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Abstract

Electroencephalography (EEG) is a common and inexpensive method to record neural

activity in humans. However, it lacks spatial resolution making it difficult to deter-

mine which areas of the brain are responsible for the observed EEG response. Here

we present a new easy-to-use method that relies on EEG topographical templates.

Using MRI and fMRI scans of 50 participants, we simulated how the activity in each

visual area appears on the scalp and averaged this signal to produce functionally

defined EEG templates. Once created, these templates can be used to estimate how

much each visual area contributes to the observed EEG activity. We tested this

method on extensive simulations and on real data. The proposed procedure is as

good as bespoke individual source localization methods, robust to a wide range of

factors, and has several strengths. First, because it does not rely on individual brain

scans, it is inexpensive and can be used on any EEG data set, past or present. Second,

the results are readily interpretable in terms of functional brain regions and can be

compared across neuroimaging techniques. Finally, this method is easy to under-

stand, simple to use and expandable to other brain sources.
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1 | INTRODUCTION

Electroencephalography (EEG) is a powerful tool to measure and

study neuronal activity in the human brain. One of its major advan-

tages is its very high temporal resolution. However, because EEG is

recorded on the scalp, it represents the combined activity of multiple

brain areas, making it difficult to determine the intracranial sources of

the scalp signal. Various methods have been proposed to localize the

brain sources of EEG activity (He et al., 2018; Michel & He, 2019;

Michel & Murray, 2012). These source localization methods have

been improved over decades, particularly with the introduction of

anatomical and physiological constraints on the cortical sources

(Dale & Sereno, 1993; Pascual-Marqui et al., 1994). Today, the best

results are found with source localization methods that use realistic

head models. These are created specifically for each individual from

their MRI scans. It improves the reliability and precision of EEG source

localization compared with previously used spherical head models,

head models derived from a template MRI (such as MNI or Talairach)

or from an averaged MRI data set (Akalin Acar & Makeig, 2013; Bail-

let, Riera, et al., 2001; Brodbeck et al., 2011; Fuchs et al., 2002, 2007;

Guggisberg et al., 2011; Wang et al., 2011).

Given that brain anatomy is highly variable across individuals,

source localization methods are traditionally performed on an

individual-basis. This also means that the retrieved brain sources are

not the same across individuals and cannot be averaged easily.

Although such anatomical localization is important in some
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circumstances (e.g., for localizing epileptic foci), most studies are inter-

ested in the neural mechanisms involved in a particular cognitive pro-

cess or behavior at the group-level. That is, they are not interested in

the anatomical brain sources per se but in identifying the functional

brain area(s) involved in the process that is investigated. In line with

this, a different approach, fMRI-informed EEG source imaging, has

been developed where regions of interests (ROIs) are mapped out

from fMRI scans using retinotopic mapping (Hagler & Dale, 2013;

Engel et al., 1994; Himmelberg et al., 2021; Wandell &

Winawer, 2011) and/or fMRI localizers (Huk et al., 2002; Kanwisher

et al., 1997; Saxe et al., 2006). Sources are then defined as belonging

to a given ROI and because they represent the same brain function,

they can be averaged across participants with different brain anatomy

(this is common in fMRI when averaging blood oxygen level-depen-

dent, i.e. BOLD, response of voxels within ROIs). Another advantage

of this method is that the activity between functionally equivalent

sources can be compared across experiments using the same (EEG) or

different (MEG, fMRI) technique. Besides, considerations about which

electrodes to pick or to pool when analyzing the data become unnec-

essary. This approach has been very successful, especially in the field

of visual perception (Ales, Appelbaum, et al., 2013; Ales &

Norcia, 2009; Appelbaum et al., 2008; Cottereau et al., 2014; Cotter-

eau, McKee, et al., 2012; Lauritzen et al., 2010; Palomares

et al., 2012; Verghese et al., 2012; Wang & Wade, 2011). However,

fMRI-informed EEG source imaging, like other methods, relies on

obtaining MRI and fMRI scans to create individual realistic head

models. Even if the head model of a participant can be used for multi-

ple EEG experiments, the procedure is still expensive in terms of

money, time, and computational load.

Here we present a new source localization method that uses

topographies of EEG activity derived for multiple functionally defined

visual brain area to recover the intracranial sources responsible for a

given EEG scalp activity. This method substantially simplifies and

reduces the costs of EEG source localization. It is inspired by the use

of cortical (Cabezas et al., 2011; Evans et al., 2012) and functional

atlases (Engell & McCarthy, 2013; Huang et al., 2019; Rosenke

et al., 2020; Weiner et al., 2018; Zhen et al., 2017) to localize ROIs in

new individuals. The implicit assumption in such an approach, shared

by most neuroimaging procedures, is that the average of multiple par-

ticipants is a good representation of the population. Following this

idea, it should be possible to generate a scalp response from the aver-

age of multiple individuals that would represent the activity of a spe-

cific brain area. As the number of participants grows, the expected

scalp response will converge towards the population average and not

be dependent on the scalp response for any specific individual or the

specific set of participants included in the study. This means that this

expected response, or template, can be applied to any data set. By

creating multiple templates representing the activation of different

ROIs, we can then determine how much each template contributes to

the scalp EEG response.

EEG recordings are typically analyzed by averaging the signal

across multiple participants to improve the signal-to-noise ratio (SNR).

However, many EEG source imaging methods work by estimating the

sources of individual subject's data and then averaging across

participants. This can result in poor quality estimates because source

localization methods are typically sensitive to SNR. By effectively try-

ing to sharpen the blurred scalp data, these methods also amplify

noise. Source localization using group-informed EEG source imaging is

better compared with retrieving sources at the individual level (Lim

et al., 2017). By averaging across participants before source localiza-

tion, SNR will be higher and can result in better source localization

accuracy. The method that we propose uses the average of expected

scalp responses for a set of ROIs (EEG templates) and the average of

the recorded EEG signal to determine the contribution of each ROI to

this EEG signal.

In contrast to other source localization methods using individual

anatomic and functional MRI scans, the template method is based on

the EEG templates that are created a priori and do not depend on spe-

cific participant data. Although we use fMRI and MRI data to create

the EEG templates, once created, there is no need for additional

scans. This method thus eliminates scan-related costs, is also much

faster (as there is no need for additional MRI or fMRI data processing)

and has the advantage that it can be applied to any past and future

EEG recordings.

We expect this method to be useful for a wide range of research

groups. Our fitting procedure is implemented using regularized linear

regression, a tool widely used and understood, making this procedure

relatively straightforward to apply in novel contexts. Our overall

approach is easily implemented using the set of functions and EEG

templates that we have made available at https://github.com/aleslab/

eegSourceTemplateMatching.

2 | METHODS

The template method that we propose is based on using EEG topogra-

phies that represent the activity of functional brain areas. We first

describe how we created these topographies and then how we use

them to recover brain sources from EEG scalp activity. To assess the

validity of this method, we compare it with fMRI-informed source

localization methods using simulated and real data.

2.1 | Creation of functionally defined EEG
templates

The templates were constructed using boundary element forward

models which define how the activity of a neural source propagates

to each of the EEG electrodes at the surface of the scalp. To account

for the variability in brains across individuals, we used 50 participants'

pre-analyzed structural and functional MRI scans collated from several

experiments. These were originally collected with ethical approval

from UCSF, The Smith-Kettlewell Eye Research Institute, and Stan-

ford University (Ales et al., 2010; Cottereau, Ales, & Norcia, 2012;

Cottereau, McKee, et al., 2012; Lim et al., 2017).

The data included the definition of a source space and the surface

boundaries for skin, skull, cerebrospinal fluid for each participant, co-

registered with the positions of 128 EEG electrodes. In addition,

2 PONCET AND ALES
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18 visual ROIs (V1-L, V1-R, V2v-L, V2v-R, V2d-L, V2d-R, V3v-L,

V3v-R, V3d-L, V3d-R, V4-L, V4-R, V3A-L, V3A-R, LOC-L, LOC-R,

MT-L, MT-R; where L = left, R = right, d = dorsal, v = ventral) were

defined based on high-resolution T1 whole-head anatomical MRI

scans combined with functional MRI scans for each participant.

Details of the analyses can be found in previous studies (Cottereau,

Ales, & Norcia, 2012; Cottereau, McKee, et al., 2012; Lim et al., 2017).

In brief, gray/white and gray/cerebrospinal fluid boundaries were

delineated using FreeSurfer from a structural scan of each participant.

A surface tessellation pathway that has gyri and sulci with approxi-

mately equal curvature was created between these two boundaries.

Sources were constrained to lie on this surface consisting of 20,484

regularly spaced vertices. The sources were dipoles of the same mag-

nitude with their orientation constrained to the local surface normal.

The inner skull, outer skull, and scalp surfaces were segmented with

the FSL toolbox using the individual T1 and T2 weighted MRI scans

and converted into inner skull, outer skull, and scalp surfaces

(Smith, 2002; Smith et al., 2004) that defined the boundaries for skin,

skull, cerebrospinal fluid for each participant. The 3D locations of the

EEG electrodes at the surface of the head and the three major fidu-

cials (nasion and left and right peri-auricular points) were digitized

using a 3Space Fastrack 3D digitizer (Polhemus, Colchester, VT) and

co-registered with the anatomical scans. Visual areas were defined by

fMRI retinotopic mapping (Tootell & Hadjikhani, 2001; Wade

et al., 2002). hMT+ was identified using low-contrast motion stimuli

similar to those described by Huk and Heeger (2002). LOC was

defined using a block-design fMRI localizer scan in which blocks of

images depicting common objects alternated with blocks containing

scrambled versions of the same objects. The stimuli were those used

in a previous study (Kourtzi & Kanwisher, 2000). The area activated

by these scans covers almost all regions (e.g., V4d, LOC and LO+) that

have previously been identified as lying within object-responsive LOC

(Kourtzi & Kanwisher, 2000; Tootell & Hadjikhani, 2001).

To create a method that can be used widely across different EEG

montages, we utilized the standard 10–05 system (Oostenveld &

Praamstra, 2001) as a high-resolution master montage with known

fiducial locations. We aligned the previously measured and co-

registered electrode locations to the 10–05 high-resolution standard

EEG system using an affine transformation based on 19 electrodes

(Fp1, Fp2, Fz, F7, F3, C3, T7, P3, P7, Pz, O1, Oz, O2, P4, P8, T8, C4, F4,

F8). We then combined the individually defined source space, surface

boundaries and 3D electrode locations with the MNE software package

to estimate the electric field propagation with the standard Boundary

Element Method (M. S. Hämäläinen & Sarvas, 1989) using 0.33, 0.025,

0.33 S/m for the scalp, skull, and brain compartments. The resulting

50 forward models (one per individual) link the activity of the 20,484

cortical sources to the voltages at the surface of the scalp recorded by

the standard 10–05 EEG system with an average reference.

To create EEG templates of functional brain areas, we pooled the

forward model sources located within each of the 18 previously iden-

tified ROIs for each participant separately. We then projected the

activity of each ROI to the scalp surface. The resulting scalp activity is

different for each ROI and participant. However, because we created

forward models with the same electrode layout for all participants,

the scalp activity can be averaged across the 50 participants for each

of the 18 ROIs. This averaged activity is what we term EEG templates.

These templates can then be used to recover the sources of an

observed EEG signal.

The advantage of using a 10–05 system with a high density of

electrodes is that the templates can be fit to any EEG montage with

the provided Matlab program (createCustomTemplates.m). We also

provide EEG templates for EGI (Geodesic Sensor Net) montages

which include electrodes located outside the 10–05 system. Most of

the results are reported with a 128 electrodes EGI system but other

montages are also compared in the results section.

2.2 | Recovering sources: Calculating the inverse
solution

Once EEG templates for each of the 18 ROIs are created, they can be

used via linear regression to determine the brain sources responsible

for the EEG activity recorded on the scalp (as long as the EEG mon-

tages and references match). Distributed source localization methods

typically fit more sources than sensors. These methods are “ill-posed”:
a single solution to the matrix inversion does not exist (i.e., the condi-

tion number of the matrix is infinity). In the “ill-posed” case, extra con-
straints and regularization are required to find a solution for the “ill-
posed” problem (Baillet, Mosher, & Leahy, 2001; Dale &

Sereno, 1993; Hämäläinen et al., 1993; Hämäläinen &

Ilmoniemi, 1994). In our case, we have a well-posed problem (only

18 sources and 32–346 electrodes) where a single solution in princi-

ple does exist. However, we have an “ill-conditioned” problem

because the forward model for EEG sources is in practice not well-

conditioned even for a few dozen sources (because the eigenvalues of

the forward model matrix rapidly diminish). The condition number of

the forward matrix directly relates to the SNR that is required for per-

fect recovery of underlying sources. In our case, the condition number

for the template forward models are on the order of 300. The SNR in

typical ERP studies is lower than what would be required for this level

of conditioning. Therefore, performing an un-regularized linear regres-

sion will result in excess noise being included in the solution

(i.e., overfitting). In order to accurately fit the data, it is crucial to

appropriately regularize the solutions. Here we applied well-known

Tikhonov regularization (also known as “ridge regression”) which uses

the L2 norm of the fitted coefficients to stabilize the inversion of the

forward matrix.

Determining how much regularization to perform is a difficult

open problem and is just as (or more) important as choosing the type

of regularization. Many methods ignore this aspect and leave this

parameter entirely under the subjective control of the practitioner to

set. Even when using identical regularization methods, different ways

to set the regularization parameter can have large consequences. Too

much regularization results in underfitting the data and smoothing

across real differences, while too little regularization results in overfit-

ting and emphasizing noise which enhances spurious patterns. Choos-

ing the amount of regularization can be done subjectively by the

experimenter or by using an algorithm. The present study uses two of
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the popular algorithms for choosing regularization amounts: the gen-

eralized cross validation (GCV) and the L-curve method

(Hansen, 1992; Hansen & O'Leary, 1993). We used the regularization

tools toolbox (Hansen, 1994) and made modifications to extend the L-

curve and GCV functions to be applicable to data with multiple sam-

ples (e.g., over time for an ERP). Both the GCV and L-curve methods

work by generating proxy estimations of over/under-fitting and opti-

mizing this tradeoff. GCV methods have been very useful in the past

for regularizing EEG source localization solutions in individual partici-

pants (Cottereau et al., 2015). However, we found that with the tem-

plate method applied to average data, the GCV can fail to provide an

appropriate regularization value. This is due to the GCV's assumption

that residual error for left out data will be independent (uncorrelated)

across electrodes. Indeed, the residual error across electrodes can be

highly correlated with the template method, biasing the GCV estimate

of fitting. In these circumstances, the L-curve method is better suited

than a GCV regularization since it is more robust to the presence of

correlated errors (Hansen & O'Leary, 1993).

Because both the L-curve and GCV methods rely on strong

assumptions to provide approximate regularization parameters they

are not guaranteed to provide an optimal value. Optimal regularization

is still a fundamental and challenging problem. Active research is

ongoing for developing methods that would provide a better regulari-

zation estimation and future results may improve on this algorithm.

When simulating data we have access to the true sources of the sig-

nal, it is thus possible to choose a regularization parameter that best

optimizes the error (based on computing the mean square error)

instead of relying on the L-curve or GCV regularization. In order to

evaluate the best-case scenario that may be achievable in the future

with improved regularization methods, we also performed source

localization using this best possible regularization parameter that we

call the template-optimal method.

Another point to consider is that regularization is a nonlinear pro-

cessing step and therefore the order it is applied matters. When regu-

larization is performed on the average EEG data, it is not the same as

the average of the regularization performed on each individual EEG

data. The group average has lower noise than any individual data set,

therefore the resulting regularization is lower than any individual data

set. The amount of regularization will thus be different when using

the template method compared with individual-based source localiza-

tion methods. In addition, with L2 regularization, when noise

increases, the power (L2 norm) across the coefficients decreases, so

the coefficient amplitude decreases (and vice versa with less noise).

Therefore, when averaging the individual source localization results

across a group of participants with heterogeneous noise levels, the

participants with the lowest noise might dominate the results. Apply-

ing the regularization on the average EEG reduces such risk.

2.3 | Comparison with other source localization
methods

Traditional source localization methods cannot be directly compared

with the proposed method. Because our goal is to recover the signal

from functional sources, we consider only 18 candidate sources in our

procedure whereas traditional methods recover anatomical sources

among candidates distributed throughout the whole brain. However,

it is important to validate our approach by comparing it to other

source localization methods that are based on each individual head

model. We therefore compared our method to those that have been

previously used for fMRI ROI-informed source localization (Cottereau

et al., 2015). We localized sources from each individual separately and

pooled the identified brain sources within each ROI (sources outside

the ROIs are ignored). The recovered source activity within each ROI

is then averaged across participants and can be compared with the

results of the template method (Figure 1). While this individual method

considers any point of the cortex as a potential source, we also per-

formed source localization considering only the brain points located

within the ROIs. This individual-subset method is more focused and

has assumptions comparable to the template method. In addition, for

simulated data, we also compared the template method with an indi-

vidual-oracle method. Because we have perfect knowledge of the true

sources of the signal, it is possible to use the same data for simulating

and retrieving the sources. In our case, we use the same 18 ROIs of

each individual participant to simulate and retrieve the data. This indi-

vidual-oracle method gives the upper bound of source recoverability.

It indicates the performance limitations of the method when we have

perfect knowledge of all the knowable information about the sources

(here, the location of each participant's ROI and that the sources come

from those ROIs).

In the case of all these source localization methods, either the L-

curve or GCV method could be used for determining the regulariza-

tion parameter. We tried both and found that source localization

results were generally better when using the GCV, especially at lower

SNR. We thus report the results of the individual-based methods

using GCV regularization (results using the L-curve can be found in

Figure S9).

Traditional source localization
Template source localization

Individual forward model

Anatomical source localization 
at the individual level

Individual 
EEG data

Individual anatomic 
scans (T1+T2)

Individual 
functional scans 

EEG-templates of 
functional ROIs

Functional source localization 
at the group level

Average 
EEG data 

Minimum-norm Regularized linear regression

and average across individuals

Individual source localization 

R
e
s
tr

ic
t 

s
o
u
rc

e
s
 

to
 R

O
Is

Individual-subset source localization

Pool recovered sources within each ROI 

F IGURE 1 Analysis pipeline for different source localization
methods. The template method uses EEG templates (representing
typical average scalp activity for a set of ROIs) to retrieve functional
EEG sources at the group level. Traditional source localization
methods use individual scans to retrieve anatomical EEG sources at
the individual level. To retrieve functional sources at the group level,
we pooled and averaged the sources; a method that we call
“individual source localization” or “individual-subset source
localization” when we restricted the potential sources to be only in
the ROIs (see text for more details)
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2.4 | Data simulations

We simulated scalp EEG data with known brain sources and

attempted to retrieve them using the template method and other

source localization procedures described in the previous section while

varying different parameters such as the amount of noise in the data

and the number of participants. In all simulations, unless specified, the

EEG data were simulated for a 128 electrodes EGI montage using the

forward models of a set of 50 participants, randomly chosen with

replacement, for each simulation. This resulted in different EEG scalp

response for each participant to which Gaussian white noise was

added to all electrodes. The signal-to-noise ratio (SNR) was defined

across time and electrodes for each participant as:

SNR¼ RMSsignalþnoise amplitude

RMSnoise amplitude

� �2

�1:

Note that noise originating from the brain is not white but spa-

tially correlated. This correlated noise can affect the results recovered

by most inverse methods, which typically assume white noise. In the-

ory, pre-whitening should be used in almost all neuroimaging proces-

sing pipelines but in practice it is rarely done. This is likely because

pre-whitening requires inverting the noise covariance matrix which is

difficult to accurately estimate. Inverting an inaccurate and noisy

matrix can be unstable and magnify noise, leading to poorer results.

This issue is less problematic with the template method. Indeed, cor-

relation patterns are different between individuals and when data are

averaged across individuals, the correlation patterns weaken. We sim-

ulated the error caused by using correlated noise without pre-

whitening and found that it only causes a problem in individual-based

source localization at lower SNR levels (Figure S10).

The first set of simulations consisted of testing the amount of

similarity between templates or, in other words, assessing the cross-

talk (leakage) between ROIs. This is important for determining the

type of errors the template method commits (i.e., which ROIs are con-

fused with one another) and whether these errors reflect realistic

errors (ROIs that are anatomically close are more confusable than ana-

tomically far ROIs). For this, we simulated the activity of one ROI at a

time with an SNR of 10 using the forward models of a set of

50 participants.

In another set of simulations, we tested source localization per-

formance when a pair of bilateral brain sources (two sources in each

hemisphere) were active using a more realistic ERP-like signal. The

pair of active sources was chosen as being either easily distinguish-

able, V1 and hMT+, or difficult to separate, V2v and V4 (there is a

considerable amount of crosstalk between V2v, V4 and V3v, which

separates V2v and V4). For each simulation, a source signal was cre-

ated over time with a baseline activity from �45 to 0 ms and a com-

bined V1 and hMT+ (or V2v and V4) response from 0 to 45 ms

(Figure S1). The source signal was created with a random amplitude

between 1 and 10 and had an ERP-like shape that was common

across all participants but different for each simulation. From these

brain sources, we simulated a scalp response using the forward model

of 2, 8, 20 or 50 individuals. Gaussian noise was added to all elec-

trodes to obtain SNR levels of 0.1, 1, 10, 200, 10,000 (corresponding

to �10, 0, 10, 23, 40 dB). These SNR levels extend beyond the SNR

level observed in recorded data (an SNR of 0.1 corresponds to an

activity with 10 times more noise than signal, while an SNR of 10,000

corresponds to 10,000 times more signal than noise).

To examine the generalizability of our results, we tested different

EEG montages with 32, 64, 128, and 256 electrodes (using an EGI sys-

tem). We used similar ERP-like simulations but instead of simulating

the activity from V1-hMT+ or V2V-V4, the two active pairs of bilat-

eral areas were randomly chosen from the 9 bilateral ROIs. We also

tested the effect of the number of simultaneously active ROIs on

source localization performance by simulating the activity of each

bilateral ROI as active (1) or nonactive (0) with up to 8 bilateral ROIs

active simultaneously (i.e., 16 visual ROIs). The simulations were run

for 50 individuals using a fixed SNR level of 10 which corresponds to

a realistic SNR level in experiments analyzing transient ERPs.

We then assessed how activity from nonvisual sources affects

source localization performance. We used similar ERP-like simulations

with bilateral V1 and hMT+ as active visual sources, and we simulated

an additional bilateral source in anatomical brain regions outside the

visual areas. This external source was randomly picked among auto-

matically labeled areas (Desikan et al., 2006) such as, frontal, temporal,

parahippocampal, orbitofrontal, cingulate, rostral areas among others.

The sources for visual and nonvisual ROIs were active simultaneously

with a difference of 50% in strength, corresponding to strong interfer-

ence. Note that when simulating an ERP, the ratio of the strength

between the two sources varies over time (i.e., the external source

can have a larger amplitude than the nonvisual source at different

time points). Because the goal was to test the effect of an external

source that we do not try to recover, we only compared source locali-

zation performance for the template, individual and individual-subset

methods.

In a final set of simulations, we tested the template method when

only a subpart of V1 was active. We created an ERP signal and simu-

lated it as originating from either V1v-L, V1v-R, V1d-L or V1d-R. This

was done for 27 individuals as the distinction between V1v and V1d

was only done in 27 individuals in our data set. Sources simulated in

V1v-L or V1d-L were considered accurately recovered if they were

recovered in V1-L, similarly, sources simulated in V1v-R or V1d-R

were considered accurately recovered if they were recovered in V1-R.

2.5 | Application to real data

The difficulty in testing source location methods when using real data

are that we do not know the true sources, so it is not possible to

establish whether a method is better or worse than another. Here we

applied our template method to a data set that had been used to test

functional source localization methods (Lim et al., 2017). The data set

consists of EEG recordings of nine participants who viewed dynamic

Random-Dot-Kinematograms (RDK). The RDK alternated every

500 ms (at 1 Hz) between incoherent and coherent rotary motion
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(alternating between the clockwise and counterclockwise directions

to reduce the effects of motion adaptation). EEG responses at 1 Hz

(and its harmonics at 2, 3 Hz, etc.) reflect changes in global motion

and can be interpreted as arising from areas that can discriminate

between coherent and incoherent motion (Norcia et al., 2015). Given

previous fMRI and MEG results contrasting these two types of

motion, we expect sources to be present in V3A and hMT+ (Aspell

et al., 2005; Costagli et al., 2014; Händel et al., 2007; Helfrich

et al., 2013; Lim et al., 2017; Rees et al., 2000; Rina et al., 2022).

The EEG data were collected using a 128 electrodes EGI system.

The data were referenced to the average signal and matched with the

reference of the templates. The average reference was chosen

because it avoids having the reference channel exert extra influence

on solutions (Hu et al., 2018; Yao et al., 2019). This is important for

both the presently proposed template method and other localization

methods.

Source localization was conducted on the first five harmonics of

the signal (1, 2, 3, 4 and 5 Hz) using the template, individual and

individual-subset methods. Because the same data set was previously

analyzed using a group-lasso procedure (Lim et al., 2017), we also

reproduced that analysis. The source localization was repeated

500 times with a different sample of participants. Using this bootstrap

distribution, we computed a 95% confidence interval and tested

whether a given ROI was active at any time point (comparison with

null activity using alpha = .05). In more traditional paradigms compar-

ing two conditions with ERPs, we advise users to perform permuta-

tion tests between the two conditions to test for significant

differences. For illustration purposes, the retrieved activity was nor-

malized across sources by the maximum retrieved activity across time

and ROIs.

2.6 | Evaluating source localization results for
simulated data

Source localization methods can be evaluated in a wide variety of

ways. In this study, we utilized three metrics that emphasize different

aspects of source localization error. Each of these metrics is calculated

at each time point on the recovered signal then averaged across time.

a) Area under the ROC curve (AUC) quantifies the accuracy of the

method for separating the set of active sources from the set of inac-

tive sources. The ROC curve compares the sensitivity (true positivity

rate) and the specificity (true negativity rate) at different activity

thresholds (criterion in signal detection terms). AUC varies from 0.5

(random classification between active and nonactive source) to

1 (100% correct classification for all threshold levels, no false positives

or false negatives). AUC was always computed for two classes (active

vs. inactive ROIs) using the method described by Hand and Till (2001).

b) Relative energy specifies the amount of energy recovered in

the active sources by quantifying the amount of leakage of energy

outside the correct solution. It is the ratio between the normalized

estimated activity contained in the true active sources and the nor-

malized estimated activity in all possible sources. A perfect estimation

with no leakage results in a value of 1.

c) Normalized mean squared error (MSE) measures how close the

recovered amplitude is to the simulated source amplitude. It is the

average of the square of the difference between actual and estimated

EEG activity normalized across sources at each time point. MSE is

always positive and decreases as the error approaches 0. It reflects

the fit to the ground-truth signal.

3 | RESULTS

3.1 | EEG templates (distribution of scalp activity)
for the 18 ROIs

Our template-based source localization approach relies on using EEG

topographies that represent the activity of intracranial brain sources.

We thus modeled the EEG activity of the 18 ROIs that we considered

for 50 participants (see Methods). The resulting individual topogra-

phies for a given ROI show some similarities but also clear differences,

illustrating cross-participants variability (some examples can be found

in Figure S2). This variability primarily reflects anatomical and func-

tional brain differences between participants. A minimal amount could

also be explained by variations in the processing steps for creating the

forward models (for defining the source space, surfaces boundaries or

for ROI localization). Such variations are expected and part of any

analysis so they are a good representation of the type of data that

would be recorded by researchers.

The average scalp activity for each ROI is illustrated in Figure 2

for a 128-channels EGI system. The topographies of the EEG tem-

plates for a 10–05 system with 346 electrodes (Oostenveld &

Praamstra, 2001) and common montages, including the ones tested in

this study with 32, 64 and 256 electrodes can be found in Figure S3.

Apart from showing the EEG templates that we use for the source

localization in our simulations; these figures are important as they

depict the EEG topography to expect when specific brain areas are

active. It is worth noticing that for example, when V1 in the left hemi-

sphere is active (which would be expected for a stimulus presented in

the right visual field), it results in a maximum scalp response in the

opposite hemisphere (posterior-right of the head). This paradoxical

lateralization of the EEG response (ipsilateral to the visual hemifield

that is stimulated) has been documented almost 50 years ago (Barrett

et al., 1976). The V1 template demonstrates that this paradoxical acti-

vation is observed when averaging over a large sample of participants

and is the direct consequence of brain anatomy. The activity in ROIs

such as V2d, V3d, V3A, LOC and hMT+ result in a relatively focal pos-

itive signal on the scalp. Note that the scalp activity for hMT+ is more

anterior than what might be expected. Indeed, the activity from V3A

could easily be mistaken as arising from hMT+.

In addition to being instructive, these templates can help inter-

preting EEG results as they give a good idea of the scalp activity that

results from different brain areas. To further illustrate this, we com-

bined the activity of the different ROIs to represent their (bilateral)

response in a typical experiment with a stimulus presented in the cen-

ter of the screen (Figure 3). As expected, the V1 response is now max-

imum at the occipital pole (not lateralized), focused on Oz. Because

6 PONCET AND ALES
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different electrodes represent the activity of certain ROIs, such a fig-

ure can be used as an a priori method to decide which electrodes to

pool or keep separated when analyzing EEG data. Additionally, these

can provide an alternative to fiducials to compare responses across

different recording montages.

The resulting scalp activity of some ROIs used for the EEG tem-

plates are similar with each other (e.g., V2D and V3D), while the activ-

ity of other ROIs (e.g., hMT+) show distinct topographies (Figure 2).

High similarity between EEG templates for different ROIs can increase

the confusion in retrieving the true source of a signal. We estimated

this confusion by computing the amount of crosstalk between ROIs,

which represents the amount of activity arising from an active ROI

that is attributed (leaks) to other nonactive ROIs. Crosstalk is higher

within than between hemispheres, within early ventral areas and

within early dorsal areas (Figure 4; results for other source localization

methods can be found in Figure S4). This matches realistic anatomical

similarities between functionally defined ROIs.

The EEG templates were created from the modeled scalp activity

of 50 participants that were then averaged. Although one can always

add more participants to create these templates, it is interesting to

consider that the variability in these templates is inversely propor-

tional to the number of participants (Figure S5). Such exponential

decay slope (1/N for variance and 1/√N for standard deviation; where

N represents the number of participants) is expected when averaging

random samples. For each additional sample, there is diminishing

returns such that for reducing variance in half, the number of partici-

pants needs to quadruple. Thus, it would require a large number of

participants to make a marginal improvement in the population

F IGURE 2 EEG templates using a 128 electrodes EGI montage represented on a 3D and 2D head layout. The sources were first defined for
each individual participant using anatomical and functional scans. Using individual forward model, the activity of each source was then projected
onto the surface of the scalp and averaged across participants. The intensity of the color indicates the amplitude of positive (red) and negative
(blue) activity. The activity is scaled per ROI for the 3D layouts, emphasizing the topography, whereas a common scale is used across ROIs for the
2D layouts for easier comparisons between ROIs

V1 V2 V3 V4 V3A LOC hMT+

-1

0

1

S
c
a
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c
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.)

F IGURE 3 Scalp response of the different ROIs for a stimulus presented centrally (full visual field). The activity is scaled per ROI for the 3D
layouts (top row) whereas it is constant across ROIs for the 2D layouts (bottom row)
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sampling error present in the current study. Therefore, the EEG tem-

plates, based on 50 individuals, can be confidently considered a good

representation of each ROI activity.

3.2 | Simulation results

3.2.1 | Comparison between average and
individual-based source localization

We simulated EEG activity for a signal originating in V1 and hMT+, or

in V2v and V4 (see Methods). The simulated EEG was created with

different SNR which corresponds to different level of noise in the sig-

nal but can also be taken as a proxy for the number of trials averaged

within one experimental condition (i.e., as the number of trials

increases, SNR also increases). While the extreme SNR values of 0.1

and 10,000 are unrealistic and reflect lower/upper bounds, an SNR

between 10 and 200 reflects typical experimental conditions where

ERP results are averaged across hundreds of trials (for ERP examples

with different levels of SNR, see Figure S6).

Using the source localization procedures detailed in the method

section and summarized in Figure 1, we recovered, time point by time

point, the activity of the brain areas generating the simulated EEG

response (Figure S1). The source localization performance was

assessed using three metrics (see Methods) for varying numbers of

participants and levels of SNR. The template method clearly does very

well, with performance close to the other procedures that use individ-

ual forward models (Figure 5a). As expected, performance improves

with higher SNR and more participants. Performance is relatively poor

when only two simulated participants are averaged but the template

method does equally well for recovering activity in V1 and hMT+ with

20 and 50 participants. The metrics improve with higher SNR until

they reach an asymptote. Source localization results for the template

method are similar to the individual method, while the individual-

subset method shows better results. Indeed, the metrics for the

individual-subset method are almost as high as the ones for the

individual-oracle method, demonstrating that V1 and hMT+ are easy

to separate at an individual level, especially with high SNR.

As expected, and regardless of the method, source localization

results, but specifically the relative energy and MSE, are lower when

attempting to localizing activity generated in V2v and V4 (Figure 5b).

These two ROIs, together with V3v, are known to exhibit substantial

crosstalk. This can be seen in Figure 4 and by their template resem-

blance in Figure 2. Hence, this situation is challenging for source local-

ization. Nevertheless, when V2v and V4 are active, the template

method does well, although, not surprisingly, still not as good as the

individual-oracle method. Thus, despite not being tailored to each par-

ticipant, the template source localization method that we have devel-

oped recovers active functional ROIs equally well in both easy and

difficult situations.

Compared with the template-optimal method (which uses the

best possible regularization parameter, see Methods), the perfor-

mance of the template method in retrieving the sources is very similar.

This demonstrates that the regularization parameter that we use

(based on L-curve) is appropriate in various circumstances.

3.2.2 | Comparison between EEG montages

With different number of electrodes, the topographies of the tem-

plates and of the EEG data set will be more or less precise. Previous

studies have shown that low spatial sampling can lead to incorrect

source localization and that higher spatial sampling increases source

localization precision (Brodbeck et al., 2011; Srinivasan et al., 1998;

Staljanssens et al., 2017; Wang et al., 2011). It is therefore possible

that the success of our new source localization method might also

depend on how precisely the EEG templates are defined. We tested

our template method using montages that included 32, 64, 128 or

256 scalp electrodes (note that the system itself, EGI, Biosemi or

others, would not affect the results of our method; the EEG templates

can be used with any EEG system as long as the templates and the

data on which source localization is applied have matching montages).

Localization performance improves with more electrodes but is still

reasonably good for fewer electrodes (Figure 6a). This pattern is also

observed with methods using individual forward models (Figure S7).

This demonstrates the validity of the template method for a large

range of EEG montages.

The pattern seen in these simulations demonstrates that data

quality matters and can be somewhat traded-off with fewer elec-

trodes. At the lower end of SNR, larger improvement in source locali-

zation performance can be attained from improving SNR rather than

from adding more electrodes. However, at the upper end, increasing

SNR provides diminishing returns and the enhancement in source

localization accuracy provided by more electrodes is more important.
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F IGURE 4 Crosstalk (leakage) between ROIs using the template
method. The amount of crosstalk (normalized for each ROI; per row)
was calculated for an EEG signal simulated with an SNR of 10 and
averaged across 50 individuals and 30 simulations. In an ideal
although implausible system, only the diagonal will be dark with the
rest being white (zero crosstalk)
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3.2.3 | Number of active ROIs

In addition to simulating the activity of a pair of ROIs, we also tested

the reliability of the template method for an increasing number of

ROIs active simultaneously (Figure 6b). The AUC for the template

method decreases with an increasing number of ROIs but stays rea-

sonably high (around 0.9). Not surprisingly given how the relative

energy is calculated (ratio between the energy in active ROIs and the
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F IGURE 5 Source localization performance for a signal simulated with 2, 8, 20 or 50 participants and different SNR levels. The area under the
curve (AUC) quantifies how accurate the method is to discriminate between active and nonactive sources; the Relative Energy quantifies the
amount of leakage; the normalized mean squared error (MSE) quantifies the difference between the true and the recovered signal. Sources are
simulated bilaterally in V1 and hMT+ (a) or in V2v and V4 (b). Each datapoint represents the mean of 30 simulations with the error bars
representing standard deviation
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energy in nonactive ROIs), it increases with increasing number of

simultaneously active ROIs. This is also the case for the MSE. The

interesting comparison here is across the different source localization

methods. The individual method does poorly when multiple sources

are simultaneously active: the classification between active and non-

active sources (AUC) is below 0.8 and almost at random (0.5) with

16 sources active simultaneously. Localization performance for the

template method, the individual-subset and the template-optimal are

all very similar while the individual-oracle method shows the best

results. Thus, apart from the individual method that really suffers

when multiple sources are active simultaneously, other methods,

including the template method, show good recovering performance.

The effect of the number of active sources on source localization

results is rarely tested but we show here that our method performs

well regardless of how many sources are active simultaneously.

3.2.4 | Potential challenges

The template method is currently designed to retrieve sources in the

visual cortex and does not try to fit sources outside visual areas. The

assumption is that the EEG signal to which the source localization is

applied primarily comes from visual areas. This is a fair assumption in

most visual experiments, which compare the neural response for two

(or more) conditions that are processed by the visual system. How-

ever, it is still possible that some areas outside the visual cortex are

also active, for example, due to differences in decision-making pro-

cesses between conditions. Such signals would probably have a negli-

gible impact on the EEG response (its strength would be small and

likely not well aligned in time). Nevertheless, we tested the impact of

the presence of a strong nonvisual source on source localization

performance.

The simulations (Figure 7) show that the template method is in

general less accurate in retrieving V1 and hMT+ as the active sources

when a nonvisual source is also active. However, source localization

performance is still very high, with an AUC around 0.8 on average

which shows that the template method is robust to potential interfer-

ence from nonvisual sources. When using the individual method,

whether a nonvisual source is active or not does not affect source

localization performance. This result is expected since this method

does not make any assumptions on the location of the sources and

uses the entire brain to fit the EEG signal. On the other hand, the

individual-subset method shows reduced source localization perfor-

mance at higher SNR when an interfering source is active. This is pos-

sibly because this method tries to fit the signal from the interfering

source within the visual areas, leading to incorrect source localization.

Note that the results show a larger variability when a nonvisual

source is active for both the template and the individual-subset

methods. This can be explained by the large number of parameters

that affect the source localization, such as the external source that is

used, its strength in comparison to the visual source, the number of

visual and external sources that are used, among others. Further work

is required to investigate how much each of these factors influences

source localization performance. Another fruitful avenue for research

is to try to reduce the interference from a nonvisual source by adapt-

ing for example, beamforming techniques.
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F IGURE 6 (a) Performance of the template-based source
localization method for EGI montages with 32, 64, 128 and
256 electrodes. Brain sources are recovered from the simulation of
two randomly chosen bilateral ROIs. (b) Source localization
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A different challenge faced by the template method is that, in

some instances, only part of the ROIs might be active depending on

the stimulus, whereas the templates are created based on full ROI

activation. Indeed, depending on the size of the stimulus and its exact

location in the visual field, different parts of the ROIs are active, lead-

ing to differences in EEG topographies (Ales et al., 2010; Kelly

et al., 2013; Michael & Halliday, 1971; Onofrj et al., 1995). However,

the template method averages the heterogeneity within each ROI.

Such model misspecification could affect source localization perfor-

mance. To test this, we simulated a worst-case scenario where only

the ventral part or the dorsal part of V1 was active and tried to

recover the source from this EEG signal using the template method.

The results show that despite only a small subset of V1 being acti-

vated, the source was correctly retrieved in V1 (Figure S8). Moreover,

given that differences in scalp topography between the activity of

V1v and V1d is larger than differences in scalp topography for stimuli

of different sizes presented within the same quadrant (Ales,

Appelbaum, et al., 2013; Ales, Yates, & Norcia, 2013), we believe that

in general, the template method is robust to stimulus variations.

The template method cannot be used to separate heterogeneous

activation from within an ROI but if an experiment requires sources to

be located more precisely within each ROI, future work can create

more fine-grained templates based on either stimulus location in the

visual field or on functional differences (for subregions in LOC and

hMT+). Note that EEG templates with subdivisions of ventral and

dorsal V1 (V1v-L, V1v-R, V1d-L and V1d-R) are also available with the

caveat that they are based on 27 individuals, not on 50 individuals as

for the other ROIs.

3.3 | Real data results

We tested the template method on a real EEG data set collected while

participants viewed RDK alternating every 500 ms between coherent

and incoherent motion. Because we do not have access to the true

active sources, we cannot compute goodness of fit measures such as

the AUC, relative energy and MSE. We can only compare the results

of the template method with other individual-based methods and with

previous studies using a similar paradigm. We also compared the

results with the ones from Lim et al. (2017) who analyzed the same

data set with the group-lasso method. With that method, the source

localization is performed using each individual's forward model but

the information from all participants is used to ensure that the

selected sources are in agreement across all participants.

Source localization results are very different between the source

localization methods (Figure 8). While most ROIs are active when

using the individual method, very few are when using the individual-

subset method. Although the individual-subset method had better

results in the simulations, here the retrieved sources are inconsistent

between the left and right hemispheres. On the contrary, when using

the template or the group-lasso method for the source localization, a

couple of ROIs, V3A and hMT+, are clearly active throughout the pre-

sentation of the stimuli and the waveforms are very similar. V3A and

hMT+ are the two areas that are commonly found to be sensitive to

motion coherence (Aspell et al., 2005; Braddick et al., 2001; Händel

et al., 2007; Helfrich et al., 2013; Rees et al., 2000; Rina et al., 2022)

so these results demonstrate the validity of our method when used

on real data. A similar waveform is also observed in V4 which is con-

sistent with an fMRI study that showed that V4 responds to transient

increments and decrements in the level of motion coherence (Costagli

et al., 2014).

We also observe some activity in early ventral areas V2 and V3

when using the template source localization method. Interestingly the

most active area among those, V2v, shows a waveform that is

inverted compared with V3A and hMT+. This indicates that the

recovered activity is not due to crosstalk or leakage from V3A and

hMT+. Previous studies have also reported activation of areas located

on the posterior ventral surface of the occipital lobe (Braddick

et al., 2001; Händel et al., 2007; Rees et al., 2000; Rina et al., 2022).

Some of them (Braddick et al., 2001; Rina et al., 2022) found that

responses in early visual areas (V1/V2) decreased as coherent motion

strength increased, which is the opposite of what is observed for

areas hMT+ and V3A. The results of the template method showing

inverse activity in early ventral occipital areas compared with hMT+

and V3A is thus consistent with these reports.

It is interesting to note that, as is usually found in EEG studies,

the data shows negative activity in posterior electrodes together with

a positive activity in frontal electrodes (here illustrated at 250 ms in

Figure 8). Despite no specific ROI template showing such pattern, all

source localization methods retrieve and account for this topography

based on only sources in visual areas. This illustrates how the combi-

nation of multiple active sources can create unexpected EEG topogra-

phies. That is, activation in frontal electrodes need not depict activity

in the frontal cortex but can arise through combination of activities in

occipital areas.

Analyses on this real-world data set show that the template

method clearly surpasses the methods that use individual head models

which do not use or pool information from the group. Source localiza-

tion results are almost uninterpretable using the individual and

individual-subset method. On the other hand, results from the tem-

plate method echo previous ones from fMRI and MEG experiments.

We can only speculate about the superiority of the template method.

It is possible that the individual-based methods suffer from overfitting

the data. One evidence for this is that the topographies in Figure 8

recovered with these methods are closer to the recorded data than

the topographies recovered with the template and group-lasso

methods (notice the redder anterior activity). The reasons for the

overfitting might be different in the two methods. As we show in

Figure 6b, source localization performance for the individual method

decreases when multiple ROIs are active simultaneously which might

indicate that the EEG signal is explained by the activity of more ROIs

than necessary. For the individual-subset method, overfitting might

be the result of fitting a nonvisual source to visual ROIs (as in

Figure 7) or fitting correlated noise (as in Figure S10). Another possi-

bility is that the low performance of the individual-based methods is

due to the misspecification of the forward models at the individual
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level but not at the group-level. Similarly, the level of noise is homoge-

neous in the simulated data but probably heterogeneous in the real

data which would affect the regularization and the averaged results in

individual-based methods. One or a combination of these factors

could have influenced the source localization outcomes. In any case,

they give good reasons to believe that the template method performs

very well on averaged real data.

4 | DISCUSSION

We present a new EEG source localization method that is simple, effi-

cient, inexpensive, and rapid. This method relies on functionally

defined EEG templates that we created by modeling the average EEG

scalp response for each of a set of 18 functional ROIs. With these

templates, we can then estimate the contribution of each ROI to the

recorded EEG signal using a regularized linear regression. We tested

this template method in an extensive set of simulations and the

results show that it is as efficient as other methods that use individual

forward models. With just eight participants (and a realistic SNR level

of around 10), the sources at the origin of the EEG signal are correctly

identified. The source localization accuracy of the template method is

reasonably high even for montages with a small number of electrodes

or when multiple ROIs are simultaneously active. We also show that

our method is robust to potential interference from a nonvisual source

or if only a subset of the ROI is active. Performance of the template

method is particularly impressive when tested on a real data set. It

retrieves brain sources in a limited set of ROIs and these ROIs corre-

spond to the ones identified in previous reports (Aspell et al., 2005;

Braddick et al., 2001; Costagli et al., 2014; Händel et al., 2007;

Helfrich et al., 2013; Lim et al., 2017; Rees et al., 2000; Rina

et al., 2022).

Contrary to other source localization approaches, the template

method uses the averaged EEG across participants to retrieve the

brain sources. Thanks to this, the SNR of the data is high and results

in accurate localization of the sources. In fact, applying source locali-

zation on an individual basis, as done with traditional source localiza-

tion analyses, amplifies the noise in the data which can lead to

retrieving erroneous sources. Here, because the EEG signal is aver-

aged across individuals, it has reduced noise as well as reduced influ-

ence of highly spatially correlated noise found at the individual level.

The regularized linear regression is then performed on the average,

less noisy data and does not suffer from potential problems of hetero-

geneity in the level of noise across participants. In addition, source

localization methods using individual head models suffer from the dif-

ficulty of needing a principled way to average across participants since

estimated anatomical sources do not match across participants. The

template method does not face this problem. It uses what is common

across participants to improve source localization at the group level

and to reduce cross-participant variability originating from functional

and anatomical brain differences. This means that our approach is best

suited for group-level analyses.

In all source localization methods, the amount of retrieved activity

is represented in arbitrary units and comparing this amount across

brain sources is always difficult. Indeed, the amount of scalp activity

of an ROI depends on the size of the ROI. For example, because V1 is

bigger than other ROIs, it will have a stronger scalp response, which is

what we observe in the EEG templates (Figure 2). To take into

0 1000
-1

0

1

V1 V2v V2d V3v V3d V4 V3A LOC
Template

Individual

Individual-Subset

left

Group-Lasso

hMT+

time (ms)

s
c
a

le
d

 a
m

p
lit

u
d

e
 (

a
.u

.)

500

rightData

F IGURE 8 Source localization on a real EEG data set collected while nine participants viewed coherent and incoherent motion alternating
every 500 ms. Observed and reconstructed topographies at 250 ms are shown (left) along with the time course of retrieved sources in different
ROIs using various source localization methods (right). The average ROI activity computed over 500 bootstraps is represented in blue for the left
hemisphere and in red for the right hemisphere with the shaded area representing 95% confidence interval. The stimulus was viewed centrally,
and we would thus expect the brain activity to be symmetrical between the left and right hemispheres. Active ROIs (bootstrapped distribution
different from 0 at a threshold of p < .05) are indicated by blue and red dots (for left and right hemispheres, respectively) at the bottom of

each plot
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account the size of the ROIs, the scalp activity can be normalized such

that the total power across electrodes for each ROI is equal to one.

However, in that case, the activity in smaller ROIs will be overesti-

mated and that in larger ROIs will be underestimated. We have cho-

sen not to normalize the EEG templates as we think that they are a

better representation of the brain activity. However, it is important to

keep in mind that comparing the amount of activity between ROIs is

difficult. It is more appropriate to determine whether an ROI is active

or not (as the simulation results show, AUC is high but the relative

energy performance is lower). Similarly, when comparing two condi-

tions, it would be more advisable to focus on differences in activity

within the same ROI across two or more conditions than across ROIs.

Beyond the source localization aspect, the scalp representation of

the activity of different brain sources, the templates, are useful for

understanding EEG topographies in general. It can be fairly difficult to

interpret scalp topographies. This is because the forward solution for

how a specific source in the brain appears on the scalp is nonlinear

and the brain surface is convoluted and complicated. A good demon-

stration of this is the paradoxical lateralization of EEG responses to

visual stimulation where the maximal responses can appear on the

“wrong” side of the head compared with the known source of the sig-

nal (Barrett et al., 1976). This happens due to the specific shape of the

cortex causing the sources to point in unexpected (but measurable)

directions. This is also the underlying reason for the failure of the cru-

ciform “orientation flip” model to isolate V1 components (Ales

et al., 2010; Ales, Yates, et al., 2013). Similarly, we observe a positive

frontal scalp response in the real data even though no individual tem-

plate shows such activity. Instead, this topography is the result of the

simultaneous activation of multiple posterior brain sources. By provid-

ing a set of templates for how functionally defined brain regions

appear on the scalp, we can help develop a qualitative understanding

of scalp distributions that can aid researchers in understanding and

interpreting their data.

4.1 | Advantages

The proposed method has several advantages. The main one is that

since it is based on EEG templates, it does not rely on any individually

defined MRI or fMRI data. This implies that the method is substan-

tially cheaper and also quicker since no additional scanning time or

extensive processing of MRI or fMRI data are required. The second

main advantage of the template method is that the results are inter-

preted in terms of functional ROIs, not as anatomical locations in the

cortex. This is important since most studies, aside from certain clinical

ones, use source localization methods to identify the functional brain

areas contributing to the signal and are not inherently interested in

specific anatomical sources. In addition, because the same ROIs are

often defined in other neuroimaging studies, the results from the tem-

plate method can be compared with MEG, fMRI or intracranial

studies.

Another practical advantage of this method is that it is easy to

use. It relies on a small set of functions (programmed in Matlab but

easily transferable to other programming languages) that can be down-

loaded from https://github.com/aleslab/eegSourceTemplateMatching.

We provide the EEG templates for EGI (Geodesic Sensor Net) and for

a standard 10–05 system (346 electrodes) which can be subsampled

from to match a different montage and/or electrode reference using a

custom-built function that automates it (createCustomTemplates).

Code that interfaces with EEGLAB (Delorme & Makeig, 2004) and

FieldTrip (Oostenveld et al., 2011) is available, making this method

accessible to a wide userbase.

A final advantage of the template method is that the solution to

the linear regression (the contribution of each ROI) does not depend

on the reference of the montage. Topographies and ERPs vary

depending on the specific reference used for EEG analyses (Joyce &

Rossion, 2005; Luck & Kappenman, 2012). With our method, regard-

less of the reference (as long as it is the same between the EEG tem-

plates and the collected data), the solutions to the regression will be

the same. This thus increases the potential for comparisons across

studies. Note that in general the referencing scheme influences the

accuracy of source recovery, and an average reference scheme is

recommended for best results (Yao et al., 2019).

4.2 | Limitations and future directions

The main limitation of the method that we present here comes from

its strength. Because it relies on a set of scalp activity templates, it

only fits sources from a restricted number of ROIs for which a tem-

plate is provided. Here, we created 18 EEG templates which are all in

visual areas. The main assumption is thus that we expect the EEG sig-

nal to come from visual areas. In visual experiments, most of the brain

response comes from the visual cortex so we can assume that brain

sources are within the visual ROIs. This is particularly true when

studying early visual processes, when applying the source localization

on the ERP difference between two visual processes or in a SSVEP

paradigm that switches between two different types of visual proces-

sing (as in the real data used in this study). One could also use the

EEG topographies to confirm whether the sources are likely to be

located in visual areas or not. Other brain areas might be involved in

later stages of processes (i.e., for decision making) but the main inter-

est of vision research studies is to reveal the neural mechanisms

involved in visual perception, that is, within the 18 visual ROIs. Thus,

even with a limited number of EEG templates, the template method

can be used in a large range of visual experiments.

Importantly, following the same method as described here, new

templates for other ROIs can be created. Although the current set

covers a large part of the visual system, areas such as V6 (Cardin

et al., 2012), KO (Tyler et al., 2006) or category selective brain regions

responding preferentially to faces (FFA, Kanwisher et al., 1997), places

(PPA, Aguirre et al., 1998; Epstein & Kanwisher, 1998), bodies

(Downing et al., 2001; Peelen & Downing, 2005) and words (Cohen

et al., 2000) could be localized with fMRI scans and their activity simu-

lated at the surface of the scalp. Similarly, nonvisual brain areas

defined anatomically or functionally (e.g., areas in the auditory cortex;
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Barton et al., 2012) could be added. This will extend the reach of the

template source localization method that we developed to other

research fields. In the same vein, one can create MEG templates to

apply on MEG data to further ease the comparison between neuroim-

aging studies.

A second limitation of the template method is that it assumes that

the average of multiple participants is a good representation of the

group. This applies to the normal population, but this assumption

might not be valid in clinical settings. For example, it might not be

accurate to assume that brain processes are the same in stroke or epi-

leptic patients. However, future research could use these templates to

interpret differences in EEG topographies between individuals or

between an individual and the templates. Similarly, the EEG templates

might not be representative of the ROI activity in infants and children.

Indeed, skull conductivity varies substantially across individuals and

age groups (McCann et al., 2019). The EEG templates could be refined

by adjusting this parameter to best match the data.
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