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Abstract	

In	today’s	world,	it	is	becoming	increasingly	important	to	have	the	tools	to	understand,	and	

ultimately	to	predict,	the	response	of	ecosystems	to	disturbance.	However,	understanding	such	

dynamics	is	not	simple.	Ecosystems	are	a	complex	network	of	species	interactions,	and	therefore	any	

change	to	a	population	of	one	species	will	have	some	degree	of	community	level	effect.	In	recent	

years,	the	use	of	Bayesian	networks	(BNs)	has	seen	successful	applications	in	molecular	biology	and	

ecology,	where	they	were	able	to	recover	plausible	links	in	the	respective	systems	they	were	applied	

to.	The	recovered	network	also	comes	with	a	quantifiable	metric	of	interaction	strength	between	

variables.	While	the	latter	is	an	invaluable	piece	of	information	in	ecology,	an	unexplored	application	

of	BNs	would	be	using	them	as	a	novel	variable	selection	tool	in	the	training	of	predictive	models.	To	

this	end,	we	evaluate	the	potential	usefulness	of	BNs	in	two	aspects:	(1)	we	apply	BN	inference	on	

species	abundance	data	from	a	rocky	shore	ecosystem,	a	system	with	well	documented	links,	to	test	

the	ecological	validity	of	the	revealed	network;	and	(2)	we	evaluate	BNs	as	a	novel	variable	selection	

method	to	guide	the	training	of	an	artificial	neural	network	(ANN).	Here,	we	demonstrate	that	not	

only	was	this	approach	able	to	recover	meaningful	species	interactions	networks	from	ecological	

data,	but	it	also	served	as	a	meaningful	tool	to	inform	the	training	of	predictive	models,	where	there	

was	an	improvement	in	predictive	performance	in	models	with	BN	variable	selection.	Combining	

these	results,	we	demonstrate	the	potential	of	this	novel	application	of	BNs	in	enhancing	the	

interpretability	and	predictive	power	of	ecological	models;	this	has	general	applicability	beyond	the	

studied	system,	to	ecosystems	where	existing	relationships	between	species	and	other	functional	

components	are	unknown.	
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1.	Introduction	

Ecosystems	 are	 facing	multiple	 pressures,	 including	 climate	 change,	 biodiversity	 loss,	 habitat	 loss	

and	 pollution,	 on	 global,	 regional,	 and	 local	 scales	 (Steffen	 et	 al.,	 2018).	 Such	 pressures	 have	

significant	 impact	on	population	dynamics,	community	structure,	and	ecosystem	function.	 In	many	

ecosystems	if	pressures	exceed	a	threshold,	or	tipping	point,	the	changes	may	lead	to	an	ecological	

regime	 shift	 and	 potentially	 a	 new	 alternative	 stable	 state	 (Petraitis	 et	 al.,	 2009;	 Petraitis	 and	

Dudgeon,	1999).	Regime	shifts	are	large	and	sudden	changes	where	an	ecosystem	undergoes	a	step	

change	 to	 another	 state	 that	 can	 last	 for	 substantial	 periods	 of	 time	 (typically	 decades	 for	 most	

ecosystems),	and	potentially	indefinitely	(Folke	et	al.,	2004;	Scheffer	et	al.,	2001).	This	is	detrimental	

to	 ecosystems	 for	 two	 reasons.	 Firstly,	 post-regime	 states	may	 be	 highly	 stable	 themselves.	 Such	

shifts	 entail	 changes	 in	 internal	 dynamics	 and	 feedbacks	 of	 an	 ecosystem	 that	 often	 make	 it	

impossible	to	reverse	to	its	original	state,	even	if	efforts	are	made	in	removing	the	drivers	that	lead	

to	 the	 shift	 (Scheffer	 et	 al.,	 1993).	 Secondly,	 alternative	 regimes	 are	 normally	 ‘poorer’	 in	 both	

biodiversity	and	provision	of	ecosystem	service	(Hawkins	et	al.,	2015).	

Given	 this,	 it	 is	of	paramount	 importance	 to	be	able	 to	understand,	and	ultimately	 to	predict,	 the	

response	 of	 ecosystems	 to	 disturbance,	 including	 resilience	 of	 the	 ecosystem	 and	 potential	 new	

stable	 states.	 However,	 understanding	 such	 dynamics	 is	 not	 simple.	 Ecosystems	 are	 a	 complex	

network	 of	 interactions:	 species	 exists	 as	 part	 of	 an	 ecological	 community	 that	 is	 dictated	 by	

interactions	with	 prey,	 predators	 and	 competitors.	 Therefore,	 any	 change	 to	 a	 population	 of	 one	

species	will	have	some	degree	of	community	level	effect	(Henneman	and	Memmott,	2001;	Stafford	

et	al.,	2013).		

Computational	 inference	 of	 complex	 networks	 presents	 an	 efficient	 route	 to	 reveal	 complex	

interactions	 such	 as	 those	 within	 an	 ecosystem,	 and	 have	 been	 demonstrated	 to	 work	 on	 some	

natural	 complex	 systems.	 For	 example,	 the	 recent	 applications	 of	 Bayesian	 Networks	 (BNs)	 have	

shown	success	 in	 recovering	gene	regulatory	networks	 from	gene	microarray	data	 (Chen	and	Mar,	

2018;	 Friedman	 et	 al.,	 2000;	 Hecker	 et	 al.,	 2009).	 BNs	 have	 also	 seen	 successful	 applications	 in	

ecology,	where	 recovered	 networks	 from	observational	 data	 corresponded	well	 to	 known	 species	

and	habitat	interactions	(Milns	et	al.,	2010;	Mitchell	et	al.,	2021;	Trifonova	et	al.,	2015).	Given	that	it	

has	been	established	that	understanding	these	interactions	is	crucial	in	understanding	the	impact	of	

large	scale	disturbances	such	as	climate	change	on	ecological	systems	(Pearson	and	Dawson,	2003;	

Proulx	et	al.,	2005),	BNs	therefore	offer	a	novel	way	to	reveal	ecological	network	structures	within	

stable	states	using	species	counts	that	are	relatively	easy	to	obtain.		



	

	

Another	 key	 strength	 of	 BNs	 is	 the	 ability	 to	 at	 least	 semi-quantify	 the	 strength	 of	 interactions	

between	 variables	 (or	 species).	Using	 this	 information,	 it	 follows	 that	 relative	 variable	 importance	

with	respect	to	a	certain	variable	of	interest	can	be	inferred	from	the	revealed	network.	Knowing	the	

relative	 strength	 of	 certain	 species	 in	 relation	 to	 others	 is	 invaluable	 in	 the	 field	 of	 ecology.	 For	

example,	knowing	the	strength	of	interactions	between	predator,	prey	and	competitors	would	give	a	

clear	understanding	of	how	ecological	communities	are	structured	and	regulated.		

The	 combination	 of	 these	 two	 features,	 network	 structure	 and	 interaction	 strength,	 has	 the	

potential	 to	 serve	as	a	novel	 variable	 selection	 tool	 in	 the	 field	of	machine	 learning.	 The	 revealed	

structure	can	identify	relevant	variables	in	relation	to	a	target	variable.	This	could	guide	the	training	

of	 various	 predictive	 models	 such	 as	 multiple	 linear	 regression	 (MLR)	 models,	 one	 of	 the	 most	

popular	models	 in	ecology.	However,	a	key	 limitation	of	using	MLR	models	or	derivatives	of	 them	

such	as	generalised	linear	models	(GLM)	as	a	predictive	tool	for	ecosystem	dynamics	is	their	limited	

ability	 to	 deal	 with	 non-linear	 relationships	 between	 the	 dependent	 and	 independent	 variables	

(Brosse	et	al.,	1999;	Gevrey	et	al.,	2003;	Laë	et	al.,	1999).	A	potential	alternative	to	these	approaches	

is	the	use	of	artificial	neural	networks	(ANNs).	ANNs	have	gained	 increasing	attention	 in	ecological	

modelling	 in	 the	 last	 decade,	with	 the	main	 reason	 being	 their	 ability	 to	 detect	 patterns	 through	

complex,	non-linear	relationships	(Jeong	et	al.,	2001;	Kroodsma	et	al.,	2018;	Mac	Aodha	et	al.,	2018;	

Pereira	et	al.,	2019).	Therefore,	this	makes	ANNs	an	attractive	alternative	to	conventional	regression	

models.	However,	ANNs	lack	easily-interpretable	coefficients	as	found	in	MLR	models.	Thus,	use	of	a	

BN	 variable	 selection	 tool	 would	 complement	 an	 ANN	 predictive	 model	 by	 providing	 interaction	

strengths	for	the	selected	variables.	

In	this	paper,	we	aim	to	evaluate	the	potential	usefulness	of	BNs	in	two	aspects.	Firstly,	we	apply	BN	

inference	on	 species	abundance	data	 from	a	 rocky	 shore	ecosystem	 in	Scotland.	Rocky	 shores	are	

systems	 with	 well	 documented	 relationships	 between	 species	 and	 this	 allows	 us	 to	 test	 the	

ecological	validity	of	 the	 revealed	network	against	experimentally	derived	 field	data.	Secondly,	we	

evaluate	BNs	as	a	novel	variable	selection	method	to	train	an	ANN	for	each	component	species	of	

the	network.	To	evaluate	 the	effectiveness	of	BN	as	a	variable	 selection	method,	we	compare	 the	

performance	of	 the	ANN	with	 and	without	 the	BN-based	 variable	 selection.	 Finally,	 to	benchmark	

our	 approach	 against	 previous	methods,	 we	 compare	 the	 performance	 of	 the	 ANN	with	 variable	

selection	 against	 a	 generalised	 linear	model	 (GLM,	 a	 type	 of	MLR	model)	 with	 variable	 selection,	

where	variable	selection	has	been	performed	by	the	BN.	

	

	



	

	

2.	Methods	

2.1	Field	Methods	

Our	 study	 site	 was	 two	 continuous	 sections	 of	 rocky	 shore	 of	 10m	 in	 length	 at	 East	 Sands,	 St	

Andrews,	 Scotland	 (56°20'04.0"N	 2°46'23.2"W).	 	 Both	 sites	were	 at	 a	 tidal	 height	 of	 2.9	m	 above	

chart	datum.	These	sites	were	selected	based	on	initial	inspection	of	community	structure	to	ensure	

that	both	macroalgae	and	barnacle	stands	were	present,	but	were	otherwise	haphazardly	selected	

from	other	potential	sites	at	this	height	on	the	shore.				

All	 sampling	 occurred	 in	 May	 2020.	 Sampling	 only	 occurred	 during	 low	 tide	 time	 periods.	 Fifty	

haphazardly	 placed	 50x50cm	 double	 strung	 quadrats	 were	 placed	 at	 each	 site.	 Grazer	 count	 (for	

Littorina	 littorea	 (littorinids)	 and	 Patella	 vulgata	 (limpets)	 were	 obtained	 for	 each	 quadrat.	

Percentage	 cover	 estimates	 for	 barnacles	 (Semibalanus	 balanoides	 and	 Chthamalus	 stellatus),	

macroalgae	 (Ascophyllum	nodosum	and	 Fucus	vesiculosus)	 and	microalgae	 (Biofilm)	were	obtained	

by	photographing	the	quadrat	frames	using	an	IPhone	XR.	Estimates	were	then	made	of	percentage	

cover	for	each	species	present.	Other	grazer	species	were	extremely	rare,	and	accounted	for	<	2%	of	

grazers	found.	This	was	considered	unlikely	to	affect	our	results,	so	are	not	included	in	subsequent	

analysis.	 This	 sampling	 covered	 approximately	 50%	of	 the	 area	 being	 considered,	which	 has	 been	

demonstrated	 to	 be	 sufficient	 to	 capture	 the	 variation	 and	 details	 of	 even	 the	 most	 patchily	

distributed	organisms	on	the	rocky	shores	(Stafford,	2002;	Stafford	et	al.,	2015).	The	research	data	

underpinning	 this	 publication	 can	 be	 accessed	 at	 https://doi.org/10.17630/f2b69f88-efb7-43a1-

96e9-70012256a752	(Hui	et	al.,	2021).	

	

2.2	Data	pre-processing	

Data	 analysis	 was	 carried	 out	 using	 R	 4.0	 (R	 Core	 team,	 2020)	 to	 prepare	 the	 data	 for	 further	

analysis.	 It	 is	 traditional	 knowledge	 in	 the	 field	 of	machine	 learning	 that	 the	more	 data	 that	 any	

machine	learning	algorithm	has	access	to,	the	more	effective	it	can	be	(Perez	and	Wang,	2017).	The	

problem	with	small	datasets	is	that	models	that	are	trained	with	them	do	not	generalize	well	beyond	

the	original	dataset.	Hence,	these	models	suffer	from	overfitting.	

To	combat	against	this	problem,	and	with	the	knowledge	that	our	sampling	sufficiently	captured	the	

site	 variation	 (Stafford,	 2002;	 Stafford	 et	 al.,	 2015),	 we	 applied	 a	 uniform	 data	 augmentation	

method.	This	process	simply	takes	each	data	point,	in	this	case	a	single	cell	of	percentage	cover	(0-

100%)	 or	 grazer	 count	 (0-42	 individuals),	 and	 returns	 an	 additional	 point	 that	 either	 adds	 or	

subtracts	 a	 value	 from	 a	 uniform	 distribution	 of	 ±3.	 	 This	 would	 take	 on	 the	 form	 as	



	

	

𝑥 + 𝑟𝑢𝑛𝑖𝑓 1,−3,+3 ,	with	 values	 <0	 reset	 to	 0.	 This	 process	was	 repeated	 until	 400	 data	 points	

was	reached.	When	partitioning	the	data	into	training	and	validation	sets	(in	the	neural	networks),	

this	process	was	applied	only	to	the	training	data	partition.	

	

3.	Modelling	

3.1	Bayesian	networks	

Bayesian	networks	consists	of	a	graphical	representation	of	the	joint	probability	distribution	among	

a	set	of	variables	𝑋 = {𝑋!,… . . ,𝑋!}	.	The	graphical	representation,	in	the	form	of	a	directed	acyclic	

graph	 (DAG),	 represents	 the	dependencies	 and	 conditional	 relationships	 among	a	 set	of	 variables.	

This	can	be	defined	with	the	pair	 𝐺,𝛩 .	G	represents	a	directed	graph	with	nodes	that	correspond	

to	 the	 variables	𝑋!,… . . ,𝑋!,	 	 and	 links	 between	 nodes	 indicate	 statistical	 dependency,	where	 the	

child	variable	is	dependent	on	its	parents.		The	graph	G	and	the	joint	probability	distribution	of	𝛩	are	

connected	 to	 together	by	 the	Markov	condition	property:	 variable	𝑋! 	 is	 conditionally	 independent	

from	all	non-descendants,	given	 its	parents	 in	G,	𝑃𝑎(𝑋!).	Lastly,	 the	parameters	of	𝛩	 specifies	 the	

probabilistic	relationship	of	each	node	to	its	parents,	𝑃 𝑋! 𝑃𝑎(𝑋!) .	Given	these	qualities,	the	joint	

probability	distribution	that	is	described	by	 𝐺,𝛩 	is	therefore:	

	 	 	 	 𝑃 𝑋!,… ,𝑋! =  𝑃 𝑋! 𝑃𝑎 𝑋!!
!!! 	 	 	 	 (1)	

	

3.1.1	Learning	Bayesian	networks		

Banjo	 2.2	 (https://users.cs.duke.edu/~amink/software/banjo/;	 Yu	 et	 al.,	 2004,	 Smith	 et	 al.,	 2006)	

was	used	to	reveal	the	Bayesian	networks.	Due	to	the	discrete	nature	of	the	learning	algorithm,	the	

dataset	had	 to	be	discretized.	To	 this	end,	all	 variables	were	discretized	 into	3	bins	using	quantile	

discretization.	The	variables	were	mapped	into	3	bins	as	follows:	

	 Limpet:	[0,	9]	→	low,	[10,	29]	→	medium,	and	[30/42]	→	high		

	 Littorinid:	[0,	4]	→	low,	[5,	8]	→	medium,	and	[9/21]	→	high	

	 Barnacle:	[0,	6]	→	low,	[7,	49]	→	medium,	and	[50/88]	→	high	

	 Macroalgae:	[0,	5]	→	low,	[5,	8]	→	medium,	and	[9/21]	→	high	

	 Microalgae:	[0,	10]	→	low,	[12,	50]	→	medium,	and	[53/80]	→	high	

	



	

	

The	number	of	bins	were	selected	due	to	the	following	reasons:	1)	it	 is	 intuitive	as	it	reflects	‘low’,	

‘medium’,	 and	 ‘high’	 ordinal	 states;	 2)	 to	minimize	 the	 quantity	 of	 conditional	 probabilities	while	

simultaneously	allowing	for	non-monotonic	relationships	to	be	revealed,	and	3)	discretization	into	3	

bins	has	been	shown	to	be	optimal	in	simulation	studies	and	had	success	in	previous	applications	of	

Bayesian	networks	in	ecological	systems	(Yu	et	al.,	2004;	Milns	et	al.,	2010).	To	search	for	the	best	

networks,	 Banjo	 uses	 a	 heuristic	 search	 to	 identify	 top	 scoring	 networks	 based	 on	 the	 Bayesian	

Dirichlet	equivalent	scoring	metric.	Banjo	was	run	using	settings:	greedy	search,	using	random	local	

moves,	with	an	equivalent	sample	size	of	1.	Upon	completion	of	a	search,	Banjo	returns	a	single	top	

scoring	network	along	with	influence	score	for	each	link,	which	ranges	from	-1	to	1,	representing	the	

direction	and	magnitude	of	 influence,	with	a	score	of	exactly	0.0	representing	non-monotonic	(e.g.	

hump-	or	U-shaped)	influence.	

		

3.1.2	Using	Markov	blanket	from	Bayesian	networks	for	variable	selection	

A	Markov	blanket	(MB)	of	any	target	variable	𝑇,	𝑀𝐵(𝑇),	is	the	minimal	set	for	which	the	conditional	

independence	 relationship	 𝑰	 between	𝑋	 and	 𝑇	 holds	 such	 that	 𝑰 𝑋;𝑇  𝑀𝐵(𝑇)),	 for	 all	𝑋 ∈ 𝑉 −

𝑇 −𝑀𝐵 𝑇 	 in	 a	 variable	 set	𝑉.	 Therefore,	 the	MB	of	 a	 given	 target	 variable	 includes	 its	 parent	

nodes,	 child	 nodes,	 and	 other	 parent	 nodes	 of	 the	 children.	 This	 condition	 renders	 variable	 𝑇	

statistically	independent	from	all	the	remaining	variables	of	a	BN,	given	the	values	of	the	variables	in	

the	Markov	blanket.	Putting	all	the	above	together,	we	can	describe	the	relationship	between	 𝐺,𝛩 	

as	follows:	a	BN	graphical	structure	of	𝐺	is	faithful	to	a	joint	probability	distribution	𝛩	over	a	variable	

set	𝑉	 if	 and	 only	 if	 every	 dependence	 entailed	 by	 the	 graph	𝐺	 is	 also	 present	 in	𝛩.	 	 This	 formal	

definition	is	the	basis	of	our	proposed	variable	selection	method:	we	identify	the	Markov	blanket	of	

specific	 variables	 within	 the	 revealed	 Bayesian	 network,	 and	 these	 variables	 will	 be	 selected	 for	

training	the	predictive	models.		

	

3.1.4	Learning	variable	importance	from	Bayesian	networks	

To	quantify	variable	 importance	 from	each	component	variables	of	 the	 revealed	Markov	blankets,	

we	utilize	Banjo’s	 influence	 score	and	mutual	 information.	Upon	 revealing	 the	Markov	blanket	 for	

each	 component	 variable	within	 the	 Bayesian	 network,	we	 parse	 each	 respective	Markov	 blanket	

through	Banjo	to	obtain	the	influence	scores	for	each	variable	with	regards	to	their	target	variable.		

To	complement	 the	 influence	score,	which	shows	 the	direction	and	magnitude	of	 relationship,	we	

also	 compute	 the	mutual	 information	using	 the	R	 package	entropy	 v1.3.0	 (Hausser	 and	 Strimmer,	



	

	

2009).	 The	 mutual	 information	 of	 two	 random	 variables	 is	 a	 measure	 of	 mutual	 dependence	

between	two	variables,	where	it	quantifies	the	‘amount	of	information’	obtained	about	one	random	

variable	through	the	observation	of	another	random	variable.		For	example,	the	mutual	information	

(I)	between	variables	X	and	Y	can	be	defined	by:	

	 	 	 	 𝐼 𝑋,𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)	 	 	 	 	 (2)	

where	H	represents	the	entropy	of	a	given	variable.		

This	is	then	equivalent	to	the	following:	

	 	 	 𝐼 𝑋,𝑌 =  𝑝(𝑦)!"# 𝑝(𝑥|𝑦)!"# 𝑙𝑜𝑔!
!(!|!)
!(!)

	 	 	 	 (3)	

	

This	 allows	 mutual	 information	 between	 a	 target	 variable	 and	 any	 possible	 predictor	 to	 be	

computed.	As	a	direct	result,	we	can	then	 infer	which	variable	provides	the	maximum	information	

gain,	and	thus	allows	us	to	gauge	variable	 importance	 in	relation	to	a	 target	variable,	 in	a	manner	

complementary	to	the	influence	score.	

	

3.2	Artificial	Neural	Networks	

An	Artificial	Neural	Network	models	the	relationship	a	set	of	input	and	output	signals	using	a	model	

that	is	derived	from	animal	neural	system	mechanisms	(van	Wijk	and	Bouten,	1999).	

	

Figure	1:	A	single	artificial	neuron.	Inputs	X,	Y,	and	Z	are	weighted	by	connection	weights	wX,	wY	and	

wZ,	 respectively,	 and	 combined	 within	 the	 neuron	 via	 its	 activation	 function	 f(x)	 to	 result	 in	 the	

Output.	



	

	

The	model	 of	 a	 single	 artificial	 neuron	 is	 comparable	 to	 the	 biological	 model.	 Biological	 neurons	

receive	 incoming	signals	via	 their	dendrites.	This	 impulse	 is	 then	weighted	according	to	 its	 relative	

importance,	and	as	the	cell	body	begins	to	accumulate	weighted	signals,	a	threshold	is	reached	and	

the	 cell	 fires	 off	 an	 output	 signal.	 This	 process	 is	 essentially	mirrored	 in	 artificial	 neurons	 (Fig.	 1),	

where	 input	 signals	 are	 received	 by	 the	 dendrites	 (variables	 X,	 Y,	 Z)	 and	 are	 combined	 into	 the	

output	signal	(Output).	Each	signal	is	weighted	(wx,	wY	and	wZ)	according	to	its	importance	and	then	

summed	up	by	the	cell	body,	and	the	signal	is	passed	according	to	an	activation	function.	Therefore,	

the	output	an	artificial	neuron	with	n	inputs	can	be	expressed	as	the	following:	

	 	 	 	 𝑦 𝑥 = 𝑓 𝑤!𝑥!!
!!! + 𝑏	 	 	 	 (4)	

where	wi	represents	the	connection	weights	which	allows	each	of	n	inputs	(𝑥!)	to	contribute	to	the	

sum	of	input	signals.	The	net	sum	is	used	by	the	activation	function	f(x)	and	the	resulting	signal	y(x),	

including	the	addition	of	a	bias	term	(b),	is	the	output.	Here,	we	use	the	logistic	activation	function	

defined	by:	𝑓 𝑥 = !
!!!!!

	.	The	main	advantage	of	using	this	is	that	it	provides	a	smooth	gradient	of	

outputs,	preventing	‘jumps’	in	output	values.		

	

3.2.1	General	network	architecture	

	

Figure	2:	Generic	structure	of	a	feed-forward	artificial	neural	network.	The	first	layer	represents	the	

input	 neurons	 (I1-I3).	 The	 next	 3	 layers	 represent	 the	 hidden	 layers,	 and	 their	 associated	 hidden	

neurons.	The	final	layer	represents	the	output	neuron	(ON1).	Bias	terms	per	layer	are	represented	by	

B1-4.	Line	 represents	 connections	 between	 neurons,	 where	 the	 weights	 are	 represented	 by	 the	

thickness	of	the	lines	and	the	colors	represent	the	effect,	where	green	represents	a	positive	effect	and	

red	representing	negative.	



	

	

Typically,	 an	 ANN	 is	 composed	 in	 a	 manner	 where	 every	 neuron	 of	 one	 layer	 connects	 with	 all	

neurons	in	the	next	layer.	The	first	layer	is	the	input	layer,	which	in	this	case	represents	input	from	

each	 independent	 variable	 (Fig.	 2).	 	 This	 layer	 receives	 data	 and	 transmits	 data	 to	 the	 next	 layer,	

which	 is	the	hidden	 layer.	Each	cell	 in	the	hidden	 layer	acts	as	a	processing	neuron	which	receives	

information	 from	different	 input	 neurons.	 These	 cells	 sum	up	 the	 input	 signals	 and	processes	 the	

data	according	to	an	activation	function.	This	 in	turn	produces	a	signal	for	the	next	 layer.	The	next	

layer	can	either	be	another	hidden	layer,	or	an	output	layer,	which	sums	up	all	the	incoming	signals	

to	 produce	 a	 response,	 which	 in	 this	 context	 will	 be	 the	 value	 of	 the	 dependent	 variable.	 The	

connection	 between	 neurons	 vary	 by	 magnitude	 and	 direction:	 they	 can	 either	 be	 positive	 or	

negative,	and	they	vary	in	high	or	lower	effects.	This	is	known	as	the	‘connection	weights’,	where	the	

effect	of	one	neuron	on	the	next	may	be	positive	or	negative	depending	on	the	sign	of	the	weight	

(Olden	and	Jackson,	2002).	Additionally,	each	hidden	layer	and	output	layer	has	a	bias	term	added,	

which	 are	 numeric	 constants	 that	 allow	 the	 value	 at	 indicated	 neurons	 to	 be	 shifted	 upwards	 or	

downwards	(Lantz,	2013).	

	

3.2.2	Training	algorithm:	Gradient	based	optimisation	

Recall	 that	 each	 neural	 network	 output	 transforms	 input	 data	 as	 defined	 by	 equation	 4.	 In	 this	

expression,	w	 and	 b	 are	 the	 weights	 and	 biases	 which	 are	 the	 trainable	 parameters,	 and	 these	

weights	 contain	 the	 information	 learnt	 by	 the	 network	 from	 exposure	 to	 training	 data.	 Initially	

training	starts	with	a	random	initialization	of	w	and	b,	which	allows	us	to	obtain	predictions	of	y(x).	

The	 algorithm	 then	 computes	 the	 loss,	 which	 is	 the	 degree	 of	 mismatch	 between	 the	 predicted	

outputs	and	the	actual	outputs.	Given	the	degree	of	loss,	the	algorithm	then	gradually	adjusts	these	

weights	in	a	way	that	slightly	reduces	the	loss.	This	becomes	a	training	loop,	which	is	repeated	until	

a	very	low	loss	on	training	data	is	achieved.		

Here,	the	activation	function	is	crucial.	Because	the	sigmoid	activation	function	is	differentiable,	the	

training	algorithm	uses	the	derivative	of	each	neurons	activation	function	to	identify	the	gradient	in	

the	direction	of	 each	 training	weight.	Given	 the	 gradient,	 it	 allows	 the	algorithm	 to	measure	how	

much	 the	 loss	 can	 be	 reduced	 for	 a	 change	 in	 weight.	 This	 process	 is	 known	 as	 the	 stochastic	

gradient	descent	and	 is	 the	backbone	of	the	training	process	 in	ANNs.	 In	this	paper,	we	utilize	the	

backpropagation	algorithm	to	train	our	ANNs.	

	

	



	

	

3.2.3	Training	Artificial	Neural	Networks	

R	was	used	to	train	the	ANNs.	All	data	points	had	to	be	modified	as	neural	networks	work	best	when	

the	 input	 data	 are	 scaled	 to	 a	 narrow	 range	 near	 0	 (Lantz,	 2013).	We	 defined	 our	 own	min-max	

normalization	function:	

g(x)= !!!"# !
!"# ! !!"# !

	 	 	 	 	 (5)	

This	function	was	then	applied	to	all	variables	independently	to	scale	our	data. 	

To	 train	 the	 model,	 we	 used	 the	 R	 packages	 caret	 v6.0-88	 	 (Kuhn,	 2020)	 and	 neuralnet	 v1.44.2	

(Fritsch	et	 al.,	 2019).	Our	dataset	was	 randomly	partitioned	 into	70%	 training	and	30%	validation.	

We	used	caret's	maximum	of	3	hidden	 layers,	of	which	each	 layer	 is	allowed	to	have	1-4	neurons.	

Therefore,	 to	tune	these	hyperparameters,	we	performed	10	searches	for	each	 layer	starting	from	

layer	 1.	 During	 each	 iteration,	 caret	 performs	 backpropagation	 to	 determine	 the	 most	 optimal	

number	 of	 neurons	 per	 hidden	 layer	 using	 10-fold	 cross	 validation.	 The	 root	 mean	 square	 error	

(RMSE)	is	calculated	and	the	model	with	the	lowest	RMSE	is	selected.	This	process	is	then	repeated	

until	the	optimal	number	of	neurons	for	all	3	layers	have	been	learnt.	For	each	component	species	of	

the	 revealed	 BN,	 we	 trained	 two	 ANNs:	 (1)	 where	 every	 other	 variable	 acts	 as	 the	 predictor	 (no	

variable	selection);	and	(2)	where	only	the	variables	within	the	Markov	blanket	of	the	target	variable	

are	used	as	the	predictor	(variable	selection).	To	test	our	model	performance,	we	utilized	the	30%	

validation	 set	 as	 input	 for	 each	model,	 and	 then	measured	 the	 Pearson	 correlation	 between	 the	

model	predicted	output	and	the	true	value.		We	replicate	this	process	10	times	for	both	no	variable	

selection	and	for	variable	selection.	

	

3.2.4	Learning	Variable	Importance	from	ANN	

To	 quantify	 variable	 importance	 from	 our	 ANN	 models,	 we	 utilize	 Olden’s	 connection	 weights	

algorithm	(Olden	et	al.,	2004).This	method	calculates	importance	as	the	summed	product	of	the	raw	

input-hidden	and	hidden-output	connection	weights	between	each	input	and	output	neuron	(Beck,	

2018).	To	apply	this	algorithm,	we	use	the	NeuralNetTools	v1.5.2	package	(Beck,	2018).	

	

3.2.5	Training	GLM	models	

R	was	used	to	train	the	GLM	models.	The	same	training	and	validation	data	used	for	training	ANNs	

were	used	to	train	the	GLM	models.	The	data	did	not	require	min-max	normalization.	To	train	the	



	

	

GLM	models,	we	used	the	glm	function,	with	the	Poisson	link	function,	along	with	the	caret	package.		

For	each	model,	we	utilized	a	5-fold	cross	validation	training	procedure.	To	test	model	performance,	

we	use	the	same	procedure	outlined	in	the	previous	section.	

	

4.	Results		

4.1	Bayesian	Networks	

The	network	shown	in	Fig.	3	represents	the	revealed	BN	of	rocky	shore	species.	There	was	a	strong	

negative	 relationship	 between	 macroalgae	 and	 barnacles.	 Additionally,	 positive	 links	 were	 found	

between	grazers	 (limpets	and	 littorinids)	and	macroalgae	and	microalgae.	A	non-monotonic	 link	 (0	

influence	score)	was	found	between	limpets	and	barnacle.	

	

	

	

	

	

	

	

	

Figure	3:	Bayesian	network	showing	the	revealed	species	interaction	network	of	a	typical	rocky	shore	

community.	Values	represent	influence	scores.	

	

4.2	Markov	blankets	and	variable	importance	

Fig.	4	represents	the	Markov	blanket	of	each	component	species	of	the	Bayesian	network	shown	in	

Fig.	3,	along	with	the	influence	scores	and	mutual	information.	The	Markov	blanket	for	each	species	

shows	which	species	are	the	most	important	in	predicting	the	specified	target	variable.	The	influence	

scores	 represent	 the	 direction	 and	 magnitude	 of	 relationship	 between	 the	 predictor	 and	 target	

variables,	while	the	mutual	information	shows	the	extent	to	which	having	knowledge	of	a	predictor	

variable	 reduces	 the	 uncertainty	 about	 the	 target	 variable.	 	 Both	 influence	 score	 and	 mutual	



	

	

information	was	the	strongest	when	sessile	species	were	used	to	predict	each	other,	where	barnacle	

was	the	most	important	in	predicting	macroalgae	and	vice	versa.	

	

Figure	4:	Markov	blanket	of	each	target	variable	(across	top	of	plots)	with	 influence	scores	(A)	and	

mutual	information	(B)	of	each	predictor	(x-axes).	Influence	scores	show	the	magnitude	and	direction	

of	 relationship	 between	predictor	 variables	 and	 target	 variable.	 Influence	 scores	 of	 ‘0’	 represent	 a	



	

	

non-monotonic	 (NM)	 relationship.	The	mutual	 information	 is	 the	 ‘amount	of	 information’	obtained	

about	the	target	variable	through	the	observation	of	another	predictor	variable.	

	

4.3	Artificial	Neural	Networks	

For	 each	 component	 species	 in	 the	BN	 (Fig.	 3),	we	 trained	one	ANN	using	 all	 other	 variables	 as	 a	

predictor	 (no	 variable	 selection),	 and	 another	 ANN	 using	 only	 the	 variables	 within	 the	 Markov	

blanket	of	the	selected	variable	(variable	selection).	There	were	significant	improvements	in	model	

performance	with	variable	selection	 in	macroalgae	and	barnacle	(Figure	5:	with	predictor	variables	

as	defined	in	Fig.	4;	significance	determined	by	t-tests:	macroalgae:	t(17.442)	=	-16.903,	p	=	2.96x10-12;	

barnacle:	t(-15.377)	=	-15.377,	p	=	1.37x10-8).	On	the	other	hand,	no	significant	difference	occurred	with	

variable	selection	for	microalgae,	littorinids	or	limpets	(microalgae,	limpet	and	littorinid;	p>	0.05).		

	

	

	

Figure	 5:	 Comparison	 of	 model	 performance	 between	 ANN	 with	 variable	 selection	 and	 without	 variable	

selection,	 for	predicting	each	variable	across	 top.	White	bars	=	ANN	with	no	variable	selection	 (No	VS),	Grey	

bars	 =	 ANN	 with	 variable	 selection	 (VS).	 Error	 bars	 represent	 standard	 deviation.	 R	 represents	 Pearson	

correlation	coefficient	between	model	predictions	and	test	data.	



	

	

	

4.4	Variable	Importance	from	ANNs	with	variable	selection	

Olden's	connection	weight	algorithm,	when	applied	to	each	model,	revealed	which	species	were	the	

most	important	in	predicting	the	specific	target	variable,	where	it	shows	the	strength	and	direction	

of	this	relationship.	This	showed	similar	patterns	with	the	results	from	our	BN	influence	scores	(see	

Fig.	4),	where	the	relationships	were	the	strongest	when	sessile	species	were	used	to	predict	each	

other.	However,	the	level	of	uncertainty	for	specific	variables	was	large	between	model	fits	for	the	

same	network	architecture.		

	

Figure	 6:	 Variable	 importance	 derived	 from	 ANN	 models	 using	 Olden’s	 connection	 weight	 algorithm.	

Importance	for	predictor	variables	(x-axis)	shown	for	each	set	of	models	predicting	each	variable	in	turn	(top).		

Error	bars	represent	standard	deviation.	

	

	



	

	

4.5	Comparing	ANN	with	GLM	models	

A	total	of	5	GLM	models	with	variable	selection	were	trained.	The	predictive	performance	of	these	

models	 followed	 a	 similar	 trend	observed	 in	 the	ANNs,	where	 performance	was	 better	 for	 sessile	

species	 (barnacle,	macroalgae	 and	microalgae)	 compared	 to	 the	 grazers.	 However,	 the	 predictive	

performance	 of	 ANN	outperformed	GLM	models	 across	 all	 species	 (Fig.	 7).	 There	were	 significant	

improvements	 in	 model	 performance	 in	 ANNs	 compared	 to	 GLMs	 for	 macroalgae,	 barnacle,	

microalgae	and	littorinid	models	(significance	determined	by	t-tests:	macroalgae:	t(10.012)	=	10.012,	p	

=	1.184x10-9,		barnacle:	t(10.999)	=	10.827,	p	=	3.326x10-7,	microalgae:		t(15.284)	=	6.5204,	p	=	8.833x10-6,	

littorinid:	 :	 t(17.927)	 =	 4.4089,	 p	 =	 0.00034).	 However,	 there	 was	 no	 significant	 difference	 in	model	

performance	for	in	the	Limpet	ANN	and	GLM	models	(Fig.	7:	limpet,	p	>0.05).	

	

	Figure	 7:	 Comparing	 predictive	 performance	 of	 ANN	 and	 GLM	 models	 for	 each	 target	 variable	

(across	 top).	 Error	 bars	 represent	 standard	 deviation.	 R	 represents	 Pearson	 correlation	 coefficient	

between	model	predictions	and	test	data.	

	

	



	

	

5.	Discussion	 	

The	 application	 of	 Bayesian	 networks	 to	 rocky	 shore	 ecosystems	 predicted	 relationships	 between	

species	well,	and	provided	relative	weights	to	indicate	the	importance	of	the	interactions.	Although	

not	 those	 expected	 to	 be	 obtained	 immediately	 after	 experimental	 manipulations,	 these	 results	

match	what	one	would	expect	 from	a	 ‘static’	 rocky	 shore	 system	 (i.e.	 those	which	are	 in	a	 ‘stable	

state’	 rather	 than	 those	 adapting	 post	 experimental	 disturbance).	 The	 use	 of	 BNs	 for	 variable	

selection	in	ANNs	demonstrated	improved	model	performance	in	some	cases,	and	addresses	some	

ecological	 concerns	 around	 the	 ‘black	 box’	 nature	 of	ANNs.	 Finally,	 the	 predictive	 power	 of	ANNs	

was	shown	to	be	greater	than	GLM	for	the	rocky	shore	community	we	examined.	These	points	are	

examined	in	more	detail	below.		

	

5.1	Bayesian	networks	revealed	known	functional	relationships		

The	BN	revealed	some	inconsistency	with	prior	experimental	knowledge	of	competitive	and	grazing	

relationships.	However,	 the	BN	revealed	 important	specific	 relationships	 that	one	would	expect	 to	

find	 on	 the	 rocky	 shores,	 given	 relationships	 between	 variables.	 From	 a	 BN	 conducted	 outside	 of	

experimental	manipulations,	as	was	the	case	in	this	study,	i.e.	within	a	given	stable	state,	these	links	

represent	 statistical	 dependencies,	where	 links	between	 variables	 are	predictive	 in	 an	 informative	

manner,	and	not	causality,	which	is	often	obtained	through	experimental	manipulations.	

The	 strong	 negative	 relationship	 found	 between	macroalgae	 and	 barnacle	 reflects	 the	 alternative	

stable	states	that	have	been	documented	in	previous	 literature	(Petraitis	et	al.,	2003;	Petraitis	and	

Dudgeon,	1999),	and	the	competition	for	space	found	on	rocky	shores	(Raffaelli	and	Hawkins,	1999).	

Macroalgae	 stands	and	barnacle	 stands	 represent	 two	different	 states,	where	both	 sessile	 species	

compete	 for	 space	 on	 the	 rocky	 shore.	 Therefore,	 it	 follows	 that	 having	 knowledge	 about	 the	

presence	of	barnacles	is	informative	of	the	presence	of	macroalgae,	as	a	high	level	of	barnacle	would	

suggest	that	space	has	been	exploited,	therefore	leaving	no	room	for	macroalgae	to	establish	(and	

vice	versa).	Here,	it	should	be	noted	physical	factors	such	as	wave	exposure	and	shore	angles	have	

been	demonstrated	to	influence	the	distribution	of	macroalgae	and	barnacles	as	well.	For	example,	

biomechanical	 analysis	 of	wave	 action	 has	 shown	 that	 dislodgement	 of	macroalgae	 in	 land-facing	

sites	were	far	less	likely	than	sea-facing	sites	(Jonsson	et	al.,	2006).	Therefore,	in	seaward	facing	sites	

that	are	generally	more	exposed	to	wave	action,	patches	with	higher	proportion	of	barnacles	may	

not	 simply	 just	 be	 attributed	 to	 a	 exploitation	 of	 space,	 but	 also	 the	 physical	 factors	 that	 limit	

macroalgae	from	occupying	these	areas.	



	

	

Grazing	relationships	appear	to	be	captured	in	the	model	as	well.	Positive	links	were	found	between	

littorinids	 and	 macroalgae.	 This	 was	 consistent	 with	 prior	 knowledge	 as	 macroalgae	 has	 been	

documented	to	provide	food	(via	spores)	and	shelter	for	littorinid	snails,	whilst	simultaneously	acting	

as	a	buffer	from	wave	action	(Norton	et	al.,	1990).	However,	it	should	be	noted	that	the	links	found	

reflect	a	 static	 ‘snapshot’	of	a	 typical	 rocky	 shore.	 	 In	a	dynamic	 system	with	 the	consideration	of	

time,	we	would	also	expect	littorinids	to	reduce	the	level	of	establishing	macroalgae	(Hidalgo	et	al.,	

2008).	 Therefore,	 it	 could	 also	 be	 argued	 that	 there	 should	 be	 a	 negative	 link	 found	 between	

littorinids	 and	macroalgae.	 However,	 sampling	 occurred	 at	 a	 time	where	macroalgae	 had	 already	

established,	and	therefore	acted	as	a	refuge	for	littorinids.	This	led	to	a	positive	link	being	recovered:	

which	 was	 consistent	 with	 expectations	 for	 quadrats	 with	 established	macroalgae	 (Norton	 et	 al.,	

1990).		

This	was	the	same	with	the	relationships	between	 limpet	and	microalgae.	Generally,	 limpets	graze	

on	microalgae	patches,	which	should	lead	to	a	negative	link.	However,	they	may	be	also	attracted	to	

areas	 with	 microalgae,	 thus	 leading	 to	 a	 positive	 link	 (Jerkanof,	 2006;	 Nicotri,	 1977).	 The	 latter	

appears	 to	 be	 what	 was	 revealed	 by	 the	 static	 Bayesian	 network,	 where	 limpets	 were	 generally	

associated	with	areas	microalgae,	rather	than	from	experimental	studies,	where	systems	are	settling	

into	a	new	state	following	an	experimental	disturbance.				

The	 above	 relationship	 should	hold	between	 limpets	 and	macroalgae	 as	well	 –	where	 limpets	 are	

expected	 to	 be	 attracted	 to	 areas	 with	 macroalgae,	 as	 they	 have	 been	 documented	 to	 graze	 on	

macroalgae	 patches	 (Arrontes	 et	 al.,	 2004;	 Davies	 et	 al.,	 2007).	 At	 the	 same	 time,	 studies	 have	

demonstrated	 that	 limpets	 control	 growth	 of	 established	 macroalgae,	 where	 increased	 limpet	

density	around	macroalgae	patches	decreases	the	breaking	force	of	macroalgae,	thereby	increasing	

the	vulnerability	of	macroalgae	patches	to	wave	induced	breakage	(Davies	et	al.,	2007).	Therefore,	

following	 the	 ‘static	 system’	 argument,	 we	 should	 expect	 at	 least	 one	 of	 the	 two	 relationships	

(negative	or	positive)	between	limpets	and	macroalgae	to	be	revealed.	However,	there	was	no	link	

found.	 Additionally,	 it	 is	 unclear	 why	 there	 was	 a	 non-monotonic	 link	 between	 barnacles	 and	

limpets.	While	this	is	not	an	issue	for	the	Bayesian	network	alone	as	expert	knowledge	can	be	used	

to	 validate	 links,	 this	 becomes	 a	 problem	 when	 using	 this	 specific	 network	 structure	 to	 perform	

variable	selection	to	train	a	model	to	predict	limpet	abundance.	This	will	be	discussed	in	section	5.3.	

	

	

	



	

	

5.2	Limitations	of	Bayesian	network		

It	becomes	apparent	that	Bayesian	network	learning	algorithms	have	revealed	many	known	patterns	

of	the	functional	relationship	between	species	in	a	static	ecological	network.	Additionally,	it	was	able	

to	provide	a	quantifiable	measure	of	the	strength	of	interactions	between	species	community.	Both	

are	invaluable	in	the	study	of	ecology.	It	should	be	noted,	however,	that	the	system	under	study	was	

relatively	static	and	within	a	stable	state	when	we	measured	species	count/%	cover.	Therefore,	the	

recovered	 network	 represents	 a	 static	 snapshot	 of	 ecological	 interactions	 at	 a	 single	 time-step.	

Therefore,	the	next	step	to	further	our	understanding	in	ecological	networks	would	be	implementing	

the	 consideration	 of	 time,	 and	 the	 effect	 of	 manipulations	 of	 grazer	 or	 producer	 density.	 This	 is	

crucial	 as	 not	 only	 will	 this	 allow	 the	 effects	 of	 competition	 and	 predation	 to	 be	 modelled	 on	 a	

dynamic	 time	 scale,	 but	 it	 also	 opens	 opportunities	 to	 study	 how	 ecosystems	 could	 recover	 from	

disturbance	 and	 how	 relationships	 change	 between	 potentially	 different	 states.	 Finally,	 such	 a	

network	can	be	validated	alongside	known	species	relationships	derived	from	considerable	literature	

on	manipulative	 experiments.	 This	 is	 especially	 important	 in	 the	 wider	 ecological	 context,	 where	

having	the	tools	to	predict	the	onset	of	a	regime	shift	 is	becoming	increasingly	 important	(Folke	et	

al.,	2004;	Stafford	et	al.,	2013).	

	

5.3	Artificial	Neural	Networks	show	improvements	with	BN	variable	selection		

There	 were	 general	 improvements	 to	model	 performance	 in	 ANN	models	 with	 variable	 selection	

compared	 to	models	 with	 no	 variable	 selection.	 This	 difference	 was	 significant	 for	 barnacles	 and	

macroalgae.	 From	 our	 models,	 there	 was	 a	 clear	 distinction	 of	 predictive	 performance	 of	 sessile	

species	 (barnacles	 and	macroalgae)	 and	mobile	 species	 (limpets	 and	 littorinids),	where	models	 of	

sessile	 species	 performed	 better	 than	 models	 of	 mobile	 species.	 From	 a	 causal	 perspective,	 this	

would	make	sense.	Given	the	barnacles	and	macroalgae	confer	alternative	assemblages	on	the	rocky	

shore,	the	presence	of	one	sessile	species	has	strongly	affects	the	presence	of	another.		However,	it	

should	be	noted	that	physical	abiotic	factors	such	as	wave	exposure	and	site	angle	also	have	a	strong	

influence	on	 the	distribution	of	 these	sessile	 species	 (see	section	5.1).	While	 the	absence	of	 these	

physical	 factors	 did	 not	 affect	 the	 performance	 of	 the	 barnacle	 and	 macroalgae	 models,	 this	

becomes	 problematic	 when	 modelling	 the	 distribution	 of	 grazers.	 Firstly,	 grazers	 are	 mobile.	

Therefore,	despite	a	relevant	biological	relationship	between	macroalgae	and	littorinids,	there	is	no	

way	 for	 the	 model	 to	 explain	 the	 presence	 of	 littorinids	 in	 areas	 with	 no	 macroalgae.	 In	 these	

instances,	 factors	 such	 as	 crevices	 and	 pits	 have	 a	 significant	 role	 in	 the	 distribution	 of	 littorinids	

(Chapman	and	Underwood,	1994;	 Seuront	and	Ng,	2016).	 For	example,	 it	 has	been	demonstrated	



	

	

that	 crevices	 play	 a	 key	 role	 in	 the	 survival	 of	 littorinid	 snails,	 as	 they	 serve	 as	 refuge	 against	

predators	 (Catesby	and	McKillup,	1998).	Additionally,	crevices	play	a	role	regulating	thermal	stress	

(Seuront	and	Ng,	2016).	This	would	explain	the	poor	performance	in	littorinid	models,	where	despite	

revealing	the	correct	variable	via	Markov	blanket,	the	predictive	performance	was	still	very	poor	as	it	

could	not	account	for	 littorinids	being	present	 in	quadrats	with	 low	%	cover	of	macroalgae,	where	

physical	 abiotic	 factors	 such	 as	 crevices	 may	 have	 driven	 underlying	 littorinid	 aggregations.	 This	

likely	 led	 to	overfitting	of	ANN	models	 for	 littorinids,	especially	on	 randomly	selected	 training	and	

test	data.	

The	 lack	 of	 physical	 abiotic	 factors	 may	 have	 contributed	 to	 the	 drop	 in	 performance	 for	 limpet	

models	 with	 variable	 selection	 as	 well.	 Factors	 such	 as	 exposure	 to	 wave	 action	 are	 equally	

important	 in	 the	 distribution	 of	 limpets	 (Thompson,	 1980),	where	 it	 has	 been	 demonstrated	 that	

wave	 action	 has	 a	 significant	 effect	 on	 growth	 rates	 and	 mortality	 rates	 of	 limpets.	 	 Another	

potential	 reason	 for	 the	 drop	 in	 the	 limpet	models	 could	 be	 due	 to	 the	 original	Markov	 blanket	

revealed	 in	 the	 BN,	where	 only	microalgae	 and	 barnacles	were	 selected.	 Given	 that	 limpets	 have	

been	documented	to	reside	in	both	macroalgae	and	barnacle	stands,	one	would	expect	to	find	links	

between	the	two	variables	(Thompson,	1980).	Here,	the	absence	of	this	relationship	may	potentially	

be	attributed	to	a	site-specific	factor.	Sampling	occurred	during	late	spring.	While	this	usually	entails	

an	important	growth	period	for	macroalgae,	an	unexpected	storm	event	or	potential	out	of	season	

factors	may	have	caused	a	proportion	of	macroalgae	patches	to	die	off.	While	limpets	were	largely	

unaffected,	 the	 expected	 relationship	 between	 macroalgae	 and	 limpets	 was	 lost,	 as	 most	 of	 the	

limpets	in	my	samples	were	closely	associated	with	barnacles	and	microalgae.		

Here,	 while	 species	 count	 data	 was	 sufficient	 in	 training	 an	 accurate	 model	 for	 sessile	 species,	

physical	abiotic	 factors	would	be	required	to	 fully	capture	 the	variation	 in	grazers.	Factors	such	as	

exposure	 to	wave	action,	desiccation,	and	shore	angle,	along	with	biotic	 factors	 such	as	predation	

and	competition	all	have	a	dynamic	role	in	structuring	intertidal	communities	(Raffaelli	and	Hawkins,	

1999).	Additionally,	 it	 should	be	noted	 that	 these	models	 reflect	 a	 static	 snapshot	of	 an	 intertidal	

community	 –	 therefore,	when	 trying	 to	model	more	 complex	 processes	with	 the	 consideration	of	

time,	this	issue	of	missing	physical	factors	would	likely	lead	to	even	more	inaccurate	models.		

	

5.4	Variable	importance	from	BNs	show	more	consistent	and	robust	results	than	ANNs	

The	 variable	 importance	 obtained	 from	 the	 BN	 and	 ANN	 were	 relatively	 consistent,	 where	 both	

models	showed	similar	patterns	of	sessile	species	being	the	strongest	predictor	when	used	to	predict	



	

	

each	other.	There	were	instances	where	the	BN	influence	scores	would	show	a	non-monotonic	link,	

whereas	the	ANN	connection	weight	algorithm	would	show	a	strong	effect.	Here,	we	argue	that	the	

information	from	the	BN	is	more	reliable	than	ANN.	Firstly,	the	BN	comes	with	a	quantifiable	metric	

of	 interaction	 strengths	 via	 the	 influence	 score,	 which	 shows	 the	 direction	 and	 magnitude	 of	

relationship.	This	can	then	be	complemented	with	mutual	information	which	quantifies	the	‘amount	

of	 information’	 obtained	 about	 one	 variable	 through	 the	 observation	 of	 another	 variable.	 This	

becomes	 particularly	 useful	 when	 the	 influence	 scores	 show	 a	 non-monotonic	 relationship,	 as	

mutual	 information	can	provide	 further	 information	about	 the	nature	of	 the	 relationship	between	

two	variables.			

On	the	other	hand,	the	information	derived	from	the	ANN	was	far	 less	reliable.	Firstly,	the	level	of	

uncertainty	 for	 specific	 variables	 from	Olden’s	 connection	weight	 (OCW)	algorithm	was	 very	 large	

between	 model	 fits	 for	 the	 same	 network	 architecture.	 This	 suggests	 that	 a	 single	 model	 may	

provide	misleading	information,	and	potentially	require	additional	models	to	reduce	uncertainty.		

Secondly,	when	comparing	the	results	from	influence	scores	against	OCW,	it	becomes	apparent	that	

the	 OCW	 makes	 very	 strong	 assumptions	 about	 relationships	 between	 predictor	 and	 target	

variables.	 For	 example,	 the	 influence	 score	 of	 limpets	 in	 our	 barnacle	 model	 showed	 a	 non-

monotonic	effect.	On	the	other	hand,	the	ANN	connection	weights	showed	a	strong	positive	effect.	

From	 an	 ecological	 standpoint,	 limpets	 have	 been	 documented	 to	 reside	 in	 both	macroalgae	 and	

barnacle	 stands	 (Thompson,	 1980).	 However,	 limpets	 can	 also	 graze	 and	 prevent	 the	 settling	 of	

barnacle	 larvae,	 which	 would	 also	 lead	 to	 a	 negative	 relationship	 between	 the	 two	 variables	

(Blackmore,	1969).	In	this	instance,	the	BN	is	correct	in	attributing	limpets	having	a	non-monotonic	

effect	 on	 barnacles.	 This	 also	 suggests	 that	 the	 strong	 assumptions	 made	 by	 OCW	 can	 provide	

misleading	 information	 about	 variable	 importance,	 a	 problem	 that	 may	 be	 exacerbated	 when	

applied	to	more	complex	ecological	systems.		

	

5.5	ANN	significantly	outperformed	GLM	models	

MLRs	and	GLMs	are	the	most	frequently	used	predictive	tool	in	ecology	largely	due	to	their	ease	of	

use	and	its	ability	to	give	explanatory	results,	as	the	regression	coefficients	of	input	variables	provide	

simple	 interpretable	 information	about	 their	 relative	 importance	 (Laë	et	al.,	 1999).	However,	MLR	

models	 make	 strong	 assumptions	 about	 distributions	 of	 the	 data,	 therefore	 they	 are	 unable	 to	

handle	non-linear	relationships	between	dependent	and	independent	variables.	While	GLMs	can	be	

used	 to	 handle	 non-linear	 effects,	 ANNs	 showed	 superior	 predictive	 capabilities,	 while	 making	



	

	

minimal	assumptions	about	the	underlying	distribution	of	the	data.	This	was	clearly	reflected	in	our	

results,	where	the	ANNs	performed	significantly	better	than	GLM.		

	

5.6	General	conclusion	

To	 our	 knowledge,	 this	 is	 the	 first	 application	 of	 a	 hybrid	 style	 Bayesian	 network-Neural	 network	

modelling	approach	 in	 the	study	of	ecology.	BN	algorithms	were	able	 to	recover	known	functional	

links	 of	 a	 typical	 rocky	 shore	 community,	 while	 providing	 insights	 to	 relative	 variable	 importance	

through	Markov	 blankets.	 This	was	 then	 utilized	 as	 a	 novel	 variable	 selection	method	 to	 train	 an	

artificial	neural	network	on	each	component	species	of	the	revealed	network.	The	results	from	this	

workflow	showed	general	improvements	in	predictive	performance	in	models	with	variable	selection	

versus	no	variable	selection.	The	exception	in	grazers	highlighted	the	need	for	physical	factors	to	be	

considered	 as	 well.	 Additionally,	 ANN	 significantly	 outperformed	 conventional	 GLM	 models.	 	 It	

should	be	noted	 that	 these	models	were	applied	 to	a	 relatively	 simple	 system,	one	with	 very	 few	

variables.	Therefore,	this	difference	in	performance	may	be	even	more	pronounced	when	applied	to	

a	more	complex	system.	Further,	variable	selection	 in	a	more	complex	system	could	enable	future	

data	collection	to	focus	on	those	features	relevant	to	those	variables	whose	prediction	is	of	interest,	

potentially	reducing	experimental	effort.	

In	 conclusion,	Bayesian	networks	 show	strong	potential	 in	 revealing	ecological	networks,	however	

due	 to	 discretization	 of	 data,	 it	 is	 sub-optimal	 as	 a	 predictive	 tool	 as	 we	 would	 be	 limited	 to	 a	

classification	type	problem.	On	the	other	hand,	artificial	neural	networks	provide	an	opportunity	to	

overcome	 this	problem	as	 it	 can	handle	 complex	non-linear	data,	while	 showing	 strong	predictive	

capabilities.	 However,	 despite	 the	 ease	 of	 use	 and	 its	 high	 predictive	 abilities,	 a	 commonly	 cited	

weakness	of	ANN	is	its	black	box	nature,	where	the	results	are	generally	difficult	if	not	impossible	to	

interpret.	Given	that	explaining	ecological	relationships	is	integral	in	the	study	of	ecology,	ANNs	may	

not	 be	 optimal	 as	 a	 standalone	model.	 Here,	we	 demonstrate	 that	 coupling	 the	 results	 from	 the	

Bayesian	 network	 can	 complement	 the	 strong	 predictive	 abilities	 of	 ANNs,	 as	 relative	 importance	

and	contributions	of	each	variable	can	be	recovered	 from	the	BN.	This	 in	 turn	can	overcome	each	

models’	respective	shortcomings.	Therefore,	this	Bayesian	network-neural	network	approach	shows	

promise	in	the	field	of	ecology	as	it	can	achieve	two	important	features:	1)	it	has	potential	to	reveal	

ecological	network	structures	in	different	ecosystems,	where	existing	relationships	between	species	

and	 other	 functional	 components	 are	 not	 known;	 and	 2)	 it	 can	 guide	 the	 training	 of	 powerful	

predictive	models	by	serving	as	a	robust	variable	selection	tool.	



	

	

	

Acknowledgements	

Funding:	 This	 work	 was	 supported	 by	 St	 Leonard's	 Postgraduate	 College	 of	 the	 University	 of	 St	

Andrews.	

	

References	

Arrontes,	J.,	Arenas,	F.,	Fernández,	C.,	Rico,	J.,	Oliveros,	J.,	Martínez,	B.,	Viejo,R.M.,	Alvarez,	D.,	2004.	

Effect	of	grazing	by	limpets	on	mid-shore	species	assemblages	in	northern	Spain.	Mar.	Ecol.	

Prog.	Ser.	277,	117-133.	https://doi:10.3354/meps277117	

Beck,	M.W.,	2018.	NeuralNetTools:	Visualization	and	analysis	tools	for	neural	networks.	J.	Stat.	

Softw.	85,	1–20.	https://doi.org/10.18637/jss.v085.i11	

Blackmore,	D.T.,	1969.	Studies	of	Patella	vulgata	L.	I.	Growth,	reproduction	and	zonal	distribution.	J.	

Exp.	Mar.	Bio.	Ecol.	3,	200–213.	https://doi.org/10.1016/0022-0981(69)90018-5	

Brosse,	S.,	Guegan,	J.F.,	Tourenq,	J.N.,	Lek,	S.,	1999.	The	use	of	artificial	neural	networks	to	assess	

fish	abundance	and	spatial	occupancy	in	the	littoral	zone	of	a	mesotrophic	lake.	Ecol.	Modell.	

120,	299–311.	https://doi.org/10.1016/S0304-3800(99)00110-6	

Catesby,	S.M.,	McKillup,	S.C.,	1998.	The	importance	of	crevices	to	the	intertidal	snail	Littoraria	

articulata	(Philippi)	in	a	tropical	mangrove	forest.	Hydrobiologia	367,	131–138.	

https://doi.org/10.1023/A:1003271915241	

Chapman,	M.G.,	Underwood,	A.J.,	1994.	Dispersal	of	the	intertidal	snail,	nodilittorina	pyramidalis,	in	

response	to	the	topographic	complexity	of	the	substratum.	J.	Exp.	Mar.	Bio.	Ecol.	179,	145–169.	

https://doi.org/10.1016/0022-0981(94)90111-2	

Chen,	S.,	Mar,	J.C.,	2018.	Evaluating	methods	of	inferring	gene	regulatory	networks	highlights	their	

lack	of	performance	for	single	cell	gene	expression	data.	BMC	Bioinformatics	19,	1–21.	

https://doi.org/10.1186/s12859-018-2217-z	

Davies,	A.	J.,	Johnson,	M.	P.,	Maggs,	C.A.,	2007.	Limpet	grazing	and	loss	of	Ascophyllum	nodosum	

canopies	on	decadal	time	scales.	Mar.	Ecol.	Prog.	Ser.,	339,	131–141.	

https://doi.org/10.3354/meps339131	

Folke,	C.,	Carpenter,	S.,	Walker,	B.,	Scheffer,	M.,	Elmqvist,	T.,	Gunderson,	L.,	Holling,	C.S.,	2004.	



	

	

Regime	shifts,	resilience,	and	biodiversity	in	ecosystem	management.	Annu.	Rev.	Ecol.	Evol.	

Syst.	35,	557–581.	https://doi.org/10.1146/annurev.ecolsys.35.021103.105711	

Friedman,	N.,	Linial,	M.,	Nachman,	I.,	Pe’er,	D.,	2000.	Using	Bayesian	Networks	to	Analyze	Expression	

Data.	J.	Comput.	Biol.	7,	601–620.	https://doi.org/10.1089/106652700750050961	

Fritsch,	S.,	Guenther,	F.,	Wright,	M.N.,	2019.	neuralnet:	Training	of	Neural	Networks.	R	package	

version	1.44.2.	https://CRAN.R-project.org/package=neuralnet		

Gevrey,	M.,	Dimopoulos,	I.,	Lek,	S.,	2003.	Review	and	comparison	of	methods	to	study	the	

contribution	of	variables	in	artificial	neural	network	models.	Ecol.	Modell.	160,	249–264.	

https://doi.org/10.1016/S0304-3800(02)00257-0	

Hausser,	J.,	Strimmer,	K.,	2009.	Entropy	inference	and	the	James-Stein	estimator,	with	application	to	

nonlinear	gene	association	networks.	J.	Mach.	Learn.	Res.	10,	1469–1484.	

Hawkins,	S.J.,	Bohn,	K.,	Doncaster,	C.P.,	2015.	Ecosystems:	The	Rocky	Road	to	Regime-Shift	

Indicators.	Curr.	Biol.	25,	R666–R669.	https://doi.org/10.1016/j.cub.2015.06.027	

Hecker,	M.,	Lambeck,	S.,	Toepfer,	S.,	van	Someren,	E.,	Guthke,	R.,	2009.	Gene	regulatory	network	

inference:	Data	integration	in	dynamic	models—A	review.	Biosystems	96,	86–103.	

https://doi.org/10.1016/j.biosystems.2008.12.004	

Henneman,	M.L.,	Memmott,	J.,	2001.	Infiltration	of	a	Hawaiian	Community	by	Introduced	Biological	

Control	Agents.	Science	293,	11314–1316.	https://doi.org/10.1126/science.1060788	

Hidalgo,	F.J.,	Firstater,	F.N.,	Fanjul,	E.,	Bazterrica,	M.C.,	Lomovasky,	B.J.,	Tarazona,	J.,	Iribarne,	O.O.,	

2008.	Grazing	effects	of	the	periwinkle	Echinolittorina	peruviana	at	a	central	Peruvian	high	

rocky	intertidal.	Helgol.	Mar.	Res.	62,	73–83.	https://doi.org/10.1007/s10152-007-0086-3	

Hui,	E.,	Stafford,	R.	Matthews,	I.M.,	Smith,	V.A.,	2021.	Rocky	Shore	Samples:	Bayesian	Networks	as	a	

novel	tool	to	enhance	interpretability	and	predictive	power	of	ecological	models.	Dataset.	

University	of	St	Andrews	Research	Portal.	https://doi.org/10.17630/f2b69f88-efb7-43a1-96e9-

70012256a752		

Jeong,	K.-S.,	Joo,	G.-J.,	Kim,	H.-W.,	Ha,	K.,	Recknagel,	F.,	2001.	Prediction	and	elucidation	of	

phytoplankton	dynamics	in	the	Nakdong	River	(Korea)	by	means	of	a	recurrent	artificial	neural	

network.	Ecol.	Modell.	146,	115–129.	https://doi.org/10.1016/S0304-3800(01)00300-3	

Jerkanof,	P.,	2006.	Interactions	between	the	limpet	Patelloida	latistrigata	and	algae	on	an	intertidal	

rock	Marine	Ecol.	23,	71–78.	



	

	

Jonsson	P.R.,	Granhag	L.,	Moschella	P.S.,	Aberg	P.,	Hawkins	S.J.,	Thompson	R.C.,	2006.	Interactions	

between	wave	action	and	grazing	control	the	distribution	of	intertidal	macroalgae.	Ecology	87,	

1169–1178.	https://doi.org/10.1890/0012-9658(2006)87[1169:ibwaag]2.0.co;2		

Kroodsma,	D.A.,	Mayorga,	J.,	Hochberg,	T.,	Miller,	N.A.,	Boerder,	K.,	Ferretti,	F.,	Wilson,	A.,	Bergman,	

B.,	White,	T.D.,	Block,	B.A.,	Woods,	P.,	Sullivan,	B.,	Costello,	C.,	Worm,	B.,	2018.	Tracking	the	

global	footprint	of	fisheries.	Science	359,	904–908.	https://doi.org/10.1126/science.aao5646	

Kuhn,	M.,	2020.	caret:	Classification	and	Regression	Training.	R	package	version	6.0-86.	

https://CRAN.R-project.org/package=caret	

Laë,	R.,	Lek,	S.,	Moreau,	J.,	1999.	Predicting	fish	yield	of	African	lakes	using	neural	networks.	Ecol.	

Modell.	120,	325–335.	https://doi.org/10.1016/S0304-3800(99)00112-X	

Lantz,	B.,	2013.	Machine	Learning	with	R.	Packt	Publishing	(Birmingham)	ISBN	978-1-78216-214-8.	

Mac	Aodha,	O.,	Gibb,	R.,	Barlow,	K.E.,	Browning,	E.,	Firman,	M.,	Freeman,	R.,	Harder,	B.,	Kinsey,	L.,	

Mead,	G.R.,	Newson,	S.E.,	Pandourski,	I.,	Parsons,	S.,	Russ,	J.,	Szodoray-Paradi,	A.,	Szodoray-

Paradi,	F.,	Tilova,	E.,	Girolami,	M.,	Brostow,	G.,	Jones,	K.E.,	2018.	Bat	detective—Deep	learning	

tools	for	bat	acoustic	signal	detection.	PLOS	Comput.	Biol.	14,	e1005995.	

https://doi.org/10.1371/journal.pcbi.1005995	

Milns,	I.,	Beale,	C.M.,	Anne	Smith,	V.,	2010.	Revealing	ecological	networks	using	Bayesian	network	

inference	algorithms.	Ecology	91,	1892–1899.	https://doi.org/10.1890/09-0731.1	

Mitchell,	E.G.,	Wallace,	M.I.,	Smith,	V.A.,	Wiesenthal,	A.A.,	Brierley,	A.S.,	2021.	Bayesian	Network	

Analysis	reveals	resilience	of	the	jellyfish	Aurelia	aurita	to	an	Irish	Sea	regime	shift.	Sci.	Rep.	11,	

1–14.	https://doi.org/10.1038/s41598-021-82825-w	

Nicotri,	R.E.,	1977.	Grazing	effects	of	four	marine	intertidal	herbivores	on	the	microflora.	Ecology	58,	

1020–1032.	

Norton,	T.A.,	Hawkins,	S.J.,	Manley,	N.L.,	Williams,	G.A.,	Watson,	D.C.,	1990.	Scraping	a	living:	a	

review	of	littorinid	grazing.	Hydrobiologia	193,	117–138.	https://doi.org/10.1007/BF00028071	

Olden,	J.D.,	Jackson,	D.A.,	2002.	Illuminating	the	“black	box”:	Understanding	variable	contributions	

in	artificial	neural	networks.	Ecol.	Modell.	154,	135–150.	

Olden,	J.D.,	Joy,	M.K.,	Death,	R.G.,	2004.	An	accurate	comparison	of	methods	for	quantifying	variable	

importance	in	artificial	neural	networks	using	simulated	data.	Ecol.	Modell.	178,	389–397.	

https://doi.org/10.1016/j.ecolmodel.2004.03.013	



	

	

Pearson,	R.G.,	Dawson,	T.P.,	2003.	Predicting	the	impacts	of	climate	change	on	the	distribution	of	

species:	are	bioclimate	envelope	models	useful?	Glob.	Ecol.	Biogeogr.	12,	361–371.	

https://doi.org/10.1046/j.1466-822X.2003.00042.x	

Perez,	L.	and	Wang,	J.,	2017.	The	effectiveness	of	data	augmentation	in	image	classification	using	

deep	learning.	CoRR,	abs/1712.04621	

Pereira,	T.D.,	Aldarondo,	D.E.,	Willmore,	L.,	Kislin,	M.,	Wang,	S.S.-H.,	Murthy,	M.,	Shaevitz,	J.W.,	

2019.	Fast	animal	pose	estimation	using	deep	neural	networks.	Nat.	Methods	16,	117–125.	

https://doi.org/10.1038/s41592-018-0234-5	

Petraitis,	P.S.,	Dudgeon,	S.R.,	1999.	Experimental	Evidence	for	the	Origin	of	Alternative	Communities	

on	Rocky	Intertidal	Shores.	Oikos	84,	239–245.	

Petraitis,	P.S.,	Methratta,	E.T.,	Rhile,	E.C.,	Vidargas,	N.A.,	Dudgeon,	S.R.,	2009.	Experimental	

confirmation	of	multiple	community	states	in	a	marine	ecosystem.	Oecologia	161,	139–148.	

https://doi.org/10.1007/s00442-009-1350-9	

Petraitis,	P.S.,	Rhile,	E.C.,	Dudgeon,	S.,	2003.	Survivorship	of	juvenile	barnacles	and	mussels:	spatial	

dependence	and	the	origin	of	alternative	communities.	J.	Exp.	Mar.	Bio.	Ecol.	293,	217–236.	

https://doi.org/10.1016/S0022-0981(03)00219-3	

Proulx,	S.R.,	Promislow,	D.E.L.,	Phillips,	P.C.,	2005.	Network	thinking	in	ecology	and	evolution.	Trends	

Ecol.	Evol.	20,	345–353.	https://doi.org/10.1016/j.tree.2005.04.004	

Raffaelli,	D.,	Hawkins,	S.,	1999.	Intertidal	Ecology.	Kluwer	Academic	Publishers	(Dordretch)	

Scheffer,	M.,	Carpenter,	S.,	Foley,	J.A.,	Folke,	C.,	Walker,	B.,	2001.	Catastrophic	shifts	in	ecosystems.	

Nature	413,	591–596.	

Scheffer,	M.,	Hosper,	S.H.,	Meijer,	M.-L.,	Moss,	B.,	Jeppesen,	E.,	1993.	Alternative	equilibria	in	

shallow	lakes.	Trends	Ecol.	Evol.	8,	275–279.	https://doi.org/10.1016/0169-5347(93)90254-M	

Seuront,	L.,	Ng,	T.P.T.,	2016.	Standing	in	the	sun:	Infrared	thermography	reveals	distinct	thermal	

regulatory	behaviours	in	two	tropical	high-shore	littorinid	snails.	J.	Molluscan	Stud.	82,	336–

340.	https://doi.org/10.1093/mollus/eyv058	

Smith,	V.A.,	Yu,	J.,	Smulders,	T.	V,	Hartemink,	A.J.,	Jarvis,	E.D.,	2006.	Computational	Inference	of	

Neural	Information	Flow	Networks.	PLOS	Comput.	Biol.	2,	e161.	

https://doi.org/10.1371/journal.pcbi.0020161	

Stafford,	R.,	2002.	The	role	of	environmental	stress	and	physical	and	biological	interactions	on	the	



	

	

ecology	of	high	shore	littorinids	in	a	temperate	and	a	tropical	region.	PhD	Thesis,	University	of	

Sunderland.	

Stafford,	R.,	Ng,	T.P.T.,	Williams,	G.A.,	Davies,	M.S.,	2015.	A	biologically	relevant	rapid	quantification	

of	physical	and	biological	stress	profiles	on	rocky	shores.	Ecol.	Inform.	25,	43–48.	

https://doi.org/10.1016/j.ecoinf.2014.11.006	

Stafford,	R.,	Smith,	V.A.,	Husmeier,	D.,	Grima,	T.,	Guinn,	B.,	2013.	Predicting	ecological	regime	shift	

under	climate	change:	New	modelling	techniques	and	potential	of	molecular-based	approaches	

59,	403–417.	https://doi.org/10.1093/czoolo/59.3.403	

Steffen,	W.,	Rockström,	J.,	Richardson,	K.,	Lenton,	T.M.,	Folke,	C.,	Liverman,	D.,	Summerhayes,	C.P.,	

Barnosky,	A.D.,	Cornell,	S.E.,	Crucifix,	M.,	Donges,	J.F.,	Fetzer,	I.,	Lade,	S.J.,	Scheffer,	M.,	

Winkelmann,	R.,	Schellnhuber,	H.J.,	2018.	Trajectories	of	the	Earth	System	in	the	

Anthropocene.	Proc.	Natl.	Acad.	Sci.	115,	8252–8259.	

https://doi.org/10.1073/pnas.1810141115	

Thompson,	G.B.,	1980.	Distribution	and	population	dynamics	of	the	limpet	Patella	vulgata	L.	in	

Bantry	Bay.	J.	Exp.	Mar.	Bio.	Ecol.	45,	173–217.	https://doi.org/10.1016/0022-0981(80)90058-1	

Trifonova,	N.,	Kenny,	A.,	Maxwell,	D.,	Duplisea,	D.,	Fernandes,	J.,	Tucker,	A.,	2015.	Spatio-temporal	

Bayesian	network	models	with	latent	variables	for	revealing	trophic	dynamics	and	functional	

networks	in	fisheries	ecology.	Ecol.	Inform.	30,	142–158.	

https://doi.org/10.1016/j.ecoinf.2015.10.003	

van	Wijk,	M.T.,	Bouten,	W.,	1999.	Water	and	carbon	fluxes	above	European	coniferous	forests	

modelled	with	artificial	neural	networks.	Ecol.	Modell.	120,	181–197.	

https://doi.org/10.1016/S0304-3800(99)00101-5	

Yu,	J.,	Smith,	V.A.,	Wang,	P.P.,	Hartemink,	A.J.,	Jarvis,	E.D.,	2004.	Advances	to	Bayesian	network	

inference	for	generating	causal	networks	from	observational	biological	data.	Bioinformatics	20,	

3594–3603.	https://doi.org/10.1093/bioinformatics/bth448	

	

	

	

	

	



	

	

APPENDIX A 

 

Figure A1: Frequency distribution of percentage cover and counts of species found 
in our quadrats. 

 

 
 

 

 



	

	

Figure A2: Non-metric dimensional scaling (NMDS) plot of field data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

	

Figure A3: Distribution of field data after quantile discretization into 3 bins. 

 

 

 

 

	

	

	 	



	

	

Figure A4: Scatterplot of ANN predicted values versus true values. 

 

 
	

	

	

	

	

	

	

	

	

	

	


