
Vol.:(0123456789)1 3

Animal Cognition 
https://doi.org/10.1007/s10071-022-01725-2

REVIEW

Adding the neuro to cognition: from food storing to nest building

Susan D. Healy1

Received: 4 June 2022 / Revised: 18 November 2022 / Accepted: 24 November 2022 
© The Author(s) 2022

Abstract
Typically, investigations of animal cognition couple careful experimental manipulations with examination of the animal’s 
behavioural responses. Sometimes those questions have included attempts to describe the neural underpinnings of the 
behavioural outputs. Over the past 25 years, behaviours that involve spatial learning and memory (such as navigation and 
food storing) has been one context in which such dual or correlated investigations have been both accessible and productive. 
Here I review some of that work and where it has led. Because of the wealth of data and insights gained from that work 
and song learning before it, it seems that it might also be useful to try to add some neurobiology to other systems in animal 
cognition. I finish then, with a description of recent work on the cognition and neurobiology of avian nest building. It is still 
relatively early days but asking questions about the cognition of nest building has already shown both neural correlates of 
nest building and that learning and memory play a much greater role in this behaviour than previously considered. While it 
is not yet clear how putting these components together will be synergistic, the examples of song learning and food storing 
provide encouragement. Perhaps this might be true for other behaviours too?
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Introduction

The past quarter decade has witnessed a flowering of animal 
cognition, with an ever-increasing diversity of species tested 
and with ever more experiments being conducted on animals 
in the wild (Healy 2019). Identifying and quantifying roles 
for cognition in a widening variety of behavioural contexts 
is also becoming commonplace, and the fields of animal 
cognition and behavioural ecology frequently intersect. In 
particular, there are increasing examples in which studies 
begin with a functional question that leads to predictions 
about the mechanistic basis of the animals’ behaviour. Just 
three examples of the proverbial tip of this cognitive iceberg 
are: Muth et al. (2021) tested whether the different foraging 
roles played by female and male bumblebees Bombus lead 
to sex differences in associative learning in these bees (no, 
apparently not), Kjernsmo et al. (2019) examined the rela-
tive effectiveness of the size and contrast of eyespots of prey 
on reducing predation rates by three-spined sticklebacks 

Gasterosteus aculeatus (eyespot size seems more effective 
than eyespot contrast), while Clement et al. (2017) suggest 
that guppies Poecilia reticulata from high predation sites 
pay relatively more attention to predators than to food in 
comparison with guppies from low predation sites.

What has been, and continues to be, less evident, how-
ever, as animal cognition has matured over the past 25 years 
is much of an enthusiasm to couple behavioural measures of 
cognition together with other mechanisms, specifically the 
neural bases of cognitive performance. There are, however, 
conspicuous exceptions, among them the use of brain size 
as a proxy for cognition and investigations of the relation-
ship between spatial learning and memory and hippocampal 
structure and function.

Brain size as a proxy for cognition

Lefebvre et al. (1997) drew attention to the potential of brain 
size data to enable ‘operational’ access to the cognitive abili-
ties of a wide range of species, and species not typically kept 
in captivity. Many have since found their argument compel-
ling and for a long while brain size has stood in for, or has 
been used as confirmation of, explicit testing of cognitive 
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abilities (e.g. Horschler et al. 2019; MacLean et al. 2012; 
Tait et al. 2021). If brain size is a good/useful proxy for 
cognition, it could allow access to cognitive assessments of 
a much greater diversity of species, perhaps even to those 
no longer with us (e.g. dinosaurs: Knoll et al. 2021; baleen 
whales: McCurry et al. 2021; primates: van Schaik et al. 
2021).

As I have argued elsewhere (e.g. Healy 2021), before one 
can readily take brain size as a useful proxy for cognition 
one might wish to consider whether brain size data fit the 
bill well enough i.e. what does brain size mean? One might 
ask what ‘stuff’ makes up a brain, and more importantly for 
animal cognition researchers how that ‘stuff’ results in the 
cognitive performance we see in our animals. For example, 
modularity of neural function shows that not all parts of the 
brain are involved in what is typically accepted as ‘cogni-
tion’ albeit those regions may have connections to parts of 
the brain that are (e.g. Pessoa 2010). For example, regions 
such as the amygdala, the hypothalamus, the motor cortex, 
are respectively involved in emotion, hormonal control, and 
control of motor output such as coordination and dexterity, 
rather than in cognition directly. Additionally, while tech-
nological advances allow increasingly better visualisation 
of brain structure such as the structural magnetic resonance 
imaging (MRI) data from 33 dog breeds (Hecht et al. 2019), 
the function of some apparently ‘cognitive’ regions remain 
under-described and their role in cognitive performance 
is almost entirely correlative (e.g. the avian nidopallium, 
Bloomston et al. 2022; Rook et al. 2021; the vertebrate cer-
ebellum, Sokolov et al. 2017). Using the size of the whole 
brain, then, is at best as very crude measure of cognition, 
and one that would require cognition to be defined in its 
very broadest sense of information processing (e.g. beyond 
Shettleworth 2010).

Neural modularity also calls into question the ways in 
which brain size is typically measured. It might seem antedi-
luvian, but quite a lot of the available whole brain data con-
tinues to come, not from brains themselves, but from filling 
skulls with lead shot or similar (e.g. Isler et al. 2008). Such 
measures have to ignore any notion of modularity, or assume 
it is relatively unimportant. Even methods that are much 
more du jour such as the isotropic fractionator method of 
neuron counting (e.g. Herculano-Houzel et al. 2015), when 
applied to whole brains also cannot deal with modularity. 
The more recent applications of cell counting, which are 
now being done at the level of specific brain regions with 
known function, seem much more likely to enable coupling 
neural quantification together with behavioural performance 
(e.g. Jacob et al. 2021; Strockens et al. 2022).

It seems ironic that as we get closer to measures of 
brain size becoming useful proxies for cognitive abilities, 
the need for brain size to substitute as a measure for such 
cognitive abilities seems to be rapidly reducing. As noted 

above, the 25 years since Lefebvre et al.’s paper has seen a 
marked increase in the diversity of species now accessible 
to cognitive testing, including multiple species in the wild 
(e.g. alpacas: Abramson et al. 2018; urban raptors: Biondi 
et al. 2022; lions: Borrego 2020; a threatened gull species: 
Castano et al. 2022; Asian elephants: Jacobson et al. 2022; 
bumblebees: Mirwan and Kevan 2014; wild African striped 
mice: Rochais et al. 2022; fawn-footed mosaic-tailed rats: 
Rowell and Rymer 2022; dingoes: Smith and Litchfield 
2010; brush-tailed possums: Wat et al. 2020). Also impor-
tantly, although these tests are still mostly directed at inno-
vation and problem solving as recommended by Lefebvre 
et al., they are increasingly being addressed to tests that are 
more explicitly tests of cognitive performance (e.g. Tebbich 
et al. 2016; van Horik et al. 2020). In this increasing map-
ping of cognitive abilities, however, there is a noticeable 
deficit in the amount of attention directed towards investi-
gating problem solving or cognition in invertebrate species 
(Collado et al. 2021; Eckert et al. 2022; Perry and Chittka 
2019; Pfeffer and Wolf 2020; Philips et al. 2017).

Neuroanatomical correlates of cognitive 
performance

If there has been so much progress in both accessing cogni-
tive performance in more species, and in increasing the pre-
cision of quantifying the neural bases of that performance, 
perhaps this is all the neuro that might be added to cogni-
tion? For those especially interested in cognitive abilities 
rather than in their neural underpinnings, there are plenty of 
questions that can be addressed very usefully without pok-
ing around in the brains of their subjects. Here, however, 
I would like to argue that our understanding of cognitive 
abilities, both functionally and mechanistically, can benefit 
from such ‘poking around’. Song learning and imprinting are 
the best exemplars of such benefits. In the context of song, 
the behavioural data showed us whose songs young birds 
learn, when they learn, what they learn, how they do or do 
not modify their songs through their lifetime, and lots more 
(e.g. Slater et al. 1993, 1991; Slater and Jones 1998). The 
template model for learning helped to direct experiments 
that involved looking at the role of auditory feedback (young 
birds held in isolation or deafened, so they heard either just 
their own voices, or no voices). Sensitive periods for learn-
ing were identified and, as for filial and sexual imprinting, 
became part of the weft of our understanding of the role of 
development in behaviour, including into adulthood. The 
accompanying song-system neural data, on the other hand, 
have enabled us to see that brain structure, including neuron 
numbers, changes through early development, as the behav-
iour of song learning was also moving through the stages 
of babbling, plastic song, and onto crystallised song, differs 
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between the sexes, and, again lots more (e.g. Balthazart and 
Ball 1995; Daou and Margoliash 2020). Hand in hand the 
two approaches to understanding song learning directed 
which neural and the behavioural questions could and should 
be addressed, and putting them together has enabled consid-
erable advances not just in understanding song learning but 
also in, amongst others, the evolution of song and human 
language (e.g. Beltman et al. 2003; Freeman et al. 2017; 
Searcy and Nowicki 2019), and the role of sleep in memory 
consolidation (e.g. Margoliash and Schmidt 2010; Shank 
and Margoliash 2009).

The contributions made by the work on song learning 
(and imprinting) are, however, rarely included in the con-
sideration of animal cognition (at least as exemplified by 
animal cognition textbooks). One example that has more 
frequently appeared in animal cognition texts is the outcome 
of the combining together of food storing, spatial memory, 
and hippocampal structure and function (Olmstead and Kul-
hlmeier 2015; Shettleworth 2010; Wynne and Udell 2013).

As had happened with song learning, that work began 
with a behaviour: food storing in a handful of songbirds (par-
ticularly tits, chickadees, and corvids, e.g. Bossema 1979; 
Cowie et al. 1981; Haftorn 1956, 1974; Tomback 1980). 
Observers of these birds’ foraging saw that when these birds 
encountered excess food (seeds, nuts) they did not eat them 
all, but took some away and hid them. Hiding food away as a 
means to reduce variability in future food access has evolved 
in only some birds (and other animals), perhaps because for 
them only storing such food on their bodies as fat is more 
difficult (Andersson and Krebs 1978; Pravosudov and Grubb 
1997; Roberts 1979). But food storage also requires the ani-
mal not only to remember that they stored food but also to 
relocate the food when it is needed. For larder hoarders, such 
as some rodents, store or cache relocation may simply mean 
returning to their burrow or a nearby larder. Straightforward 
relocation, but probably requiring investment in defence of 
such a valuable commodity. Scatterhoarders avoid the need 
for cache defence by doing what it says on the tin: they dis-
perse pieces of excess food around the environment so that 
if another individual happened to stumble across a piece 
hidden by the scatterhoarder, it would be no better informed 
as to the location of the next nearest cache (Stapanian and 
Smith 1984). But the problem of defence is replaced by a 
problem that seems no less challenging: that of coming up 
with an algorithm for concealment that is not obvious, or 
even more challenging, remembering each of the cache loca-
tions. Challenging because the avian food storers store any-
thing from hundreds to thousands of food items, and some 
species do not retrieve their caches for several months. The 
pay-off in this latter case is that the storer with a good algo-
rithm or good memory has access to food not just in times 
of scarcity such as the winter months but can also get them-
selves into breeding condition early (Brodin 2010).

Although it seemed implausible that scatterhoarders 
might use memory to relocate their caches due to the num-
ber of items they stored, field data showed that it was at least 
possible (Cowie et al. 1981). But showing that it was pos-
sible does not mean it was easy to demonstrate definitively 
(and still is not). Very soon, because some of these species 
would also store and retrieve in a laboratory setting, experi-
mental manipulations in the laboratory became the locus 
of testing (e.g. Kamil and Balda 1985; Olson et al. 1995; 
Sherry et al. 1981; Shettleworth and Krebs 1982, 1986; 
Shettleworth et al. 1988). That these birds did use mem-
ory of locations to store their food in preference to using 
search strategies and that they used visual cues to do so 
soon became pretty clear (Sherry 1984). But the discovery 
that damage to the hippocampus of food-storing chickadees 
specifically affected their ability to retrieve their stored food 
(Sherry and Vaccarino 1989), together with evidence that the 
size of the hippocampus varied across species in relation to 
food storing (Krebs et al. 1989; Sherry et al. 1989), gave a 
new edge to the investigation of the nature of the memory 
involved in relocation of stored food: interspecific compara-
tions of cognitive abilities, especially in the context of spa-
tial learning and memory became the new focus. Whether 
or not food-storing birds were smarter than were non-storers 
was not the question, but both the added demand for spatial 
memory and the evidence that a key part of the brain was 
larger strongly suggested that food storers should have bet-
ter spatial memory than should non-storers. In the context 
of Macphail’s (1982) critique of comparative cognition, the 
specific cognitive ability and the access to comparisons of 
species expected to have a greater demand for that ability 
and closely related species that do not face this demand 
seemed promising. The phylogenetic proximity might mean 
that some of the extrinsic factors (varying from perceptual 
abilities, through attention and motivation) discussed by 
Macphail were reduced, or even absent.

And it is from this point that the history, as well as the 
ultimate endpoints, of the experiments comparing the cogni-
tive abilities of food storers with closely related non-storers 
hold value for researchers working on comparative cogni-
tion, especially those interested in adaptation and cognition. 
No single experiment really stands out as pivotal, but the 
series of discoveries (and sometimes lack thereof) was, and 
still is, a lesson in the road to finding evidence to support 
a clear, compelling, even appealing, hypothesis: it is not 
always that easy. And in comparative cognition, it may be 
especially challenging. Macphail was not wrong: there are 
always plausible alternative explanations, even if the experi-
mental outcome supports the original hypothesis. But along 
the way, a lot may be learned about cognitive abilities of the 
comparison species, as well as by the researchers in design-
ing good or useful experiments.
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One cognitive feature was shown via multiple experi-
ments in different laboratories, was that food storers per-
formed well on spatial memory tasks other than food storing 
(Herz et al. 1994; Hilton and Krebs 1990; Hitchcock and 
Sherry 1990; Krebs et al. 1990; Shettleworth et al. 1990), so 
the ability to remember food stores was a transferable skill. 
What was less clear was how much better were the spatial 
memory capacities of food storers than those of non-storers: 
repeated experiments comparing storers ability to relocate 
rewarded locations with non-storers failed to come up with 
consistently compelling evidence that the two groups of 
birds always differed in their spatial memory abilities (e.g. 
Healy 1995; Healy and Krebs 1992a, b).

These comparisons were somewhat hampered by the 
fact that for several research groups the non-storing spe-
cies were not especially closely related to the storing spe-
cies. North American chickadees and corvids might vary 
interspecifically in the amount of food they store, and the 
duration before which the food is retrieved, but all of them 
store food to some degree. And while there is variation in 
hippocampal volume depending on the degree of storing 
(both amount of food and duration of storage: Basil et al. 
1996; Gould et al. 2013; Hampton et al. 1995; Healy and 
Krebs 1992c), the biggest difference in hippocampal volume 
is that between storers and non-storers. One might expect 
that this should, then, lead to a bigger difference in cognitive 
performance, especially in spatial memory, between storers 
and non-storers. But no matter what kind of spatial memory 
test, be it more ‘natural’ whereby birds flew around rooms 
searching, and then relocating, food (e.g. Healy and Krebs 
1992a; Hilton and Krebs 1990; Krebs et al. 1990), or were 
tested with more traditional kinds of tests such as delayed 
matching to sample (e.g. Healy and Krebs 1992b) or tests 
of proactive interference (e.g. Hampton et al. 1998), the dif-
ferences in performance did not seem to be of the expected 
magnitude. While there was often a tendency for food storers 
to out-perform non-storers, this apparent difference did not 
often reach significance.

The most obvious differences, instead, came from pref-
erences for cue use, whereby food storers seemed to rely 
much more heavily on so-called spatial cues (e.g. the loca-
tion of a rewarded feeder) relative to visual cues (the colour 
of a rewarded feeder) than did non-storers when the two 
cue types were put in conflict during food retrieval sessions 
(Brodbeck 1994; Brodbeck and Shettleworth 1995; Clay-
ton and Krebs 1994b). Sometime later, however, even this 
preference for spatial over visual cues was shown not to be 
specific to food-storing species: non-storing great tits Parus 
major also prefer spatial over visual cues once they have had 
multiples experiences of a rewarded location (Hodgson and 
Healy 2005) and food-storing mountain chickadees Poecile 
gambeli prefer colour over spatial cues when relocating food 
in an associative learning task (LaDage et al. 2009).

While the behavioural evidence for differences in spa-
tial memory between storers and non-storers was equivo-
cal, confirmation that the hippocampus really was key to 
the relationship between spatial memory and food storing 
was provided by evidence that the size of the hippocampus 
of food-storing birds grew in relation to food-storing expe-
rience (Clayton and Krebs 1994a; Healy et al. 1994; Healy 
and Krebs 1993). While the neural bases of this growth (e.g. 
increased cell spacing, cell size, more cells, or some other) 
are not yet well understood, data provided continuing impe-
tus to the search for ‘cognitive corroboration’ that hippocam-
pal volume was a good representation of cognitive capac-
ity. But it did take quite a bit more work before such data 
appeared, and when they did, they showed that a larger hip-
pocampus did not necessarily confer better spatial memory 
across the board. Rather it appeared that only some compo-
nents of spatial memory were better and, in the tits at least, 
these were specific to duration of spatial memory, rather 
than to capacity: food-storing tits could remember even a 
single location for longer than could non-storing tits (Biegler 
et al. 2001; McGregor and Healy 1999). It should be noted 
here, however, that the durations tested in these experiments, 
as for many of the laboratory experiments, were not ‘real-
world’ with respect to the durations over which food-storing 
birds typically leave stores before retrieval.

Around the time these data were collected, the difficulty 
for North American researchers of finding closely related 
non-storing species for comparison with storing species 
(note that there was quite a lot of work on corvids that dif-
fered in their dependence on food-storing, e.g. Balda et al. 
1997; Bednekoff et al. 1997) was reduced by the discovery 
that different populations of a food-storing species Poecile 
atricapilla differed in their performance on spatial tasks: 
black-capped chickadees from Alaska stored more food and 
recovered a greater proportion of their caches than did black-
capped chickadees from Colorado. Furthermore, the Alaskan 
chickadees had a larger hippocampus than did the Colorado 
chickadees (Pravosudov and Clayton 2002). The relation-
ship between climatic severity and hippocampal volume, 
with a presumed variation in dependence on stored food, 
and memory capacity, was later also seen along a gradient 
of environmental harshness from Alaska to Kansas, in wild 
and captive-raised birds (Roth et al. 2012; Roth and Pravo-
sudov 2009), and then in an altitudinal gradient in moun-
tain chickadees P. gambeli (Freas et al. 2013, 2012). These 
data from laboratory and wild contexts confirming each 
other have formed the basis for a continuing set of insights 
regarding food storing, spatial memory, and hippocampal 
structure. For example, there is now evidence for place cells 
in the hippocampus on food storers (Payne et al. 2021). In 
addition, the genetic basis for variation among the popula-
tions is being described (e.g. Branch et al. 2022; Pravosudov 
et al. 2012, 2013), experimental tests of spatial memory of 
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food storers in the wild are finally occurring (e.g. Cros-
ton et al. 2016; Shaw et al. 2015; Sonnenberg et al. 2019; 
Tello-Ramos et al. 2018), as well as evidence for survival 
(Branch et al. 2019b) and selective advantages to better spa-
tial memory (Branch et al. 2019a; Shaw et al. 2019). It may 
have taken a while but here is the confirmation of the pieces 
needed to show that food storing selects for better spatial 
memory and a bigger hippocampus (Krebs 1990; Smulders 
et al. 2010). This body of work also provides precision to the 
loose assumption that a big brain means a smarter animal. 
In this case, not a big brain, ‘just’ a bigger hippocampus, 
and not smarter, ‘just’ with better spatial memory. Natural 
selection can, and does, act rather precisely on specific parts 
of the brain and researchers particularly interested in evolu-
tion and animal cognition might consider how these data 
help them in thinking about the cognitive questions they ask 
of their own animals. Specifically, whether adding a neural 
component to their work might not also be beneficial.

Episodic memory

Who knows where such an investigation might lead? After 
all, work on food storing, spatial memory and the hippocam-
pus also led to one of the most impactful discoveries in ani-
mal cognition, a real step change, which was the discovery 
that animals had episodic-like memories (Clayton and Dick-
inson 1998). This work enabled animal cognition researchers 
to first imagine and then to design useful experiments to look 
for cognitive capabilities in their animals that had previously 
not apparently been within scope (e.g. cuttlefish Jozet-Alves 
et al. 2013). There have since been enthusiastic searches for 
episodic-like memory, which have resulted in serious con-
sideration of experimental designs and of types of memory 
(e.g. Babb and Crystal 2005; Bonardi et al. 2021; Eacott 
and Norman 2004; Feeney et al. 2009; Zhou and Crystal 
2011). Some of these involve what-where-when memories, 
others what-where-which memories, leading to the discov-
ery that a wide range of animals, in the wild as well as in the 
laboratory, can integrate all or some of the components of 
episodic-like memory (e.g. Janmaat et al. 2013; Jelbert et al. 
2014; Lo and Roberts 2019; Marshall et al. 2013; Roberts 
et al. 2008; Zinkivskay et al. 2009). These investigations will 
be much aided by technological advances both in the labora-
tory (automated tracking of storing and retrieval: Applegate 
and Aronov 2022) and in the field (neurologgers: Ide and 
Takahashi 2022).

If an animal has memories of its past such as what-where-
when memories, this raises the question as to whether the 
animal might use them to plan its future. After all, what 
value is a memory if not to aid in a decision right now, or 
to make a decision now that might help the animal to deal 
with an upcoming situation. Once the question was asked, 

again food storers provided the initial (Raby et al. 2007) 
and later (Gould et al. 2012) data that have led to a wealth 
of debate and new experiments directed at the cognitive 
capacities of animals. Perhaps disappointingly for discus-
sions that began in the context of natural selection, some 
of this debate has resulted in hierarchical interpretations of 
cognitive capabilities (e.g. feathered apes, Emery 2004). But 
the more important point is that the field of animal cognition 
is a long way from its origins and the work on food storing, 
spatial memory, and hippocampus (and the song learning 
literature) helped the field get to episodic-like memory and 
on to planning (the process of deciding in detail how to do 
something before one actually starts to do it). But this is also 
a point at which the neural analyses have tended not to have 
accompanied the behavioural data. Some pertinent neural 
analyses are proceeding but are currently dissociated from 
animal cognition and addressed to humans (e.g. Inostroza 
et al. 2013; McCormick et al. 2018).

Nest building

The food storing, spatial memory, hippocampus literature 
has directly led to methodological and empirical advances in 
animal cognition (as above). It is also now indirectly shaping 
investigation into a rather different behaviour, nest building 
in birds. Although this is a behaviour that for many remains 
stubbornly associated with innateness (e.g. Anholt 2020), 
over the past decade in particular, evidence has accumu-
lated steadily for a role for learning and memory in varying 
aspects of nest building. Much of the work has been focussed 
on a ‘model’ species in the laboratory, as the food-storing 
investigation began by being directed at just food storers 
and in the laboratory, because of the logistic problems of 
investigating the behaviour experimentally in the field. In 
the case of nest building, the zebra finch Taeniopygia guttata 
is the model, not least because it builds very readily under 
laboratory conditions, and with a wide variety of materi-
als (from strips of coloured coconut fibre or paper, through 
pieces of coloured string or wool, to materials held together 
by wire). It is also sometimes useful that having built one 
nest, a male zebra finch (the male is the primary nest builder 
in this species) will, if the finished nest is removed, almost 
immediately begin and proceed to complete another nest. 
Furthermore, zebra finch offspring become reproductively 
active at around three months old. Various attributes of 
building/building performance can then be examined/quan-
tified, including choice/preferences of material, amount of 
building, the success of building choices, and, of course the 
feature of nest building that has received some attention in 
the past, the morphology of the nest (typically weight but 
also dimensions such as height, depth, and breadth).
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As it was for food storing, the first experiments with nest 
building were addressed at determining what role learning 
and memory might play. Then and since, all of the experi-
mental work on nest building in zebra finches has contrib-
uted confirmation that the birds learn and remember a vari-
ety of features of material or the outcome of reproductive 
events. For example, males that build a nest with material 
of a colour they do not prefer will, if they successfully raise 
offspring from that nest, choose material of that colour to 
build their second nest (Muth and Healy 2011).

Sticking with materials that work was also seen in a test 
of whether birds will build to the ambient temperature. This 
has been proposed to explain why birds building in more 
northerly, higher, or cooler environments often build bigger 
nests and/or with thicker walls than do conspecifics build-
ing in more temperate climes (e.g. Crossman et al. 2011; 
Deeming et al. 2012; Mainwaring et al. 2014). And indeed, 
under experimental conditions zebra finches will build a nest 
that is bigger when the ambient temperature is cooler (con-
tains more pieces of string/material: Campbell et al. 2018; 
Edwards et al. 2020b). But in the Edwards et al. (2020a, b) 
experiment, some of the birds were switched to a room with 
the other temperature to build a second nest: half of those 
that had built their first nest at 18 °C built their second nest 
at 30 °C, and vice versa, and half the birds built their second 
nest at the same temperature as that at which they had built 
their first. At first the data appeared to confirm that com-
ment that one should never repeat a successful experiment 
because the birds did not build their second nest in response 
to the temperature. But for an animal cognition researcher, 
the birds did something said researcher might appreciate, 
because the second nest built by the birds depended on how 
well they had done with their first nest with regard to repro-
duction. Those birds that had produced offspring with their 
first nest, put the same number of pieces of material into 
their second nest as for their first. The birds that had not been 
reproductively successful with their first nest all put more 
material into their nest. In both parts of the experiment, add-
ing more pieces of material to the nest increased the nest 
temperature, and increased the probability of reproductive 
success. Just as in the earlier experiment in which builders 
had associated the colour of materials with the success of 
their nest, in this latter experiment birds associated either 
the number of pieces of material, or the temperature the nest 
reached with nest success.

There have been several other experiments that show 
birds choose among materials for their nest, for example, 
choosing material of the colour that matches the nest box 
and the walls of their cage (the first experimental evidence 
that birds camouflage their nests: Bailey et al. 2015) or 
choosing more rigid over flexible material. This choice of 
rigid material is sensible as it can take around half as many 
pieces of rigid material to build a nest than it takes with 

pieces of flexible material (Bailey et al. 2014). Zebra finches 
building in a nest box with a relatively small entrance hole 
will initially choose pieces of material that they can eas-
ily take into the box. However, with experience they will 
alter how they handle the material so that they can use all 
of the materials provided for building their nest (Muth and 
Healy 2014). Data from the wild also show that as weaver 
birds build more they improve their handling skills, and drop 
fewer pieces of grass (Walsh et al. 2013).

Increasing evidence, then, that nest building involves a 
lot more learning and memory than is usually assumed for 
this widespread avian behaviour. Like food storing, there is 
the possibility for taking a comparative approach because 
some birds do not build a nest at all (as non-storing birds 
do not store food; e.g. Emperor and King penguins Apteno-
dytes forsteri and A. patagonicus, common murre Uria 
aaige, and obligate brood parasites such as cuckoos), while 
some build apparently simple nests, some build nests that 
seem apparently more complex (e.g. domed nests as built by 
zebra finches, woven nests as built by weavers, nests stitched 
together by tailor birds or felted by penduline tits). Still oth-
ers build together (e.g. sparrow weavers), or build alone but 
add their nest to the local ‘apartment block’ (the sociable 
weavers). This variety offers rich potential for examining 
variation on physical cognition and social cognition, as well 
as learning and memory more generally.

Neuro + nest building

Investigating the neural basis of food storing was helped by 
the structural and functional work on the mammalian hip-
pocampus that had both preceded and was concomitant with 
the avian hippocampus work. In particular, there was clear 
support for the role of the hippocampus in spatial learning 
and memory, and for homology between the mammalian 
and avian hippocampus. For nest building, there is consider-
ably more work to be done with neural correlates (Hall et al. 
2015). But there are now data that implicate at least two per-
tinent brain regions. Some of these data are comparative, on 
cerebellum size and surface folding (foliation). The function 
of the vertebrate cerebellum (data mostly from mammals) 
is to control motor output especially manipulative abilities 
and may also play a role in cognition (Coolidge 2021; Habas 
2022; Honda et al. 2018). These roles are consistent with 
the finding that as nest complexity (as quantified into three 
very simplified categories: no nest, platform nest, cup nest) 
increases so does cerebellar foliation (Hall et al. 2013).

Immediate early gene activation (used as a molecular 
marker of neuronal activity) data have now implicated sev-
eral brain regions in nest building. For example, there is 
greater activity in the anterior motor pathway, which under-
pins sequential motor actions, and in the dopaminergic 
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reward system as builders pick up and take more pieces 
of material to their nest (Hall et al. 2014). There are also 
increases in activity in the social network and some cerebel-
lar folia with various building behaviours such as carrying 
material, depositing material, and tucking material into the 
nest structure (Edwards et al. 2020a). Thus far all of these 
neural data show roles for motor output and reward rather 
than clearly contributing to understanding the cognitive 
components of nest building.

Being in a position to predict where to look in the brain 
for a cognitive signal of nest building will require both bet-
ter functional understanding of relevant avian brain regions 
and a clearer description of the particular cognitive abilities 
required to build a nest. Both of these are far from straight-
forward. The first will require major efforts by avian neuro-
scientists, who will need to be encouraged to find the nec-
essary functional work interesting. Neuroendocrinologists 
might, at least, find the fact that in many species the builder 
is one sex or the other of some interest. For example, in 
zebra finches the male is the builder while in tits the female 
does the building. Because in zebra finches the females are 
sometimes observed to do some or nearly all the building, 
there seems a very plausible argument that sex hormones are 
involved in some way. But while there are some hormonal 
data on a range of behaviours considered to be ‘nesting’ 
behaviours, there are as yet, few data on a causal role for the 
sex hormones in nest building.

For animal cognition researchers the job will be to 
develop a more precise description of the cognitive abili-
ties required for nest building. Physical cognition might 
loosely appear to describe nest building (for those who are 
not convinced the behaviour is largely or entirely innate), 
but physical cognition is still a rather diffuse description, 
and one that has not yet led itself to clear predictions about 
its neural bases. The focus for physical cognition researchers 
is currently heavily on tool use, and behavioural descrip-
tions of the species, individuals, and contexts in which it 
occurs are increasing in appearances in the literature. There 
are some pertinent neural data on tool use in primates (e.g. 
McDowell et al. 2018; Tia et al. 2017) but these use tech-
nologies that are not yet appropriate for examining nest 
building. But given that builders will observe others, and 
change their building decisions as a result (if the birds they 
observe are familiar: Guillette et al. 2016), and perhaps even 
more usefully, will respond to videos of building (Guillette 
and Healy 2019) and even views of a nest (Breen et al. 2019; 
Camacho-Alpizar et al. 2021), perhaps functional scanning 
of nest builder brains may not be too far in the future. Fur-
thermore, although zebra finches do not appear to imprint 
on to the colour of the material of their natal nest (Muth and 
Healy 2012; Sargent 1965), they do learn about the colour 
of material to which they are exposed during post-fledging 
juvenile development (Breen et al. 2020), which opens a 

window of opportunity for examining neural function during 
this developmental stage.

Concluding remarks

The food storing, spatial memory, hippocampus work led 
to significant contributions in our understanding of all three 
components, behaviour, cognition, and neurobiology. These 
contributions did not come without challenges especially in 
adding the neurobiology to the cognition. But given that the 
value of putting the neuro together with the behaviour and 
cognition is so clear in the food-storing case, I hope that 
it will continue to inspire researchers in animal cognition 
to consider attempts to do likewise for their own favoured 
system.
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