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Abstract
Objectives: Evidence suggests long-term exposure to fine particulate matter air pollution (PM2.5) is associated with a higher 
risk of cognitive impairment, especially among older adults. This study examines the relationship between PM2.5 exposure 
and cognitive function in China’s aging population.
Methods: We used longitudinal data from the China Health and Retirement Longitudinal Study (2011–2015) linked with 
historical PM2.5 concentrations (2000–2015) from remotely sensed satellite data. Growth curve models were applied to es-
timate associations between PM2.5 exposure (measured in intensity, duration, and a joint variable of intensity with duration 
for cumulative exposure) and cognitive function.
Results: Relative to the lowest exposure group, exposure in the second group of PM2.5 intensity (35–50  μg/m3) is as-
sociated with poorer cognitive function, but higher levels of PM2.5 appear to be associated with better cognitive func-
tion, indicating a U-shaped association. Similar patterns are seen for fully adjusted models of PM2.5 duration: the second 
group (13–60 months) is associated with worse cognitive function than the first group (0–12 months), but coefficients are 
nonsignificant in longer duration groups. Joint analysis of PM2.5 intensity with duration suggests that duration may play 
a more detrimental role in cognitive function than intensity. However, we do not find a statistically significant association 
between PM2.5 exposure and the rate of cognitive decline.
Discussion: Our findings are mixed and suggest that some categories of higher and longer exposure to PM2.5 are associated 
with poorer cognitive function, while that exposures do not hasten cognitive decline. However, more work is necessary to 
disentangle PM2.5 exposure from individuals’ background characteristics, particularly those jointly associated with cogni-
tive function and urban living.
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Cognitive impairment reduces healthy life expectancy, 
affects the quality of later life, and contributes substan-
tially to health care burdens for individuals and societies 
(Clifford et  al., 2016; Yao et  al., 2022). Globally, 40% 

of dementia cases are related to 12 main modifiable risk 
factors, which include ambient air pollution (Calderón-
Garcidueas et  al., 2012; Fu & Yung, 2020; Livingston 
et al., 2020; Peters et al., 2019; Wang et al., 2020). There 
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are emerging population-based studies of the association 
between fine particulate matter smaller than 2.5 microm-
eters (μm) aerodynamic diameter (PM2.5) in outdoor air 
pollution and cognitive impairment and other neurological 
diseases (Ailshire & Clarke, 2015; Russ et al., 2019; Wang 
et al., 2020). PM2.5 consists of complex and varying mix-
tures of particles suspended in the air. Once inhaled, these 
particles can lead to systemic inflammation and oxidative 
stress across the blood–brain barrier (Block & Calderón-
Garcidueñas, 2009). As a result, PM2.5 is a risk factor for 
declining brain function (Guxens & Sunyer, 2012).

China—one of the fastest-aging countries—experiences 
severe air pollution, where more than 50% of cities recorded 
PM2.5 levels far exceeding the World Health Organization 
safe levels in 2013 (Lancet, 2014). Air pollution in China 
is a result of the rapid industrial expansion occurring since 
1979, which caused increases in coal consumption, motor, 
and industrial dust (Xu et al., 2013). The lives of those born 
before or during the 1970s have coincided with a period of 
rapid economic development, so they have spent large parts 
of their adult life course exposed to hazardous air pollu-
tion. For urban dwellers aged 45 and older, the long-term 
damage of air pollution is likely to be substantial (Lu et al., 
2020). The effects of air pollution on health outcomes may 
vary by the age of individuals at exposure, because both 
children and older individuals are especially susceptible to 
deleterious air pollution (Peled, 2011; Shier et al., 2019). 
Research shows that exposure to PM2.5 is significantly as-
sociated with cognitive function in older adults (Ailshire 
& Clarke, 2015; Ailshire et al., 2017; Wang et al., 2020). 
Therefore, the aging and air pollution context in China is 
conducive to understanding the association between air 
pollution and cognitive function in more detail.

Although we have some knowledge about the associa-
tion between exposure to severe air pollution and cogni-
tive function, there remain some uncertainties. First, some 
studies, which have found that cognitive function is associ-
ated with air pollution exposure (Chen et al., 2017; Wang 
et al., 2020), have used average concentrations of air pol-
lutants (mainly measured by the annual average) that do 
not completely capture effects of intensity and duration. 
Second, other studies use data that do not cover a long-term 
exposure window (Power et al., 2011; Sun & Gu, 2008). 
Thus, using multiple measures for exposure to air pollution 
over a long-term period (e.g., more than 10 years) is nec-
essary to explore the association between time-integrated 
exposures and health risks.

In this study, we analyzed survey data from a large, pro-
spective, nationally-representative cohort of Chinese adults 
ranging from 45 to 105 years of age, linked with 15 years of 
historical satellite data on PM2.5 exposure. We used growth 
curve models (GCM) to study the associations between 
PM2.5 exposure and cognitive function, comparing different 
ways of measuring PM2.5 exposure: intensity, duration, and a 
measure that takes into consideration both exposure inten-
sity and its duration, which we called “cumulative exposure.”

Method

Study Population

Data were from three waves of the China Health and 
Retirement Longitudinal Study (CHARLS 2011–2015), 
which is a nationally representative longitudinal survey of 
the middle-aged and older population of China, consisting 
of persons 45 years of age or older, as well as their spouses 
when possible. The CHARLS used computer-assisted 
in-person interviews to obtain samples through four-
stage stratified sampling, with an overall response rate of 
80.5% at the baseline. From June 2011 to March 2012, 
the CHARLS conducted a baseline survey that included as-
sessments of the social, economic, and health circumstances 
of 17,705 respondents from 28 provinces, 150 cities/coun-
ties/districts, and 10,257 households (Zhao et  al., 2014). 
Following this baseline survey, two follow-up surveys were 
conducted in 2013 and 2015.

In 2011, the baseline CHARLS sample size was 17,705. 
Between 2011 and 2013, 3,130 respondents were lost due 
to death (n = 441) or nonspecified reasons (n = 2,509). In 
2013, the CHARLS, to maintain age representation, added 
a refreshment sample of individuals who entered age eligi-
bility of being 45 years and older between waves 1 and 2. If 
the baseline respondent shared a household with someone 
aged 40 and 44, he or she was reserved for a refreshment 
sample for future survey rounds. In wave 2, respondents 
who were aged 43–44 in wave 1 (plus their spouses) were 
added from the refreshment sample, the same for wave 3 in 
2015, out of those aged 41–42 in wave 1. In wave 2 of the 
CHARLS 2013 (n = 18,064), 4,029 refreshment respond-
ents were selected from household members of the orig-
inal wave 1 respondent. Using the same strategy, the third 
wave of CHARLS in 2015 included 3,275 new individuals. 
Between 2013 and 2015, 689 respondents died, and by 
2015, 809 respondents, interviewed in 2011 but missing in 
2013, returned (n = 21,100).

Figure 1 describes how we selected the analytical sam-
ples. First, we excluded 1,719 observations that were 
under the age of 45. The CHARLS did not collect detailed 
residential histories, so if respondents moved, it was dif-
ficult to reconstruct their air pollution exposure history. 
However, respondents self-reported the date they moved 
to their current residence, allowing us to exclude those 
who reported moving residence from 2000 to baseline or 
during the panel. Only 246 respondents (0.45% of the 
total samples) changed their residence in 2011, and 427 
(0.79% of the total) and 913 (1.7% of the total) respond-
ents moved in 2013 and 2015. We used listwise deletion for 
missingness on cognitive function (7,430 deleted) and other 
predictors (6,270 deleted). In order to make the exposure 
window consistent (see Supplementary Table S12), we have 
restricted the analytical sample to those individuals who 
entered the survey in 2011 (2013 and 2015 entrants were 
removed). Finally, our statistical analysis contains 29,484 
observations (12,481 respondents) from 125 cities.
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As a robustness check, we employed multiple imputa-
tion (MI) using chained equations, including all predictors 
that were in the analytical model (Carpenter & Kenward, 
2012; van Ginkel et al., 2020; White et al., 2011; full de-
tails in Supplementary Material and Supplementary Tables 
S1 and S2). After creating multiple imputed data sets, the 
analysis was rerun, and the resulting models were com-
bined using Rubin’s rules (Rubin, 1976), which take into 
account variation both within and between data sets.

Outcome: Cognitive Function

Cognitive function was measured in the CHARLS by the 
modified Telephone Interview for Cognitive Status Survey, 
which includes orientation (recalling the date [year, month 
day], day of the week, and season of the year, 0–5 points), 
numeric ability (the serial subtraction of seven from 100, 
up to five times, 0–5 points), word recall (immediately re-
peating in any order 10 Chinese nouns, 0–10 points, and 
recalling the same list of words 4 min later, 0–10 points), 
and visuospatial ability (drawing a pentagon, 0–1 points). 
Following previous studies (Crimmins et al., 2011; Huang 
& Maurer, 2019; Kesavayuth et al., 2018), we used only 
variables reflective of fluid cognitive function (immediate 
and delayed word recall and serial 7s), which are con-
sidered more indicative of neurophysiological health rather 
than highly related to education and other sociocultural 
factors (Ghisletta et al., 2012). The range of fluid cognitive 
function in this study is from 0 to 25, with higher scores 
indicating better cognitive function.

Air Pollution: PM2.5

We used a data source derived from satellite aerosol remote 
sensing data products such as the Moderate Resolution 
Imaging Spectroradiometer (MODIS) Collection six level 
2 aerosol products at 10 km resolution from Aqua and 
Terra satellites (http://ladsweb.nascom.nasa.gov/) as well 
as other information. This PM2.5 data set was generated by 
applying machine learning algorithms to predict historical 
PM2.5 concentrations with satellite-retrieved aerosol optical 
depth from MODIS, gridded meteorological parameters, as 
well as land use information in China as predictors (Xiao 
et al., 2018). Compared with ground monitoring data, sat-
ellite data with a broad spatial coverage (all of China), 
long-term records (from March 2000 to December 2015), 
and high spatial resolution (10 km) support the assessment 
of historical air pollution levels in developing regions (Xiao 
et al., 2018). To validate PM2.5 estimates from satellite data, 
the data set creators conducted the 10-fold cross validation 
(CV) to evaluate the prediction performance, with a CV 
R2 of 0.79, which was significantly higher than previous 
methods (Xiao et al., 2018). Note that although these PM2.5 
data were detailed in each (10 km × 10 km) grid cell every 
month starting in March 2000, the CHARLS did not pro-
vide the exact residence address for each respondent due to 
concerns about identifiability. Thus, we aggregated PM2.5 
concentrations from satellite data at the city level because 
the city information from the primary sampling units (PSU) 
of CHARLS is the smallest spatial unit. In the CHARLS, 
there were 125 cities selected as the PSU, which were dis-
tributed across 28 of 34 provinces, covering 95% of the 
population in China.

In our study, the period of exposure to PM2.5 is from 
March of 2000 to the month preceding cognitive assess-
ment in each wave of the CHARLS. Supplementary Figure 
S1 shows the period of exposure for the CHARLS samples 
in each wave. Considering the evidence of the nonlinear 
association between air pollution and cognitive function 
(Ailshire & Crimmins, 2014; Power et al., 2011), we ana-
lyzed PM2.5 exposure as a categorical variable. Following 
previous studies related to exposure to risk factors (De 
Vocht et  al., 2015; Pope et  al., 2011), there were three 
subindices for exposure to PM2.5 in this study.

The first one was the average concentrations of PM2.5 as 
the “PM2.5 intensity.” As the National Ambient Air Quality 
Standard for annual mean PM2.5 is 35 μg/m3 (level 1) and 
75 μg/m3 (level 2) in China (Cao et al., 2013) and the me-
dian of the average PM2.5 concentration during the period 
between 2000 and 2015 was 50  μg/m3, we categorized 
PM2.5 intensity into four groups using the following cut-
points: 1 (0–35 μg/m3), 2 (36–50 μg/m3), 3 (51–75 μg/m3), 
and 4 (76+ μg/m3). The second measure was the duration of 
exposure, measured as months over a fixed PM2.5 concen-
tration threshold. Evidence on the effects of PM2.5 in China 
suggests that exposure to concentration over 50 μg/m3 has 
an adverse impact on cognitive function (Wang et al., 2020). 
Thus, this study used 50 μg/m3 (which is also the median of 

Figure 1. Flowchart of study inclusion criteria. Notes: CHARLS = China 
Health and Retirement Longitudinal Study.
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PM2.5 intensity) as the threshold to establish the duration 
of exposure. Following previous studies (Ranft et al., 2009; 
Tallon et  al., 2017; Zeng et  al., 2010), “PM2.5 duration” 
was categorized into four groups: 1 (0–12 months), 2 (13–
60 months), 3 (61–120 months), and 4 (121+ months). For 
the third measure, “cumulative exposure,” we interacted 
intensity with duration, establishing a joint variable with 
16 categories as the cumulative PM2.5 indicator. This takes 
into consideration that regions with higher levels of pollu-
tion intensity were likely to have had those higher levels 
for longer durations, which would have caused a problem 
of multicollinearity if assessed simultaneously in the same 
model (details shown in Supplementary Table S11).

Covariates: Demographic, Socioeconomic Status 
(SES), and Regional Factors

In this study, we categorized covariates into three groups. 
The first is demographic information, including sex, age, 
and partnership status. Women may have a higher risk of 
cognitive decline associated with increased PM2.5 exposure 
than men (Kim et al., 2019). To account for the well-estab-
lished curvilinear association between cognitive function 
and age (Ballesteros et al., 2009), we included both age and 
a quadratic function for age in our analysis. Living with a 
partner might have a protective effect against cognitive im-
pairment, especially in later life (Håkansson et al., 2009), 
so we include a time variant control for partnership status: 
single (separate, divorced, widowed, or never married) or 
partnered (married or living with a partner).

The second set of covariates measures socioeconomic 
status (SES): education at baseline, primary occupational 
attainment (time-invariant), and time-variant household 
expenditure. Educational attainment was the most substan-
tial predictor of cognitive function in China as elsewhere 
(Cagney & Lauderdale, 2002; Huang & Zhou, 2013). 
Occupational attainment is also associated with cognition. 
For example, civil servants and managers have a better cog-
nitive function, net of potential confounders (Myung et al., 
2016). In this study, occupational attainment was meas-
ured by the main job reported during respondents’ occu-
pational history and includes three categories: agricultural, 
nonagricultural, and managerial occupations. Wealth has 
been found to be associated with lower cognitive func-
tion, so we controlled household expenditure (logged) as 
an operationalization of wealth (Cagney & Lauderdale, 
2002).

HuKou is a household registration system in China that 
has two categories: rural and urban. People usually remain 
as the same HuKou as their parents, as once HuKou is reg-
istered, it is difficult to change even if people move (Hou 
et al., 2019). Particularly before China enacted the reform 
and opening-up policy in 1978, HuKou stipulated whether 
people could work in industrial sectors, have more educa-
tional opportunities, and even have better access to med-
ical insurance (Walder, 1995). As such, HuKou is strongly 

related to individual SES in addition to residential locations 
(Hou et al., 2019).

Rapid urbanization and industrialization are associated 
with improvements in population health (e.g., improved 
health care system and more health facilities), alongside 
high levels of air pollution (Gong et al., 2012). In this study, 
we included annual regional gross domestic product (GDP) 
at the city level (logged) to reflect the urbanization and 
industrialization of cities to adjust for this potential con-
founding factor (Sun & Gu, 2008).

Analysis Strategies

This study analyzed whether changes in individual cogni-
tive function during the CHARLS 2011–2015 are related 
to cumulative PM2.5 exposure. We employed GCM to ex-
amine the relationship between exposure to PM2.5 between 
2000–2015 and the trajectory of cognitive decline between 
2011–2015. An important advantage of GCM is the ability 
to model the trajectories of individuals over time and dis-
tinguish within-individual from between-individual heter-
ogeneity in estimating cognitive changes shaped by other 
variables. GCM is a special case of random-coefficient 
models that can take a variety of shapes of growth tra-
jectories, and it is the time coefficient (here, age) that 
varies randomly between participants (Rabe-Hesketh & 
Skrondal, 2012). In this study, we used three waves of lon-
gitudinal data across 4 years of data collection.

We estimated three separate sets of models, each with 
different operationalisations of air pollution exposure. The 
first set of models includes intensity, as the average con-
centration of PM2.5 during the period of exposure. The 
second set includes duration measured as the number of 
months where PM2.5 concentration is over the threshold 
of 50 μg/m3 during the period of exposure. We tested dif-
ferent thresholds for PM2.5 duration as robustness checks 
(Supplementary Material). The third set includes a joint 
variable of intensity with duration. To investigate the rate 
of cognitive decline, we used the interaction term between 
age, age squared, and PM2.5 exposure to examine the asso-
ciation between PM2.5 exposure and cognitive trajectories. 
This is to determine whether higher exposure leads to a 
faster rate of cognitive decline or just overall lower cogni-
tive function. To examine heterogeneity in the associations 
of PM2.5 exposure among different groups, we also strati-
fied the associations between PM2.5 exposure and cognitive 
function by HuKou status.

We conducted various robustness checks. First, we ran 
the same models using the imputed data (through MI) 
to check consistency and verify that our results were not 
 biased by missing data (shown in Supplementary Tables 
S3–S5). Second, we set up alternative specifications to check 
the sensitivity of the threshold value in PM2.5 exposure var-
iable. For PM2.5 intensity, there were six categories using 
10 μg/m3 as the interval from 35 to 75 μg/m3; for PM2.5 du-
ration, taking 45 μg/m3 as another threshold, and then the 
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joint intensity-duration variable expanded to 24 categories. 
All of these analyses can be found in Supplementary Tables 
S6–S8. Third, although the main analysis with PM2.5 
categories establishes the curvilinear relationship between 
PM2.5 exposure and cognitive function trajectories, categor-
izing PM2.5 records sacrifices some details compared with 
using continuous PM2.5 concentrations. Therefore, we also 
estimated a model with a quadratic term of continuous ex-
posure (in both intensity and duration) to examine the cur-
vilinear dose–response curve (Supplementary Tables S9 and 
S10). Fourth, we have added a robustness check using the 
data that includes only individuals who participated in all 
three waves of CHARLS (there are 6,589 respondents, in-
cluding 19,767 observations). This ensures all respondents 
have the same possibility of exposure ranging from 0 to 
328 months (the total observation period) over PM2.5 inten-
sity of 50 μg/m3 (Supplementary Figure S6).

Results
Our study population includes 12,481 respondents 
(29,484 observations) from three waves of the CHARLS 
2011, 2013, and 2015. The average age of 2011 entrants 
was 59 years old, with some variations by PM2.5 exposure 

groups; 49% were men and 76% of the population at-
tained primary or higher education (Table 1). 76% of the 
study population had rural HuKou, 72% of the population 
worked in agricultural jobs, and 88% were partnered. The 
average cognitive function score was 10. Respondents with 
higher education (e.g., primary or higher), higher house-
hold expenditure (8.30), and in areas with higher GDP 
(10.55) had higher exposure to PM2.5 (especially exposed 
to PM2.5 over 76 μg/m3).

Table 2 shows the results from the GCMs. Model 1 is 
the base model with PM2.5 intensity, age, age squared, and 
gender. The coefficients in Model 1 show that the associ-
ations between PM2.5 intensity and cognitive function are 
positive (higher PM2.5 is associated with better cognitive 
function). However, after education was included in Model 
2 as a confounding variable, the association between PM2.5 
intensity and cognitive function takes a U-shaped pattern, 
with both lower and higher intensity being associated with 
higher cognitive function, a finding to which we return 
below. In Model 3, which controls additionally for occu-
pation, household expenditure, and partnership status, we 
found that compared with people exposed to the lowest 
PM2.5 intensity (0–35  μg/m3), those in the next group of 
higher exposure (36–50 μg/m3) had lower cognitive function 

Table 1. Characteristics of 2011 Entrants in the CHARLS by PM2.5 Intensity

 

Total 

PM2.5 (μg/m3) mean average monthly exposure between 2000 and baseline (mean [SD] 
or n [%])

1 (0–35 μg/m3)  2 (36–50 μg/m3)  3 (51–75 μg/m3)  4 (76+ μg/m3)  

Cognitive score 9.97 (4.48) 9.75 (4.44) 9.88 (4.52) 9.92 (4.56) 10.10 (4.39)
Age 58.99 (9.47) 58.14 (9.49) 59.09 (9.48) 59.46 (9.58) 57.55 (8.43)
Gender (%)
 Men 6,069 (48.63) 955 (48.22) 1,697 (48.22) 2,918 (49.02) 499 (47.34)
 Women 6,421 (51.37) 1,000 (51.15) 1,822 (51.78) 3,035 (50.98) 555 (52.66)
Education (%)
 No schooling 3,199 (25.63) 642 (32.84) 860 (24.44) 1,537 (25.82) 160 (15.18)
 Primary 5,011 (40.15) 808 (41.33) 1,388 (39.44) 2,453 (41.21) 362 (34.35)
 Middle 4,271 (34.22) 505 (25.83) 1,271 (36.12) 1,963 (32.97) 532 (50.47)
HuKou (%)
 Rural 9,705 (77.76) 1,694 (86.61) 2,596 (73.77) 4,582 (76.97) 833 (79.03)
 Urban 2,776 (22.24) 261 (13.39) 923 (26.23) 1,371 (23.03) 221 (20.97)
Occupation (%)
 Agricultural 9,038 (72.41) 1,506 (77.03) 2,389 (67.89) 4,405 (74.00) 738 (70.02)
 Nonagricultural 2,789 (22.35) 358 (18.31) 923 (26.23) 1,263 (21.22) 245 (23.24)
 Managerial 654 (5.24) 91 (4.65) 207 (5.88) 285 (4.79) 71 (6.74)
Partnership status (%)
 Partnered 11,014 (88.25) 1,684 (86.14) 3,054 (86.79) 5,330 (89.53) 946 (89.75)
 Single 1,467 (11.75) 271 (13.86) 465 (13.21) 623 (10.47) 108 (10.25)
Log household expenditure 8.16 (1.67) 8.18 (1.66) 8.15 (1.82) 8.14 (1.57) 8.30 (1.74)
Log GDP 10.29 (0.55) 10.19 (0.51) 10.21 (0.63) 10.33 (0.50) 10.55 (0.43)
Number of respondents (%) 12,481 1,955 (15.66) 3,519 (28.19) 5,953 (47.71) 1,054 (8.44)

Notes: All statistics are calculated after list wise deletion (see details in the “Method” section). The characteristics of a cognitive score, age, log household expend-
iture and log GDP are shown using mean (SD), and others are in N (%). CHARLS = China Health and Retirement Longitudinal Study; SD = standard deviation; 
GDP = gross domestic product.
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(β = −0.252, p < .01); however, the fourth group (those with 
the highest levels of exposure) had a better cognitive func-
tion—an unexpected result. This could be caused by SES 
confounding (details in marginal plots in Supplementary 

Figure S2). Model 4 (including logged GDP), indeed, sup-
ports the U-shaped results of Models 2 and 3.

The associations between cognitive function and other 
covariates in Model 4 were as expected. First, women have 

Table 2. Associations Between PM2.5 Intensity and Cognitive Function

 Model 1: Base 
Model 2: Model 1 + 
Education 

Model 3: Model 2 + SES 
+ Partnership 

Model 4: Model 3 + 
GDP 

PM2.5 intensity (ref: 0–35 μg/m3)
 2 (36–50) 0.374*** −0.141 −0.252** −0.233**
 (0.173 to 0.575) (−0.320 to 0.0373) (−0.428 to −0.0769) (−0.408 to −0.0577)
 3 (51–75) 0.500*** 0.0363 −0.0291 −0.0443
 (0.314 to 0.685) (−0.128 to 0.200) (−0.190 to 0.132) (−0.205 to 0.116)
 4 (76+) 1.087*** 0.199# 0.197# 0.118
 (0.835 to 1.339) (−0.0271 to 0.425) (−0.0248 to 0.419) (−0.105 to 0.340)
Age 0.127*** 0.249*** 0.236*** 0.234***
 (0.0560 to 0.197) (0.185 to 0.313) (0.172 to 0.299) (0.171 to 0.297)
Age squared −0.00231*** −0.00275*** −0.00269*** −0.00269***
 (−0.0029 to −0.0018) (−0.0033 to −0.0023) (−0.0032 to −0.0022) (−0.0032 to −0.0022)
Gender (ref: men)
 Women −1.286*** −0.0665 −0.116# −0.143*
 (−1.415 to −1.157) (−0.187 to 0.0540) (−0.235 to 0.00329) (−0.262 to −0.0235)
Education (ref: no-schooling)
 Primary  2.626*** 2.414*** 2.356***
  (2.476 to 2.776) (2.266 to 2.563) (2.207 to 2.505)
 Middle  5.053*** 4.320*** 4.247***
  (4.887 to 5.219) (4.144 to 4.496) (4.071 to 4.424)
HuKou (ref: rural)
 Urban   1.165*** 1.130***
   (1.010 to 1.320) (0.976 to 1.285)
Occupation (ref: agricultural)
 Nonagricultural   0.475*** 0.440***
   (0.327 to 0.623) (0.292 to 0.588)
 Managerial   0.294* 0.273*
   (0.0619 to 0.525) (0.0410 to 0.504)
Log household expenditure  0.0912*** 0.0876***
   (0.0668 to 0.116) (0.0632 to 0.112)
Partnership (ref: partnered)
 Single   −0.349*** −0.340***
   (−0.516 to −0.183) (−0.507 to −0.174)
Log GDP    0.332***
    (0.239 to 0.426)
Constant 10.98*** 2.265* 2.180* −1.060
 (8.785 to 13.17) (0.262 to 4.267) (0.181 to 4.179) (−3.254 to 1.135)
Random effects
 Within individual
  Change rate (age) 0.003*** 0.005*** 0.004*** 0.004***
  Intercept 2.931*** 2.797*** 2.660*** 2.663***
  Covariance 0.014 −0.008 −0.008 −0.009
 Between individual
  Residuals 3.290*** 3.051*** 3.056*** 3.056***
Log likelihood −82,019.908 −80,455.387 −80,218.955 −80,194.873
Observations 29,484 29,484 29,484 29,484
Number of IDs 12,481 12,481 12,481 12,481

Notes: Cognitive function includes three components: immediate recall, delayed recall, and serial 7s, 0–25 points (see details in “Methods”). SES = socioeconomic 
status; GDP = gross domestic product.
***p < .001, **p < .01, *p < .05, #p < .1.
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poorer cognitive function than men. Age and age squared 
show the expected curvilinear association with cognitive 
function. The log-likelihood test for age and age squared 
in Supplementary Table S14 also shows the necessity of the 
quadratic age term. Higher SES across all three indicators 
(urban HuKou, nonagricultural occupation, and higher 
household expenditure) is associated with higher cognitive 
function. Unpartnered individuals have lower cognitive 
scores compared with their partnered counterparts. Model 
4 also shows a positive association between GDP and cog-
nitive function.

In Model 4 (of Table 2), the random intercept 
standard deviation is 2.7 (p < .001), reflecting the signif-
icant variation in average cognitive function scores be-
tween individuals. The small standard deviation for the 
age random slope (0.003, p < .01) reflects the fact that 
cognitive decline follows a relatively predictable, down-
ward trajectory with age. Similar findings were shown 
in previous studies, including ones that assessed other 
important factors that might predict the rate of cognitive 
decline, such as race/ethnicity (Hale, 2017), education 
(Seblova et  al., 2020), and neighborhood environment 
(Luo et al., 2019).

Table 3 presents results from the models that analyze 
the duration of exposure. Model 1 shows positive asso-
ciations between PM2.5 duration and cognitive function 
score, but after controlling for education, increased du-
ration of exposure to higher PM2.5 was negatively associ-
ated with cognitive function only for those in the second 
group of PM2.5 duration (13–60 months). The association 
was nonsignificant for the two longer-duration groups 
(61–120 and 121+ months). In Model 3, SES variables 
explained a part, but not all, of the associations. In Model 
4, when all covariates were included, the associations 
of PM2.5 duration were similar to Models 2 and 3, sug-
gesting people in the second group of exposure duration 
were more likely to have the poorer cognitive function, 
while the third and fourth groups were not statistically 
different than the first. The strong association for dura-
tion group 2 compared with the other groups is addressed 
at length later.

As well as considering PM2.5 intensity and duration 
separately, we were also interested in their joint or cu-
mulative association with cognitive function. At baseline, 
the individual distribution of cumulative PM2.5 exposure 
(intensity × duration) from March of 2000 to the survey 
date was shown in Supplementary Table S11. Due to 
small numbers in the “3–2” group (only 169), we merged 
that group into the “3–3” group. Table 4 shows the as-
sociations between cumulative exposure (measured by a 
joint variable of intensity with duration) and cognitive 
function. In Model 1, compared with the “1–1” group 
(lowest intensity and shortest duration), higher levels of 
intensity-duration were associated with better cognitive 
function, except for the group of “1–2,” which suggests 
people in that group had lower cognitive function than 

those in the “1–1” group. In Model 2, when education 
was included, most coefficients of PM2.5 exposure were 
reversed to negative, suggesting that education was a 
confounder of the association between PM2.5 exposure 
and cognitive function. When more SES covariates and 
partnership status were added in Model 3, the negative 
patterns between cumulative exposure to PM2.5 and cog-
nitive function persisted for most groups, though the most 
groups were nonsignificant. These results were also robust 
in Model 4 when logged GDP was controlled. We found 
the effect size of the “1–2” group was significantly larger 
than other groups, which is worth exploring in future 
analyses. Comparing the coefficients of “1–2” (longer du-
ration) and “2–1” (higher intensity) group suggests that 
duration might be more significantly associated with cog-
nitive function than intensity.

To test whether PM2.5 exposure is associated with ac-
celerated cognitive decline, based on Model 4 in Table 4, 
Model 5 adds interaction terms between cumulative expo-
sure, age, and age squared (full results in Supplementary 
Table S13). Figure 2 plots predicted cognitive function 
by cumulative PM2.5 across age, visually depicting that 
level of cumulative PM2.5 exposure is not statistically sig-
nificantly associated with different trajectories (details in 
Supplementary Table S13). We found no statistically signif-
icant associations between higher exposure for longer du-
ration groups (e.g., “3–3” or “4–4” groups) and faster rate 
of cognitive decline.

Considering the significant difference in education 
and air pollution between urban and rural areas, we also 
stratified the analysis by HuKou status. Figure 3 displays 
the coefficients for PM2.5, which suggest that the harmful 
associations of cumulative air pollution exposure were 
more significant among respondents with rural HuKou 
than those with urban HuKou. Supplementary Figures 
S4 and S5 show the coefficients of PM2.5 intensity and 
duration.

We also conducted robustness checks. First, we 
ran all of the above models using the MI data sets (see 
Supplementary Tables S3–S5). Comparing all results in 
Tables 2–4 with Supplementary Tables S3–S5, we found 
that there were no meaningful differences. Second, 
when we divided PM2.5 intensity into six categories 
(Supplementary Table S6) for the data with MI, the find-
ings were similar to Table 2, but with reduced effect size 
and not always significant. Results for the duration and 
the cumulative measure (Supplementary Tables S7 and 
S8) were also consistent with the main findings (Tables 
3 and 4), suggesting an association of more intensive cu-
mulative PM2.5 exposure with lower cognitive function 
scores. Third, Supplementary Tables S9 and S10 (using 
continuous variable for PM2.5 exposure) suggest that this 
association between PM2.5 exposure and cognitive func-
tion may not be a quadratic curve but a more complex 
curvilinear relationship. Fourth, the robustness check 
using the fully balanced data, with a smaller sample size 
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(e.g., no attritors; Supplementary Figure S6) confirms that 
cumulative exposure remains associated with poor cog-
nitive function, but these associations diminish for PM2.5 

exposures of high intensity and high duration. This is pos-
sibly because those who attritted are more likely to have 
poor health.

Table 3. Associations Between PM2.5 Duration (at a Threshold of 50 μg/m3) and Cognitive Function

 Model 1: Base 
Model 2: Model 1 + 
Education 

Model 3: Model 2 + SES 
+ Partnership 

Model 4: Model 3 + 
GDP 

PM2.5 duration (ref: 1 [0–12 months])
 2 (5 years: 13–60 months) 0.0319 −0.437*** −0.541*** −0.495***
 (−0.150 to 0.214) (−0.604 to −0.270) (−0.706 to −0.377) (−0.661 to −0.330)
 3 (10 years: 61–120 months) 0.306*** −0.0785 −0.128# −0.125#
 (0.139 to 0.472) (−0.229 to 0.0715) (−0.275 to 0.0198) (−0.272 to 0.0228)
 4 (10+ years: 121 months+) 0.509*** −0.0734 −0.0981 −0.155#
 (0.329 to 0.689) (−0.236 to 0.0895) (−0.258 to 0.0622) (−0.316 to 0.00597)
Age 0.125*** 0.252*** 0.239*** 0.238***
 (0.0542 to 0.196) (0.188 to 0.316) (0.175 to 0.302) (0.175 to 0.301)
Age square −0.00231*** −0.00277*** −0.00270*** −0.00271***
 (−0.0029 to −0.0018) (−0.0033 to −0.0023) (−0.0032 to −0.0022) (−0.0032 to −0.0022)
Gender (ref: men)
 Women −1.286*** −0.0564 −0.105# −0.131*
 (−1.415 to −1.157) (−0.177 to 0.0641) (−0.224 to 0.0138) (−0.250 to −0.0123)
Education (ref: no-schooling)
 Primary  2.642*** 2.430*** 2.372***
  (2.492 to 2.792) (2.281 to 2.578) (2.223 to 2.520)
 Middle  5.095*** 4.359*** 4.287***
  (4.929 to 5.260) (4.183 to 4.535) (4.111 to 4.464)
HuKou (ref: rural)
Urban   1.178*** 1.143***
   (1.023 to 1.332) (0.988 to 1.298)
Occupation (ref: agricultural)
 Nonagricultural   0.475*** 0.440***
   (0.326 to 0.623) (0.291 to 0.588)
 Managerial   0.313** 0.291*
   (0.0819 to 0.545) (0.0597 to 0.523)
Log household expenditure   0.0907*** 0.0873***
   (0.0664 to 0.115) (0.0629 to 0.112)
Partnership (ref: partnered)
 Single   −0.349*** −0.342***
   (−0.516 to −0.183) (−0.508 to −0.176)
Log GDP    0.324***
    (0.229 to 0.418)
Constant 11.27*** 2.264* 2.165* −1.035
 (9.075 to 13.47) (0.260 to 4.268) (0.166 to 4.165) (−3.240 to 1.170)
Random effects
 Within individual
  Change rate (age) 0.002*** 0.005*** 0.004*** 0.004***
  Intercept 2.946*** 2.801*** 2.663*** 2.664***
  Covariance 0.139 −0.008 −0.008 −0.009
 Between individual
  Residuals 3.053*** 3.049*** 3.054*** 3.054***
Log lokelihood −82,035.322 −80,444.162 −80,204.329 −80,181.936
Observations 29,484 29,484 29,484 29,484
Number of IDs 12,481 12,481 12,481 12,481

Notes: Cognitive function includes three components: immediate recall, delayed recall, and serial 7s, 0–25 points (see details in “Methods”). SES = socioeconomic 
status; GDP = gross domestic product.
***p < .001, **p < .01, *p < .05, #p < .1.
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Table 4. Associations Between Cumulative PM2.5 Exposure (Intensity-Duration) and Cognitive Function

 Model 1: Base 
Model 2: Model 1 + 
Education 

Model 3: Model 2 + SES + 
Partnership 

Model 4: Model 3 + 
GDP 

Cumulative PM2.5 (ref: 1–1)
 1–2 −0.612* −0.775*** −0.691** −0.684**
 (−1.098 to −0.125) (−1.214 to −0.337) (−1.123 to −0.260) (−1.115 to −0.253)
 2–1 0.394** 0.125 0.102 0.0850
 (0.0969 to 0.691) (−0.144 to 0.393) (−0.163 to 0.366) (−0.179 to 0.349)
 2–2 0.202# −0.399*** −0.523*** −0.482***
 (−0.0192 to 0.423) (−0.597 to −0.202) (−0.718 to −0.329) (−0.676 to −0.287)
 2–3 0.522*** −0.0327 −0.146 −0.156
 (0.246 to 0.797) (−0.287 to 0.222) (−0.398 to 0.105) (−0.408 to 0.0950)
 3–3 0.419*** −0.0292 −0.0886 −0.0869
 (0.222 to 0.617) (−0.205 to 0.146) (−0.261 to 0.0836) (−0.259 to 0.0849)
 3–4 0.486*** −0.0895 −0.143 −0.195*
 (0.269 to 0.702) (−0.285 to 0.106) (−0.335 to 0.0487) (−0.388 to −0.00315)
 4–4 1.027*** 0.107 0.115 0.0359
 (0.768 to 1.285) (−0.124 to 0.339) (−0.112 to 0.342) (−0.192 to 0.264)
Age 0.124*** 0.251*** 0.239*** 0.238***
 (0.0527 to 0.194) (0.187 to 0.315) (0.175 to 0.302) (0.175 to 0.302)
Age squared −0.00229*** −0.00276*** −0.00270*** −0.00271***
 (−0.0029 to −0.0017) (−0.0033 to −0.0023) (−0.0032 to −0.0022) (−0.0032 to −0.0022)
Gender (ref: men)
 Women −1.288*** −0.0608 −0.109# −0.134*
 (−1.417 to −1.159) (−0.181 to 0.0597) (−0.228 to 0.0101) (−0.253 to −0.0154)
Education (ref: no-schooling)
 Primary  2.635*** 2.423*** 2.366***
  (2.485 to 2.785) (2.275 to 2.571) (2.217 to 2.515)
 Middle  5.078*** 4.342*** 4.273***
  (4.912 to 5.244) (4.166 to 4.518) (4.096 to 4.450)
HuKou (ref: rural)
 Urban   1.177*** 1.143***
   (1.023 to 1.332) (0.988 to 1.297)
Occupation (ref: agricultural)
 Nonagricultural   0.477*** 0.442***
   (0.329 to 0.625) (0.294 to 0.590)
 Managerial   0.313** 0.291*
   (0.0810 to 0.544) (0.0593 to 0.522)
Log household expenditure  0.0901*** 0.0866***
   (0.0657 to 0.114) (0.0623 to 0.111)
Partnership (ref: partnered)
 Single   −0.350*** −0.343***
   (−0.517 to −0.184) (−0.509 to −0.176)
Log GDP    0.319***
    (0.225 to 0.414)
Constant 11.15*** 2.238* 2.132* −1.022
 (8.949 to 13.35) (0.231 to 4.245) (0.129 to 4.136) (−3.230 to 1.186)
Random effects
 Between individual
  Change rate (age) 0.003*** 0.005*** 0.004*** 0.004***
  Intercept 2.930*** 2.792*** 2.653*** 2.655***
  Covariance 0.007*** −0.009 −0.010 −0.010
 Within individual
  Residuals 3.052*** 3.048*** 3.054*** 3.054***
Log likelihood −82,012.150 −80,437.023 −80,197.855 −80,176.084
Observations 29,484 29,484 29,484 29,484
Number of IDs 12,481 12,481 12,481 12,481

Notes: Cognitive function includes three components: immediate recall, delayed recall, and serial 7s, 0–25 points (see details in “Methods”). The first number 
in the cumulative PM2.5 is intensity (1: 0–35 μg/m3; 2: 36–50 μg/m3; 3: 51–75 μg/m3; 4: 76+ μg/m3), and the second represents duration (1: 0–12 months; 2: 
13–60 months; 3: 61–120 months; 4: 121+ months). SES = socioeconomic status; GDP = gross domestic product.
***p < .001, **p < .01, *p < .05, #p < .1.
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Discussion
Using the CHARLS, a nationally representative data set, 
linked to historic PM2.5 records derived from remotely 
sensed satellite data, we investigated the relationship be-
tween PM2.5 exposure at the city level and cognitive func-
tion via a sequence of GCMs. Our findings were mixed but 
suggested that some categories of higher and longer expo-
sure to PM2.5 are associated with poorer cognitive function 
among Chinese adults aged 45 and older.

First, we used the intensity (average PM2.5 exposure) 
as the measure for exposure over a long-term period of 
15 years. Our findings show that respondents in the second 
group of PM2.5 intensity have poorer cognitive function 
than those in the first group, but their associations retained 
only weak levels of significance once adjusted for educa-
tion and other SES factors. Moreover, our findings in Table 
2 and Supplementary Table S3 show that people living in 
areas of much higher PM2.5 intensity (e.g., categories three 
and four) have a better cognitive function.

Although some studies show no significant associations 
between PM2.5 intensity and cognitive impairment (Gatto 
et al., 2014; Loop et al., 2013), our findings are consistent 
with most of the previous research, which indicates higher 
mean concentrations of PM2.5 were significantly associated 
with lower cognitive function (Ailshire & Clarke, 2015; 
Ailshire et al., 2017; Tallon et al., 2017; Wang et al., 2020). 
We have controlled for many individual and city-level 
confounders, but as in most observational studies, we cannot 
rule out residual confounding factors related to air pollution 
or cognitive function, or both, which might result in high 
between-person residuals and unexpected patterns of associ-
ations between air pollution and cognitive function.

Although our study adjusts for HuKou status, this 
may not capture every important element of rural–urban 

differences. For example, economic development and ur-
banization correlate with high pollution and high rates of 
rural–urban migration (Chai et al., 2014; Liu et al., 2007; 
Zhang & Kanbur, 2005). Therefore, the negative associ-
ation between higher air pollution (e.g., the highest cate-
gory of PM2.5 intensity or duration) and poorer cognition 
might be offset by the advantageous characteristics of 
urban dwellers. This might explain why the analyses strat-
ified by HuKou show that rural respondents had stronger 
associations between PM2.5 exposure and poor cognitive 
function than urban ones. We additionally included meas-
ures of educational attainment and other SES covariates 
(household expenditure and occupation), but these also 
may not capture all rural–urban differences (e.g., medical 
insurance, housing, and community services). Furthermore, 
the remaining high between-person residuals might be due 
to measuring air pollution exposure at the city-level reso-
lution. In China, the city region may consist of rural and 
urban areas where air pollution exposures are remarkably 
different. This should be explored in future research with 
the different data source(s) that allow the inclusion of more 
potential confounding factors and more precise spatial 
resolution.

Second, our results suggest that exposure to 
13–60  months of PM2.5 duration was associated with 
worse cognitive function than the first-group duration 
(0–12 months), consistent with previous studies regarding 
the effects of exposure durations (Liu et  al., 2017; Tan 
et  al., 2018). However, coefficients for durations longer 
than 60 months were nonsignificant, and likely for similar 
reasons as observed with intensity: the stronger association 
between the second duration group and cognitive function 
could be caused by some unobserved individual factors 
(e.g., people living in the regions of the second duration 
group might have less protection against air pollution) or 
urbanization factors. Compared with the effect sizes and 
significance of PM2.5 intensity, our findings reflect that 
PM2.5 duration might have more detrimental influences on 
cognitive function.

Figure 3. Associations between cumulative PM2.5 exposure (intensity-
duration) and cognitive function stratified by HuKou status. Adjusted 
covariates include age, age squared, gender, education, occupation, 
household expenditure (logged), and annual GDP at the city level 
(logged). GDP = gross domestic product.Figure 2. Trajectories of cognitive function associated with cumulative 

PM2.5 (intensity-duration) across age with 95% confidence intervals. 
Adjusted covariates were from Model 5 in Supplementary Table S13. 
The first number in the cumulative PM2.5 is intensity (1: 0–35 μg/m3; 2: 
36–50 μg/m3; 3: 51–75 μg/m3; 4: 76+ μg/m3), and the second represents 
duration (1: 0–12 months; 2: 13–60 months; 3: 61–120 months; 4: 121+ 
months).
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Third, the results using a joint measure of intensity with 
duration for cumulative exposure indicate that the expo-
sure to a longer duration at a lower intensity may be more 
harmful than a shorter duration at a higher intensity. This 
suggests that duration of exposure may play a more im-
portant role in cognitive impairment than the intensity of 
exposure, especially in a 15-year period or longer. On the 
other hand, there might be an alternative explanation for 
the lower cognitive level of the “1–2” group. After further 
investigation, we found that more than 80% of the indi-
viduals in the “1–2” group were from one particular city 
(Maoming of Guangdong Province), where urbanization 
dramatically increased the level of PM2.5 concentration 
during the last 15 years (Maoming Municipal Government, 
2020). Supplementary Figure S3 shows that there were 
only 16  months with more than 50  μg/m3 at PM2.5 con-
centration, which indicates most samples in Maoming are 
exposed to the “1–1” and “1–2” groups. This also partly 
explains why the coefficients of the third and fourth groups 
of duration were nonsignificant in Table 4. Therefore, these 
findings suggest that the measure of air pollution should 
include intensity and duration simultaneously.

It should be noted that our findings related to duration 
were substantiated only when we defined that the harmful 
threshold is more than 50  μg/m3 at PM2.5 concentration. 
Evidence shows that poor cognitive performance is associ-
ated with a lower level of PM2.5 concentration (e.g., 15 μg/m3) 
among American older adults (Ailshire & Clarke, 2015). 
In China, although the national standard for annual PM2.5 
concentration is 35 μg/m3 (level 1) and 75 μg/m3 (level 2; 
Cao et  al., 2013), we found that 85% of respondents in 
the CHARLS were living in cities where the annual level of 
PM2.5 exposure is over 35 μg/m3. Thus, if we used a lower 
threshold to measure the duration, the variation of duration 
would be too small to accurately reflect the relationship be-
tween PM2.5 exposure and cognitive function. In addition, 
China was experiencing rapid urbanization, which to some 
extent leads to a positive correlation between human health 
and air pollution because the increased GDP and improved 
infrastructure are likely to be the main drivers of beneficial 
health outcomes; this might have downwardly biased our 
estimates of the association between air pollution and cog-
nitive function (Hou et al., 2019).

Several limitations should be noted. First, because 
we did not have access to respondents’ address data, we 
matched individuals to PM2.5 exposure data based on the 
city where they lived; hence, we cannot compare respond-
ents within the same city. Future studies that can match air 
pollution data at the individual level (not possible with our 
data) could produce more robust results. This study can 
only indicate the associations between PM2.5 exposure and 
cognitive function, but cannot examine the effects of other 
air pollutants, such as NO2, PM10, and ozone, which are 
also associated with cognitive impairment (Kulick et  al., 
2020; Shin et al., 2018). Thus, we cannot rule out that our 
findings might result from other pollutants that are highly 

correlated with PM2.5. Finally, although we use long-term 
PM2.5 exposure data measured over a 15-year period, we 
have no measure of the earlier life course exposure.

Nevertheless, our study makes two important con-
tributions. First, we extend the measure of air pollution 
exposure beyond exposure intensity (average PM2.5 con-
centrations) to exposure duration (the number of months 
with high levels of PM2.5 concentrations) and cumulative 
exposure (a joint variable of intensity with duration), 
providing a more comprehensive assessment of the asso-
ciations between cumulative PM2.5 exposure and cogni-
tive function. Second, compared with monitoring station 
data in China, the satellite-based PM2.5 data used in this 
study have many methodological advantages, including 
a broad spatial coverage (all of China) and long-term re-
cords (more than 15 years). Third, the linkage between 
survey data and satellite data is established using exact 
interview dates and locations over a period of 15 years, 
enabling us to accurately observe the temporal trends of 
PM2.5 exposure, even if interview dates varied between 
respondents. Using a long-term exposure period is im-
portant when studying cognitive impairment, because 
the initial deposition of brain diseases (e.g., dementia 
and Alzheimer’s disease) may begin at least 10–15 years 
before clinically detectable symptoms associated with 
cognitive impairment (Fortea et  al., 2021; Tarawneh & 
Holtzman, 2012).

Conclusions
This study contributes to the accumulating literature 
linking cumulative exposure to PM2.5 and cognitive 
function. We find some evidence that higher and longer 
PM2.5 exposure is associated with worse cognitive func-
tion. This suggests that studies of the association between 
PM2.5 exposure and cognitive function should consider 
both intensity and duration simultaneously. On the other 
hand, we consistently find that those with the lowest 
exposure to PM2.5 have the lowest levels of cognitive 
function. The relationship is likely complicated by the as-
sociation between SES, residence, and migration patterns. 
Future studies should try to unpick the influence of these 
factors, and to better understand the causal mechanisms 
underlying the association between cumulative exposure 
to PM2.5 and cognitive decline.
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