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Certifying emergent genuine multipartite entanglement with a partially blind witness
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Genuine multipartite entanglement underlies correlation experiments corroborating quantum mechanics and
it is an expedient empowering many quantum technologies. One of many counterintuitive facets of genuine
multipartite entanglement is its ability to exhibit an emergent character. That is, one can infer its presence in
some multipartite states merely from a set of its separable marginals. Here we show that the effect can also be
found in the context of Gaussian states of bosonic systems. Specifically, we construct examples of multimode
Gaussian states carrying genuine multipartite entanglement which can be verified solely from separable nearest-
neighbor two-mode marginals. The key tool of our construction is an entanglement witness acting only on some
two-mode reductions of the global covariance matrix, which we find by a numerical solution of a semidefinite
program. We also propose an experimental scheme for preparation of the simplest three-mode state, which
requires interference of three correlatively displaced squeezed beams on two beam splitters. Besides revealing
the concept of emergent genuine multipartite entanglement in the Gaussian scenario and bringing it closer to
experimentally testable form, our results pave the way to effective diagnostics methods of global properties of
multipartite states without complete tomography.
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I. INTRODUCTION

Like from an incomplete puzzle, we assemble reality from
fragments of information incoming from the outside world.
This coarse-grained grasping of reality is mostly sufficient for
successful and safe orientations in our environment. Barring
wrong interpretation of reality, the exception to this rule may
occur in situations when the partial information available to
us carries no signatures of a global property, the knowledge of
which is crucial for our correct decision.

There is a parallel with the quantum world here, namely,
the wave function contains all available information about a
state of a quantum system, but for many tasks we do not need
to know it completely. However, unlike the classical world
case, the fragments of the wave function may not carry traces
of the global property which is important for the particular
task, yet our knowledge gained from its parts can still be
sufficient.

The states with that remarkable property share similarities
with entangled states [1], as both exhibit a counterintuitive
relationship between the whole and its parts. Not surprisingly
then, states with nonlocal correlations [2,3] and, in partic-
ular, multipartite entanglement [4–9], are examples of such
states, with a global property that can be inferred from parts
lacking this property. Out of many flavors of multipartite
entanglement [10], the main focus lies on its strongest form,
the genuine multipartite entanglement, which is behind the
multipartite tests of quantum nonlocality [11], complex be-
havior of strongly correlated systems [12], certain models of
quantum computing [13], and increased precision of quantum
measurements [14].

Exploration of states with genuine multipartite entangle-
ment verifiable from separable marginals is interesting for two

reasons. First, as this sort of genuine multipartite entangle-
ment is visible from separable marginals only, it appears as
an emergent phenomenon [8] being a large-scale property of
the whole, which is not present in its parts. The states that
carry this kind of entanglement then can provide insight into
the structure of correlations that stay behind this counterin-
tuitive effect. The second reason is more practical, namely,
the form of genuine multipartite entanglement carried by the
states is subtle and thus the states may serve, similarly as
bound entangled states [15], for testing as well as designation
of new genuine multipartite entanglement criteria based on
marginals. In fact, finding the considered states is intimately
related to the development of such criteria, since one needs
them for confirmation of the presence of genuine multipartite
entanglement detectable from marginals. Let us emphasize
that development of such economic criteria is nowadays a
highly relevant topic. This is because many current appli-
cations require genuine multipartite entangled states of a
large number of particles whose size makes detection of the
entanglement with conventional criteria utilizing entire den-
sity matrix a difficult task. It is expected that derivation of
genuine multipartite entanglement criteria working only with
marginals will simplify the task significantly, similarly to what
happens in the case of certification of multipartite entangle-
ment with respect to a certain splitting based on marginals
[16]. In addition, the criteria may also find applications in
situations when one can for some reason access only parts of
the investigated state.

Examples of quantum states, for which a global property
can be inferred from the fragments lacking this property,
have been discovered in the last decade only, and only for
qubits [7,8]. Very recently, such qubit states that carry genuine
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FIG. 1. Graphical representation of all minimal sets of two-mode
marginals for three and four modes. The vertices represent the
modes. An edge connecting modes i and j represents a two-mode
marginal density matrix ρi j and it is labeled by the respective covari-
ance matrix γi j . See text for details.

multipartite entanglement verifiable solely from separable
two-qubit reduced states (marginals) were demonstrated ex-
perimentally [17]. The set of marginals used to certify the
entanglement comprised all two-qubit marginals [7,8,17].

Interestingly, genuine multipartite entanglement can be
detected even from a smaller set of separable marginals. In-
deed, one can find multiqubit states that possess all two-qubit
marginals separable and whose genuine multipartite entan-
glement can be inferred only from the so-called minimal set
of two-qubit marginals [9]. The minimal set covers any part
of the entire system and it contains only marginals between
nearest neighbors, which guarantees that knowledge of the set
suffices to confirm global entanglement. In geometric terms,
if we represent parts of the global state as vertices of a graph
[18] and the bipartite marginals as its edges, then the mini-
mal set corresponds to a treelike graph. States with genuine
multipartite entanglement which can be confirmed using only
the elements of the minimal set were found in Ref. [9] for
all configurations of up to six qubits. It has been done using
the iterative numerical search algorithm [9], combining the
machinery of entanglement witnesses [19,20] with the tools of
semidefinite programming [21]. The best example obtained so
far with qubits was a three-qubit entangled state. References
[8,17] reported the lowest witness mean roughly three times
smaller than the witness mean for the scenario in which all
two-qubit marginals are known. Moreover, the difference is
even more pronounced compared to other theoretically pre-
dicted witness means [22] of the multipartite entanglement
witness experiments, already successfully implemented [23].
This indicates the complexity of the possible experimental
demonstration of the studied effect using qubit states.

In this paper, we take a different approach to the problem
and find the investigated property in the realm of Gaussian
states [24,25]. More precisely, we look for Gaussian states
with all two-mode marginals separable and whose genuine
multipartite entanglement can be proved only from the min-
imal set of the marginals (see Fig. 1). For this purpose, we use

the methods of Gaussian multipartite entanglement witnesses
[26] to assemble a Gaussian analog of the qubit search algo-
rithm of Ref. [9]. We then find examples of the studied states
for all configurations of up to six modes with the simplest ex-
amples involving only three modes, in analogy to the simplest
three-qubit example [8] but with a more robust and stronger
effect. The witness mean for the Gaussian three-mode genuine
multipartite entanglement is roughly the same size as the the-
oretically predicted values [26] for some other experimentally
realized Gaussian multimode entangled states [27]. Further,
the required squeezing is less than one-third of a vacuum unit.
Thus, the Gaussian states seem to be more promising to elu-
cidate the specific emergent property of genuine multipartite
entanglement. We devise in this paper a feasible linear-optical
circuit for preparation of the three-mode state to study the ef-
fect. The scheme is based on interference of three correlatively
displaced squeezed beams on three beam splitters. Our results
reveal that a minimal set of overlapping separable marginals
should suffice to also reveal genuine multipartite entangle-
ment in the Gaussian scenario and indicate that Gaussian
continuous variables represent a promising alternative plat-
form for experimental demonstration of the emergent property
of genuine multipartite entanglement.

II. GAUSSIAN STATES

We consider the set of Gaussian states of systems
with infinite-dimensional Hilbert space, which we shall
call modes in what follows. A collection of N modes
Aj , j = 1, 2, . . . , N can be characterized by a vector ξ =
(xA1 , pA1 , . . . , xAN , pAN )� of position and momentum quadra-
tures xAj and pAj , respectively, which obey the canonical
commutation rules [ξ j, ξk] = i(�N ) jk with �N = ⊕N

j=1iσy,
where σy is the Pauli-y matrix. Gaussian states are defined
as states with a Gaussian-shaped phase-space Wigner func-
tion. An N-mode Gaussian state ρ is thus fully described
by a 2N × 1 vector 〈ξ 〉 = Tr[ξρ] of first moments and by
a 2N × 2N covariance matrix (CM) γ with entries (γ ) jk =
〈ξ jξk + ξkξ j〉 − 2〈ξ j〉〈ξk〉. The first moments can be nullified
by local displacements and thus they are irrelevant as far as
the correlation properties investigated here are concerned. For
this reason, we set them to zero from now on.

Any CM γ reflects the uncertainty principle by satisfying
the inequality

γ + i�N � 0, (1)

which is not only a necessary but also a sufficient condition for
a real symmetric 2N × 2N matrix γ to be a CM of a physical
quantum state [28]. Besides, a CM also carries complete infor-
mation about the separability properties of the corresponding
Gaussian state. Recall first that a quantum state ρ jk of two
subsystems j and k is separable if it can be expressed as
a convex mixture of product states ρ

sep
j|k ≡ ∑

i piρ
(i)
j ⊗ ρ

(i)
k ,

where ρ
(i)
j and ρ

(i)
k are local states of subsystems j and k,

respectively. If the state cannot be written in this form, it is
called entangled. Separability of a two-mode Gaussian state
ρ jk can be ascertained by the positive partial transposition
(PPT) criterion [19,28,29]. On the CM level, the partial trans-
position operation � j with respect to mode j transforms the

CM γ jk of the state as γ
(� j )
jk = (σz ⊕ 1)γ jk (σz ⊕ 1), where σz
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is the Pauli-z matrix and 1 is the 2 × 2 identity matrix. The
PPT criterion then says [28] that the state ρ jk is separable if

and only if (iff) the matrix γ
(� j )
jk is a physical CM, i.e., iff

γ
(� j )
jk + i�2 � 0. (2)

The PPT criterion is a sufficient condition for separability only
for two-mode [28] and 1 × M-mode [30] Gaussian states. For
systems where each party holds more than one mode, one has
to use a more powerful criterion [30] according to which an
N-mode Gaussian state with a CM γ consisting of an l-mode
subsystem A ≡ A1A2 . . . Al and an (N − l )-mode subsystem
B ≡ Al+1Al+2 . . . AN is separable iff there are CMs γA and γB

of the subsystems such that

γ − γA ⊕ γB � 0. (3)

The separability criterion (3) is advantageous because it can
be formulated as the so-called semidefinite program (SDP)
[21].

Recall that in its basic form an SDP is the following opti-
mization problem [21,26]:

minimize
x

c�x

subject to F (x) = F0 +
t∑

i=1

Fixi � 0,
(4)

which is a minimization of a real linear function c�x of a
vector x ∈ Rt under the constraint in the form of a matrix in-
equality F (x) � 0. The SDP (4) is specified by the vector c ∈
Rt and a set of Hermitian matrices Fi ∈ Cs×s, i = 0, 1, . . . , t ,
and it is commonly referred to as a primal program.

Building on these ideas, the separability criterion (3) then
can be formulated as the following SDP [26]:

minimize
γA,γB,xe

(−xe)

subject to γ − γA ⊕ γB � 0,

γA ⊕ γB + (1 + xe)i�N � 0.

(5)

If there is an optimal solution xe � 0, then CM γ describes a
separable state because there exist CMs γA and γB such that
the separability criterion (3) is satisfied. If, on the other hand,
xe < 0, then the state with CM γ is entangled.

III. GAUSSIAN ENTANGLEMENT WITNESSES

In practice, one needs most often to certify the presence
of entanglement in a given state rather than to show that it
is separable. However, many entanglement criteria, including
the PPT criterion or criterion (3), require knowledge of the
entire quantum state and thus they are not economical as
far as the number of measurements is concerned. This also
implies that the criteria cannot be used in cases when we have
access only to a part of the investigated state. Nevertheless,
it is still possible to detect entanglement provided that we
have some a priori information about the state, namely, one
can prove the presence of entanglement by measuring the so-
called entanglement witnesses [19,20], which requires fewer
measurements compared to the measurement of the whole
quantum state [31].

A. Bipartite entanglement witnesses

For a bipartite state, an entanglement witness is a Hermi-
tian operator with a non-negative average for all separable
states and a negative average on at least one entangled state.
However, the task of finding entanglement witnesses for den-
sity matrices of continuous-variable modes is often hardly
tractable owing to their infinite dimension. A much more sim-
ple option, which is particularly suitable for Gaussian states,
is to seek entanglement witnesses for CMs [26]. For an N-
mode state, such a witness is represented by a 2N × 2N real,
symmetric, and positive-semidefinite matrix Z , which satisfies
the following conditions:

(i) Tr[γ Z] � 1 for all separable γ ,

(ii) Tr[γ Z] < 1 for some entangled γ . (6)

Entanglement detection by means of matrix Z possesses
several advantages. First, the expression Tr[γ Z] is a linear
function of second moments and therefore can be measured by
local homodyne detections followed by a suitable processing
of the output photocurrents. More importantly, the expression
also typically contains only some elements of CM γ and thus
requires fewer measurements than one needs to measure the
entire CM. Another advantage of using matrix Z is that for a
given CM γ , it can be found numerically by solving the dual
program to the program (5) [26].

Note first that the dual program to the SDP (4) is again an
SDP of the following form [21]:

maximize
W

− Tr[F0W ]

subject to W � 0,

Tr[FiW ] = ci.

(7)

The importance of the dual program rests in the fact that
its maximal objective value provides a lower bound on the
minimal objective value of the primal program. What is more,
under relatively mild assumptions the two objective values are
equal [32].

By applying the generic form of the dual program (7) to the
primal program (5), we get the dual program of the following
form [26]:

minimize
X1,X2

Tr
[
γ X re

1

] − 1

subject to X bd,re
1 = X bd,re

2 , X1 � 0, X2 � 0,

Tr[i�N X2] = −1.

(8)

Here Xj ( j = 1, 2) are 2N × 2N Hermitian matrices, the sym-
bol X re

j stands for the real part of matrix Xj , and X bd
j =

XjA ⊕ XjB, where XjA and XjB are diagonal blocks of matrix
Xj , corresponding to subsystems A and B, respectively (bd
stands for block diagonal).

It can be shown [26] that for every feasible solution X1 ⊕
X2, the matrix X re

1 satisfies

Tr
[
γ X re

1

]
� 1 (9)

for every CM γ of a separable state. Further, if γ is a CM of
an entangled state, then

Tr
[
γ X re

1

]
< 1. (10)

062410-3



VIKTOR NORDGREN et al. PHYSICAL REVIEW A 106, 062410 (2022)

This implies that the real matrix X re
1 is an entanglement wit-

ness which is, in addition, optimal in the sense that it yields
the minimal value of Tr[γ Z] out of all possible witnesses Z .
Needless to say, by adding more constraints into the SDP (8),
one can seek witnesses with a special structure. Below we will
see that one can seek witnesses which are blind to certain parts
of CM γ .

B. Genuine multipartite entanglement witnesses

Bipartite entanglement is just one particular kind of
entanglement. In multipartite systems consisting of N >

2 subsystems, one can also investigate multipartite entan-
glement which occurs among more than two groups of
subsystems. In general, it is possible to split all subsystems
into k disjoint subsets, k ∈ {N, N − 1, . . . , 2}, and analyze
entanglement with respect to this k-partite split [33]. We say
that a state is k-separable with respect to a k-partite split if it
can be expressed as a convex mixture of product states with
respect to the split. Otherwise, the state is called as entangled
with respect to the split. Since separability properties with
respect to different k-partite splits are generally independent
[10], a complete characterization of multipartite entanglement
requires to consider all possible k-partite splits for all k. This
allows us to classify multipartite states into a hierarchy of sets
of states exhibiting different separability properties with re-
spect to all the splits [10,33]. At the top of the hierarchy, there
are states which are not separable with respect to any split.
However, this is not the strongest form of multipartite entan-
glement as some of the states can be created by convex mixing
of some k-separable states [34] and thus their preparation does
not require interaction of all subsystems. For this reason, the
concept of genuine N-partite entangled states was introduced
as a synonym for states that cannot be expressed as a convex
mixture of some k-separable states for any k � 2 [22]. Note
that any k-separable state with k > 2 is also 2-separable with
respect to an appropriate 2-partite split. Consequently, all
states which are not genuinely N-partite entangled can then
be expressed as a convex mixture of some 2-separable states,
which are fittingly called biseparable states. This reveals that
for the presence of genuine multipartite entanglement in a

given quantum state, it is sufficient to show that it is not
biseparable.

The concept of biseparability carries over straightfor-
wardly to CMs of N-mode Gaussian states. For this purpose,
let us collect modes Aj , j = 1, 2, . . . , N , into the set N =
{A1, A2, . . . , AN } and let I = {1, 2, . . . , N} be its index
set. Next, consider a nonempty proper index subset Jk =
{i1, i2, . . . , il} of 0 < l < N elements of index set I and
let J̄k = I\Jk denote its complement containing the re-
maining N − l elements of I. This allows us to split set
N into K ≡ 2N−1 − 1 different inequivalent 2-partitions,
called bipartitions in what follows, π (k) ≡ MJk |M̄Jk , k =
1, 2, . . . , K , where MJk = {Ai1 , Ai2 , . . . , Ail } and M̄Jk =
MJ̄k

= N \MJk .
Moving to the criterion of biseparability, one can show [26]

that an N-mode Gaussian state with CM γ is biseparable iff
there exist bipartitions π (k) and CMs γπ (k), which are block
diagonal with respect to the bipartition π (k), and probabilities
λk such that

γ −
K∑

k=1

λkγπ (k) � 0. (11)

Similarly as bipartite separability can be verified by solv-
ing the SDP (5), biseparability embodied by condition (11)
can also be verified by solving an SDP [26]. Analogously,
just like an optimal witness of bipartite entanglement can be
obtained by solving the dual problem (8) of the former SDP,
the optimal witness of genuine N-partite entanglement can
be found by solving the dual problem of the corresponding
SDP [26]. Recall first that the witness of genuine N-partite
entanglement is represented by a 2N × 2N real, symmet-
ric, and positive-semidefinite matrix Z satisfying conditions
[26]

(i) Tr[γ Z] � 1 for all biseparable γ ,

(ii) Tr[γ Z] < 1 for some entangled γ . (12)

For a given CM γ , the witness can be found by solving the
following dual problem [26]:

minimize
X

Tr
[
γ X re

1

] − 1

subject to X re,bd,π (k)
1 = X re,bd,π (k)

k+1 for all k = 1, . . . , K,

Tr[i�N Xk+1] + XK+2 − XK+3 + XK+3+k = 0, for all k = 1, . . . , K,

XK+2 − XK+3 = 1.

(13)

with the objective function written in its reduced form [26], Eq. (45)]. The minimization is preformed over a Hermitian positive-
semidefinite [2N (K + 1) + 2 + K]-dimensional block-diagonal matrix

X =
2K+3⊕

j=1

Xj, (14)

with Xj , j = 1, 2, . . . , K + 1 being 2N × 2N Hermitian ma-
trices and Xj , j = K + 2, K + 3, . . . , 2K + 3 being 1 × 1
Hermitian matrices, i.e., real numbers. Only the real part of

the first component, X re
1 , is employed in the reduced objective

function. The remaining components of X are used solely
in the constraints. The kth equation X re,bd,π (k)

1 = X re,bd,π (k)
k+1
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imposes a constraint on diagonal blocks of the matrices X1 and
Xk+1 written in the block form with respect to the bipartition
π (k). More precisely, let us express the matrix Xj in the block
form with respect to the N-partite split A1|A2| . . . |AN ,

Xj =

⎛
⎜⎜⎝

(Xj )11 (Xj )12 . . . (Xj )1N

(Xj )
†
12 (Xj )22 . . . (Xj )2N

...
...

. . .
...

(Xj )
†
1N (Xj )

†
2N . . . (Xj )NN

⎞
⎟⎟⎠, (15)

where (Xj )mn is a 2 × 2 block. Then the matrix X bd,π (k)
j is of

the same block form with the 2 × 2 blocks given by

(
X bd,π (k)

j

)
mn

=
{

(Xj )mn if m, n ∈ Jk or J̄k

O otherwise,
(16)

where O is the 2 × 2 zero matrix. For simplest cases N = 3
and N = 4, an explicit form of the matrices X bd,π (k)

j can be
found in Appendix A.

According to the results of Ref. [26], for every feasible
solution X of the dual program (13), the matrix X re

1 is an
optimal genuine multipartite entanglement witness.

C. Blind genuine multipartite entanglement witnesses

The witness obtained by solving the program (13) acts on
the entire CM γ and therefore enables us to certify genuine
multipartite entanglement provided that all elements of the
CM are known. Viewed from a different perspective, it is
equivalent to witnessing the entanglement from all two-mode
marginal CMs because they completely determine the global
CM. In this respect, the domain of Gaussian states differs
from the qubit case, where the knowledge of all two-qubit
marginals is not generally equivalent to the knowledge of
the whole density matrix. To make the task of inference of
genuine multipartite entanglement from marginals in Gaus-
sian scenario meaningful, we thus have to work only with a
proper subset of all two-mode marginal CMs. In what follows,
we utilize the so-called minimal sets of bipartite marginals,
which were recently introduced in Ref. [9] to solve the task for
qubits. Obviously, a necessary condition for the set to allow
detection of global entanglement is that it contains all modes
and that one cannot divide it into a subset and its comple-
ment without having a common mode. Among all such sets,
a particularly important role is played by further irreducible
sets containing a minimum possible number of two-mode
marginals.

A more convenient pictorial representation of such min-
imal sets was put forward in Ref. [9] in the form of an
unlabeled tree [18], which is a special form of an undirected
connected graph containing no cycles. Recall that a graph is
a pair G = (V, E ) of a set V = {1, 2, . . . , N} of vertices and
a set E ⊆ K ≡ {{u, v}|(u, v) ∈ V 2 ∧ u �= v} of edges [35]. In
our case, a vertex j of the graph represents mode Aj , whereas
the edge connecting adjacent vertices j and k represents
marginal CM γAj Ak . By definition, the minimal set contains
two-mode marginal CMs corresponding to the edges in the re-
spective tree denoted as T = (V, E ′). A closed formula for the
number of nonisomorphic trees with N vertices is not known,
yet for small N it can be found in Ref. [36]. In particular,
all trees for the three-mode case (N = 3) and four-mode case

(N = 4) are depicted in Fig. 1, where we performed the fol-
lowing identification: A ≡ A1, B ≡ A2,C ≡ A3, and D ≡ A4.

Ignorance of some sectors of CM γ requires us to impose
some additional constraints onto the structure of the witness
X re

1 , the solution of the SDP (13). Specifically, as the respec-
tive tree is connected, the minimal set contains all single-mode
CMs as well as 2 × 2 blocks of correlations between the
modes corresponding to the endpoints of the edges of the tree
T . The part of the CM γ which we do not know is there-
fore given by all 2 × 2 off-diagonal blocks of correlations
between pairs of modes carried by the marginal two-mode
CMs contained in the complement of the minimal set. The
elements of the complement correspond to the edges in the
complement graph T̄ = (V, K\E ′), i.e., to the edges which
have to be added to the original tree T to form the complete
graph. Since for a given N the complete graph contains

(N
2

)
edges and the tree T contains exactly N − 1 edges [35], the
number of unknown blocks of correlations is equal to L ≡
(N − 1)(N − 2)/2. Further, as Tr[γ X re

1 ] = ∑
j,k (γ ) jk (X re

1 ) jk ,
for the witness X re

1 not to act on the unknown blocks of CM γ ,
the blocks of X re

1 corresponding to the unknown blocks of γ

have to vanish. More precisely, if we express the witness X re
1

in the block form with respect to N-partite split A1|A2| . . . |AN

similar to Eq. (15), its 2 × 2 off-diagonal blocks have to
satisfy the following set of L equations:(

X re
1

)
mn = O if {m, n} ∈ K\E ′, (17)

which have to be added to the SDP (13) as additional con-
straints. The resulting witness X re

1 will thus detect genuine
multipartite entanglement only from the minimal set of two-
mode marginal CMs characterized by the tree T . This brings
us to the following definition: A genuine multipartite en-
tanglement witness X re

1 satisfying constraints (17) is called
a partially blind genuine multipartite entanglement witness
corresponding to the tree T . In particular, for N = 3 and the
tree in Fig. 1(a), the constraint reads explicitly as(

X re
1

)
13 = O. (18)

Likewise, in the case N = 4 and for the linear tree in Fig. 1(b),
the constraints are(

X re
1

)
13 = (

X re
1

)
14 = (

X re
1

)
24 = O, (19)

whereas for the t-shaped tree in Fig. 1(c), one gets the con-
straints of the following form:(

X re
1

)
13 = (

X re
1

)
14 = (

X re
1

)
34 = O. (20)

Before going further let us compare scaling of the number
of independent elements of a CM needed for detection of gen-
uine multipartite entanglement by a criterion utilizing entire
CM and only minimal set of marginal CMs. Due to symme-
try a generic N-mode CM containing also x − p correlations
possesses altogether N (2N + 1) independent elements. The
above graph representation allows us to calculate easily the
analogous number for a given minimal set of CMs. Let us
note first that to each of the N vertices of a graph representing
the considered minimal set corresponds a local single-mode
2 × 2 CM with three independent elements. Further, to each
of N − 1 vertices corresponds an off-diagonal 2 × 2 block of
correlations between the modes represented by the end ver-
tices of the edge, which has four independent elements. The
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total number of independent elements is then obviously equal
to 3N + 4(N − 1) = 7N − 4. We see that while for the entire
CM, the number of independent elements scales quadratically
with the number of modes N , the growth is only linear for
every minimal set of marginal CMs. This makes investigation
of partially blind entanglement witnesses and other entangle-
ment criteria based on minimal sets of marginals attractive
because they may save a significant number of measurements,
in particular, when one tests entanglement in a large multi-
mode state.

IV. SEARCH ALGORITHM

The goal of the present paper is to find an example
of a Gaussian state with all two-mode marginals separable
and whose genuine multipartite entanglement can be verified
solely from the minimal set of two-mode marginals. Recently,
multiqubit examples of such states have been found [9] using
a two-step algorithm proposed in Ref. [8]. Here, we employ
the following Gaussian analog of the algorithm:

Step 0: Generate a random pure Gaussian state with CM
γ0. For simplicity, we assume no x − p correlations in γ0.

Step 1: For CM γ0, find a witness X re
1 by solving numer-

ically the SDP (13) supplemented with the constraints (17),
which we shall refer to as the SDP 1. Note, that the SDP 1 can
be solved using a modification of Matlab routines provided in
Ref. [26] by including the constraints (17).

Step 2: Find a CM γ that gives the least value of Tr[γ X re
1 ]

for the witness X re
1 from step 1 under the constraint that the

CM possesses all two-mode marginals separable. Again, the
search can be accomplished by solving the following SDP:

minimize
γ

Tr
[
γ X re

1

]

subject to γ + i�N � 0,

γ
(� j )
jk + i�2 � 0, for all j �= k = 1, . . . , N,

(γ )2 j−1,2k = (γ )2 j,2k−1 = 0, j, k = 1, . . . , N,

(21)
which is from now on referred to as SDP 2. Here we carry out
the minimization over all real symmetric 2N × 2N matrices
γ . The first constraint in (21) guarantees that the matrix γ

is a CM of a physical quantum state, whereas the second
constraint assures that all its two-mode marginal CMs γ jk

are separable. Finally, we perform minimization only over
matrices γ which do not contain any x − p correlations [the
third constraint in (21) stemming from assumption in step 0].

By putting the obtained solution from step 2 as an input to
step 1, we can iteratively seek the CM with the desired prop-
erties. In the next section, we use the algorithm to calculate
such CMs for all configurations of up to six modes.

V. RESULTS

We did a numerical search of examples of the investigated
effect for all minimal sets of marginals for up to six modes.
We used MOSEK [37,38] optimization software interfaced by
YALMIP [39] and PICOS [40] software libraries. By running
SDP 1 and SDP 2 successively for ten iterations, for every
minimal set we found many examples of CMs of states with

TABLE I. Examples of N-mode Gaussian
states with all two-mode marginals separable and
whose genuine multipartite entanglement can be
verified from the minimal set of marginals.

all two-mode marginals separable and whose genuine multi-
partite entanglement can be verified solely from the marginals
belonging to the set. The found CMs typically exhibited large
diagonal entries and required high squeezing for preparation.
To get experimentally easier accessible CMs, we therefore
added another two constraints to SDP 2 (21). First, we lim-
ited the diagonal elements of the CM to lie within the range
[1,10]. Second, we constrained the smallest eigenvalue of the
sought CM γ to be above 0.2. Making use of the modified
search algorithm, we then found for each configuration more
than 100 examples of CMs carrying all required properties.
The best examples giving the least value of Tr[γ Z] − 1 are
summarized in Table I.

Similar to the qubit case [9], the absolute value of
Tr[γ Z] − 1 decreases with increasing N and the trend remains
preserved even if we relax the constraints on the diagonal
elements and the least eigenvalue of the respective CM. How-
ever, speed at which examples of the investigated effect can be
found, differs considerably in favour of the present Gaussian
scenario. In the qubit case, to find a six-qubit example on a
standard laptop took around 6 hours [9], whereas we needed
on average less than 2 min to find an example for six modes.
This can be attributed to different dimensionality of the two
systems. For qubits, system size grows exponentially with the
number of parties, while the growth of a size of a CM is only
linear in the number of modes. The present Gaussian platform
thus allows us to explore scaling of the investigated property
even beyond six parties at the cost of roughly fourfold increase
of the search time with addition of each mode. The largest
example we found corresponded to a ten-mode linear graph,
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TABLE II. Minimal eigenvalue ε jk ≡ min{eig[γ
(� j )

3, jk + i�2]}.

jk AB AC BC

ε jk 0.002 0.849 0.004

which gave Tr[γ Z] − 1
.= −0.080 × 10−2, where the symbol

.= stands for correctly rounded to, and it took around 8 h.
In the next subsections, we provide explicit CMs of the best

three-mode and four-mode examples given in the first three
rows of Table I.

A. Three modes

After rounding to two decimal places, the best three-mode
CM we got by running our search algorithm reads

γ3 =

⎛
⎜⎜⎜⎜⎜⎝

1.34 0 −0.35 0 −0.82 0
0 10.00 0 8.45 0 1.87

−0.35 0 7.80 0 −8.05 0
0 8.45 0 7.92 0 2.09

−0.82 0 −8.05 0 10.00 0
0 1.87 0 2.09 0 1.62

⎞
⎟⎟⎟⎟⎟⎠

.

By running the SDP 1 for the rounded CM γ3, we got
Tr[γ3Z3] − 1

.= −0.143 (see the first row in Table I). After
rounding to three decimal places, the corresponding witness,
blind to the correlations between a pair of modes (A,C), is
given by

Z3 = 10−2

⎛
⎜⎜⎜⎜⎜⎝

6.8 0 −0.4 0 0 0
0 34.3 0 −39.5 0 0

−0.4 0 25.1 0 20.9 0
0 −39.5 0 46.1 0 −2.0
0 0 20.9 0 17.5 0
0 0 0 −2.0 0 6.6

⎞
⎟⎟⎟⎟⎟⎠

.

The separability of all marginals is evidenced by
Table II. Inspection of Table II reveals that all eigenvalues
are strictly positive and therefore all three two-mode marginal
states are separable by PPT criterion as required.

We compare now these results with the results for qubits
derived in Ref. [9], benchmarking them by experimental feasi-

bility. For the simplest case of the three-mode state, we found
Tr[γ3Z3] − 1

.= −0.143. It is slightly larger than the theoreti-
cal value of −0.103 for the same quantity for Gaussian bound
entanglement [26,30], a comparable effect, which was already
observed experimentally [27]. For qubits, the case when all
two-qubit marginals are known was recently demonstrated in
Ref. [17] and the corresponding best theoretical witness mean
is equal to −1.98 × 10−2 [8]. Note now that the best qubit
mean of Tr[ρW ]

.= −6.58 × 10−3 obtained for the three-qubit
state from the minimal set [8] is approximately three times
smaller than the best theoretical witness of the experimentally
demonstrated case. Recall further that in the qubit scenario,
the noise tolerance is 5% [8]. For comparison, the produced
state with the CM γ3 tolerates the addition of a small amount
of thermal noise: the CM γp = γ3 + p1 exhibits the effect for
up to p

.= 0.1 and this value is the same as for the successfully
demonstrated case of Gaussian bound entanglement [26].

All these facts indicate the domain of Gaussian states is
a more promising platform for the near-future experimental
demonstration of the effect, and in the next section we present
linear-optical setups to generate γ3.

B. Four modes

In the four-mode case, there are two different minimal sets
of marginals corresponding to the linear tree and the t-shaped
tree displayed in Figs. 1(b) and 1(c), respectively. Through the
same procedure as for the three-mode case, we found CMs
with the desired properties for both the minimal sets, which
are given explicitly below.

1. Linear tree

First, we considered the minimal set of marginals given
by the CMs γAB, γBC , and γCD, corresponding to the edges
in the linear tree in Fig. 1(b). To reflect this, we included the
constraints (19) into our search algorithm and produced many
four-mode CMs with the desired properties. The best such CM
is

γ4a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.83 0 −0.02 0 −1.38 0 2.83 0
0 7.18 0 8.06 0 7.09 0 −4.12

−0.02 0 3.91 0 −2.46 0 4.73 0
0 8.06 0 9.79 0 8.47 0 −4.81

−1.38 0 −2.46 0 2.58 0 −4.68 0
0 7.09 0 8.47 0 10.00 0 −3.08

2.83 0 4.73 0 −4.68 0 10.00 0
0 −4.12 0 −4.81 0 −3.08 0 3.22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

The optimal witness Z4a, which is blind to correlations
of modes (A,C), (A, D), and (B, D), gives the value of
Tr[γ4aZ4a] − 1

.= −0.069 (see the second row in Table I). For
the expression for the witness see Appendix B. The separa-
bility of all marginals can be confirmed again by the PPT
criterion (2) which is captured in Table III. As all entries in

TABLE III. Minimal eigenvalue ε
(a)
jk ≡ min{eig[γ

(� j )
4a, jk + i�2]}.

jk AB AC AD BC BD CD

ε
(a)
jk 0.005 0.347 0.213 0.004 0.087 0.224
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TABLE IV. Minimal eigenvalue ε
(b)
jk ≡ min{eig[γ

(� j )
4b, jk + i�2]}.

jk AB AC AD BC BD CD

ε
(b)
jk 0.0481 0.0032 0.5256 0.1103 0.0001 0.5489

the second row of Table III are strictly positive, all two-mode
marginal CMs of CM γ4a are separable as required. Note
further that the effect is roughly half that of the three-mode
case, which makes its experimental demonstration a bigger
challenge.

2. t-shaped tree

Finally, we give explicitly a CM of a state whose gen-
uine four-mode entanglement can be witnessed from its
nearest-neighbor marginals as per the graph in Fig. 1(c). This
corresponds to the t-shaped tree for which the minimal set
comprises marginal CMs γAB, γBC , and γBD, and the witness

FIG. 2. Decomposition of symplectic transformation S generat-
ing a Gaussian state with CM γ3 of three modes A, B, and C: ν j

thermal states with mean number of thermal photons (ν j − 1)/2,
j = A, B,C (circles); U : passive transformation consisting of beam
splitters BS(U )

jk , jk = AB, AC, BC (leftmost box); V : passive trans-

formation consisting of beam splitters BS(V )
jk (rightmost box); R

squeezing transformation consisting of one squeezer in position
quadrature, RA, and two squeezers in momentum quadrature, RB and
RC (middle box). For rounded parameters as in Tables V and VI, the
circuit produces the CM γ ′

3, which closely approximates the CM γ3,
and retains its entanglement properties. See text for details.

then fulfils the constraints (20). The best example CM found
reads

γ4b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5.23 0 0.45 0 −0.02 0 −2.43 0
0 1.16 0 3.00 0 1.15 0 0.51

0.45 0 3.35 0 0.91 0 −5.20 0
0 3.00 0 10.00 0 3.52 0 2.06

−0.02 0 0.91 0 4.09 0 −2.97 0
0 1.15 0 3.52 0 1.62 0 0.62

−2.43 0 −5.20 0 −2.97 0 10.00 0
0 0.51 0 2.06 0 0.62 0 1.49

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

The corresponding optimal witness Z4b is blind to in-
termodal correlations of pairs of modes (A,C), (A, D), and
(C, D). It gives the value of Tr[γ4bZ4b] − 1

.= −0.068 (see the
third row in Table I) and its explicit form can be found in
Appendix B. Once again, the separability of the marginals can
be verified via the PPT criterion. The results are summarized
in Table IV.

The effect is about the same strength as for the linear tree.
A point to note is that, for qubits, a pure state example was
found for the t-shaped tree in Ref. [9] while we found only a
mixed-state example in the Gaussian scenario.

VI. EXPERIMENTAL SCHEME

In the previous section, we have seen that the investigated
effect is strongest in the three-mode case. For this reason, we
now derive a linear-optical scheme for the preparation of a
Gaussian state with the three-mode CM γ3. The scheme is
depicted in Fig. 2.

The scheme follows from Williamson’s symplectic diago-
nalization of a CM [41], the Bloch-Messiah decomposition
of a symplectic matrix [42], and the decomposition of an
orthogonal symplectic matrix into an array of beam split-
ters and phase shifters [43,44]. More precisely, according to
Williamson’s theorem [41], for any CM γ there is a symplec-

tic transformation S which brings the CM to the normal form,

SγS� =
N⊕

i=1

νi1 ≡ W, (24)

where ν1, ν2, . . . , νN � 1 are the so-called symplectic
eigenvalues of CM γ . In particular, ν1 = ν2 = . . . = νN = 1 if
the state is pure. Consequently, making use of the symplectic
transformation S ≡ S−1, one can write γ = SWS�. The
symplectic eigenvalues are the magnitudes of the eigenvalues
of the matrix i�γ [45] and for CM γ3 they are written in
Table V. The corresponding symplectic matrix S can be
found numerically either using the method of Ref. [46] or the
method of Ref. [47].

Employing the Bloch-Messiah decomposition [42], we nu-
merically further decomposed the symplectic matrix S into

TABLE V. Symplectic eigenvalues ν j , the squeezing parameters
s j , and the corresponding variance VdB = 10Log10[(s j )2] in decibels
(dB).

j A B C

ν j 6.835 1.012 1.004
s j 0.396 0.851 0.478
VdB −8.05 −1.40 −6.41
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TABLE VI. Amplitude transmissivities Tjk and τ jk .

jk AB AC BC

Tjk 0.555 0.947 0.492
τ jk 0.716 0.904 0.657

passive transformations U and V , and an active transformation
R, as

S = V RU . (25)

Here, U and V are orthogonal and symplectic transformations
and R = RA(sA) ⊕ RB(s−1

B ) ⊕ RC (s−1
C ) is the squeezing trans-

formation, where Rj (s j ) = diag(s j, s−1
j ) ( j = A, B,C) is the

diagonal matrix and the squeezing parameters s j < 1 can be
found in Table V. These transformations are represented by
the boxes U, R, and V in Fig. 2.

Next, following the method of Refs. [43,44], one can de-
compose the passive transformations U and V into an array of
three beam splitters as in Fig. 2,

U = B(U )
BC (TBC )B(U )

AC (TAC )B(U )
AB (TAB),

V = B(V )
AB (τAB)B(V )

AC (τAC )B(V )
BC (τBC ), (26)

where the beam splitter matrices B(U )
jk (Tjk ) and B(V )

jk (τ jk )
( jk = AB, AC, BC) are given explicitly in Appendix C, and
the beam splitter transmissivities Tjk and τ jk can be found in
Table VI.

Our decomposition is numerical and thus we rounded its
parameters to three decimal places. Consequently, the out-
put CM γ ′

3 slightly deviates from the original CM γ3, yet it
retains all relevant entanglement properties: it is genuinely
multipartite entangled with Tr[γ ′

3Z ′
3] − 1 = −0.138 and the

marginals are all separable as per Table VII. The CM γ ′
3 and

the corresponding witness Z ′
3 can be found in Appendix D.

In the next section, we present an equivalent, yet more
adapted for implementation, circuit whose output CM still
retains all required properties.

A. Simplified circuit

The scheme in Fig. 2 offers two simplifications which
make its experimental realization easier. First, the input states
of modes B and C can be approximated by vacuua (note the
respective values of ν j in Table V). Second, the classically cor-
related state subject to the squeezing transformations can be
replaced by correlatively displaced squeezed vacuum states.
This follows from the fact that a thermal state at the input of
mode A can be prepared by the displacements x(0)

A → x(0)
A + t

and p(0)
A → p(0)

A + w of its position and momentum vacuum
quadratures x(0)

A and p(0)
A , respectively. Here t and w are uncor-

related classical zero mean Gaussian random variables with

TABLE VII. Minimal eigenvalue ε′
jk ≡ min{eig[γ

′(� j )
3, jk + i�2]}.

jk AB AC BC

ε jk 0.005 0.852 0.010

TABLE VIII. Parameters α j and β j of displacements (27).

j A B C

α j 0.2 −0.7 1.3
β j 1.3 −0.5 0.3

second moments 〈t2〉 = 〈w2〉 = (νA − 1)/2. On the level of
quadrature operators, the transformations U and R are linear,
hence we can push the displacements through the circuit and
place them after the R transformation. They then attain the
following form:

x j → x j + α jt, p j → p j + β jw, j = A, B,C, (27)

where the parameters α j and β j after rounding are shown
in Table VIII. Further, the first step of the obtained scheme
consists of application of a passive transformation U on three
vacuum states, which is nothing but a triple vacuum state, and
thus the transformation U can be omitted completely. In this
way, we arrive at the simplified scheme depicted in Fig. 3.

Using the squeezing parameters and transmissivities found
in the third row of Tables V and VI, respectively, as well as
the displacements in Table VIII, the circuit in Fig. 3 produces
a state which is genuinely multipartite entangled and has all
marginals separable. Calling the CM of this state γ̄3, the op-
timal witness for this CM gives Tr[γ̄3Z̄3] − 1 = −0.139. The
numerical CM γ̄3 along with the corresponding entanglement
witness may be found in Appendix D.

Verification of genuine multipartite entanglement in CM γ̄3

from marginals γ̄3,AB and γ̄3,BC can be carried out in two ways.
One option is to measure the marginal CMs and subsequently
find the respective partially blind witness by solving the SDP
1. A bigger challenge is to directly measure the witness Z̄3.
Notably, we have developed a method to find a measurement
associated with a given witness, which derivation is though
rather lengthy. Therefore, here we only sketch the method,
whereas the details of its derivation can be found in Ap-
pendix E.

FIG. 3. Scheme for preparation of a Gaussian state with CM γ̄3

carrying genuine multipartite entanglement verifiable from nearest-
neighbor separable marginals. The input comprises three vacuum
states (circles). The squeezing transformation R (leftmost box) and
the transformation V (rightmost box) are the same as in Fig. 2. The
block D (middle box) contains correlated displacements DA, DB, and
DC (white boxes) given in Eq. (27), where the parameters α j and β j

are in Table VIII and 〈t2〉 = 〈w2〉 = (νA − 1)/2. See text for details.
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Consider the CM γ̄3 and the witness Z̄3, which are block
diagonal with respect to the splitting into position and mo-
mentum degrees of freedom, i.e., γ̄3 = γ̄3 x ⊕ γ̄3 p and Z̄3 =
Z̄3 x ⊕ Z̄3 p, respectively. This allows us to rewrite the entan-
glement criterion Tr[γ̄3Z̄3] < 1 as

U + V < 1
2 , (28)

where U = Tr(γ̄3 xZ̄3 x )/2 and V = Tr(γ̄3 pZ̄3 p)/2. Since Z̄3 is
real, symmetric, and positive-semidefinite, so are the matri-
ces Z̄3 j , j = x, p, and one can decompose them using the
Cholesky decomposition as Z̄3 j = LjL�

j , where Lj is a real
lower triangular matrix with nonnegative diagonal elements
[48,49]. The quantities U and V then attain the form

U ≡
3∑

i=1

〈(�ui )
2〉, V ≡

3∑
i=1

〈(�vi )
2〉, (29)

with

ui ≡
3∑

j=1

(Lx ) jix j, vi ≡
3∑

j=1

(Lp) ji p j, (30)

where we assigned the following notation to the modes:
1 ≡ A, 2 ≡ B, and 3 ≡ C. Elements of the matrices Lx,p

can be expressed in terms of elements of the matrices
(Z̄3 x,p) [50], Sec. 4.2.9] and hence, for the the partially blind
witness Z̄3 with (Z̄3 x,p)31 = 0, we get (Lx,p)31 = 0. We fur-
ther set (Lx )11 = g1, (Lx )21 = g2, (Lx )22 = g3, (Lx )32 = g4,
(Lx )33 = g5, (Lp)11 = h1, (Lp)21 = h2, (Lp)22 = h3, (Lp)32 =
h4, (Lp)33 = h5. Then we calculate the variables (30),

u1 = g1x1 + g2x2, u2 = g3x2 + g4x3, u3 = g5x3,

v1 = h1 p1 + h2 p2, v2 = h3 p2 + h4 p3, v3 = h5 p3,

(31)

and find the quantities (29) in terms of quadrature measure-
ments:

U = 〈[�(g1x1 + g2x2)]2〉 + 〈[�(g3x2 + g4x3)]2〉
+ g2

5〈(�x3)2〉,
V = 〈[�(h1 p1 + h2 p2)]2〉 + 〈[�(h3 p2 + h4 p3)]2〉

+ h2
5〈(�p3)2〉. (32)

For the witness Z̄3, we obtain

{g1, g2, g3, g4, g5}
= {0.2422,−0.0224, 0.5116, 0.4107, 0.0018},

{h1, h2, h3, h4, h5}
= {0.5806,−0.6821, 0.0754,−0.2482, 0.0092}. (33)

For the CM γ̄3 and quantities (32), this gives the values
U = 0.2153 and V = 0.2153. As a consequence, for the CM
γ̄3 the criterion (28) reads U + V = 0.4306 < 1/2. The mea-
surement of the witness Z̄3 thus amounts to measurement of
quadrature variables (31), which can be done by homodyne
detection. The numerical values of the coefficients gj and h j

are given in (33).
The simplified scheme in Fig. 3 makes experimental

demonstration of the investigated effect more viable. Primar-
ily, preparation of squeezed states at the input is easier than

implementation of squeezing operations in between beam
splitter arrays U and V (compare positions of boxes R in
Figs. 2 and 3). Further, the largest required amount of squeez-
ing of −8 dB is well within the reach of the current technology
[51] and can be further reduced at the cost of decreased effect
strength. Additionally, the effect is immune to rounding of
CMs and some parameters of the circuit components, which
indicates that perfect matching of the setup parameters with
the theoretical values is not critical for its demonstration.
The CM γ̄3 also retains its properties under the influence of
moderate losses, namely, if each of the modes is subject to the
same loss characterized by the intensity transmissivity η, the
resulting CM γ̄3,η = ηγ̄3 + (1 − η)1 yields Tr[γ̄3,ηZ̄3] − 1 <

0 for η > ηth
.= 0.741. Moreover, by optimizing the witness

to the CM γ̄3,η, we can detect the considered effect even for
higher losses of η > η

opt
th

.= 0.687. Finally, as we have already
mentioned, the output state tolerates the addition of a small
amount of thermal noise, which is, however, of the same
size as for the comparably fragile yet already demonstrated
complex setup [27]. The extent to which the relatively low
noise tolerance and other imperfections are detrimental to
observability of the investigated phenomenon depends on the
used experimental platform and will be addressed elsewhere.

VII. CONCLUSIONS

In this paper, we extended the concept of genuine multipar-
tite entanglement verifiable from separable marginals to the
domain of Gaussian states. We constructed many examples of
Gaussian states possessing all two-mode marginals separable
and whose genuine multipartite entanglement can be certified
solely from the set of nearest-neighbor marginals. Each of the
sets is characterized by a connected graph with no cycles,
where the vertices represent the modes and the edges the
nearest-neighbor marginals. Our examples are numerical and
result from an iterative search algorithm relying on construc-
tion of a genuine multipartite entanglement witness in the
space of covariance matrices. Moreover, the witness is blind
to correlations between modes corresponding to nonadjacent
vertices in the respective graph.

Here we gave examples for all configurations of up to six
modes thus complementing the study of the investigated phe-
nomenon in multiqubit systems [9]. Since the dimensionality
of Gaussian states scales slower with the number of parties
than for qubit states, we were able to also construct more
complex examples involving up to ten modes.

The three-mode state we found exhibits the strongest form
of the property compared to all other cases and therefore we
proposed a scheme for preparation of the state, which consists
of three quadrature squeezers sandwiched between two triples
of phase-free beam splitters. Further, we replaced the original
scheme by a simpler scheme, which still produces the desired
effect but requires only interference of three squeezed states
subject to correlated displacements on three beam splitters.
The squeezing used in the setup is well within the reach of the
current technology. Additionally, all relevant properties of the
output state remain preserved under the influence of moderate
losses as well as after contamination by a small amount of
thermal noise, thus rendering the observation of the investi-
gated property of genuine multipartite entanglement feasible.
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A successful realization of the proposed setup would mean an
extension of the experimental analysis of the phenomenon of
emergent genuine multipartite entanglement [8] from qubits
and the scenario when all bipartite marginals are known [17]
to the realm of Gaussian states and more generic situation
when only some bipartite marginals are accessible.

The impact of the presented results is multifold. First, they
point at an alternative approach toward experimental inves-
tigation of the remarkable concept of genuine multipartite
entanglement verifiable from incomplete sets of separable
marginals, complementing experiments demonstrating Gaus-
sian genuine multipartite entanglement by means of global
inseparability criteria [52–54]. Second, here we used partially
blind witnesses to construct examples of states exhibiting
genuine multipartite entanglement provable from separable
marginals. However, it is expected that the witnesses will also
be capable of detecting genuine multipartite entanglement
of many other states possessing inseparable marginals. In-
deed, preliminary results indicate that all six-mode witnesses
corresponding to configurations in Table I detect genuine
multipartite entanglement of states prepared experimentally in
Ref. [55]. Recall that in Ref. [55] multipartite entanglement
with respect to all possible splits has been investigated by
means of entanglement witnesses based on the separability
eigenvalue equations [56] but genuine multipartite entangle-
ment has not been analyzed. A more thorough analysis of
genuine multipartite entanglement of the states of Ref. [55]
using the method developed here, which would also take into
account the experimental errors, is beyond the scope of the
present paper and will be addressed elsewhere. Finally, the
presented findings also stimulate theoretical questions con-
cerning the existence of a Gaussian classical analog of the
quantum marginal problem [57] or the extendibility of the
entanglement marginal problem [16] to Gaussian case. On a
more general level, our results contribute to the development
of methods of detection of global properties of multipartite
quantum systems from partial information.
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APPENDIX A: BLOCK-DIAGONAL MATRICES IN SDP (13)

In this Appendix, we give an explicit form of matrices
X bd,π (k)

j appearing in SDP (13) for N = 3 and N = 4.

1. N = 3

For N = 3, we have altogether K = 3 bipartitions π (1) =
A|BC, π (2) = B|AC and π (3) = C|AB, where we have omit-

ted the curly brackets from the lists of elements of sets MJk

and M̄Jk for brevity. The first equality in SDP (13) imposes
constraints on certain elements of real parts of 6 × 6 Her-
mitian matrices Xj , j = 1, 2, 3, 4, which are embodied into
matrices, X bd,π (k)

j , given explicitly as

X bd,π (1)
j =

⎛
⎝(Xj )11 O O

O (Xj )22 (Xj )23

O (Xj )
†
23 (Xj )33

⎞
⎠,

X bd,π (2)
j =

⎛
⎝(Xj )11 O (Xj )13

O (Xj )22 O
(Xj )

†
13 O (Xj )33

⎞
⎠,

X bd,π (3)
j =

⎛
⎝(Xj )11 (Xj )12 O

(Xj )
†
12 (Xj )22 O

O O (Xj )33

⎞
⎠.

2. N = 4

For N = 4, there are K = 7 bipartitions π (1) =
A|BCD, π (2) = B|ACD, π (3) = C|ABD, π (4) =
D|ABC, π (5) = AB|CD, π (6) = AC|BD, and π (7) =
AD|BC. The matrices X bd,π (k)

j , k = 1, . . . , 7, obtained by
projection of the matrices Xj onto the block-diagonal form
corresponding to bipartiton π (k), read explicitly as

X bd,π (1)
j =

⎛
⎜⎜⎝

(Xj )11 O O O
O (Xj )22 (Xj )23 (Xj )24

O (Xj )
†
23 (Xj )33 (Xj )34

O (Xj )
†
24 (Xj )

†
34 (Xj )44

⎞
⎟⎟⎠,

X bd,π (2)
j =

⎛
⎜⎜⎝

(Xj )11 O (Xj )13 (Xj )14

O (Xj )22 O O
(Xj )

†
13 O (Xj )33 (Xj )34

(Xj )
†
14 O (Xj )

†
34 (Xj )44

⎞
⎟⎟⎠,

X bd,π (3)
j =

⎛
⎜⎜⎝

(Xj )11 (Xj )12 O (Xj )14

(Xj )
†
12 (Xj )22 O (Xj )24

O O (Xj )33 O
(Xj )

†
14 (Xj )

†
24 O (Xj )44

⎞
⎟⎟⎠,

X bd,π (4)
j =

⎛
⎜⎜⎝

(Xj )11 (Xj )12 (Xj )13 O
(Xj )

†
12 (Xj )22 (Xj )23 O

(Xj )
†
13 (Xj )

†
23 (Xj )33 O

O O O (Xj )44

⎞
⎟⎟⎠,

X bd,π (5)
j =

⎛
⎜⎜⎝

(Xj )11 (Xj )12 O O
(Xj )

†
12 (Xj )22 O O

O O (Xj )33 (Xj )34

O O (Xj )
†
34 (Xj )44

⎞
⎟⎟⎠,

X bd,π (6)
j =

⎛
⎜⎜⎝

(Xj )11 O (Xj )13 O
O (Xj )22 O (Xj )24

(Xj )
†
13 O (Xj )33 O

O (Xj )
†
24 O (Xj )44

⎞
⎟⎟⎠,

X bd,π (7)
j =

⎛
⎜⎜⎝

(Xj )11 O O (Xj )14

O (Xj )22 (Xj )23 O
O (Xj )

†
23 (Xj )33 O

(Xj )
†
14 O O (Xj )44

⎞
⎟⎟⎠.
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APPENDIX B: FOUR-MODE NUMERICAL EXAMPLES

We give an explicit form of numeric witnesses for the four-mode CMs γ4a and γ4b detecting genuine multipartite entanglement
from minimal sets of two-mode marginal CMs characterized by the linear tree and the t-shaped tree in Figs. 1(b) and 1(c),
respectively.

1. Linear tree

The witness which detects the genuine multipartite entanglement of CM γ4a without accessing correlations between pairs of
modes (A,C), (A, D), and (B, D) is

Z4a = 10−2 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.70 0 −1.12 0 0 0 0 0
0 33.29 0 −28.67 0 0 0 0

−1.12 0 6.86 0 6.30 0 0 0
0 −28.67 0 29.50 0 −5.46 0 0
0 0 6.30 0 74.73 0 33.42 0
0 0 0 −5.46 0 7.37 0 2.18
0 0 0 0 33.42 0 16.30 0
0 0 0 0 0 2.18 0 4.11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2. t-shaped tree

The witness detecting genuine multipartite entanglement of CM γ4b, which is blind with respect to correlations between the
pairs of modes (A,C), (A, D), (C, D), reads

Z4b = 10−2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.9945 0 −0.8208 0 0 0 0 0
0 75.6563 0 −25.8998 0 0 0 0

−0.8208 0 38.01 0 −1.5390 0 19.7516 0
0 −25.8998 0 17.9417 0 −21.9613 0 −0.7569
0 0 −1.5390 0 2.9227 0 0 0
0 0 0 −21.9613 0 54.329 0 0
0 0 19.7516 0 0 0 10.5835 0
0 0 0 −0.7569 0 0 0 3.1455

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

APPENDIX C: BEAM SPLITTER TRANSFORMATIONS

In this Appendix, we give explicit form of beam splitter
matrices appearing in Eq. (26) of the main text,

B(U )
AB (TAB) =

⎛
⎝TAB1 RAB1 O

RAB1 −TAB1 O
O O −1

⎞
⎠,

B(U )
AC (TAC ) =

⎛
⎝TAC1 O RAC1

O 1 O
RAC1 O −TAC1

⎞
⎠,

B(U )
BC (TBC ) =

⎛
⎝ 1 O O
O −TBC1 −RBC1
O RBC1 −TBC1

⎞
⎠,

B(V )
AB (τAB) =

⎛
⎝τAB1 ρAB1 O

ρAB1 −τAB1 O
O O 1

⎞
⎠,

B(V )
AC (τAC ) =

⎛
⎝−τAC1 O ρAC1

O 1 O
−ρAC1 O −τAC1

⎞
⎠,

B(V )
BC (τBC ) =

⎛
⎝ 1 O O
O τBC1 ρBC1
O ρBC1 −τBC1

⎞
⎠,

where the transmissivities Tjk and τ jk are given in Table VI of

the main text, while Rjk =
√

1 − T 2
jk and ρ jk =

√
1 − τ 2

jk are the
corresponding reflectivities.

APPENDIX D: CIRCUIT OUTPUT COVARIANCE
MATRICES

In this Appendix, we present output CMs, witnesses, and
relevant eigenvalues of linear-optical circuits in Figs. 2 and 3.

1. Circuit in Fig. 2

First, we present the results for the scheme in Fig. 2 with
parameters given in Tables V and VI of the main text. In this
casem the output CM, rounded to two decimal places, is given
by

γ ′
3 =

⎛
⎜⎜⎜⎜⎜⎝

1.34 0 −0.35 0 −0.82 0
0 10.01 0 8.45 0 1.86

−0.35 0 7.78 0 −8.03 0
0 8.45 0 7.92 0 2.08

−0.82 0 −8.03 0 9.99 0
0 1.86 0 2.08 0 1.62

⎞
⎟⎟⎟⎟⎟⎠

.
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The corresponding witness then reads

Z ′
3 = 10−2

⎛
⎜⎜⎜⎜⎜⎝

6.856 0 −0.453 0 0 0
0 34.115 0 −39.307 0 0

−0.453 0 25.035 0 20.874 0
0 −39.307 0 45.925 0 −2.051
0 0 20.874 0 17.426 0
0 0 0 −2.051 0 6.622

⎞
⎟⎟⎟⎟⎟⎠

and it gives Tr[γ ′
3Z ′

3] − 1 = −0.138.
Further, the marginals of the CMs are all separable, as can be seen in Table IX.

2. Circuit in Fig. 3

In this section, we derive and analyze entanglement properties of the CM γ̄3 at the output of the circuit in Fig. 3.
Initially, vacuum modes A, B, and C enter quadrature squeezers with squeezing parameters given in the second row of Table V.

Next, they are subject to displacements

x j → x j + α jt, p j → p j + β jw, (D1)

where t and w are zero mean Gaussian random variables with second moments 〈t2〉 = 〈w2〉 = (νA − 1)/2 and where the
parameters α j and β j are given in Table VIII. Finally, the three modes interfere on an array of three beam splitters described by
the matrix V in Eq. (26). At the output of the circuit, one gets the following CM:

γ̄3 =

⎛
⎜⎜⎜⎜⎜⎝

1.39 0 −0.21 0 −1.05 0
0 9.95 0 8.26 0 1.7

−0.21 0 7.36 0 −7.83 0
0 8.26 0 7.63 0 1.94

−1.05 0 −7.83 0 10.12 0
0 1.7 0 1.94 0 1.59

⎞
⎟⎟⎟⎟⎟⎠

. (D2)

The optimal witness, which gives Tr[γ̄3Z̄3] − 1 = −0.139, is given by

Z̄3 = 10−2

⎛
⎜⎜⎜⎜⎜⎝

5.867 0 −0.543 0 0 0
0 33.707 0 −39.602 0 0

−0.543 0 26.222 0 21.009 0
0 −39.602 0 47.097 0 −1.872
0 0 21.009 0 16.865 0
0 0 0 −1.872 0 6.167

⎞
⎟⎟⎟⎟⎟⎠

. (D3)

All marginals are separable as evidenced by Table X.

APPENDIX E: WITNESS MEASUREMENT

In the last Appendix, we show how to decompose a generic
N-mode entanglement witness Z into local quadrature mea-
surements. In particular, we give explicitly the measurement
for the witness Z̄3, Eq. (D3), detecting genuine multipartite
entanglement of the state at the output of the circuit in Fig. 3
from the minimal set of two-mode marginals.

Consider N modes labeled by indexes 1, 2, . . . , N . Let us
start with an observation that for CMs without x − p corre-
lations, which are considered in this paper, we can assume
without loss of any generality the witness matrix Z in the
same form [26], Proposition 3]. More precisely, if we re-

TABLE IX. Minimal eigenvalue ε′
jk ≡ min{eig[γ

′(� j )
3, jk + i�2]}.

jk AB AC BC

ε′
jk 0.005 0.852 0.010

order the vector of quadratures ξ as ξ̃ = (ξ�
x , ξ�

p )�, where
ξx = (x1, x2, . . . , xN )� and ξp = (p1, p2, . . . , pN )�, the CMs
analyzed by us are of the block-diagonal form γ = γx ⊕ γp

and the corresponding witness then can be assumed to be also
block diagonal, Z = Zx ⊕ Zp. Consequently, we can rewrite
the entanglement criterion (12) [26] as

Tr(γ Z ) = Tr(γxZx ) + Tr(γpZp) < 1. (E1)

Next, the matrices Z are always real, symmetric, and positive-
semidefinite and so are blocks Zx and Zp. This allows us
to apply the Cholesky decomposition to each block and ex-
press it as Zj = LjL�

j , where Lj is a real lower triangular
matrix with nonnegative diagonal elements [48,49]. If the
blocks Zj are positive definite the matrix Lj is, in addition,
unique, nonsingular and possesses strictly positive diago-

TABLE X. Minimal eigenvalue ε̄ jk ≡ min{eig[γ̄
(� j )

3, jk + i�2]}.

jk AB AC BC

ε̄ jk 0.027 0.862 0.037
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nal elements [48], Corollary 7.2.9]. In a generic case of
positive-semidefinite blocks Zj , the Cholesky decomposition
still exists, but some diagonal elements of the matrix Lj can
be equal to zero and the matrix need not be unique [49], p.
8.3]. Making use of the Cholesky decomposition, the cyclic
property of the matrix trace and the definition of a CM, we
then get

Tr(γ jZ j ) = Tr(γ jL jL
�
j ) =

N∑
i=1

(L�
j γ jL j )ii

= 2
N∑

i=1

〈[�(L�
j ξ j )i]

2〉, (E2)

j = x, p. Introducing, finally, the multimode position and mo-
mentum variables

ui ≡
N∑

j=1

(Lx ) jix j, vi ≡
N∑

j=1

(Lp) ji p j, (E3)

i = 1, . . . , N , and using the formula (E2), we can rewrite the
entanglement criterion (E1) into the form

U + V < 1
2 , (E4)

where we introduced

U ≡
N∑

i=1

〈(�ui )
2〉, V ≡

N∑
i=1

〈(�vi )
2〉. (E5)

The presented method reveals that the measurement of any
block-diagonal witness Z can be realized by a measurement of
N linear combinations ui of position quadratures, and N lin-
ear combinations vi of momentum quadratures, i = 1, . . . , N ,
given in Eq. (E3).

Let us illustrate the general method on a simple two-mode
entanglement witness of the form [26]

Z = 1

2
(
a2 + 1

a2

)
(

a21 |a|
a σz

|a|
a σz

1
a2 1

)
,

where a ∈ R \ {0} and σz is the Pauli-z matrix, which yields
the blocks

Zx,p = 1

2
(
a2 + 1

a2

)
(

a2 ±|a|
a

±|a|
a

1
a2

)
.

The blocks are positive-semidefinite rank-1 matrices and the
corresponding lower triangular matrices Lx and Lp are given
by

Lx,p = 1√
2
(
a2 + 1

a2

)
( |a| 0

± 1
a 0

)
. (E6)

Inserting now the latter matrices into Eq. (E2) and the ob-
tained traces into the inequality (E1), and multiplying the
resulting inequality with the nonnegative number a2 + 1

a2 we
finally get

〈(�u)2〉 + 〈(�v)2〉 < a2 + 1

a2
,

where

u = |a|x1 + 1

a
x2, v = |a|p1 − 1

a
p2,

which is nothing but Duan’s et al. entanglement criterion
[58].

We now apply the previous method to our three-mode
partially blind witness of the form Z̄3, Eq. (D3). Here and in
what follows, we perform the identification 1 ≡ A, 2 ≡ B and
3 ≡ C. First, let us consider a generic three-mode witness Z
for which the matrices Zx and Zp are given by

Zj =
⎛
⎝(Zj )11 (Zj )21 (Zj )31

(Zj )21 (Zj )22 (Zj )32

(Zj )31 (Zj )32 (Zj )33

⎞
⎠. (E7)

Restricting ourselves for simplicity to positive-definite matri-
ces Zx,p, the lower triangular matrices Lx,p appearing in the
Cholesky decomposition of the former matrices are then easy
to find [50], Sec. 4.2.9] and they are of the form

Lj =
⎛
⎝(Lj )11 0 0

(Lj )21 (Lj )22 0
(Lj )31 (Lj )32 (Lj )33

⎞
⎠, (E8)

where

(Lj )11 = √
(Zj )11, (Lj )k1 = (Zj )k1

(Lj )11
,

(Lj )kk =
√√√√(Zj )kk −

k−1∑
l=1

(Lj )2
kl , k = 2, 3,

(Lj )32 = (Zj )32 − (Lj )21(Lj )31

(Lj )22
. (E9)

Moving to the partially blind witness Z̄3, one further has
(Z̄3 x,p)31 = 0, which implies (Lx,p)31 = 0 by Eq. (E9) and the
matrices (E8) boil down to

Lx =
⎛
⎝g1 0 0

g2 g3 0
0 g4 g5

⎞
⎠, Lp =

⎛
⎝h1 0 0

h2 h3 0
0 h4 h5

⎞
⎠, (E10)

where we set (Lx )11 = g1, (Lx )21 = g2, (Lx )22 = g3,
(Lx )32 = g4, (Lx )33 = g5, (Lp)11 = h1, (Lp)21 = h2,
(Lp)22 = h3, (Lp)32 = h4, (Lp)33 = h5 for brevity. Hence,
we get for the variables (E3) the following expressions:

u1 = g1x1 + g2x2, u2 = g3x2 + g4x3, u3 = g5x3,

v1 = h1 p1 + h2 p2, v2 = h3 p2 + h4 p3, v3 = h5 p3,

(E11)

which then yield

U = 〈[�(g1x1 + g2x2)]2〉 + 〈[�(g3x2 + g4x3)]2〉
+ g2

5〈(�x3)2〉,
V = 〈[�(h1 p1 + h2 p2)]2〉 + 〈[�(h3 p2 + h4 p3)]2〉

+ h2
5〈(�p3)2〉, (E12)

according to the definition (E5). Substituting into the formulas
(E9) for elements of Z the numerical values of the witness Z̄3,
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we get

{g1, g2, g3, g4, g5} = {0.2422,−0.0224, 0.5116, 0.4107, 0.0018},
{h1, h2, h3, h4, h5} = {0.5806,−0.6821, 0.0754,−0.2482, 0.0092}. (E13)

This yields for the CM γ̄3, Eq. (D2), at the output of the circuit in Fig. 3 the values U = 0.2153 and V = 0.2153, which yields
U + V = 0.4306 < 1/2 and the state with CM γ̄3 thus carries genuine multipartite entanglement according to the criterion (E4).
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