 

indicates peat in this study only; blue indicates peat only in Ref. 9. Open water is dark 709 

grey. In all panels, national boundaries are black lines; sub-national boundaries are 710 

grey lines; non-peat forming forest includes both terra firme and non-peat forming 711 

seasonally inundated forests. 712 

 713 

Figure 2: Maps of peat thickness and uncertainty across the central Congo 714 

Basin. a, Median prediction of peat thickness (m) from 100 Random Forest regression 715 

models with four predictors: distance from the peatland margin, precipitation 716 

seasonality, climatic water balance, and distance from the nearest drainage point. b, 717 

Relative uncertainty (%) of the peat thickness estimate, expressed as ± half the width 718 

of the 95% confidence interval as percentage of the median. Black lines represent 719 

national boundaries; grey lines represent sub-national administrative boundaries. 720 
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 721 

Figure 3: Maps of belowground peat carbon density and uncertainty across the 722 

central Congo Basin. a, Median prediction of belowground peat carbon density (Mg 723 

C ha-1), obtained from applying 20 normally distributed thickness-carbon density 724 

regressions (Extended Data Figure 7) to 100 peat thickness estimates (Figure 2a), 725 

generating 2,000 carbon density estimates. b, Relative uncertainty (%) of the carbon 726 

density estimate, expressed as ± half the width of the 95% confidence interval as 727 

percentage of the median. Black lines represent national boundaries; grey lines 728 

represent sub-national administrative boundaries. 729 

  730 
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