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A B S T R A C T 

We present an artificial neural network design in which past and present-day properties of dark matter haloes and their local 
environment are used to predict time-resolved star formation histories and stellar metallicity histories of central and satellite 
galaxies. Using data from the IllustrisTNG simulations, we train a TENSORFLOW -based neural network with two inputs: a standard 

layer with static properties of the dark matter halo, such as halo mass and starting time; and a recurrent layer with variables such 

as o v erdensity and halo mass accretion rate, e v aluated at multiple time steps from 0 ≤ z � 20. The model successfully reproduces 
key features of the galaxy halo connection, such as the stellar-to-halo mass relation, downsizing, and colour bimodality, for both 

central and satellite galaxies. We identify mass accretion history as crucial in determining the geometry of the star formation 

history and trends with halo mass such as downsizing, while environmental variables are important indicators of chemical 
enrichment. We use these outputs to compute optical spectral energy distributions, and find that they are well matched to the 
equi v alent results in IllustrisTNG, reco v ering observational statistics such as colour bimodality and mass–magnitude diagrams. 

K ey words: galaxies: e volution – galaxies: formation – galaxies: haloes – galaxies: star formation. 
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 I N T RO D U C T I O N  

he consensual basis for galaxy formation is that galaxies are formed
rom the contraction of the baryonic gas bound gravitationally to a
ark matter halo (Wechsler & Tinker 2018 ). The aspects and future
f a galaxy’s development are therefore determined by the properties
f the halo and its surroundings. While the relationship between
ertain properties of the halo and galaxy may not necessarily be
nderstood, some degree of correlation between the two is to be
xpected. Specifically, the rate of change in a host halo’s mass, the
ate of merger events, and similar factors are expected to influence
he halo’s likelihood of hosting galaxies (Bose et al. 2019 ), and the
tar formation rates, metallicities, and other intrinsic properties of
he galaxies themselves (Wechsler & Tinker 2018 ). This relationship
s commonly referred to as the galaxy–halo connection (GHC). 

The GHC holds a number of important scientific questions. In
erms of halo and stellar mass growth, the rate at which the halo
ssembles most of its mass, through accretion and through major
ergers, will affect the time at which galaxies form the most stars,

ecome quenched, and cluster together (Croton, Gao & White 2007 ;
ani et al. 2020 ; Cui et al. 2021 ; Montero-Dorta et al. 2021 ). In terms
f local environment, galaxies in proximity to cosmic filaments are
ore prone to accreting metal-rich gas (Peng & Maiolino 2013 ;
onnan, Tojeiro & Kraljic 2022 ), and in dense regions of space are

idally quenched by more massive haloes, producing noticeably dif-
erent luminosity and mass functions in their respective environments
Ayromlou et al. 2021 ; Hellwing et al. 2021 ; Lu et al. 2021 ). This
elationship between galaxies and their haloes and environments is
 E-mail: hgc4@st-andrews.ac.uk 
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onetheless highly complex, and the causal interplay between haloes
nd galaxies, in different cosmic epochs and regimes of halo mass,
ocal density, and interaction rates, remains poorly understood. 

Several large volume cosmological simulations have, in recent
ears, synthesized a catalogue of haloes and galaxies (Schaye et al.
014 ; Pillepich et al. 2017a ; Dav ́e et al. 2019 ) based on semi-
nalytic or hydrodynamical modelling of the astrophysical processes
hich regulate baryonic evolution in fine detail (for re vie ws of the

imulation models see Somerville & Dav ́e 2015 ; Vogelsberger et al.
020 ). Ho we v er, the comple xity of the baryonic models make it
omputationally impractical to encapsulate the full extent of the
HC, and consequently the volumes of such simulations are limited

o (300 Mpc) 3 (Nelson et al. 2019 ), while the larger simulations
nevitably limit their mass resolution. The effect of this compromise
s problematic in scientific applications, as the rarest of objects,
uch as high mass clusters, are significantly limited in number
nd resolution, while their unresolved substructures may contribute
ignificantly to the evolution of causally connected galaxies. 

A pure dark matter simulation relies solely on collisionless
ravitational and cosmological dynamics, and so can be run on
arger volumes without restricting the mass resolution significantly
Wechsler & Tinker 2018 ; Vogelsberger et al. 2020 ). The halo
ass functions, correlation functions, and other statistics will appear

imilar to the equi v alent baryonic simulation, gi ven that the dark
atter component constitutes the majority of the mass of a galaxy–

alo system. A machine learning algorithm which can utilize the
roperties of a dark matter formation history to emulate their
orresponding galaxies can therefore populate a large dark matter
imulation with evolving galaxies across all times, in a fraction of
he time taken to compute a hydrodynamical simulation of this level
f complexity; while the connections of the GHC which are learned
© The Author(s) 2022. 
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y this model can offer an explanation of the various galaxy formation
echanisms that take place in the history of the simulation. If applied

o a high fidelity N -body simulation, it will result in a vast galaxy
ata set with which to test these connections in further detail. 
Sev eral studies hav e used machine learning methods to ascribe 

alaxy properties to dark matter haloes, including physical properties 
uch as stellar and H I mass (Agarwal, Dav ́e & Bassett 2018 ; Jo &
im 2019 ; Lo v ell et al. 2021 ), observational properties such as
and magnitudes and galaxy clustering (Wadekar et al. 2020 ; Xu 
t al. 2021 ; McGibbon & Khochfar 2022 ), and their dependence on
ime and cosmological models (Agarwal et al. 2018 ; Villaescusa- 
avarro et al. 2021 ; Xu et al. 2021 ). This study aims to model the

omplete star formation history (SFH) and metallicity history (ZH) 
f central and satellite galaxies from the historical evolution of their 
ark matter haloes and local dark matter environment by means of
 semi-recurrent neural network algorithm. From these properties, 
e then self-consistently predict observables such as optical spectra 

nd broad-band colours. We design two such neural networks: one 
ntended to simulate central galaxies, the other satellite galaxies. 

Each network contains two input layers: one is a simple dense 
ayer entailing time-independent halo properties, the second is a 
imple recurrent layer containing properties defined at multiple 
ime steps. A recurrent layer contains an acti v ation sequence which
uns between successive data points, thereby establishing a one-way 
ausal connection between them. For our objective of fashioning an 
volutionary history of the dark matter halo and environment, whose 
emporal properties may play a role in go v erning the developmental
spects of galaxy formation, this framework pro v es valuable in 
nforcing causality and improving the precision of our results. 

The motive for developing a semi-recurrent neural network which 
redicts the star formation rate and stellar mass weighted metallicity 
 v er cosmic time is to form our understanding of the dark matter
roperties which go v ern galaxy evolution, while determining how 

ccurately a population of galaxies and their historical characteris- 
ics can be deduced e xclusiv ely from dark matter. Following the
evelopment of two neural networks for predicting central and 
atellite galaxy formation histories, these predictions are used to 
onstruct model spectral energy distributions using the flexible stellar 
opulation synthesis ( FSPS ) code (Conroy, Gunn & White 2009 ;
onroy & Gunn 2010 ). We reco v er observational characteristics, 

uch as the bimodal relationship between stellar mass and colour 
Baldry et al. 2006 ; Cui et al. 2021 ). 

The neural networks are trained on data from the Illustris: The 
ext Generation (TNG) hydrodynamical simulation (Nelson et al. 
017 , 2019 ; Pillepich et al. 2017a ; Marinacci et al. 2018 ; Springel
t al. 2017 ; Naiman et al. 2018 ), which consists of 100 ‘snapshots’
n time, o v er a redshift domain 0 ≤ z � 20, with a median time
ifference of 146 Myr. We access the collaboration’s public data 
epository, 1 namely the TNG100-1 and TNG300-1 simulations: the 
ighest resolution simulations with volumes of respective cubic side 
ength 100 and 300 Mpc. Combining these data sets provides a large,
iverse sample of haloes of assorted mass and environment, gaining 
s impartial a training data set as possible. The TNG simulations
re based on the Planck-2015 � CDM cosmological model ( �m = 

.3089, �� 

= 0 . 6911, �b = 0.0486, H 0 = 67.74 km s −1 Mpc −1 );
ssumed throughout this work. To ensure that halo and galaxy 
ormation histories are well resolved at all redshifts, we impose a 
ower limit on the final stellar mass of 10 9 M �. 
 http://www.tng-pr oject.or g/data/

c  

F  

t  

n

In this paper, we outline the properties, calculation, and justifica- 
ion of dark matter quantities in Section 2 , and baryonic quantities
n Section 3 . Aspects of the neural network design and data pre-
rocessing are discussed in Section 4 . We e v aluate aspects of the
aryonic predictions and their derived observables in Section 5 , 
nd the importance of different features in the model in Section 6 .
he implications of the model are re vie wed in Section 7 before
ummarizing our findings in Section 8 . 

 N E U R A L  N E T WO R K  FEATURES  

n this section, we discuss the implementation of the various 
eatures of the neural network, including how they were calculated, 
ormalized, and expected to benefit the predictability of results. A 

ull summary of the quantities used in this network with details of
heir pre-processing, implementation, and testing is given in Table 1 .

.1 Time-dependent variables 

n the TNG simulations, each halo is assigned a merger tree, which
ontains all progenitor subhaloes of the target halo at all prior
napshots of the simulation (Jiang & van den Bosch 2014 ; Nelson
t al. 2019 ). A ‘branch’ is defined as a particular path taken by any
iven subhalo to the present halo, and is defined at all snapshots
rom the time of the subhalo’s formation to the target snapshot. For
ll objects, we utilize the main progenitor branch (MPB), which is
efined as the branch describing the history of the subhalo of the
ighest mass (Nelson et al. 2019 ). All properties, such as stellar and
ark mass components, metallicities, and angular momenta, whether 
pplicable to the Friends-of-Friends (FoF) or SubFind object, are 
erived from the MPB. 
Most variables in our model are normalized by Gaussian Quantile 

ransformation (see Section 4.1 ); ho we ver for temporal variables,
here exist two normalization methods, which we term scalar and 
ector normalization (see Section 4.2 ). Scalar normalization consists 
f unique transformations for each time step, while vector normal- 
zation applies a single transformation to all data regardless of their
ime. As discussed in the pre-processing section, and the discussion 
f temporal quantities where rele v ant, each of these normalization
ethods add certain benefits to the treatment of different quantities. 

.1.1 Halo mass accretion history 

he dark matter halo’s mass accretion rate is defined using the sum of
asses of dark matter particles bound to the FoF group. We convert

his to an accretion rate by finite differencing with respect to the time
 i at each snapshot: 

˙
 h ( t i ) = 

M h ( t i ) − M h ( t i−1 ) 

t i − t i−1 
(1) 

The subfind subhalo’s mass formation rate is defined equi v alently: 

˙ h ( t i ) = 

m h ( t i ) − m h ( t i−1 ) 

t i − t i−1 
(2) 

Where necessary, FoF (halo) and Subfind (subhalo) masses will 
e respectively denoted M h and m h to a v oid discrepancy. The
se of an accretion rate ef fecti vely directs the neural network to
ecognize its integral over any time interval; the full integral of
ourse corresponding to the halo’s final mass (see Section 2.2.1 ).
or the sake of treatment of accretion rate as a universal parameter

o be integrated over intervals of time, accretion rates are vector
ormalized. 
MNRAS 518, 5670–5692 (2023) 
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M

Table 1. A summary of the quantities used in both neural networks, grouped by layer and ordered by their placement in said layer. This entails the units of 
each quantity, and indicates which networks utilize them and how they are normalized. The section column indicates which section of this paper discusses this 
quantity. The shuffle group (final column) indicates which variables are simultaneously scrambled when testing for feature importance (see Section 6.1 ). 

Network data 
Quantity Notation Units Section Network GQT Logarithmic Shuffle 

Temporal features Halo mass accretion rate Ṁ h M � Gyr −1 2.1.1 Both Vector False 1 
Subhalo mass accretion rate ṁ h M � Gyr −1 2.1.1 Satellite Vector False 1a 
1Mpc Overdensity δ1 – 2.1.2 Both Scalar False 2 
3Mpc Overdensity δ3 – 2.1.2 Central Scalar False 2 
5Mpc Overdensity δ5 – 2.1.2 Central Scalar False 2 
Circular velocity (proxy) ˜ v vir 

√ 

( M �/ Mpc ) 2.1.4 Both Vector False 3 
Dark matter half-mass radius R 1 

2 
Mpc 2.1.4 Both Vector False 3 

1Mpc Radial skew μ3 – 2.1.3 Satellite Vector False 4 
3Mpc Radial skew μ3 – 2.1.3 Central Vector False 4 
Distance to closest subhalo d μ3 Mpc 2.1.3 Both Vector False 4 

Non-temporal features Specific halo mass accretion gradient β (c) βhalo (s) log Gyr −2 2.2.2 Both None False 1 
Specific subhalo mass accretion gradient βsub log Gyr −2 2.2.2 Satellite None False 1a 
Scaled infall time a infall – 2.2.5 Satellite None False 1a, 2, 4 
Scaled formation time a max – 2.2.5 Satellite None False 1a 
Infall mass ratio μ – 2.2.5 Satellite None True 1, 1a 
Infall velocity v rel km s −1 2.2.5 Satellite None True 2 
z = 0 Cosmic web distances d CW 

kpc 2.2.3 Central Scalar True 2 
Starting time t start Gyr 2.2.4 Both Scalar False All 
z = 0 Halo mass M h M � 2.2.1 Both Scalar True 1 
Maximum absolute halo accretion rate | Ṁ h | M � Gyr −1 2.2.1 Both Scalar True 1 
z = 0 Subhalo mass m h M � 2.2.1 Satellite Scalar True 1a 
Maximum absolute subhalo accretion rate | ṁ h | M � Gyr −1 2.2.1 Satellite Scalar True 1a 

Targets Star formation history S M � Gyr −1 3.1 Both Vector False N/A 

Metallicity history Z Z � 3.2 Both Vector False N/A 

z = 0 Stellar metallicity Z Z � 3.2 Both Scalar True N/A 

z = 0 Stellar mass M s M � 3.1 Both Scalar True N/A 

Mass weighted age MWA Gyr 3.1 Both Scalar False N/A 
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.1.2 Overdensity history 

s a measure of the dark matter environment in proximity to the
arget halo, we compute and apply the mass-weighted density of
aloes relative to the simulation mean: the halo overdensity. We
ompute this for each individual snapshot in order to quantify the
nvironmental history of our halo data set. 

For a given object, the local density is defined as the sum of masses
f haloes within an arbitrary volume centred on the target’s centre of
ass, divided by said volume (Agarwal et al. 2018 ; Bose et al. 2019 ),
here TNG subhaloes contribute to the calculation if their centres of
ass lie within this volume. The target’s local dark matter density,

nd thus the o v erdensity, is therefore a function of this volume. 
We shall denote the o v erdensities calculated using a radius of x
pc as δx , i.e. δ1 for 1 Mpc. These o v erdensities are used as features

n the recurrent input. For central subhaloes, we compute o v erden-
ities δ1 , δ3 , and δ5 , as each of these will capture environmental
tructures on different scales. For satellite subhaloes, we are inter-
sted in smaller scale o v erdensities as a measure of the state of the
alo environment. Agarwal et al. ( 2018 ) deem 200 kpc to be a useful
 v erdensity radius for constraining zero-redshift baryonic properties,
uch as stellar mass and neutral hydrogen fraction. Ho we ver, through
nvestigating the history of multiple kpc-scale o v erdensities, while
heir physical values inevitably differ, as a function of time they are
eometrically congruous. Smaller o v erdensities, ho we ver, are more
usceptible to Poisson noise. Thus, the 1 Mpc parsec o v erdensity ( δ1 )
s used as the single o v erdensity measure for satellites. 

We utilize the Grid Search In Python ( GRISPY ) (Chalela et al.
021 ) package to compute o v erdensities. GRISPY is a regular grid
rocessing and nearest neighbour searcher, specifically designed to
NRAS 518, 5670–5692 (2023) 
andle periodic boundary conditions, as is the case with the TNG
imulations. The ‘bubble neighbours’ query returns the set of objects
ithin a specified distance from the reference coordinate; in our case,
aloes within x Mpc of the centre of mass of each targeted halo. 
Unlike the halo mass accretion history, the o v erdensities are scalar

ormalized, in spite of being defined at the same time steps. The
tructure of the local environment is expected to vary to such an
xtent that the differences in overdensities at successive times are
ot meaningful, and significantly large that a common quantile
ransformation can fail to distinguish subsets of large and small value.
n fact, vector normalization of the o v erdensity values hav e a strong
dverse effect on the quality of predictions. Instead we prioritize
he instantaneous environment o v er its v ectorized history, as this is
mmune to temporal variation in cosmic structure and represents the
ocal density field specific to each halo. 

.1.3 Radial dark matter skew 

 third temporal parameter is the mass-weighted radial skew of the
istribution of dark matter subhaloes, going radially outwards from
he centre of the target subhalo. For a distribution of variables x j with
eights w j , their statistical moments are given: 

μ1 = 

∑ N 
j= 1 w j x j ∑ N 
j= 1 w j 

(3) 

μ2 = 

∑ N 
j= 1 w j ( x j −μ1 ) 2 ∑ N 

j= 1 w j 
(4) 

μn = 

∑ N 
j= 1 w j 

(
x j −μ1 √ 

μ2 

)n 

∑ N 
j= 1 w j 

, ∀ n ≥ 3 (5) 
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Figure 1. Obtained from the z = 1 TNG100-1 snapshot, this figure is a visualization of the x–y plane projection of the dark matter density distribution of 
subhaloes surrounding three central subhaloes of log M 

z= 1 
h /M � = 11 . 17. The target subhaloes are not shown in these images, just as they play no role in the 

skew calculation. Dark matter cells are selected for this image provided that they lie within a sphere of radius 3 Mpc, centred on the target subhalo’s centre of 
mass, and are not gravitationally bound to the target subhalo. ‘Low’ and ‘high’ skews refer to low and high quantiles of the skew data set, while ‘medium’ skews 
are close to the median skew. 
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where the skew is the third moment by definition, and shall
enceforth be denoted μ3 . In our implementation, w j are replaced by 
he mass of each subhalo, and x j the distance to the target subhalo,
n Mpc. 

Merger events between dark matter haloes dramatically enhance 
tar formation in the galaxies they host, by introducing cold gas 
nd triggering large tidal disturbances in both merging galaxies. The 
cale of this is go v erned by the relative masses of haloes (i.e. the
erger ratio) and the gas and star content of the galaxies in question

Wechsler & Tinker 2018 ; Bose et al. 2019 ). Desiring a temporal
andle on significant merger events, a number of parameters have 
een trialled, such as the snapshot of the merger event and the mass
atio at this time. Ho we ver, merger e vents take place on varying time
cales and thus cannot be assigned a definitive redshift (Rodriguez- 
omez et al. 2015 ), and are prone to errors by nuances in the halo

eferencing system in Illustris (Poole et al. 2017 ). In fact, we find
hat a set of mean merger ratios occurring at sequential time steps
ails to constrain the galaxy evolution significantly. 

The skew as a function of time offers a parametrization of the
erger history for each halo, as the most massive subhaloes will have

he largest influence on the distribution of matter, and in the process
f a merger, will skew the distribution more and more positively 
uring infall. For satellites, we choose to e v aluate the ske w out to a
 Mpc radius, aiming to measure both mergers in the central phase
nd collisions interior to the FoF halo in the satellite phase. For
entrals, we e v aluate the ske w of the radial distribution up to 3 Mpc.
his larger radius is necessary to contain data exterior to the largest
f FoF haloes, whose accretion activity has a profound effect on the
entral g alaxy. Satellite g alaxies, on the contrary, are more dominated
y the mass distribution within the FoF halo, justifying the use of a
maller scale skew measurement. 

Typical environments for z = 1 subhaloes with lo w (lo w quantile),
edium (near median), and high (high quantile) skew are e x emplified 

n Fig. 1 , where the target subhalo is omitted for clarity of the exterior
ass distributions. An object with insignificant (medium) skew 

as an unbiased local distribution of matter, such as in the central
 d  
anel. For a low skew distribution, one or several subhaloes, large
nough to dominate the local environment, will shift the distribution’s 
entre of mass far from that of the target subhalo. In highly skewed
istributions the largest subhaloes are instead concentrated near the 
arget subhalo, likely to merge with the target halo or at least invoke
 significant tidal disturbance. The skew at a given time is therefore
 measure of the local concentration of dark matter, whereas its
ariation with time describes the nature of flybys and collisions with
he subhalo, potentially even its satellites. 

As in Section 2.1.2 , the GRISPY package is used to capture the
ubhaloes within a 3 Mpc radius of each target subhalo. The IDs and
istances from the target to the objects are returned automatically, 
hus making calculation of the radial mass distribution easy. The 
kew is simply obtained from this using equation ( 5 ), with n = 3.
his skew is computed for all target subhaloes, and at all snapshots
f TNG, to gain a full data set of the skew histories. 
In addition to μ3 , the distance to the closest subhalo is also used

or the input of the neural network. Denoted d μ3 and measured in
pc, this scales the distribution such that the skew correlates with

he true location of the merging halo, and serves as a simple metric
or the proximity of a merging halo itself. Both of these quantities
re vector normalized. 

.1.4 Orbital velocity and half-mass radius 

o v ell et al. ( 2021 ) use extremely randomized trees (ERTs) to predict
ero-redshift baryonic properties from their dark matter haloes, and 
ndicate that the maximum circular velocity of the subhalo’s rotation 
urve ( v max ) and the radius enclosing half of the subhalo’s dark
atter mass ( R 1/2 ) have the greatest predicting power in their data

et when concerning stellar, black hole, and gas mass components, 
etallicity, and instantaneous star formation rate; most likely an 

ndicator of the speed of collapse and thus starbursts and black hole
ccumulation (Davies et al. 2019 ; Lo v ell et al. 2021 ). The authors
ebate the potential use of historical properties in later work, as a
MNRAS 518, 5670–5692 (2023) 
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Figure 2. (Left-hand panel) An example of a straight line fit to the specific 
mass accretion rate of a randomly chosen halo, whose best fit gradient defines 
β. (Right-hand panel) The PDF distributions of our β data, including that of 
the unique subset of the satellite host values, denoted β∗

halo . These closely 
resemble Gaussian distributions and are well fit by the Gaussian function, 
with best fit parameters given in Table 2 . β represents the gradients of the 
halo accretion histories in the central data, the rest are specific to satellite 
subhaloes ( βsub ) and their host haloes ( βhalo , β∗

halo ). 
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eans of impro v ed accurac y of their predicted stellar mass function
nd various mass relations. 

A temporal measure of v max is not so simple to implement in our
odel, due to the presence of baryons influencing the rotation curve.
hrough inspecting merger trees in TNG, these velocities are larger

n the hydrodynamical simulations when compared with the N -body
qui v alent, for objects in the satellite phase and for centrals at high
edshift. We compute a term which is unaffected by the presence of
aryons, and is loosely proportional to the temporal virial velocity
f the subhalo, in terms of the dark matter half-mass radius R 1/2 ,
nd halo and subhalo mass, respectively, for central and satellite
alaxies: 

˜  vir ( t) = 

√ 

m h ( t) 

R 1 / 2 ( t) 
, (6) 

where we have ignored constant terms such as the Newtonian
ravitational constant. This proxy assumes that TNG subhaloes
ossess a common radial density profile, and thus a simple scaling
etween its total mass and the mass enclosed within a given mass
adius. As well as an estimate for virial circular velocity, it is similar
o the proxy for NFW concentration used for TNG data by Bose et al.
 2019 ). 

We have implemented R 1/2 and ˜ v vir as features at all redshifts in
ur data set. The required quantities are directly obtained from the
NG data catalogue, and the features are vector normalized in our
re-processing stage, thereby gaining a description of the growth of
he subhaloes’ physical sizes and rotation curves. 

.2 Time-independent variables 

.2.1 Final halo mass 

he diversity of galaxy formation with respect to mass is an important
ne: the highest mass haloes, hosting the highest mass centrals and
he greatest abundance of satellites, typically exhibit high mass
lliptical galaxies, whose metal content is high and whose star
ormation has ended some considerable time ago. On the contrary,
maller haloes host younger, continually star-forming spiral galaxies,
ith large amounts of metal-poor gas (Wechsler & Tinker 2018 ).
he halo mass is therefore an important quantity determining the
roperties of star formation and chemical enrichment history of our
alaxies. 

The final halo mass, while taken from the TNG data directly,
quates to the integral of the halo rate o v er the full time of the
imulation. As is the case with the accretion rates (see Section 2.1.1 ),
he final subhalo dark matter mass is included in the satellite neural
etwork alongside the halo mass, as an indicator of the present-
ay baryonic properties go v erned by differing gravitational regimes.
gain, the subhalo mass is not considered for centrals due to their

ight correlation from the central subhalo being the dominant mass. 
As with all variables in Section 2.1 , the zero-redshift halo mass

s normalized using the Gaussian quantile transformation (GQT).
he maximum absolute dark matter accretion rate across the halo’s
istory is also used as an input variable, and is normalized the same
ay. This also serves as a measure of the magnitude of dark matter

ccretion. 

.2.2 Specific rate gradient 

 pre-eminent parameter used by Montero-Dorta et al. ( 2021 ) is the
radient of the specific mass accretion rate, which they denote β.
NRAS 518, 5670–5692 (2023) 
n the left-hand panel of Fig. 2 , β is calculated for one TNG300
alo by fitting a straight line between the logarithms of specific mass
ccretion rate and cosmic time. 
β ef fecti vely identifies the fastest forming haloes at high redshift,

hose galaxies maximize their star formation rate at similar times
nd go on to form high mass, quenched galaxies. Its inclusion in
he neural network advocates a measure of specific accretion, which
ccounts for the halo’s growth in proportion to its current mass, and
he time scale of the halo evolving mass fractions. Like the halo

ass, this too is an important factor in classifying galaxies of a
ertain evolutionary regime. 

Additionally, we find that this parameter is useful for filtering out
utliers, which can ne gativ ely impact the network’s performance.
or the lowest mass objects, in spite of the lower final stellar mass

imit of 10 9 M �, certain accretion histories exhibit a noisy, stochastic
ppearance as one approaches the mass resolution of the simulation.
ore importantly, these under-resolved accretion histories are flat,

nd so their β values do not represent a typical specific mass accretion
istory. We therefore exploit the Gaussian nature of β by fitting to
ts distribution, and discard any samples with over a 5 σ offset from
he mean. 

As β is Gaussian distributed, as can be seen in the right-hand
anel on Fig. 2 , its histogram is very similar in geometry to the
QT transformed features. Translated according to the best-fitting
arameters, i.e. to a normal distribution of zero mean and unit width,
he range of values is also the same as the GQT data. Therefore, we
imply feed this translated β, hereafter α, into the neural network,
ith no need for quantile transformation. 
For satellites, two distinct halo formation histories serve a role

n the model: that of the FoF halo and that of the satellite subhalo.
here are therefore two different β values each. Each β, like the β

or centrals, is also Gaussian distributed, ho we ver for our satellite
ample the means are larger and the standard deviations are similar
see Table 2 ), likely due to the most rapidly forming haloes hosting
 greater abundance of high-mass satellites. 

The α values for each formation history are also included in
he satellite neural network, and satellites are selected under the
ircumstance that neither α has an absolute value abo v e 5. To indicate
he halo to which α or β refers, these will be denoted αhalo / βhalo for
he main halo, and αsub / βsub for the satellite subhalo. 

Note that our satellite data includes multiple subhaloes bound
o the same halo; there are therefore duplicate values of βhalo in
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Table 2. The best-fitting mean and standard deviation for all β distributions 
in our data. βhalo has two different fits due to the multiple occurrences of 
haloes which host multiple satellites in our data. βhalo denotes the data set 
used in training, while β∗

halo denotes the unique-valued subset of βhalo . 

β: Best-fitting Gaussian parameters 
Network Quantity Mean St. Dev. 

Central β −1.553 0.213 
Satellite βhalo −1.489 0.192 

β∗
halo −1.509 0.203 

βsub −1.379 0.274 

t
t
t
d  

t  

s  

a

2

T
2
o
u  

u  

t
c

fi

fi

m

m

d
o  

t  

a
e  

d
(  

m

s
t
S  

h  

c
o  

p
g

s

2

h  

p  

q
o  

s  

t  

i  

q

2

A  

h  

g
 

a
t
s  

t

t  

e
f

2

T  

o  

f  

(  

t

a

 

s  

a  

c  

a
s
h

 

w  

1

a

 

t  

s  

c  

i
p

 

t  

t  

o  

s
 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/4/5670/6855264 by guest on 14 D
ecem

ber 2022
he training set. Table 2 distinguishes the Gaussian fits for the 
raining data βhalo and the unique subset β∗

halo , and shows that 
he true distribution is steeper and more similar to the central β
istribution, which can be seen in Fig. 2 . Their offset can be attributed
o ef fecti vely sampling a different mass range; we impose a lower
tellar mass cut of 10 9 M � to all targets, and for satellites this implies
 larger lower boundary of the host mass. 

.2.3 Cosmic web properties 

he Discrete Persistent Structure Extractor ( DISPERSE ) code (Sousbie 
011 ) is a geometric algorithm which establishes the stationary points 
f a density field and quantifies its skeletal structure accordingly. We 
se the cosmic web catalogue data built on the TNG simulations
sing DISPERSE . 2 Specifically, we make use of the distances from the
arget halo to the nearest critical points and dark filaments, denoted 
ollectively as d CW 

: 

(i) d node Distance to the nearest node (maximum) of the density 
eld 
(ii) d minima Distance to the nearest void (minimum) of the density 

eld 
(iii) d saddle1 Distance to the nearest saddle point with one mini- 
ized dimension 
(iv) d saddle2 Distance to the nearest saddle point with two mini- 
ized dimensions 
(v) d skel Distance to the midpoint of the nearest filament 

This characterization of the dark matter environment gives a simple 
escription of the level of anisotropy of the large scale environment 
f the halo, and can be interpreted as characterizing the tidal field
hat surrounds it. The cosmic web has been shown to modulate the
ccretion of matter onto haloes (Hahn et al. 2009 ; Borzyszkowski 
t al. 2017 ). Observationally, haloes of a similar mass will have
istinct formation rates according to the surrounding density field 
Tojeiro et al. 2017 ; Tinker et al. 2018 ), and tend to possess different
orphologies and internal dynamics (Hellwing et al. 2021 ). 
Properties such as halo mass, and scale-independent quantities 

uch as NFW concentration, are also strongly correlated with their 
idal environment (Hellwing et al. 2021 ; Ramakrishnan, Paranjape & 

heth 2021 ), therefore this will not be a unique indicator of the
alo formation process. Ho we ver, the cosmic web does influence the
ircumgalactic and intergalactic media directly, such as by transfer 
f metal-rich gas expelled by higher mass galaxies. Thus, they are in
rinciple useful for identifying certain environmental aspects of the 
alaxy–halo connection. 

These cosmic web distances, while useful for modelling the large 
cale environment influencing accretion of star-forming gas to central 
 https://github.com/Chr is-Duckwor th/disperse TNG/

o  

d  

f  
aloes, is not considered so paramount to objects in the satellite
hase. Simpson et al. ( 2018 ) show that the majority of satellite
uenching stems from the ram pressure experienced upon infall, 
r the subsequent tidal effects of the host halo. While they briefly
uggest that the cosmic web may quench some satellites, they suggest
hat this primarily affects low mass satellites which intersect the gas
nflow from the filament to the host. Thus, we do not use DISPERSE

uantities in the satellite neural network. 

.2.4 Starting time 

nother parameter of the neural network is the time at which the
alo first began to form, taken as the earliest snapshot at which the
iven merger tree is defined. 
The structure of the recurrent layer requires identical time steps for

ll samples, yet haloes begin to form at different times. We interpolate 
he time-dependent properties and return their values at every third 
napshot in TNG, meaning many will have no data at the earliest
imes. 

While the recurrent layer enforces a causal relationship between 
ime steps, the starting time is nevertheless used as a parameter to
stablish recently germinated haloes directly, and thus, the probable 
eatures of their galaxies. 

.2.5 Satellite infall 

he properties of the satellite subhalo and its parent halo at the time
f infall being have been shown to be crucial measures of aptitude
or star formation (Pasquali et al. 2010 ; Wetzel et al. 2013 ). Shi et al.
 2020 ) study regimes of satellite evolution by categorizing according
o a scaled formation time: 

 max ≡ 1 + z half 

1 + z max 
, (7) 

where z max is the redshift of the TNG snapshot at which the
ubhalo’s mass is maximized, and z half is the redshift of the snapshot
t which half of this mass is attained, for the first time. The authors
lassify satellites as fast-accreting if this value is small, and slow-
ccreting otherwise; finding that fast-accreting satellites have greater 
tar formation, gas abundance, and a systematically distinct stellar–
alo mass relation (SHMR). 
We compute this quantity using the redshifts of the snapshot at

hich these masses are attained, as Shi et al. ( 2020 ) did in TNG100-
. A second quantity is computed similarly: 

 infall ≡ 1 + z half 

1 + z infall 
, (8) 

where z infall is the redshift at which the subhalo becomes bound
o the central halo. a infall ef fecti vely characterizes the stage in the
ubhalo’s growth history at the point of infall, or the time scale of its
apture with respect to its growth, whereas a max , ho we ver e vidently
ndicative of satellite galaxy evolution, relates instead to its central- 
hase growth profile. 
A difference in the properties of a infall and a max is that a max is

he ratio of two strictly consecutive times in the subhalo’s growth,
herefore it has a lower bound of 1. For approximately one in 72
f our samples, a infall < 1, indicating that infall occurs before the
ubhalo reaches half of its peak mass. 

Additionally, two physical quantities are e v aluated at the time
f infall, each of which provide a measure of the properties and
ynamics of the halo–subhalo system and how this will affect the
uture of the tidal environment. One is the absolute velocity of the
MNRAS 518, 5670–5692 (2023) 
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M

Figure 3. Stacked histograms of the four properties of infall satellites, 
discerned by simulation, used in the neural network for satellites. Clockwise 
from the top-left, these include the scaled infall time a infall , the scaled 
formation time a max from Shi et al., the velocity v rel of the satellite relative to 
its host at the infall snapshot, and finally the mass ratio μ of the two haloes. 
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nfalling subhalo relative to its host, calculated simply using the
ifference in peculiar v elocity v ectors from each object’s merger
ree: 

 rel ( z infall ) = ‖ v rel ( z infall ) ‖ = ‖ v sub 
pec ( z infall ) − v halo 

pec ( z infall ) ‖ (9) 

In the satellite phase, the velocity of the satellite relative to the halo
s related to the rate of the satellite’s mass-loss from ram pressure,
nd similarly its orbital velocity serves as a measure of its location in
he halo’s potential and thus its likelihood of continued star formation
Behroozi et al. 2019 ; Slone et al. 2021 ). Including the velocity at the
ime of infall may pro v e a useful measure of the satellite’s trajectory.

The final infall parameter in this model is the ratio of the subhalo
ass to its host halo’s mass at infall time: 

( z infall ) = 

m sat ( z infall ) 

M parent ( z infall ) 
, (10) 

which introduces an important selection criterion which applies
nly to satellites. 
It is assumed that the dark matter subhalo is the dominant mass

f the galaxy–halo system. Ho we ver there exist some low mass
ubhaloes in the TNG simulations where the dominant mass is gas
r stars, which can be attributed to tidal dwarf galaxies in TNG
Haslbauer et al. 2019 ). While a satellite may initially be slightly
arger than its future central if the latter is rapidly growing, a value
f multiple positive orders of magnitude illustrates the collapse of
his key assumption. We therefore only include satellite galaxies
hose host halo obeys the following criterion: m s ( z infall )/ M h ( z infall )
 0.1, reducing the maximum μ by two orders of magnitude. The

istributions of the infall parameters following this cut are shown in
ig. 3 . 

 BA R  Y  O N I C  QUANTITIES  

his section deals with the pre-processing and scientific interpreta-
ion of the galaxy properties which our neural network is designed
o predict, and their complex role in governing observables. 

Like the input variables, these properties are GQT normalized.
he target data set consists of the zero-redshift stellar mass and
ass-weighted metallicity of the galaxy, and the time-dependent
NRAS 518, 5670–5692 (2023) 
FH and ZH, both vector normalized and defined for the same time
teps as all time-dependent input features. 

Defined only on the subhalo scale, the definitions of these historical
aryonic quantities are identical for central and satellite galaxies,
ith the exception of resolution corrections in Section 3.3 , in which

he conditional means of these quantities must be e v aluated sepa-
ately for centrals and for satellites. Unlike dark matter properties,
e consider only baryonic properties on the subhalo scale. 

.1 Star formation history 

e define our star formation rate histories from the mass-weighted
ge distribution of star particles gravitationally bound to each subhalo
t z = 0 – i.e. the stellar mass formed per unit time as a function of
osmic time, S( t). This definition differs from a stellar mass accretion
istory, as obtained directly from the merger tree, and analogous to
he dark matter accretion rate in Section 2.1.1 . We choose to focus
n the first definition given our goal to produce spectral energy
istribution for each galaxy. In principle, of course, both can easily
e obtained from the simulation. 
The total stellar mass ever formed is defined as the integral of

he SFH S o v er time. Due to rec ycling, this inte grated stellar mass
s larger than the z = 0 stellar mass in the merger tree, which we
nclude as a time-independent feature. Unless stated explicitly, this
aper refers to the integral of the SFH when referring to stellar mass.

We also define a mass-weighted age (MWA) for each galaxy as 

WA = 

∑ N 

j= n M n t 
lookback 
n ∑ N 

n = 1 M n 

, (11) 

where the sum is done o v er N snapshots, M n is the stellar mass
ormed in snapshot n , and t lookback 

n is the lookback time to snapshot
 . 
We compute the SHMR for the true and predicted galaxies.

his ef fecti vely describes the mean stellar mass of a galaxy as
 function of its halo mass, while the scatter at fixed halo mass
ncompasses the variance in SFHs associated with differing galaxy
rowth mechanisms, some of which are highly regulated by halo
ass (Gu, Conroy & Behroozi 2016 ; Wechsler & Tinker 2018 ;
ehroozi et al. 2019 ). Our model is considered adequately fit to

he star formation histories provided that the numerical integrals of
heir SFHs accurately replicate the shape and scatter of the SHMR
t z = 0. 

.2 Stellar metallicity history 

he metallicity histories are computed as mass-weighted metallic-
ties of all star particles associated with a subhalo at z = 0, in the
ame time bins as the star-formation history. 

We also define a mass-weighted metallicity of the full galaxy as: 

 s = 

∑ N 

n = 1 M n Z n ∑ N 

n = 1 M n 

, (12) 

where the sum is done o v er N snapshots, and M n is the mass
ormed in snapshot n . 

.3 Resolution corrections 

 prominent issue with using the two primary TNG simulation
ata sets is due to their difference in mass and spatial resolution.
illepich et al. ( 2017a , b ) explain that the stochastic star formation
odel in TNG is dependent on the density of gas mass which is

art/stac3498_f3.eps
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Figure 4. The ζ variables as a function of halo mass at redshift zero. The val- 
ues of each ζ function for masses larger than that shown here (i.e. > 10 14 M �) 
are taken as the average of the function o v er the [10 13 M �, 10 14 M �] interval. 
The lower mass limit of this chart equates to the cutoff of TNG300 haloes 
used in our data. 
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Figure 5. The ψ variables as a function of cosmic time, shown in four 
example bins of halo mass. The resolution correction for the star formation 
history ψ S is shown in the upper panel, the metallicity history correction ψ Z 

in the lower panel. 
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dentified, therefore simulations with lower resolution underestimate 
he star formation rate o v erall. Consequently, important summary 
tatistics such as the SHMR and mass–metallicity relation (MZR) 
re underestimated in TNG300-1 in contrast with TNG100-1. 

The same authors offer an adjustment to TNG300-1 by exploiting 
he fact that the resolution of TNG100-2 is identical to it. More
enerally, the n -th TNG300 simulation is chosen to reco v er the mean
HMR of the n + 1-th TNG100 simulation. While they utilize this
nly to correct the SHMR, we will do the same to adjust our stellar
etallicities. These corrections are based on the halo mass dependent 

atio between the mean SHMRs and mean MZRs of TNG100-1 and 
NG100-2, and we denote them ζ S and ζ Z , respectively. The shapes 
f these functions of halo mass at redshift zero are depicted in Fig. 4 .
At a fixed redshift, the ζ fractions are defined: 

S ( M h | z) = M̄ 

∗
100-1 ( M h ) / M̄ 

∗
100-2 ( M h ) (13) 

Z ( M h | z) = Z̄ 

∗
100-1 ( M h ) / Z̄ 

∗
100-2 ( M h ) , (14) 

where due to a lack of high mass samples, ζ S and ζ Z are assigned
heir mean value in the interval 10 13 M � ≤ M h ≤ 10 14 M � if M h ≥
0 14 M �. 
The ζ corrections work adequately for adjusting the rele v ant 

elations within a single snapshot. Ho we ver, the stellar age spectra
sed to compute the formation histories of the network are not defined 
ith single-snapshot data, and so ζ is not a valid correction for these.

nstead we apply a similar correction for the mean histories of objects
n narrow bins of final halo mass, o v er which we apply a cubic spline
nterpolation, which can be neatly extrapolated outside the halo mass 
ange of TNG100. 

This returns a temporal variable, named ψ , whose geometry for 
tar formation and metallicity as a function of both time and halo
ass is realized in Fig. 5 . 
For a fixed halo mass, ψ is given mathematically as follows: 

ψ S ( z | M 

z= 0 
h ) = 

˜ S 100-1 ( z) / ˜ S 100-2 ( z) (15) 

ψ Z ( z | M 

z= 0 
h ) = 

˜ Z 100-1 ( z) / ˜ Z 100-2 ( z) (16) 

To reiterate, the baryonic properties required for this study include 
he final stellar mass M s and metallicity Z s , whose TNG300 values
re multiplied by ζ : a dimension-less function of halo mass at fixed
edshift; and the star formation history S and metallicity history 
, whose TNG300 values are multiplied by ψ : a dimension-less 
unction of redshift at fixed final halo mass. ζ and ψ are computed
ndependently for central and satellite galaxies, due to significant 
ifferences in their star formation histories. 
Using these corrections, we find star formation and metallicity 

istories in TNG300 that are accurately matched to the TNG100 data,
nd therefore are suitable for the neural network. These matches are
isplayed in Figs 6 and 7 . 

.4 Spectroscopy and photometry 

e compute a set of spectral energy distributions from our original
nd predicted SFHs and ZHs using the PYTHON-FSPS module. 3 

his is based on a series of simple stellar population (SSP) spectra
ith initial mass function (IMF) in accordance with the Chabrier 

 2003 ) model. For each time step in our data, we emulate an SSP
pectrum, parametrized by the current time and metallicity of the 
alaxy, and weight them according to the current star formation rate.
athematically, the full spectrum F is defined in terms of the SSP

pectra f j as follows: 

( λ) = 

N snap ∑ 

j= 1 

M j f j ( λ; Z j , z j ) (17) 

Photometric magnitudes are computed from these spectra using 
DSS methodology. We mimic the flux passing through the five 
andpass filters used in the surv e y (Fukugita et al. 1996 ) by
ntegrating the spectrum over the response functions from SDSS, 
nd compute absolute magnitudes and colours. 

The distribution of colours from several combinations of bands is 
imodal, where ‘blue’ galaxies have ongoing star formation, ‘red’ 
alaxies are quenched, and galaxies in the transition phase from 

lue to red are members of the ‘green valley’ (Nelson et al. 2017 ).
MNRAS 518, 5670–5692 (2023) 
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Figure 6. The SHMR and halo mass–metallicity relation at z = 0, showing 
the TNG100-1 data aligned with the TNG300-1 distributions, following 
amendment using the ζ functions. For each data set, similarly coloured 
errorbars indicate the median and range between 15-th and 85-th of stellar 
mass or metallicity in a given halo mass bin. 

Figure 7. The mean star formation and metallicity histories for central 
galaxies of halo mass 10 12 M � ≤ M 

z= 0 
h ≤ 10 12 . 2 M �. The standard deviation 

of these data as a function of time are indicated by the size of the shaded 
regions. This shows the TNG100-1 data aligned with the TNG300-1 means, 
adjusted by the ψ parameters. To remo v e spurious features due to low numbers 
at early times, this figure only includes time steps with more than 100 nonzero 
values in all data. This applies only to times before a cosmic time of 1Gyr. 
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he colour–mass diagrams for centrals and satellites, inferred from
etwork predictions are compared here with results from TNG. 
We also compute the H α luminosities of our galaxies by taking

he SFH-weighted sum of SSP values, as given by PYTHON-FSPS : 

 

Hα
gal = 

N snap ∑ 

j= 1 

M j L 

Hα
j (18) 

 N E U R A L  N E T WO R K  D E S I G N  A N D  DATA  

RE-PROCESSING  

.1 Quantile transformation 

t is common practice, and indeed required, to normalize data sets in
any applications of machine learning. Normalization is especially

mportant for data sets with variables of very different and large
anges, such as ours. 

For much of our data, we found that a simple scaling relation
as inadequate as several quantities are not represented equally. For

xample, halo masses are heavily over-represented at low values,
hile large values are under-represented in our sample, leading

o poor training. A partial solution to this issue was a GQT: an
peration supported in the SCIKIT-LEARN (Pedregosa et al. 2011 )
ython Library. 
Quantile transformations work as follows. Let x i be a data point in

he original data set. If the distribution of these data is normalized, one
ay interpolate through this and integrate it to establish a cumulative

istribution function (CDF) �, which increases monotonically from
 to 1. � therefore maps the data point x i onto its corresponding
uantile value. It is therefore very simple to map this onto a second
robability distribution provided that its CDF and its inverse function
re analytical. Specifically, if this second distribution has a CDF  ,
hen the data x i can be mapped onto this distribution like so: 

 i =  

−1 ( �( x i ) ) (19) 

If we intend for the y i to be Gaussian distributed, then equation ( 19 )
akes the specific form: 

 i = 

√ 

2 erf −1 ( 2 �( x i ) − 1 ) (20) 

and can be inverted when returning predicted data to physical
alues: 

 i = � 

−1 

⎛ 

⎝ 

1 + erf 
(
y i / 

√ 

2 
)

2 

⎞ 

⎠ (21) 

A GQT was chosen specifically because the domain of our
ransformed data resides entirely between 5 and −5, making it
uitably normalized for the neural network. SCIKIT-LEARN also offer
 transformation to a uniform distribution, ho we ver the Gaussian
ransformation pro v es much more suitable for our data. Fig. 8 shows
ow our TNG100-1 sample of logarithmic halo masses is mapped
nto these distributions. In the uniform case, a number of data points
re strongly skewed towards the edges of the distribution. This narrow
argin containing such a broad range of values means that there can

e a large error in the true data when making predictions based on a
niform distribution. 

.2 Vector and scalar normalization 

n the context of time-dependent variables, the GQT can take two
pecific forms. In one form, we consider that the behaviour of a
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Figure 8. The mapping of the TNG100-1 set of halo masses (vertical axis) to 
a uniform distribution (left-hand panel) and Gaussian distribution (right-hand 
panel). Histograms of these data points are shown along every axis, including 
the halo mass distribution on the vertical axis. This graphic shows that a large 
range of data, namely halo masses abo v e 10 12.5 M �, corresponds to a v ery 
narrow range in the uniform distribution, which results in high sensitivity to 
small differences in the transformed data. This makes a uniform distribution 
unsuitable for making predictions from our data, and this is why we have 
chosen to transform to a Gaussian distribution instead. 

Figure 9. A depiction of the distribution of arbitrary, monotonic data 
after applying scalar (left-hand panel) and vector (right-hand panel) GQT 

normalization. Data points at successive time steps are shown in different 
colours. All time steps share the same normal distribution when transformed 
independently of other time steps, i.e. when scalar normalized. When vector 
normalized, the data points are transformed according to the full range of the 
quantity’s value o v er time, hence each time step’s distribution is relative to 
another. Stacking the full set of time step histograms results in the Gaussian 
distribution of the full data set, regardless of normalization method. 
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ark matter quantity as a function of time can influence the present-
ay state of the galaxy, and so we intend to preserve the geometry
or shape) of the property’s history. In the other, there may be
hysical or systematic differences between time steps which imply 
hat there is no physical meaning to the gradient of the variable
ith time, and instead the absolute value at a given point in time is
ore significant. We introduce two forms of normalization: vector 

nd scalar normalization, to incorporate time-dependent properties 
if ferently. The ef fect that each normalization has on temporal data
s illustrated in Fig. 9 . 

With vector normalization, the GQT is fit to the variable at all time
teps simultaneously. The transformed variable corresponds to the 
riginal variable’s value regardless of the time at which it is defined.
quation ( 20 ) refers to a GQT for a time-independent variable. If � 

s the CDF of x i : the 1D set of values of the temporal variable, the
ransformed variable as a function of time is defined by applying the
ransformation to the original, 2D data set: 

 i ( t j ) = 

√ 

2 erf −1 
(
2 �( x i ( t j )) − 1 

)
, (22) 

where t j is a specific time step. These are implemented into the
ecurrent input layer as a time-dependent vector, whose normalized 
alue serves as an absolute indicator of the original data value, and
herefore the temporal gradients of the variable are preserved. 
Any variable for which the GQT is fit with no respect to time is
onsidered scalar normalized. Here there exists a separate CDF for 
he variable at each time step, and thus a list of independent sets of
ransformed variables, separated in time: 

 

k 
i = 

√ 

2 erf −1 
(
2 � k ( x 

k 
i ) − 1 

)
(23) 

.3 Neural network ar chitectur e 

e have developed two semi-recurrent neural networks in TENSOR- 
LOW (Abadi et al. 2016 ), which have been trained separately on
entral and satellite galaxy data from TNG. In each network, the
emporal component of the halo data constitutes the recurrent input 
ata, while the remaining zero-redshift quantities such as halo mass 
re processed in the second, dense input layer. 

While TNG contains 100 snapshots in time, for the sake of
educing the complexity of the neural network for better convergence, 
e e v aluate all time-dependent halo and galaxy properties with a step

ize of three snapshots, thus computing a 33-element vector. 
The architecture for the central neural network is depicted in 

ig. 10 . A sequence of number-labelled points indicate layers of
ifferent types and their dimensions. Each of our networks begin 
ith a 2D input of features defined at 33 time steps, and a 1D set
f scalar features. After multiple dense or recurrent layers, the 1D
ayers which succeed them are eventually concatenated, allowing 
oth sets of data to predict baryonic properties. The recurrent and
ense input quantities are discussed at length in Sections 2.1 and 2.2 ,
espectively. 

The satellite neural network is identical in design to the central
etwork shown in Fig. 10 , except that there exist seven temporal and
leven non-temporal input quantities, which again are discussed in 
ections 2.1 and 2.2 . The input layers therefore have dimensions of
1 and 33 ×7 nodes, combining in the same sequence to make a 44-
ode dense layer instead of 42. This is followed by a set of 45-layer
odes, and the rest of the satellite network remains true to the central
esign. 
Two separate models exist due to the inclusion of variables which

re not defined for central subhaloes, such as the time of infall into
 larger host halo. Satellite galaxies also have different evolutionary 
roperties such as decoupled growth of the subhalo and host halo,
hich are included in this model, and typically have larger stellar
ass fractions and scatter in stellar mass at high halo mass when

ompared with centrals (Engler et al. 2020 ), and these differences
ay not have been distinguished in a composite model. 
Due to the sparse nature of input quantities such as halo masses

nd o v erdensities, gradient saturation renders the network inoperable 
hen using highly non-linear acti v ation functions such as tanh or

igmoid. When trialling the rectified linear unit (ReLU) acti v ation
unction, defined as follows: 

eLU ( x) ≡ max [ 0 , x ] (24) 

we find no noticeable saturation ef fects. Ho we ver, this network
as subject to the Dying ReLU Problem (Lu et al. 2020 ), in which

he gradient for any ReLU-acti v ated node is automatically zero if its
nput is ne gativ e, thus all subsequent iterations from this node are
ero, and will no longer contribute to training the model. To reduce
he number of affected nodes, a common approach is to use the
imilar Leaky Rectified Linear Unit (L-ReLU) acti v ation function: 

-ReLU ( x) ≡ max [ αx, x ] ; α ∈ (0 , 1) (25) 

Ho we ver, the discontinuity in the gradient of L-ReLU resulted in
rbitrary discrepancies between similar samples in our data. Finally, 
MNRAS 518, 5670–5692 (2023) 
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Figure 10. An illustration of the architecture of the neural network for central galaxies. Each point in this diagram represents a fully connected layer, whose 
dimensionality is indicated by a numerical label; with the exception of purple points, which represent a subset of the final, 1D output layer. An input layer exists 
for the time-dependent and time-independent halo properties each, whose outputs are conjoined at a 42-node dense layer. The temporal input layer and recurrent 
layers are 2D, comprising eight variables defined o v er 33 time steps. Each arrow indicates a connection between consecutive layers, while the arrow’s label 
indicates the number of times that this connection repeats (i.e. ‘3’ indicates that four consecutive hidden layers exist to accommodate three such connections). 
The dashed line arrow indicates that the process of adding three nodes to every fourth hidden layer repeats up to the point that there are 69 nodes per layer. The 
final set of connections returns the baryonic data output, consisting of star formation and metallicity histories, and zero-redshift galaxy properties. 
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he ELU acti v ation function was tested: 

LU ( x) ≡
{

x if x ≥ 0 
α ( exp ( x) − 1 ) if x < 0 

, (26) 

which, with an α value of 1, offered a solution to both of these
roblems. 
ELU acti v ated networks are useful for scaling a layer’s output to

 near-zero mean and near-unity standard de viation, ho we ver this
ehaviour is only stable for sequential architectures of standardized
nputs and initial kernel weights (Clevert, Unterthiner & Hochreiter
015 ; G ́eron 2020 ). While ELU alone offers significant performance
 v er a batch-normalized ReLU network (Shah et al. 2016 ), this
nstability along with the prospect of high gradients and saturation
t highly ne gativ e inputs can limit the network’s performance. The
etwork is not fully deterministic, yet it converges adequately with
LU acti v ations, unlike more direct ReLU-deri ved functions. 
All layers in these networks are fully connected, i.e. there exist

o dropout layers or other dilution techniques in either network; the
eduction of connections this introduces is what the ELU acti v ation
unction was chosen to mitigate, alongside the two-sided gradient
roblem of L-ReLU. We find that such dilation methods pro v e
etrimental to the network’s performance when using even ELU
cti v ation. 

The TNG data are shuffled and split such that one quarter of
he data is used in the testing phase, where the predicted galaxy
roperties are compared with those from the simulation. Of the
emaining 75 per cent used in the training phase, 20 per cent is
sed for validation, computing a separate loss function alongside
he one being optimized. This loss function is the mean-squared
rror between the true ( { y i } ) and predicted ( { f i } = f ( { x i } )) outputs: 

SE ( { y i } , { f i } ) = 

1 

N 

N ∑ 

i= 1 

( y i − f i ) 
2 (27) 

Finally, we find that a constant learning rate for the gradient
escent process is inadequate; this initially has to be large to converge
ignificantly, yet this leads to o v ershooting when approaching the
oss function minimum. We use an exponentially decaying learning
NRAS 518, 5670–5692 (2023) 
ate, which reduces in value at each training epoch. Specifically, for
raining epoch number N , the learning rate � is defined: 

 = � 0 exp 

[
− N 

N 0 

]
, (28) 

where the most suitable values for N 0 and � 0 were found by trial
nd error to be 10 and 8 × 10 −4 , respectively. As � will eventually
all to an insignificant value, the training phase is terminated once � 

10 −3 � 0 ; therefore there exists a total of 70 training epochs. 

.4 Choice of ar chitectur e 

he adoption of our semi-recurrent network design was the result
f an amalgamation of tests of the network’s ability to make basic
redictions consistently. The use of a recurrent layer for temporal
nput quantities amended the lack of convergence of a basic neural
etwork layout, in which all input variables were passed to a solitary
ense layer. A 2D input layer also allows multiple temporal quantities
o be processed in a time grid; a dense network containing all of ours
ould be impractical to train. 
The number of hidden dense or recurrent layers was decided based

n the minimum number of layers required to achieve convergence.
ach input layer was followed by the optimal number of dense or

ecurrent layers for the network to recognize their equal contribution
efore the two were concatenated. The remaining hidden layers were
gain optimal in number, i.e. the minimum for which there was no
oticeable difference in the accuracy or consistency of predictions,
hile gradually increasing in dimensionality to meet the number of
utput nodes. 
To show impro v ed conv ergence of a simple semi-recurrent net-

ork compared with a dense network, we incorporate two simplified
esigns of a basic (dense) network and its semi-recurrent equi v alent.
s with the main models, all layers in these networks are ELU

cti v ated and contain no dropout. Each network is trained with only
tar formation histories as output, and halo mass accretion history as
he only temporal input variable; the dense network will not converge
ith the hundreds of input nodes introduced by implementing
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Figure 11. The numerical SHMR e v aluated with the true and predicted star formation rates, for central galaxies (left-hand panel) and satellite galaxies (right- 
hand panel). This is shown as a function of FoF halo mass for the former, and subhalo mass for the latter. Data points from the original data set are shown in red, 
predictions in blue, while red and blue errorbars show the median and 15-th and 85-th percentiles of stellar mass in a given halo mass bin. The strong similarity 
of the shapes of these relations indicates a very good overall prediction of the star formation histories. 
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4 The true variability will of course have components at much shorter time 
scales, but is re-sampled here to 33 bins as described in Section 4.3 . 
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ultiple temporal variables. The remaining input quantities include 
nal halo mass, starting time and maximum absolute accretion rate. 
The basic dense network therefore has 36 input nodes, 33 of which

ontain the accretion rate at different times; and 33 output notes to
ccommodate the star formation history. There are 15 hidden layers 
rom input to output, each with the same shape as the input layer. 

The basic semi-recurrent network contains the accretion history 
n a recurrent input layer of shape (33, 1) and the remaining three
uantities in a dense input layer. F ollowing fiv e hidden dense layers
ach, the two sequences merge to form a single 36-node layer, which
s followed by 15 layers of the same shape before reaching the output
ayer. 

The choice of number of layers in these models was decided as
he optimum number of layers, as with the main model. Therefore 
his test of network design illustrates the difference in predictions of
he simplest possible complete models. We use these two models to 
llustrate the advantage of the semi-recurrent design in Section 5.1.2 . 

 P R E D I C T I O N S  

his section concerns the results of the neural network models for
entral and for satellite galaxies, comprising the properties of the 
imulated galaxy formation histories and a discussion of the physical 
onsequences on their level of accuracy. 

.1 Galaxy properties 

.1.1 Stellar–halo mass relation 

umerical integration of the true and predicted SFH for each galaxy 
s used to plot the SHMR, shown in Fig. 11 . Median absolute residuals
n the logarithmic stellar mass are 0.079 dex for central galaxies, and
.094 dex for satellites. 
Despite the accuracy of this result, the network underpredicts the 

tellar mass of most galaxies. Another pre v ailing problem, discussed
elow, is the failure of the neural network to predict short bursts
f star formation, which, despite their brevity, will have significant 
nfluence on the spectroscopy of a galaxy. In general, this serves to
educe the scatter in the SHMR, and consequently this is also true
or scatter in metallicity. 

.1.2 Star formation history 

ig. 12 shows the mean of the true and predicted SFHs from the
implified models described in Section 4.4 , in six bins of halo
ass. The general behaviour with halo mass is clearly predicted, 
ith galaxies in higher mass haloes forming their stars earlier –

.e. these networks reproduce galaxy downsizing trends with recent 
tar-formation shifting towards low-mass haloes. 

The difference in the precision of the tw o netw orks is apparent: in
ach halo mass bin, the mean SFH from the semi-recurrent network
s better constrained, and in most cases matches the true mean more
onsistently. Comparing predictions from ten independent runs, the 
ariance in the predicted SFH at any snapshot was typically 1–2
rders of magnitude larger in a basic dense network than its semi-
ecurrent equi v alent. The impro v ed precision justifies our use of a
ecurrent treatment of historical dark matter properties. 

For the main network, Fig. 13 shows the predicted and true SFH
nd ZH of a single galaxy in more detail. The broad shape of the
FH is well reco v ered, as is the stellar mass, but the NN is unable to
redict the intrinsic variability of the order of 1 Gyr in the original
ata. 4 The o v erall accurac y of the predicted geometries is visualized
n Fig. 14 , where we show the MWA of galaxies as a function of halo

ass, for centrals and satellites separately. Here, it is easier to discern
 tendency of the NN to o v erpredict MWAs, and to underpredict their
catter. 

We find that these are general intrinsic shortcomings of the NN.
he power in fluctuations on time scales lower than around 0.1 Gyr −1 

re suppressed in the predicted data, which can explain the lower
catter in the MWAs at fixed halo mass. We will see later that this
MNRAS 518, 5670–5692 (2023) 
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Figure 12. The shape of the mean star formation history in six bins of halo mass for the central galaxy data, where predictions from a basic dense neural 
network (green) are compared with those from our semi-recurrent architecture (purple). Their lines and shaded regions depict the median and interquartile 
ranges of the predicted mean from ten independent runs of each network. These are shown alongside the true mean star formation history (blue) and the mean 
mass accretion rate (red). The differences in interquartile ranges between predictions of the two networks shows a significant impro v ement in the converging 
power of the network when implementing the semi-recurrent design. 

Figure 13. An example of formation history for a satellite galaxy of intermediate mass. The true star formation history (blue) and the corresponding prediction 
(cyan) are shown alongside the true stellar metallicity history (purple) and the predicted metallicity history (magenta). Numerical estimates of the subhalo and 
predicted stellar mass and metallicity are shown abo v e the graph. This sample shows a modest fit to the shapes of the SFH and ZH, but not the variations on 
short time scales. 
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uppression is also correlated with discrepancies between predicted
nd true SEDs, and propose a possible way to o v ercome it. 

In Fig. 15 , we sho w ho w the time at which half the final (sub)halo
ass is formed varies according to the SHMR for centrals and

atellite galaxies, in both original and predicted data sets. This is an
mportant aspect of the SHMR which illustrates the relation of speed
f halo growth to stellar mass (Cui et al. 2021 ). While this quantity
s not an explicit feature of the neural networks, its relationship with
NRAS 518, 5670–5692 (2023) 

m  
he SHMR is preserved in the predictions of the neural network. This
hows that the causal dependence of halo growth on star formation
s captured by the neural network. 

.1.3 Chemical enrichment history 

ig. 16 depicts the relation between halo mass and mass-weighted
etallicity of each galaxy. The scatter in metallicity is underesti-

art/stac3498_f12.eps
art/stac3498_f13.eps


Galaxy–halo connection with neural networks 5683 

Figure 14. Stellar mass weighted age as a function of stellar mass, for 
central (solid, diamond) and satellite galaxies (dashed, hexagon). The plot 
points and error bars represent the median and interquartile range of mass 
weighted ages in each bin. The ages derived from the predicted stellar mass 
assembly history (blue) are o v erlaid upon the values computed from the 
original data, showing that the general trend of ages with respect to masses 
are well-matched, ho we ver the of fsets and reduced ranges of certain error 
bars are indicative of the prevalence of samples with considerable differences 
in mass assembly geometry. 
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Figure 15. Stellar–halo mass relations for central galaxies (top panels) 
and satellites (bottom panels), in 2D bins coloured according to the mean 
cosmic time per bin at which half of the final mass of the halo (central) 
or subhalo (satellite) is formed. Each SHMR is shown separately for the 
original TNG data and the networks’ predictions by plotting according to 
respective stellar masses. The same trend of this property along the SHMR in 
both circumstances shows that this relationship is reflected in the network’s 
predictions. Note that the low occupancy of bins on the edges of the SHMRs 
are sensitive to minor differences in scatter, which results in an apparent 
distortion of the shape of the SHMR, which is misleading. 
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ated by the neural network, to a lesser extent for satellite galaxies.
etal-rich objects in particular have lower metallicities across 

tellar masses. We also see a lack of high frequency information 
n metallicity histories such as the example in Fig. 13 . 

We argue that this o v erall lack of high frequency information of
tar formation and metallicity histories is related to reduced scatter in 
oth physical and observational summary statistics. This is discussed 
n Section 5.2.2 . 

.2 Obser v ational data 

.2.1 Spectra and line emission 

ig. 17 shows the mean of the stacked galaxy spectra, in bins of stellar
ass, with the shaded regions indicating the standard deviation of the 

et. The shape and amplitude of the spectra in most bins are consistent
n both the original and predicted galaxies. In high mass galaxies, 
he NN tends to underpredict the mean luminosity and scatter at 
hort wavelengths, and at lower masses, it slightly overpredicts the 
uminosity at all wavelengths. 

The spectral energy distributions for central galaxies exhibit 
learly underpredicted mean and standard deviation compared with 
atellites. While the continuum and line emission features of these 
pectra tend to change in the correct way with halo mass, the
ean amplitude of the predicted luminosities is often below of 

he true mean. This discrepancy may be attributed to stellar age 
nd metallicity dependence on the mass-to-light ratio of an SSP 

Gallazzi & Bell 2009 ). We will show how this is associated with
he difficulty of the NN in predicting SFHs on short time scales.

hile this is also a problem for satellites, satellites are more likely
o be quenched, and are therefore less susceptible to shortcomings in 
redicting SFHs on short time scales. 
Although not shown, the numerical estimates of H α line lumi- 

osity behave similarly. The predicted distribution of luminosities 
s similar to the original data, yet we consistently underestimate the 
catter in any given mass bin. This result suggests that line emission
uminosities can be predicted, yet are sensitive to the subtle variability 
n the galaxy’s evolution, which serves to reduce their scatter at fixed
tellar mass or star formation rate. 

.2.2 Residual luminosity and stochasticity 

e show the dependence of the spectra of central and satellite
alaxies on short time scale star formation events by calculating 
he mean of the fractional difference between the Fourier amplitudes 
f the true and predicted SFHs, from 0.3 Gyr −1 to the Nyquist
requency of approximately 1.2 Gyr −1 , and correlating these with 
he fractional difference in total luminosity in Fig. 18 , and H α line
uminosity in Fig. 19 . These are each shown for galaxies of high star
ormation rate at z = 0. The frequency range of this data corresponds
o variations on time scales from 0.8 to 3.3 Gyr. 

In all of these plots, there is a clear correlation between the
esiduals in high-frequency Fourier modes of the SFHs and those 
n their derived luminosities. This indicates that there is a significant
ontribution to the spectra from short star formation variability, which 
he networks seldom predict. This is apparent in terms of the total
uminosity, which is sensitive to the size of these high frequency
ttributes, and the H α luminosity, which is sensitive to recent star
ormation. 

.2.3 Photometry 

he small variance in predicted luminosities translates into a nar- 
ower range in band magnitudes. Each magnitude is plotted against 
he galaxy’s stellar mass in Fig. 20 , where despite the likeness of the
istributions, the ‘scatter’ in magnitudes is smaller, particularly for 
MNRAS 518, 5670–5692 (2023) 
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Figure 16. The numerical MZR e v aluated with the true and predicted chemical enrichment histories, for central galaxies (left-hand panel) and satellite galaxies 
(right-hand panel). The true and predicted metallicities are, respectively, shown as a function of true and predicted numerical stellar mass. Data points from the 
original data set are shown in red, predictions in purple, while red and purple errorbars show the median and 15-th and 85-th percentiles of stellar metallicity in 
a given stellar mass bin. Like Fig. 11 , the relation is well matched, however in this figure some extremities in scatter are unreached. 

Figure 17. The mean and standard deviation for stacked central (top row) and satellite (bottom row) spectra in bins of stellar mass, shown for predicted star 
formation and metallicity histories in green, and TNG data in blue. Emission lines have been omitted from these plots for clarity. In the majority of samples, the 
continuum is generally well reco v ered, and is of similar amplitude. Ho we ver, for high mass objects there is a reduced variance at short wavelengths, and lower 
mass galaxies have a smaller variance overall. This represents a poorer prediction of central galaxy spectra, with lower mean amplitudes and smaller variance 
than the spectra e v aluated from TNG data. 
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entral galaxies. Colour distributions are shown in Fig. 21 , depicting
he expected colour bimodality in multiple band differences, for
oth central and satellite galaxies. The network models therefore
istinguish ‘blue’ star-forming galaxies and ‘red’ quiescent galaxies
n their predicted galaxy formation histories. 

The increased difficulty in predicting the luminosity at shorter
avelengths that is shown in Fig. 17 obviously translates to system-

tic offsets in the bluer photometric bands. We see this in colour
istributions such as u − g and g − r , where many red galaxies are
hifted towards bluer colours. Despite offsets in colours e v aluated at
igh mass, the general inclination of galaxy colour with regard to
ass is such that high mass galaxies are redder. 
NRAS 518, 5670–5692 (2023) 
We showed in Section 5.2.2 that the error in the total luminosity
f a given galaxy can be likened to the absence of high frequency
odes in the star formation rate. It has been shown that these short

tar formation events impact the accuracy of photometric colours,
articularly when they occur at recent times (Chaves-Montero &
earin 2021 ; Fraser, Tojeiro & Chittenden 2022 ). We show that the

rror in g − r colour scales with residual Fourier modes in Fig. 22 ,
nd see that the behaviour of this correlation is similar to the effect
n luminosities; but unlike the luminosity errors, this correlation is
lso visible for the Fourier modes in metallicity history. Noticing that
ome absolute colour residuals are similar in size to visible distortions
f the g − r distributions in Fig. 21 , we see that the lack of short
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Figure 18. 2D histograms of the fractional difference between true and 
predicted total galaxy luminosity and the mean high-frequenc y F ourier 
amplitudes of their star formation histories. These are shown for galaxies 
between the 75-th and 95-th percentiles of z = 0 star formation rate, and 
shows data within a frequency range of 0.3–1.2 Gyr −1 , i.e. a time scale 
range of 0.8–3.3 Gyr. This correlation between the two residuals indicates the 
dependence of the calculated luminosity on high-frequency star formation 
events. 

Figure 19. For the same galaxies as in Fig. 18 , this figure shows the 
correlations between residuals of their high frequency SFH data and their 
total H α line luminosity. This indicates the importance of measuring short 
time scale star formation events as in Fig. 18 , in particular at low stellar ages 
with the largest contribution of ionizing photons. 
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ime scale events may explain distortions such as narrower peaks of
he distribution. Ho we v er, high-frequenc y ZH features are rare in the

etal-rich galaxies whose metallicities are underpredicted, and the 
rror in their colour may instead be due to inaccurate star formation
istories. 

 I M P O RTA N T  FEATURES  

n this section, we discuss our methods of identifying the input
eatures of the network which have the greatest predicting power 
 v er the star formation and metallicity histories. 
A commonplace metric such as a random forest regressor is 

ot useful for addressing the importance of historical features; the 
orward-feeding influence these variables make on the final result 
ake it difficult to compute a metric as a single number. Instead, we

erform a test in which the network is trained multiple times, while
roups of similar features are scrambled, in an effort to eliminate
heir signal. 

This method is similar to permutation importance, in that we 
ompare the performance of the model after randomizing data 
ubsets. Ho we ver, it dif fers in the sense that the summary statistics
f the disrupted model are derived from predictions, and compared 
ith those calculated from the fiducial predictions. This allows us to
easure physical properties of the data after scrambling, and identify 

he importance of the randomized quantities on these properties, 
hether or not they are explicitly given as model parameters. 

.1 Shuffle groups 

e e v aluate the properties of the SHMR, the halo mass–metallicity
elation (HMZR), and metallicity history independently of star for- 
ation history, after randomizing one of these features by replacing 

he training and testing data with Gaussian random noise, and training 
he network with this data. 
MNRAS 518, 5670–5692 (2023) 

d spectra of both central and satellite galaxies, shown as a function of stellar 
 a reasonable similarity in all bands despite a slight reduction in the variance 
istribution of magnitudes can be seen in relation to mass. 
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Figure 21. Photometric colour distributions across the five bands, showing the differences between two consecutive bands. The distributions, mostly bimodal, 
are shown in purple for the original data set, with those derived from predicted spectral energy distributions in green. We see rough agreement between data 
sets, ho we ver there are clear of fsets in some of the data, such as bluer red galaxies in g − r , and significantly smaller predicted ranges. 

Figure 22. For the data shown in Figs 18 and 19 , this figure shows 2D 

histograms of the absolute difference between true and predicted g −
r colours and the mean high-frequency Fourier amplitudes of their star 
formation histories (top row) and metallicity histories (bottom row). This 
clear correlation indicates the importance of measuring short time scale star 
formation and chemical enrichment events in the aim to calculate accurate 
colours. 
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There are two important aspects to this strategy. First of all,
e choose these aforementioned relations in order to measure the

ffect on the scatter of a baryonic quantity at a fixed halo mass,
hereby interpreting the effect that the shuffled quantities have on
tar formation and metallicity history, independently of halo mass.
econdly, we scramble data such that any directly related properties
e.g. δ1 and δ3 ) are also randomized, temporal or otherwise. Thus,
ach randomization is a test of a single group of interrelated features,
hich we term ‘shuffle groups’. 
The shuffle groups to which each variable belongs are listed in

able 1 . In summary, group 1 pertains to halo growth and contains
ccretion rate and final mass. Group 1a is unique to the satellite
NRAS 518, 5670–5692 (2023) 
etwork as it contains the properties related to the satellite subhalo,
hile group 1 refers to its host. Group 2 contains environmental

eatures such as o v erdensity and cosmic web distances, group 3
elates to dynamical properties such as circular velocity, and group
 relates to interactive variables such as the skew. 

.2 Scatter di v er gence 

or ten independent runs of each randomized network, we compare
he median predicted scatter to that of the un-randomized network, as
 function of halo mass for central galaxies, and a function of subhalo
ass for satellite galaxies. Instances where the median scatter is

learly offset from the fiducial prediction show where the scatter is
upported by a property of this shuffle group. 

The deviation in scatter is quantified by calculating the quantity
 : 

 ≡
〈

log 10 

∣∣∣∣1 − σx 

σ0 

∣∣∣∣
〉

, (29) 

where σ x is the characteristic scatter of the given relation when
huffle group x is randomized, in dex, and σ 0 is that of the fiducial
esult. � equates to −∞ if σ x and σ 0 are identical, otherwise a larger
alue of � represents a stronger difference between scatters. The
catter is compared with the fiducial result and not the true data in
rder to discern the effect of scrambling features from the general
naccuracies of the model. 

The angled brackets indicate that we have averaged this logarith-
ic ratio, o v er 80 loguniform bins of halo mass and weighting these

ins according to their occupancy. This sample weighting is done to
inimize biases from sample size limited areas, otherwise producing
 misleading picture of the general size of the scatter. Additionally, �
alues can be biased towards small values if the difference in scatter
requently changes sign; thus we discard samples where the local �
alue is less than −2. 

In addition to the scatter in the SHMR and HMZR, we compute
he scatter in the unweighted mean metallicity history, identifying
ependencies on chemical enrichment independently of stellar mass,
nd thus for minority stellar populations such as late starbursts in
arly-type galaxies. 
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Figure 23. � values of the stellar–halo mass relation (top row), mass–
metallicity relation (middle row) and mass–metallicity history relation 
(bottom row), for each shuffle group in the central model (left-hand panel) 
and satellite model (right-hand panel). The text in each cell shows the median 
and interquartile range of � values obtained from ten independent runs of 
each network. To highlight the most significant shuffle groups, grid cells with 
smaller � values are coloured in dark blue, transitioning into bright green for 
higher values. Higher � values represent a greater importance of the given 
shuffle group as the model determines the given galaxy–halo relation. 
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As well as a � quantity to measure differences in scatter, we
pply the same method to e v aluate the discrepancy in the median-
ltered relations, thereby measuring the accuracy of the fit to the 
elations themselv es. F or this we replace the scatter in equation ( 29 )
ith the logarithmic median of the given baryonic quantity. This � 

nalogue is not significantly affected by any particular shuffle group, 
ignifying no quantity with distincti ve ef fect on the amplitudes of
he three relations. 

.3 Results 

ll values of � for each network, and each baryonic quantity, are
abulated for centrals and satellites in Fig. 23 , where we show
he median and interquartile range of � values obtained from 

en runs of the neural network. Values with large median � are
onsidered significant, ho we ver a lo w interquartile range suggests
hat this deviation is a systematic result of the network, while higher
nterquartile ranges indicate poor convergence. 

For central metallicity and metallicity histories, shuffle group 4, 
rimarily involving skew, has a noticeable effect on the scatter. The 
kew therefore plays an important role in determining the dispersion 
f our metallicity histories, which may correspond to small-scale 
ccretion events which lead to chemical enrichment. For satellites, 
roups 1a, 2, and 3, incorporating satellite history, o v erdensity, 
nd circular velocity, are the groups which affect ZH significantly, 
o we v er circular v elocity is less precise. One can also see notable
eviations in the HMZR scatter when scrambling groups 2 or 1a, 
uggesting that accretion and local environment are important to 
atellite enrichment. 

For central galaxies, mass accretion history and circular velocity 
ave notable offsets on the scatter of the SHMR, while circular 
elocity also has an effect on the satellite result. The robustness
f the SHMR may be due to inherent correlations between some 
ariables in different groups, such as the two aforementioned. 

For satellites, the network performs similarly with either one of the 
alo and subhalo mass histories being randomized, with little change 
o the SHMR if only one is randomized. While the final masses
nd growth histories are important to the mean SHMR, their shuffle
roups, containing infall parameters such as scaled infall time, have 
nly a subtle influence on their scatter. 
One can reconcile the halo growth rate and circular velocity with 

he SHMR scatter, as the halo’s early growth and internal dynamics 
ill quickly determine the growth of its galaxy, which restricts 
he feasible scope of future star formation rates. The future of its
hemical enrichment can be more closely linked to environmental 
hanges, which can be attributed to the abundance of star-forming 
r metal-rich gas in o v erdense re gions, where the radial distribution
ould indicate the tendency for this to be accreted into the target
alaxy. Ho we v er, the e xpulsion of star forming gas owing to internal
eedback mechanisms can impact the metallicity as well. 

.4 Median value divergence 

e compare the distributions of mass, metallicity, and MWA in an
ntermediate halo mass bin for each network and each randomization 
n Fig. 24 , shown next to the median of ten ordinary predictions, and
he true data. As the network marginally underpredicts the scatter in
tellar mass, and underpredicts metallicities, the true distributions 
re distinct from our predictions: histograms of stellar mass are 
arginally narrower in our predictions, and metallicity histograms 

re slightly offset. If the distribution from any randomization is closer
o the true distribution, it suggests that a member of this shuffle group
s misleading the network, while larger differences suggest the group 
ontains necessary information. 

We find no evidence of a shuffle group which impro v es the
etwork’s performance if scrambled, as is the conclusion from 

 v aluating a � analogue for median data v alues; ho we ver there is
 small difference in the shape of satellite MWA distributions when
roup 3 is randomized. While the scatter ratio shows the dependence 
f other shuffle groups in different halo mass regimes, this analysis
f data in a narrow halo mass range shows that shuffle group 3 is
dditionally important for distinguishing similar samples. It is not 
xplicit, ho we ver, whether this dissimilarity serves to deform the
redictions, indicating that the shuffle group contains a necessary 
etail of the GHC; or whether these features correlate with the TNG
istributions, which would imply that shuffle group 3 deceives the 
atellite network. 

.5 Subgroup randomizing 

ne can scramble individual quantities or subsets of the shuffle 
roup, which may have an important influence on the galaxy’s 
ormation history, in spite of physical correlations within the shuffle 
roup. In Fig. 25 we show this result for two examples, one for
ach network, compared with the result from shuffling the remaining 
huffle group members and the full shuffle group. 

We test scaled infall time, formation time, and infall mass ratio
n the satellite network. While these may be important quantities 
or satellite SFH, in Fig. 25 we see that the difference between
redictions with these infall parameters and the rest of shuffle group
a is small, suggesting that they have little effect on the performance
f the satellite network. This may owe to the onset of the target’s
atellite phase being inferred from the growth histories of the subhalo
nd its host. On the contrary, the deviation from scrambling infall
arameters is larger, indicating that it is useful to utilize them
xplicitly. The metallicity deviation is also larger for infall only, 
o we ver poorly constrained, which may indicate their importance. 
Donnan et al. ( 2022 ) indicate that star formation histories and gas

hase metallicities in TNG are modulated by the cosmic web. We
andomize cosmic web distances in the central network, and compare 
he predicted scatter with the result when scrambling o v erdensities
s the remaining data of shuffle group 2. Though not shown here,
huffling only the cosmic web distances has a noticeable effect on
he scatter in the mass-weighted metallicity of a handful of high mass
alaxies. Yet in our � tables, showing the o v erall effect, the cosmic
MNRAS 518, 5670–5692 (2023) 
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Figure 24. Smoothed PDFs of stellar mass, metallicity, and MWA derived from star formation and metallicity histories in an intermediate halo/subhalo mass 
bin. This shows the distributions obtained from the original TNG data in grey, the median from ten fiducial predictions in black, and the median result from each 
randomization in coloured lines. The distribution from each randomization is subtle and does not show a clear difference from the best predictions, nor do they 
bring the network closer to the true result. If the x-axis is logarithmic, the PDF is a function of the logarithmic value. 

Figure 25. � values as in Fig. 23 , instead showing the impact of shuffling 
certain subsets of a shuffle group. In each table, the left-hand column shows 
the result for the full shuffle group as in Fig. 23 . The centre column shows 
the result for the data of interest, while the right-hand column shows the 
result for the remainder of the shuffle group. This shows o v erdensity to be the 
dominant component of the second shuffle group for central galaxies, while 
infall parameters have a noticeable effect in satellite galaxies. 
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eb is insignificant, and the offset is larger and applies to most
alaxies when randomizing o v erdensity. This, along with the larger
nterquartile ranges of � for the cosmic web, would suggest that
he netw ork f a v ours the o v erdensity components when ef fecti vely
onstraining the mass-weighted metallicity. 

 DISCUSSION  

his NN model has been shown to infer the main trends of galaxies’
tar formation and metallicity histories with halo mass, and to
roadly reproduce key observational results, such as downsizing and
alaxy colour bimodality. In this section, we reflect on shortcomings,
nsights, and applications of the model. 

.1 Bary onic inf ormation 

 possible factor limiting the predictability of the SFH is the lack of
nformation of gas properties, such as mass, metallicity, and tempera-
ure, all of which are critical in the star formation process. Our model
ill predict any correlations with dark matter environment and stellar

ssembly for which gas properties are causally intermediate, ho we ver
nconnected gas features which influence star formation may remain
nrecognized. Studies show the importance of the gas content of
erging haloes on star formation (Hani et al. 2020 ; Trevisan et al.

021 ); something not modelled in our analogues for merger histories.
NRAS 518, 5670–5692 (2023) 
The metallicity of the gas depends on its location in the cosmic
eb, and is go v erned largely by gas fractions and specific inflow

ates, independently of halo or stellar mass (Torrey et al. 2019 ; Van
oon, Mitchell & Schaye 2021 ; Donnan et al. 2022 ). Ho we ver, our
osmic web distances carry little weight in predicting the SFH and
H, likely due to the expectedly low sample size at fixed mass, or the

act that halo mass accretion histories and other quantities are better
redictors of the shape of the SFH. Gal ́arraga-Espinosa, Garaldi &
auffmann ( 2022 ) argue that the effect of cosmic web filaments on

tar formation either enhance or quench galaxies depending on their
cale, while the number of small filaments connected to the galaxy
s a more robust measure of star formation enhancement. In this
ork, the larger deviation seen from scrambling o v erdensity suggest

his is a stronger constraint than the cosmic web for modelling the
etallicity history of central galaxies. 
Additionally, the importance of the baryonic content of merging

ubhaloes would suggest that we may have captured star formation
vents more accurately if we had historical information of several
f its most massive progenitors. However, designing such a network
ould pro v e difficult. Earlier attempts to characterize the merger
istory with a single variable in this work, such as median merger
atio per snapshot, were inef fecti ve in improving the network’s
erformance. A model may exist in future which predicts the
aryonic growth of a halo’s most massive progenitors, which by
orrelation with the MPB can predict the amplitude and time scale
f merger -induced starb ursts. Alternatively, one may use a temporal
nalogue to the specific merger rates e v aluated for discrete time
ntervals in Dhoke & Paranjape ( 2021 ), or direct computation of
 functional form for merger rates, relating to o v erdensity and the
ighest progenitor masses (Fakhouri & Ma 2009 ). 

.2 Stochastic star formation 

ith short time scale star formation events being difficult to model,
t may be worthwhile implementing a stochastic description of the
FH, which has been achieved on Myr time scales (Tacchella,
orbes & Caplar 2020 ). This stochastic modelling is accomplished
y computing the power spectrum of the SFH through implementing
ariable gas inflows and molecular cloud formation while conserving
he system’s mass. This power spectrum captures the time scales of
hese processes, allowing one to constrain the lifetime of molecular
louds and star-forming regions. In our data, the power spectra of
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ur predicted SFH and ZH are weaker at high frequencies when 
ompared with TNG data. Ho we ver, a network model in which we
redict this spectrum directly may provide a statistical model for star
ormation on smaller time scales, potentially offering a stochastic 
mendment to observables. 

We tested a network for central and for satellite galaxies, in which
he same dark matter properties and network architecture were used 
o predict the amplitude of the Fourier transforms of the SFH and ZH,
.e. the square root of their power spectra. The shape of the spectrum
nd the scaling of its amplitude with halo mass are well reco v ered,
ith similar levels of accuracy as the SFH and ZH themselves. It

s therefore possible to develop a model which could predict these 
ower spectra and generate a stochastic signal to mitigate the errors
n our predictions of SFH and ZH. The correlations between residual 
ourier transforms and luminosities and colours seen in Section 5.2 
uggest that this can help obtain more realistic galaxy SEDs. 

.3 Metallicity 

e find that the complete networks roughly predict the mass- 
eighted stellar metallicity of all galaxies as a function of time, 

eco v ering the relations between stellar mass and metallicity, albeit 
ith smaller scatter. High metallicity objects have their metallicity 
nderestimated, which can be attributed to low sampling of the 
ost metal-rich galaxies, or poor prediction of the star formation 

ariability which weighs it. 
The omission of time-dependent o v erdensity, circular v elocity, 

r radial skew undermines the ability to predict the scatter in 
he final metallicity and ZH variations. Overdensity and skew are 
nvironmental variables, providing measures of the concentration of 
he local mass distribution, and the density bias towards or away from
he target subhalo, respectively. As functions of time, they measure 
he development of the most significant subhalo interaction events. 

The influence of the skew on ZH scatter may be tracing the infall
f subhaloes, whose relation to the target’s mass and environment 
dds to the likelihood of the halo progenitor hoarding star-forming 
r metal-rich gas. The importance of o v erdensity in determining 
etallicities would suggest that chemical enrichment owes to the 

bundance and properties of interacting subhaloes. For centrals, 
uch a relationship may be a consequence of strong correlations 
f o v erdensities with the metal richness of gas inflows and the
ntergalactic medium (Peng & Maiolino 2013 ), while the tendency 
or o v erdensity to capture major interaction ev ents which accelerate
tar formation (L’Huillier, Park & Kim 2015 ) may also contribute 
o the galaxy’s metallicity in future. Ho we v er, o v erdensity appears

ore important for satellite metallicities. This significance may be 
ttributed to environmental quenching, which is not a common effect 
n central galaxies, whose quenching is strongly correlated with the 
alaxy’s mass (Bluck et al. 2020 ). It is possible that the effect that
 v erdensities hav e on central metallicities is captured by another
huffle group. 

The skew, on the contrary, is weighted by the mass distribution and
s independent of the scaling of the subhalo masses involved. Instead 
t can be considered a measure of the trajectory and frequency of
ubhalo interactions, most of which are minor. This could explain 
hy o v erdensities are important to the galaxy’s mass-weighted 
etallicity, but the skew has notable secondary effects on the 
etallicity history. 
The circular velocity also influences the metallicity scatter, albeit, 

ith lower significance. This quantity strongly correlates with 
ubhalo mass, yet it has a strong connection to the time scale of
nternal collapse, and thus the onset of AGN feedback which expels 
tar-forming gas (Davies et al. 2019 ), with higher values indicating
apid collapse and high halo concentration, thereby creating an 
nvironment which can alter the likelihood of metal production. This 
caling with halo concentration, hence the star formation efficiency, is 
lso dependent on environment and cosmic web distances (Hellwing 
t al. 2021 ), so this is far from an independent measure of these
ynamics. Yet the omission of ˜ v vir distorts the predicted HMZR 

catter, suggesting the importance of dynamical measures of metal 
ynthesis. Furthermore, shuffle group 3 contorts the distribution of 
etallicities on sample scales; a unique property of this shuffle group. 
hile it is unclear whether this last distinction highlights a physical

r a deceptive correlation, this could suggest that the dynamical 
ature of the galaxy–halo connection is the most independent of halo
ass. 
If the network is run with the baryon-biased maximum circular 

elocity in place of our virial approximation, the underprediction 
f high metallicity objects is reduced, and the MZR is fit more
ccurately. The full enrichment of these objects cannot be determined 
y our dark matter quantities and is additionally dependent on 
 purely baryonic phenomenon. Our model will undermine the 
etallicity scatter in a pure dark matter application. This result may

ro v e more fruitful if our networks were trained on a semi-analytic
odel simulation, if this model returns suitable metallicities despite 

he dark matter determined rotation curve. 
The dark matter half-mass radius, also a structural quantity, does 

ot make a difference to predictions in metallicity, which has been
hown to be the case at least at z = 0 (Lo v ell et al. 2021 ). The
hysical size of the halo is evidently insignificant next to its central
ensity. This quantity does, ho we ver, appear important for predicting
as mass and instantaneous star formation rate (Lo v ell et al. 2021 ),
hich in principle constrains galaxy growth in the long term, however

his is already dominated by mass accretion and other variables. 

.4 Stellar mass and star formation history 

uilding our networks with relatively few parameters, or randomiz- 
ng several quantities, does not adversely influence the predictions 
f the SHMR or star formation histories. The differences in scatter
r halo-binned stellar mass distributions are minimal between runs 
ith differently randomized training data. 
Final halo mass and circular velocity are powerful parameters 

o determine the stellar mass. Historically, stellar mass and SHMR 

catter depend greatly on the origin time and the halo mass accretion
ate. The difference with satellites is that while the halo mass is
ost crucial to the stellar mass in the time-independent framework, 

t is the subhalo’s mass accretion history which results in greater
rrors for the neural network as it is randomized. The properties and
nvironment of the host can be attributed to the quantity of satellite
alaxies and their evolution post-infall (Bose et al. 2019 ), therefore
here may be a future study in which the assembly bias of the host
alo is used to determine satellite formation history. 
Quantities pertaining to the infall of satellite subhaloes are also 

mportant for their SFH. Though infall time is a significant factor
n determining the SFH, as this will restrict the onset of satellite
hysics, we argue that the relationship between a max and a infall is a
aluable asset to our model; the two share the half-mass formation
ime as a denominator, and therefore this relates the time of infall
o the accretion history . Strictly , if a max > a infall , then the subhalo
ontinues to grow after becoming bound to a larger halo, advocating
 greater star formation rate in the satellite phase. On the contrary,
he infall time along with t start can constrain this relationship between
entral-phase accretion and post-infall star formation. 
MNRAS 518, 5670–5692 (2023) 
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We have included starting time and scaled accretion times along
he satellite’s MPB, yet the formation times affiliated with the main
alo are known to constrain the population of satellite haloes and the
roperties of the galaxies they host (Artale et al. 2018 ; Bose et al.
019 ). While these times concerning the host halo are likely to be
aptured by its mass formation rate, e v aluating this explicitly in our
odel may indicate the typical properties of satellite galaxies within

n early or late forming halo. 
Inspecting star formation histories, it appears that the time at which

tar formation begins to decline and the subsequent gradient of the
FH are well matched for satellite galaxies. On the one hand, the mass
atio upon infall is likely to indicate the subsequent rate of stripping
f the satellite galaxy, while the scaled infall time relates the time at
hich this ratio is achieved to the central-phase growth of the satellite
alaxy. It would appear, ho we ver, that the deduction made by scaled
ime factors can be inferred by the combined growth histories of the
ubhalo and its host. The conclusions from Shi et al. ( 2020 ) indicating
he clear distinction in the star formation rates linked to rapidly
nd slowly growing subhaloes could be derived from their temporal
mplementation, while the merger histories which also correlate with
heir scaled formation time can be inferred from o v erdensity and
kew histories. 

It may be worthwhile in future designs to include properties
elating directly to quenching, particularly given that this is uncon-
trained for central galaxies. A halo’s internal velocity dispersion
ro v es fruitful in classifying quenching central galaxies, being tightly
elated to black hole mass, while nearest neighbour o v erdensity is
mportant for quenching satellites (Bluck et al. 2020 ). As these are
alid measures of the harassment of a star-forming region, as a time-
ependent input they may correlate with dips or drops in SFH. The
ifficulty is in obtaining a measure of velocity dispersion which is
ot affected by baryons. 

.5 Modelling obser v ables 

ystematic differences between predicted SFH and ZH may be
itigated in future by means of a stochastic measure of their
uctuations. We can train the same neural networks to predict the
ourier power spectra of these histories, correcting for the smaller
mplitude of our predictions at high frequencies. We have shown
hat residual luminosities and line emission features correlate with
his loss of amplitude, and therefore this correction could impro v e
he accuracy of our spectra and photometry. 

.6 Mock sur v eys 

ur model paves the way for large-volume high fidelity mocks and
he construction of mock spectroscopic surv e ys with a consistent
alaxy–halo connection. Such mocks can co v er a large sample of
alaxies and at a variety of redshifts. With respect to models that
irectly infer observational properties from dark matter properties,
ur model has the advantage that it links those observables with
hysical properties self-consistently. This expands the potential
tility of these mocks in supporting the analysis of real surv e ys. 

 SUMMARY  A N D  C O N C L U S I O N S  

e hav e dev eloped a neural network model capable of synthesizing
he star formation rate and stellar metallicity of central and satellite
alaxies as a function of cosmic time, using historical properties
f the dark matter halo and environment as predictors. We have
ested for the predicting power of certain dark matter quantities in
NRAS 518, 5670–5692 (2023) 
etermining aspects of the galaxy’s evolutionary history, and com-
uted observational properties from our predictions. The following
tatements summarize important aspects of our predictions: 

(i) For each of our networks, designed separately for central and
or satellite galaxies, the full diversity of star formation histories
re accurately predicted. In Sections 5.1.1 and 5.1.2 we see that
eometries of the predicted SFHs match those from the original TNG
erger trees, from those of continually growing star-forming galaxies

o quenched satellites and high-mass galaxies. The integrated stellar
ass from these historical growths are well correlated with their

alues in the TNG data, and their mass from their merger trees. We
how that our predicted star formation histories reco v er the complete
HMR in Fig. 11 . 
(ii) This work includes the introduction of no v el parameters, such

s the skew of the radial mass distribution surrounding the target
bject, and recently devised quantities such as the scaled formation
ime from Shi et al. ( 2020 ). These quantities have proven valuable
n the prediction of our star formation and metallicity histories, and
heir relations with halo and galaxy masses have been outlined by
he neural network. 

(iii) The derived SHMR for either data set is accurate and resilient
o the removal of predicting features, i.e. it can be maintained
y relatively few parameters. However, we show in Section 6.3
hat omission of certain properties can cause subtle differences in
he scatter of the SHMR, as indicated by multiple shuffled runs.
emoving quantities related to subhalo growth rate and circular
 elocity hav e such an impact. 
(iv) In spite of these fruitful outcomes, this network model seldom

redicts star formation events which occur on short time scales, such
s star formation bursts or rapid quenching. We see the absence
f such features in Fig. 13 and the general lack of high frequency
nformation. Consequently, numerical stellar mass estimates where
hese sharp changes are prominent are systematically smaller than
heir true value, and the absence of such features can impact
he accuracy of observational properties, which is often seen in
ection 5.2 . This is a greater issue for central galaxies, where

hese features are more commonplace. We can, ho we ver, train an
dentical network to fit the power spectra of the SFHs, shown in
ection 7.2 , potentially offering stochastic corrections in future.
ntested properties relating to the host of a satellite galaxy may
ro v e v aluable, ho we v er more general properties such as v elocity
ispersion are difficult to characterize independently of baryons. 
(v) In Section 5.1.3 , we see that mass-weighted metallicity scatter

s slightly underestimated, which in addition to the shortcomings
f the star formation histories, may be attributed to the lack of
aryonic influence on the rotation curve. We show in Section 6.3 that
 v erdensity and skew, i.e. environmental measures, are paramount to
he scatter in metallicity history; removing either of them affects their
redictions significantly. Determining the variability in metallicity
as been an issue in pre-existing studies (Agarwal et al. 2018 ; Lo v ell
t al. 2021 ), ho we ver these include little detail around environmental
istory. 
(vi) Despite some notable differences in metallicity, the predicted

alaxy formation histories are observationally congruous to their
ydrodynamical counterparts. While not predicting them directly, in
ection 5.2.3 we show that the network reco v ers major observational
tatistics such as the mass–colour relations and colour bimodality
f TNG. H α line fluxes are reco v ered less accurately as these are
ensitive to variations in recent star formation, yet they obey similar
rends to the original data. 



Galaxy–halo connection with neural networks 5691 

e
f
d
t  

o
r  

i
a
i
p
o

 

p
o  

l
i
a  

c

 

s
a
A
f
a

A

T  

s
o
T
I
a

D

T
i
c

R

A
A
A
A  

B  

B  

B
B  

B  

C
C  

C
C

C
C
C
C  

D  

D  

D
D
E
F
F
F  

G
G

G

G
H
H  

H  

H  

J
J
L
L  

L  

L
M
M
M  

N
N
N  

P  

P
P
P
P
P  

R
R
S
S  

S
S  

S

S
S
S

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/4/5670/6855264 by guest on 14 D
ecem

ber 2022
(vii) Mock observables are shown to be well matched to those 
mulated from TNG data, despite inaccuracies such as smoother 
ormation histories and lower metallicity scatter. Spectral energy 
istributions are computed more accurately for satellite galaxies 
han they are for central galaxies, as seen in Section 5.2.1 , likely
wing to greater quenching. We show in Section 5.2.2 that larger 
esiduals in high-frequency modes of the SFH result in greater errors
n luminosities, therefore a stochastic correction based on Fourier 
mplitudes may rectify this discrepancy. Other options include the 
ntroduction of dark matter quantities which may result in better 
redictions of formation history, or predicting star formation events 
n finer time scales. 
(viii) In Section 6.5 , while we moti v ate infall parameters as

otentially important measures of satellite evolution, and properties 
f the cosmic web for central galaxies, we find that these have
ittle isolated effect on our predictions, most likely owing to the 
nference of their effects from historical data. In high fidelity mocks, 
 higher volume of samples will be used to quantify the strength and
oncurrence of these correlations. 

Ours is a practical model which can be used in high fidelity N -body
imulations, statistically reproducing key relationships of the GHC, 
nd producing mock surv e ys of unprecedented size and complexity. 
 future publication will describe the predictions made using data 

rom an N -body simulation, and the spectroscopic mocks which we 
im to make publicly available. 
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