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Frameworks with coordinated edge motions

Bernd Schulze Hattie Serocold † Louis Theran ‡

Abstract

We develop a rigidity theory for bar-joint frameworks in Euclidean d-space in which spec-
ified classes of edges are allowed to change length in a coordinated fashion that requires
differences of lengths to be preserved within each class. Rigidity for these coordinated frame-
works is a generic property, and we characterize the rigid graphs in terms of redundant rigidity
in the standard d-dimensional rigidity matroid. We also interpret our main results in terms
of matroid unions.

1. Introduction

A (bar-joint) framework (G, p) is a graph G = (V, E) and a map p : V → Ed . By identifying p with
a vector in Ed|V | (using any order on V ), we may also refer to p as a configuration of |V | points in
Ed . Intuitively, we may think of a framework as a collection of fixed-length bars (corresponding
to the edges of G) which are connected at their ends by joints (corresponding to the vertices of
G) that allow bending in any direction of Ed .

One fundamental question in rigidity theory is whether all edge-length preserving, continuous
motions of a given framework are rigid body motions. In this case, a framework is called rigid

and otherwise flexible. (See Section 2 for formal definitions.)

Generic rigidity In general, whether a framework (G, p) is rigid or flexible depends on both G

and p; that is, rigidity is a geometric property. However, there is a typical behavior as p varies
and G is fixed.

Definition 1.1. A point configuration p of n points in dimension d is generic if the coordinates of
the points p(i) do not satisify any polynomial equation with coefficients in Q. Generic points are
dense in the space of n-point configurations.

If G is a graph with n vertices, a framework (G, p) is called generic if p is generic.

Asimow and Roth proved the following fundamental result [1].

Theorem 1.2. For every dimension d and graph G, either every generic framework (G, p) in Ed is

rigid or every generic framework (G, p) in Ed is flexible.

A consequence is that we may investigate the generic rigidity properties of a graph G.
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Definition 1.3. Let d ∈ N be a dimension and G a graph. Then G is generically rigid in dimension
d if every generic framework (G, p) is rigid; otherwise every generic (G, p) is flexible and G is
generically flexible in dimension d .

If G is generically rigid in dimension d , but no proper spanning subgraph of G is generically
rigid, then G is isostatic in dimension d .

Rigidity matroids It is implicit in [1] and first explicitly observed and used by Lovász and Yemini
in [13] that generic rigidity has a matroidal structure.

Definition 1.4. Fix a dimension d and let n ≥ d . Let En be the edges of the complete graph Kn.
The matroid on the ground set En of rank dn −

�

d+1
2

�

that has as its bases the edge sets of the
isostatic graphs with n vertices in dimension d is called the d-dimensional rigidity matroid of Kn

and is denoted by Md,n.
The restriction of Md,n to the edges of an n vertex graph G is the rigidity matroid of G, Md(G).

Lovász and Yemini define Md,n in terms of a linearization of rigidity called infinitesimal rigidity
that we discuss in more detail in Section 2. This approach is now standard in the field; see, e.g.,
Whiteley’s survey [24] for an overview on the interplay between matroid theory and rigidity
problems.

It is easy to check, using a randomized algorithm based on Gaussian elimination, whether a
specific graph G is generically rigid in dimension d for any d and number of vertices n (a detailed
analysis is in [8], but this is a folklore fact). On the other hand, except for dimensions d = 1,
which is folklore, and d = 2, which is due to Pollaczek-Geiringer [18] (and later rediscovered by
Laman [11]), a combinatorial characterization of the matroids Md,n is a notable open problem
[20, Sec. 61.1.2, “Open problems”].

Coordinated rigidity: motivation and results In recent work, Nixon, Schulze, Tanigawa and
Whiteley [16] defined a generalization of frameworks that enlarges the class of allowed motions.
The vertices of (G, p) are partitioned into k+1 different classes, V0, V1, . . . , Vk. The set of allowed
configurations p is constrained so that for j ≥ 1 all vertices i ∈ Vj have the same distance to the
origin (but this distance may change), and all the vertices i in V0 lie on the unit sphere. The
allowed motions are the continuous deformations in the space of allowed configurations. The
motivation for studying these types of frameworks is to interpolate between rigidity in dimension
d and dimension d + 1.

A model for this expanding spheres setup, which is present in [16], is based on Whiteley’s
coning construction [23]. We first add a new vertex v0 to G and fix it at the origin (the centre
of the spheres) and then we connect v0 to each of the vertices of G. The new edges joining v0

with the vertices in V0 must have fixed unit length, and the remaining new edges joining v0 with
vertices in V1∪ . . .∪Vk do not have fixed length, but all of the ones in the same class Vj must have
the same length.

Inspired by [16] we consider frameworks in which not all of the bars are fixed-length in a
more general fashion. We identify, in advance k ∈ N “coordination classes” of edges which are
allowed to change their length, subject to edge length differences being preserved within each
coordination class.

Our study of coordinated rigidity in such a general setup is also motivated by some recent
results in condensed matter theory. In [7, 10, 19] it is shown that (nearly) minimally rigid frame-
works can be “tuned” to have a number of interesting geometric and material properties. The
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results we present here could potentially form the combinatorial part of a design methodology
for such “meta-materials”. Other potential practical applications arise from the analysis of frame-
works modelling engineering structures that are driven by a collection of pistons which are all
connected to a central pump, and so will extend or contract based on the pressure across the
whole system, or structures whose members are made of multiple different types of materials,
which may expand at different rates when the structure is heated.

In this paper we develop the continuous and infinitesimal rigidity theory for coordinated
frameworks and show that rigidity of coordinated frameworks is a generic property. Our main
result, Theorem 4.1, shows that generic rigidity of a coordinated framework has a characteriza-
tion in terms of the generic rigidity properties of a bar-joint framework with the same underlying
graph. As a corollary, we identify the d-dimensional coordinated rigidity matroid for a fixed par-
tition of the edges of the graph into coordination classes with a matroid union of the standard
rigidity matroid and an associated partition matroid. In particular, this provides a deterministic
polynomial time algorithm for checking generic coordinated rigidity in dimension 2 for any k.

Organization The structure of the paper is as follows. We start by briefly introducing the nec-
essary definitions and results from standard (finite and infinitesimal) rigidity theory in Section 2.
These definitions and results are then adapted in Section 3 to the coordinated context described
above. Characterizations for generic coordinated rigidity in arbitrary dimension are then given
in Section 4. Finally, in Section 5 we discuss algorithms for checking generic coordinated rigidity
and outline some further directions of research.

2. Rigidity background

We start by introducing the definitions, notation, and basic results from rigidity theory that are
required for the development of a rigidity theory for coordinated frameworks. (See [20], for
example, for further details.)

2.1. Graphs

We denote graphs by G = (V, E), where V is the set of vertices and E is the set of edges. In cases
where G is not clear from the context, we write V (G) for V and E(G) for E. We usually use n and
m to denote the number of vertices and edges, respectively, and write edges as unordered pairs
{i, j} of vertices. We also use the notation e for an edge when the endpoints aren’t important.

2.2. Point configurations

Fix a dimension d . A d-dimensional configuration p is an ordered tuple of n points (p(1), . . . , p(n))

in Ed . Let Euc(d) be the group of rigid motions of Ed . We define configurations p and q to be
congruent if there is a T ∈ Euc(d) such that q(i) = T (p(i)) for all 1≤ i ≤ n.

Fixing an affine structure and an origin, we can identify points in Ed with their coordinates
in Rd , so we may regard p as a mapping [n]→ Rd or a vector in

�

Rd
�n ∼= Rdn.

The tangent space to Ed is Rd at every point, so we have an identification between velocity

fields p′ supported on p and
�

Rd
�n ∼= Rdn.
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2.3. Frameworks, rigidity, and flexibility

We now define bar-joint frameworks formally.

Definition 2.1. A d-dimensional (bar-joint) framework (G, p) is defined by a graph G with n

vertices and an n-point configuration p which assigns a point in Rd to each vertex of G.

Continuous rigidity Underlying the notion of rigidity are the concepts of equivalence and con-
gruence.

Definition 2.2. Two d-dimensional frameworks (G, p) and (G,q) are equivalent if

||p( j)− p(i)|| = ||q( j)− q(i)|| for all {i, j} ∈ E (1)

Frameworks (G, p) and (G,q) are congruent if p and q are congruent.

Now we can define rigidity and flexibility.

Definition 2.3. A framework (G, p) is (locally) rigid if there is a neighborhood U ⊂ Rdn of p with
the property that if q ∈ U and (G, p) and (G,q) are equivalent, then they are congruent.

A finite motion of a framework (G, p) is a one-parameter family of frameworks (G, pt) with
p0 = p and (G, pt ) equivalent to (G, p) for all t ∈ [0,1). A finite motion is non-trivial if not all the
(G, pt ) are congruent to (G, p). A framework is flexible if it has a non-trivial finite motion.

The definitions of rigid and flexible are, a priori, not directly related. It is straightforward that
a rigid framework is not flexible. Asimow and Roth [1] proved the strong converse.

Theorem 2.4. Let (G, p) be a d-dimensional framework. Then if (G, p) is not rigid, it is flexible.

Hence, for any d and G, every d-dimensional framework (G, p) is either rigid or flexible.

Infinitesimal rigidity Theorem 2.4 holds unconditionally, and its proof relies on a difficult
algebraic-geometric result (Milnor’s curve selection lemma [14]). In the generic case, it suffices
to study the linearization of rigidity.

Definition 2.5. An infinitesimal motion p′ ∈ Rdn of a d-dimensional framework (G, p) is a velocity
field supported on p such that

[p( j)− p(i)] · [p′( j)− p′(i)] = 0 for all {i, j} ∈ E (2)

An infinitesimal motion is called trivial if it arises as the derivative of a rigid motion of Ed ,
restricted to p. The dimension of the space of trivial infinitesimal motions of a framework in Ed

with at least d vertices is
�

d+1
2

�

.
A framework (G, p) in dimension d is infinitesimally rigid if every infinitesimal motion of it is

trivial. Otherwise (G, p) is infinitesimally flexible.

Theorem 1.2 from the introduction follows from the following more specific statement.

Theorem 2.6 ([1]). Fix a dimension d and let G be a graph with n≥ d vertices. If a d-dimensional

framework (G, p) is infinitesimally rigid, then it is rigid. If (G, p) is generic and infinitesimally

flexible, then it is flexible.
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To study infinitesimal rigidity, we use the rigidity matrix.

Definition 2.7. Fix a dimension d and let G be a graph with n ≥ d vertices. The rigidity matrix

R(p) of a d-dimensional framework (G, p) is the m× dn matrix of the system (2), where p′ is un-
known. The space of infinitesimal motions M(p) is the kernel of R(p), and (G, p) is infinitesimally
rigid if and only if rank R(p) = dn−

�

d+1
2

�

.

We are now ready to set up some important concepts relating to infinitesimal rigidity.

Definition 2.8. Let (G, p) be a framework in dimension d . A vector ω in the left kernel of the
rigidity matrix R(p) is called an equilibrium stress of (G, p).

If (G, p) has no non-zero equilibrium stress, then (G, p) is independent. Otherwise (G, p) is
dependent. A framework is independent if and only if its rigidity matrix has linearly independent
rows.

An edge e of a graph G is called a redundant edge of (G, p) if there is an equilibrium stress ω
of the framework (G, p) withω(e) 6= 0. (The edge e is called redundant because removing e from
G does not change the rank of R(p).)

A framework that is both infinitesimally rigid and independent is called isostatic.

2.4. The rigidity matroid

Throughout this paper we will use the standard matroid terminology of rank, bases and indepen-

dent sets (see, e.g., [17] for an introduction to matroids).
A standard result that is implicit in [1] is

Lemma 2.9. Fix a dimension d and let G be a graph with n≥ d vertices. If there is any configuration

p of n points so that (G, p) is isostatic, then for every generic q, (G,q) is isostatic.

As a corollary we obtain a statement first made explicit in [13].

Lemma 2.10. The rigidity matroid Md,n from Definition 1.4 exists and is isomorphic to the linear

matroid on the rows of the rigidity matrix R(p) of the complete graph Kn for any generic choice of p.

Definition 2.11. Fix a dimension d and let G = (V, E) be a graph with n vertices. The rank of G

is the rank of E in the rigidity matroid Md,n. An edge e of G is redundant if the rank of G and the
rank of the graph G \ {e} obtained from G by removing the edge e are the same in Md,n.

A subset E′ = {e1, . . . , ek} of edges in G is redundant if G \ E′ has the same rank as G in Md,n.

We will need the following lemmas.

Lemma 2.12. Fix a dimension d and let G be a graph with n ≥ d vertices. An edge e of G is

redundant if and only if for any generic d-dimensional framework (G, p) there is an equilibrium

stress ω with coordinate ω(e) 6= 0.

Proof. Suppose there exists a generic d-dimensional framework (G, p) with the property that
every equilibrium stress ω of (G, p) satisfies ω(e) = 0. Then the row corresponding to e in R(p)

is outside the span of the other rows. Hence the rank of R(p) will drop if we remove that row. By
Lemma 2.10, e is not redundant.

Conversely, if for any generic p there is an equilibrium stress ω of (G, p) with ω(e) 6= 0, then
the row of R(p) corresponding to e is a linear combination of some of the other rows. Hence, it
is possible to pick a set of edges B of G not containing e so that the set of rows corresponding to
B are a basis for the row space of R(p). It follows that e is redundant.
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Lemma 2.13. Fix a dimension d and let G be a graph. Then a subset of edges E′ = {e1, . . . , ek}

is redundant if and only if for any generic d-dimensional framework (G, p) there are equilibrium

stresses ω1, . . . ,ωk so that ωi(ei) 6= 0 for i ∈ [k] and ωi(e j) = 0 for i 6= j ∈ [k].

Proof. Define Gi to be the graph obtained by removing all the edges of E′ except for ei from
G. Note that the set E′ is redundant in G if and only if ei is redundant in Gi for each i. Since
an equilibrium stress ωi of (Gi, p) is also an equilibrium stress of (G, p), with ωi(e j) = 0 for
i 6= j ∈ [k], applying Lemma 2.12 to each (Gi , p) completes the proof.

3. Coordinated frameworks and rigidity

The main objects of study in this paper are frameworks in which the edges are partitioned into
coordination classes. We augment the allowed finite motions so that the edge lengths within
each class may change, but the pairwise differences are preserved. Thus, the allowed motions are
“coordinated” within each coordination class.

In this section we define coordinated frameworks. To do this, we need to describe the combi-
natorial and geometric data describing a coordinated framework and the allowed finite motions.
We then define infinitesimal motions of coordinated frameworks and derive an associated rigidity
matrix. The development runs in parallel to Section 2.

3.1. Combinatorial data

Fix a parameter k ∈ N, which we call the number of coordination classes, and let G = (V, E) be
a graph. A coordination map is a function c : E → {0,1, . . . , k}. The underlying combinatorial
structure of a coordinated framework is a pair (G, c). For convenience, we define the notation
Ei := c−1(i) for i ∈ {0,1, . . . , k}, where E0 is the set of uncoordinated edges, and Ei for i ∈ [k] is
the i-th coordination class. Throughout this paper, we assume that Ei 6= ; for all i = 1, . . . , k.

We call a pair (G, c), where G is a graph and c : E → {0,1, . . . , k} is a coordination map, a
k-coordinated graph.

3.2. Coordinated frameworks and rigidity

Let (G, c) be a k-coordinated graph with n vertices. A placement (p, r) of (G, c) is given by a point
configuration p of n points in dimension d and a vector r ∈ Rk. Two placements (p, r) and (q, s)
are congruent if p and q are congruent.

A coordinated framework (G, c, p, r) is given by a k-coordinated graph (G, c) and a placement
(p, r). Two frameworks (G, c, p, r) and (G, c,q, s) are equivalent if

||p( j)− p(i)|| = ||q( j)− q(i)|| for all {i, j} ∈ E0 (3)

||p( j)− p(i)||+ r(ℓ) = ||q( j)− q(i)||+ s(ℓ) for all {i, j} ∈ Eℓ, with ℓ ∈ [k] (4)

and they are congruent if they are equivalent and the placements are congruent. Figure 1 shows
two equivalent, but not congruent, realizations of a 2-coordinated graph (K4, c).

A coordinated framework (G, c, p, r) is rigid if there is a neighborhood U ⊂ Rdn×Rk ∼= Rdn+k

of (p, r) with the property that if (q, s) ∈ U and (G, c,q, s) is equivalent to (G, c, p, r), then the
two frameworks are congruent. A coordinated framework is generic if p is generic.
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A finite motion of a coordinated framework (G, c, p, r) is a one-parameter family (G, c, pt , rt)

with (p0, r0) = (p, r) and all the (G, c, pt , rt) are equivalent to (G, c, p, r), for t ∈ [0,1). A fi-
nite motion is non-trivial if not all the (G, c, pt , rt) are congruent to (G, c, p, r). A coordinated
framework is flexible if it has a non-trivial finite motion.

Remark 3.1. Geometrically, what is maintained over a finite motion is the differences in length
between pairs of edges {i, j} and {u, v} in the same coordination class Eℓ, since

||pt( j)− pt(i)||+ rt(ℓ)− ||pt(v)− pt(u)|| − rt(ℓ) = ||pt( j)− pt(i)|| − ||pt(v)− pt(u)||

does not depend on rt(ℓ), so it must be constant over the motion. ♦

p(1) p(2)

p(3)p(4)

q(1) q(2)

q(3)

q(4)

Figure 1: Two equivalent but non-congruent coordinated frameworks (K4, c, p, r) and (K4, c,q, s)
in the plane with k = 1, where edges in E1 are denoted by dashed lines. The coordinates of the
points are p(1) = q(1) = (0,0), p(2) = q(2) = (1,0), p(3) = q(3) = (1,1), p(4) = (0,1) and q(4)
has coordinates close to (0.64767,0.761921). Also, r = 0 and s is an algebraic number close to
0.574773

3.3. Coordinated infinitesimal rigidity

Assuming that there are no zero-length edges in a coordinated framework (G, c, p, r), the Jacobian
matrix of the system (3)–(4) is the linear system

[p( j)− p(i)] · [p′( j)− p′(i)]

‖p( j)− p(i)‖
= 0 for all {i, j} ∈ E0 (5)

[p( j)− p(i)] · [p′( j)− p′(i)]

‖p( j)− p(i)‖
+ r ′(ℓ) = 0 for all {i, j} ∈ Eℓ, with ℓ ∈ [k] (6)

so a (p′, r ′) satisfying (5)–(6) preserves the coordinated framework’s constraints to first order.
Because it will be easier to work with combinatorially, we instead define an infinitesimal motion of
a coordinated framework (G, c, p, r) to be a pair (p′, r ′) consisting of a velocity field p′ supported
on p and a vector r ′ ∈ Rk such that

[p( j)− p(i)] · [p′( j)− p′(i)] = 0 for all {i, j} ∈ E0 (7)

[p( j)− p(i)] · [p′( j)− p′(i)] + r ′(ℓ) = 0 for all {i, j} ∈ Eℓ, with ℓ ∈ [k] (8)

We justify this as follows:

Lemma 3.2. Let (G, c, p, r) be a coordinated framework such that the endpoints of every edge are

distinct. Then there is a non-zero solution to (5)–(6) if and only if there is a non-zero solution to

(7)–(8).
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Proof. Suppose that (p′, r ′) satisfies (5)–(6). Clearing the denominator in (6), we get

[p( j)− p(i)] · [p′( j)− p′(i)] + ‖p( j)− p(i)‖r ′(ℓ) = 0

for all edges {i, j} ∈ Eℓ. If we define the vector

r ′′ =
�

‖p( j)− p(i)‖r ′(ℓ)
�k

ℓ=1

it then follows that (p′, r ′′) satisfies (7)–(8). The other direction is similar.

Define 1(c) to be the m× k matrix that has as its columns the characteristic vectors of the Eℓ.
Then (7)–(8) is equivalent to

R(p)p′ + 1(c)r ′ = 0 (9)

where R(p) is the rigidity matrix of the underlying framework (G, p). Note that r does not appear
in (9), so infinitesimal rigidity of (G, c, p, r) depends only on p. Thus, for analysing infinitesimal
rigidity, we may assume that r = 0.

Since r ′ can be the zero vector, (9) is homogeneous. Thus, the infinitesimal motions form
a vector space that contains a

�

d+1
2

�

-dimensional subspace of motions (p′,0), with p′ a trivial
infinitesimal motion of (G, p). This is the space of trivial infinitesimal motions of (G, c, p, r).
We define (G, p, c, r) to be infinitesimally rigid if these are the only infinitesimal motions, and
infinitesimally flexible otherwise. The construction in Lemma 3.2 maps vectors with r ′ = 0 to
vectors with r ′′ = 0 and vice versa, so the definition of infinitesimal rigidity by (5)–(6) is the
same as the one here.

Examples of an infinitesimally flexible and an infinitesimally rigid coordinated framework
with k = 1 and d = 2 are shown in Figure 2. Note that if G is generically flexible (or even
isostatic) in dimenson d , then (G, c, p, r) can never be infinitesimally rigid for any d-dimensional
configuration p.

(a) (b) (c) (d)

Figure 2: A coordinated framework with k = 1 in the plane, where the edges in E1 are shown
dashed (a). This framework has a non-trivial infinitesimal motion shown in (b) which extends to
a non-trivial finite motion, as indicated in (c). Adding another bar to the framework in (a) yields
an infinitesimally rigid framework, as shown in (d).

We define the space of infinitesimal motions M+(p) of (G, c, p, r) to be the space of solutions
to (9). By rearranging, we see that M+(p) is the kernel of the m × (dn + k) matrix R+(p) :=
(R(p),1(c)), which we call the coordinated rigidity matrix.

8



Example 3.3. The framework (K4, c, p, r) with k = 1 shown in Figure 1 has the following coordi-
nated rigidity matrix:

R+(p) =















p(1)− p(2) p(2)− p(1) 0 0 0
p(1)− p(3) 0 p(3)− p(1) 0 0
p(1)− p(4) 0 0 p(4)− p(1) 0

0 p(2)− p(3) p(3)− p(2) 0 0
0 p(2)− p(4) 0 p(4)− p(2) 1
0 0 p(3)− p(4) p(4)− p(3) 1















where each p(i) is considered a 2-dimensional row vector. The rank of this matrix is 6 and hence
(K4, c, p, r) is infinitesimally rigid.

Note that for any p, the row rank of this matrix is clearly at most 6. For a 2-dimensional
framework on four vertices with k = 2 to be infinitesimally rigid, we would require a column
rank of 7.

Theorem 3.4. Let (G, c, p, r) be a d-dimensional coordinated framework. If (G, c, p, r) is infinitesi-

mally rigid, then it is rigid. If (G, c, p, r) is generic and infinitesimally flexible, then it is flexible.

Theorem 3.4 can be established using differential-geometric arguments along the lines of [1].
We omit the (standard) details, which can be found in [21]. The combinatorial perspective on
this is:

Corollary 3.5. For every k-coordinated graph (G, c) and dimension d, either every d-dimensional

generic coordinated framework (G, c, p, r) is rigid or every d-dimensional generic coordinated frame-

work (G, c, p, r) is flexible.

In light of Corollary 3.5, we define (G, c) to be generically rigid in dimension d if there is a
generic d-dimensional framework (G, c, p, r) that is rigid, and otherwise generically flexible.

We say that a coordinated framework (G, c, p, r) is independent if the coordinated rigidity
matrix R+(p) has independent rows. Moreover, (G, c, p, r) is isostatic if it is infinitesimally rigid
and independent. Similarly, (G, c) is generically independent (isostatic) in dimension d if there is
a generic d-dimensional framework (G, c, p, r) that is independent (isostatic).

4. Generic coordinated rigidity

In this section we develop the generic theory for coordinated rigidity and show that in all dimen-
sions d , generic coordinated rigidity can be characterized in terms of redundant rigidity in the
standard d-dimensional rigidity matroid.

4.1. Main theorem

Given a family of sets, E, a transversal of E is a set containing exactly one element from each
member of E.

The following is our main theorem.

Theorem 4.1. For d ≥ 1 and k ≥ 1, (G, c) is generically rigid in dimension d if and only if G is gener-

ically rigid in dimension d and some transversal {e1, . . . , ek} of the coordination classes E1, . . . , Ek is

redundant in Md(G).
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Theorem 3.4 implies that generic coordinated rigidity is a matroidal property, and we may use
Theorem 4.1 to describe the coordinated rigidity matroid. Before we give the proof of Theorem
4.1, we reformulate this result in terms of matroid unions. We need the following definitions.

Let E be a finite set and let E = {E1, . . . , Ek} be a collection of disjoint subsets of E. The
transversal matroid TE(E) on E induced by the Ei has as its bases the sets

{{e1, . . . , ek} : ei ∈ Ei for all i ∈ [k]}

See, e.g., [3, 17].
If M1 and M2 are two matroids on a common ground set E, then the matroid union M1 ∨M2

is defined as the matroid on E with the property that a subset F is independent in M1∨M2 if and
only if it has the form F = F1 ∪ F2, where Fi is independent in Mi for i = 1,2.

With these definitions, we have the following matroidal formulation of Theorem 4.1.

Theorem 4.2. Let (G, c) be a k-coordinated graph, and let TE(E) be the transversal matroid on E

induced by the coordination classes E= {E1, . . . , Ek}. Then the d-dimensional k-coordinated rigidity

matroid of (G, c) is the union Md(G) ∨ TE(E) of the d-dimensional rigidity matroid of G and the

matroid TE(E).

Proof. We show that the two matroids have the same bases. The generically isostatic k-coordinated
spanning subgraphs of (G, c) form the bases of the d-dimensional coordinated rigidity matroid of
(G, c). Let (H, c′) be such a graph, with H = (V, F) and c′ = c|F . By Theorem 4.1, H must have
exactly dn −
�

d+1
2

�

+ k edges, including a transversal F ′ = {e1, . . . , ek} of E that is redundant in
Md(H). Thus F \ F ′ is independent in Md(G), and hence a basis of Md(G), and {e1, . . . , ek} is a
basis of TE(E). Conversely, Theorem 4.1 implies that any k-coordinated graph arising in this way
is a basis of the d-dimensional k-coordinated rigidity matroid of (G, c).

Hence, the d-dimensional coordinated rigidity matroid has the claimed matroid union struc-
ture.

To prove Theorem 4.1 we need the following specialized fact from matroid theory. This can
be found in [3, Proposition 7.6.14], for example.

Lemma 4.3. Let M1 and M2 be two linearly representable matroids (over R) on the same ground

set. Then the matroid union M1 ∨ M2 is also linearly representable, and a representation may be

obtained by a matrix of the form (A, DB) where the rows of A represent M1, the rows of B represent

M2, and D is a diagonal matrix of algebraically independent transcendentals.

We also need some specialized lemmas regarding equilibrium stresses. Let (G, p) be a frame-
work with at least d vertices. We say that the tied down rigidity matrix Ri1,...,id (p) is the matrix
obtained from R(p) by throwing away d− j+1 columns associated with p(i j). White and Whiteley
[22] showed that ω is an equilibrium stress of (G, p) if and only if ωRi1,...,id (p) = 0 for any choice
of the i j .

Lemma 4.4 ([22]). Suppose that (G, p) is a generic framework so that (G \ {e}, p) is isostatic (and

hence e is redundant). Then (G, p) has a unique equilibrium stress ω where ω(e) = 1 and for all

other edges f , we have

ω( f ) = (det R
i1,...,id
e→× (p))

−1 det(Ri1,...,id
f→e

(p))

10



where the i j are any tie-down vertices and R
i1,...,id
f→e

is obtained by removing the row corresponding

to e and then replacing the row corresponding to f with it and R
i1,...,id
e→× by simply dropping the row

corresponding to e.

Proof. White and Whiteley [22] show thatω is independent of this kind of standard tie down, and
then observe that, in this case, Cramer’s rule gives the claimed form, since the row corresponding
to e is in the span of the others, which are a row basis.

Next we show that if the length of the edge e gets very small, then the stress coefficient
corresponding to e becomes very large compared to all other coefficients.

Lemma 4.5. Suppose that (G, p) is a generic framework so that (G \{e}, p) is isostatic (and hence e

is redundant). Let e = {i1, i2} and define pt to be like p except pt(i2) = tp(i2)+(1− t)p(i1). Let ωt

be the equilibrium stress of (G, pt ) with ωt(e) = 1. Then for all other edges f , we have for generic

pt ,

|ωt( f )| → 0

as t → 0.

Proof. Since (G\{e}, p) is isostatic, (G, p) has a unique equilibrium stress, up to a scalar. Moreover,
the stress coefficient of e is non-zero. Note that for any polynomially defined property, such as
the rank of the rigidity matrix or the stress coefficients being non-zero, all but finitely many of the
frameworks (G, pt ) have this property. So there exists a t0 so that for all t < t0, all frameworks
(G, pt ) are isostatic and hence have a unique equilibrium stress (up to a scalar) that is non-zero
on e. In the following we assume that t < t0.

We fix the stress coefficientωt(e) to be 1 for all t, so that each (G, pt ) has a unique equilibrium
stress. Consider the stress coefficients of all edges f other than e. A formula for ωt( f ) is given
in Lemma 4.4. Since the lengths and directions of the edges of G \ {e} only change a bounded
amount as t → 0, and the length of the edge e approaches zero as t → 0, the determinant in the
numerator in the formula in Lemma 4.4 approaches zero as t → 0.

Let us now consider the determinant in the denominator in the formula in Lemma 4.4. If
the limit framework (G \ {e}, p0) is isostatic, then the denominator is bounded away from zero
for all t and the result follows. If (G \ {e}, p0) is not isostatic, then both the numerator and the
denominator may converge to zero, but we will show that in this case the numerator approaches
zero at a faster rate than the denominator, which then again gives the result.

Without loss of generality, we may assume that pt(i1) lies at the origin and pt(i2) = (t, 0, . . . , 0),
since the frameworks (G, pt ) are then still ‘quasi-generic’, that is, congruent to generic frame-
works. We may further assume that all the coordinates of pt(i1) and all except the first coordinate
of pt(i2) are tied down (so the associated columns in the tied down rigidity matrices in Lemma 4.4
are missing) and the first coordinates of all vertices adjacent to i2 are not tied down.

Suppose first that f = {i2, i3} and let x3 be the first coordinate of pt(i3) (which is independent
of t). By genericity, x3 6= 0. Let us first consider the matrix R

i1,...,id
f→e

(pt ) in the numerator. We may

assume that the first row of this matrix corresponds to e and hence is the vector (t, 0, . . . , 0). Let
the matrix obtained from R

i1,...,id
f→e

(pt) by removing the first row be denoted by A, and let C(t) be

the cofactor of the (1,1)-entry of R
i1,...,id
f→e

(pt). Then det(Ri1,...,id
f→e

(pt)) = tC(t). Let us now consider

the matrix R
i1,...,id
e→× (p

t) in the denominator. Since a reordering of the rows and columns does not

11



change the degrees of the monomials in the determinants, we may assume that the first row
corresponds to the edge f (and hence the (1,1)-entry is (t − x3)) and that the matrix obtained
from R

i1,...,id
e→× (p

t) by removing the first row is again A. Then det(Ri1,...,id
e→× (p

t)) = (t− x3)C(t)+D(t)

for some polynomial D(t). Since this polynomial contains the expression x3C(t), where x3 is a
non-zero constant, it follows that the lowest degree of the non-zero terms in the denominator is
strictly smaller than the degree of any of the non-zero terms in the numerator. Thus, |ωt( f )| → 0
for every edge f 6= e that is incident with i2.

Suppose next that there is an edge f of G that is not incident with i2 and has the property that
|ωt( f )| is bounded away from zero as t → 0. Then, by continuity, the limit framework (G\{e}, p0)

has an equilibrium stressω0 that is non-zero on f and – by the argument above – zero on all edges
that are incident with i2. But this says that the framework obtained from (G, p0) by removing the
vertex i2 and its incident edges has a non-zero equilibrium stress. This is a contradiction because
the vertices of this framework are in quasi-generic position (since they remained fixed as t → 0)
and its underlying graph G \ {i2} is a subgraph of the isostatic graph G \ {e}.

So, as claimed, the magnitude of all stress coefficients ofωt other than the one for e approach
zero as t → 0.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let (G, c, p, r) be generic. Recall that for analysing infinitesimal rigidity, we
may assume that r = 0. We first prove necessity, so we suppose that (G, c, p, 0) is infinitesimally
rigid. By Lemma 4.3, the matrix (R(p), D1(c)) is a linear representation for the matroid union
Md(G) ∨ TE(E) of the d-dimensional generic rigidity matroid of G and the transversal matroid
on E induced by the coordination classes E = {E1, . . . , Ek}, where D is an m × m diagonal ma-
trix of algebraically independent transcendentals. Since the coordinated rigidity matrix R+(p)

of (G, c, p, 0) has the form (R(p),1(c)) it follows that any independent set in the d-dimensional
k-coordinated rigidity matroid of (G, c) must also be independent in Md(G)∨ TE(E). So the rank
of R+(p) is upper-bounded by

max
E′⊂E

�

rankMd (G)

�

E \ E′
�

+ rankTE (E)
(E′)
	

≤ dn−

�

d + 1

2

�

+ k. (10)

Since (G, c, p, 0) is infinitesimally rigid, we have equality throughout. Let E′ be a subset of E that
gives the maximum dn−

�

d+1
2

�

+ k in (10), and let G′ be the graph induced by E \ E′. Since

rankMd (G)

�

E \ E′
�

= dn−

�

d + 1

2

�

the framework (G′, p) is infinitesimally rigid. This makes the edges in E′ redundant. Since
rankTE (E)

(E′) = k, E′ contains a transversal of E.
For sufficiency, we suppose that there is a spanning subgraph H of G so that H is generically

isostatic and F = E\E(H) contains a transversal of the coordination classes E. Call the transversal
T = {e1, . . . , ek}, and let G′ be the graph obtained from H by adding the edges of T to H. We
show that (G′, c) is generically isostatic by constructing a coordinated framework (G′, c, p, 0) that
is isostatic. The intuitive idea is that we want to find a generic position p so that, if we consider
the equilibrium stressesω1, . . . ,ωk of (G′, p) from the statement of Lemma 2.13, the entries not in
the left-hand k×k block of the k×m matrix W that has theωi as rows are very small. In this case
X =W1(c) is diagonally dominant, and so full rank. The idea for doing this latter step is to make
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the lengths of the edges e1, . . . , ek, one after the other, all very short. By Lemma 4.5, this makes the
stress coefficient corresponding toωi on ei relatively large for each i. The transversal structure is
important, since the stresses ωi don’t need the other transversal edges at all. This leaves only the
problem that, as we make a transversal edge ei short, the stress coefficients corresponding to the
equilibrium stresses ω1, . . . ,ωi−1 for some non-transversal (but coordinated) edges may increase
again. We get around that by using Lemma 4.5 iteratively, so that e1 is much shorter than e2 and
so on. What follows gives the details.

We start with a generic framework (H, p). Set H1 = H ∪ {e1}. By genericity, e1 is redundant
in (H1, p). Let e1 = {i1, i2}. By Lemma 4.5, for every ǫ1 > 0, we may shrink the length |e1| of
the edge e1 by moving the vertex i2 towards i1 (while fixing the positions of all other vertices),
until we obtain a generic configuration pt with |e1| = t so that the unique equilibrium stress
ω

t
1 of (H1, pt) has ωt

1(e1) = 1 and coefficients on all other edges of magnitude at most ǫ1. For
each i = 1, . . . , k, let κi be the size of the ith coordination class of the graph (H, c|E(H)). Then,
since we may assume that ǫ1 is sufficiently small, the first entry of ωt

11(c) has a magnitude of at
least 1− κ1ǫ1, and the other entries of ωt

11(c) have a respective magnitude of at most κiǫ1 for
i = 2, . . . , k. So as t approaches zero, the magnitude of the first entry of ωt

11(c) stays bounded
away from 0, whereas the magnitudes of the other entries approach 0.

Now we repeat the process on the graph H2 = H ∪{e2} starting from (H, pt ). Let i3 6= i1, i2 be
a vertex incident with e2. Then, again by Lemma 4.5, for every ǫ2 > 0, we may shrink the length
|e2| of the edge e2 by moving the vertex i3 (while fixing the positions of all other vertices) until
we obtain a generic configuration pt,s with |e2| = s so that the unique equilibrium stress ωt,s

2 of
(H2, pt,s) has ωt,s

2 (e2) = 1 and coefficients on all other edges of magnitude at most ǫ2. In fact, by
continuity of the stress coefficients, if |e1| = t was chosen sufficiently small, then there exists a
generic configuration pt,s with |e2| = s so that for all t′ ≤ t, the generic configuration pt ′,s with

|e1| = t′ has the property that the unique equilibrium stress ωt ′,s
2 of (H2, pt ′,s) has ωt ′,s

2 (e2) = 1
and coefficients on all other edges of magnitude at most ǫ2. (Note that since e1 is not an edge of
H2, a small perturbation of |e1| = t gives rise to a bounded perturbation of the stress coefficients
of ωt,s

2 .)
Because of the transversal structure, as s approaches zero, the magnitude of the second entry

of ωt,s
2 1(c) stays bounded away from 0, whereas the magnitudes of the other entries approach

0. Let ǫ2 be chosen sufficiently small so that the magnitude of the second entry of ωt,s
2 1(c) is

larger than the sum of the magnitudes of the other entries. So the vectorωt,s
2 1(c) has the desired

structure, and, as mentioned above, we may assume that t is sufficiently small so that the vector

ω
t ′,s
2 1(c) also has the desired structure for all t′ ≤ t.

As we carry out this second step, the equilibrium stress ωt
1 changes continuously to ωt,s

1 , and
the magnitude of the stress coefficients on the edges of H may be increasing again (while the
stress coefficient on e1 is held fixed at 1). So to keep the desired structure for the vector ωt,s

1 1(c)

we may need to choose a t′ that is smaller than t.
At the end of the second step, when the configuration pt,s is reached, the magnitude of each of

the stress coefficients of ωt
1 on the edges of H will have changed by at most some positive factor

∆t,s. This factor changes as t is replaced with t′ ≤ t, but by continuity of the stress coefficients,

there also exists a constant ∆s > 0 such that for all t′ ≤ t we have |ωt ′,s
1 ( f )| ≤ ∆s|ω

t ′

1 ( f )| for
all edges f of H. Since we may assume that ǫ1 is sufficiently small, the first entry of the vector
ω

t,s
1 1(c) has a magnitude of at least 1−κ1∆sǫ1 at the end of the second step, and the other entries

have a respective magnitude of at most κi∆sǫ1, i = 2, . . . , k.
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So if the vector ωt,s
1 1(c) no longer has the desired structure, then we may choose a suitably

smaller ǫ1 so that for a corresponding suitably small t′ < t the vector ωt ′,s
1 1(c) does have the

desired structure, i.e., the magnitude of the first entry of the vectorωt ′,s
1 1(c) is still larger than the

sum of the magnitudes of the other entries at the end of the second step. So we can guarantee that

both the vector ωt ′,s
1 1(c) and the vector ωt ′,s

2 1(c) have the desired structure for the configuration

pt ′,s at the end of the second step.
Iterating this process, we see that we may choose constants ǫ1 ≪ ǫ2 ≪ · · · ≪ ǫk so that

eventually we arrive at a configuration pk which is generic and has X diagonally dominant.
We conclude that, generically, the matrix

[R(p) 1(c)]

has empty co-kernel, and hence rank dn−
�

d+1
2

�

+ k. This completes the proof of sufficiency.

4.2. Examples

Figure 3 shows an example of a rigid coordinated framework with two coordination classes in
dimension 2. The edges e1 and e2 form a redundant transversal of the coordination classes E1

and E2 and certify generic rigidity by Theorem 4.1. The edges f1 and f2 are another transversal
of E1 and E2, but they are not redundant.

e1

e2

f1 f2

(a) (b) (c)

Figure 3: A coordinated framework in the plane with k = 2, where edges in E1 and E2 are
indicated by dashed and dotted lines, respectively (a). Removing the redundant edge pair e1, e2

results in a graph that is rigid as an uncoordinated framework (b), satisfying the conditions of
Theorem 4.1 for the coordinated framework in (a) to be rigid. Removing the pair f1, f2, results
in the flexible uncoordinated framework (c).

Figure 4 shows two examples of 2-coordinated graphs that yield flexible frameworks for
generic configurations in dimension 2. In both cases, there is no transversal of the coordination
classes which is redundant.

Finally, Figure 5 shows an example of a flexible coordinated framework (G, c, p, r) with three
coordination classes in dimension 3 whose underlying framework (G, p) is rigid. There is only
one edge in each coordination class (the edges joining p3 with p6, p7 and p8) and if we remove
these three edges, we clearly have a flexible uncoordinated framework, as the line through p4

and p5 acts like a hinge. Thus, the three edges in E1 ∪ E2 ∪ E3 are not redundant.
We note that p3 is a cone vertex in this framework, as it is joined to all other vertices. Thus,

as described in the introduction, we may think of this framework as a spherical framework, with
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(a) (b)

Figure 4: A pair of generically flexible 2-coordinated graphs, where edges in E1 and E2 are indi-
cated by dashed and dotted lines, respectively. In the graph shown in (a) none of the edges in E2

is redundant in M2(G). In the graph shown in (b), each of the edges in E1 and E2 is redundant
in M2(G), but no pair of them is.

p3 fixed at the centre of the sphere. In this model, the uncoordinated edges incident to p3 are
assumed to have unit length, and the other three edges incident to p3 are allowed to have arbitrary
length. This example was given in [16, Figure 1] to show that the sparsity counts established there
are not always sufficient for the generic rigidity of such 3-dimensional spherical frameworks.
However, as described above, it follows immediately from Theorem 4.1 that (G, c) is generically
flexible, and hence we may deduce that the (non-generic) spherical framework must at least be
infinitesimally flexible.

p2

p3

p4

p1

p5

p6 p7

p8

Figure 5: A coordinated framework in 3-space with k = 3. The edges in E1, E2 and E3 are in-
dicated by dashed, dotted and dashed-dotted lines, respectively. The framework is flexible by
Theorem 4.1, since the three edges in E1 ∪ E2 ∪ E3 are not redundant.

5. Closing remarks and further work

In this paper we set up a rigidity model for a type of coordinated edge motions and characterized
the coordinated rigid graphs in terms of redundant rigidity in the standard rigidity matroid. To
finish up, we discuss some outstanding issues and open questions.
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5.1. Algorithms

Note that Theorem 4.2 implies that in dimensions d = 1,2, there is a deterministic, polynomial
time algorithm to check whether a k-coordinated graph (G, c) is generically rigid in dimension d .
Since we have deterministic independence oracles for the matroids Md,n when d = 1,2 [2, 12] and
TE(E), Edmonds’s algorithm [6] yields a deterministic polynomial time algorithm for Md,n∨TE(E)

for these d and any k. Combining Edmonds’s algorithm [6] and the pebble game [12] in a naive
way results in a running time bound that is ω(n3). This means that the deterministic algorithm
is slower than a randomized algorithm based on checking the rank of the rigidity matrix over a
finite field (see, e.g., [8]).

For d ≥ 3, no deterministic polynomial time algorithm for checking independence in the
generic rigidity matroid Md,n is known. Since we need a randomized algorithm as a subroutine,
using Edmonds’s algorithm does not reduce the complexity.

A more refined complexity analysis in dimensions d = 1,2 or algorithms for finding rigid
components in coordinated frameworks would be interesting.

5.2. Recursive constructions

Recursive graph construction moves (such as the Henneberg construction moves) which preserve
generic rigidity play an important role in combinatorial rigidity theory (see, e.g., [15]). These
moves can be used to prove key theorems such as the theorem of Laman and Pollaczek-Geiringer,
to analyze graphs for generic rigidity, and to generate classes of generically rigid or isostatic
graphs in all dimensions.

In the case when d = 2, a “Henneberg-type” characterization of generically isostatic coordi-
nated graphs with one coordination class is given in [21]. Moreover, it is shown in [21] that the
special case of Theorem 4.1 when d = 2 and k = 1 can be proved directly using these modified
Henneberg moves.

A more complex Henneberg-type characterization of generic coordinated rigidity when d = 2
and k = 2 is also established in [21]. However, in contrast to the d = 2 and k = 1 case, the proof
relies on Theorem 4.1. We refer the reader to [21] for further details and conjectures.

5.3. Coordination classes maintaining sums or ratios of edge lengths

It is natural to try to extend our work to coordinated frameworks in which the edges in each
class have to coordinate their edge lengths changes in a different fashion, say by maintaining the
sum of the edge lengths or the pairwise ratios of the edge lengths. The rigidity analysis of such
coordinated frameworks seems more complex than the one considered in this paper.

For example, in dimension 2 it is well known that the standard rigidity matroid is equivalent
to the parallel drawing matroid (see [24], for example), and it is easy to see that if the lengths of
two edges of (G, p) are allowed to change so that the ratio of their lengths is maintained, then in
the corresponding parallel drawing matroid these edges are allowed to change their direction, but
their angle is maintained. The rigidity analysis of frameworks with angle constraints, however, is
known to be very difficult in general.
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5.4. Global coordinated rigidity

This paper deals exclusively with local rigidity of coordinated frameworks. A stronger condition
than local rigidity is global rigidity, which would, in the coordinated setting, require that any

(G, c,q, s) that is equivalent to a coordinated framework (G, c, p, r) be congruent to it (as opposed
to just the (G, c,q, s) with (q, s) lying in a small neighborhood of (p, r)). See Figure 1 for an
example of a coordinated framework in the plane which is locally rigid, but not globally rigid.
Whether global rigidity is a generic property for coordinated frameworks is open.

For bar-joint frameworks, that global rigidity is a generic property is a deep result of Gortler,
Healy and Thurston [8], who built on work of Connelly [4, 5] and Hendrickson [9]. It would
be interesting to know how much of the theory underlying [8] carries over to the coordinated
setting.
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