ChemMedChem

European Chemical Societies Publishing

Accepted Article

Title: Convenient Synthesis of Alternatively Bridged Tryptophan Ketopiperazines and their Activities Against Trypanosomatid Parasites

Authors: Peter E. Cockram, Callum Turner, Alexandra M. Z. Slawin, and Terry Smith

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: ChemMedChem 2021, e202100664

Link to VoR: https://doi.org/10.1002/cmdc. 202100664

Convenient synthesis of alternatively-bridged tryptophan ketopiperazines and their activities against trypanosomatid parasites

Peter E. Cockram, ${ }^{[a]}$ Callum A. Turner, ${ }^{[a]}$ Alexandra M. Z. Slawin, ${ }^{[a]}$ and Terry K. Smith ${ }^{[a] \star}$

[a] Peter E. Cockram, Callum A. Turner, Alexandra M. Z. Slawin, and Terry K. Smith* Biochemical Sciences Research Complex
School of Chemistry
University of St Andrews
North Haugh, St Andrews KY16 9ST, UK
E-mail: tks1@st-andrews.ac.uk
Supporting information for this article is given via a link at the end of the document.

Abstract

There is an urgent need for the development of new treatments against trypanosomatid parasites; the causative agents of some of the most debilitating diseases in the developing world. This work targets an interesting 6-5-6-6 fused carboline scaffold, accessing a range of substituted derivatives through stereospecific intramolecular Pictet-Spengler condensation. Modification of the cyclisation conditions allowed retention of the carbamate protecting group and gave insight into the reaction mechanism. Compounds' bioactivities were measured against T. brucei, T. cruzi, L. major and HeLa cells. We have identified promising pan-trypanocidal lead compounds based on the core scaffold, and highlight key SAR trends which will be useful for the future development of these compounds as potent trypanocidal agents.

Introduction

The trypanosomatids are a group of biochemically related and exclusively parasitic eukaryotes, responsible for some of the most debilitating neglected tropical diseases in the developing world. The human-infective pathogens Trypanosoma brucei (T. brucel), Trypanosoma cruzi (T.cruzi), and a range of over twenty Leishmania species are responsible for human African trypanosomiasis (HAT or African sleeping sickness), Chagas' disease and leishmaniasis, respectively. ${ }^{[1]}$ These diseases are endemic in some of the poorest communities in the world, hence their status as neglected tropical diseases, and millions of people live in at-risk areas. ${ }^{[2-4]}$ Current treatments for these diseases are inadequate, with many being prohibitively expensive for the communities in which the diseases are endemic, ${ }^{[4,5]}$ and are accompanied by unacceptable side effects and mounting parasite resistance. ${ }^{[6-8]}$ The drastic need for the development of new affordable and efficacious drugs for the treatment of these diseases has been reported by the WHO. ${ }^{[9]}$ Indole-derived scaffolds, including β-carbolines and diketopiperazines, have a history of activity against the trypanosomatids, with a number of both natural and synthetic examples showing good trypanocidal and leishmanicidal activities. A section in a recently published review is dedicated to the use of indole-derived natural product cores as trypanocidal agents. ${ }^{[10]}$
The focus of this work, the bridged β-carboline scaffold $\mathbf{1}$, bears an sp^{3}-rich 6-5-6-6 heterocyclic scaffold, and has previously been reported as a useful tryptophan-derived peptidomimetic. ${ }^{[11]}$

Structurally related analogues have been analyzed for their bioactivity against the breast cancer resistance protein efflux transporter (BCRP), with compound 2 showing promising activity. ${ }^{[12]}$ Two independent routes accessing the general scaffold 1 are published within the literature (Figure 1). Route A consists an initial intermolecular Pictet-Spengler condensation of Ltryptophan (L-Trp) and an α-amino aldehyde (3) followed by an amide cyclisation. The route suffers from a lack of stereocontrol and leads to formation of a tetracyclic byproduct, meaning yields are poor. ${ }^{[11,13]}$ Route B involves the conversion of a diketopiperazine precursor 5 via an imidoyl chloride intermediate (not shown), but requires hazardous phosgene reagents. ${ }^{[12]}$ The lack of a robust and facile synthetic route that the biological profile of compounds containing this scaffold are largely unexplored. Herein we present a stereospecific synthesis enabling the access of scaffold 1, which overcomes the synthetic challenges and dangerous reagents of previously reported syntheses. Additionally, we report promising bioactivity against the trypanosomatid parasites; T. brucei, T. cruzi and Leishmania major (L. major).

Route A

Route B

Figure 2. Proposed dipeptidic aldehyde 7 and conversion to the scaffold 9 via an intramolecular acid catalyzed Pictet-Spengler condensation. Stereochemistry of the input amino acids are conserved and define the 5 -position (Trp, red) and 2-position (AA2, blue). The newly formed stereocenter at the 1-position (green) is formed by facial attack of the indole which is directed by Trp stereochemistry. Example stereochemistry is shown for L-configured Trp and AA2.

To improve synthetic accessibility of aldehyde, we targeted dipeptide precursors 24-30 which carry a Weinreb amide terminus - enabling facile and selective reduction to the corresponding aldehyde while reducing unwanted reactivity during assembly. Secondly, Boc protection of the Trp primary amine was utilized due to its acid lability, giving the opportunity for a one-pot deprotection and Pictet-Spengler cyclisation process. Precursors 24-30 were prepared as single diastereomers, with the exception of 29 , which underwent epimerization of the phenyl substituted $\alpha-$ position upon TFA treatment (scheme 1, step 4) to give a 1:1 mixture of $S, S / S, R$ diastereomers.

Reduction of dipeptide precursors 24-30 with DIBAL-H provided the desired selective reduction to the intermediate aldehydes. Following aqueous workup aldehydes were taken forward immediately, without concentration or further purification, in order to minimize potential epimerization of the highly reactive α-stereocentre. Subsequent exposure of the intermediate aldehydes to trifluoroacetic acid pleasingly resulted in the proposed one-pot cyclisation and deprotection, giving the desired cyclic products 31-37 in good to moderate yields (Scheme 1 and Table 1).

Figure 1. Alternatively bridged tryptophan-derived ketopiperazine scaffold and analogue $\mathbf{2}$ with reported activity against BCRP. Reported synthetic strategies accessing the target scaffold: Route A - employed by both Tourwé and Greico ${ }^{[11,13]}$; Route B - reported by Stevens and co-workers. ${ }^{[12]}$

Results and Discussion

As a diketopiperazine-derived scaffold, we envisioned the construction of the core structure from the dipeptidic aldehyde 7, which could be assembled from Trp and a second amino acid partner (AA2) using established peptide coupling chemistry. The key step of the synthetic route was an intramolecular acidcatalyzed Pictet-Spengler condensation of aldehyde 7, proceeding through the intermediate imine 8 (Figure 2). While intramolecular Pictet-Spengler condensations have been previously reported, ${ }^{[14-16]}$ they are typically implemented in the construction of comparatively less strained 1,2-bridged β carboline and isoquinoline structures.

The planned transformation allows for the efficient conversion of the linear indole-bearing precursor 7 to the fused 6-5-6-6 polycyclic scaffold 9 , with the formation of two new rings (Figure 2). Retention of input amino acid stereochemistry, translating to the 2-position (blue) and 5-position (red) of the new cycle, allows tailoring of product stereoconfiguration through readily accessible chiral materials. Furthermore, the newly installed stereochemistry at the 1-position (green) is governed by controlled by input tryptophan stereochemistry, with L-Trp and DTrp enforcing $1 S$ and $1 R$, respectively.

7

8

9

AA2

10 L -Phe 13 L -Val
11 Gly 14 L-Trp
12 L-Pro 15 L-Phg
16 L-Ser

3) $\mathrm{Ac}_{2} \mathrm{O}$, DIPEA

4) TFA
5) Boc-L-Trp, EDC, $\mathrm{HOBt}, \mathrm{Et}_{3} \mathrm{~N}$

24-30

Scheme 1. Synthesis of dipeptide precursors 24-30 from their constituent amino acids and Boc-L-Trp and subsequent reduction and one-pot cyclisationdeprotection.

Table 1. Yields of cycles 31-37 from the combined reduction and one-pot cyclisation-deprotection of their respective dipeptide precursors 24-30.

No.	Precursor (AA2)	Yieldla]
31	24 (L-Phe)	60
32	$25($ Gly $)$	77
33	$26($ L-Pro	23
34	$27($ L-Val $)$	55
35	$28($ L-Trp $)$	37
$36(38)$	$29($ L-Phg $)$	$21(23)^{[b]}$
37	$30($ L-Ser $)$	26

[a] Isolated two-step combined yield (Scheme 1, step 6/7). [b] Isolated yield of $2 R$-diastereomer 38.
Cycles 31-35 and 37 were all obtained as single diastereomers, determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The connectivity and absolute $1 S, 2 S, 5 S$ stereochemical configuration of the phenylalanine derived compound 31 were unambiguously confirmed by X-ray crystallography (Figure 3). The mixed diastereomers of $\mathbf{2 9}$ were converted to the two cycles $\mathbf{3 6}(2 S)$ and $38(2 R)$ under the reaction conditions, and pleasingly the two products were separable by flash column chromatography. The stereochemistry of 36 and 38 can be derived from the S, S and S, R diastereomers of precursor 29, respectively, but it is likely that the aldehyde intermediate also rapidly epimerizes under TFA treatment.

Figure 3. Crystal structure of compound 31 confirming 1S, 2S, 5 S stereochemical configuration.

The combined reduction and acid catalyzed intramolecular cyclisation showed good tolerance of various functionalities, with
bulky amino acids valine and phenylglycine tolerated. The prolinederived analogue 33, which previously received interest for its BCRP bioactivity, showed reduced yield compared to other examples, likely due to increased ring-strain. Pleasingly the reduction-cyclisation of the O-acetylated precursor 30 proceeded with the tandem reductive cleavage of the acetyl protecting group, removing the need for further deprotection steps.

It was found that further dilution of the acidic cyclisation reaction conditions allowed selective conversion of intermediate aldehydes directly to their Boc-protected cycles (Scheme 2). This reactivity is pivotal in suggesting a mechanism of the key

24, 25, 29, 30
cyclisation-deprotection step. The retention of the Boc protecting group indicates that intramolecular cyclisation occurs sequentially before the deprotection step, and suggests that the carbamate group may be important in activating the intermediate imine. The mechanism is presumably similar to the well-reported acyliminium Pictet-Spengler condensations often applied in the synthesis of carboline structures. ${ }^{[14,17,18]}$ This modification of reaction conditions would be valuable in cases where further modification of the scaffold is required, removing the need for additional steps to protect the reactive bridging amine.

40, 41, 42 and 43/44

Scheme 2. Selective synthesis of Boc-protected cycles 40, 41, 42 and $\mathbf{4 3} / 44$ through modification of reaction concentration.

Table 2. Selective cyclisation of compounds 24, 25, 29 and 30 to the Boc-protected cycles 40, 41, 42, and $\mathbf{4 3} / 44$ respectively.

No.	Precursor (AA2)	Yield[a]
40	$24($ L-Phe $)$	70
41	$25($ Gly $)(12)$	94
42	$30($ L-Ser $)(17)$	33
$43 / 44$	$29($ L-Phg $)(16)$	$45(1.8: 1)$

[a] Combined isolated two-step yield (Scheme 2, step 1/2). [b] isolated ratio of cycles 43:44.

Dipeptides 24, 25, and 30 were subjected to the modified cyclisation conditions, and the resulting Boc-protected scaffolds 40,41 and 42 were isolated as single diastereomers (assigned by ${ }^{1} H$ NMR) in good yields, as shown in Table 2. 29 gave a diastereomeric mixture of the $2 S$ cycle (43) and $2 R$ cycle (44) which is in line with the prior synthesis of the deprotected cycles. Unlike their deprotected counterparts, however, 43 and 44 could not be separated by column chromatography and were analyzed for bioactivity as a $1.8: 1$ mixture (43:44).

Compounds were screened against three trypanosomatid parasite cell lines: T. brucei, T. cruzi, and Leishmania major (L. major) in addition to HeLa cells. Dipeptide precursors 24-30 also showed some interesting trypanocidal and leishmanicidal
activity, and their EC_{50} can be found in Supplementary Table 1. Corresponding EC_{50} values and selectivity indexes of cycles 3138 and their N-substituted analogues are listed in Table 3. The drugs for neglected diseases initiative (DNDi) have published guideline criteria for the identification of new leads for development against HAT and visceral leishmaniasis. Lead criteria outlined for small molecules include: $<10 \mu \mathrm{M}$ antiparasitic EC_{50}; >10-fold selectivity vs human cell lines; correlation of biochemical and whole-cell activity; and chemical accessibility in <8 steps. ${ }^{[19]}$ We have applied these criteria to the compounds' bioactivity in the following discussion to help identify promising leads.

Table 3. Trypanocidal and mammalian activities of unsubstituted cycles 31-38 and protected cycles 40-42 and 43/44. ${ }^{\text {.a] }}$

No.	R_{1}	R_{2}		T. cruzi ${ }^{[6]}(\mathrm{Sl})^{[\mathrm{ed}]}$	L.major ${ }^{[d]}(\mathrm{SI})^{[0]}$	$\mathrm{HeLa}(\mathrm{SI})^{[\text {e] }}$

31	No	H	52.1 (3.5)	59.0 (3.1)	116.2 (1.2)	181.0
32	H	H	188.8 (>1.3)	>250 (nd)	>250 (nd)	>250
33	$\cdot z^{2} \underbrace{\dot{N}}$	H	>250 (nd)	>250 (nd)	>250 (nd)	>250
34	$\overbrace{0}$	H	189.3 (>1.3)	>250 (nd)	>250 (nd)	>250
35		H	161.1 (1.6)	>250 (nd)	>250 (nd)	>250
36	\xrightarrow{n}	H	130.8 (1.9)	>250 (nd)	89.1 (2.8)	>250
37	OH	H	70.5 (3.3)	169.3 (1.5)	>250 (nd)	>250
38		H	111.4 (2.2)	>250 (nd)	169.3 (1.5)	249.9
40	Nols	Boc	9.2 (2.3)	4.7 (4.4)	8.5 (2.4)	20.7
41	H	Boc	36.1 (3.7)	62.1 (2.1)	57.9 (2.3)	132.0
42	\cdots	Boc	67.7 (2.4)	167.3 (1.0)	47.8 (3.4)	164.4
43/44		Boc	2.3 (13.0)	9.0 (3.2)	7.1 (4.2)	30.0

[a] Mean $\mathrm{EC}_{50}(\mathrm{n}=4)$, all activities given in $\mu \mathrm{M}$. [b] T. brucei brucei bloodstream form trypomastigotes. [c] T. cruzi epimastigote form. [d] L. major promastigote form. [e] Selectivity index (Mammalian EC E $_{50}$ / Parasite EC_{50}).

Deprotected cycles 31-38 showed overall poor activity against the three trypanosomatid cell lines, with the benzyl substituted compound 31 showing the most favorable overall bioactivity. Promising bioactivity was observed for Boc-protected cycles 4043/44, displaying up to 50 -fold increased potency compared to their de-protected counterparts. Benzyl substituted compound 40 and phenyl substituted diasteromeric mixture $\mathbf{4 3 / 4 4}$ both showed sub-10 $\mu \mathrm{M}$ activity against all three parasite species, in agreement with the potency guidelines outlined by DNDi in their hit selection criteria. The entire suite of compounds also meets the DNDi criteria for chemical accessibility, being prepared in <8 steps. Unfortunately, an increase in mammalian cytotoxicity was also observed in the protected cycles compared to their deprotected counterparts. Nevertheless, the mixture of 43/44 pleasingly surpassed the desired 10 -fold selectivity for T. brucei compared to mammalian cells and displayed modest accompanying SI values of 3.2 and 4.3 for T. cruzi and L. major, respectively.

We sought to investigate the clear importance of N substitution upon trypanocidal activity and prepared a range of N substituted compounds, based on the promising pan-trypanocidal phenyl substituted scaffold 43. N -substitutions were selected to sample steric and H -bonding interactions. Compounds 45 (Ac), $46(\mathrm{Bn})$ and $47(\mathrm{Bz})$ and enantiopure 43 (Boc) were prepared from the single diastereomer 36, as shown in Scheme 3.

Scheme 3. Synthesis of N -substituted compounds 43 and 45-47 from compound 36

The corresponding EC_{50} values of cycle 36 , along with the newly synthesized N-substituted cycles 43 and $45-47$ are shown in Table 3. Analysis of SAR revealed that compound potency increased when the parent cycle 36 was substituted with larger groups: $\mathrm{H}<\mathrm{Ac}<\mathrm{Bn}<\mathrm{Bz} \approx \mathrm{Boc}$. In T. cruzi and HeLa cells, the tertbutyl carbamate substituted scaffold 43 gave the highest potency,
whereas in T. brucei and L. major the benzoylated compound 47 gave improved potency. It is possible that the substituted analogues 43 and 47 gain increased potency through increased passive uptake, which is facilitated by the lipophilic carbamate and amide substituents. While subsequent cleavage by the parasites' cytosolic proteases is possible, the similar increase in potency displayed by the benzylated compound 46 suggests that this is not the case, as it is unlikely that this stable C-N linkage would be rapidly cleaved. We therefore suggest that these substitutions facilitate binding to the target of this scaffold.

Table 4. Trypanocidal and mammalian activities of N-substituted compounds 36, 43 and 45-47 ${ }^{\text {a] }}$

No.	$\mathrm{R}=$	T. brucei ${ }^{[b]}$ (SI) ${ }^{[\text {e] }]}$	T. cruzi ${ }^{[\mathrm{c}]}$ $(\mathrm{SI})^{[\mathrm{ee}]}$	$\begin{aligned} & \text { L. major } \\ & (\mathrm{SI})^{[d]} \end{aligned}$	HeLa (SI) ${ }^{[\text {e] }]}$
36	H	130.8 (2.1)	>250 (nd)	89.1 (0.7)	>250

43	Boc	$30.4(2.5)$	$21.0(3.6)$	$17.4(4.3)$	75.8
45	Ac	$75.1(3.3)$	$>250(\mathrm{nd})$	$177.7(1.4)$	>250
46	Bn	$37.2(3.0)$	$47.7(2.3)$	$29.0(3.8)$	110.7
47	Bz	$15.1(5.6)$	$32.8(2.6)$	$13.0(6.5)$	84.6

[a] Mean EC50 ($\mathrm{n}=4$), all activities given in $\mu \mathrm{M}$. [b] T. brucei brucei bloodstream form trypomastigotes. [c] T. cruzi epimastigote form. [d] L. major promastigote form. [e] Selectivity index (Mammalian EC50 / Parasite EC_{50}).

Notably, the bioactivity of enantiopure 43 did not align with the previously tested $\mathbf{4 3 / 4 4}$ diastereomeric mixture. We therefore decided to probe the relationship between scaffold stereochemistry and bioactivity, using this promising phenyl substituted scaffold as the basis for the analysis. Preparation of the D-Trp derived dipeptide precursor 48 gave a mixture of diastereomers, in line with the epimerization observed with L-Trp derived precursor 29. Subsequent exposure to the developed reduction and one-pot cyclisation-deprotection conditions gave access to the two remaining enantiomers ent-36 and ent-38, which were separable by flash column chromatography. With all four possible stereochemical configurations of the N-H structures in hand, the remaining N-Boc analogues 44, ent-43 and ent-44 were prepared from their corresponding single diastereomers 38 , ent-36 and ent-38 (Scheme 4). X-ray analysis of 44 confirmed the relative 1,2,5 stereochemical configuration, which was assigned as $1 S, 2 R, 5 S$ based on the use of S-tryptophan.

1) TFA

22
2) Boc-D-Trp, EDC, $\mathrm{HOBt}, \mathrm{Et}_{3} \mathrm{~N}$
5) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$

38

3) DIBAL-H 4) TFA $-78^{\circ} \mathrm{C}$
ent-36
ent-38
R = H
ent-43
5) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$
$\mathrm{R}=\mathrm{H}$
$R=B o c$

$\mathrm{R}=\mathrm{Boc}$

Scheme 4. Synthesis of enantiomers ent-36 and ent-38 from precursor 48, preparation of Boc-substituted cycles 44, ent-43 and ent-44 and X-ray crystal structure of 44 confirming relative stereochemistry (absolute $1 S, 2 R, 5 S$ configuration assigned from derivative S-tryptophan).

The corresponding EC_{50} values of the suite cycles are displayed in Table 5. While N -H cycles mostly maintained a low activity, compound ent-38 showed 20 -fold increased activity
against L. major, compared to its enantiomer 38 , with an EC_{50} of $8.4 \mu \mathrm{M}$. This gain in antiparasitic activity, however, did not extend to T. brucei nor T. cruzi. The compound showed low potency
against HeLa cells providing a promising SI value of 14.8 for L. major.
N-Boc cycles followed the previously observed trends, showing 4 to >100-fold increased antiparasitic activity over their unsubstituted counterparts and increased mammalian cytotoxicity. Ent-43 shows 10 -fold higher potency against T. brucei than 43, and a high SI of 29.7. Despite a lack of pan-trypanocidal activity, this molecule may be a promising lead for further development against T. brucei.

44 and ent-44 both displayed promising sub-10 $\mu \mathrm{M}$ activity against all three parasite cell lines. The similar activity of these enantiomers is interesting; however, it is hard to draw any further conclusions about the mechanism behind this activity. Such ambiguity is one drawback of the phenotypic assay employed in this work. Further analysis of the cellular target of these molecules would hopefully illuminate more nuanced SAR trends relating to compounds' stereochemistry.

Table 5. Trypanocidal and mammalian activities of N-H diastereomers 36,38 , ent-36 and ent-38 and with N-Boc diastereomers 43, 44, ent-43 and ent-44. ${ }^{[a]}$

No.	Stereochemical configuration	$R=$	T. brucei ${ }^{[b]}(\mathrm{SI})^{[\mathrm{ec}]}$	T. cruzi ${ }^{[c]}(\mathrm{SI})^{[e]}$	L. major ${ }^{[d]}(\mathrm{SI})^{[e]}$	HeLa (SI) ${ }^{[\text {e] }}$
36	1S,2S,5S	H	130.8 (1.9)	>250 (nd)	89.1 (2.8)	>250
38	1S,2R,5S	H	111.4 (2.3)	>250 (nd)	169.3 (1.5)	249.9
ent-36	1R,2R,5R	H	70.9 (3.5)	>250 (nd)	162.9 (1.5)	>250
ent-38	1R,2S,5R	H	56.2 (2.2)	>250 (nd)	8.4 (14.8)	124.6
43	1S,2S,5S	Boc	30.4 (2.5)	21.0 (3.6)	17.3 (4.4)	75.8
44	1S,2R,5S	Boc	9.9 (1.7)	2.0 (8.8)	10.4 (1.7)	17.6
ent-43	1R,2R,5R	Boc	2.8 (29.7)	64.0 (1.3)	29.8 (2.8)	83.2
ent-44	1R,2S,5R	Boc	2.1 (11.2)	8.4 (2.8)	9.1 (2.6)	23.6

[a] Mean $\mathrm{EC}_{50}(\mathrm{n}=4)$, all activities given in $\mu \mathrm{M}$. [b] T. brucei brucei bloodstream form trypomastigotes. [c] T. cruzi epimastigote form. [d] L. major promastigote form. [e] Selectivity index (Mammalian EC 50 $_{50}$ / Parasite EC50).

Conclusion

We have developed a convenient synthetic route to the stereochemically rich structures based upon scaffold 1. The approach utilizes the conversion of an advanced linear dipeptide precursor to the desired bridged scaffold through a scarcely reported 1,3 -linked intramolecular Pictet-Spengler condensation. Linear peptide precursors are derived from D or L-tryptophan coupled to a range of α-amino acids, allowing the tailoring of product stereochemistry. The epimerization of the α-position of phenyl-substituted precursors ultimately provided access to two separable diastereomers for biological evaluation. N-Boc analogues may be accessed directly through modified reaction conditions, and display significantly higher activities against trypanosomatid parasites. Structure-activity relationships revealed that benzylic or phenyl substituents at the 2-position and substitution of the bridging nitrogen are crucial for trypanocidal activity. Three of the compounds developed (40, 44 and ent-44) show promising pan-trypanocidal activity surpassing the DNDi activity guideline for leads against HAT and visceral leishmaniasis. These compounds also generally show promising selectivity, with
lead compound 52 surpassing the >10-fold guideline for selectivity in T. brucei while maintaining sub- $10 \mu \mathrm{M}$ activity against all parasites. These structures could be utilized for the future development of trypanocidal agents, or in the discovery of desperately needed drug targets within T. brucei, T. cruzi and Leishmania.

Experimental Section

General procedure for the synthesis of cyclic β carbolines 31-48, and ent-36, ent-38

A stirred solution of the corresponding dipeptide precursor (2.0 mmol) in dry tetrahydrofuran (20 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$. After stirring for 15 minutes, a solution of di-isobutyl aluminum hydride $(20 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexanes, 20 mmol) was added via syringe pump over 1 h . The reaction was stirred for a further 4 h , then diluted with dichloromethane $(50 \mathrm{~mL})$. Methanol (5 mL) was added dropwise and the reaction allowed to warm to
room temperature. The mixture was washed with potassium hydrogen sulfate (aq., $1 \mathrm{M}, 100 \mathrm{~mL}$), dried (MgSO4) and filtered.

To the resulting organics was added trifluoroacetic acid $(8.0 \mathrm{~mL}$, $100 \mathrm{mmol})$. The reaction was stirred for 16 h , before being quenched with sodium bicarbonate (aq., $1 \mathrm{M}, 100 \mathrm{~mL}$), then the organics were separated and the aqueous further extracted with dichloromethane (50 mL). Combined organics were dried (MgSO4), filtered and concentrated under reduced pressure. Crude products were purified via flash column chromatography (5\% methanol/DCM) to give cyclic products.

31 - ($1 S, 2 S, 5 S$)-2-benzyl-1,2,3,5,6,11-hexahydro-4H-1,5epiminoazocino $[4,5-\beta]$ indol-4-one

31 was prepared via the general procedure above using dipeptide precursor 24 ($990 \mathrm{mg}, 2.0 \mathrm{mmol}$) to give the product as a pale brown solid ($380 \mathrm{mg}, 60 \%$). $\mathrm{Mp}=280-282{ }^{\circ} \mathrm{C}$ (decomposition); $\mathrm{Rf}=0.21$ (5% $\mathrm{MeOH} / \mathrm{DCM}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.47(\mathrm{dt}, \mathrm{J}=1.0,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40-7.34$ (m, 3H), $7.31-7.28$ (m, 1H), $7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.14$ (ddd, $J=1.2,7.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (ddd, $J=1.0,7.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=$ $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (ddd, $J=3.4,4.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=1.3,6.2 \mathrm{~Hz}$, 1 H), $3.34-3.27$ (m, 1H), 3.19 (ddd, $J=0.8,6.2,15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 (dd, J $=1.4,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=10.9,13.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , MeOD) $\delta 174.1,136.6,136.5,129.6,128.8,128.8,126.8,126.6,121.5$, $118.7,117.4,110.8,107.4,59.0,52.6,49.2,38.3,26.0 ;[\alpha]_{D^{20}}=-173.3$ (c $0.4, \mathrm{MeOH}$); HRMS (ESI +) Calc. For [$\left.\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$req. 318.1601 Found 318.1598

X-ray crystallographic data available.

32 - ($1 S, 5 S$)-1,2,3,5,6,11-hexahydro-4H-1,5-epiminoazocino[4,5- β]indol-4-one

32 was prepared via the general procedure above using dipeptide precursor 25 ($810 \mathrm{mg}, 2.0 \mathrm{mmol}$) to give the product as an off white solid ($349 \mathrm{mg}, 77 \%$). $\mathrm{Mp}=98-100{ }^{\circ} \mathrm{C}$; $\mathrm{Rf}=0.15$ ($5 \% \mathrm{MeOH} / \mathrm{DCM}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ $-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}$ $=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=4.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.44 (dd, $J=5.8,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.28(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , MeOD) $\delta 167.5,136.9,126.1,125.5,122.7,119.6,117.8,111.3,106.0$, $51.9,45.2,44.3,23.7 ;[\alpha]_{\mathrm{D}}{ }^{20}=+8.4$ (c 1.0, MeOH) Lit. $=+7.3 ; \mathrm{HRMS}(\mathrm{ESI}$ +) Calc. For $\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$req. 228.1131 Found 228.1133.

33 - $(6 S, 13 S, 13 \mathrm{aS})-1,2,3,6,7,12,13,13 \mathrm{a}-\mathrm{octahydro-5H-6,13-}$ epiminopyrrolo $[1$ ',2':1,2]azocino[4,5- β]indol-5-one

33 was prepared via the general procedure above using dipeptide precursor $26(890 \mathrm{mg}, 2.0 \mathrm{mmol})$ to give the product as a pale orange solid (124 mg, 23\%). Mp = 292-296 ${ }^{\circ} \mathrm{C}$ (decomposition); Rf = 0.17 (5\% $\mathrm{MeOH} / \mathrm{DCM}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 7.41$ (dt, $J=1.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (dt, $J=0.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.10 (ddd, $J=1.2,7.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ (ddd, $J=1.0,7.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (dt, $J=4.6$, $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=1.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42$ (ddd, $J=2.1,9.1,11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.25$ (ddd, $J=8.0,10.3,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=5.8,15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.04$ (dd, $J=1.5,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dt}, J=5.1,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-$ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 171.3$, 136.3, 129.4, 126.6, 121.3, 118.6, 117.4, 110.6, 107.3, 63.7, 52.3, 48.3, 44.7, 28.7, 26.4, 21.6; $[\alpha] \mathrm{D}^{20}=-81.6(c 0.96, \mathrm{MeOH})$; HRMS $(\mathrm{ESI}+)$ Calc. For [$\left.\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{ONa}\right]^{+}$req. 290.1264 Found 290.1261.

34 - ($1 S, 2 S, 5 S$)-2-isopropyl-1,2,3,5,6,11-hexahydro-4H-1,5epiminoazocino $[4,5-\beta$]indol-4-one

34 was prepared via the general procedure above using dipeptide precursor $27(890 \mathrm{mg}, 2.0 \mathrm{mmol})$ to give the product as a pale brown solid (296 mg, 55\%). Mp = 241-243 ${ }^{\circ} \mathrm{C} ; \mathrm{Rf}=0.17$ ($5 \% \mathrm{MeOH} / \mathrm{DCM}$); ${ }^{1} \mathrm{H}$ NMR
(500 MHz, MeOD) ס 7.43 (dt, $J=1.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (dd, $J=0.9,8.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.11 (ddd, $J=1.2,7.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.01 (ddd, $J=1.0,7.0,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=1.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}$, $J=4.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=5.8,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (dd, $J=1.6,15.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.77$ (dhept, $J=6.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.22 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.83$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 174.5,136.6,129.7$, 126.5, 121.4, 118.7, 117.2, 110.8, 107.6, 64.3, 52.4), 47.7, 28.8, 26.0, 19.4, 17.1; $[\alpha]_{D^{20}}=-48.5(c 1.0, \mathrm{MeOH})$; HRMS (ESI +) Calc. For $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$ req. 270.1601 Found 270.1596.

35 - (1S,2S,5S)-2-((1H-indol-3-yl)methyl)-1,2,3,5,6,11-hexahydro-4H-1,5epiminoazocino $[4,5-\beta]$ indol-4-one

35 was prepared via the general procedure above using dipeptide precursor $28(1.06 \mathrm{~g}, 2.0 \mathrm{mmol})$ to give the product as a cream solid (363 $\mathrm{mg}, 51 \%)$. $\mathrm{Mp}=260-265{ }^{\circ} \mathrm{C}$ (decomposition); $\mathrm{Rf}=0.22(5 \% \mathrm{MeOH} / \mathrm{DCM})$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD: $\mathrm{CHCl}_{3}, 1: 1$) $\delta 7.56$ (dd, $J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (dt, $J=1.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=0.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 1 \mathrm{H})$, $4.45(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{ddt}, J=3.3,5.1,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=$ $1.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.38-3.29$ (m, 2H), 3.17 (dd, $J=6.2,16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.05 (dd, $J=1.4,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ (dd, $J=10.9,14.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{MeOD}: \mathrm{CHCl}_{3}, 1: 1\right) \delta 173.8,137.1,136.3,129.6,126.7,126.6,123.5$, $121.8,121.6,119.0,118.9,117.9,117.7,111.5,111.0,108.6,107.5,57.3$, 52.7, 49.1, 28.3, 26.2; $[\alpha]_{D^{20}}=-141.1$ (c 1.0 MeOH); HRMS (ESI +) Calc. for $\left[\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}\right]^{+}$req. 357.1710 Found 357.1706.
(1S,5S)-2-phenyl-1,2,3,5,6,11-hexahydro-4H-1,5-epiminoazocino[4,5β]indol-4-one

36 and 38 were prepared via the general procedure above using dipeptide precursor 29 ($960 \mathrm{mg}, 2.0 \mathrm{mmol}$). Products were separated by flash column chromatography to give 36 ($130 \mathrm{mg}, 21 \%$) and 38 ($142 \mathrm{mg}, 23 \%$) as off-white solids.

36

$\mathrm{Mp}=185-188^{\circ} \mathrm{C} ; \mathrm{Rf}=0.20(5 \% \mathrm{MeOH} / \mathrm{DCM}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-$ $7.01(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.39(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=1.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (dd, $J=$ $6.2,15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (dd, $J=1.5,15.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz , MeOD) $\delta 174.7,137.5,135.9,129.1,128.0,127.9,126.9,126.2,121.1$, $118.4,117.3,110.6,107.0,62.2,52.3,51.0,25.9 ;[\alpha]{ }_{\mathrm{D}}{ }^{20}=+165.1$ (c 1.0, $\mathrm{MeOH})$; HRMS (ESI +) Calc. For $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$req. 304.1444, found 304.1438.

38

$\mathrm{Mp}=>300{ }^{\circ} \mathrm{C}$; Rf $=0.22$ ($5 \% \mathrm{MeOH} / \mathrm{DCM}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) δ $7.58(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{dt}, J=1.0,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41-7.36$ (m, 2H), 7.13 (ddd, $J=1.2,7.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.04 (ddd, J $=1.0,7.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=1.5,5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.20-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}, \mathrm{J}=1.6,15.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{MeOD}$) $\delta 174.6,140.8,136.3,132.8,128.4,127.5,126.7,126.3$, $121.3,118.7,117.4,110.7,106.6,61.4,52.8,52.2,25.9 ;[\alpha] D^{20}=+62.4$ (c $0.92, \mathrm{MeOH}$); HRMS (ESI +) Calc. For $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$req. 304.1444, found 304.1435.

37 - (1S,2R,5S)-2-(hydroxymethyl)-1,2,3,5,6,11-hexahydro-4H-1,5-epiminoazocino[4,5-blindol-4-one

37 was prepared via the general procedure above using dipeptide precursor $\mathbf{3 0}$ ($950 \mathrm{mg}, 2.0 \mathrm{mmol}$) to give the product as a cream solid (134 $\mathrm{mg}, 26 \%$). $\mathrm{Mp}=262-265{ }^{\circ} \mathrm{C}$; (decomposition); $\mathrm{Rf}=0.15$ (5% MeOH/DCM); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.43$ (dt, $J=1.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.34(\mathrm{dt}, J=0.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{ddd}, J=1.2,7.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$
(ddd, $J=1.0,7.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (ddd, $J=4.4$, $6.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (dd, $J=1.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 (dd, $J=6.7,10.8 \mathrm{~Hz}$, 1 H), $3.39-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=6.3,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=1.4$, $15.9 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 174.1,136.3,129.5,126.6$, $121.4,118.7,117.3,110.7,107.2,61.8,58.9,52.8,46.3,25.8 .[\alpha]{ }^{20}=$ +51.6 (c 0.5, MeOH); HRMS (ESI +) Calc. For $\left[\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}$req. 258.1237 found 258.1233.

(1R,5R)-2-phenyl-1,2,3,5,6,11-hexahydro-4H-1,5-epiminoazocino[4,5β]indol-4-one

Ent-36 and ent-38 were prepared via the general procedure above using dipeptide precursor 48 ($960 \mathrm{mg}, 2.0 \mathrm{mmol}$). Products were separated by flash column chromatography to give 49 ($98 \mathrm{mg}, 16 \%$) and $50(120 \mathrm{mg}$, 20%) as pale brown solids.

Ent-36

$\mathrm{Mp}=198-205^{\circ} \mathrm{C} ; \mathrm{Rf}=0.20(5 \% \mathrm{MeOH} / \mathrm{DCM}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-$ $7.01(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.39$ (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ (dd, $J=1.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (dd, $J=$ $6.2,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ (dd, $J=1.5,15.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , MeOD) $\delta 174.7,137.5,135.9,129.1,128.0,127.9,126.9,126.2,121.1$, $118.4,117.3,110.6,107.0,62.2,52.3,51.0,25.9 ;[\alpha]_{\mathrm{D}}{ }^{20}=-173.6$ (c 1.0, $\mathrm{MeOH})$; HRMS (ESI +) HRMS (ESI +) Calc. For $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$req. 304.1444, found 304.1437.

Ent-38

$\mathrm{Mp}=>300{ }^{\circ} \mathrm{C} ; \mathrm{Rf}=0.22(5 \% \mathrm{MeOH} / \mathrm{DCM}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}\right) \delta$ $7.58(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{dt}, J=1.0,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.13$ (ddd, $J=1.2,7.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.04 (ddd, J $=1.0,7.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=1.5,5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.20-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}, \mathrm{J}=1.6,15.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{MeOD}$) $\delta 174.6,140.8,136.3,132.8,128.4,127.5,126.7,126.3$, 121.3, 118.7, 117.4, 110.7, 106.6, 61.4, 52.8, 52.2, 25.9; $[\alpha] D^{20}=-49.7$ (c $0.92, \mathrm{MeOH})$; HRMS (ESI +) Calc. For $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$req. 304.1444, found 304.1435

General procedure for selective cyclisation toward Boc-protected carbolines 40-42 and 43/44

A stirred solution of the corresponding dipeptide precursor (2.0 mmol) in tetrahydrofuran $(20 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$. After stirring for 15 minutes, a solution of di-isobutyl aluminium hydride $(20 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexanes, 20 mmol) was added via syringe pump over 1 h . The reaction was stirred for a further 4 h , then was diluted with dichloromethane (50 mL) followed by dropwise addition of methanol (5 mL) and the reaction was allowed to warm to room temperature. The mixture was washed with potassium hydrogen sulfate ($100 \mathrm{~mL}, 1 \mathrm{M}$ aq.), dried (MgSO 4) and filtered. The resulting organics were further diluted with dichloromethane $(100 \mathrm{~mL})$ and trifluoroacetic acid ($8.0 \mathrm{~mL}, 100 \mathrm{mmol}$) added. The reaction was stirred for 16 h , before being quenched with sodium bicarbonate (100 mL , sat. aq.) then the organics separated and the aqueous further extracted with dichloromethane (50 mL). Combined organics were dried (MgSO4), filtered and concentrated under reduced pressure. Crude products were purified via flash column chromatography (50% ethyl acetate:hexanes) to give Boc-carbolines 40-44.

40 - tert-butyl ($1 S, 2 S, 5 S$)-2-benzyl-4-oxo-2,3,4,5,6,11-hexahydro-1H-1,5epiminoazocino $[4,5-\beta]$ indole-12-carboxylate

40 was prepared via the general procedure above, using $24(990 \mathrm{mg})$ to give the product as a white solid ($584 \mathrm{mg}, 70 \%$). $\mathrm{Rf}=0.17$ (75% ethyl
acetate/hexanes); $\mathrm{Mp}=216-221^{\circ} \mathrm{C}$; observed as $1.5: 1$ mixture of rotamers via NMR: major rotamer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.47$ ($\mathrm{dt}, J=1.0,7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.25(\mathrm{~m}$, $3 \mathrm{H}), 7.16$ (ddd, $J=1.2,7.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.54$ (d, $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.30(\mathrm{~m}$, $1 \mathrm{H}), 3.23-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=1.4,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.38(\mathrm{~m}$, 1H), 1.51 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (126 MHz , MeOD) $\delta 171.7,153.4,136.7,136.7$, $136.2,128.8,128.8,126.9,126.3,121.8,119.0,117.5,111.0,107.7,81.3$, 57.9, 53.7, 48.7, 37.8, 25.2; minor rotamer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) δ 7.47 (dt, $J=1.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 2H), $7.33-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.16$ (ddd, $J=1.2,7.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.23$ (m, 1H), $3.29-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.08$ (dd, $J=1.4,15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.51-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}$) δ 171.7, 153.4, 136.7, 136.7, 136.2, 128.8, 128.8, 126.9, 126.3, 121.8, 119.0, $117.5,111.0,107.7,81.3,57.9,52.2,50.2,37.6,24.8 .[\alpha] \mathrm{D}^{20}=-68.2$ (c $0.89, \mathrm{MeOH})$; HRMS (ESI +) Calc. For $\left[\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}\right]^{+}$req. 440.1945, found 440.1941 .

41 - tert-butyl (1S,5S)-4-oxo-2-phenyl-2,3,4,5,6,11-hexahydro-1H-1,5-epiminoazocino[4,5- β]indole-12-carboxylate

41 was prepared via the general procedure above, using $25(809 \mathrm{mg})$ to give the product as an off white solid ($613 \mathrm{mg}, 94 \%$). $\mathrm{Rf}=0.17$ (75% ethyl acetate/hexanes); $\mathrm{Mp}=224-228{ }^{\circ} \mathrm{C}$ (decomposition); observed as 1.3:1 mixture of rotamers via NMR: major rotamer ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}, \mathrm{MeOD}) \delta$ $7.42(\mathrm{dt}, J=1.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 1 \mathrm{H})$, $7.07-6.90(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ $(\mathrm{m}, 1 \mathrm{H}),(3.41 \mathrm{~m}, 1 \mathrm{H}), 3.17$ (dd, $J=5.7,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (dd, $J=1.5$, $15.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.52 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD) $\delta 171.7,153.6$, 136.5, 130.5, 126.4, 121.6, 118.9, 117.4, 110.9, 107.0, 81.2, 54.0, 46.4, 44.7, 27.1; minor rotamer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.42(\mathrm{dt}, J=1.0$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.07-6.90(\mathrm{~m}, 1 \mathrm{H})$, $5.47(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}$, 1 H), 3.17 (dd, $J=5.7,15.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.05(\mathrm{dd}, J=1.5,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.51$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD) $\delta 171.9,153.4,136.5,130.3,126.4$, $121.6,118.9,117.5,110.9,107.3,81.2,52.6,46.7,46.2,27.1 .[\alpha] \mathrm{D}^{20}=-$ 26.2 (c 1.0 MeOH); HRMS (ESI -) Calc. For $\left[\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}\right]^{-}$req. 357.1710, found 357.1706 .

42 - tert-butyl (1S,2R,5S)-2-(hydroxymethyl)-4-oxo-2,3,4,5,6,11-hexahydro-1H-1,5-epiminoazocino[4,5- β]indole-12-carboxylate

42 was prepared via the general procedure above, using $30(950 \mathrm{mg})$ to give the product as an off white solid ($170 \mathrm{mg}, 33 \%$). Rf $=0.22$ (50% ethyl acetate/hexanes); $\mathrm{Mp}=178-181^{\circ} \mathrm{C}$; observed as $1.5: 1$ mixture of rotamers via NMR: major rotamer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.43$ (dd, $J=1.0$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}$, $1 \mathrm{H}), 5.57(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.59-$ 3.43 (m, 2H), 3.18 (dd, $J=6.1,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=1.4,15.8 \mathrm{~Hz}$, 1H), 1.49 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 171.8,153.5,136.5,127.8$, 126.3, 121.7, 119.0, 117.4, 110.9, 107.5, 81.3, 61.2, 57.9, 53.7, 46.3, 27.1, 25.1; minor rotamer ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD) $\delta 7.43(\mathrm{dd}, J=1.0,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 1 \mathrm{H})$, $5.51(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 14)$, $3.59-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{dd}, J=6.1,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, 1H), 1.49 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (126 MHz , MeOD) $\delta 172.0,153.3,136.5,127.6$, 126.3, 121.7, 119.0, 117.5, 110.9, 107.8, 81.3, 61.2, 58.1, 52.3, 48.5, 27.1, 24.7; $[\alpha]_{\mathrm{D}}{ }^{20}=-30.7$ (c 1.0 MeOH$)$ HRMS (ESI -) Calc. for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{-}$ req. 356.1616 , found 356.1617 .
tert-butyl (1S,5S)-4-oxo-2-phenyl-2,3,4,5,6,11-hexahydro-1H-1,5epiminoazocino $[4,5-\beta]$ indole-12-carboxylate

An inseparable 1.8:1 mixture of diastereomers 43 and 44 was prepared via the general procedure above, using 29 (960 mg). ($363 \mathrm{mg}, 45 \%$). $\mathrm{Rf}=$ 0.22 (50\% ethyl acetate/hexanes).

For full characterization data please see the separate syntheses of 43 and 44 below.

General Procedure for the synthesis of BocProtected Diastereomers 43, 44, ent-43 and ent44

To a solution of the appropriate carboline cycle in dichloromethane $(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added di-tert-butyl carbamate $(20 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.2$ equiv.) and triethylamine ($21 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 2.0$ equiv.) then the reaction stirred for 16 h . After completion, the reaction mixture was concentrated under reduced pressure and purified via flash column chromatography (50\% ethyl acetate/hexanes).

43 - tert-butyl (1S,2S,5S)-4-oxo-2-phenyl-2,3,4,5,6,11-hexahydro-1H-1,5-epiminoazocino[4,5- $]$ lindole-12-carboxylate

43 was prepared via the general procedure above using 36 ($23 \mathrm{mg}, 0.075$ $\mathrm{mmol})$ to give the product as an off-white solid ($26 \mathrm{mg}, 87 \%$) $\mathrm{Rf}=0.22$ (50% ethyl acetate/hexanes); $\mathrm{Mp}=178-184{ }^{\circ} \mathrm{C}$; observed as $1.5: 1$ mixture of rotamers via NMR: major rotamer ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.45(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.04$ (m, 2H), $7.04-6.96(\mathrm{~m}, 3 \mathrm{H}), 5.58-5.48(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.00 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.20 (qd, $J=3.7,15.9 \mathrm{~Hz}, 2 \mathrm{H}$), 1.54 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD) $\delta 172.3,153.5,136.4,136.1,128.3,128.1,127.1$, 125.9, 121.4, 118.7, 117.4, 110.7, 107.2, 81.4, 60.9, 53.3, 50.4, 27.2, 25.2; minor rotamer ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 7.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ $-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.96$ $(\mathrm{m}, 3 \mathrm{H}), 5.44(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.20$ (qd, J=3.7, $15.9 \mathrm{~Hz}, 2 \mathrm{H}$), 1.54 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (126 MHz , MeOD) $\delta 172.5,153.3,136.3,136.1,128.3,128.1,127.1,125.9,121.4$, $118.7,117.4,110.7,107.5,81.4,61.2,52.0,51.9,27.2,24.8 ;[\alpha]_{\mathrm{D}}{ }^{20}=+88.3$ (c 1.16 MeOH); HRMS (ESI -) Calc. for $\left[\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}\right]^{-}$req. 402.1823 , found 402.1812.

44 - tert-butyl ($1 S, 2 R, 5 S$)-4-oxo-2-phenyl-2,3,4,5,6,11-hexahydro-1H-1,5epiminoazocino $[4,5-\beta]$ indole-12-carboxylate

44 was prepared via the general procedure above using $38(23 \mathrm{mg}, 0.075$ mmol) to give the product as an off-white solid ($29 \mathrm{mg}, 96 \%$). $\mathrm{Rf}=0.21$ (50% ethyl acetate/hexanes); $\mathrm{Mp}=>300{ }^{\circ} \mathrm{C}$; observed as $2: 1$ mixture of rotamers via NMR: major rotamer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) $\mathrm{\delta} 7.50-7.37$ (m, 7H), 7.16 (tdd, $J=1.2,3.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 1 \mathrm{H}), 5.42$ (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.06$ (m, 2H), 1.08 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}$) ס 172.2, 152.7, 140.3 (, 136.5, 130.8, 128.5, 127.6, 126.4, 126.1, 121.7, 119.0, 117.6, 110.9, 107.3, 80.6, 61.4, 53.0, 52.1, 26.7, 25.0; minor rotamer ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, MeOD) $\delta 7.53-7.32(\mathrm{~m}, 7 \mathrm{H}), 7.16$ (tdd, $J=1.2,3.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-$ $7.01(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 5.05-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.23-3.06(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 170.0$, 153.1, 140.3, 136.4, 130.8, 128.3, 127.7, 126.4, 126.1, 121.7, 118.9, 117.5, $110.9,107.0,80.6,61.1,53.9,51.2,27.1,25.3 ;[\alpha]_{\mathrm{D}}^{20}=+64.3$ (c 0.76 MeOH); HRMS (ESI -) Calc. for $\left[\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}\right]^{-}$req. 402.1823. Found 402.1813.

X-ray crystallograpic data available

Ent-43 - tert-butyl ($1 R, 2 R, 5 R$)-4-oxo-2-phenyl-2,3,4,5,6,11-hexahydro1 H -1,5-epiminoazocino $4,5-\beta$]indole-12-carboxylate

Ent-43 was prepared via the general procedure above using 36 (23 mg , 0.075 mmol) to give the product as an off-white solid ($17 \mathrm{mg}, 56 \%$). $\mathrm{Rf}=$ 0.20 (50% ethyl acetate/hexanes); $\mathrm{Mp}=241-243{ }^{\circ} \mathrm{C}$; observed as 1.5:1 mixture of rotamers via NMR: major rotamer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) δ $7.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08$

- 7.04 (m, 2H), $7.04-6.96$ (m, 3H), $5.58-5.48$ (m, 1H), 5.21 (d, J= 4.6 $\mathrm{Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{qd}, J=3.7,15.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD) $\delta 172.3,153.5,136.4,136.1,128.3$, 128.1, 127.1, 125.9, 121.4, 118.7, 117.4, 110.7, 107.2, 81.4, 60.9, 53.3, 50.4, 27.2, 25.2; minor rotamer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.45$ (d, $J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}$, 2H), $7.04-6.96(\mathrm{~m}, 3 \mathrm{H}), 5.44(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.07 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{qd}, J=3.7,15.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD) $\delta 172.5,153.3,136.3,136.1,128.3,128.1,127.1$, 125.9, 121.4, 118.7, 117.4, 110.7, 107.5, 81.4, 61.2, 52.0, 51.9, 27.2, 24.8; $[\alpha] D^{20}=-89.2(c \quad 0.30 \mathrm{MeOH})$; HRMS (ESI +) Calc. for $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3}\right]+$ req. 404.1969. Found 404.1961

Ent-44 - tert-butyl (1R,2S,5R)-4-oxo-2-phenyl-2,3,4,5,6,11-hexahydro-1H-1,5-epiminoazocino[4,5- β]indole-12-carboxylate

Ent-44 was prepared via the general procedure above using ent-38 (23 $\mathrm{mg}, 0.075 \mathrm{mmol}$) to give the product as an off-white solid ($28 \mathrm{mg}, 92 \%$). $\mathrm{Rf}=0.21$ (50% ethyl acetate/hexanes); $\mathrm{Mp}=262-267{ }^{\circ} \mathrm{C}$; observed as $2: 1$ mixture of rotamers via NMR: major rotamer ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}, \mathrm{MeOD}) \delta$ $7.53-7.33$ (m, 7H), $7.18-7.13$ (m, 1H), $7.08-7.02(m, 1 H), 5.42$ (d, J $=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.09$ (m, 2H), 1.08 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (126 MHz , MeOD) $\delta 172.2,152.7,140.3$, $136.5,130.8,128.5,127.6,126.4,126.1,121.7,119.0,117.6,110.9,107.3$, 80.6, 61.4, 53.0, 52.1, 26.7, 25.0; minor rotamer ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD) $\delta 7.53-7.33(\mathrm{~m}, 7 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 1 \mathrm{H})$, $5.41-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.84-4.80(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.09$ ($\mathrm{m}, 2 \mathrm{H}$), $1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , MeOD) $\delta 171.8,153.1,140.3$, $137.5,130.8,128.3,127.7,126.4,126.1,121.7,118.9,117.5,110.9,107.3$, 81.0, 61.1, 53.9, 51.2, 27.1, 25.3; $[\alpha]_{\mathrm{D}}{ }^{20}=-63.7$ (c 0.76, MeOH); HRMS (ESI -) Calc. for $\left[\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}\right]^{-}$req. 402.1823. Found 402.1812.

General Procedure for Preparation of N Substituted Cycles 45-47

To a solution of carboline cycle 36 ($23 \mathrm{mg}, 0.075 \mathrm{mmol}$) in dichloromethane (1.0 mL) at $0{ }^{\circ} \mathrm{C}$ was added DMAP (10 mg , cat.) and triethylamine ($0.015 \mathrm{~mL}, 0.1 \mathrm{mmol}, 1.2$ equiv.). The reaction was stirred for 5 min before the corresponding alkyl bromide or acid chloride (0.1 mmol , 1.2 equiv.) was added and the reaction warmed to room temperature, then stirred for a further 2 hours. The reaction was diluted with dichloromethane $(10 \mathrm{~mL})$ and washed with citric acid $(10 \mathrm{~mL}, 1 \mathrm{M})$. The organics were dried (MgSO4) and filtered, then concentrated in vacuo and purified by flash column chromatography (50% ethyl acetate/hexanes) to give the corresponding N -substituted cycle.

45 - $(1 S, 2 S, 5 S)$-12-acetyl-2-phenyl-1,2,3,5,6,11-hexahydro-4H-1,5-epiminoazocino[4,5- β]indol-4-one

45 was prepared via the general procedure above using acetyl chloride $(5.5 \mu \mathrm{~L})$ to give the product as an off-white solid ($5.4 \mathrm{mg}, 21 \%$). $\mathrm{Rf}=0.4$ ($5 \% \mathrm{MeOH} / \mathrm{DCM}$); $\mathrm{Mp}=133-140{ }^{\circ} \mathrm{C}$; observed as $2: 1$ mixture of rotamers by NMR: major rotamer ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO) $\delta 9.74$ (s, 1H), 8.38 (s, $1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.11-6.91(\mathrm{~m}, 5 \mathrm{H}), 5.82(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.85$ (d, J = $5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.18 (dd, J = 15.9, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (s, 1H), 2.16 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) $\delta 170.0,169.7,167.5,136.9,135.7$, 128.5, 128.1, 128.1, 127.4, 125.7, 121.3, 118.6, 117.8, 111.4, 107.1, 60.5, $60.0,54.4,47.8,26.1,20.5$; minor rotamer ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO) δ 9.52 (s, 1H), 8.34 (s, 1H), 7.42 (d, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H})$, $7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.11-6.91(\mathrm{~m}, 5 \mathrm{H}), 5.31(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-$ $5.20(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}), 3.09-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO) $\delta 169.9,169.6,167.5,136.8,135.8,128.2,128.1,128.1$, 127.4, 125.6, 121.4, 118.6, 117.8, 111.5, 107.5, 60.4, 59.9, 53.3, 49.5, 24.9, 21.1; $[\alpha]_{D^{20}}=+36.6$ (c 0.63 MeOH) HRMS (ESI -) Calc. For [$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}$] req. 344.1405 Found 344.1405.

46 - (1S,2S,5S)-12-benzyl-2-phenyl-1,2,3,5,6,11-hexahydro-4H-1,5-epiminoazocino[4,5- β]indol-4-one

46 was prepared via the general procedure above using benzyl bromide $(12.0 \mu \mathrm{~L})$ to give the product as an off-white solid ($7.0 \mathrm{mg}, 23 \%$). $\mathrm{Rf}=0.28$ (50% ethyl acetate/hexanes); Mp = 220-224 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, MeOD) $\delta 7.48(\mathrm{dt}, J=1.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35$ (m, 2H), $7.34-7.26$ (m, 2H), $7.24-7.19$ (m, 2H), $7.06-6.98(\mathrm{~m}, 3 \mathrm{H})$, $6.91-6.87(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ -3.82 (m, 2H), 3.74 (d, J=13.2 Hz, 1H), $3.36-3.28$ (m, 1H), 2.98 (dd, J $=1.1,16.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 174.7,137.7,137.6$, 136.0, 128.7, 128.2, 127.9, 127.8, 127.4, 127.2, 127.0, 126.2, 121.0, 118.4, $117.3,110.5,106.0,61.2,57.4,55.4,55.1,21.5 ;[\alpha]{ }_{\mathrm{D}}{ }^{20}=+58.3$ (c 0.49 MeOH); HRMS (ESI +) Calc. For $\left[\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$req. 394.1914 Found 394.1906

47 - (1S,2S,5S)-12-benzoyl-2-phenyl-1,2,3,5,6,11-hexahydro-4H-1,5epiminoazocino $[4,5-\beta$]indol-4-one

47 was prepared via the general procedure above using benzoyl chloride $(12.0 \mu \mathrm{~L})$ to give the product as a yellow oil ($25.1 \mathrm{mg}, 82 \%$). $\mathrm{Rf}=0.25(50 \%$ ethyl acetate/hexanes); $\mathrm{Mp}=238-244{ }^{\circ} \mathrm{C}$; observed as $1.5: 1$ mixture of rotamers by NMR; major rotamer: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.67-7.51$ (m, 5H, H18), $7.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15-6.94(\mathrm{~m}, 5 \mathrm{H}), 6.05(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.68 (d, J = 6.0 Hz, 1H), 3.48-3.18 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 171.3,170.2,136.3,136.2,134.1,130.7,128.7,128.4,128.2,127.2$, 126.8, 125.8, 121.6, 118.8, 117.5, 110.8, 106.9, 60.1, 56.4, 49.5, 26.3 ; minor rotamer ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD) $\delta 7.67-7.51$ (m, 5H, H19), 7.49 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.15-6.94(\mathrm{~m}, 5 \mathrm{H}), 5.57$ (d, $J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.18$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD) $\delta 171.7,170.4,136.2,135.8,134.5$, 130.6, 128.4, 128.4, 128.1, 127.0, 126.5, 125.8, 121.7, 118.8, 117.5, 110.7, 107.7, 61.4, 55.2, 51.1, 24.9; [$\alpha \mathrm{D}^{20}=-22.0$ (c 1.0 MeOH); HRMS (ESI +) Calc. For $\left[\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}\right]+$ req. 430.1526 Found 430.1515 .

Dose-response assays

Detailed descriptions can be found in the supporting information. In general: compound was serially diluted in a 96 -well plate containing growth media ($100 \mu \mathrm{~L}$), then $100 \mu \mathrm{~L}$ growth media containing mid-log-phase parasite or HeLa cells in were added at the appropriate seeding density. Plates were incubated at 72 h , at the appropriate temperature, after which $10 \mu \mathrm{M}$ alamar blue ($1.1 \mathrm{mg} / \mathrm{mL}$ resazurin sodium salt in PBS) was added. Plates were incubated for a further 7 h before recording fluorescence. EC_{50} values were determined using a 4-parameter non-linear logistic regression equation and were normalized with no cell/no inhibitor controls.

Acknowledgements

This work was supported through funding from the EPSRC (grant number EP/J500549/1) and the University of St Andrews School of Chemistry.

Conflict of interest

The authors declare no conflict of interest.

Keywords: cyclization • polycycles • antiprotazoal agents • biological activity • structure activity relationships
[11] K. Pulka, D. Feytens, A. Misicka, D. Tourwé, Mol. Divers. 2010, 14, 97-108.
[12] I. Wauters, H. Goossens, E. Delbeke, K. Muylaert, B. I. Roman, K. Van Hecke, V. Van Speybroeck, C. V. Stevens, J. Org. Chem. 2015, 80, 8046-8054.
I. M. Gomez-Monterrey, P. Campiglia, A. Bertamino, C. Aquino, O.

Mazzoni, M. V. Diurno, R. Iacovino, M. Saviano, M. Sala, E Novellino, P. Grieco, European J. Org. Chem. 2008, 2008, 19831992.
[14] R. Unnava, A. K. Sahu, A. K. Saikia, Asian J. Org. Chem. 2017, 6, 1003-1007.
[15] P. H. H. Hermkens, J. H. V.Maarseveen, C. G. Kruse, H. W.
Scheeren, Tetrahedron Lett. 1989, 30, 5009-5012.
T. M. Goater, C. P. Goater, G. W. Esch, Parasitism: The Diversity and Ecology of Animal Parasites, Cambridge University Press, Cambridge, UK, 2013.
"WHO Human African Trypanosomiasis," can be found under http://www.who.int/trypanosomiasis_african/en/, 2021.
"WHO Chagas Disease," can be found under http://www.who.int/chagas/en/, 2021.
"WHO Leishmaniasis," can be found under http://www.who.int/leishmaniasis/en/, 2021.
T. Sunyoto, J. Potet, M. Boelaert, BMJ Glob. Heal. 2018, 3, e000709.
N. Baker, H. P. de Koning, P. Mäser, D. Horn, Trends Parasitol. 2013, 29, 110-118.
M. C. O. Campos, L. L. Leon, M. C. Taylor, J. M. Kelly, Mol. Biochem. Parasitol. 2014, 193, 17-19.
S. Mohapatra, Trop. Parasitol. 2014, 4, 4.

World Health Organization, World Health Organ. Tech. Rep. Ser. 2012, v-xii, 1-100.
P. E. Cockram, T. K. Smith, J. Nat. Prod. 2018, 81, 2138-2154.
C.-H. Chen, G. S. Yellol, C.-H. Tsai, P. B. Dalvi, C.-M. Sun, J. Org. Chem. 2013, 78, 9738-9747.
E. D. Cox, J. M. Cook, Chem. Rev. 1995, 95, 1797-1842.
B. de Carné-Carnavalet, J.-P. Krieger, B. Folléas, J.-L. Brayer, J.-P. Demoute, C. Meyer, J. Cossy, European J. Org. Chem. 2015, 2015, 1273-1282.
J.-R. loset, R. Brun, T. Wenzler, M. Kaiser, V. Yardley, DNDi PanAsian Screen. Netw. 2009, 74.

WILEY-VCH

RESEARCH ARTICLE

Entry for the Table of Contents

A diastereoselective intramolecular Pictet Spengler condensation was developed to achieve an SP^{3}-rich 6-5-6-6 ketopiperazine-type scaffold. The cyclisation employs tryptophan-based dipeptide precursors which allow product stereochemistry to be tailored using readily available D and L amino acids. SAR analysis, examining different scaffold substitutions and stereochemical configurations, led to the discovery of lead compounds with activity against Trypanosoma brucei, Trypanosoma cruzi and Leishmania major.

