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1  |  INTRODUC TION

Natural selection is a complex process that can dramatically alter 
phenotypes and genotypes over remarkably short timescales. 
Researchers have successfully tested theoretical predictions and 

collected evidence for how strong laboratory selection acting on 
phenotypes can be. However, it is not as straightforward to mea-
sure selection acting on the genome. Many confounding factors can 
lead to spurious results. This is particularly relevant if we are inter-
ested in studying how experimental populations adapt to laboratory 
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Abstract
For over a decade, experimental evolution has been combined with high- throughput 
sequencing techniques. In so- called Evolve- and- Resequence (E&R) experiments, pop-
ulations are kept in the laboratory under controlled experimental conditions where 
their genomes are sampled and allele frequencies monitored. However, identifying 
signatures of adaptation in E&R datasets is far from trivial, and it is still necessary 
to develop more efficient and statistically sound methods for detecting selection in 
genome- wide data. Here, we present Bait- ER –  a fully Bayesian approach based on 
the Moran model of allele evolution to estimate selection coefficients from E&R ex-
periments. The model has overlapping generations, a feature that describes several 
experimental designs found in the literature. We tested our method under several 
different demographic and experimental conditions to assess its accuracy and preci-
sion, and it performs well in most scenarios. Nevertheless, some care must be taken 
when analysing trajectories where drift largely dominates and starting frequencies 
are low. We compare our method with other available software and report that ours 
has generally high accuracy even for trajectories whose complexity goes beyond a 
classical sweep model. Furthermore, our approach avoids the computational burden 
of simulating an empirical null distribution, outperforming available software in terms 
of computational time and facilitating its use on genome- wide data. We implemented 
and released our method in a new open- source software package that can be ac-
cessed at https://doi.org/10.5281/zenodo.7351736.
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conditions within tens of generations, in which case we need to take 
both experiment-  and population- related parameters into account.

A powerful approach to gathering data on the genomics of adap-
tation is to combine experimental evolution, where populations are 
exposed to a controlled laboratory environment for some number 
of generations (Kawecki et al., 2012), with genome resequencing 
throughout the experiment. This approach is referred to as Evolve- 
and- Resequence (E&R, Figure 1). E&R studies are becoming increas-
ingly more common and have already made remarkable discoveries 
on the genomic architecture of short- term adaptation. Examples 
of experimental evolution studies include those on yeast (Burke 
et al., 2014), red flour beetles (Godwin et al., 2017) and fruit flies 
(Debelle et al., 2017; Turner et al., 2011). The E&R set- up allows for 
describing the divergence between experimental treatments whilst 
accounting for variation amongst replicate populations (Schlötterer 
et al., 2015). This is true both at the phenotype and genotype levels. 
Consequently, the optimal approach to finding signatures of selection 
is to not only monitor allele frequency changes but to also search for 
consistent changes across replicates. Moreover, experimental pop-
ulations are often sampled and pooled for genome sequencing. The 
motivation for sequencing pooled samples of individuals (pool- seq) 
is that it is cost- effective, and it produces largely accurate estimates 
of population allele frequencies (Futschik & Schlötterer, 2010). Thus, 
statistical methods tailored for E&R studies are especially valuable. 
Notably so when investigating allele frequency trajectories originat-
ing from pooled samples of small populations.

Several statistical approaches have been proposed to analyse 
these data and detect signatures of selection across the genome. 
A few such methods consider allele frequency changes between 
two time points. These simply identify those loci where there is a 
consistent difference in frequency between time points. One such 
approach is the widely- used Cochran– Mantel– Haenszel (CMH) test 
(Cochran, 1954). Such tests are often preferred since they are very 

fast, which makes them suitable for genome- wide datasets. Other 
approaches allow for more than two time points: for example, Wiberg 
et al. (2017) used generalized linear models and introduced a quasi- 
binomial distribution for the residual error; and Topa et al. (2015) 
employed Gaussian Process models in a Bayesian framework to 
test for selection whilst accounting for sampling and sequencing 
noise. Whilst the latter methods use more sophisticated statistical 
approaches, they remain descriptive with respect to the underlying 
evolutionary processes. In contrast, mechanistic approaches explic-
itly model evolutionary forces, such as genetic drift and selection. 
Such models have the advantage that they can properly account for 
drift, which may generate allele frequency changes that can easily 
be mistaken for selection. Indeed, this is usually the case for E&R 
experimental populations with low effective population sizes (Ne), 
where genetic drift is the main evolutionary force determining the 
fate of most alleles.

The Wright- Fisher (WF) model is the most used mechanistic 
model for allele frequencies from time series data. There have been 
numerous studies that rely on approximations of the WF process, for 
example, its diffusion limit (Bollback et al., 2008), a one- step process 
where there is a finite number of allele frequency states (Malaspinas 
et al., 2012), a spectral representation of the transition density func-
tion (Steinrücken et al., 2014), or a delta method to approximate the 
mean and variance of the process (Lacerda & Seoighe, 2014). More 
recently, Kojima et al. (2019) developed an expectation- maximization 
(EM) algorithm of the WF model diffusion approximation suited 
for replicated E&R designs. Others have additionally considered 
the importance of haplotypes arising in a population via mutation 
(Illingworth & Mustonen, 2012; Nené et al., 2018), or implemented 
an approximation to the multi- locus WF process over tens of gener-
ations (Terhorst et al., 2015). Amongst these methods, most infer se-
lection parameters in the form of selection coefficients, whilst some 
can also estimate the population size, allele age, mutation rate and 

F I G U R E  1  Example of an E&R experimental setup. E&R experiments expose several replicated populations (e.g., of flies, yeast, viruses) 
to a selective pressure (e.g., temperature, food regimes) for a specific number of generations tN. The replicated populations are surveyed at 
several time points by whole- genome sequencing, which allows one to quantify changes in allele frequencies over time.
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even the dominance coefficient. Such parameters are key for under-
standing the process of genetic adaptation. Nonetheless, there are 
only a few approaches that couple parameter estimation with ex-
plicitly testing for selection (Feder et al., 2014; Iranmehr et al., 2017; 
Taus et al., 2017; Terhorst et al., 2015). Whilst these approaches are 
useful for detecting selected variants and estimating the strength of 
selection, not all of them are implemented in software packages that 
can be used genome- wide for E&R experiments.

Most approaches assume linkage equilibrium, and consequently, 
each trajectory is analysed independently from the effects of neigh-
bouring sites. In reality, allele frequencies at linked loci co- vary 
which can bias the inference around selected sites. Some have tried 
to measure the impact of linked selection through analysing autoco-
variances between adjacent sites (Buffalo & Coop, 2019), and others 
have investigated the correlation between nearby loci to identify 
selected haplotypes (Franssen et al., 2017) or used a hidden Markov 
model with states for two linked loci which accounts for genetic re-
combination (He et al., 2020). Whilst these efforts are a step in the 
right direction, neither approaches directly estimate selection coef-
ficients nor do they test for selection. These two approaches do not 
rely on modelling evolutionary processes explicitly.

To provide a review of methods that are available for analys-
ing E&R experiments, Vlachos et al. (2019) have produced a com-
prehensive benchmarking analysis of such methods. It features a 
number of approaches but not all of these methods estimate se-
lection coefficients. Based on Vlachos et al.'s (2019) work, three 
mechanistic methods are thus particularly relevant in an E&R con-
text: Wright- Fisher Approximate Bayesian Computation (WFABC, 
Foll et al. (2015)), Composition of Likelihoods for E&R experiments 
(CLEAR, Iranmehr et al. (2017)) and LLS (Linear Least Squares, Taus 
et al. (2017)). These methods differ in how they model drift and se-
lection, the inferential approach to estimate selection coefficients, 
the hypothesis testing strategy, and the extent to which they con-
sider specific experimental conditions (Table 1). WFABC employs an 
ABC approach that uses summary statistics to compare simulated 
and real data. It jointly infers the posterior of both Ne and the selec-
tion coefficient at some locus in the genome using allele frequency 
trajectory simulations. Real and simulated summary statistics must 
agree to a certain predefined scale. This makes WFABC computa-
tionally intensive. CLEAR computes maximum- likelihood estimates 
of selection parameters using a hidden Markov model tailored for 
small population sizes. LLS assumes that allele frequencies vary lin-
early with selection coefficients such that the slope provides the 
coefficient estimate. Although all three methods have been shown 
to accurately estimate selection coefficients, they rely heavily on 
empirical parameter distributions to perform hypothesis testing: 
(i) WFABC is highly dependent on how accurately the chosen set 
of summary statistics describes the underlying evolutionary forces 
determining the observed trajectories; (ii) CLEAR relies on genome- 
wide simulations to calculate an empirical likelihood- ratio statistic to 
assess significance; and (iii) LLS computes an empirical distribution 
of p- values simulated under neutrality. One other common thread 
amongst these tools is that they do not account for linked selection. TA
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Be it background selection or hitchhiking, these software estimate 
selection without looking into how linked loci might affect other 
sites' trajectories. Additionally, the four software vary substantially 
in computational effort. Therefore, currently available methods are 
still limited in their use for genome- wide hypothesis testing.

We propose a new Bayesian inference tool –  Bait- ER –  to esti-
mate selection coefficients in E&R time series data. It is suitable for 
large genome- wide polymorphism datasets and particularly useful 
for small experimental populations. As our new approach was imple-
mented in a Bayesian framework, it gives posterior distributions of 
any selection parameters whilst considering sources of experimental 
uncertainty. Bait- ER jointly tests for selection and estimates selec-
tion contrary to other state- of- the- art methods. It does not rely on 
empirical or simulation- based approaches that might be computa-
tionally intensive, and it properly accounts for specific shortcomings 
of E&R experimental design. As it currently stands, Bait- ER is not 
modelling the impact of linked selection. However, to test Bait- ER 
and other software, we explore individually simulated trajectories, 
as well as whole chromosome arm simulations with linkage and an 
analysis of real data. We show that Bait- ER is faster than other avail-
able software, when accounting for hypothesis testing, and still per-
forming accurately in some particularly difficult scenarios.

2  |  MATERIAL S AND METHODS

2.1  |  Method outline

E&R experiments produce a remarkable amount of data, namely 
allele frequencies for thousands to millions of loci. We created a 
Bayesian framework to infer and test for selection at an individual 
locus that is based on the Moran model. It estimates the selection 
coefficient, σ, for each allele frequency trajectory, which relies on 
the assumption that the variant in question is a potential causative 
locus. The Moran model is especially useful for studies that have 
overlapping generations, such as insect cage experimental designs 
(Figure 1). Such cage experiments are easier to maintain in the lab 
and allow for larger experimental population sizes avoiding po-
tential inbreeding depression and crashing populations (Kawecki 
et al., 2012). Furthermore, Bait- ER combines modelling the evolu-
tion of an allele that can be under selection whilst accounting for 
sampling noise to do with pooled sequencing and finite sequencing 
depth. Our method takes allele count data in the widely used sync 
format (Kofler et al., 2011) as input. Each locus is described by allele 
counts per time point and replicate population. The algorithm imple-
mented includes the following key steps:

1. Bait- ER calculates the virtual allele frequency trajectories 
accounting for Ne that is provided by the user. This step includes a 
binomial, or beta- binomial, sampling process that corrects for pool- 
seq- associated sampling noise.

2. The log posterior density of σ is calculated for a given grid of 
σ- values. This step requires repeatedly assessing the likelihood func-
tion (equation 3 in section 2.2).

3. The log posterior values obtained in the previous step are fit-
ted to a gamma surface (details on surface fitting can be found in 
Figure S2).

4. Bait- ER returns a set of statistics that describe the posterior 
distribution of σ per locus. In particular, the average σ and the log 
Bayes Factor (BF) are the most important quantities. In this case, BFs 
test the hypothesis that σ is different from 0. Bait- ER also returns 
the posterior shape and rate parameter values, α and β, respectively. 
These can be used to compute other relevant statistics (e.g., credible 
intervals, variance).

2.2  |  Model description

Let us assume that there is a biallelic locus with two alleles, A and a. 
The evolution of allele A in time is fully characterized by a frequency 
trajectory in the state space {nA, (N−n)a}, where n is the total number 
of individuals that carry allele A (in a population of size N). Supposing 
the allele evolves according to the Moran model where a randomly 
chosen individual reproduces as another is randomly drawn from 
the population for death, the transition rates for the process are the 
following

where 1 + σ is the fitness of any A- type offspring and σ the selection 
coefficient for allele A. If σ = 0, that is, A is evolving neutrally, then none 
of the alleles is preferred at reproduction. Let Xt be the number of cop-
ies of A in a population of N individuals and xt the observed counts of A 
at that time; the probability of a given allele trajectory X can be defined 
using the Markov property as

where T is the total number of time points measured in generations at 
which the trajectory was assayed. The conditional probability on the 
left- hand side of the equation has one calculating Xt = eQdt Xt−1, where 
Q is the rate matrix defined in (1) and dt the difference in number of 
generations between time point t and t−1. The probability of a single 
allele frequency trajectory can be generalized for R replicates by as-
suming their independence

The main caveat for pool- seq data is the fact that it provides 
estimates for allele frequencies, not true frequencies. For that rea-
son, we assume that the allele counts are generated by a binomial 
or beta- binomial sampling process which depends on the frequency 
of allele A and the total sequencing depth C obtained by pool- seq. 

(1)
Pn,n−1=

n(N−n)

N

Pn,n+1=
n(N−n)

N
(1+�)

,

(2)p(X| �) = p
(
X0 = x0

) T∏
t=1

p
(
Xt = xt|Xt−1 = xt−1, �

)
,

(3)p(X| �) =
R∏

r=1

p
(
Xr
0
= xr

0

) T∏
t=1

p
(
Xr
t
= xr

t
|Xr

t−1
= xr

t−1
, �
)
.
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    |  5BARATA et al.

We then recalculate the probability of the Moran states given an 
observed allele count c, which becomes the following with binomial 
sampling

This step is key for it corrects for sampling noise generated during 
data acquisition, which is particularly relevant for low- frequency al-
leles and poorly covered loci.

2.3  |  Inferential framework

We used a Bayesian framework to estimate σ. It requires allele counts 
and coverage for each time point and replicate population {c, C} at 
each position as input. The posterior distribution can be obtained by

Our algorithm is defined using a gamma prior on σ. The posterior 
cannot be formally obtained; hence, we define a grid of σ values for 
which we calculate the posterior density. Estimating the posterior 
distribution p(� ∣ {c,C}) is a time- consuming part of our algorithm 
because the likelihood is computationally costly to compute. To 
avoid this burden, we fit the posterior to a gamma density

where α and β are the shape and rate parameters, respectively, and 
c the normalization constant. The gamma fitting represents a good 
trade- off between complexity, since it only requires two parameters, 
but its density may take many shapes. As one requires the values of α 
and β that best fit the gamma density for further analyses, we find the 
least squares estimates of α and β (and c), such that the error is minimal. 
The estimation is as follows

where s1 =
∑

ixi ∕N, s2 =
∑

iyi ∕N, s3 =
∑

ixiyi ∕N, s4 =
∑

ilogxi ∕N , 
s5 =

∑
ixilogxi ∕N, s6 =

∑
iyilogxi ∕N, s7 =

∑
ilog

2xi ∕N and 
s8 =

∑
ix

2
i
∕N. We evaluated the fitting of the gamma density for neu-

tral and selected loci, and observed that a gamma surface with five 
points describes the log posterior of selected and neutral loci well 
(Figure S2).

Bait- ER was implemented with an allele frequency variance filter 
that is applied before performing the inferential step of our algo-
rithm. This filtering process excludes any trajectories that exhibit no 
change or whose allele frequency varies very little throughout the 

experiment from further analyses. We assess the trajectories' fre-
quency increments and exclude loci with frequency variance lower 
than 0.01. These correspond to cases where trajectories are statisti-
cally uninformative since allele frequencies are essentially constant. 
Trajectories such as these typically have both inflated �̂ and BFs. For 
bookkeeping, these trajectories are included in the output file, de-
spite Bait- ER not performing the selection inference step on them. 
This makes Bait- ER suitable for large genome- wide datasets without 
losing any relevant information on trajectories that might be initially 
flat but may eventually escape drift very quickly.

Bait- ER is implemented in C++ and freely available for download 
at https://github.com/mrbor ges23/ Bait- ER. Here, we provide a tuto-
rial on how to compile and run Bait- ER, including a toy example with 
100 loci taken from Barghi et al. (2019).

2.4  |  Simulated data

We tested our algorithm's performance under several biologically 
relevant scenarios using (1) a Moran model allele frequency trajec-
tory simulator, and (2) the individual- based forward simulation soft-
ware MimicrEE2 (Vlachos & Kofler, 2018).

The Moran model simulator was used to benchmark Bait- ER's 
performance across a range of experimental conditions, and to com-
pare our estimates of σ to those of CLEAR (Iranmehr et al., 2017), 
EMWER (Kojima et al., 2019), LLS (Taus et al., 2017) and WFABC 
(Foll et al., 2015). Experimental designs included those with vary-
ing coverage (20×, 60× and 100×), number of replicate populations 
(2, 5 and 10) and number of sampled time points (2, 5 and 11). In 
addition to simulating even sampling throughout the experiment, 
we tested our method on trajectories where we varied sampling to-
wards the start or towards the end of said experiment. Total study 
length might also affect Bait- ER's estimation; therefore, we tracked 
allele frequency trajectories for 0.2Ne and 0.4Ne generations. A full 
description of these parameters can be found in Table 2.

To compare Bait- ER to other software, we used experimental param-
eters that resemble realistic E&R designs. Our base experiment popula-
tions consist of 300 individuals that were sequenced to 60x coverage. 
Five replicate populations were evenly sampled five times throughout 
the experiment. We then simulated 100 allele frequency trajectories for 
all starting frequencies and selection coefficients mentioned above. We 
simulated trajectories for 0.25Ne as well as 0.5Ne generations.

The performance of both CLEAR, EMWER, and LLS was assessed 
by running the software with a fixed population size of 300 individ-
uals (– N = 300, pop:300 and estimates(…, Ne = 300), respectively). 
To estimate selection coefficients under the LLS model, we used 
the estimateSH(…) function assuming allele codominance (h = 0.5). 
WFABC was tested with a fixed population size of Ne individuals (- n 
300), lower and upper limit on the selection coefficient of −1 and 
1, respectively (min_s −1 and - max_s 1), maximum number of sim-
ulations of 10 000 (- max_sims 10 000) and four parallel processes 
(- n_threads 4). The programme was run for 1200 s, after which the 
process timed out to prevent it from running indefinitely in case it 
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(5)p(� ∣ {c,C}) ∝ p(�)p({c,C} ∣ �).

(6)logp(� ∣ {c,C}) = c + (� − 1)log� − ��,

(7)

�̂=
−
(
s2s4+s2

4
−s6−s7

)(
s2
1
−s8

)
−
(
s3+s1s2+s1s4+s5

)(
s1s4−s5

)

s7s
2

1
−2s4s5s1+s2

5
+s2

4
s8−s7s8

∧

�̂=
−s3s

2

4
+s2s5s4+s1s6s4−s5s6−s1s2s7+s3s7

s7s
2

1
−2s4s5s1+s2

5
+s2

4
s8−s7s8

,

 14209101, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jeb.14134 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [22/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/mrborges23/Bait-ER


6  |    BARATA et al.

fails to converge. This caused trajectories with starting allele fre-
quencies of 5% and 1% not to be analysed at all. We have thus only 
been able to include results for alleles starting at 10% and 50% fre-
quencies. See Table 3 for details on software input format, functions 
and scripts as well as a list of all parameters used in the analysis.

Finally, we used data simulated with MimicrEE2 (Vlachos & 
Kofler, 2018) by Vlachos et al. (2019) to benchmark Bait- ER and 
compare it extensively with other relevant statistical methods. 
MimicrEE2 is a Wright- Fisher simulation software that allows for 
whole chromosomes to be simulated under a wide range of pa-
rameters mimicking as well as the effects of linkage on allele fre-
quencies (see also Figures S18– S23, S27 and S28 for a comparison 
of population parameters, including nucleotide diversity, with real 
experimental data). This simulated dataset consisted of 10 replicate 
experimental populations, and each experimental population con-
sisted of 1000 diploid organisms evolving for 60 generations. The 
haplotypes used were based on 2L chromosome polymorphism 
patterns from real Drosophila melanogaster fly populations (Bastide 
et al., 2013). Recombination rate variation was based on the D. mela-
nogaster recombination landscape (Comeron et al., 2012). Here, 30 
segregating loci were randomly picked to be targets of selection. 
Sites were initially segregated at a frequency between 0.05 and 0.95.

Benchmarking Bait- ER using the data described above allowed 
us to look into our method's robustness when the data generating 
model is not Moran: the first scenario includes allele frequency 
trajectories simulated under a Wright- Fisher model of a selective 
sweep; and the second consists of trajectories simulated under a 
quantitative trait model with truncating selection. In the former, 

each of the targets of selection was simulated with a selection coef-
ficient of 0.05. For the latter, 80% of the individuals with the largest 
trait values were chosen to reproduce.

2.5  |  Application

We applied our algorithm to the published dataset from an E&R 
experiment in 10 replicates of a Drosophila simulans population to 
a hot temperature regime for 60 generations (Barghi et al., 2019). 
Populations were kept at a census size of 1000 individuals. The ex-
perimental regime consisted of light and temperature varying every 
12 h. The temperature was set at either 18°C or 28°C to mimic night 
and day, respectively. The authors extracted genomic DNA from 
each replicate population every 10 generations using pool- seq. The 
full dataset consists of more than 5 million SNPs. We subsampled the 
data such that Bait- ER was tested on 20% of the SNPs. Subsampling 
was performed randomly across the whole genome.

3  |  RESULTS

3.1  |  Impact of E&R experimental design on 
detecting targets of selection

Bait- ER not only models the evolution of allele frequency trajecto-
ries but it also considers aspects of the experimental design specific 
to E&R studies. Bait- ER can thus be used to gauge the impact of 

TA B L E  2  Simulated scenarios.

Parameter Simulated values Notes

Population parameters

Effective population size (Ne) 100, 300 and 1000 Representing a small, a typical and a large in E&R study 
population

Allele's initial frequency (p0) 0.01, 0.05, 0.1 and 0.5 Representing rare, low- frequency and common alleles

Selection coefficient (σ) 0.1/10Ne, 1/Ne and 10/Ne Representing regimes of neutrally evolving, drift- 
dominated, and selection- dominated allele trajectories

Experimental parameters

Coverage (C) 20×, 60× and 100× Low, medium and high coverage for pool- seq data

Number of replicates (R) 2, 5 and 10

Number of time points (T) 2, 5 and 11 time points, assessed at 
generations

Represents different combinations of total number of 
time points, experiment lengths and distribution of 
sampling events (uniform/non- uniform)(0.0, 0.2),

(0.00, 0.05, 0.10, 0.15, 0.20),

(0.00, 0.04 0.08 0.12 0.20),

(0.00, 0.08 0.12 0.16 0.20),

(0.0, 0.1 0.2 0.3 0.4) and

(0.00, 0.02 0.04 0.06 0.08 0.10 0.12 
0.14 0.16 0.18 0.20) relative to Ne.

Note: The simulated parameters can be divided into two categories: Those which are related with the population dynamics (effective population size, 
selection coefficient, and allele's starting frequency) and those related to the experimental design (coverage, number of time points and number of 
replicates). To test the experimental conditions, we defined a base experiment with 5 replicates, 5 uniformly distributed time points (total span of 0.20Ne 
generations) and a coverage of 60×. This base experiment is highlighted in bold. The two maximum experiment lengths considered (0.2Ne and 0.4Ne) 
were chosen based on typical E&R experimental designs. Illustrative trajectories of some of the simulated scenarios are represented in Figure S3.
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    |  7BARATA et al.

particular experimental conditions in pinpointing targets of selec-
tion. We simulated allele frequency trajectories by considering a 
range of experimental parameters, including the number and span 
of sampled time points, the number of replicated populations, and 
coverage. Each of these settings was tested in different population 
scenarios that we defined by varying population size, starting allele 
frequency, and selection coefficient. We assessed the error of the 
estimated selection coefficients by calculating the absolute bias in 
relation to the true simulated value. In total, we investigated 576 
scenarios (Table 2). Heatmaps in Figure 2a– c show the error for each 
scenario.

Heatmaps a, b, and c in Figure 2 show that the initial frequency 
is a determining factor in the accuracy of �̂ in E&R experiments. We 
observed that trajectories starting at very low frequencies (around 
0.01) may provide unreliable estimates of σ. However, �̂'s accu-
racy can be improved by either increasing the sequencing depth 
(Figure S6) or the number of replicates (Figure S5). Sequencing depth 
and replication have also been found to affect other selection infer-
ence methods (e.g., Kofler & Schlötterer, 2014 and Taus et al., 2017). 
Designs with high coverage and several replicates may be appro-
priate when potential selective loci appear at low frequencies (e.g., 
dilution experiments). Surprisingly, alternative sampling schemes do 
not seem to substantially impact the accuracy of σ (Appendix S1). 
These results have practical importance because sampling addi-
tional time points is time- consuming and significantly increases the 
cost of E&R experiments.

3.1.1  |  A note on population size

When using Bait- ER to estimate selection coefficients, one needs 
to specify the effective population size, Ne. However, as effective 
population size and strength of selection are intertwined, misspeci-
fying Ne will directly affect estimates of selection. Ne is often not 
known at the start of the experiment, but plenty of methods can 
estimate it from genomic data, for example, Jónás et al. (2016). To 
assess the impact of misspecifying Ne on σ posterior, we simulated 
allele frequency trajectories using a fixed population size of 300 in-
dividuals. We then ran Bait- ER setting the effective population size 
to 100 or 1000. By doing so, we are increasing and decreasing, re-
spectively, the strength of genetic drift relative to the true simulated 
population.

Bait- ER produces highly accurate estimates of σ regardless of 
varying Ne (Figure 3 and Figure S7). Misspecifying it merely rescales 
time in terms of Moran events rather than changing the relationship 
between Ne and the number of Moran events in the process. Further, 
we observed that the BFs are generally higher when the specified Ne 
is greater than the true value, suggesting an increased false positive 
rate. The opposite pattern is observed when the population size one 
specifies is lower than the real parameter. Additionally, we investi-
gated the relationship between BFs computed with the true Ne and 
those produced under a misspecified Ne. We found that these BFs are 
highly correlated (Spearman's correlation coefficients were always TA
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8  |    BARATA et al.

higher than 0.99; Figure 3 and Figure S7). Taken together, our results 
indicate one should use a more stringent BF acceptance threshold 
if estimates of the experimental Ne have wide confidence intervals.

Furthermore, we assessed Bait- ER's computational perfor-
mance by comparing the relative CPU time whilst varying several 
user- defined experimental parameters. We found that increasing Ne 

F I G U R E  2  Impact of E&R experimental design on Ne- scaled estimated selection coefficients. Each square of the heatmap represents 
the error of the scaled estimated selection coefficients, that is, the log of the absolute difference between the estimated and the true 
simulated �s : log

(
�̂ − �

)
, for a range of population dynamics and E&R experimental conditions. (a) Number, span and distribution of sampled 

time points. The six time schemes differ according to the following criteria: Most time schemes have five sampling events, except for TS1 
and TS6, which have two and 11 time points, respectively; all time schemes have a total span of Ne/5 generations, except for TS5, which has 
double the span (2Ne/5); uniform sampling was used in most scenarios but for TS3, which is more heavily sampled during the first half of the 
experiment, and TS4, during the second half. The two maximum experiment lengths considered (0.2Ne and 0.4Ne) were chosen based on 
typical E&R experimental designs. (b) Number of replicates. (c) Coverage. To test the experimental conditions, we defined a base experiment 
with five replicates, five uniformly distributed time points (total span of 0.20Ne generations) and a coverage of 60×. The complete set of 
results is shown in Figures S4– S7.
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    |  9BARATA et al.

affects our software's computational performance most substan-
tially (31- fold increase in CPU time when increasing the simulated 
population size from 300 to 1000 individuals; Table S1).

3.2  |  Benchmarking Bait- ER with LLS, 
CLEAR and WFABC

3.2.1  |  Simulated Moran trajectories

To compare the performance of Bait- ER to that of other relevant 
software, we set out to simulate Moran frequency trajectories 
under the base experiment conditions described above. We tested 
Bait- ER as well as CLEAR (Iranmehr et al., 2017), EMWER (Kojima 
et al., 2019), LLS (Taus et al., 2017) and WFABC (Foll et al., 2015) 
on 100 trajectories for four starting frequencies (from 1% to 
50%) and four scaled selection coefficients (0 ≤ Ne ≤ 10). All popu-
lation parameters were tested for both 75 and 150 generations 
of experimental evolution. Figure 4a,b show the σ estimates for 
Bait- ER, CLEAR under two starting frequency scenarios –  10% and 
50% –  and two Neσ –  0 and 10. Under strong selection (Neσ = 10), 
CLEAR, EMWER and LLS medians largely agree with each other 
(see Figure 4a). However, these are upwardly biased in comparison 
to Bait- ER's estimates, which are closer to the true value. Under 

neutrality (Figure 4b), the four methods largely agree with Bait- ER 
showing higher accuracy. Overall, Bait- ER is the method with the 
smallest variation regardless of the starting frequency and true 
selection coefficient. On the other hand, WFABC systematically 
disagrees with Bait- ER's estimates because its distribution is very 
skewed towards high Neσ (>180; see Figure S8). This is perhaps 
unsurprising given that WFABC does not consider replicate popu-
lations nor finite sequencing depth unlike the other three methods. 
We have included WFABC in our study to compare Bait- ER with 
another Bayesian method. However, WFABC was not designed 
for E&R experiments with multiple replicates, hence its poor 
performance.

Regarding computational performance, Bait- ER seems to be 
amongst the fastest methods, even though it is comparable to 
WFABC and surpassed by EMWER at higher starting frequen-
cies. Bait- ER's performance is comparable (see Figure 4b), but 
we tested it on the first replicate population data rather than 
the five experimental replicates used for the remaining meth-
ods. Additionally, WFABC does not provide any statistical test-
ing output such as a Bayes Factor. In contrast, CLEAR and LLS 
are slower than the other three approaches. Whilst CLEAR takes 
less than 40 s on average to analyse 100 sites, LLS is the slowest 
of the four, averaging around 4 min. Overall, these results sug-
gest Bait- ER is just as accurate and potentially faster than other 

F I G U R E  3  Impact of the user- specified population size on the estimation of Ne- scaled selection coefficients. The plots show the 
distribution of the estimated Ne- scaled selection coefficients where the population size is misspecified. Vertical lines and points indicate 
the interquartile range and median scaled selection coefficient. Each plot represents a specific scenario that was simulated by varying the 
population size, the true scaled simulated selection coefficient (indicated within brackets (Ne, Neσ)) and starting allele frequency (indicated 
by the yellow- to- red colour gradient). The numbers next to each bar correspond to the Spearman's correlation coefficient, which correlates 
the BFs of the 100 replicated trajectories between the cases where we have either under-  and overspecified the population size (Ne = 100 or 
1000, respectively) and the case where we use the true population size (Ne = 300). Regarding simulated experimental design, we defined a 
base experiment with five replicates, five uniformly distributed time points (total span of 0.20 Ne generations) and a coverage of 60×.
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10  |    BARATA et al.

currently available approaches, which makes it a good resource 
for testing and inferring selection from genome- wide polymor-
phism datasets.

3.2.2  |  Complex simulation scenarios with 
recombination

For a more comprehensive study of Bait- ER's performance, we 
have analysed a complex simulated dataset produced by Vlachos 
et al. (2019). The authors simulated an E&R experiment inspired 
by the experimental set- up of Barghi et al. (2019) and used poly-
morphism data from a Drosophila melanogaster population. Vlachos 
et al. (2019) have produced this dataset to standardize software 
benchmarking by simulating a series of experimental scenarios that 
are relevant in an E&R context. We have used it to assess Bait- ER's 
performance at inferring selection under linkage and varying recom-
bination rates. In particular, we choose to focus on the classic sweep 

scenario as well a quantitative trait model with truncating selec-
tion, which are two of three complex scenarios simulated in Vlachos 
et al. (2019). Each experiment was replicated 100 times and had 30 
targets of selection randomly distributed along a 16Mbp- long chro-
mosome arm.

ROC (Receiver Operating Characteristic) curves are compared 
for seven methods, Bait- ER, CLEAR, the CMH test (Agresti, 2003), 
LLS and WFABC, as well as FIT1 and FIT2 (Feder et al., 2014), sim-
ilar to Figure 2a in Vlachos et al. (2019). FIT1 and FIT2 both use a 
t- test for allele frequencies and are inaccurate in a classical sweep 
dataset. Bait- ER performs well with an average true positive rate of 
80% at a 0.2% false positive rate (Figure 5a). Its performance is as 
good as the CMH test's, but it underperforms slightly in comparison 
to CLEAR. Bait- ER, CLEAR and the CMH test greatly outperform 
LLS and WFABC. We note that Bait- ER's inferential framework as-
sumes that each biallelic locus is codominant. This is an alternative 
to estimating dominance parameters which requires a diploid model. 
CLEAR, EMWER, LLS and WFABC allow for estimating dominance. 

F I G U R E  4  Comparison of selection 
inference performance on individual 
Moran allele frequency trajectories. (a, 
b) Ne- scaled σ estimates produced by 
Bait- ER, CLEAR, EMWER and LLS. Results 
are shown for trajectories with starting 
frequencies of 10% and 50%. (a) Strongly 
selected alleles (Neσ = 10) with separate 
panels for 75 (left) and 150 generation 
long trajectories and 10% (top) and 50% 
(bottom) starting frequencies. (b) Only 
neutrally evolving (Neσ = 0) alleles were 
considered here. These are combined 
distributions for the same two simulation 
lengths (75 and 150 generations) as well 
as the two starting frequencies. LLS 
returned NA's for 3 out of 800 trajectories 
which were excluded from these graphs. 
(c) Real computational time for Bait- ER 
and the other four approaches tested. 
From left to right, computational time 
in seconds including both inference and 
hypothesis testing for Bait- ER, CLEAR, 
EMWER, LLS, and WFABC is shown here.
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However, a robust estimate is largely dependent on the dataset. 
A similar picture to that of the sweep simulation emerges for the 
truncating selection scenario (Figure 5b). Bait- ER is amongst the 
top three methods despite the generating quantitative trait model 
being misspecified during inference; it is only slightly outperformed 
by CLEAR.

To assess why Bait- ER seems to be outperformed by CLEAR, we 
further investigated CLEAR's selection coefficient estimates. We 
note that Bait- ER assumes a continuous- time Moran model, whilst 
CLEAR uses a WF model for inference, much like the simulated data 
analysed here. Comparison of selection coefficients estimated by 
Bait- ER and CLEAR showed that Bait- ER is slightly more accurate on 
average at estimating true targets' σ (Figure S9). In addition, those 
trajectories that scored highest with CLEAR also produced the high-
est Bait- ER σ (Figure S10). True targets of selection mostly score in 
the top half of Bait- ER's Neσ scale (Figure S25). Overall, Bait- ER and 
CLEAR perform to a similar high standard. However, the frequency 
variance filter implemented in Bait- ER seems to explain our meth-
od's slight underperformance shown in Figure 5. Despite having 
excluded fewer than 70 (out of 300) targets of selection, Bait- ER's 
filtering step has also classified approximately the same amount of 
neutral trajectories for being too flat for inferring selection. Whilst 
the two method's false- positive rates seem to be comparable, 
Bait- ER excluded a few selected sites from further analyses as they 
had changed very little in frequency throughout the experiment.

3.3  |  Analysing E&R data from hot adapted 
Drosophila simulans populations

We have applied Bait- ER to a real E&R dataset that was published by 
Barghi et al. (2019). The authors exposed 10 experimental replicates 
of a Drosophila simulans population to a new temperature regime for 
60 generations. Each replicate was surveyed using pool- seq every 
10 generations. This dataset is particularly suited to demonstrate 
the relevance of our method as Barghi et al. (2019) observed a strik-
ingly heterogeneous response across the 10 replicates. The highly 
polygenic basis of adaptation has proved challenging to measure and 
summarize thus far.

The D. simulans genome dataset is composed of six genomic ele-
ments: chromosomes 2– 4 and chromosome X. For each element, we 
have estimated selection parameters using Bait- ER (mean �̂ distribu-
tions can be found in Figure S11). Figure 6a shows a Manhattan plot 
of BFs for the right arm of chromosome 3. We can observe that there 
are two distinct peaks across the chromosome arm that seem highly 
significant (BF > 9). These two peaks –  one at the start and another 
just before the centre of the chromosome –  should correspond to re-
gions harbouring loci that responded strongly to selection in the new 
lab environment. Such regions display a consistent increase in fre-
quency across replicate populations (see Figure S24 for the relation-
ship between allele frequency changes and σ). Overall, there are only 
a few other regions that exhibit very strong evidence for selection 
across the genome (Figure S12). Those are located on chromosomes 

2L, 2R and 3L. When compared to the CMH test results as per Barghi 
et al., Bait- ER's most prominent peaks seem to largely agree with 
those produced by the CMH (see Figure S13). The same is true for 
high BF regions on chromosomes 2L and 2R where there are similarly 
located p- value chimneys at the start of these genomic elements 
(Figure S14). Both Bait- ER and the CMH test did not produce clear 
signals of selection on chromosomes 3L, 4 and on the X.

F I G U R E  5  Performance of Bait- ER and other software at 
testing for selection in data simulated by Vlachos et al. (2019). ROC 
(receiver operating characteristic) curves for Bait- ER, CLEAR, CMH, 
LLS, WFABC, FIT1 and FIT2 under (a) the classic sweep scenario 
and (b) a scenario with truncating selection. Note that LLS and 
WFABC were run on a subset of SNPs in (a), and that WFABC was 
not included in (b) for it was prohibitively slow and only finished 
runs for 29 replicate experiments.

(a)

(b)
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One of the advantages of Bait- ER is that we have implemented 
a Bayesian approach for estimating selection parameters, which 
means we can calculate both the mean and variance of the poste-
rior distributions. To examine both of these statistics, we looked into 
how the posterior variance varies as a function of mean σ. Figure 6b 
shows the relationship between variance and mean selection coef-
ficient for the X chromosome. We observe that the highest mean 
values also correspond to those with the highest variance. This sug-
gests that the strongest response to selection, that is, the highest 
estimated σ values, is also those showing a fairly heterogeneous re-
sponse across replicates. The remaining genomic elements seem to 

show similar patterns, apart from chromosome 4 (see Figure S15). 
This is consistent with other reports that inferring selection on this 
chromosome is rather difficult due to its size and low levels of poly-
morphism (Jensen et al., 2002).

Finally, we compared the p- values obtained by Barghi et al. (2019) 
and the BFs computed by Bait- ER. Barghi et al. (2019) performed 
genome- wide testing for targets of selection between first and last 
time points using the CMH test. The tests seem to largely agree for 
the most significant BFs correspond to the most significant p- values. 
However, Bait- ER appears to be more conservative than the CMH 
test. This follows from the finding that there is quite a substantial 

F I G U R E  6  Analysis of Barghi et al. (2019) allele frequency trajectories. (a) Bayes factors on chromosome 3R. The orange line indicates a 
conservative threshold of 4.6, an approximation which corresponds to log(0.99/0.01), meaning all points in orange have very strong evidence 
for these to be under selection. The SNPs that are significant at this level are sorted by size according to how strong Bait- ER's selection 
coefficients are, that is, points are sized according to how strong the selection coefficient is estimated to be. (b) Variance versus mean sigma 
on the X chromosome. This graph compares log transformed variances in σ estimates to average σs. the variance is calculated using the 
inferred rate and shape parameters for the beta distribution, and the average σ is the mean value of the posterior distribution estimated 
by Bait- ER. Orange- coloured points are significant at a conservative BF threshold of 4.6. (c) Bait- ER's Bayes factors versus CMH test's p- 
values on chromosome 2L. Orange- coloured points correspond to BFs which are greater than 4.6 and p- values ≤ 0.01, that is, those that are 
considered significant by both tests. Blue coloured points indicated that the computed BF is greater than our threshold, but not significant 
according to the CMH test. Dark grey points are significant according to the CMH test, but not to Bait- ER, and light grey points are inferred 
not significant by both tests.
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proportion of loci (<10% of all loci) that are significant at a p- value 
threshold of 0.01, which are not accepted as such by Bait- ER (e.g., 
chromosome 2L in Figure 6c). Similar patterns are found in other 
chromosomes (Figure S16).

4  |  DISCUSSION

One of the main aims of E&R studies is to find targets of selection 
in genome- wide datasets. For that, we developed an approach that 
uses time series allele frequency data to test for selection. It does so 
whilst estimating selection parameters for individual loci. As Bait- ER 
does not rely on simulations for statistical testing, it sets itself apart 
from other currently available methods. Bait- ER's implementation of 
the time- continuous Moran model makes it especially suitable for 
experimental set- ups with overlapping generations. In addition, we 
designed Bait- ER to be well suited for small population experiments 
where genetic drift has a substantial impact on the fate of polymor-
phisms. This is because random frequency fluctuations can force 
alleles to be more readily lost and, thus, overlooked by selection. 
When considering such polymorphisms, our stochastic modelling 
approach to describing their frequency trajectory is most fitting. We 
assume that the effect of drift is pervasive and that there is added 
noise from sampling a pool of individuals from the original popula-
tion. We show that Bait- ER is faster and just as accurate as other rel-
evant software. Overall, these features make it a desirable approach 
that can be used in many E&R designs.

We carried out a comprehensive analysis of simulated trajecto-
ries where we explored the parameter space for coverage, number 
of experimental replicates, user- defined population size, starting 
allele frequency and sampling scheme (Figure 2; Figure S7). Our re-
sults suggest that Bait- ER's inference is mostly affected by low start-
ing allele frequencies. This can be overcome should the sequencing 
depth or the number of experimental replicates be increased. Our 
simulations show that Bait- ER estimates selection coefficients accu-
rately even if an allele's starting frequency is low but provided cov-
erage is high and there are at least 5 replicates (Figure 2). Although 
increasing the number of replicates increases the cost of setting up 
an E&R experiment substantially, improving sequencing depth is cer-
tainly within reach. This interesting result might help guide future 
research. Encouragingly, Bait- ER performed well with small manage-
able population sizes, suggesting replication is key, but large popula-
tions are not necessarily required for achieving good results.

We also assessed Bait- ER's performance on a complex chromo-
some arm dataset simulated by Vlachos et al. (2019). We then com-
pared it to other selection inference programmes of which most are 
suited for time series allele frequency data. Despite numerous sim-
ilarities, they vary substantially in terms of model assumptions and 
what sort of experimental set- up they are a good fit for. For exam-
ple, WFABC seems to underperform in comparison with the other 
methods for E&R experiments. This is likely to be the case because 
it was modelled for relatively large populations. As Foll et al. (2015) 
show in their original study, WFABC is accurate for population sizes 

of 1000 individuals and for both weak and strong selection coeffi-
cients. Despite this being low in comparison to experiments in bac-
teria or yeast, which easily range from 105 to 108, that is not the 
standard population size we consider in our work. Bait- ER has been 
shown to perform well for such large populations (see bottom rows 
of each graph in Figure 2), as well as small census sizes. In reality, Ne 
is predicted to be a lot smaller than the census sizes reported in typ-
ical E&R studies. Similar to Bait- ER, CLEAR and LLS are better suited 
for small population analyses. Whilst CLEAR accounts for uneven 
coverage, LLS only considers consistency between experimental 
replicates. In terms of overall performance, Bait- ER and CLEAR are 
similar in accuracy but Bait- ER runs substantially faster. This indi-
cates that inferring selection from WF trajectories simulated with 
MimicrEE2 produces similar results regardless of whether a WF or a 
Moran model is used to describe the evolution of such trajectories.

We used ROC curves to compare Bait- ER's performance to six 
other methods'. They serve the purpose of showing the performance 
of a binary classification model at all significance thresholds, regard-
less of the statistical measurement used, may it be a p- value or a BF. 
ROC curves address whether the method places the true targets of 
selection amongst its highest scoring hits. Whilst this is informative, 
it fails to account for the importance of finding an adequate signif-
icance threshold when analysing experimental data. For example, 
Figure 5 suggests that Bait- ER and the CHM test perform very sim-
ilarly. However, the CMH test returns more potential targets than 
Bait- ER when comparable thresholds are used for both methods 
(e.g., Figure 6c that shows the comparison between Bait- ER logBFs 
and CMH test p- values for a real D. simulans dataset). This is consis-
tent with other reports of the CMH test producing overinflated false 
positive rates on account of it confounding heterogeneity across rep-
licates with a main effect (Wiberg et al., 2017). Additionally, whilst 
the CMH might be more prone to identifying high coverage sites, 
Bait- ER is not affected by sequencing depth (Figure S26). Altogether, 
this indicates that Bait- ER is more conservative and that the CMH 
test is more prone to producing false positives.

To investigate Bait- ER's ability to detect selected sites in a real 
time series dataset, we analysed the D. simulans E&R experiment by 
Barghi et al. (2019). Bait- ER performs well on this dataset as it is 
rather conservative and produces only a few very significant peaks 
across the genome, which suggests it has a low false positive rate. 
It was designed to account for strong genetic drift, hence the use 
of a discrete- population state space. Most of the genome produced 
BFs greater than 2, indicating that there is not enough resolution to 
narrow down candidate regions to specific genes despite those very 
significant peaks. Barghi et al. (2019) argue that there is strong ge-
netic redundancy caused by a highly polygenic response to selection 
in their experiment. Despite Bait- ER modelling sweep- like scenarios 
rather than the evolution of a quantitative trait using an infinitesimal 
model, the somewhat elevated BF signal across the genome might 
indicate that the genetic basis of adaptation to this new temperature 
regime is indeed polygenic. Our results also suggest that the impact 
of linked selection might be non- negligible and worth investigating 
further.
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Linkage between selected and neutral variants has long been 
shown to cause skewed neutral site frequency spectra (Fay & 
Wu, 2000). Our analysis of the Barghi et al. (2019) experiment in-
dicates that linked selection might be the cause of a similar skew 
in this dataset. Of the six genomic elements in the D. simulans ge-
nome, five show significant SNPs all throughout the chromosome. 
In an independent study, Buffalo and Coop (2020) have analysed 
temporal covariances in Barghi et al.'s dataset to quantify the impact 
of linked selection in a model of polygenic adaptation. They found 
that the covariances between adjacent time points are positive but 
do decay towards zero as one examines more distant time intervals. 
This would be predicted if directional selection is determining the 
fate of linked neutral loci. Over 20% of genome- wide allele fre-
quency changes were estimated to be caused by selection, particu-
larly linked selection. Linked selection is likely to have a substantial 
impact on genome scans such as Bait- ER that assume independence 
between sites. This is especially evident in highly significant peaks 
of BFs (Figure 6; Figure S12). The trajectories within such peaks will 
have similar sweep- like shapes and will likely consist of causative 
loci as well as closely linked neutral sites. These results are in con-
trast to what we obtained from analysing Vlachos et al. (2019) where 
linked selection does not generally affect Bait- ER's ability to detect 
the true targets of selection (Figure S17). This indicates that the data 
simulated by Vlachos et al. (2019) might not fully reproduce the com-
plexity of real genomic data.

Barghi et al. (2019) claim that their experiment showed a very 
distinctive pattern of heterogeneity amongst replicate populations. 
Buffalo and Coop (2020) also found that there is a substantial pro-
portion of the initial allele frequency change in response to selection 
that is shared between replicates in the Barghi et al. (2019) dataset, 
but this pattern is overturned rapidly. This can be caused by the pop-
ulation swiftly reaching the new phenotypic optimum, thereby hitch-
hiker alleles spread through the population along with adaptive sites, 
which reach high frequencies very quickly. These linked loci eventu-
ally recombine on to other genetic backgrounds causing linkage to 
dissipate. The consequences of replicate heterogeneity on genome 
scans are twofold. On the one hand, different segregating haplotypes 
could be selected for in different replicates. This will cause genome 
scans not to find any convergent genotype frequencies. The process is 
difficult to characterize unless there is sufficient data on the founder 
haplotypes. Numerous studies have time series data that does not in-
clude full sequences of those starting haplotypes, for example, Barghi 
et al. (2019) and Burke et al. (2014). On the other hand, it is possible 
that multiple interacting beneficial mutations are already present in 
the standing genetic variation. Interference between linked selected 
sites through epistasis can reduce the effectiveness of selection (Hill 
& Robertson, 1966). This will be more prevalent if there are large ef-
fect loci in the vicinity. Our results indicate that that might be the case 
in the sweep simulated by Vlachos et al. (2019), where the authors 
simulate a little over 10% of the D. melanogaster total genome length 
with 30 selected targets. For moderate to strong selection, that might 
be enough for linkage to hinder rapid adaptation and produce signa-
tures that are not readily captured in genome scans.

Bait- ER estimates and tests for selection. However, σ estimates 
are not to be taken literally as linked selection might be inflating in-
dividual selection coefficients. Such is the case that nearby sites are 
not independent from one another that extended haplotypes might 
be rising to fixation at once. In a short timescale such as that of an 
evolution study, recombination is unlikely to have had the chance 
to have broken up haplotypes present in the standing variation. In 
addition, one expects drift to exacerbate the effect of linked se-
lection in experiments where populations are small. Selection in-
ference methods will likely be affected when the combined effect 
of linkage and drift is pervasive. Maximum likelihood estimates of 
selection coefficients were shown to be unaffected by demogra-
phy in populations as small as 500 individuals (Jewett et al., 2016). 
However, it is common that Ne in laboratory experiments is lower 
than the census population size. For example, Barghi et al. (2019) 
have reared flies in populations of roughly 1000 individuals, but 
they have estimated Ne to be around 300. Collectively, our results 
suggest that drift should not be neglected as it might inflate selec-
tion coefficient estimates since it exacerbates the extent of linked 
selection. Its impact can be substantial especially for populations 
with low polymorphism levels.

Regardless of demographic factors, adaptation of complex traits 
is a challenging process to characterize. This is because trait varia-
tion is influenced by numerous genes and gene networks. There is 
now some evidence in the literature suggesting that polygenic adap-
tation is key in a handful of laboratory evolution studies (reviewed 
by Barghi et al., 2020). The genomic signature left by such a complex 
process is still hard to describe in its entirety even in a replicated 
experimental design. It depends on numerous factors, including the 
total number of causative loci and the levels of standing genetic 
variation. The more polygenic a trait is the more likely linkage be-
tween selected sites is to generate extended selected haplotypes. 
Nevertheless, directional selection will cause some proportion of 
selected sites to behave as sweep- like trajectories. It is those that 
Bait- ER is aiming to characterize. In short- term evolution experi-
ments, theoretical studies have shown that a shift in the phenotypic 
optimum can result in sweep signatures provided the effect size is 
large (Jain & Stephan, 2017).

Results from genome scans in E&R studies of small populations 
generally tend to underperform. Since drift is pervasive and LD is ex-
tensive, genome scans might suffer from low power and high false- 
positive rates. For that reason, we plan to extend Bait- ER to explicitly 
account for linkage, which decays with distance from any given locus 
under selection. Accounting for linkage should help disentangle the 
effects of local directional selection on specific variants versus poly-
genic selection on complex traits. Modelling the evolution of linked 
sites by including information on the recombination landscape will 
further clarify the contribution of each type of selection.
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