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Abstract

The Gruenberg–Kegel graph Γ(G) associated with a finite group G
is an undirected graph without loops and multiple edges whose vertices
are the prime divisors of |G| and in which vertices p and q are adjacent
in Γ(G) if and only if G contains an element of order pq. This graph
has been the subject of much recent interest; one of our goals here is to
give a survey of some of this material, relating to groups with the same
Gruenberg–Kegel graph. However, our main aim is to prove several new
results. Among them are the following.

• There are infinitely many finite groups with the same Gruenberg–
Kegel graph as the Gruenberg–Kegel of a finite group G if and only
if there is a finite group H with non-trivial solvable radical such that
Γ(G) = Γ(H).

• There is a function F on the natural numbers with the property that
if a finite n-vertex graph whose vertices are labelled by pairwise
distinct primes is the Gruenberg–Kegel graph of more than F (n)
finite groups, then it is the Gruenberg–Kegel graph of infinitely many
finite groups. (The function we give satisfies F (n) = O(n7), but this
is not best possible.)

• If a finite graph Γ whose vertices are labelled by pairwise distinct
primes is the Gruenberg–Kegel graph of only finitely many finite
groups, then all such groups are almost simple; moreover, Γ has at
least three pairwise non-adjacent vertices, and each vertex is non-
adjacent to at least one other vertex, in particular, 2 is non-adjacent
to at least one odd vertex.

• Groups whose power graphs, or commuting graphs, are isomorphic
have the same Gruenberg–Kegel graph.

• The groups 2G2(27) and E8(2) are uniquely determined by the iso-
morphism types of their Gruenberg–Kegel graphs.
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In addition, we consider groups whose Gruenberg–Kegel graph has no
edges. These are the groups in which every element has prime power
order, and have been studied under the name EPPO groups; completing
this line of research, we give a complete list of such groups.

1 Introduction

Throughout the paper we consider only finite groups and simple graphs, and
henceforth the term group means finite group, the term graph means simple
graph (undirected graph without loops and multiple edges).

Let G be a group. Denote by π(G) the set of all prime divisors of the order of
G and by ω(G) the spectrum of G, that is, the set of all its element orders. The
set ω(G) defines the Gruenberg–Kegel graph (or the prime graph) Γ(G) of G; in
this graph the vertex set is π(G), and distinct vertices p and q are adjacent if
and only if pq ∈ ω(G).

The concept of Gruenberg–Kegel graph appeared in the unpublished manuscript
[41] by K. Gruenberg and O. Kegel, where they have characterized groups with
disconnected Gruenberg–Kegel graph. This result was published later in the
paper [108] by J. Williams, who was a student of K. Gruenberg, and now this
theorem is well-known as the Gruenberg–Kegel Theorem (see Lemma 2.3 in sec-
tion 2). The concept of Gruenberg–Kegel graph proved to be very useful with
connection to research of some cohomological questions in integral group rings:
the augmentation ideal of an integral group ring is decomposable as a module if
and only if the Gruenberg–Kegel graph of the group is disconnected (see [42]).

Later connected components of Gruenberg–Kegel graphs of simple groups
were described. J. Williams [108] has obtained this description for all simple
groups except simple groups of Lie type in characteristic 2. Connected compo-
nents of Gruenberg–Kegel graphs of simple groups of Lie type in characteristic
2 were described by A. S. Kondrat’ev [65], later this result was obtained inde-
pendently by N. Iiyori and H. Yamaki [47, 48]. Unfortunately, all the papers
[108, 65, 47, 48] contain rather serious inaccuracies. Most of these inaccuracies
was corrected in [73], and then the corrections were finished in [66]. Now the
correct description of connected components of Gruenberg–Kegel graphs of sim-
ple groups can be found, for example, in [5] or in [86]; finite simple groups P
with at least 4 connected components of Gruenberg–Kegel graph can be found
in section 2 of this paper, see Table 1. Criteria of adjacency of vertices in
Gruenberg–Kegel graphs of simple groups were obtained by A. V. Vasil’ev and
E. P. Vdovin in [106] with some corrections in [107]. Moreover, at this moment
all the cases of coincidence of Gruenberg–Kegel graphs of a simple group and its
proper subgroup are described by the second author [80] and, independently, by
T. Burness and E. Covato [16]. In section 2, we provide some known properties
of Gruenberg–Kegel graphs of groups as well as some facts from group theory
and number theory which we use to prove the main results of this paper.

This paper aims to discuss the questions:

• Which groupsG are uniquely determined by their Gruenberg–Kegel graph?
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• For which groups are there only finitely many groups with the same
Gruenberg–Kegel graph as G?

• Which groups G are uniquely determined by isomorphism type of their
Gruenberg–Kegel graph?

The concept of Gruenberg–Kegel graph and the Gruenberg–Kegel Theorem
proved very useful for recognition questions of a group by its spectrum. It is
easy to see that for groups G and H, if G ∼= H, then ω(G) = ω(H); and if
ω(G) = ω(H), then Γ(G) = Γ(H); if Γ(G) = Γ(H), then π(G) = π(H) and
Γ(G) and Γ(H) are isomorphic as abstract graphs. The converse does not hold
in each case, as the following series of examples demonstrates (see, for example,
[20]):

• S5 6∼= S6 but ω(S5) = ω(S6);

• ω(A5) 6= ω(A6) but Γ(A5) = Γ(A6);

• Γ(A10) 6= Γ(Aut(J2)) but Γ(A10) and Γ(Aut(J2)) are isomorphic as ab-
stract graphs and π(A10) = π(Aut(J2)), see the picture below

2

3 7
5 Γ(A10);

3

2 7
5 Γ(Aut(J2)).

We say that the group G is

• recognizable by its spectrum (Gruenberg–Kegel graph, respectively) if for
each group H, ω(G) = ω(H) (Γ(G) = Γ(H), respectively) if and only if
G ∼= H;

• k-recognizable by spectrum (Gruenberg–Kegel graph, respectively), where
k is a non-negative natural number, if there are exactly k pairwise non-
isomorphic groups with the same spectrum (Gruenberg–Kegel graph, re-
spectively) as G;

• almost recognizable by spectrum (Gruenberg–Kegel graph, respectively) if
it is k-recognizable by spectrum (Gruenberg–Kegel graph, respectively)
for some non-negative natural number k;

• unrecognizable by spectrum (Gruenberg–Kegel graph, respectively), if there
are infinitely many pairwise non-isomorphic groups with the same spec-
trum (Gruenberg–Kegel graph, respectively) as G.

If a group G contains a non-trivial solvable normal subgroup, then there
are infinitely many groups with the same spectrum as G. This proposition,
formulated first by W. Shi, is well-known, and its proof was published in a
number of papers (see, for example, [87]). Moreover, in [87] the following criteria
of unrecognizability of a group by spectrum was obtained.
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Theorem 1.1 (see [87]) Let G be a group. The following statements are equiv-
alent :

(1) there exist infinitely many groups H such that ω(G) = ω(H);

(2) there exists a group H with non-trivial solvable radical such that ω(G) =
ω(H).

Thus, the question of recognition of a group by its spectrum is interesting
only for groups with trivial solvable radical. This question is being actively
investigated. We do not pretend to provide a complete survey of this research
area but will mention some results which are interesting from our point of view.
A remarkable result is that if G is a simple group and H is a group, then
|H| = |G| and ω(H) = ω(G) if and only if H ∼= G. (This was put forward as
a conjecture in the paper [97] and the final step of the proof was made in the
paper [105].) Moreover, for every nonabelian simple group G, apart from a finite
number of sporadic, alternating and exceptional groups and apart from several
series of classical groups of small dimensions, if H is a group such that ω(H) =
ω(G), then H is an almost simple group with socle isomorphic to G, therefore
almost all finite simple groups are almost recognizable by spectrum. This result
was obtained in a large number of papers and is still in progress in sense of
investigation of recognition by spectrum of low-dimensional classical groups.
We recommend surveys of the results in this area in papers [35, 37]; moreover,
we recommend the following paper by A. V. Vasil’ev [104], where an important
contribution to the solution of the problem of recognition by spectrum for simple
classical groups of Lie type was made, and some recent papers as [99, 36, 38, 39].
Moreover, some almost simple groups are recognizable by spectrum, for example,
see [31].

It is easy to see that if a group is recognizable by its Gruenberg–Kegel graph,
then it is recognizable by its spectrum. The converse does not hold since,
for example, Γ(A5) = Γ(A6), but the group A5 is recognizable by spectrum
(see [96]) while the group A6 is not. Some information about groups with the
same spectrum as A6 can be found in [76, Theorem 2].

In section 3, we prove the following criterion of unrecognizability of a group
by its Gruenberg–Kegel graph.

Theorem 1.2 Let G be a group. The following statements are equivalent:

(1) there exist infinitely many groups H such that Γ(G) = Γ(H);

(2) there exists a group H with non-trivial solvable radical such that Γ(G) =
Γ(H).

Moreover, in section 3, we characterize finite groups which are almost rec-
ognizable by Gruenberg–Kegel graph. We prove the following theorem.

Theorem 1.3 Let G be a group such that G is k-recognizable by Gruenberg–
Kegel graph for some non-negative integer k. Then the following conditions
hold:
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(1) G is almost simple;

(2) each group H with Γ(H) = Γ(G) is almost simple;

(3) each vertex of Γ(G) is non-adjacent to at least one other vertex, in par-
ticular, 2 is non-adjacent to at least one odd prime in Γ(G);

(4) Γ(G) contains at least 3 pairwise non-adjacent vertices.

Note that a group with non-simple socle can be recognizable by spectrum,
therefore Theorem 1.3 can not be generalized for recognition by spectrum. Up
to a recent moment there were only two examples of groups with non-simple
socle which are recognizable by spectrum, namely, Sz(27)×Sz(27) (see [85]) and
J4 × J4 (see [33]). Recently, I. B. Gorshkov has proved that if m > 5, then the
group PSL2m(2)×PSL2m(2)×PSL2m(2) is recognizable by spectrum, a preprint
of this paper is available on the arXiv (see [30]).

We conclude from Theorem 1.3 that if a group is recognizable by its Gruenberg–
Kegel graph, then the group is almost simple. The following problem naturally
arises.

Problem 1 Let G be an almost simple group. Decide whether G is recognizable,
k-recognizable for some integer k > 1, or unrecognizable by its Gruenberg–Kegel
graph.

There are some known results on recognition of a group by its Gruenberg–
Kegel graph. Here we again will mention some results which are interesting
from our point of view; we do not pretend to provide a complete survey of this
research area.

The first result on recognition of a group by its Gruenberg–Kegel graph was
obtained by G. Chen [19], where it was proved that if S is a sporadic simple
group and H is a group with |H| = |S| and Γ(H) = Γ(S), then H ∼= S. Later
M. Hagie [45] described groups with the same Gruenberg–Kegel graphs as simple
sporadic groups. In particular, Hagie has proved that the groups J1, M22, M23,
M24, and Co2 are recognizable by their Gruenberg–Kegel graphs, the group
M11 is 2-recognizable, and the groups M12 and J2 are unrecognizable by their
Gruenberg–Kegel graphs; moreover, if S is one of groups O′N , Ly, Fi23, Fi24,
M , BM , Th, Ru, and Co1, then S is quasirecognizable by its Gruenberg–Kegel
graph; that is, any groupH with Γ(H) = Γ(S) has a unique nonabelian composi-
tion factor which is isomorphic to the group S. In 2006, A. V. Zavarnitsine [112]
proved that the group J4 is recognizable by its Gruenberg–Kegel graph, more-
over, J4 is the unique group whose Gruenberg–Kegel graph has exactly 6 con-
nected components. Later, based on Hagie’s results, A. S. Kondrat’ev [69] has
proved that the group Ru is recognizable by its Gruenberg–Kegel graph, the
group HN is 2-recognizable, the group Fi22 is 3-recognizable, the groups He,
McL, and Co3 are unrecognizable by their Gruenberg–Kegel graphs. Recently
A. S. Kondrat’ev [70] has proved that the groups J3, Suz, O′N , Ly, Th, Fi23,
and Fi24 are recognizable by their Gruenberg–Kegel graphs, and the group HS

5



is 2-recognizable. Thus, at the time of writing, only three large sporadic groups
are left for which recognition by the Gruenberg–Kegel graph is not completely
settled: Co1, B, and M . Due to Hagie’s result mentioned above, these groups
were known to be quasirecognizable by Gruenberg–Kegel graph. After this pa-
per was submitted to the journal, M. Lee and T. Popiel have proved that finite
simple sporadic groups Co1, B, and M are recognizable by Gruenberg-Kegel
graph1.

M. Hagie [45] has proved that the group PSL2(11) is 2-recognizable from
its Gruenberg–Kegel graph. In [58] Bahman Khosravi, Behman Khosravi, and
Behrooz Khosravi have proved that if p > 7 is a Mersenne prime or a Fermat
prime, then the group PSL2(p) is recognizable by its Gruenberg–Kegel graph.
In [57] the same authors proved that if p > 11 is a prime number and p 6≡ 1
(mod 12), then the group PSL2(p) is recognizable by its Gruenberg–Kegel graph.
A. Khosravi and B. Khosravi [51] have proved that if p is a prime not in {2, 3, 7},
then the group PSL2(p2) is 2-recognizable by its Gruenberg–Kegel graph. In
2008, B. Khosravi [52] proved that if q = pk, where k > 1 is odd and p is an odd
prime number, then the group PSL2(q) is recognizable by its Gruenberg–Kegel
graph. Moreover, Z. Akhlaghi, B. Khosravi, and M. Khatami [4] proved that if
p is an odd prime and k > 1 is odd, then the group PGL2(pk) is recognizable
by its Gruenberg–Kegel graph, A. Mahmoudifar [77] has proved that the group
PGL2(25) is recognizable by its Gruenberg–Kegel graph.

The question of recognition by Gruenberg–Kegel graph of alternating and
symmetric groups was studied in [61, 34, 100].

A. V. Zavarnitsine [112] has proved that the group PSL3(7) is 2-recognizable
by Gruenberg–Kegel graph. Later the question of recognition by Gruenberg–
Kegel graph for simple groups S such that |π(S)| ∈ {3, 4} was studied in [71, 72].

A remarkable result is that the group PSL16(2) is recognizable by its Gruenberg–
Kegel graph. This result was obtained by B. Khosravi, B. Khosravi, and
B. Khosravi [59], however, in this paper there was a flaw in the proof of
Lemma 3.4. A complete proof of the result was obtained later by A. V. Zavar-
nitsine [114]. The group PSL16(2) was the first known example of a group with
connected Gruenberg–Kegel graph which is recognizable by its Gruenberg–Kegel
graph.

Z. Momen and B. Khosravi [89] have proved that groups Bp(3) and Cp(3),
where p > 3 is an odd prime, are 2-recognizable by Gruenberg–Kegel graph.
Later M. F. Ghasemabadi, A. Iranmanesh, and N. Ahanjideh [28] proved that
if n > 5 is an odd number, then groups Bn(3) and Cn(3) are 2-recognizable
by Gruenberg–Kegel graph. A. Babai and B. Khosravi [9] have proved that
the group 2D2m+1(3) is recognizable by Gruenberg–Kegel graph. Later in [27]
M. F. Ghasemabadi, A. Iranmanesh, and N. Ahanjideh proved that if n ≥
5 is odd, then the group 2Dn(3) is recognizable by Gruenberg–Kegel graph.
M. F. Ghasemabadi and N. Ahanjideh [24] have proved that if n ≥ 6 is even, then
the group Dn(3) is recognizable by its Gruenberg–Kegel graph. Z. Akhlaghi,

1M. Lee, T. Popiel, M , B and Co1 are recognisable by their prime graphs,
arXiv:2107.12755v1 [math.GR].
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M. Khatami, and B. Khosravi [3] have proved that if p is an odd prime, then
the group Dp(5) is recognizable by its Gruenberg–Kegel graph, and the group
Dp(2) is quasirecognizable. Later A. Babai and B. Khosravi [11] proved that if
n is odd, then the group Dn(5) is recognizable by its Gruenberg–Kegel graph
and if n is even, then Dn(5) is quasirecognizable.

A. V. Zavarnitsine [112] has proved that the groups G2(7) and 2G2(q) for
each q are recognizable by Gruenberg–Kegel graph. A. S. Kondrat’ev [67, 68] has
proved that the groups E7(2), E7(3), and 2E6(2) are recognizable by Gruenberg–
Kegel graph. W. Guo, A. S. Kondrat’ev, and the second author [43] proved that
the group E6(2) is recognizable by Gruenberg–Kegel graph. Recognizability of
of groups E6(3) and 2E6(3) by Gruenberg–Kegel graph has been recently proved
by A. P. Khramova, the second author, V. V. Panshin, and A. M. Staroletov2

in frame of realization of a project ”Gruenberg–Kegel graphs of finite groups”
of The Great Mathematical Workshop organized by Mathematical Center in
Akedemgorodok (Novosibirsk, Russia) on July 12–17 and August 16–21, 2021
with an intermodule work in between.

One more remarkable result was obtained in 2013 by A. V. Zavarnitsine [115],
it was proved that if G is a finite group whose Gruenberg–Kegel graph has
exactly 5 connected components, then G ∼= E8(q), where q ≡ 0, 1, 4 (mod 5).
In particular, groups E8(q), where q ≡ 0, 1, 4 (mod 5), are almost recognizable
by Gruenberg–Kegel graph.

There are some other results on recognition of a simple group by its Gruenberg–
Kegel graph, in particular, some groups of Lie type are known to be quasirecog-
nizable by their Gruenberg–Kegel graphs. For example, we recommend to see
papers [2], [7], [8], [10], [12], [13], [14] [25], [26], [53], [55], [56], [60], [62], [63],
[64], [78], [90], [91], [92], [93], [94], [117], and other papers by Behrooz Khosravi
et al., Anatoly Kondrat’ev et al, Neda Ahanjideh et al., W. Shi et al, and so on.

It is known that if q is odd and n ≥ 3, then Γ(Bn(q)) = Γ(Cn(q)) and
|Bn(q)| = |Cn(q)| but these groups are not isomorphic. Thus, it is natural to
consider the following problem.

Problem 2 For which simple groups S is the following true: ift G is a group
with Γ(G) = Γ(S) and |G| = |S|, then G is isomorphic to S?

Problem 2 was formulated by Behrooz Khosravi in his survey paper [54,
Question 4.2], by A.S. Kondrat’ev in frame of the open problems session of the
13th School–Conference on Group Theory Dedicated to V. A. Belonogov’s 85th
Birthday (see [81, Question 4]), and was independently formulated by W. Shi
in a partial communication with the second author.

Let Γ be a simple graph whose vertices are labeled by pairwise distinct
primes. We call Γ a labeled graph. Note that there are examples of labeled graphs
which are not equal (and not even isomorphic as abstract graphs) to Gruenberg–
Kegel graphs of groups. For example, by the Gruenberg-Kegel Theorem (see

2A. P. Khramova, N. V. Maslova, V. V. Panshin, and A. M. Staroletov, Recognition of
groups E6(3) and 2E6(3) by Gruenberg–Kegel graph, in preparation.
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Lemma 2.3 in section 2), any graph with at least 7 connected components is
not isomorphic to the Gruenberg-Kegel graph of a finite group. To discuss the
question of realizability of a graph as Gruenberg–Kegel graph of a group see,
for example, papers [22, 32, 40, 82]. However, the results which we obtain in
section 3 allow to estimate an upper bound for a number of groups with the
same Gruenberg–Kegel graph. In section 4, we prove the following theorem.

Theorem 1.4 There exists a function F (x) = O(x7) such that for each labeled
graph Γ the following conditions are equivalent:

(1) there exist infinitely many groups H such that Γ(H) = Γ;

(2) there exist more then F (|V (Γ)|) groups H such that Γ(H) = Γ, where
V (Γ) is the set of the vertices of Γ.

The estimate which we obtain in Theorem 1.4 for the function F can certainly
be improved. The following problem is of interest.

Problem 3 Find the exact value for the function F , or at least a better upper
bound.

Recently M. A. Grechkoseeva and A V. Vasil’ev3 generalizing our ideas and
using their new results on Gruenberg-Kegel graphs of finite groups with unique
nonabelian composition factor have improved the upper bound in Theorem 1.4
to O(x5).

As a part of the solution of Problem 3, the following problem arises.

Problem 4 Find an improved upper bound for the number of almost simple
groups with the same Gruenberg–Kegel graph.

Note that by [111, 113], there is no a constant k such that for any almost
simple group G, the number of pairwise non-isomorphic almost simple groups H
such that Γ(G) = Γ(H) is at most k. However, if G is simple, then A. V. Vasil’ev
has conjectured that there are at most 4 simple groups H with Γ(G) = Γ(H);
see Problem 16.26 in [74].

We say that the groupG is recognizable by isomorphism type of its Gruenberg–
Kegel graph if for each group H, graphs Γ(G) and Γ(H) are isomorphic as ab-
stract graphs if and only if G ∼= H.

Since by A. V. Zavarnitsine [112], the sporadic group J4 is the unique group
whose Gruenberg–Kegel graph has exactly 6 connected components, we have
that J4 is recognizable by isomorphism type of its Gruenberg–Kegel graph. We
construct some more examples of simple groups which are recognizable by iso-
morphism type of Gruenberg–Kegel graph: in section 5, we prove the following
theorem.

3M. A. Grechkoseeva, A. V. Vasil’ev, On the prime graph of a finite group with unique
nonabelian composition factor, arXiv:2109.05860v1 [math.GR].
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Theorem 1.5 Simple groups 2G2(27) and E8(2) are recognizable by isomor-
phism type of Gruenberg–Kegel graph. In particular, the group E8(2) is recog-
nizable by its Gruenberg–Kegel graph.

It is easy to see that if a group G is recognizable by isomorphism type of its
Gruenberg–Kegel graph, then G is recognizable by its Gruenberg–Kegel graph,
therefore by Theorem 1.3, G is almost simple. Thus, the following problem
naturally arises.

Problem 5 Let G be an almost simple group. Decide whether G is recognizable
by isomorphism type of its Gruenberg–Kegel graph.

Finally in this paper, we show how the Gruenberg–Kegel graph of a group
gives information about various other graphs whose vertex sets are the elements
of the group (so typically very much larger). The graphs we consider are the
following (we give the adjacency rule for distinct elements g, h ∈ G in each case):

• the commuting graph [15]: gh = hg;

• the power graph [50]: one of g and h is a power of the other;

• the enhanced power graph [1]: 〈g, h〉 is cyclic;

• the deep commuting graph [18]: the inverse images of g and h commute in
every central extension of G.

In section 6, we prove the following results.

Theorem 1.6 For a finite group G, let T(G) denote one of the above four types
of graph on G. If G and H are groups with T(G) = T(H), then the Gruenberg–
Kegel graphs of G and H are equal.

Theorem 1.7 Let G be a finite group. Then the following are equivalent:

(a) the enhanced power graph of G is equal to the power graph;

(b) the Gruenberg–Kegel graph of G has no edges;

(c) one of the following statements holds:

(1) |π(G)| = 1 and G is a p-group;

(2) |π(G)| = 2 and G is a (solvable) Frobenius group or 2-Frobenius group;

(3) |π(G)| = 3 and G ∈ {A6, PSL2(7), PSL2(17), M10};
(4) |π(G)| = 3, G/O2(G) is PSL2(2n) for n ∈ {2, 3}, and if O2(G) 6= {1},
then O2(G) is the direct product of minimal normal subgroups of G, each
of which is of order 22n and as a G/O2(G)-module is isomorphic to the
natural GF(2n)SL2(2n)-module.

(5) |π(G)| = 4 and G ∼= PSL3(4).

(6) |π(G)| = 4, G/O2(G) is Sz(2n) for n ∈ {3, 5}, and if O2(G) 6= {1},
then O2(G) is the direct product of minimal normal subgroups of G, each
of which is of order 24n and as a G/O2(G)-module is isomorphic to the
natural GF(2n) Sz(2n)-module of dimension 4.
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2 Preliminaries

Let q > 1 be a natural number and r be an odd prime such that (q, r) = 1.
Denote by e(r, q) the multiplicative order of q modulo r, that is, the minimal
natural number m such that qm ≡ 1 (mod r). For odd q define e(2, q) = 1 if
q ≡ 1 (mod 4) and e(2, q) = 2 if q ≡ 3 (mod 4).

Lemma 2.1 (Zsigmondy’s Theorem, see [119]) Let q > 1 be a natural number.
For each m there exists a prime r such that e(r, q) = m, except the following
cases: q = 2 and m = 1; q = 3 and m = 1; q = 2 and m = 6. In particular, r
divides qn−1 and doesn’t divide qi−1 for 1 ≤ i ≤ n−1, except for the following
three cases: q = 2 and n = 6; q = 2k − 1 for some prime k and n = 2; q = 2
and n = 1.

In the notation of Lemma 2.1, any prime r which divides qn− 1 and doesn’t
divide qi − 1 for 1 ≤ i ≤ n− 1 is called a primitive prime divisor of the number
qn − 1. Note that a primitive prime divisor of a number qn − 1 can be defined
non-uniquely. For example, 113 − 1 = 2× 5× 7× 19, 112 − 1 = 23 × 3× 5, and
11 − 1 = 2 × 5. Thus, primitive prime divisors of the number 113 − 1 are the
primes 7 and 19.

Lemma 2.2 (see [23]) Let p and q be primes such that pa − qb = 1 for some
integer numbers a ≥ 0 and b ≥ 0. Then (pa, qb) ∈ {(32, 23), (2a, q), (p, 2b)},
where a is a prime and b is a power of 2.

Our graph-theoretic and group-theoretic terminology is mostly standard; but
we list a few points here.

Let π be a set of primes. Given a natural number n, denote by π(n) the set
of its prime divisors. Then π(|G|) is exactly π(G) for any group G. A natural
number n with π(n) ⊆ π is called a π-number, and a group G with π(G) ⊆ π is
called a π-group.

A n-clique (resp. a n-coclique) is a graph with n vertices in which all the
vertices are pairwise adjacent (resp. non-adjacent).

If G and H are groups and p is a prime, then we will denote by S(G) the
solvable radical of G (the largest solvable normal subgroup of G), by F (G) the
Fitting subgroup of G (the largest nilpotent normal subgroup of G), by Φ(G)
the Frattini subgroup of G (the intersection of all maximal subgroups of G),
and by Soc(G) the socle of G (the subgroup of G generated by the set of all
non-trivial minimal normal subgroups of G). By G.H we denote any extension
of G by H, by G : H (or G o H) we denote a split extension (or semidirect
product) of G by H, by Op(G) the largest normal p-subgroup of G, by Op′ the
largest normal subgroup of G whose order is not divisible by p, and by O(G) the
largest normal subgroup of odd order of G. Denote the number of connected
components of Γ(G) by s(G), and the set of connected components of Γ(G) by
{πi(G) | 1 ≤ i ≤ s(G)}; for a group G of even order, we assume that 2 ∈ π1(G).
Denote by t(G) the independence number of Γ(G) (the greatest cardinality of a
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coclique in Γ(G)), and by t(r,G) the greatest cardinality of a coclique in Γ(G)
containing a prime r.

Lemma 2.3 (Gruenberg–Kegel Theorem, [108, Theorem A]) If G is a group
with disconnected Gruenberg–Kegel graph, then one of the following statements
holds:

(1) G is a Frobenius group;

(2) G is a 2-Frobenius group;

(3) G is an extension of a nilpotent π1(G)-group by a group A, where SEA ≤
Aut(S), S is a simple non-abelian group with s(G) ≤ s(S), and A/S is a
π1(G)-group.

Note that in the Gruenberg–Kegel graph of a nonabelian simple group, the
number 2 is usually non-adjacent to at least one odd number [106]. The follow-
ing generalization of the Gruenberg–Kegel Theorem was an important tool in
investigations of recognizability of a group by spectrum.

Lemma 2.4 ([103, Propositions 2 and 3]) Let G be a non-solvable group such
that t(2, G) ≥ 2. Then the following conditions hold:

(1) there exists a simple non-abelian group S such that SEG/S(G) ≤ Aut(S);

(2) if ρ ⊆ π(G) is a coclique in Γ(G) with |ρ| ≥ 3, then at most one of the
primes from ρ divides the product |S(G)| · |G/S(G) : S|. In particular,
t(S) ≥ t(G)− 1;

(3) one of the following conditions holds:

(a) every p ∈ π(G) which is non-adjacent to 2 in Γ(G) doesn’t divide the
product |S(G)| · |G/S(G) : S|. In particular, t(2, S) ≥ t(2, G);

(b) there exists r ∈ π(S(G)) which is non-adjacent to 2 in Γ(G); in this
case t(G) = 3, t(2, G) = 2 and S ∼= A7 or PSL2(q) for any odd q.

To prove the main results of this paper, we need the following easily-proved
assertions.

Lemma 2.5 Let G be a group with a normal series of length r with cyclic
factors. Then any subgroup of G can be generated by at most r elements.

Proof Let
G = G0 > G1 > · · · > Gr = 1

be the normal series with cyclic factors. Let H be an arbitrary subgroup of G.
For each i, Gi+1 ∩H is a normal subgroup of Gi ∩H, with factor group

(Gi−1 ∩H)/(Gi ∩H) ∼= (Gi−1 ∩H)Gi/Gi ≤ Gi−1/Gi

11



s(S) S Restrictions π1(S) π2(S) π3(S) π4(S) π5(S) π6(S)

4 A2(4) {2} {3} {5} {7}

2B2(q) q=22m+1>2 {2} π(q−1) π(q−
√

2q+1) π(q+
√

2q+1)

2E6(2) {2, 3, 5, 7, 11} {13} {17} {19}

E8(q) q≡2, 3(5) π
(
q(q8−1)(q12−1) π( q10+q5+1

q2+q+1
) π(q8−q4+1) π( q10−q5+1

q2−q+1
)

(q14−1)(q18−1)

(q20−1)
)

M22 {2, 3} {5} {7} {11}

J1 {2, 3, 5} {7} {11} {19}

O′N {2, 3, 5, 7} {11} {19} {31}

LyS {2, 3, 5, 7, 11} {31} {37} {67}

Fi′24 {2, 3, 5, 7, 11, 13} {17} {23} {29}

F1 = M {2, 3, 5, 7, 11, 13, {41} {59} {71}
17, 19, 23, 29,

31, 47}

5 E8(q) q≡0, 1, 4(5) π(q(q8−1)(q10−1) π( q10+q5+1
q2+q+1

) π( q10−q5+1
q2−q+1

) π(q8−q4+1) π( q10+1
q2+1

)

(q12−1)(q14−1)

(q18−1))

6 J4 {2, 3, 5, 7, 11} {23} {29} {31} {37} {43}

Table 1: Finite simple groups S with s(S) > 3
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which is cyclic; let hi be an element of H such that (Gi ∩H)hi generates this
quotient.

We claim that h1, . . . , hr generate H. This is proved by backward induction.
For i = r, we have that hr generates H ∩ Gr−1. Suppose that hi+1, . . . , hr
generate H ∩ Gi. Then it is clear from the above that hi, . . . , hr generate
H ∩ Gi−1. So the induction goes through, and the claim is proved on putting
i = 1. �

Lemma 2.6 Let G be a group with a cyclic normal subgroup C such that G/C
is k-generated. Then the number of pairwise distinct supplements of C in G
(subgroups H such that G = HC) is at most |C|k+1.

Proof Let g1, . . . , gk be generators of G/C, and g1, . . . , gk be their preimages
in G. Define Ci = Cgi to be the corresponding right cosets. It is clear that
|Ci| = |C| for each i.

Now let H be a supplement to C in G. Consider H1 = H ∩ C. Since C is
cyclic, we have H1 = 〈h〉 is cyclic. Since G = HC, we have H/(H ∩C) ∼= G/C.
Let h1, . . . , hk be preimages in H of the elements g1, . . . , gk from H/(H ∩C) ∼=
G/C.

It is clear that h ∈ C and hi ∈ Ci for each i. We claim that

H = 〈h, h1, . . . , hk〉.

It is easy to see that h, h1, . . . , hk ∈ H, therefore, 〈h, h1, . . . , hk〉 ≤ H. Let
K = 〈h, h1, . . . , hk〉. Show that |K| ≥ |H| and, therefore, K = H. Indeed,
h ∈ K, therefore, K ∩C ≥ H ∩C = 〈h〉, and K/(K ∩C) ≥ 〈g1, . . . , gk〉 = G/C.
Thus, |K| ≥ |H ∩ C| · |G/C| = |H| and therefore, |K| = |H|.

So, we have proved that each supplement H to C in G can be generated by
an element h ∈ C and elements h1, . . . hk such that hi ∈ Ci for each i. It is easy
to see that there are at most |C| possibilities to chose h and at most |Ci| = |C|
possibilities to chose each hi. Thus, there are at most |C|k+1 pairwise distinct
supplements to C in G. �

Lemma 2.7 Let π be a finite set of primes, and S = Gn(q), where q = pl, be a
simple group of Lie type of Lie rank n with base field GF (q) such that π(S) ⊆ π.
Then the following statements hold:

(1) there are at most |π| choices for p;

(2) there are at most |π|+ 1 choices for l;

(3) d(l) ≤ |π|+ 1, where d(l) is the number of pairwise distinct divisors of l;

(4) If S s a classical group, then n ≤ 2|π|+ 3.

Proof It is clear that p divides |S|, therefore, p ∈ π and (1) holds.
Note that q − 1 divides |S|, and by Lemma 2.1, excluding the cases q = 2,

q = 26, and q is a Mersenne prime, the number pl − 1 has a primitive prime
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divisor r ∈ π(S) \ {p}. Note that there are at most |π(S)| − 1 choices for r and,
therefore, at most |π(S)| − 1 < |π| choices for l (or at most |π(S)|+ 1 ≤ |π|+ 1
or |π(S)| ≤ |π| choices for l if p = 2 or p is a Mersenne prime, respectively).
Thus, (2) holds.

Note that if d(l) is the number of pairwise distinct divisors of l, then by
Lemma 2.1, there exist at least d(l)− 2 pairwise distinct primes dividing pl− 1,
and p and all these primes are in π. Thus, d(l) ≤ |π|+ 1 and (3) holds.

If S = An(q), then there is a divisor of |S| of the form qm − 1 for each
1 ≤ m ≤ n+1, therefore, with possible one or two exceptions due to Lemma 2.1,
the primitive prime divisor of the number qm − 1 for each m ≤ n + 1 must lie
in π. For each remainder family of classical groups, there is a divisor of |S| of
the form q2m − 1 for each m ≤ m0, where m0 grows linearly with the rank.
In the five families Bn(q), Cn(q), Dn(q), 2An(q) and 2Dn(q), we have m0 = n,
m0 = n, m0 = n−1, m0 = bn/2c, and m0 = n−1, respectively. Now a primitive
prime divisor of the number q2m − 1 for each m ≤ m0 with possible one or two
exceptions due to Lemma 2.1 must lie in π. Thus, at least n ≤ 2|π|+ 3 in each
case and (4) holds. �

Lemma 2.8 (see [106, Propositions 2.5, 3.2, 4.5] and [107, Propositions 2.7])
Let G ∼= E8(q), where q is a power of p = 2. Let r, s ∈ π(G) and r 6= s. Then
r and s are non-adjacent in Γ(G) if and only if one of the following conditions
holds:

(1) 2 = p 6∈ {r, s}, 1 ≤ e(r, q) < e(s, q), and one of the following conditions
holds:

(1a) e(s, q) = 6 and e(r, q) = 5;
(1b) e(s, q) ∈ {7, 14} and e(r, q) ≥ 3;
(1c) e(s, q) = 9 and k ≥ 4;
(1d) e(s, q) ∈ {8, 12}, e(r, q) ≥ 5, and e(r, q) 6= 6;
(1e) e(s, q) = 10, e(r, q) ≥ 3, and e(r, q) 6= 4, 6;
(1f) e(s, q) = 18 and e(r, q) 6∈ {1, 2, 6};
(1g) e(s, q) = 20 and r · e(r, q) 6= 20;
(1h) e(s, q) ∈ {15, 24, 30};

(2) r = p = 2 and e(s, q) ∈ {15, 20, 24, 30}.

Lemma 2.9 Let G = E8(2). Then the following statements hold:
(1) |π(G)| = 16 and π(G) = {2, 3, 5, 7, 11, 13, 17, 19, 31, 41, 43, 73, 127,

151, 241, 331}.
(2) If S = E8(q) for q > 2, then |π(S)| > |π(G)|.
(3) Adjacency in Γ(G) is presented in Table 2. In particular, s(G) = 4,

|π1(G)| = 13, and |πi(G)| = 1 for i ∈ {2, 3, 4}.

Proof (1) See, for example, [20].
(2) We have |S| = q ·

∏
i∈{2,8,12,14,18,20,24,30}(q

i−1), therefore, by Lemma 2.1,

|π(S)| ≥ 17 > |π(G)|.
(3) Note that e(3, 2) = 2, e(5, 2) = 4, e(7, 2) = 3, e(11, 2) = 10, e(13, 2) = 12,

e(17, 2) = 8, e(19, 2) = 18, e(31, 2) = 5, e(41, 2) = 20, e(43, 2) = 14, e(73, 2) =
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Vertex x Degree Neighbors of x in Γ(E8(2))
2 11 3, 5, 7, 11, 13, 17, 19, 31, 43, 73, 127
3 11 2, 5, 7, 11, 13, 17, 19, 31, 43, 73, 127
5 8 2, 3, 7, 11, 13, 17, 31, 41
7 7 2, 3, 5, 13, 17, 31, 73
11 3 2, 3, 5
13 4 2, 3, 5, 7
17 4 2, 3, 5, 7
19 2 2, 3
31 4 2, 3, 5, 7
41 1 5
43 2 2, 3
73 3 2, 3, 7
127 2 2, 3
151 0
241 0
331 0

Table 2: Adjacency of vertices in Γ(E8(2))

9, e(127, 2) = 7, e(151, 2) = 15, e(241, 2) = 24, e(331, 2) = 30. Now Lemma 2.8
gives adjacency in Γ(G). �

Lemma 2.10 (see [109]) Let G be the sporadic group M . Then the following
statements hold:

(1) |π(G)| = 15 and π(G) = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47,
59, 71}.

(2) Adjacency in Γ(G) is presented in Table 3.

Lemma 2.11 (see [82, Lemma 14]) If G is a group such that Γ(G) is a bi-
partite graph with parts of sizes 1 and 5, then π(G) = {2, 3, 7, 13, 19, 37} and
G/O2(G) ∼= 2G2(27).

Lemma 2.12 (see [112, Theorem A]) Groups 2G2(32m+1) for m ≥ 1 are rec-
ognizable by Gruenberg–Kegel graph.

Lemma 2.13 (see [84, Lemma 1]) Let G be a group, N its normal subgroup
such that G/N a Frobenius group with kernel F and cyclic complement C. If
(|F |, |N |) = 1 and F 6≤ NCG(N)/N , then s · |C| ∈ ω(G) for any s ∈ π(N).

Lemma 2.14 (see [116, Lemma 10]) Let V be a normal elementary abelian
subgroup of a group G. Put H = G/V and denote by G1 = V oH the natural
semidirect product. Then ω(G1) ⊆ ω(G).

Let S be a simple group of Lie type in characteristic p. Let A be any abelian
p-group with an S-action. Any element s ∈ S is said to be unisingular on A if
s has a (non-zero) fixed point on A. S is said to be unisingular if every element
s ∈ S acts unisingularly on every finite abelian p-group A with an S-action.
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Vertex x Degree Neighbors of x in Γ(M)
2 10 3, 5, 7, 11, 13, 17, 19, 23, 31,

47
3 10 2, 5, 7, 11, 13, 17, 19, 23, 29,

31
5 5 2, 3, 7, 11, 19
7 4 2, 3, 5, 17
11 3 2, 3, 5
13 2 2, 3
17 3 2, 3, 7
19 3 2, 3, 5
23 2 2, 3
29 1 3
31 2 2, 3
41 0
47 1 2
59 0
71 0

Table 3: Adjacency of vertices in Γ(M)

Lemma 2.15 (see [44, Theorem 1.3]) If G = E8(q) with q arbitrary, then G is
unisingular.

Lemma 2.16 (see [115, Proposition 2]) Let G = 3D4(q), where q is a power of
a prime p. If G acts on a non-trivial vector space V over a field of characteristic
distinct from p, then each element x ∈ G of order q4 − q2 + 1 fixes a non-zero
vector v(x) ∈ V .

3 Proofs of Theorems 1.2 and 1.3

To prove the main results of this paper, for a given finite set π of prime numbers,
we need to estimate the number of simple groups S such that π(S) ⊆ π. The
following proposition is straightforward, and the main idea of its proof can be
found, for example, in [83] (see the remark after Lemma 2 in [83]).

Proposition 3.1 Let π be a finite set of primes. The number of pairwise non-
isomorphic non-abelian simple groups S with π(S) ⊆ π is finite, and is at most
O(|π|3).

Proof Following the classification of finite simple groups, we divide into the
following cases.

Case S sporadic: There are clearly at most 26 such groups.

Case S alternating: The alternating group Am has order divisible by all
primes less than m. So, if π(Am) ⊆ π, then m does not exceed the (|π| +
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1)st prime number p|π|+1. By the Prime Number Theorem, p|π|+1 is roughly
|π| log |π|. So the number of alternating groups does not exceed this number.

Case S of Lie type: These groups fall into six families An(pl), Bn(pl), Cn(pl),
Dn(pl), 2An(pl) and 2Dn(pl) parametrised by rank (one parameter n) and field
order (two parameters p and l), and ten families E6(pl), E7(pl), E8(pl), F4(pl),
G2(pl), 2E6(pl), 3D4(pl), 2F4(2l), 2B2(2l) and 2G2(3l) parametrised by field
order (two parameters p and l and for the last three, only one parameter l).

By Lemma 2.7, there are at most |π| choices for characteristic p (except for
one-parameter families), at most |π|+ 1 choices for l, and for classical groups at
most 2|π|+ 3 choices for their ranks. Thus, there are at most O(|π|) groups in
each of the one-parameter families, O(|π|2) groups in each of the two-parameter
families, and at most O(|π|3) groups in each of the three-parameter families.

Thus, we conclude that there are at most O(|π|3) simple groups S of Lie
type such that π(S) ⊆ π. �

Proof of Theorem 1.2 We show first that (2)⇒ (1). Assume that a group G
contains a non-trivial solvable normal subgroup. Then by Theorem 1.1, there
exist infinitely many groups H such that ω(G) = ω(H), and Gruenberg–Kegel
graphs of all these groups coincide with Γ(G).

Now we show that (1) ⇒ (2). Assume that G is a group such that there
exist infinitely many groups H such that Γ(G) = Γ(H). Assume that for each
group H with Γ(G) = Γ(H), the solvable radical of H is trivial (otherwise the
statement of the theorem holds trivially). If 2 is adjacent to each odd vertex
of Γ(G), then Γ(G) = Γ(C2 × G), where C2 is the cyclic group of order 2,
and S(C2 × G) 6= 1, a contradiction. Thus, for each H with Γ(G) = Γ(H),
t(2, H) = t(2, G) ≥ 2 and, therefore, by Lemma 2.4, Soc(H) is a non-abelian
simple group such that π(Soc(H)) ⊆ π(G). By Proposition 3.1, for each finite
set π of primes, the number of simple groups T such that π(T ) ⊆ π is finite,
therefore the number of almost simple groups H with π(Soc(H)) ⊆ π(G) is
finite, a contradiction. �

Proof of Theorem 1.3 Note that G is non-solvable, since otherwise, by The-
orem 1.2, there are infinitely many groups H with Γ(G) = Γ(H). Moreover,
in Γ(G), each vertex r is non-adjacent to at least one other vertex; otherwise
Γ(G) = Γ(G×Cr) and again by Theorem 1.2, there are infinitely many groups
H with Γ(G) = Γ(H). In particular, t(2, G) ≥ 2.

By Lemma 2.4, each group H with Γ(G) = Γ(H) is such that H/S(H) is
almost simple. Now again if S(H) 6= 1 for some H with Γ(G) = Γ(H), then by
Theorem 1.2, there are infinitely many groups H with Γ(G) = Γ(H). Therefore,
each group H with Γ(G) = Γ(H) is almost simple, in particular, G is almost
simple.

By Lemmas 7–14 from [32], if G is almost simple and t(G) < 3, then there
exists a solvable group T such that Γ(G) = Γ(T ). Therefore in this case G is
unrecognizable by Gruenberg–Kegel graph. �
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4 Proof of Theorem 1.4

Let π be a finite set of primes. We must show that there is a polynomial function
F such that the number of almost simple groups G such that π(G) ⊆ π is at
most F (|π|).

By Proposition 3.1, the number of simple groups S such that π(S) ⊆ π
is bounded by a polynomial function of |π|, moreover the function is at most
O(|π|3). Thus, it is sufficient to show that for each simple group S such that
π(S) ⊆ π, the number of almost simple groups with socle S is bounded by a
polynomial function of |π|. This is clear if S is sporadic or alternating. Thus,
it is sufficient to consider the case when S is a group of Lie type. Since there
is a one-to-one correspondence between almost simple groups with socle S and
subgroups of Out(S), we need to prove the following result:

Proposition 4.1 Let π be a finite set of primes and S be a simple group of
Lie type such that π(S) ⊆ π. Then there is a polynomial function f such that
the number of subgroups of Out(S) is bounded by f(|π(S)|), and it is at most
O(|π|4).

Proof Let S = Gn(q), where q = pl, be a simple group of Lie type of Lie rank
n with base field GF (q) such that π(S) ⊆ π.

Then it is well-known (see, for example [29, Theorem 2.5.12]) that

Out(S) = C o (G1 ×G2),

where C = Outdiag(S) and either |C| ≤ 4 or S is of type An(q) or 2An(q), C
is cyclic, and |C| is bounded by n + 1; G1 is cyclic and |G1| ∈ {l, 2l, 3l}; and
G2 has order at most 2 except in the case when S is of type D4, when it is
isomorphic to S3

4.
LetN(G) be the set of all the subgroups of a groupG with a normal subgroup

C. We can define an equivalence relation %C on N(G) by setting H1%CH2 if
H1C/C = H2C/C. Then N(G) is the union of equivalence classes of %C ; tht is,
in our case,

N(Out(S)) =
⋃

T≤G1×G2

{H | HC/C = T}. (1)

Since G1 is cyclic, there is a one-to-one correspondence between the number
of subgroups of G1 and the number of pairwise distinct divisors of |G1|. Since
by Lemma 2.7, d(l) ≤ |π| + 1, it is easy to see that the number of subgroups
of G1 is bounded by a linear function of |π|. Now by Lemmas 2.5 and 2.6, the
number of subgroups of G1 ×G2 is bounded by a linear function of |π|. Thus,
the number of classes in the union (1) is bounded by a linear function of |π|.

By Lemma 2.5, each subgroup T of the group Out(S)/C ∼= G1 × G2 is at
most 2-generated except in the case when S is of type D4, when T is at most
3-generated. Therefore by Lemma 2.6, if S is not of type D4, then the number of
subgroups H of Out(S) such that HC/C = T is at most |C|3 ≤ n3 ≤ (2|π|+3)3;

4Here it is sufficient that Out(S) = C.G2.G1, where groups C, G1, and G2 are as above.
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in the case of groups of type D4 we have |C| ≤ 4 and possibly need to apply
Lemma 2.6 twice. Thus, the number of classes in the union (1) is bounded by a
linear function of |π| and the number of subgroups in each class is bounded by a
polynomial function of |π| which is at most O(|π|3), and therefore, |N(Out(S))|
is bounded by a polynomial function of |π|, and it is at most O(|π|4). �

Combining the results of Propositions 3.1 and 4.1, we have proved the fol-
lowing assertion.

Theorem 4.2 There exists a polynomial function F such that if π is a finite set
of primes, then there are at most F (|π|) pairwise non-isomorphic almost simple
groups G such that π(G) ⊆ π, and this number is at most O(|π|7).

So the following corollary completes the proof of Theorem 1.4:

Corollary 4.3 Let G be a group such that there are more than F (|π(G)|) pair-
wise non-isomorphic groups H such that Γ(H) = Γ(G). Then G is unrecogniz-
able by Gruenberg–Kegel graph.

Proof Suppose that there is only a finite number of groups H such that
Γ(H) = Γ(G). Then by Theorem 1.3, each group H with Γ(H) = Γ(G) is
almost simple. Thus, there are more than F (|π(G)|) pairwise non-isomorphic
almost simple groups H with π(H) ⊆ π(G), a contradiction. �

5 Proof of Theorem 1.5

If G = 2G2(27), then Γ(G) is as follows:

3 7 13 19 37

2

If H is a group such that Γ(H) and Γ(G) are isomorphic as abstract graphs,
then Γ(H) is a bipartite graph with parts of sizes 1 and 5. By Lemma 2.11,
π(H) = {2, 3, 7, 13, 19, 37} and H/O2(H) ∼= 2G2(27). In particular, Γ(H) =
Γ(G). But G is recognizable by Gruenberg–Kegel graph by Lemma 2.12. Thus,
H ∼= G.

Let G = E8(2) and H be a group such that Γ(H) and Γ(G) are isomorphic as
abstract graphs. By Lemma 2.9(3), Γ(H) is disconnected. Now by Lemmas 2.3
and 2.4, H/F (H) is almost simple, moreover, if S = Soc(H/F (H)), then s(S) ≥
s(G) ≥ 4. By Table 1 and Lemma 2.9(2), S is one of the following groups:
A2(4) ∼= PSL3(4), 2B2(q), 2E6(2), E8(2), M22, J1, O′N , LyS, Fi′24, F1 = M ,
J4.
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If S is one of groups A2(4), 2E6(2), M22, J1, O′N , LyS, Fi′24, J4, then by
[20], |π(Aut(S)| ≤ 10, therefore,

|π(F (H)) \ π(H/F (H))| ≥ 6.

Note that the primes from π(F (H)) form a clique in Γ(H), therefore, Γ(H)
contains at least 6 vertices of degree at least 5, a contradiction to Lemma 2.9(3).

Let S ∼= 2B2(q) for some q. Since s(G) = s(S), we have |πi(S)| = 1 for
i ∈ {2, 3, 4}. In particular, q − 1 is a prime power. By Lemma 2.2, q = 2a,
where a is a prime. Therefore, |π(H/F (H))| ≤ |π(Aut(S)| = 5. Again we
obtain that

|π(F (H)) \ π(H/F (H))| ≥ 11,

therefore, Γ(H) contains at least 11 vertices of degree at least 10, a contradiction
to Lemma 2.9(3).

Let S ∼= M . Since Aut(M) ∼= M and |π(M)| = 15, there is p ∈ π(F (H)) \
π(H/F (H)). Note that by Lemma 2.3, p ∈ π1(H). Since s(G) = s(S), we have
|πi(S)| = 1 for i ∈ {2, 3, 4}. Thus, by Lemma 2.10, the primes 41, 59, and 71 are
non-adjacent to p in Γ(H). By [20, 109], M contains subgroups M1

∼= 41 : 40,
M2
∼= 59 : 29, M3

∼= 71 : 35, and M4
∼= 23 : 11 which are Frobenius groups with

cyclic complements. By Lemma 2.13, the prime p is adjacent in Γ(H) to the
primes 2, 5, 7, 29, and to at least one of the primes 11 and 23. Thus, degree of
vertex p in Γ(H) is at least 5 as well as by Lemma 2.10, degree of vertex 5 in
Γ(H) is at least 6, and degree of vertex 7 in Γ(H) is at least 5. Moreover, by
Lemma 2.10, degree of vertex 2 in Γ(H) is at least 11 and degree of vertex 3 in
Γ(H) is at least 10. Thus, Γ(H) contains at least 5 vertices of degree at least
5, a contradiction to Lemma 2.9(3).

Thus, S ∼= G = E8(2), therefore Γ(H) = Γ(G), π(F (H)) ⊆ π1(G), and
H/F (H) ∼= G. Let F (H) 6= 1 and r ∈ π(F (H)) ⊆ π1(G). We show that r and
241 are adjacent in Γ(H). Since Γ(H) = Γ(S) = Γ(H/(Or′(H) × Φ(Or(H)))),
without loss of generality, we can assume that F (H) = Or(H) and Or(H) is
elementary abelian. By Lemma 2.14, we can assume that H = Or(H)oE8(2). If
r = 2, then by Lemma 2.15, each element from E8(2) has a non-zero fixed point
on O2(H). In particular, 2 and 241 are adjacent in Γ(H). Thus, r 6= 2. By [20],
the group E8(2) has a subgroup isomorphic to 3D4(4). Now by Lemma 2.16,
each element of order 241 has a non-zero fixed point on Or(H). Thus, in any
case s(H) ≤ 3, a contradiction. �

6 Other graphs

In this section we give the proofs of Theorems 1.6 and 1.7.

Proof of Theorem 1.6 For each of the four possible types of graph, G and
H have the same order, so their Gruenberg–Kegel graphs have the same set of
vertices.

20



We show that in all cases except the power graph, primes p and q are adjacent
in the Gruenberg–Kegel graph of G if and only if there is a maximal clique in the
graph T(G) with size divisible by pq. This is clear in the cases of the enhanced
power graph and the commuting graph; for the maximal cliques in these are
maximal cyclic subgroups or maximal abelian subgroups of G respectively, and
if their order is divisible by pq (where p and q are distinct primes), then they
contain elements of order pq. Conversely an element of order pq is contained in
a maximal cyclic (or abelian) subgroup.

Consider the deep commuting graph of a group G. It is shown in [18] that
this graph is the projection onto G of the commuting graph of a Schur cover of
G [95]. Let K be a Schur cover of G, with K/Z ∼= G. A maximal clique has the
form A = B/Z, where B is a maximal abelian subgroup of K (containing Z).
So A is an abelian subgroup of G, and if pq divides |A| (with p and q distinct
primes), then A contains an element of order pq. Conversely, suppose that p
and q are joined in the Gruenberg–Kegel graph, and let x and y be commuting
elements of orders p and q in G, and a and b their lifts in K. Then a and b
are contained in 〈Z, ab〉, which is an extension of a central subgroup by a cyclic
group and hence is abelian; so a and b commute. Choosing a maximal abelian
subgroup of K containing a and b and projecting onto G gives a maximal clique
in the deep commuting graph of G, with order divisible by pq.

For the power graph, the assertion that an element of order pq is contained
in a clique of size pq fails: for example, the power graph of C6 is not a clique. In-
stead, we use the fact, shown in [110], that groups with isomorphic power graphs
also have isomorphic enhanced power graphs; so they have equal Gruenberg–
Kegel graphs, by what has already been proved. �

Proof of Theorem 1.7 The equivalence of (a) and (b) is [1, Theorem 28]; we
give the proof for completeness. If the group G contains an element g of order
pq, where p and q are primes, then 〈gp, gq〉 = 〈g〉, so gp and gq are joined in the
enhanced power graph, but not in the power graph. Conversely, suppose that
there are no edges in the Gruenberg–Kegel graph of G. Then every element of
G has prime power order. Suppose that g and h are joined in the enhanced
power graph of G, so that they generate a cyclic group, necessarily of prime
power order. This group must be generated by one of g and h, say g; then h is
a power of g, so g and h are adjacent in the power graph.

We now turn to the equivalence of (b) and (c).
Finite groups whose Gruenberg–Kegel graphs do not have edges (these groups

are known as EPPO-groups) were investigated by many authors (see, for exam-
ple, [46, 98, 102], also see [71, 72] and [6, Proposition]). Let us just summarize
these results and obtain the explicit list of such groups given in (c). This result
does not depend on the Classification of Finite Simple Groups.

Lemma 6.1 (See [17], see also, for example, [118, Lemma 1])
Let G = FH is a Frobenius group with kernel F and complement H. Then
(a) F = F (G) is the Fitting subgroup of G and |H| divides |F | − 1.
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(b) Each subgroup of order pq from H, where p and q are (not necessary
distinct) primes, is cyclic. In particular, each Sylow subgroup of H is either
cyclic or a (generalized) quaternion group.

(c) If |H| is even, then H contains a unique involution.
(d) If H is non-solvable, then H contains a subgroup K = S × Z, where

S ∼= SL2(5), (|S|, |Z|) = 1, and |H : K| ∈ {1, 2}.

Lemma 6.2 ([21, Lemma 4]) Let G be a finite simple group, F is a field of
characteristic p > 0, V is a absolute irreducible GF -module, and β is a Brauer
character of V . If g ∈ G is an element of prime order distinct from p, then

dimCV (g) = (β〈g〉, 1〈g〉) =
1

|g|
∑
x∈〈g〉

β(x).

Lemma 6.3 ([46, Theorem 1]) Assume that every non-trivial element of a finite
solvable group G of composite order is of prime power order. Then |π(G)| ≤ 2.

The following assertion is easy to prove, and can be found, for example,
in [75, Theorem 1].

Lemma 6.4 Let G be a finite group with t(G) ≥ 3. Then G is non-solvable.

Proof Let G be a finite solvable group. Assume that {p, q, r} is an induced
3-coclique in Γ(G). By the Hall Theorem, G contains a {p, q, r}-Hall subgroup
H. Then H is solvable, |π(H)| = 3 and Γ(H) is a 3-coclique, a contradiction to
Lemma 6.3.

Lemma 6.5 (See [102, Theorem 16]) Assume that every non-trivial element of
a finite simple group G of composite order is of prime power order. Then G
is isomorphic to one of the following groups: PSL2(q) for q ∈ {5, 7, 8, 9, 17},
PSL( 4), Sz(q) for q ∈ {8, 32}.

Lemma 6.6 (See [101, Proposition 3.2]) Let G be a finite group, H E G, and
G/H ∼= PSL2(q), where q is odd and q > 5, and let CH(t) = 1 for some element
t of order 3 from G \H. Then H = 1.

Lemma 6.7 (See [46, Theorem 8.2], [101, Proposition 4.2]) Let G be a finite
group, 1 6= HEG, and G/H ∼= PSL2(2n), where n ≥ 2. Assume that CH(t) = 1
for some element t of order 3 from G. Then H = O2(G) and H is the direct
product of minimal normal subgroups of G, each of which is of order 22n and as
a G/H-module is isomorphic to the natural GF(2n)SL2(2n)-module.

Lemma 6.8 (See [79, Theorem, Remark 1]) Let G be a finite group, 1 6= HEG,
G/H ∼= Sz(q) for q ∈ {8, 32}. Assume that CH(t) = 1 for some element t of
order 5 from G. Then H = O2(G) and H is the direct product of minimal
normal subgroups of G, each of which is of order 24n and as a G/O2(G)-module
is isomorphic to the natural GF(2n) Sz(2n)-module of dimension 4
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Let G be a finite group such that Γ(G) is a coclique.
The case |π(G)| = 1 is clear. Let |π(G)| = 2. In this case G is solvable. Now

by Lemma 2.3, G is a Frobenius group or 2-Frobenius group. It is easy to see
that for any Frobenius group or 2-Frobenius group G with |π(G)| = 2, Γ(G) is
a 2-coclique. Note that a rather detailed description of solvable EPPO-groups
can be found in [102, section 2].

Suppose that |π(G)| ≥ 3. Then by Lemma 6.4, G is non-solvable. By
Lemma 2.3, either G/F (G) is almost simple or G is a non-solvable Frobenius
group. By Lemma 6.1, in the latter case, it is easy to see that G/O(G) contains
an element of order 10, therefore Γ(G) is not a coclique. Thus, G/F (G) is almost
simple. Moreover, Γ(G/F (G)) is a coclique, (that is, G/F (G) is an EPPO-
group), and |F (G)| ≤ 1 since π(F (G)) form a clique in Γ(G). By Lemma 6.5,
Soc(G/F (G)) is one of the following groups: PSL2(q) for q ∈ {5, 7, 8, 9, 17},
PSL3(4), Sz(q) for q ∈ {8, 32}. Note that |π(PSL2(q))| = 3 if q ∈ {5, 7, 8, 9, 17}
and |π(PSL3(4)| = |π(Sz(8))| = |π(Sz(32)| = 4. Using informtion in the Atlas
of Finite Groups [20] we conclude that G/F (G) is one of the following EPPO-
groups: A5

∼= PSL2(4) ∼= PSL2(5), A6
∼= PSL2(9), PSL2(7), PSL2(8), PSL2(17),

M10
∼= PSL2(9).23, Sz(q) for q ∈ {8, 32}. This list can be found also in [102,

section 3].
Assume that Soc(G/F (G)) is A6

∼= PSL2(9), PSL2(7), or PSL2(17). It
is easy to see that in this case if F (G) 6= 1, then F (G) = Op(G) for some
p ∈ π(G). If p 6= 3, then by Lemma 6.6, F (G) = 1. Now suppose that F (G) =
O3(G). Consider an involution x ∈ G. By Lemma 2.3, the subgroup O3(G)〈x〉
is a Frobenius group with kernel O3(G) and complement 〈x〉. Therefore, by
Lemma 6.1, |O3(G)| divides |x| − 1 = 1. Thus, F (G) = 1.

If G/F (G) ∼= PSL3(4), then [20] shows that G/F (G) contains a maximal
subgroup isomorphic to PSL2(7) and again we conclude that F (G) = 1 as in
the previous paragraph.

Assume that G/F (G) is Sz(8) or Sz(32). Again if F (G) 6= 1, then F (G) =
Op(G) for some p ∈ π(G). If p 6= 5, then by Lemma 6.8, F (G) = O2(G)
is the direct product of minimal normal subgroups of G, each of which is of
order 24n and as a G/O2(G)-module is isomorphic to the natural GF(2n) Sz(2n)-
module of dimension 4. For converse, Lemma 6.2 and tables of the 2-modular
Brauer characters of groups Sz(8) and Sz(32) (see Pages 63 and 197 in [49],
respectuvely) imply that in this case Γ(G) is a 4-coclique. Now suppose that
F (G) = O5(G). As above, considering an involution x ∈ G, we conclude that
by Lemma 2.3, the subgroup O5(G)〈x〉 is a Frobenius group with kernel O5(G)
and complement 〈x〉. Therefore, by Lemma 6.1, |O5(G)| divides |x| − 1 = 1.
Thus, F (G) = 1.

Assume that G/F (G) is A5
∼= PSL2(4) or PSL2(8). Again if F (G) 6= 1, then

F (G) = Op(G) for some p ∈ π(G). If p 6= 3, then by Lemma 6.7, we conclude as
above that F (G) = O2(G) is the direct product of minimal normal subgroups
of G, each of which is of order 22n and as a G/O2(G)-module is isomorphic
to the natural GF(2n)SL2(2n)-module. For converse, Lemma 6.2 and tables of
the 2-modular Brauer characters of groups A5 and PSL2(8) (see Pages 2 and 6
from [49], respectively) imply that in this case Γ(G) is a 3-coclique. As above,
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we prove that if F (G) = O3(G), then F (G) = 1. �
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