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Abstract
A graph is called odd if there is an orientation of its edges and an automorphism
that reverses the sense of an odd number of its edges and even otherwise. Pontus
von Brömssen (né Andersson) showed that the existence of such an automorphism
is independent of the orientation and considered the question of counting pairwise
non-isomorphic even graphs. Based on computational evidence, he made the rather
surprising conjecture that the number of pairwise non-isomorphic even graphs on n
vertices is equal to the number of pairwise non-isomorphic tournaments on n vertices.
We prove this conjecture using a counting argument with several applications of the
Cauchy–Frobenius theorem.
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1 Introduction

In a paper on the asymptotics of random tournaments, Pontus Andersson [1, p. 252]
introduced the concept of an even graph in the following fashion: Given a graph
X , assign an arbitrary orientation to its edges. Then, an automorphism g ∈ Aut(X)

reverses the sense of an edge e = {u, v} if e is oriented from u to v, but eg is oriented
from vg to ug . Changing the orientation of the graph might alter the number of edges
whose sense is reversed by g, but Andersson showed that it does not alter the parity
of this number. He defined a graph to be odd if it has an automorphism reversing the
sense of an odd number of edges and even otherwise. (This is somewhat overloading
the adjectives “even” and “odd”, which are already used for several different concepts
relating to both permutations and graphs but, to avoid confusion, we shall be explicit
when using any of these other meanings.)

Figure 1 shows the pairwise non-isomorphic graphs on four vertices, along with
an odd automorphism, i.e. an automorphism reversing the sense of an odd number of
edges, if one exists. The four graphs with no odd automorphism listed are the four
even graphs on four vertices.

A tournament is a directed graph D with arc set A(D) such that for any distinct
vertices {v,w}, either (v,w) ∈ A(D) or (w, v) ∈ A(D), but not both. Equivalently,
a tournament is an oriented complete graph. Figure 2 illustrates the four pairwise
non-isomorphic tournaments on four vertices.

When counting graphs (or tournaments, even graphs, etc.) on n vertices, we nor-
mally fix a vertex set of size n, and distinguish between counting pairwise distinct
graphs and counting pairwise non-isomorphic graphs as above. For brevity the former
is normally referred to as counting labelled graphs, and the latter as counting unla-
belled graphs. As we shall see, it is no coincidence that the numbers of unlabelled even
graphs and tournaments on four vertices are the same. Pontus von Brömssen computed
the number of unlabelled even graphs on up to 10 vertices to enter the sequence into
the On-Line Encyclopedia of Integer Sequences [4]. He was surprised to see that his
numbers coincided perfectly with the leading entries of the sequence A000568 of [4],
which counts the number of unlabelled tournaments. In a comment on the sequence,
he asked whether the numbers of such even graphs and tournaments actually coincide
for all n. In this note, we answer this question positively.

The most obvious and satisfying way to prove that two sequences counting com-
binatorial structures are the same is to find a reasonably natural bijection between the
sets enumerated by the two sequences. This not only proves that the sequences are
equal, but also gives a convincing explanation for why they are the same. The second-
best option is to find a counting argument showing that the two sequences are given
by the same formula or expression (or satisfy the same recurrence, etc.). By using the
Cauchy–Frobenius theorem and double counting, we find expressions for the numbers
of unlabelled graphs, tournaments and odd graphs, showing that for any fixed number
of vertices,

Number of graphs = Number of tournaments + Number of odd graphs.

As a graph is either even or odd, this immediately implies our main result:
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Fig. 1 4-vertex graphs with an odd automorphism if one exists

Fig. 2 Tournaments on four vertices

Theorem 1.1 For all n ≥ 2, the number of pairwise non-isomorphic even graphs on n
vertices is equal to the number of pairwise non-isomorphic tournaments on n vertices.

It is an open problem to find a natural bijection between the sets of unlabelled even
graphs and tournaments on n vertices.

2 Counting graphs

In general, counting a family of labelled (i.e. pairwise distinct) graphs on n vertices is
easier than counting unlabelled (i.e. pairwise non-isomorphic) graphs. The Cauchy–
Frobenius theorem is a fundamental tool that can be used to express the number of
unlabelled graphs as a sum, each of whose terms is the size of a specific set of labelled
graphs.

Before applying this theorem, however, we need to establish some notation. Let
[n] = {1, 2, . . . , n} denote the vertex set of all of our graphs and tournaments on n
vertices. Then, define
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En = {{u, v} : u, v ∈ [n], u �= v},

so that En is the set of unordered pairs of distinct vertices. We think of En as being
the set of all possible edges in a graph with vertex set [n].

Suppose that X and Y are graphs with vertex set [n] and edge-sets E(X) and E(Y ),
respectively. Then X and Y are isomorphic if and only if there is some permutation
g ∈ Sym(n) such that E(Y ) = E(X)g , where

E(X)g = {{ug, vg} | {u, v} ∈ E(X)}.

So the number of unlabelled graphs is the number of orbits of the symmetric group
Sym(n) acting on � = P(En) (the powerset of En).

In order to count orbits, we turn to the followingwell-known theorem (seeNeumann
[3] for the fascinating history of this result).

Theorem 2.1 (Cauchy–Frobenius theorem) Let G be a permutation group acting on
a set �. The number of orbits of G on � is given by the expression

1

|G|
∑

g∈G
|fix(g)|,

where fix(g) is the set of elements of � fixed by g.

In other words, the number of orbits of G on� is equal to the average number of fixed
points of the elements of G.

In order to apply this theorem, we need to know how many subsets of En are fixed
by a permutation g ∈ Sym(n) in its induced action on En . Equivalently, we need to
know how many labelled graphs are fixed by g.

So for g ∈ Sym(n), let gE denote the permutation induced by g on En . For example,
if n = 4 and g = (1, 2, 3, 4), then

gE = ({1, 2}, {2, 3}, {3, 4}, {1, 4}) ({1, 3}, {2, 4}) .

Now any subset of E4 that is fixed by gE must either contain all of the pairs
{{1, 2}, {2, 3}, {3, 4}, {1, 4}} or none of them, and similarly for {{1, 3}, {2, 4}}. So
there are 22 = 4 subsets of En (or labelled graphs) fixed by gE .

In general, a subset of En is fixed by gE if and only if it is the union of the cycles of
gE (here, and later, we identify a cycle of gE with its support, i.e. the set of edges that
it moves). So letting c(gE ) denote the number of cycles of gE , there are exactly 2c(gE )

labelled graphs fixed by gE . By the Cauchy–Frobenius theorem, we conclude that the
number of isomorphism classes of graphs on n vertices is given by the expression

1

n!
∑

g∈Sym(n)

2c(gE ). (1)
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3 Counting tournaments

In this section, we will derive an analogous expression for the number of unlabelled
tournaments on n vertices, essentially by considering arcs rather than edges. We start
by defining

An = {(u, v) : u, v ∈ [n], u �= v},

so that where En was the set of all possible edges, An is the set of all possible arcs.
So, for g ∈ Sym(n), let gA denote the permutation induced by g on An . For example,

if n = 4 and g = (1, 2, 3, 4), then

gA = ((1, 2), (2, 3), (3, 4), (4, 1)) ((2, 1), (3, 2), (4, 3), (1, 4)) ((1, 3), (2, 4), (3, 1), (4, 2)) .

In this case, gA has three cycles, say C1, C2 and C3. The first two cycles C1 and C2
are closely related, in the sense that C2 can be obtained from C1 by reversing every
arc, and vice versa. In contrast, reversing every arc in C3 simply yields C3 again. We
use c(gA) to denote the number of cycles of gA.

We need a little bit more notation and terminology to discuss the general case. If a
refers to an ordered pair, say (u, v), then a refers to its reverse (v, u) and e(a) refers
to the unordered pair {u, v}.

Suppose that C = (a1, a2, . . . , ak) is a cycle of gA and let C = (a1, a2, . . . , ak)
be the cycle obtained from C by reversing each arc. If C = C , then we say that C
is self-paired, otherwise non-self-paired. So in general, gA has some number (maybe
zero) of self-paired cycles, the remaining non-self-paired cycles occur in pairs of the
form {C,C}.

In order to use the Cauchy–Frobenius theorem, we need to understand the relation-
ship between the cycle structures of g, gA and gE .

If C is a non-self-paired cycle (a1, a2, . . . , ak) of gA, then its undirected image

(e(a1), e(a2), . . . , e(ak))

is a cycle of gE , and clearly C has the same undirected image.
If instead C is a self-paired cycle of gA, then

C = (a1, a2, . . . , ak, a1, a2, . . . , ak) ,

for some a1, . . . , ak ∈ An . As e(a) = e(a), if each arc a is replaced by e(a)we obtain
the cycle

(e(a1), e(a2), . . . , e(ak), e(a1), e(a2), . . . , e(ak)) ,

which is a cycle of gE “wrapped around twice”. In this case, we define the undirected
image of C to be the cycle (e(a1), e(a2), . . . , e(ak)).
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As we shall shortly see, it is the presence or absence of self-paired cycles that is
crucial when counting both tournaments and odd graphs. This, in turn, depends on the
order |g| of g.
Lemma 3.1 The permutation gA has a self-paired cycle if and only if |g| is even.
Proof If g has even order, then it has a cycle of even length, say (1, 2, . . . , 2k). Then
the cycle

((1, k + 1), (2, k + 2), . . . , (k, 2k), (k + 1, 1), . . . , (2k, k))

is a self-paired cycle of gA.
Conversely, if gA has a self-paired cycle, then this cycle has even length, and so

|gA| is even, implying that |g| is even. ��
Corollary 3.2 The automorphism group of a tournament has odd order.

Proof Let T be a tournament, and suppose that g ∈ Aut(T ). If g has even order, then
by Lemma 3.1, gA has a self-paired cycle C , which contains at least one pair of arcs
of the form {a, a}. The tournament is fixed by g if and only if its arc set is a union
of cycles of gA, and so C must either be a subset of A(T ) or disjoint from A(T ).
However, neither is possible because exactly one of a, a is an arc of T . ��
Theorem 3.3 The number of isomorphism classes of tournaments on n vertices is given
by the expression

1

n!
∑

g∈Sym(n)
|g| odd

2c(gE ). (2)

Proof We apply the Cauchy–Frobenius theorem with G = Sym(n) and � the set of
(labelled) tournaments. By Corollary 3.2, permutations of even order do not contribute
to the sum. If g has odd order, then gA has no self-paired cycles, and a tournament
is fixed by g if and only if its arc set is a union of cycles of gA containing exactly
one cycle from each pair {C,C}. Therefore g fixes exactly 2c(gA)/2 tournaments. As
gA has no self-paired cycles, c(gA)/2 = c(gE ) and so the number of isomorphism
classes of tournaments on n vertices is given by (2). ��

An explicit expression for the number of isomorphism classes of tournaments was
first given by Davis [2], although expressed as a sum over conjugacy classes of per-
mutations rather than a sum over individual permutations.

4 Counting odd graphs

We now derive a similar expression for counting pairwise non-isomorphic odd graphs
on n vertices. Let X be a graph on the vertex set [n]. Whether or not an automorphism
g ∈ Aut(X) is an odd automorphism for X is independent of the orientation of X , and
it is convenient henceforth to assume V (X) = [n] and each edge is oriented from the
lower- to the higher-numbered vertex.
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An inversion of a permutation h ∈ Sym(n) is a pair {u, v} of distinct elements of
[n] such that u < v and uh > vh . An edge of X has its sense reversed by a permutation
g ∈ Aut(X) if and only if it is an inversion of g. So the set of edges of a graph X
whose sense is reversed by a permutation g ∈ Aut(X) is the set of inversions of g that
are also edges of X .

Now, given g ∈ Aut(X), the sign sgnX (g) of g with respect to X is the value

sgnX (g) =
∏

{u,v}∈E(X)

ug − vg

u − v
.

Each term in the product iswell defined because ug−vg

u−v
= vg−ug

v−u . Because g ∈ Aut(X),
the numerator and denominator of this expression are each a product of the same
multiset of values, but permuted, and possiblywith changes of sign. It follows therefore
that sgnX (g) ∈ {−1, 1}.

An edge {u, v} contributes±1 to the product, with the contribution being−1 if and
only if its sense is reversed by g. Therefore g is an odd automorphism for X if and
only if sgnX (g) = −1.

Lemma 4.1 The function sgnX is a group homomorphism from Aut(X) to the multi-
plicative group ({−1, 1},×).

Proof Suppose that g, h ∈ Aut(X). Then,

sgnX (gh) =
∏

{u,v}∈E(X)

ugh − vgh

u − v
=

∏

{u,v}∈E(X)

ug − vg

u − v
· (ug)h − (vg)h

ug − vg

=
∏

{u,v}∈E(X)

ug − vg

u − v
·

∏

{u,v}∈E(X)

(ug)h − (vg)h

ug − vg
= sgnX (g) sgnX (h),

where the second product in the last line is equal to sgnX (h) because g ∈ Aut(X). ��
Corollary 4.2 Exactly half of the permutations in Aut(X) are odd automorphisms for
X if and only if X is an odd graph.

Proof The following are equivalent: (a) exactly half of the permutations in Aut(X) are
odd automorphisms for X , (b) sgnX maps onto {−1, 1}, (c) there exists g ∈ Aut(X)

with sgnX (g) = −1, and (d) X is an odd graph. ��
Lemma 4.3 Suppose that g ∈ Sym(n). Then, a cycle of gE contains an odd number
of inversions of g if and only if it is the undirected image of a self-paired cycle of gA.

Proof Let C be a cycle of gA that is not self-paired, and let C ′ be its undirected image.
Label each arc (u, v) of C with 0 if u < v or 1 otherwise, and count the number of
times the label changes (from 0 to 1 or vice-versa) as C is traversed exactly once in
cyclic order starting and ending at the same arc. This number is precisely the number
of inversions of g that lie in C ′. As the label at the starting and ending point of this

123



Journal of Algebraic Combinatorics

traversal is the same, the number of changes is even. Therefore C ′ contains an even
number of inversions of g.

Now suppose that C ′ is the undirected image of a self-paired cycle

C = (a1, a2, . . . , ak, a1, a2, . . . , ak)

of gA. As previously, label each arc (u, v) in C with 0 if u < v and 1 if v < u, and
again count the total number of label changes as the cycle C is traversed from a1 to a1.
(This corresponds to traversing C ′ exactly once in cyclic order, but takes into account
the fact that gk reverses the sense of a1.) As the start and end of this traversal have
different labels, there are an odd number of label changes. Therefore the undirected
image of any self-paired cycle of gA contains an odd number of inversions of g. ��

Returning to the example of g = (1, 2, 3, 4) from Sect. 2, we see that the first cycle
of gE contains two inversions of g, namely {3, 4} and {1, 4}, while the second cycle
of gE contains just one.

Finally, we have enough to count odd graphs.

Theorem 4.4 The number of isomorphism classes of odd graphs on n vertices is given
by the expression

1

n!
∑

g∈Sym(n)
|g| even

2c(gE ). (3)

Proof We will double-count the elements of the following set

S = {(X , g) : g is an odd automorphism for the n-vertex odd graph X}.

If X is an odd graph, then there are n!/|Aut(X)| labelled graphs isomorphic to X ,
and by Corollary 4.2, each of these has |Aut(X)|/2 odd automorphisms, meaning that
each isomorphism class of odd graphs contributes n!/2 pairs to S. So if there are K
pairwise non-isomorphic odd graphs, then |S| = Kn!/2.

Now, a permutation g ∈ Sym(n) is an odd automorphism for a graph X if and
only if E(X) is a union of cycles of gE that (collectively) contain an odd number of
inversions of g.

If g has odd order, then by Lemma 3.1 every cycle of gA is non-self-paired, and
hence by Lemma 4.3, every cycle of gE contains an even number of inversions of g.
Therefore, S contains no pairs (X , g) for which g has odd order.

If g has even order, then gE has at least one cycle, say C , that is the undirected
image of a self-paired cycle and therefore contains an odd number of inversions of g
(again using Lemmas 3.1 and 4.3).

There are 2c(gE )−1 subsets of En obtained by taking the union of a subset of the
cycles of gE other than C . If Ê is one of these subsets, then exactly one of Ê and
Ê ∪ C contains an odd number of inversions of g. (If Ê contains an even number of
inversions of g, then Ê ∪ C contains an odd number of inversions of g.)
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Therefore, when g has even order, it contributes 2c(gE )−1 pairs (X , g) to S.
It follows that

|S| = K
n!
2

=
∑

g∈Sym(n)
|g| even

2c(gE )−1

and so K is given by the expression (3). ��
Every permutation of Sym(n) has even order or odd order, and so we obtain, from

Theorems 3.3 and 4.4 , the final expression

1
n!

∑

g∈Sym(n)

2c(gE)

︸ ︷︷ ︸
# Graphs

=
1
n!

∑

g∈Sym(n)
|g| odd

2c(gE)

︸ ︷︷ ︸
# Tournaments

+
1
n!

∑

g∈Sym(n)
|g| even

2c(gE)

︸ ︷︷ ︸
# Odd Graphs

.

Therefore, the number of isomorphism classes of n-vertex tournaments is equal
to the number of isomorphism classes of n-vertex even graphs, and we have proved
Theorem 1.1.
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