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THE SURFACE GROUP CONJECTURES FOR GROUPS

WITH TWO GENERATORS

GILES GARDAM, DAWID KIELAK, AND ALAN D. LOGAN

Abstract. The Surface Group Conjectures are statements about
recognising surface groups among one-relator groups, using either
the structure of their finite-index subgroups, or all subgroups. We
resolve these conjectures in the two generator case. More generally,
we prove that every two-generator one-relator group with every
infinite-index subgroup free is itself either free or a surface group.

1. Introduction

The role of surface groups in the pro-p world is played by Demushkin
groups, introduced in 1961 in the study of Galois theory. In 1973,
Andožskĭı [And73] characterised Demushkin groups as precisely those
finitely generated non-cyclic one-related pro-p groups of cohomological
dimension 2, all of whose maximal subgroups are also one-relator pro-p
groups. Motivated by this result, in 1980 Mel’nikov [KM21, Problem
7.36] asked: let G be a residually finite one-relator group with every
subgroup of finite index also a one-relator group; is G either free or a
surface group? (The question appears also in [BFR19, Question 2.16].)
Let us introduce the following.

Definition 1.1 (Mel’nikov group). A Mel’nikov group is a non-free
infinite one-relator group with every subgroup of finite index also a
one-relator group.

Compared to Mel’nikov’s original question, we added non-freeness
and being infinite to the definition (finite cyclic groups are obvious
counterexamples to the question), but we removed residual finiteness.
The reason for this is that it is not clear what role this last assump-
tion plays. It seems that it was included in Mel’nikov’s question to
strengthen the analogy with Andožskĭı’s result.
Residually finite Mel’nikov groups are not necessarily surface groups,

with the Baumslag–Solitar groups BS(1, n) forming a family of counter-
examples; the Kourovka Notebook records that this was pointed out
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by Čurkin in 1982. This observation prompted a number of results
and conjectures trying to understand which algebraic properties force
a one-relator group to be a surface group; we refer the reader to the
survey of Baumslag–Fine–Rosenberger for more details [BFR19, Sec-
tion 2.4], but we remark that the strongest result [Wil12, Corollary 5],
due to Wilton, is for limit groups (that is, finitely generated fully resid-
ually free groups). The two remaining conjectures here are the Surface
Group Conjectures A & B, and are as follows. Recall that a surface
group is the fundamental group of a closed surface of non-positive Euler
characteristic (i.e. a closed surface other than the sphere or projective
plane) and note that this includes the torus and Klein bottle, giving
the groups BS(1, 1) and BS(1,−1) respectively.
Firstly, Ciobanu–Fine–Rosenberger conjectured that the Baumslag–

Solitar groups BS(1, n) are the only non-surface Mel’nikov groups, and
therefore suggested the following conjecture [CFR13], see also [BFR19,
Conjecture 2.17].

Conjecture 1.2 (Surface Group Conjecture A). Let G be a residually

finite Mel’nikov group. Then G is a surface group or BS(1, n) for some

non-zero integer n.

The second conjecture was suggested by Fine [BMS02, Question
OR15], [FKM+07, Conjecture 1.2], [BFR19, Question 2.18]. It is weaker
than Conjecture 1.2 since the groups it concerns are residually finite
anyway, being finitely generated and free-by-cyclic [Bau71].

Conjecture 1.3 (Surface Group Conjecture B). Let G be a Mel’nikov

group with every subgroup of infinite index free. Then G is a surface

group.

We suggest a third conjecture of our own that is much stronger than
Conjecture 1.3. We later justify this conjecture by proving that it
follows from Gromov’s famous Surface Subgroup Conjecture for Hy-
perbolic Groups (see Theorem 3.6).

Conjecture 1.4. Let G be an infinite non-free one-relator group with

every subgroup of infinite index free. Then G is a surface group.

Strebel proved that if G is a Poincaré duality group, then all its
infinite index subgroups have strictly smaller cohomological dimension
[Str77]. Conjecture 1.4 addresses the question of when the converse
holds for dimension 2.
It is a standard fact that a one-relator group is two-generated if and

only if it is (1) finite cyclic, so G = 〈x | xn〉, or (2) a two-generator
one-relator group (possibly Z), so G = 〈x, y | R〉 with R 6= 1, or (3)
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the free group of rank 2, so G = 〈x, y, z | R〉 with R primitive [LS01,
II.5.11] (this also can be deduced from a theorem of Stallings [Sta65,
p. 171]). Note that we adopt the convention that one-relator presenta-
tions have non-trivial relator; this is convenient when considering Euler
characteristic, which indeed distinguishes between the 3 possibilities
just given. Two-generator one-relator groups are of central importance
in the theory of one-relator groups. In particular, all known pathologi-
cal one-relator groups are two-generated, and Louder and Wilton have
given a conceptual explanation for this importance [LW22, Corollary
1.10 & Conjecture 1.12]. Therefore, if the above conjectures were false,
one might expect them to be false already when G is two-generated.
This is however not the case.

Theorem 1.5. The Conjectures 1.2–1.4 all hold when the group in

question is two-generated.

The proof of Conjecture 1.4 (and thus Conjecture 1.3) in the two-
generator case follows from a more general theorem about indicable
groups with vanishing first L2-Betti number that have all infinite-index
subgroups free. We show that such groups are necessarily either cyclic
or BS(1,±1), see Theorem 2.4. Note that we certainly need some
assumptions on the group beyond having all infinite-index subgroups
free, as for instance there exist non-cyclic groups all of whose proper
non-trivial subgroups are infinite cyclic [Ol’79].
Theorem 2.4 relies on a technical statement, namely Proposition 2.3,

that deals with torsion-free groups with vanishing first L2-Betti number
that satisfy the Atiyah conjecture, and in which all normal infinite-
index subgroups are free products of finitely generated groups. We
show that every epimorphism to Z from such a group has finitely gen-
erated kernel. Another way to say this is that such groups must have
the first BNS-invariant equal to the entire character sphere.
We frequently use a number of standard facts about one-relator

groups: that they contain torsion if and only if the relator is a proper
power [MKS04, Theorem 4.13]; that in the torsion-free case the presen-
tation complex is aspherical [Lyn50, Coc54], and hence that the Euler
characteristic χ(G) of G = 〈x | R〉 is 2−|x|; that in the torsion-free case
the first L2-Betti number is equal to the Euler characteristic [DL07].

Remark 1.6. After the first version of this article appeared online, Jack
Button informed the authors of an alternative proof of Conjecture 1.4
in the two generator case, using the Coherence Theorem of Feighn–
Handel [FH99] in place of L2-Betti numbers to show finite generation
of K in the proof of Theorem 2.4.
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2. Groups with two generators

In this section we prove Theorem 1.5.

2.1. Infinite-index subgroups. First we will focus on Conjecture 1.4,
on groups where all subgroups of infinite index are free.

Lemma 2.1. Let G be an infinite group. If all infinite-index subgroups

of G are free, then G is torsion free.

Proof. Let g ∈ G be of finite order. The subgroup it generates is finite,
and hence of infinite index in G, and hence free. But it is also finite,
and therefore must be trivial. Thus g = 1. �

Since in Conjecture 1.4 we are interested in infinite groups, we see
now that in fact we are interested in torsion-free one-relator groups.
When |x| = 2, such groups have Euler characteristic equal to zero, and
so have first L2-Betti number equal to zero [DL07]. Hence, in the next
couple of results we will focus on groups with first L2-Betti number
equal to zero, bearing in mind that groups of interest here will satisfy
this property. The results that now follow are however more general.
Recall that an agrarian map is a unit-preserving ring homomorphism

α : ZG → K where ZG is the integral group ring of a group G, and
where K is a skew-field. This notion was introduced in [Kie20]. There
are three agrarian maps that are frequently used: one arises from the
Atiyah conjecture, and the other two are used in defining Alexander
polynomials, the multivariate and univariate kinds. All three share
some structural properties, so we will stay in the level of generality
that may then be applied to all three situations.
Let ρ : G → Z be a quotient map and t ∈ G be such that ρ(t)

generates Z. Suppose that we have a skew-field L and a unit-preserving
ring morphism α : Z ker ρ → L. Suppose further that the action of t on
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ker ρ by conjugation descends to an action on α(Z ker ρ), and that it
can be extended to an action on the whole of L. Using this extension,
we form the ring of twisted Laurent polynomials L[t, t−1]; we may now
also extend the domain of α and obtain a ring morphism

α : ZG → L[t, t−1].

Finally, we let K be the Ore localisation of L[t, t−1], and we follow α
by the inclusion L[t, t−1] → K. Let us now see how this general setup
incorporates three situations alluded to above.
First, we may start with α|Zker ρ being the augmentation map fol-

lowed by embedding Z into Q. We then get L = Q with trivial t-action.
This choice is used in computing the univariate Alexander polynomial
corresponding to the map ρ.
Second, we may take α|Z ker ρ to be the ring map induced by the group

homomorphism taking ker ρ first to G and then to H1(G;Q). Denoting
the Q-generators of the image of ker ρ in H1(G;Q) by s1, . . . , sn, we
obtain a ring map

α|Zker ρ : Z ker ρ → Z[s1, s1
−1, . . . , sn, sn

−1].

We then change scalars from Z to Q, and Ore-localise to the field of
rational functions L = Q(s1, . . . , sn). The action of t on L is triv-
ial. This choice is used in the definition of the multivariate Alexander
polynomial.
Third, when G is torsion free and satisfies the Atiyah conjecture, we

may take K to be the Linnell skew-field D(G) of G, and L to be the
Linnell skew-field D(ker ρ) of ker ρ. The theory of Linnell skew-fields
guarantees that K is the Ore localisation of L[t, t−1], see for example
[Kie20, Subsection 4.1]. The action of t comes from the conjugation
action within D(G). The map α : ZG → D(G) is as described above,
and its existence comes straight from the theory of Linnell skew-fields.
This is the situation that is key for applications in this article.
We will proceed now with our general setup. Note that as K is a

skew-field and a G-module, we may define the Betti numbers

βK
i (G) = dimK Hi(G;K).

When K = D(G), these Betti numbers are precisely the L2-Betti num-
bers of G.

Proposition 2.2. Let G = K⋊Z be finitely generated, and let K be as

described above. If βK
1 (G) = 0, then βK

1 (K) is a non-negative integer.

Proof. We let ρ : G → Z denote the projection ofK⋊Z onto the second
factor. We pick a finite generating set x of G with an element t ∈ x

such that ρ(t) generates Z, and ρ(x) is trivial for every x ∈ x r {t}.
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This means that to compute the first group homology of G we may look
at the chain complex of right ZG-modules C• = (Ci, ∂i) with Ci = 0
for all i > 2 and with the first three terms as follows:

⊕

R

ZG
∂2−→

⊕

x

ZG
∂1−→ ZG

where R is some possibly infinite indexing set (corresponding to rela-
tions in G). The modules above come equipped with obvious bases as
right ZG-modules. Clearly, the elements of these bases acted on by
integer powers of t form right ZK-bases. Also, ∂1 may be identified
with the (1× x)-matrix over ZG with entries 1− x for x ∈ x.
The same chain complex, now thought of as a chain complex of free

ZK-modules, computes the first group homology ofK. More explicitly,

βK
1 (K) = dimKH1(C• ⊗ZK K).

Since α(K) ⊆ L, and since L and K are both skew-fields, we see that

βK
1 (K) = βL

1 (K).

Suppose that there exists s ∈ xr {t} such that the image of 1− s ∈
ZK in K is non-trivial; note that the image automatically lies in L.
We change the basis of the module C1 ⊗ZG L[t−1, t] =

⊕
x
L[t−1, t] by

multiplying it on the left by the matrix equal to the identity except in
the s-column, in which the s-entry is α(1− s)−1, and the s′-entry is

−α(1− s′)α(1− s)−1

for every s′ ∈ xr {s}. The matrix is invertible over L[t−1, t] since it is
a product of elementary matrices and a diagonal matrix with non-zero
diagonal entries. After this change of basis, the differential ∂1 ⊗ZG id
becomes the projection onto the factor of

⊕
x
L[t−1, t] corresponding

to s. In particular, ker ∂1 ⊗ZG id coincides with
⊕

xr{s} L[t
−1, t]. Since

the change of basis is an automorphism of the L[t−1, t]-module C1⊗ZG

L[t−1, t], it is automatically an isomorphism, and hence a change of
basis, of the underlying L-module, which is isomorphic to C1 ⊗ZK L.
This means that we may indeed change the basis of C1 ⊗ZG L[t, t−1]
as above without changing βK

1 (G) and βL
1 (K). In what follows we will

work in this new basis.
If no such s exists, then the matrix representing ∂1 after passing to

L[t, t−1] has all entries zero, except one, which is equal to 1− t. Hence
ker ∂1 ⊗ZG id coincides with

⊕
xr{t} L[t

−1, t]. In this case we set s = t
for notational convenience.
Now ker ∂1 ⊗ZG id in C1 ⊗ZG K coincides with

⊕
xr{s}K. Since

H1(C• ⊗ZG K) = 0, every element of
⊕

xr{s}K lies in the image of
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∂2 ⊗ZG id. Since K is the Ore localisation of L[t−1, t], this implies that
every factor of

⊕
xr{s} L[t

−1, t] contains a non-zero element, say px,

x ∈ xr {s}, lying in the image of

∂2 ⊗ZG id : C2 ⊗ZG L[t, t−1] → C1 ⊗ZG L[t, t−1].

Since px is Laurent polynomial in t, it has a degree, namely the differ-
ence between the highest and the lowest power of t appearing in px. It
is immediate that

βK
1 (K) = βL

1 (K) = dimL H1(C• ⊗ZK L)

is bounded above by the sum of the degrees of the polynomials px,
which is a non-negative integer. �

Now we are going to apply the above considerations to groups in
which we have some control over infinite-index subgroups.

Proposition 2.3. Let G be a torsion-free group satisfying the Atiyah

conjecture. Let φ : G → Z be an epimorphism whose kernel K is a free

product of finitely generated groups. If the first L2-Betti number of G
is equal to zero, then K is finitely generated.

Proof. Since G is torsion-free, K is a free product of infinite groups.
The first L2-Betti number of such a group is bounded below by the num-
ber of non-trivial free factors minus 1 by Lück’s appendix to [BDJ08],
and hence Proposition 2.2 tells us that K can only have finitely many
free factors. It follows that K is itself finitely generated. �

Theorem 2.4. Let G be a finitely generated group with first L2-Betti

number equal to zero, such that G admits an epimorphism to Z. If all

infinite-index subgroups of G are free, then G is isomorphic to either

Z or BS(1,±1).

Proof. The assumptions give us an epimorphism G → Z with kernel
K that is necessarily free. It follows that G is torsion free and that it
satisfies the Atiyah conjecture (by the work of Linnell [Lin93]).
By Proposition 2.3, K = Fn for some n, and the action of Z is given

by an automorphism φ ∈ Aut(Fn). If n = 0 then G = Z. Let us now
assume that G 6= Z, and hence that n > 1.
If G is not hyperbolic then φ is not atoroidal, as proven by Brink-

mann [Bri00], and so G contains Z2. This last subgroup must be of
finite index, and therefore G cannot contain a non-abelian free group.
We conclude that n = 1 and the result follows.
If G is hyperbolic then it is virtually RFRS by the work of Hagen–

Wise [HW15] and Agol [Ago13]. Every non-abelian finitely generated
RFRS group G admits a finite-index subgroup H whose abelianisation
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has rank greater than the original group. If our group G is virtually
abelian, then being hyperbolic and torsion-free it is isomorphic to Z,
which we have already discounted. Thus G contains a finite-index
subgroup H with abelianization of rank at least 2. The subgroup H
is moreover hyperbolic and all of its infinite-index subgroups are free.
Now, again by Proposition 2.3, all epimorphisms H → Z have finitely
generated kernels. Thus, the first BNS invariant Σ1(H) coincides with
the entire character sphere of H , and therefore H fits into a short exact
sequence

N → H → Zm

with N finitely generated, m > 2, and with Zm being the free part
of the abelianisation of H , see [BNS87, Theorem B1]. The free group
Fn in H is the kernel of an epimorphism H → Z, and every such
epimorphism has to factor through Zm above. Hence Fn itself fits into
a short exact sequence

N → Fn → Zm−1

with m − 1 > 0. This implies that N is a normal, finitely generated
subgroup of Fn of infinite index. The only such subgroup is the trivial
group, which forces n = 1 and m = 2. So H must be isomorphic to Z2,
which is not hyperbolic. This is a contradiction. �

Corollary 2.5. If all infinite-index subgroups of G = 〈x, y | R〉 are

free, then either G is free or G ∼= BS(1,±1).

Proof. By Lemma 2.1, G is torsion free. Therefore either R is trivial,
and so G is free, or R is not trivial, and hence the first L2-Betti number
of G is zero. In the latter case we may use Theorem 2.4. �

Clearly the above corollary confirms Conjectures 1.3 and 1.4 when
|x| = 2.

2.2. Mel’nikov groups. Next we turn to Conjecture 1.2 on Mel’nikov
groups, i.e. on one-relator groups all of whose finite index subgroups
are themselves one-relator. First we make a general observation.

Proposition 2.6. Every Mel’nikov group is torsion-free.

Proof. A one-relator group G = 〈x | R〉 has torsion if and only if
the word R ∈ F (x) is a proper power, that is, R = Sn for some n > 1
maximal. Such a group G has Euler characteristic χ(G) = 1−|x|+1/n
[Chi76, Theorem 4], which in particular is not an integer.
So, let G = 〈x | Sn〉 be an infinite one-relator group with torsion.

Then G surjects onto Z, and every torsion element of G is contained in
the kernel of this map. Hence, G surjects onto the cyclic group of order
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n with kernel K containing all the torsion elements of G. Therefore,
K is not torsion-free. Also,

χ(K) = n · χ(G) = n− n|x|+ 1 ∈ Z.

Therefore, K contains torsion but has integer Euler characteristic, and
so K is not a one-relator group, again by [Chi76, Theorem 4]. �

Now we will use a theorem of Mann–Segal to resolve Conjecture 1.2
in the two-generated case; note that the theorem builds on the work of
Lubotzky–Mann [LM89], which in particular applies the Feit–Thompson
Odd Order Theorem.

Theorem 2.7. A two-generated residually finite Mel’nikov group is

isomorphic to BS(1, n) for some n.

Proof. Let G be a 2-generator Mel’nikov group. As we have just seen,
G is torsion free and its Euler characteristic is zero. This implies that
the same two properties are enjoyed by all finite index subgroups of
G, and hence each of these subgroups is specifically a two-generator

one-relator group.
By a theorem of Mann and Segal [MS90, Theorem A], any residu-

ally finite group whose finite index subgroups have uniformly bounded
rank is virtually solvable, so in particular G has no non-abelian free
subgroups.
Magnus rewriting allows us to write G as an HNN extension with

finitely generated vertex and edge groups, and with the edge group free.
Since G is not Z, the edge group is non-trivial. We immediately con-
clude that the edge group is Z. Also, if the attaching maps embedding
the edge group into the vertex group both have proper image, then one
easily constructs a non-abelian free subgroup in G using Bass–Serre
theory. Hence G must be an ascending HNN extension of Z, that is, it
must be isomorphic to BS(1, n). �

3. Connections

In this section we connect Conjectures 1.2–1.4 to recent advances
and other conjectures in Geometric Group Theory.

3.1. Negative immersions. Louder–Wilton in [LW22] introduced the
concept of having negative immersions for two-dimensional CW-complexes
(for a comparison with the stronger notation of negative immersions in
the sense of Wise [Wis22], see [LW21, Section 3.4]). One-relator groups
with negative immersions are hyperbolic and virtually special [Lin22].
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Louder–Wilton give a group theoretic characterisation of negative im-
mersions for presentation complexes of one-relator groups, and we use
the following form of that characterisation.

Theorem 3.1 ([LW21, Theorem 1.2]). The presentation complex of

a one-relator group has negative immersions if and only if every two-

generated subgroup is free.

The groups G = 〈x | R〉 of Conjecture 1.4 have negative immersions
when |x| > 3:

Theorem 3.2. Let G = 〈x | R〉 be an infinite one-relator group with

every subgroup of infinite index free. If |x| > 3 then G has negative

immersions.

Proof. The group G is torsion-free by Lemma 2.1, and so χ(G) = 2 −
|x| 6 −1. Any proper finite-index subgroup H has rank at least 3:
χ(H) 6 −2 but H is also 2-dimensional, so

χ(H) = β0(H)− β1(H) + β2(H) > 1− β1(H),

and thus β1(H) > 3. This implies that all proper subgroups of G that
are two-generated are of infinite index, and thus free.
We still need to check what happens if G itself is two-generated. By

a standard one-relator group fact, since χ(G) 6 −1 this is only possible
if G ∼= F2 is free. We are therefore done by Theorem 3.1. �

However, we have been unable to prove the analogous result for the
groups G = 〈x | R〉 of Conjecture 1.2 when |x| > 3, so we have the
following question.

Question 3.3. Let G = 〈x | R〉 be a residually finite Mel’nikov group

with |x| > 3. Does G necessarily have negative immersions?

3.2. The Surface Subgroup Conjecture for Hyperbolic Groups.

One of the most famous conjectures in geometric group theory, attrib-
uted to Gromov on Bestvina’s list of questions [Bes04, Q 1.6], states
that every one-ended hyperbolic group contains a surface subgroup.
This is known to be true in many cases (we give [Wil18] as a general ref-
erence), notably for the fundamental groups of hyperbolic 3-manifolds
[KM12]. We now prove that this conjecture implies Conjecture 1.4
thanks to a recent theorem of Mutanguha on hyperbolicity of ascend-
ing HNN extensions of free groups (it also follows from a recent preprint
of Linton). We also apply Kerckhoff’s Nielsen Realisation Theorem:

Theorem 3.4 ([Ker83]). A torsion free group that is virtually a surface

group is itself a surface group.
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In the instances where we apply this theorem, the group surjects
onto Z so an earlier result of Eckmann and Müller is sufficient [EM82,
Theorem A].
First we prove the following general result.

Proposition 3.5. Let G be a finitely generated group which admits an

epimorphism to Z. If all infinite-index subgroups of G are free, then G
is hyperbolic or a surface group.

Proof. Suppose that G is not hyperbolic. Then since the kernel of an
epimorphism G → Z is free, G is the mapping torus of an automor-
phism of a (possibly infinite rank) free group and so it must contain
a Baumslag–Solitar subgroup H ∼= BS(1, n) with |n| > 1 by [Mut21,
Corollary 5.3.6]. However, every infinite index subgroup of G is free
and so H has finite index in G. Now, |n| = 1 as otherwise H de-
composes as Z[1/n] ⋊ Z and so H , and hence G, contains a non-free
subgroup of infinite index. Thus H is a surface group and so is G by
Theorem 3.4. �

We now conclude that Conjecture 1.4 follows from a weakened ver-
sion of The Surface Subgroup Conjecture for Hyperbolic Groups, spe-
cific to one-relator groups.

Theorem 3.6. Suppose that every one-ended hyperbolic one-relator

group contains a surface subgroup. Let G = 〈x | R〉 be an infinite non-

free one-relator group with every subgroup of infinite index free. Then

G is a surface group.

Proof. By Proposition 3.5, G is a surface group, and we are done, or
G is hyperbolic. (Linton has recently proven that every one-relator
group whose presentation complex has negative immersions is hyper-
bolic [Lin22], so this step also follows by combining Corollary 2.5 and
Theorem 3.2, dealing with the cases of |x| = 2 and |x| > 3 respectively.)
Any splitting of the non-free hyperbolic group G would imply the

existence of a non-free infinite index subgroup, so G is one-ended. Thus
in the case that it is hyperbolic, our assumptions tell us that it contains
a surface subgroup H , which must have finite index in G. As G is
torsion-free we are done by Theorem 3.4. �

That Conjecture 1.4 follows from The Surface Subgroup Conjecture
for Hyperbolic Groups is now immediate.
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