
   

  

 







Abstract

The study of gravitationally localised quantum states, in which quantum particles are

bound together by their mutual gravitational interaction, has been a topic of considerable

research for over 50 years. Stemming from John Wheeler’s initial concept of an electro-

magnetic ‘geon’ [1], focus quickly converged on scalar fields with the introduction of the

objects today referred to as ‘boson stars’ [2]. It was not until more recently, however, that

the fermionic sector was properly addressed by Finster, Smoller & Yau [3], who success-

fully constructed the first numerical solutions to the coupled Einstein–Dirac system. The

resulting ‘particle-like’ objects, comprising pairs of neutral fermions, have become known

as ‘Dirac solitons’ or ‘Dirac stars’, and have been the focus of significantly less study than

their bosonic counterparts.

This thesis aims to expand the knowledge of Dirac solitons in a number of ways. First,

we conduct a detailed study of the many-fermion system (up to a total of 90 fermions),

and interpret the structure of the resulting solutions in terms of a ‘self-trapping’ effect.

We also find somewhat unexpected results for the behaviour of the excited states of these

many-fermion solitons. Second, we present particle-like solutions to the minimally-coupled

Einstein–Dirac–Higgs system, and show that, in the presence of strong coupling, a mass-

scale separation can occur, in which the total mass of the constituent fermions far out-

weighs the gravitational mass of the state. Finally, we introduce new singular solutions to

the Einstein–Dirac system, including the first normalised analytic solution. The properties

of these are somewhat unusual, but we show that many are related (and indeed can be

smoothly connected) to the non-singular Einstein–Dirac states.
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Chapter 1

Introduction & Background

The issue of reconciling quantum mechanics with general relativity is one of the outstand-

ing questions in modern theoretical physics. Given the current abundance and diversity

of candidate theories aimed at addressing this ‘quantum gravity’ problem, combined with

an associated lack of testable experimental hypotheses, it is clear that some form of di-

rection is required. Historically speaking, progress in physics is often made by analysing

the behaviour of approximate theories, in which the more troublesome aspects of the full

theory are purposely avoided, allowing the analysis of otherwise unattainable phenomena.

Applying this to the problem of quantum gravity, one obvious simplification is to treat

the gravitational field as a purely classical object, but it can also be advantageous to

approximate the matter sector, in order to avoid the calculational issues associated with

quantum field theory.

This latter approach is employed within the semi-classical Einstein–Dirac formalism,

where the interaction between a quantum wavefunction and a classical gravitational field is

considered. The associated particle-like states, referred to here as ‘Dirac solitons’, provide

an intriguing toy system in which the full dynamics of general relativity can be explored,

while still retaining a quantum aspect. Although the direct application of these objects

to the real world is somewhat debatable, their analysis may nonetheless prove useful in

indicating potential directions towards a full theory of quantum gravity.

1.1 Outline

This thesis is arranged as follows. The subsequent sections in this first chapter introduce

the wider context within which Dirac solitons are situated, starting with a discussion

of approaches to quantum gravity, followed by a non-technical review of gravitationally

localised quantum systems, including geons, boson stars and Dirac solitons. Thereafter

follows a brief summary of the necessary physics background required throughout the
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Chapter 1. Introduction & Background 1.1. Outline

thesis, namely an understanding of general relativity and the treatment of spin in curved

spacetime.

Chapter 2 contains a more technical introduction to Dirac solitons, starting with a

brief derivation of the equations of motion first obtained by Finster, Smoller & Yau [3].

We then detail the method used to generate numerical solutions to these equations, and

present a summary of the main known results for the two-fermion system. We also review

in detail the results concerning the internal zonal structure of Dirac solitons discovered by

Bakucz Canário et al. [4], as this will be relevant to much of the material in the subsequent

chapters.

Chapter 3 is the first of four research chapters, and concerns the discovery of a fermion

self-trapping effect. Results from this chapter have been published in ref. [5]. We begin by

reviewing the generalisation of the two-fermion system to that of many fermions, before

presenting numerical results illustrating how the behaviour of the system changes with

increasing fermion number. We then introduce the concept of optical geometry as a

convenient means for visualising the spacetime of Dirac solitons, and interpret the resulting

structures in terms of a fermion self-trapping effect. Thereafter follows a discussion as to

whether this effect can explain the characteristic spiralling behaviour of the soliton families.

Chapter 4 is a natural continuation of the preceding chapter, dealing with the be-

haviour of excited states in the many-fermion Einstein–Dirac system. This begins with a

discussion of the challenges to obtaining numerical solutions, due to the onset of multival-

uedness that occurs, followed by results illustrating the implications of this multiplicity

on the soliton families. The observed effects are then explained by analysing the internal

structure of individual states with high fermion number. Results from this chapter have

been published in ref. [6].

Chapter 5 concerns the inclusion of a minimally-coupled Higgs field to the Einstein–

Dirac system. We first review the Higgs mechanism and its application in this case, before

describing how numerical solutions to the Einstein–Dirac–Higgs system can be generated.

The properties of these are analysed and the appearance of a mass-scale separation is

illustrated, in which the ADM mass becomes parametrically smaller than the total mass

of the constituent fermions. We discuss possible explanations for this behaviour, including

those drawn from results of a large-r analysis, before concluding with a brief presentation

of infinite-redshift and many-fermion solutions. A summary of the results from this chapter

can be found in ref. [7].

In Chapter 6, we return to the bare Einstein–Dirac system, and present a selection

of new solutions, all of which exhibit a naked singularity at their centre. We show that

these are obtained by varying the small-r asymptotic expansions used when generating

solutions, and provide a detailed classification of the possible forms. We go on to analyse

2



Chapter 1. Introduction & Background 1.2. Quantum gravity

the often unusual properties of these singular solutions and illustrate their connection to

the original Einstein–Dirac states. We finish by presenting a new analytic solution to the

system, which, although singular, can be correctly normalised, with the resulting states

exhibiting zero total gravitational mass.

We conclude with a brief summary and discussion in Chapter 7.

1.2 Quantum gravity

Individually, the theories of general relativity and quantum mechanics represent two of the

major triumphs of 20th century physics, but taken together they appear fundamentally

incompatible. Both theories have proved highly successful within their own regimes, with

quantum mechanics (through its modern guise as quantum field theory) underpinning the

Standard Model of particle physics, and general relativity vital in our understanding of

modern astrophysics and cosmology. It is the general consensus, however, that a complete

understanding of gravity extends beyond that provided by general relativity, and that in-

evitably the theory must be altered at the quantum scale. It is hoped that, if such a theory

of ‘quantum gravity’ can be found, it would not only provide the required bridge between

quantum mechanics and general relativity, but also eliminate the somewhat disquieting

presence of singularities within the latter.

Naive attempts at ‘quantising’ the classical gravitational field, in analogy with the

other fundamental forces of nature, fail, however, due to the inherent non-renormalisability

of the resulting theory [8]. It is therefore generally considered that an entirely new ap-

proach is required, but despite intensive research over the past 70 years or so, no fully

satisfactory theory of quantum gravity has yet been formulated. Examples of candidates

that aim to construct such a theory from first principles include string theory [9], quan-

tum loop gravity [10] and causal set theory [11], while alternative approaches include

that of asymptotic safety [12], in which the problem of renormalisability is addressed by

introducing an ultraviolet fixed point to the field theory.

Common to all these theories is the assumption that Einstein’s general relativity is the

correct theory of gravity at large (non-quantum) scales. The discoveries of dark matter

and dark energy, however, have introduced an element of doubt to this position, and as

a consequence a variety of modified gravity theories have been suggested. Although the

majority of these are viewed as irrelevant to the quantum nature of gravity, one example of

a theory that is not is conformal gravity, the quantum version of which is claimed to be fully

renormalisable [13]. In addition, there are some physicists, perhaps most notably Roger

Penrose, who argue that the quantisation of the gravitational field is in fact unnecessary,

and that instead it is quantum mechanics that should be modified to accommodate the

principles of general relativity [14]. Full details of how to achieve this, however, have yet

3



Chapter 1. Introduction & Background 1.2. Quantum gravity

to be formulated.

It should be clear from the above discussion that there is thus no clear consensus on

how to approach the problem of quantum gravity, let alone a theory with which detailed

calculations can be performed. How then are we to proceed if we wish to study a par-

ticular system where the effects of quantum mechanics and general relativity are both

important (black holes for instance)? The answer is usually found in the approach known

as ‘semiclassical gravity’, in which the gravitational field is treated purely as a classical

entity. This is often justified by arguing that any quantum aspects of gravity should only

have a significant effect below distances approaching the Planck length, defined as:

lP =

√
ℏG
c3

≈ 1.616× 10−35m , (1.1)

or in situations where the spacetime curvature approaches or exceeds the order of the

Planck curvature, defined as:

RP =
c3

ℏG
≈ 3.829× 1069m−2 . (1.2)

Thus if we restrict ourselves to systems which do not approach these scales, we can safely

assume that quantum gravity corrections are negligible, and hence treat the gravitational

field classically.

In the majority of cases, however, this approximation alone proves insufficient to make

much progress. This is ultimately due to one essential feature of general relativity — the

back-reaction of the matter involved on the spacetime itself. As John Wheeler concisely

put it:

“Spacetime tells matter how to move; matter tells spacetime how to curve”. [15]

This proves problematic since in order to construct a quantum field theory, a fixed back-

ground upon which to do so is required. To include back-reaction, however, the matter

distribution and spacetime structure must be determined simultaneously, a calculation

that is beyond the current capabilities of quantum field theory. One solution to this

quandary is to make a further approximation, valid when the effects of back-reaction are

negligible for the system in question. In such cases, the spacetime is treated as a fixed

background, allowing a quantum field theory to be constructed and solved perturbatively.

Often, it is then possible for any (small) neglected effects of back-reaction to be subse-

quently included by an iterative process, for example. This approach, known under the

blanket term of ‘quantum fields in curved spacetime’ has proved highly successful, most

notably perhaps in the prediction of Hawking radiation from black holes [16], and its

application to cosmological inflation [17].

What should be the approach, however, when confronted with quantum systems in
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Chapter 1. Introduction & Background 1.3. Gravitationally localised quantum states

which the effects of back-reaction cannot be assumed negligible? This is the case, for

example, for gravitationally localised quantum states, the properties and indeed very ex-

istence of which rely heavily on the presence of back-reaction. For such systems, one

solution is to abandon quantum field theory entirely, and instead treat matter as a simple

quantum wavefunction. Coupling general relativity to what is then effectively a classical

field (with added properties) is fairly straightforward, allowing the full non-linear dynam-

ics of general relativity to be restored. It is within this general framework that the objects

under consideration in this thesis, Dirac solitons, are situated.

1.3 Gravitationally localised quantum states

1.3.1 Geons, boson stars & related objects

Before discussing Dirac solitons themselves, we first briefly review the history and develop-

ment of the related objects that preceded them. The first of these is the ‘electromagnetic

geon’, a singularity-free, particle-like object existing within the coupled Einstein–Maxwell

system. Initially introduced in 1955 by Wheeler [1], these entities can be thought of as

standing electromagnetic waves held together by their own self-gravity. A similar object,

consisting purely of gravitational waves (dubbed a ‘gravitational geon’), was subsequently

discovered by Brill & Hartle [18], this being an approximate solution to the vacuum Ein-

stein equations. It was later shown that in fact these two systems were governed by the

same set of leading-order equations [19]. Unfortunately, interest in both the electromag-

netic and gravitational geon was relatively short-lived, since it was discovered that the

solutions were most likely unstable [20], although more recently stable gravitational geons

have been argued to exist in anti–de Sitter spacetimes [21].

Geon-like objects for bosonic scalar fields were first constructed independently in 1968

by Feinblum & McKinley [22] and Kaup [2], these being localised solutions to the coupled

Einstein–Klein–Gordon equations. Initially referred to as ‘Klein–Gordon geons’, these

are better known today as ‘boson stars’. Unlike the electromagnetic and gravitational

geons, however, a stable branch of boson star solutions is known to exist [23–25], and thus

significant interest has been generated in these objects. In their usual formulation, boson

stars can be interpreted as macroscopic quantum states somewhat akin to Bose–Einstein

condensates, consisting of large numbers of bosons bound together gravitationally but

prevented from collapse by the effects of the uncertainty principle.

We shall not attempt to provide a comprehensive overview of the subsequent literature

on boson stars (excellent reviews of which can be found in refs. [26] and [27]), and instead

highlight only a few aspects of interest. Boson stars share many similarities with compact

astrophysical objects, for example the presence of a maximum gravitational mass analogous

to the Chandrasekhar limit. One finds that this maximum mass is inversely proportional to

5
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the boson mass itself, thus suggesting that boson stars consisting of ultra-light bosons may

be able to form stellar-sized objects. This feature has generated significant astrophysical

interest, with boson stars having been proposed as candidates for dark matter in galactic

halos [28, 29], and as black hole mimickers [30, 31]. Such applications of course rely on

the existence of a fundamental scalar matter particle (the axion for example [32]), thus

invoking theories beyond the Standard Model.

The dynamics of boson stars is also a subject worth reviewing. As mentioned, a

stable branch of states is known to exist, but what is the fate of solutions on the unstable

branch? The first attempt at addressing this question was by Seidel & Suen [33], who

performed a numerical evolution of the Klein–Gordon system in the context of spherically

symmetric perturbations. The results of this analysis indicated that unstable boson stars

can have two distinct fates, dependent on the type of initial perturbation — collapse to a

black hole, or migration to a solution on the stable branch with an associated expulsion of

scalar field to infinity. Later work by Guzmán [34, 35], however, reports instead collapse

to a black hole or total dispersal to infinity, depending on the binding energy of the initial

state. Although these results may appear contradictory, it is likely that the ultimate fate

of unstable boson stars is highly sensitive to the type of initial perturbation.

Finally, we note that gravitationally localised states have also been constructed for

massive spin-1 bosons, these being referred to as ‘Proca stars’ [36]. There have also been

various studies of geon-like objects in which both bosons and fermions are present (so-

called ‘fermion-boson’ stars) [37, 38], although in these cases the fermionic component is

treated using a fluid approximation.

1.3.2 Einstein–Dirac solitons

We now review the literature relating to gravitationally localised states consisting of Dirac

fermions. These have been known under various guises but today are commonly referred

to as either ‘Dirac stars’ or ‘Dirac solitons’. It is the latter that we shall utilise here.

Constructing such objects is significantly more challenging than for the bosonic case,

mainly due to the complexities associated with formulating the Dirac equation in curved

spacetime (see section 1.5), but also since the Pauli exclusion principle must be considered.

Dirac solitons have therefore been the subject of significantly less research than their

bosonic counterparts.

Early analysis by Ruffini & Bonazzola [39] and Lee & Pang [40] avoided many of

these complications by relying on elements of approximation, motivated by considering

Fermi–Dirac statistics and equations of state. As such their results are applicable only

for systems comprising large numbers of fermions, and at sufficiently low density. It was

not until 1999 that (numerical) localised solutions to the full Einstein–Dirac system were

finally constructed by Finster, Smoller & Yau [3]. The resulting particle-like states are

6



Chapter 1. Introduction & Background 1.3. Gravitationally localised quantum states

spherically symmetric, by virtue of comprising pairs of fermions arranged in singlet states,

and have the desirable property of being free from singularities. This initial analysis also

established the presence of a stable branch of solutions (at least with respect to spherically

symmetric perturbations), in analogy with that found for boson stars.

The same authors subsequently extended their formalism to include charged fermions

[41], discovering similar stable, particle-like solutions in the coupled Einstein–Dirac–

Maxwell system. Interestingly, bound states are shown to exist even when the overall

interaction is repulsive in the Newtonian limit. The addition of the electroweak interac-

tion has also been studied [42] by considering the Einstein–Dirac–Yang–Mills system, and

again stable localised solutions (in this case single-particle states) have been found. De-

tailed analysis involving black holes within the Einstein–Dirac system and its extensions

has also been performed [43–47], with the results in all cases proving that the Dirac fields

must ultimately disappear within the black hole horizon. This is perhaps surprising since

one might expect states with non-zero angular momentum to form stable orbits around the

black hole; these analyses show that this cannot be the case. In addition, rigorous proofs

of existence of Dirac solitons can be found in refs. [48–50], and a comprehensive analysis

of their Newtonian limit (solutions of the Newton–Schrödinger system) in refs. [51] and

[52].

More recently, particle-like solutions have been generated for the (conformally-coupled)

Einstein–Dirac–Higgs and Einstein–Dirac–Maxwell–Higgs systems [53]. We shall provide

a more thorough analysis of the former (within the minimally-coupled framework) in

Chapter 5. The internal structure of Dirac solitons has also recently been studied by

Bakucz Canário et al. [4], who derive an analytic solution to the massless Einstein–Dirac

system, and illustrate its relevance to an observed zonal structure. A detailed review of

this is presented in section 2.5. We note that this analytic solution (among others) was

independently found by Blázquez-Salcedo & Knoll [54], whose work in addition generalises

aspects of the Einstein–Dirac system to d dimensions (see also ref. [55]).

All of the above studies analyse Dirac solitons in a spherically symmetric context,

a convenience that provides much simplification to the equations of motion. Spinning,

axisymmetric solutions, however, have recently been presented by Herdeiro et al. [56],

representing states comprising only a single fermion. Included in their work is a comparison

between the spinning Dirac, boson and Proca cases, with an equivalent analysis concerning

the spherical states presented in ref. [57]. The results of these comparative studies indicate

that the three cases are qualitatively similar, but an important distinction is highlighted,

in that a proper treatment of the Dirac problem demands the normalisation of the fermion

wavefunction (a requirement unnecessary in the bosonic cases). Consequently, while in

bosonic systems the boson mass is a free parameter and the boson number can vary

considerably, in the Dirac system the fermion number is fixed (set equal to the number of

spinor fields) and it is the fermion mass that varies. Thus the macroscopic stellar-sized

7
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quantum states that exist in the context of boson stars, comprising a large number of light

particles, cannot be as easily obtained in the Dirac case.

It is of course possible to study ‘classical’ Dirac solitons, in which the normalisation

condition is left explicitly unsatisfied. Such an approach is employed in refs. [58–60], where

the effects of coupling various fields to the Einstein–Dirac system are investigated, and also

by Daka et al. [61], who consider the dynamical evolution of Dirac stars. This latter study

utilises a framework similar to that employed by Seidel & Suen to analyse the bosonic case

[33], and finds similar results (black hole formation and migration to a stable branch). It

is unclear, however, whether this behaviour would persist if the normalisation condition

were to be reinstated.

Finally, in relation to dynamics, it is important to note that, although these fermionic

objects are often referred to as ‘solitons’, their solitonic nature has yet to established,

i.e. it is not known whether they collide in a non-diffractive manner. Head-on collisions

of boson stars, however, have been performed, with solitonic behaviour reported for suf-

ficiently large initial momenta [62, 63]. More relevant, perhaps, is the case of ℓ-boson

stars [64], which are much more similar in structure to Dirac solitons. An analysis of the

collisions between these objects, however, reports no indication of solitonic behaviour [65].

Regardless of whether Dirac solitons can truly be considered solitons, we shall continue to

refer to them as such for the purposes of this thesis.

1.4 General relativity

We now proceed to the more technical aspects of this thesis, starting with a summary

of some relevant concepts in Einstein’s theory of general relativity. Undoubtedly one

of the finest achievements of 20th century physics, the theory has remained virtually

unchanged since its formulation over 100 years ago, and still constitutes our best current

understanding of the gravitational force. We shall not attempt to provide a thorough

review of general relativity, as this can be found in any good textbook on the subject

(Wald [66] for example, which uses many of the same conventions as we do), but instead

focus on those areas most relevant to the study of Dirac solitons.

1.4.1 Notation & Conventions

We begin by stating the notation and conventions used within this thesis. Throughout

we work in units where ℏ = c = 1, and additionally set the value of Newton’s constant

G to unity when generating numerical solutions, although factors of G are retained in

all written equations. The mostly-positive metric signature (−,+,+,+) is used, noting

that this is the opposite choice to that of Finster, Smoller & Yau in their analysis of

Dirac solitons. Tensors with (lowercase) Greek indices run over both space and time, with
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Chapter 1. Introduction & Background 1.4. General relativity

the Einstein summation convention assumed for repeated indices. On occasion, we shall

use Latin indices to indicate sums that run over purely spatial dimensions. The explicit

components of a tensor are labelled relative to the spatial co-ordinate system in question.

For example, in spherical polar co-ordinates (r, θ, ϕ) the components of a space-time vector

Aµ would be written as

Aµ ≡
(
At, Ar, Aθ, Aϕ

)T
. (1.3)

We note of course that θ and ϕ are themselves Greek letters, but to avoid confusion we

shall refrain from using these to label generic indices. Other conventions, involving for

instance the definitions of the Riemann and Ricci tensors, are detailed in the appropriate

sections that follow.

1.4.2 Spacetime metrics & curvature

The geometry of spacetime is that of a (3+1) dimensional pseudo-Riemannian manifold

that is everywhere locally Minkowskian (i.e. flat) and endowed with a metric gµν , which

encodes the notion of distance via the infinitesimal line element:

ds2 = gµνdx
µdxν . (1.4)

Ultimately the metric is the fundamental object that is used to distinguish between dif-

ferent spacetimes. In flat space, for example, the metric reduces to ηµν = diag(−1, 1, 1, 1),

referred to as the Minkowski metric, and the line element can be written simply as

ds2 = −dt2 + dx⃗ 2.

The flat-space concept of a derivative is generalised to curved spacetime via the co-

variant derivative ∇µ, which acts on a vector in the following manner:

∇νA
µ = ∂νA

µ + Γµ
νσA

σ. (1.5)

There is a straightforward generalisation of this to tensors of arbitrary rank. Here, Γµ
νσ

are the Christoffel symbols, which can be expressed in terms of the metric:

Γµ
νσ =

1

2
gµτ (∂νgστ + ∂σgτν − ∂τgνσ) . (1.6)

This relation uniquely determines the covariant derivative above (which should then

strictly be referred to as the Levi-Civita connection), and ensures that the covariant deriva-

tive of the metric itself vanishes, i.e. ∇µgνσ = 0.

The curvature of spacetime can be quantified using a variety of measures. Examples

include the Riemann curvature tensor, Rµ
νστ , the Ricci curvature tensor, Rµν , and the

Ricci scalar, R, which can be defined sequentially as follows:

Rµ
νστ = ∂σΓ

µ
ντ − ∂τΓ

µ
νσ + Γµ

σλΓ
λ
ντ − Γµ

τλΓ
λ
νσ ; (1.7)
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Chapter 1. Introduction & Background 1.4. General relativity

Rµν = Rσ
µσν ; (1.8)

R = Rµ
µ . (1.9)

The Ricci scalar is the simplest curvature invariant that can be constructed in general

relativity, and is often used as a convenient measure to assess the curvature of a particular

spacetime and the presence of singularities within it (infinite curvature providing a decent,

although not conclusive, indicator of an essential singularity). There exist spacetimes,

however, in which the Ricci scalar will evaluate to zero despite the presence of non-zero

(Riemann) curvature or indeed singularities. In many such cases, the Kretschmann scalar,

defined as:

K = RµνστR
µνστ , (1.10)

provides a more robust curvature measure. This quantity will prove particularly useful

when assessing the singular solutions presented in Chapter 6.

1.4.3 The Einstein equations

Thus far we have dealt purely with the geometry of spacetime, but how do we incorporate

matter into this picture? By analogy with special relativity, we can describe matter via

an energy-momentum tensor, Tµν , which is both symmetric and has zero divergence with

respect to the covariant derivative:

∇µT
µν = 0 . (1.11)

This latter property ensures the local conservation of energy. The task is then to relate

the energy-momentum tensor to some geometric quantity, in order to obtain an equation

that governs precisely how the distribution of matter affects the curvature of spacetime.

This quantity is required to be similarly divergenceless, leading Einstein to postulate the

following expression, referred to as the Einstein equations:

Rµν −
1

2
Rgµν = 8πGTµν . (1.12)

The terms on the left-hand side can be combined to form the Einstein tensor Gµν , and

a cosmological constant term, Λgµν , can be optionally included, although this is not of

relevance at the scales considered here. It is important to note that the Einstein equations

are a postulate of general relativity, i.e. they are not derivable from fundamental principles.

Indeed it is possible to construct alternative statements that nonetheless are consistent

with current experimental constraints. Such alternatives are of particular interest with

regard to the study of modified gravity theories that aim to address the dark matter and

dark energy problems.

When studying field theory in the context of general relativity, it is convenient to

utilise the Lagrangian formulation to allow the Einstein equations to be derived from a
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variational principle. The starting point for this is the action:

S =

∫ (
R

16πG
+ Lm

)√
−g d4x , (1.13)

where g is the determinant of the metric, necessary to obtain the correct form for the

volume element, and Lm is the Lagrangian density for whichever matter fields are present.

The first part of this expression is referred to as the Einstein-Hilbert action, chosen such

that the variation of (1.13) with respect to the metric tensor produces the Einstein equa-

tions, with the energy-momentum tensor defined as:

Tµν =
−2√
−g

δ

δgµν
(√

−gLm

)
. (1.14)

1.4.4 The Schwarzschild metric

Although the Einstein equations can be written fairly concisely, they in fact consist of a set

of (at most ten) coupled, non-linear differential equations, and hence constructing exact

analytic solutions proves challenging. One obvious simplification is to consider spacetimes

with well-defined symmetries, the existence of which can be expressed mathematically by

the presence of one or more Killing vectors, ξµ, for which the following holds:

∇µξν +∇νξµ = 0 . (1.15)

A spacetime is considered stationary if it possesses a timelike Killing vector, and considered

static if this Killing vector is hypersurface-orthogonal, i.e. if the spacetime consists of a

foliation of spacelike hypersurfaces defined by t = const.

The simplest non-trivial solution to the Einstein equations is the Schwarzschild metric,

which represents the spacetime around a static, spherically symmetric point mass. In this

case, the timelike Killing vector is δµt and that associated with spherical symmetry is δµϕ .

The Schwarzschild solution can be written in spherical co-ordinates as:

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2, (1.16)

where dΩ2 = dθ2+r2 sin2 θ dϕ2, and M is the total gravitational mass of the point particle

(see section 1.4.5). Note that the metric contains an essential singularity at r = 0 and a

black hole horizon at r = 2GM . This solution is of relevance to the study of Dirac solitons,

in that the notion of ‘particle-like’ is understood to imply that the spacetime approaches

the Schwarzschild form at a sufficiently large distance from the fermion source.

A generalisation of the Schwarzschild metric to that of a static, spherical object of
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constant density and radius R is given by the interior Schwarzschild solution:

ds2 = −1

4

[
3

(
1− 2GM

R

)1/2

−
(
1− r2

a2

)1/2
]2

dt2 +
dr2

1− (r/a)2
+ r2dΩ2, (1.17)

where a = (R3/2GM)1/2. This is valid only within the object (r ≤ R), and matches on

to the exterior Schwarzschild metric (1.16) for r > R. Note that this spacetime contains

no central singularity and no black hole horizon provided R > 2GM .

1.4.5 Mass in general relativity

The concepts of mass and energy in general relativity are not in general simple to define, in

essence due to the lack of a consistent, frame-independent definition for the energy of the

gravitational field (see chapter 11 of Wald [66] for a detailed discussion). For spacetimes

that are asymptotically flat, however, some progress can be made. For example, in such

cases the total Arnowitt–Deser–Misner (ADM) mass can be obtained by considering the

deviation of the metric from that of Minkwoski space as r → ∞. Applying this to the

Schwarzschild metric (1.16), one finds that the quantity M is in fact the total ADM mass

of the system.

This definition, however, is only valid strictly at spatial infinity. How then can one

quantify the concept of mass/energy contained within an arbitrary region? For space-

times that are static and spherically symmetric, in addition to being asymptotically flat,

an approximate answer is provided by the Komar mass. This quantity is calculated by con-

sidering the gravitational force (applied from spatial infinity) required to hold stationary

a test particle, and takes the following surface integral form [66]:

MK = − 1

4π

∫
S

1

χ
nµξν (∇νξµ) dS , (1.18)

where ξµ is a timelike Killing vector normalised such that χ =
√
−ξµξµ → 1 as r → ∞,

and nµ is the outward-pointing unit normal to the 2-sphere S. Using Stokes’s theorem

and applying the Einstein equations, this can be converted into a volume integral form:

MK = 2

∫
V

(
Tµν −

1

2
T σ

σgµν

)
nµξν dV . (1.19)

We shall make use of these expressions when analysing the interior mass distributions of

Dirac solitions. Note that the Komar mass evaluated at infinity coincides with the ADM

mass, as can be easily verified for the Schwarzschild metric (1.16).
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1.5 Spinors in curved spacetime

We now discuss the second background topic required for a technical understanding of

Dirac solitons, namely the treatment of fermions within the framework of general relativity.

Again we shall only give a brief summary of the required concepts. For a more detailed

discussion see for example refs. [67] and [68].

1.5.1 The Dirac equation in flat spacetime

We begin with a review of the situation in flat (Minkowski) spacetime. Unlike spinless

bosonic particles, which can be adequately described by a scalar field, the treatment of par-

ticles with non-zero spin necessitates the introduction of objects endowed with additional

structure. In the case of massive spin-12 fermions, the required objects are four-component

Dirac spinors Ψ(x), which are contained within the fundamental representation of the

Lorentz group. For a Dirac fermion of mass m, the spinor wavefunction obeys the (flat-

space) Dirac equation:

(iγ̄µ∂µ −m)Ψ = 0 , (1.20)

where γ̄µ are the flat-space Dirac gamma matrices, defined by their anti-commutation

relations:

{γ̄µ, γ̄ν} ≡ γ̄µγ̄ν + γ̄ν γ̄µ = −2ηµν , (1.21)

where ηµν is the Minkowski metric. In the Dirac representation, these 4x4 matrices take

the following explicit forms:

γ̄0 =

(
1 0

0 −1

)
; γ̄i =

(
0 σi

−σi 0

)
, (1.22)

where i ∈ {1, 2, 3} and σi are the standard Pauli matrices. Note that we are choosing to

label the flat-space gamma matrices with a additional bar in order to distinguish them

from their curved-space counterparts.

Note also that, although the spinor Ψ is written without any explicit spacetime indices,

this does not imply that it transforms as a scalar under Lorentz boosts Λµ
ν . Instead its

explicit transformation can be written as:

Ψ → exp

(
− i

2
ωµνσ

µν

)
Ψ ≡ SΨ , (1.23)

where σµν = − i
4 [γ̄

µ, γ̄ν ] and ωµν are the generators of the infinitesimal Lorentz transform:

Λµ
ν ≃ δµν + ωµ

ν . (1.24)

Using this transformation property, it is then straightforward to show that the Dirac

equation is indeed Lorentz invariant, as required.
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It is also possible to define an action from which the Dirac equation can be obtained

via a variational principle. This can be written as:

SD =

∫
Ψ(iγ̄µ∂µ −m)Ψ d4x , (1.25)

where the adjoint spinor Ψ ≡ Ψ†γ̄0. Varying this action with respect to Ψ then results

in the Dirac equation, the conjugate of which is obtained by varying with respect to the

spinor itself.

1.5.2 The vierbein formalism

How should one generalise the above formalism to curved spacetime, and thus general

relativity? The first obvious step is to define curved-space Dirac gamma matrices that

obey the generalised anti-commutation relations:

{γµ, γν} = −2gµν . (1.26)

One could then imagine obtaining the curved-space Dirac equation by simply replacing

the flat-space gamma matrices with those above and promoting the partial derivative to

a covariant derivative. This naive approach fails, however, since the resulting equation

will not be invariant under general co-ordinate transforms, ultimately due to the Lorentz

transformation properties of the Dirac spinor. One way to proceed is to utilise the principle

of equivalence, i.e. that at each point in the spacetime manifold, one can construct a flat,

locally inertial reference frame. Since we know how to deal with spinors in flat spacetime,

all that remains is to relate quantities written in the local inertial co-ordinate basis to those

in the general non-inertial basis. The vierbein (or tetrad) formalism achieves precisely this.

More formally, if we construct a set of local inertial co-ordinates Xa
p at a point p in

the space-time manifold, then the vierbein eaµ at that point is defined as:

eaµ(p) =

(
∂Xa

p

∂xµ

)
x=p

. (1.27)

This object should be interpreted not as a tensor, since it does not transform as one, but

instead as a set of four vector fields, with the first (Latin) index referring to the local

inertial co-ordinates and the second (Greek) index to the non-inertial co-ordinates. We

now have a means by which we can transform between quantities written in the two basis

systems, e.g. for a vector field:

Aa = eaµA
µ ; Aµ = e µ

a Aa . (1.28)

The generalisation to tensors of arbitrary rank follows straightforwardly. In particular, we
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can relate the metric tensor to the Minkowski metric via the following expression:

gµν = eaµe
b
νηab . (1.29)

Note that Latin indices are raised and lowered by the Minkowski metric, and Greek indices

by the full metric.

1.5.3 The Dirac equation in curved spacetime

How do we now apply the vierbein formalism to the Dirac equation? First, we can relate

the curved-space gamma matrices to their flat-space counterparts:

γµ = e µ
a γ̄a . (1.30)

One can easily check that the anti-commutation relations (1.21) follow as a consequence

of this definition. We then must address the problem of the derivative term. To this end,

we write the curved-space Dirac equation as:

(iγµDµ −m)Ψ = 0, (1.31)

where we have introduced a corrected derivative Dµ = ∂µ + Γµ. The explicit form of

the correction term Γµ can be determined by requiring that (1.31) be invariant under

general co-ordinate transforms. For this we follow the derivation found in ref. [67]. The

vierbein formalism allows us to work solely in a local inertial frame, and thus the condition

of covariance requires e µ
a DµΨ → SΛ b

a e µ
b DµΨ under a (position-dependent) Lorentz

transform Λa
b, with S defined as in (1.23). This implies that Γµ must transform in the

following manner:

Γµ → S ΓµS
−1 − (∂µS)S

−1 . (1.32)

For an infinitesimal Lorentz transform of the form (1.24), S and S−1 can be written as:

S ≃ 1− i

2
ωabσ

ab ; S−1 ≃ 1 +
i

2
ωabσ

ab , (1.33)

noting that ωab is now position-dependent. Substituting these into (1.32) then gives:

Γµ → Γµ − i

2
ωab

[
σab,Γµ

]
+

i

2
(∂µωab)σ

ab . (1.34)

This defines the Lorentz transformation property required to ensure that the Dirac equa-

tion remains invariant under general co-ordinate transforms. To determine the explicit

form of Γµ, note first that the vierbein transforms like a vector in the inertial frame:

eaµ → Λa
be

b
µ ≃ eaµ + ωa

be
b
µ . (1.35)
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One can then show that the quantity e ν
b ∂µeaν transforms as follows:

e ν
b ∂µeaν → e ν

b ∂µeaν + ω c
b e ν

c ∂µeaν + ω c
a e ν

b ∂µecν + ∂µωab . (1.36)

Contracting this with σab and multiplying by i/2, one finds that this is precisely the

transformation required for Γµ given in (1.34). Thus the appropriate derivative that acts

on a spinor field in curved spacetime is:

D = ∂µ +
i

2
σabe ν

a ∂µebν . (1.37)

16



Chapter 2

Einstein–Dirac solitons

We now review in detail the Einstein–Dirac system and the particle-like states that exist

within it. This comprises a derivation of the equations of motion, details on the numerical

method by which these can be solved, and a summary of the main results found for the

two-fermion system studied by Finster, Smoller & Yau [3]. In addition, we shall review

the more recent analysis of Bakucz Canário et al. [4] concerning the internal structure of

Dirac solitons, as well as calculating a variety of quantities used throughout the thesis.

2.1 Equations of motion

2.1.1 The two-fermion system

We begin by outlining the derivation of the equations of motion valid for the two-fermion

Einstein–Dirac system following ref. [3], although we note that expressions may differ due

to the difference in sign conventions. The starting point is the Einstein–Dirac action,

defined as:

SED =

∫ (
R

16πG
+Ψ

(
/D −m

)
Ψ

)√
−g d4x , (2.1)

where we have made use of the Feynman slash notation to write /D ≡ iγµDµ. Variation of

this action with respect to the adjoint spinor Ψ produces the curved-space Dirac equation

(1.31), while variation with respect to the metric results in the Einstein equations (1.12).

In this case, the matter Lagrangian density from which the energy-momentum tensor can

be obtained is simply:

Lm = Ψ
(
/D −m

)
Ψ . (2.2)

Note that together the Einstein and Dirac equations form a fully coupled system, since

the Dirac operator /D depends on the curved-space gamma matrices (and the vierbein),

which in turn depend on the metric.

To solve such a coupled system is evidently not straightforward, and thus to make
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progress we simplify the problem by seeking static, spherically symmetric solutions. In

spherical polar co-ordinates (t, r, θ, ϕ), the most general form for the spacetime metric can

be written as:

ds2 = − 1

T (r)2
dt2 +

1

A(r)
dr2 + r2dΩ2 , (2.3)

where the metric functions T (r) and A(r) depend only on the radial co-ordinate. Note

that the condition A(r) > 0 is required in order to preserve the metric signature. This

choice of metric implies that a vierbein may be constructed in which the only non-zero

components are et t = T , err =
√
A and eθθ = eϕϕ = 1. Thus the curved-space gamma

matrices can be written as:

γ0 = T

(
1 0

0 −1

)
; γr =

√
A

(
0 σr

−σr 0

)
; (2.4)

γθ =
1

r

(
0 σθ

−σθ 0

)
; γϕ =

1

r

(
0 σϕ

−σϕ 0

)
, (2.5)

where σr, σθ and σϕ are the Pauli matrices in spherical co-ordinates, defined in terms of

their usual Cartesian counterparts by:

σr = σ1 sin θ cosϕ+ σ2 sin θ sinϕ+ σ3 cos θ ; (2.6)

σθ = σ1 cos θ cosϕ+ σ2 cos θ sinϕ− σ3 sin θ ; (2.7)

σϕ =
1

sin θ

(
−σ1 sinϕ+ σ2 cosϕ

)
. (2.8)

Imposing spherical symmetry on the fermionic sector, however, is less straightforward,

since in general the presence of spin will identify a preferred direction in the spacetime.

The simplest solution to this problem is to consider the case of two fermions arranged

in a singlet state, where, despite each individual fermion having non-zero spin, the total

angular momentum of the overall state is identically zero. This is mathematically encoded

by introducing the following ansatz for the spinor wavefunction:

Ψa =

√
T (r)

r

(
α(r)ea

−iσrβ(r)ea

)
e−iωt , (2.9)

where a ∈ {1, 2} labels each fermion, and ea are two-component basis vectors with e1 =

(1, 0)T and e2 = (0, 1)T. Both fermions are chosen to have the same radial dependence,

controlled by the (real-valued) functions α(r) and β(r), and in addition the same mass

m and energy ω, with the latter controlling the harmonic time-dependence as standard

for a stationary state. We shall discuss the derivation of this ansatz in more detail when

considering the many-fermion system in section 2.1.2. If required, the total wavefunction

of the singlet state can be constructed using the Hartree–Fock formalism:

Ψ = Ψ1 ∧Ψ2 , (2.10)
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although this proves unnecessary in deriving the equations of motion.

The next task is to determine an explicit form for the Dirac operator /D. Although

it is possible to use the vierbein formalism and the expressions given in section 1.5, it is

more convenient to employ the approach formulated in ref. [69], using which the following

form for the Dirac operator can be obtained:

/D = iγµ∂µ +
i

2
∇µγ

µ (2.11)

= iγt
∂

∂t
+ iγr

(
∂

∂r
+

1

r

(
1− 1√

A

)
− T ′

2T

)
+ iγθ

∂

∂θ
+ iγϕ

∂

∂ϕ
, (2.12)

where in the second line the covariant derivatives of the gamma matrices have been explic-

itly evaluated, and the prime denotes a radial derivative. Using this, along with the spinor

ansatz (2.9), it is straightforward to evaluate the Dirac equation (1.31), which ultimately

reduces to the following two independent equations:

√
Aα′ = +

α

r
− (ωT +m)β ; (2.13)

√
Aβ′ = −β

r
+ (ωT −m)α . (2.14)

Turning to the Einstein equations, the energy-momentum tensor Tµν can be calculated

using (1.14). It can be shown that the variation of the second term in (2.11) vanishes for a

singlet state, leaving only the first term to consider. This results in the following expression

for the mixed energy-momentum tensor:

Tµ
ν = −

2∑
a=1

ℜ
{
Ψa (iγ

µ∂ν)Ψa

}
, (2.15)

the only non-zero components of which are:

T t
t = −2ωT 2

r2
(
α2 + β2

)
; (2.16)

T r
r =

2T
√
A

r2
(
αβ′ − βα′) ; (2.17)

T θ
θ = T ϕ

ϕ =
2T

r3
αβ . (2.18)

The Einstein tensor Gµν can be evaluated by using the expressions given in section 1.4.2,

from which we find the non-zero components to be:

Gt
t =

1

r2
(
−1 +A+ rA′) ; (2.19)

Gr
r =

1

r2

(
−1 +A− 2rAT ′

T

)
; (2.20)

Gθ
θ = Gϕ

ϕ =
A′

2r
− A′T ′

2T
+

2A(T ′)2

T 2
− AT ′

rT
− AT ′′

T
. (2.21)
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In principle, four Einstein equations can therefore be constructed, although it is clear that

spherical symmetry will guarantee that the θθ and ϕϕ equations are equal, as is evidenced

above. In addition, since the Einstein equations are divergenceless (∇µT
µ
ν = ∇µG

µ
ν = 0),

one of the remaining three can always be written in terms of the other two. This leaves

only two independent Einstein equations, which we choose for convenience to be:

−1 +A+ rA′ = −16πGωT 2
(
α2 + β2

)
; (2.22)

−1 +A− 2rA
T ′

T
= 16πGT

√
A
(
αβ′ − α′β

)
. (2.23)

These, along with the Dirac equations (2.13) and (2.14) form a set of four coupled dif-

ferential equations for the four unknown fields α, β, A and T . Solving this system fully

defines the wavefunction and spacetime for a pair of neutral, gravitationally-interacting

fermions, within the context of the Einstein–Dirac formalism.

2.1.2 The many-fermion system

Although initially valid only for systems of two fermions, the above derivation was sub-

sequently extended to include states consisting of an arbitrarily large (even) number of

fermions [43]. To achieve this, the fermions must be arranged in a filled shell, somewhat

akin to an atomic orbital, in order to guarantee that the total angular momentum remains

zero and the overall state is still spherically symmetric. More formally, a collection of

fermions, each with angular momentum j ∈ {1
2 ,

3
2 ,

5
2 , ...}, will constitute a filled shell if

there exists exactly one fermion for every possible projection of the angular momentum in

the z-direction (the value of which is denoted k). Elementary quantum mechanics dictates

that k can take only quantised values within the set {−j,−j + 1, ..., j − 1, j}, and thus

the total number of fermions in a filled shell is Nf = 2j + 1, a quantity that can take any

positive even value. Labelling the wavefunction of each individual fermion by its quantum

numbers {j, k}, the total wavefunction of the state can as before be constructed via the

Hartree-Fock product:

Ψ = Ψj,k=−j ∧Ψj,k=−j+1 ∧ ... ∧Ψj,k=+j−1 ∧Ψj,k=j . (2.24)

This overall state is guaranteed to have zero total angular momentum, and is therefore

spherically symmetric.

Encoding the notion of a filled shell of fermions into the Einstein–Dirac system requires

an amendment to the spinor ansatz (2.9). The precise form of this can be obtained by

requiring each spinor wavefunction Ψjk to be an eigenstate of the total angular momentum

operator J , with eigenvalue
√
j(j + 1), and the z-projected angular momentum operator

Jz, with eigenvalue k. In addition, to include fermions with both positive and negative

parity, each wavefunction must be an eigenstate of the parity operator P , with eigenvalue

±1 as appropriate. This calculation is similar to that implemented for the Hydrogen atom

20



Chapter 2. Einstein–Dirac solitons 2.1. Equations of motion

(see [70] for example), and the resulting spinor ansatz is

Ψ±
jk(t, r, θ, ϕ) =

√
T (r)

r

χk
j∓ 1

2

α(r)

iχk
j± 1

2

β(r)

 e−iωt, (2.25)

where ± indicates positive or negative parity (noting that all fermions in the filled shell are

required to have the same parity). As in the two-fermion case, there is a harmonic time

dependence, while the radial dependence is controlled by the real-valued fermion fields α

and β. The angular part of the wavefunction differs for each fermion, and is determined

by the two-component functions χ:

χk
j− 1

2

(θ, ϕ) =

√
j + k

2j
Y

k− 1
2

j− 1
2

(θ, ϕ)

(
1

0

)
+

√
j − k

2j
Y

k+ 1
2

j− 1
2

(θ, ϕ)

(
0

1

)
; (2.26)

χk
j+ 1

2

(θ, ϕ) =

√
j + 1− k

2j + 2
Y

k− 1
2

j+ 1
2

(θ, ϕ)

(
1

0

)
−

√
j + 1 + k

2j + 2
Y

k+ 1
2

j+ 1
2

(θ, ϕ)

(
0

1

)
, (2.27)

where Y l
m(θ, ϕ) are the usual spherical harmonics. A detailed calculation extending this

ansatz to d dimensions can be found in ref. [54]. Note that the factor of
√
T/r appearing

in (2.25) cannot be derived by such a calculation, and is added purely in order to simplify

the equations of motion. Note also that the two-fermion ansatz (2.9) can be recovered by

considering the case of j = 1
2 .

Using this amended ansatz, the derivation of the many-fermion equations of motion

follows in a similar manner to the two-fermion case, although significantly more care is

required when combining the angular parts of the spinors (see ref. [43] for details). As

before, each fermion obeys an identical Dirac equation and has an equal contribution to

the energy-momentum tensor, and thus it transpires that the equations of motion need

only a slight modification:

√
Aα′ = +

κα

2r
− (ωT +m)β ; (2.28)

√
Aβ′ = −κβ

2r
+ (ωT −m)α ; (2.29)

−1 +A+ rA′ = −8πG|κ|ωT 2
(
α2 + β2

)
; (2.30)

−1 +A− 2rA
T ′

T
= 8πG|κ|T

√
A
(
αβ′ − α′β

)
, (2.31)

where κ = ±(2j + 1), the sign of which indicates positive or negative parity. This set

of equations, henceforth referred to as the ‘FSY equations’, fully describes the behaviour

of a static, self-gravitating filled shell consisting of Nf = |κ| fermions of equal mass m

and energy ω. Despite being derived over 20 years ago, there exist no published results

presenting particle-like solutions of this system, although it is remarked in ref. [43] that

such states exist (within the context of charged fermions) and exhibit the same qualitative
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Chapter 2. Einstein–Dirac solitons 2.2. Generating particle-like solutions

behaviour as those in the two-fermion system. Here, in Chapters 3 and 4, we shall provide a

thorough analysis of these many-fermion states, and demonstrate that this is in fact untrue;

for sufficiently large numbers of fermions, the behaviour of the states differs significantly

from the two-fermion case.

Finally, one might be concerned as to the physical relevance of an isolated filled shell

of high-angular-momentum fermions. Certainly a more realistic situation, and one more in

keeping with the true spirit of the Pauli exclusion principle, would be to consider a series

of nested filled shells, the first of which contains two fermions, with each subsequent shell

adding a further two. Although such a construction can indeed be treated within a spheri-

cally symmetric framework, the resulting set of equations is significantly more challenging

to solve, since each shell will obey its own distinct Dirac equation with distinct energy

ω. Thus, in order to study systems containing large numbers of fermions (the cumulative

gravitational impact of which is of interest), the only computationally-feasible choice is to

work with the admittedly somewhat unrealistic concept of an isolated filled shell.

2.2 Generating particle-like solutions

We now address the issue of constructing localised, particle-like solutions to the FSY

equations (2.28)–(2.31), again following the method outlined in ref. [3]. These are the

states that we refer to as Einstein–Dirac solitons.

2.2.1 Boundary conditions

To solve the equations of motion we are of course required to specify boundary conditions

for the fields α, β, A and T . Since Dirac solitons are localised objects, the spacetime in

which they are contained must be asymptotically flat, i.e.

lim
r→∞

T (r) = 1 ; lim
r→∞

A(r) = 1 . (2.32)

In addition, the notion of particle-like implies that the fermion fields α and β must decay

sufficiently quickly at large r in order for the state to be normalisable. This property is

to be understood in relation to the norm of a state, which is defined as:

(Ψ|Ψ) =

∫
H
ΨγµΨnµ

√
−h d3x , (2.33)

where H is a space-like hypersurface with future-directed normal nµ, and h is the determi-

nant of the spatial part of the metric (2.3). This is simply the conserved charge associated

with the usual conserved Dirac current ΨγµΨ, and thus can be interpreted as defining the

particle number. A quantum treatment of fermions strictly requires the normalisation of

the spinor wavefunction, i.e. (Ψjk|Ψjk) = 1, such that each spinor field Ψjk is associated

22
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with precisely one fermion. Using the ansatz (2.25) and taking nµ = (T−1, 0, 0, 0), this

normalisation condition can be written explicitly as:

4π

∫ ∞

0

T√
A

(
α2 + β2

)
dr = 1 , (2.34)

the integrand of which can be interpreted as the probability of finding a fermion in an

infinitesimal region dr.

Both the conditions of asymptotic flatness and normalisation can be deduced from

the physical characteristics of a particle-like quantum state. In contrast, the remaining

boundary conditions, which are specified at r = 0, are obtained solely by ensuring that the

state contains no central singularity, a property that is certainly desirable but not neces-

sarily required. This regularity is realised by the following small-r asymptotic expansion

(valid only for positive κ):

α(r) = α1r
κ/2 +O

(
rκ/2+2

)
; (2.35)

β(r) =
1

κ+ 1
α1(ωT0 −m)rκ/2+1 +O

(
rκ/2+3

)
; (2.36)

A(r) = 1− 8πGκ

κ+ 1
ωT0α

2
1r

κ +O
(
rκ+2

)
; (2.37)

T (r) = T0 −
8πG

2κ+ 2
(2ωT0 −m)T 2

0α
2
1r

κ +O
(
rκ+2

)
, (2.38)

where α1 and T0 are unconstrained parameters. We note that this is by no means the

unique small-r expansion for the equations of motion; indeed it is not even the unique

non-singular expansion. It is, however, the unique non-singular expansion from which

normalisable solutions can be constructed. We shall discuss this further in Chapter 6.

As mentioned, the above asymptotic expansion is valid only for positive values of κ.

For negative parity states, the expansion is altered such that β becomes the dominant field

at small r. Note, however, that the FSY equations are symmetric under the transformation

{κ → −κ, m → −m, α → β, β → −α}. One can therefore obtain negative parity solutions

by solving the system for negative values ofm (with the expansion above) and subsequently

interchanging the fermion fields. Moreover, the change in relative sign of the fermion fields

has no effect on the properties of the solution, and thus anti-fermion states with positive

parity are equivalent to fermion states with negative parity. Similarly, anti-fermion states

with negative parity are equivalent to fermion states with positive parity. Throughout the

majority of this thesis we shall consider only positive parity, positive mass states, with the

exception being Chapter 6.

2.2.2 The rescaling method

For a specific choice of κ, the FSY equations (2.28)–(2.31) seemingly contain two free

parameters — the fermion mass m and the fermion energy ω. The small-r expansion
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(2.35)–(2.38) adds a further two unspecified parameters to the system in α1 and T0. The

values of three of these, however, will be constrained by satisfying the conditions of nor-

malisation and asymptotic flatness. Hence one would expect the particle-like solutions of

the FSY equations to constitute a one-parameter family of states, which indeed turns out

to be the case.

From a numerical point of view, imposing asymptotic flatness and normalisation is not

straightforward, however. Fortunately, a rescaling procedure exists through which these

conditions can be converted into constraints applicable at r = 0, greatly simplifying the

process of obtaining solutions. To understand this, first note that normalisable solutions

to the FSY equations automatically satisfy the condition A → 1 as r → ∞, but imply

only the weaker condition T → const. To remedy this latter discrepancy, a value for T0

must be chosen such that this constant is equal to one. This can be achieved by first

solving the system with an arbitrary specified value of T0, after which the solution can be

subsequently rescaled to ensure T → 1 as required. A similar rescaling trick can be used

to convert a solution with an arbitrary value of the normalisation integral to one which is

correctly normalised. More formally, we can seek normalisable solutions for the ‘unscaled’

fields {α̃, β̃, Ã, T̃} that satisfy T̃0 = m̃ = 1, along with the weaker boundary conditions:

lim
r→∞

T̃ (r) = τ ; (2.39)∫ ∞

0

T̃√
Ã

(
α̃2 + β̃2

)
dr = χ2 . (2.40)

Once obtained, these unscaled solutions can then be normalised and made asymptotically

flat by rescaling the fields and parameters as follows:

α(r) =

√
τ

χ
α̃(χr) ; A(r) = Ã(χr) ; ω = χτω̃ ;

β(r) =

√
τ

χ
β̃(χr) ; T (r) =

1

τ
T̃ (χr) ; m = χm̃ . (2.41)

We note of course that the unscaled solutions (denoted by an additional tilde) do not

represent physically acceptable states, and are merely a convenient tool to simplify the

numerical solving procedure. On occasion, however, it can prove enlightening to analyse

the behaviour of states in terms of their unscaled parameters, as we shall demonstrate in

Chapter 4.

The above rescaling procedure assigns values to two of the four previously unspecified

parameters in the unscaled system (T̃0 and m̃), leaving only α̃1 and ω̃ to be considered.

It turns out that ω̃ must be tuned in order to obtain normalisable solutions (i.e. those in

which the fermion fields decay at large r), while α̃1 is a truly free parameter that can take

any positive value, and thus parametrises the families of particle-like states. Note, however,

that the physical (rescaled) quantity α1 cannot be used in a similar manner. Instead it is
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T0 that acquires the role of a free parameter, and hence the equivalent physical quantity

that should be used to identify states is the central redshift z, defined as:

z = T0 − 1 , (2.42)

which can also take any positive value. This can be used as a measure of the central

compactness of a state, or alternatively how relativistic a state is, with z ≈ 1 marking the

boundary between non-relativistic (low-redshift) and relativistic (high-redshift) states. In

the Einstein–Dirac system, z and α̃1 are guaranteed to be in one-to-one correspondence,

and thus they can be used interchangeably. This does not apply, however, to the Einstein–

Dirac–Higgs system studied in Chapter 5.

As a final remark, we note that the classical analysis of Dirac solitons does not re-

quire the normalisation of the spinor wavefunction, and therefore in such a treatment the

fermion mass becomes an additional free parameter in the system. The number of fermions

is then determined by evaluating the norm (Ψ|Ψ), which in the classical case is no longer

required to equal one. Hence the possibility of obtaining highly compact, macroscopic

states that contain large numbers of light fermions can be realised. In contrast, in the

quantum treatment, the fermion mass is not a free parameter, and by dimensional analysis

is required to be of the order of the Planck mass. Thus quantum Einstein–Dirac solitons

should be thought of as microscopic, Planck-scale states that contain a relatively small

number of ultra-high-mass fermions.

2.3 Useful quantities

Before presenting numerical examples of Dirac solitons, we first derive expressions for a

variety of quantities that will prove useful in studying their properties.

2.3.1 Fermion densities

The first of these is the fermion number density nf (r), defined as the number of fermions

per unit volume, the form of which can be deduced from the normalisation condition

(Ψjk|Ψjk) = 1. Using the expression for the norm in (2.33) and evaluating the integrand,

we obtain the following expression for the total number of fermions Nf = |κ|:

Nf = Nf (Ψjk|Ψjk) = Nf

∫
H

T

r2
(
α2 + β2

)√
−h d3x . (2.43)

Identifying the spatial volume element dV =
√
−h d3x, the fermion number density can

therefore be written as:

nf (r) = Nf
T

r2
(
α2 + β2

)
. (2.44)
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One might then be tempted to define the fermion energy density as simply ω × nf , but

this turns out to be incorrect. Instead, the energy density ρf (r) is obtained from the tt

component of the energy-momentum tensor, and takes the form:

ρf (r) = ωNf
T 2

r2
(
α2 + β2

)
. (2.45)

Comparing this with (2.44) implies that each fermion has a ‘local’ energy ωT (when viewed

by an observer at spatial infinity). Since the system is spherically symmetric, it will often

be more instructive to consider radial fermion densities (i.e. densities per radius as opposed

to per volume). We shall define these quantities as r2nf (r) and r2ρf (r) respectively, noting

that we have dropped the factor of 4π that should strictly be included.

2.3.2 Gravitational mass

Since Dirac solitons are localised solutions to the static, spherically symmetric FSY equa-

tions, the spacetime outside the fermion source asymptotes towards the usual Schwarzschild

form (1.16). Hence the total ADM mass M of a state can be obtained by simply comparing

this to the form of the metric (2.3) at large r, i.e.

M = lim
r→∞

( r

2G
(1−A(r))

)
. (2.46)

To analyse the gravitational mass distribution within the fermion source, we turn to the

Komar mass (see section 1.4.5). Using the surface integral form (1.18), and taking the

surface S as a 2-sphere of radius r, the Komar mass evaluates to:

MK(r) = − 1

4π
r2
∫ π

0
sin θ dθ

∫ 2π

0
dϕ

1

V
nµξν (∇νξµ)

= −r2
√
A

T ′

T 2
, (2.47)

where we have taken the outward pointing normal to be nµ = (0,
√
A, 0, 0)T and the

time-like Killing vector to be ξµ = (1, 0, 0, 0)T. This quantity can be interpreted as the

gravitational mass contained within a sphere of radius r. An alternative expression can be

obtained by using the volume integral form (1.19), with V taken to be a spherical volume

of radius r with future-directed normal nµ = (T, 0, 0, 0)T. This evaluates to:

MK(r) = 8π

∫ r

0

(
T t

t −
1

2
Tµ

µ

)
gtt

T√
A

s2 ds

= 4πNf

∫ r

0

(
2ωT (α2 + β2)−m(α2 − β2)

) 1√
A

ds , (2.48)

where we have used the explicit forms for the components of the energy-momentum tensor.

Note that this integral form is valid only if the spacetime does not contain a singularity,

since Stokes’s theorem is used in its derivation. Also note that the total Komar mass
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MK(∞) coincides with the ADM mass M , as can be easily verified by substituting the

Schwarzschild metric into (2.47).

2.3.3 Curvature invariants

A variety of measures that can be used to assess the curvature of a spacetime were intro-

duced in section 1.4.2. Here, we shall only present explicit expressions for the two scalar

curvature quantities (the Ricci scalar and the Kretschmann scalar), since these prove use-

ful in detecting the presence of singularities. Starting with the Ricci scalar, an expression

in terms of the metric fields A and T can be obtained by performing a lengthy calculation

involving the sequence Christoffel symbols → Riemann tensor → Ricci tensor → Ricci

scalar. This results in the following:

R =
2

r2
− 2A

r2
− 2A′

r
+

4AT ′

rT
+

A′T ′

T
− 4A(T ′)2

T 2
+

2AT ′′

T
. (2.49)

Alternatively, the Ricci scalar can be written in terms of the energy-momentum tensor by

taking the trace of the Einstein equations (1.12):

R = −8πGTµ
µ (2.50)

= 8πG
mNf

r2
T (α2 − β2) . (2.51)

This is a much more convenient expression from a numerical point of view, since it does

involve any derivatives. Note, however, that this evaluates to zero when m = 0, and thus

the Ricci scalar cannot provide a reliable measure of curvature in such cases. We therefore

turn to the Kretschmann scalar, for which the following expression in terms of the metric

fields can be obtained by using (1.10):

K =
4

r4
(1− 2A+A2) +

2

r2

(
(A′)2 +

4A2(T ′)2

T 2

)
+

1

T 2

(
A′T ′ + 2AT ′′)2

− 8

T 3

(
AA′(T ′)3 + 2(AT ′)2T ′′)+ 16

T 4

(
A2(T ′)4

)
. (2.52)

We can then use the form for the Ricci scalar (2.49), along with the FSY equations

themselves, to eliminate the derivative terms, and thus obtain the following lengthier, but

more numeric-friendly expression:

K =
4

r4

(
3Â2 +∆2 + 3ÂΞ +∆Ξ+ 2ÂΩ+ Ω∆+ 2ΞΩ + 6Ξ2 + 3Ω2

)
, (2.53)

where

Â = A− 1 ; (2.54)

∆ = −8πGNfωT
2(α2 + β2) ; (2.55)

Ξ = 8πGκNf
Tαβ

r
; (2.56)
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Ω = 8πGNfmT (α2 − β2) . (2.57)

We shall make particular use of these curvature invariants when analysing the properties

of our singular solutions in Chapter 6.

2.4 Two-fermion states: a review

We now present a brief summary outlining the behaviour of the two-fermion system, in-

cluding examples of individual numerical solutions as well as the spiralling nature exhibited

by the families of states. Results for this system were first presented by Finster, Smoller

& Yau in ref. [3], and much of what follows is contained therein, although here we extend

the analysis to much higher excited states.

2.4.1 Individual states

The procedure for generating particle-like solutions of the FSY equations (2.28)–(2.31)

can be summarised as follows. In terms of numerics, we find Mathematica’s differential

equation solver, NDSolve, to be more than adequate, and utilise its built-in explicit Runge-

Kutta method. An accuracy of 8 digits is usually sufficient for the two-fermion system,

although to obtain ultra-high-redshift states this needs to be increased. We initialise the

numerical solver at a small, but non-zero, radius, using the small-r asymptotic expansion

(2.35)–(2.38), and initially seek unscaled solutions for which m̃ = T̃0 = 1. For each choice

of the parameter α̃1 (or equivalently z), a discrete set of particle-like states is found to

exist, with a distinct ground state and an infinite sequence of excited states, each with an

increasingly higher (unscaled) fermion energy and an increasing number of nodes (zeros) in

the fermion fields α and β. To obtain these states, we implement a 1-parameter shooting

method (a simple binary chop) in ω̃, and search for normalisable solutions that contain

the appropriate number of fermion field nodes. Once acquired, these unscaled solutions

can be converted into normalised, physical states by using the rescaling technique outlined

in section 2.2.2.

Examples of three such states are shown in Fig. 2.1, where for each we plot the radial

profiles of the fermion fields α and β, the metric fields A and T , and the radial fermion

energy density r2nf (with nf defined as in (2.44)). All three states have the same central

redshift z = 2.00, but differ in the number of fermion field nodes n. Note that we are

choosing to label states by the total number of nodes in α and β; thus the n = 1 state

contains a single node in β and none in α, while the n = 8 state contains four in each. This

numbering system encompasses both positive and negative parity states, with even values

of n denoting the former and odd values the latter. We therefore refer to the n = 0 state

as an even-parity ground state, the n = 1 state as an odd-parity ground state, and the

n = 8 state as a fourth even-parity excited state. Since this terminology can be somewhat
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Figure 2.1: Plots showing the radial profiles of the fermion fields, metric fields and radial fermion
energy density for an n = 0 state (left), an n = 1 state (middle) and an n = 8 state (right). All
three states have the same central redshift z = 2.00. Included as dashed lines alongside the metric
fields are the corresponding Schwarzschild forms ASch and TSch. Radial distances are measured
in units of the Planck length lP =

√
ℏG/c3, and two measures of radial extent, R̄ and R99, are

shown. Numerical values of quantities such as the fermion mass and energy for these states can be
found in Appendix B.

confusing, we shall attempt always to specify the value of n when discussing excited-state

solutions, although for the majority of this thesis (with the exception of Chapter 4) we

are concerned solely with n = 0 even-parity ground states.

With regard to the spacetime structure of the states shown in Fig. 2.1, all three exhibit

similar metric field profiles, with T decreasing monotonically from a central maximum,

while A drops from an initial value of 1 before ultimately rising again. Both fields latch

on to their appropriate Schwarzschild forms, T−2
Sch = ASch = 1 − 2GM/r, at large r and

asymptote towards 1 as required. These features are observed to be common to all (non-

singular) particle-like solutions of the FSY equations. The presence of additional fermion

field oscillations in the n = 8 state results in corresponding oscillations in A. These are

of relatively small-amplitude, however, indicating that the spatial distortion caused by

excited states is less pronounced, although it is spread over a larger radial extent.

An indication of the distribution of the fermion source can be obtained by considering
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Chapter 2. Einstein–Dirac solitons 2.4. Two-fermion states: a review

the radial fermion energy density profiles. These are almost identical for the n = 0 and

n = 1 states, despite the additional fermion node in the latter, while the effects of the

fermion field oscillations are clear to see for the n = 8 state. Note that the larger the peak

in the radial energy density, the larger the amount of local spatial distortion as measured

by the metric field A. Included on the fermion plots are also two measures of soliton

radius, R99 and R̄. The former is defined as the smallest radius which contains 99.9% of

the total ADM mass of the state, while the latter is defined as:

R̄ =

(
4π

∫ ∞

0
r2

T√
A

(
α2 + β2

)
dr

)1/2

, (2.58)

i.e. the rms radius of the state weighted by the radial fermion probability density. These

two quantities fulfil different purposes. Whereas R99 can be used as a basic estimate of

the total radial extent of the fermion source, R̄ is a more subtle measure that takes into

account its interior distribution. We shall utilise both these notions of radius throughout

this thesis. In relation to the solutions in Fig. 2.1, note that the n = 8 state has a much

larger radius (by either measure) than the n = 0 and n = 1 states, in order to accommodate

the additional oscillations in the fermion fields. Note also that, although the sizes of these

states are only of the order of tens of Planck lengths, this is purely a consequence of

studying fermions which interact only gravitationally. In more realistic models, where for

example the fermions are charged, one would expect states to be significantly larger in

extent.

2.4.2 Families of states

Taken together, individual solutions with a common value of n form a continuous family

of states parametrised by the central redshift z (or equivalently the unscaled parameter

α̃1). Within these families, it is found that quantities such as the fermion mass and

energy oscillate towards constant values as the redshift increases, resulting in a spiralling

behaviour when these are plotted against each other.
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Figure 2.2: The behaviour of the family of n = 0 ground-state solutions, showing the fermion
binding energy (left), the soliton radius (middle), and the total binding energy (right) as a
function of fermion mass. The insets show zooms of the spiralling parts of the curves, and the
total binding energy is separated into stable and unstable branches. All masses and energies are
measured in units of the Planck mass mP =

√
ℏc/G.
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The realisation of this for the n = 0 ground state is shown in Fig. 2.2, where we plot

the fermion binding energy m− ω, the soliton radius R99 and the total binding energy of

the state Eb as a function of the fermion mass. This latter quantity is defined as

Eb = M −Nfm, (2.59)

i.e. the difference between the ADM mass of the state and the mass of Nf (in this case

two) isolated fermions. Note that, with this definition, a state is considered bound if it

is has a negative value of Eb. There are a number of important features to extract from

these plots. First, there exists a maximum fermion mass, mmax ≈ 0.607mP, beyond which

ground-state solutions do not exist, and similarly an accompanying maximum ADM mass,

Mmax ≈ 1.168mP. It is understood that these limits owe their existence to the fact that

the repulsive effects of the uncertainty principle cannot prevent the gravitational collapse

of states above a certain mass threshold (in analogy with e.g. the Chandrasekhar limit).

Both the fermion binding energy and the mass-radius relation for the n = 0 family

exhibit a spiralling behaviour, as mentioned, where the central redshift increases monoton-

ically from zero (at m = 0) to an infinite value at the centre of the spirals. Low-redshift,

non-relativistic states have a large radial extent, since they consist of (relatively) light

fermions, and can be well-approximated by solutions to the Newton-Schrödinger system

(see ref. [51] for details). We derive some of the low-redshift scaling relations that exist

between quantities in Appendix A. A consequence of this spiralling behaviour is that, in

the relativistic regime, there can exist multiple ground-state solutions with the same value

of the fermion mass. This is perhaps surprising, since one might expect there to be a

unique equilibrium configuration for a pair of gravitationally-bound fermions of mass m,

and this is indeed the case in the non-relativistic regime. This behaviour appears to be a

consequence of the non-linear nature of general relativity, as we shall discuss further when

considering the fermion self-trapping effect in Chapter 3.

The total binding energy plot in Fig. 2.2 also includes information concerning the

stability of solutions. It was shown in ref. [3], using Conley index theory, that states

with redshifts below that of the maximum-mass state are stable to spherically-symmetric

perturbations, while those with redshifts above are unstable. The unstable branch thus

includes solutions in which the total binding energy is negative and one might naively

expect to be stable. This overall behaviour is similar to that of many compact astrophys-

ical objects, in which the maximum mass similarly corresponds to a stable-to-unstable

transition point. It is important to remember, however, that all states on the n = 0 curve

(and indeed higher n curves) are static, i.e. they are equilibrium configurations in which

the gravitational attraction between the fermions is precisely balanced by the repulsive

effects of the uncertainty principle. Thus, left unperturbed, these states will continue

to exist ad infinitum, with the fermion wavefunction oscillating at a constant frequency

ω. What distinguishes the stable and unstable branches is the behaviour of states under
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Figure 2.3: The behaviour of (even-parity) excited-state families of solutions, showing the fermion
binding energy as a function of fermion mass (left) and the total binding energy as a function of
soliton radius (right) for families with the values of n indicated.

small perturbations; those on the stable branch will ultimately return to their original

form, while those on the unstable branch will not (tending to collapse, explode, or decay

to stable states).

Similar spiralling families exist for states with higher values of n, a selection of which

are shown in Fig. 2.3, where we plot the fermion binding energy as a function of fermion

mass, and the total binding energy as a function of radial extent. Note that we are

restricting our analysis here to even-parity states. The curves are qualitatively similar for

all values of n, although the higher excited-state spirals become increasingly distorted. The

maximum values of both m and ω increase with increasing n, and indeed an extrapolation

indicates that states can exist with arbitrary large values of fermion mass, ADM mass

and fermion energy, provided they are sufficiently excited. Interestingly, the total binding

energy shows a general decrease with increasing n, to such an extent that, for n ≥ 14, all

states become bound. This does not of course imply stability; indeed we would expect

the maximum-mass state for each family to again represent a stable-unstable transition

point. It does, however, suggest that highly excited states should remain localised under

perturbations, since delocalisation would be energetically unfavourable.

We end this section with a remark on terminology. The word ‘excited’ has been used

here to designate states with higher numbers of fermion nodes, but this does not necessar-

ily imply higher fermion energy as one would expect from a non-relativistic perspective.

If we were to consider the set of states at a constant fermion mass, for example, we

might find that (for large fermion masses) an ‘excited’ state in fact has the lowest possible

energy, or indeed (due to the spiralling nature of families) that more than one ‘ground-

state’ solution exists. Comparing states instead at constant redshift somewhat mitigates

this inconsistency, although only for systems with small numbers of fermions. Thus the

term ‘excited’ here should solely be regarded as referring to the number of fermion nodes

present in a particular state. Interestingly, however, the notion of ‘excited’ does apply as
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expected in the unscaled system, where each subsequent excited state does indeed have

a larger fermion energy than the last. This feature will prove particularly useful when

multivaluedness becomes an issue in Chapter 4.

2.5 Structure of Dirac solitons

We now review the more recent analysis by Bakucz Canário et al. [4] concerning the

internal structure of Einstein–Dirac solitons, which will prove relevant to much of the

material in Chapters 3 and 4.

2.5.1 The power-law solution

This begins with the discovery of an analytic, singular solution to the FSY equations

(2.28)–(2.31), valid when the fermions are massless, in which all fields exhibit a simple

power-law dependence. We note that this solution (extended to d dimensions) was also

independently found by Blázquez Salcedo & Knoll [54], who interpret it as a ‘light-like

singularity’. The metric and fermion fields for this solution take the following forms:

α(r) =

√
ω

12πGN2
fκ−

r ; A(r) =
1

3
;

β(r) =

√
ω

12πGN2
fκ+

r ; T (r) =
1

ω

√
N2

f

4
− 1

3
r−1 , (2.60)

where κ± = κ/2±
√
1/3. Note that this solution cannot be normalised, since the integrand

in the normalisation integral (2.34) diverges as r → ∞, and thus it is neither localised nor

should be considered a proper quantum state. The presence of a central singularity can

be inferred from the Kretschmann scalar (2.53), which evaluates to:

K =
8

3
r−4 (for κ > 0) ; K =

56

9
r−4 (for κ < 0) . (2.61)

This clearly diverges at small r and thus the spacetime is singular at r = 0. Note that

the Ricci scalar (2.51) evaluates to zero everywhere, since the solution is massless, and

therefore cannot be used for this purpose.

2.5.2 Zonal structure

Given that the above power-law solution is valid only when m = 0, its relationship to the

massive particle-like states of the Einstein–Dirac system is not immediately obvious. It

was shown in ref. [4], however, that, for relativistic states (z ⪆ 1), a zone exists in which the

mass terms in the equations of motion are vastly subdominant, and thus the wavefunction

in that region behaves as if the fermions were massless. This region is referred to as the
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Figure 2.4: (Left): Illustration of the zonal structure of Einstein–Dirac solitons, showing the
radial profiles of the metric and fermion fields for a highly-relativistic n = 4 state. The separation
into four distinct zones (core, power-law zone, wave zone and evanescent zone) can clearly be seen.
Note that the fields have been rescaled such that they appear constant within the power-law zone.
(Right): Behaviour of the power-law oscillations, indicating how the radii of extrema in the metric
field A vary as the redshift of the n = 0 state is varied. Also included are the boundaries of the
power-law zone (which we define as the radii at which A = 2/3) and the total radial extent of the
fermion source.

‘power-law’ zone, and is one of four distinct zones identified in the internal structure of

relativistic Dirac solitons.

This zonal structure is illustrated in the left-hand panel of Fig. 2.4, where we plot the

radial profiles of the fermion and metric fields (scaled by appropriate powers of r) for a

highly-relativistic n = 4 state. The four distinct zones can be described as follows. The

innermost is the ‘core’, in which the fields follow the small-r asymptotic expansion (2.35)–

(2.38). Thereafter follows the power-law zone, in which the fermion mass is negligible

compared to the local fermion energy ωT , and the fields do indeed approximately follow the

massless power-law solution (2.60). As we move further outwards in radius, ωT continues

to decrease and the fermion mass term becomes increasingly relevant, ultimately signalling

the end of the power-law zone. For excited states (n ≥ 2), a ‘wave zone’ is then entered,

which contains the fermion field oscillations that define the value of n. At even larger

radii, the local fermion energy drops to a value comparable to that of the fermion mass, at

which point the state transitions to the ‘evanescent zone’, where the fermion fields decay

exponentially and the metric fields are approximately Schwarzschild. For ground-state

solutions, the wave zone ceases to exist and there is therefore a direct transition from the

power-law zone (or core if the state is non-relativistic) to the evanescent zone.

Notice that the fields in the power-law zone do not follow the power-law dependence

precisely, and, in particular, damped, small-amplitude oscillations are in evidence near

the inner boundary. An analysis of these, for the metric field A, is shown in the right-

hand panel of Fig. 2.4, where the radii of the extrema in A are plotted as a function of

central redshift. Note that the power-law zone only appears at z ≈ 1, i.e. when the states

become relativistic, and its inner boundary shrinks towards r = 0 as the redshift increases,
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while its outer boundary tends to a constant radius. For non-relativistic states, a single

minimum in A exists, with subsequent pairs of extrema gradually appearing within the

power-law zone as the redshift increases. One can see that these oscillations are evenly

spaced in log(r) and shrink towards r = 0 along with the inner power-law zone boundary.

Overall, highly-relativistic states therefore contain an extended power-law zone with a

large number of ‘power-law oscillations’. It is noted in ref. [4] that the frequency at which

new extrema appear in the power-law zone coincides with that of the oscillations in m,

ω etc. that ultimately source the spiralling structures shown earlier in Fig. 2.2. This

suggests that there is a fundamental connection between the power-law oscillations and

the existence of a spiralling behaviour. We shall discuss this point further in Chapter 3.

2.5.3 Infinite-redshift states

As noted above, the inner boundary of the power-law zone shrinks towards r = 0 as the

central redshift is increased, while the outer boundary remains at a finite radius. This

implies that, in the limit of infinite redshift, the core zone should no longer exist, and the

power-law zone should extend all the way outwards from r = 0. In turn, this suggests that

the infinite-redshift state (the state that lies at the centre of the spirals) can be obtained

by simply replacing the small-r expansions (2.35)–(2.38) with the power-law expressions

(2.60) when generating solutions. This indeed proves to be the case, allowing such states

to be constructed numerically in a straightforward manner.

The infinite-redshift n = 0 state is shown in Fig. 2.5, where we plot the fermion

fields, the metric fields and the radial fermion energy density, as before. The power-law

dependence is evident at small r, up until the point at which the fermion mass term

becomes significant, and the state transitions to an evanescent zone. Note that the radial

fermion energy density approaches a constant value as r → 0, in contrast to the finite-

redshift solutions shown in Fig. 2.1. This implies that the volume density ρf (r) must

diverge as r → 0, and hence a central singularity is present, a fact that could be predicted

by considering the power-law form of the Kretschmann scalar. Note, however, that since

the radial probability density is finite at r = 0, the state can still be correctly normalised,
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Figure 2.5: The infinite-redshift n = 0 state, showing the radial profiles of the fermion fields,
metric fields and radial fermion energy density. This state is located at the centre of the n = 0
spiral shown in Fig. 2.2, as evidenced by the parameter values given in Appendix B.
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despite the existence of the singularity. As a final remark, one might wonder why the

infinite-redshift solution does not appear to exhibit power-law oscillations, unlike the finite

redshift states. The answer to this can be construed by considering again the right-hand

panel of Fig. 2.4. As the central redshift increases, each new pair of extrema appears at a

slightly smaller radius than the last, and thus, in the infinite-redshift limit, all power-law

oscillations will be located at precisely r = 0.

This concludes our brief summary of the two-fermion system. For further details, we

point the reader to the aforementioned refs. [3] and [4]. In the following two chapters, we

shall extend this analysis to many-fermion Dirac solitons, giving a physical interpretation

for the power-law oscillations as well as showing that the distinction between the power-law

zone and the wave zone ceases to exist in the context of many-fermion excited states.
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Chapter 3

The fermion self-trapping effect

We now begin the first research chapter of this thesis, which concerns the discovery of a

so-called fermion ‘self-trapping’ effect, where the fermion wavefunction becomes trapped

within highly distorted regions of spacetime, giving rise to a multi-shell-like structure.

We shall begin by presenting ground-state, particle-like solutions to the many-fermion

Einstein–Dirac system, in which this phenomenon is most prominent, before introducing

the concept of optical geometry, which acts as a useful tool for visualising the spacetime

of Dirac solitons. We then discuss the self-trapping interpretation itself and its impact on

the spiralling behaviour of solution families at large fermion number.

3.1 Many-fermion states

The procedure for generating localised solutions to the many-fermion Einstein–Dirac sys-

tem is almost identical to that employed in the two-fermion case, outlined in section 2.2.

We again initially search for unscaled solutions of the FSY equations (2.28)–(2.31), by

tuning the value of the unscaled fermion energy ω̃, before converting these into physical

states via the rescaling method. Given a system of Nf fermions, we find that, for each

value of α̃1 (or equivalently z), there exists a unique n = 0 ground state, with lowest un-

scaled energy ω̃0, as in the two-fermion system. This uniqueness does not extend, however,

to excited states (n ≥ 2), where instead we find that multiple solutions can exist that have

identical values for both n and α̃1. In this chapter, we shall restrict our analysis to n = 0

ground states (excited states are addressed in Chapter 4), and thus the required values

of ω̃ can be obtained via a simple 1-parameter shooting procedure, as was the case in the

two-fermion system. There is a slight complication, however — as the fermion number is

increased, the precision to which ω̃0 must be specified, in order to ensure that the numerical

solver reaches a radius at which the fermion fields have decayed sufficiently, also increases.

Although this does not require an alteration to the basic numerical method, solution gen-

eration becomes significantly more lengthy and challenging due to the complications that
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arise from working with numerics at high precision and accuracy. Fortunately, Mathe-

matica is particularly well-suited to this purpose, allowing us to obtain states containing

up to a maximum of Nf = 90 fermions (requiring 50-digit precision), which is more than

sufficient to demonstrate the fermion self-trapping effect discussed here. Note that this

limit is solely a consequence of our computational equipment, and could in principle be

extended by using a more powerful system.

The observed behaviour of states with large numbers of fermions is markedly different

from the two-fermion case, as is illustrated in Fig. 3.1, which shows three individual Nf =

90 states at three different redshift values. Recall that, in the many-fermion Einstein–Dirac

system, the fermions are arranged in a filled shell with each having an angular momentum

j = 1
2(Nf − 1). Thus one would expect the Nf = 90 fermion wavefunctions to exhibit

a single peak, centred around a large radius, consistent with the notion of a single shell

of high-angular-momentum fermions. This is precisely what occurs in the non-relativistic

regime, as can be seen for the z = 0.092 state shown in Fig. 3.1. Here, both the fermion

fields and the radial fermion energy density peak at a radius of approximately 480 lP, and
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Figure 3.1: Examples of three individual particle-like states for the Nf = 90 fermion system,
showing the radial profiles of the fermion fields, metric fields and radial fermion energy density
for states with redshift values of z = 0.092 (left), z = 8.02 (middle) and z = 92.1 (right). For
non-relativistic solutions, the fermion wavefunction exhibits a single peak, while for relativistic
states it breaks into a series of multiple shells.
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are relatively delocalised, resulting in a moderate spatial distortion as measured by the

metric field A.

Once the system becomes relativistic, however, the situation alters significantly. Con-

sidering first the mid-redshift z = 8.02 state, we see that the fermion wavefunction (and

energy density) appears to have split into four distinct peaks, with the inner three located

at a much smaller radius than one would expect high-angular-momentum fermions to oc-

cupy. The spatial distortion caused by these peaks is significant, as can be inferred from

the structure of the metric field A, due to the highly concentrated radial energy density

contained within them. In-between the peaks, there exist regions in which the probability

of finding a fermion is virtually zero, an observation supported by the fact that the metric

fields there are approximately Schwarzschild. This situation is amplified as the redshift is

increased further, with the z = 92.1 state exhibiting a total of 10 fermion peaks, although

those at larger radius are not as spatially separated.

The overall behaviour of relativistic states therefore appears more akin to what one

would expect from a multiple-shell model, where fermions of differing angular momenta

occupy shells at differing radii. But this is categorically not the situation here — each

fermion has precisely the same (total) angular momentum, and furthermore the wavefunc-

tion of each fermion has an identical radial dependence. Thus the observed splitting into

multiple shells cannot be attributed to angular momentum effects, and instead must have

an alternative origin.

Before discussing this origin in more detail, we first summarise the behaviour of the

system as the number of fermions is varied. This is illustrated in Fig. 3.2, where we plot

three states, each with an identical redshift value of z = 92.1, for three different values

of Nf . There are a number of features to note. First, all three states exhibit oscillations

in the fermion and metric fields, with the amplitude of these increasing as the fermion

number is increased. For the Nf = 20 and Nf = 40 states, the first oscillation is of large

enough amplitude to cause the inner peak to become separated from the remainder of

the wavefunction, whereas this does not occur for the Nf = 6 case. Furthermore, the

number of oscillations also increases with the fermion number, at least when comparing

states at constant redshift. Note that this is not particularly insightful, however, since

the number of oscillations at constant Nf itself increases with increasing redshift (as

evidenced in Fig. 3.1). This last observation makes it difficult to analyse precisely how

the structure of states changes as we vary the fermion number, since we would ideally

compare solutions that have an equal number of oscillations. Such a set of states cannot

be obtained by evaluating at constant redshift (or α̃1), however, nor does there appear to

be a simple scaling that relates the redshift to the number of oscillations. The analysis

we can perform is therefore limited in extent, but we are aided by the observation that,

once a peak fully forms, its height and width (in log(r)) do not change significantly as

the redshift is further increased. Using this feature, we find that, for sufficiently large Nf ,
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Figure 3.2: Illustration of the change in structure of many-fermion Dirac solitons as the number
of fermions is varied, showing the fermion fields, metric fields and radial fermion energy densities
for states with fermion numbers of Nf = 6 (left), Nf = 20 (middle), and Nf = 40 (right). All
three states have the same central redshift z = 92.1. Note in particular the increased separation
between the inner fermion peaks as the fermion number is increased.

and for peaks that are sufficiently well-separated, the height of each peak in r2ρf scales

approximately as N
2/3
f , while the width (in log(r)) scales as N

−2/3
f . Thus the peaks in the

energy density become progressively taller and narrower as the fermion number increases.

Intriguingly, this implies that, in the limit of infinitely many fermions, the energy density

should split into a series of delta functions, suggesting that some analytic progress may

be possible in the limit of Nf → ∞.

As a final remark, we note that the above oscillatory behaviour is in fact present at all

values ofNf , even for the two-fermion system studied previously, in which it manifests itself

as the small-amplitude power-law oscillations discussed in section 2.5. We thus conclude

that, as the fermion number increases, these oscillations increase in amplitude, ultimately

sourcing the extreme wavefunction splitting effects seen at large Nf . As further evidence

for this, we observe that all peaks in the fermion energy density (regardless of the value

of Nf ) are indeed located within the power-law zone, and in addition are evenly spaced

in log(r). The exceptions to this are the final fermion peaks, which are located within the

evanescent zone, and any inner peaks that are highly separated from the remainder of the

wavefunction, for which the log(r) spacing does not appear to hold.
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3.2 Optical geometry

How exactly are we to interpret the observed splitting of the fermion wavefunction into a

multiple-shell-like structure? To answer this question, we must analyse more thoroughly

the spacetimes associated with these highly-relativistic, many-fermion Dirac solitons. The

tool that will prove most useful in this regard is the ‘optical geometry’, a concept initially

introduced by Dowker & Kennedy [71] and Gibbons & Perry [72], and one which has

found a variety of applications within general relativity. It provides a means through

which the structure of a particular spacetime can be analysed from the perspective of

a null particle, allowing features such as the presence of ‘photon spheres’ (circular null

geodesics) to become obvious.

3.2.1 Optical embedding diagrams

This visualisation is achieved by constructing a so-called optical geometry embedding

diagram, the basic procedure for which is as follows. Given a static, spherically symmetric

spacetime with line element ds2, one first introduces the ‘optical metric’ ds̃2 by rescaling

ds2 such that the prefactor in front of the tt component is unity, i.e. we define:

ds̃2 =
1

gtt
ds2 . (3.1)

One can then implement the standard procedure for embedding the spatial part of a

spacetime within a Euclidean cylindrical co-ordinate system (h, ρ, φ), for which the line

element de2 takes the form:

de2 = dh2 + dρ2 + ρ2dφ2 . (3.2)

The aim is to construct a surface h = f(ρ) (the optical embedding diagram), within this

co-ordinate system, that is isometric to the spatial part of our optical metric. This can be

achieved by rewriting ds̃2 in the following form:

ds̃2 = −dt2 +

(
1 +

(
df

dρ

)2
)
dρ2 + ρ2dφ2 , (3.3)

where the two angular co-ordinates {θ, ϕ} have been combined into a single co-ordinate

φ by evaluating at θ = π/2, possible due to the redundancy that exists in spherically

symmetric systems. An expression for the surface h = f(ρ) can then be inferred by a

straightforward comparison of terms. We note that a standard, non-optical embedding

diagram can be obtained in a similar manner, by simply embedding the spatial part of the

original metric ds2 as above, without the initial rescaling.

Examples of optical embedding diagrams for various well-known spacetime metrics

can be found in refs. [73–77]. Of particular relevance here is the study of compact as-
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space

space

Figure 3.3: Standard and optical embed-
ding diagrams for the usual Schwarzschild
black-hole metric (1.16) (left), and a con-
stant density star described by the interior
Schwarzschild metric (1.17) (right). Both
solutions are generated with an ADMmass of
M = 1, while the interior solution represents
an ultra-compact star of radius R = 2.3.
Note that the black-hole Schwarzschild met-
ric is only embeddable for r > 2M (in the
standard case) and r > 9M/4 (in the op-
tical case). For the optical embedding dia-
grams, orbits corresponding to circular null
geodesics (photon spheres) are highlighted,
with those that are stable shown in green and
unstable in red.

trophysical objects, such as those described by the interior Schwarzschild solution (1.17).

An analysis of the optical geometry of this metric was first undertaken by Abramowicz et

al. [78], the results of which we reproduce and summarise in Fig. 3.3. This shows both

the standard and optical embedding diagrams for the usual Schwarzschild black-hole met-

ric (1.16), alongside the corresponding diagrams for an ultra-compact, constant-density

Schwarzschild star with ADM mass M = 1 and radius R = 2.3. Considering first the

standard embedding diagrams, the black hole metric can be embedded (using the afore-

mentioned technique) only outside the horizon (r > 2M), whereas the spacetime of the

constant density star is everywhere embeddable. Other than this, these diagrams are

relatively featureless, and there is little useful information to gain from them.

By contrast, the optical geometry embedding diagrams exhibit a significantly more

interesting structure. As mentioned, these provide a visualisation of the spacetime from

the point of view of a null particle, since the trajectories of null geodesics are confined

to the resulting embedded surfaces. For the Schwarzschild black hole solution, we ob-

serve the appearance of a ‘neck’ within the optical geometry (shown in red) at r = 3M ,

which indicates the location of an unstable circular null geodesic (photon sphere). For

the constant density star, this neck is joined by a ‘bulge’ (shown in green), where a stable

photon sphere resides, creating an overall ‘bottleneck’ structure. We note that this type

of behaviour is only apparent for stars that are ultra-compact (R < 3M), and as such the

unstable photon sphere is always located outside the star, whereas the stable orbit resides

within.

One particularly interesting property of ultra-compact stars is their ability to trap

gravitational waves, a feature first discovered by Chandrasekhar & Ferrari [79]. This

was further explored by Abramowicz et al. [78], using the optical geometry viewpoint,

who argue that the presence of a pair of photon spheres is crucial to this trapping phe-

nomenon, ultimately due to the reversal in centrifugal force that accompanies each circular

null geodesic. The effect of this reversal is such that null particles are always attracted
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towards the locations of stable circular null geodesics, while being repelled from the loca-

tions of their unstable counterparts. Thus gravitational waves, or indeed any disturbances

in a similarly massless field, will become trapped within the ‘bottle-neck’ structure illus-

trated in Fig. 3.3. For further details concerning this centrifugal force reversal, and its

often counter-intuitive consequences, see refs. [80–83]. Of relevance here is simply the

observation that the presence of a bottleneck-type structure permits the trapping of null

particles.

We now proceed to the task of applying this optical geometry framework to our many-

fermion Einstein–Dirac solitons. To this end, we shall first derive an expression for the

optical embedding surface f(ρ), valid for a static, spherically symmetric spacetime, using

the general metric form given in (2.3), before subsequently applying it to our numerical

solutions. We begin by defining the optical metric using (3.1):

ds̃2 = T 2ds2 = −dt2 +
T 2

A
dr2 + r2T 2dΩ2 . (3.4)

Evaluating this at θ = π/2, and identifying the remaining angular co-ordinate with φ, we

can immediately write the cylindrical radial co-ordinate as ρ = rT . Comparing the form

of (3.4) with (3.3), we then obtain the following condition:

df2 + (Tdr + rdT )2 =
T 2

A
dr2 , (3.5)

which can be integrated to find an explicit expression for f(r):

f(r) =

∫ r

0
T (u)

√
1

A(u)
−
(
1 +

uT ′(u)

T (u)

)2

du . (3.6)

This, along with ρ = rT , fully defines the optical embedding diagram for a general spher-

ically symmetric, static spacetime.

Using these expressions, we can straightforwardly construct optical embedding dia-

grams for our many-fermion Dirac solitons. Examples of these, for the 90 fermion system,

are shown in Fig. 3.4, for the three redshift cases presented earlier in Fig. 3.1, alongside

the infinite-redshift state. For comparison, we have also included the standard embedding

diagrams, for which ρ = r and

f(r) =

∫ r

0

√
1

A(u)
− 1 du . (3.7)

Consider first the finite-redshift states. For the non-relativistic z = 0.092 state, the optical

geometry exhibits a saucer-like appearance, but as the redshift increases, the base of this

extends into a tubular structure, along which a series of necks and bulges gradually form.

This region of spacetime corresponds to the power-law zone (the size of which increases
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Figure 3.4: Standard and optical embedding diagrams for Nf = 90 Einstein–Dirac solitons, with
the values of redshift indicated. The left-most three correspond to the same three states shown in
Fig. 3.1, while the right-most is the infinite-redshift state. Since it contains a central singularity,
the spacetime of the infinite-redshift state cannot be embedded at r = 0, with this point being
located at h = −∞ in the optical embedding diagram. Trajectories of stable circular geodesics are
indicated in green, with the corresponding unstable orbits in red.

with redshift), with the necks and bulges a direct consequence of the power-law oscillations.

Located at the base of each optical embedding diagram is the core region, which is almost

entirely flat for large values of Nf . This is of course absent in the infinite-redshift case,

where the power-law zone extends all the way to r = 0. Due to the central singularity,

the point r = 0 in the infinite-redshift state cannot be embedded, and indeed we observe

that the power-law zone in the optical geometry is infinite in extent, with r = 0 located at

h = −∞. The power-law oscillations are also compressed to h = −∞, and thus the optical

geometry in the power-law zone is purely cylindrical (noting that the width ρ = rT is a

constant for the power-law solution). At large radii (large h), this cylindrical structure

ultimately opens up into a parabolic Schwarzschild form, once the evanescent zone has

been reached, as is the case for all four solutions.

The behaviour of the optical embedding diagrams can therefore be summarised as

follows. For low-redshift, non-relativistic states, no power-law zone exists and hence the

flat core broadens directly into an exterior Schwarzschild geometry. As the redshift in-

creases beyond z = 1, the appearance of a power-law zone gives rise to a tubular structure

containing a series of stable and unstable photon spheres, with both the height of this re-

gion and the number of photon spheres increasing with redshift. Ultimately this becomes

infinite in extent, exhibiting a purely cylindrical geometry at infinite redshift. Although

we have presented here results only for the 90 fermion system, we note that this general
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behaviour is replicated for all values of Nf , although the bottleneck structures become

increasingly pronounced as the number of fermions increases.

3.2.2 Geodesic motion

The appearance of photon spheres in the optical geometries presented above suggests that,

in analogy with the ultra-compact stars studied in ref. [78], the spacetimes of relativistic

Dirac solitons should have the ability to trap null particles. This can be explored further

by analysing the trajectories of null geodesics. To do so, we consider the Lagrangian

L = (ds/dλ)2, i.e.

L = − 1

T (r)2
ṫ2 +

1

A(r)
ṙ2 + r2θ̇2 + r2 sin2 θ ϕ̇2 , (3.8)

where a dot represents a derivative with respect to the affine parameter λ. Without loss

of generality, we can restrict our analysis to orbits in the equatorial plane θ = π/2. Then,

noting that L has no explicit dependence on either t or ϕ, we can extract the following

conservation equations:

0 =
∂L
∂t

=
d

dλ

(
∂L
∂ṫ

)
=

d

dλ

(
− 2ṫ

T 2

)
≡ −2

dE

dλ
; (3.9)

0 =
∂L
∂ϕ

=
d

dλ

(
∂L
∂ϕ̇

)
=

d

dλ

(
2r2ϕ̇

)
≡ 2

dL

dλ
, (3.10)

where we have defined the total energy E = ṫ/T 2 and the angular momentum L = r2ϕ̇,

which are constants of the geodesic motion. For null geodesics, we have the condition

L = 0, which gives rise to the following energy equation:

E2 =
1

AT 2
ṙ2 +

L2

r2T 2
. (3.11)

Applying a co-ordinate transform such that du2 = dr2/(AT 2), we can then write this in

the form of kinetic energy + potential energy:

1

2
E2 =

1

2
u̇2 +

L2

2r(u)2T (u)2
. (3.12)

Hence null particles are subject to an effective potential of the form Veff = L2/(2r2T 2).

Circular orbits will occur at radii where V ′
eff(u) = 0, which results in the condition:

0 =
dVeff

du
=

dr

du

dVeff

dr
= −L2T

√
A

(
1

r3T 2
+

T ′

r2T 3

)
; (3.13)

=⇒ T + rT ′ = (rT )′ = 0 . (3.14)

Thus circular null geodesics (photon spheres) do indeed exist at the extrema of the function

ρ = rT , in agreement with the earlier optical geometry analysis.
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Figure 3.5: Plots showing (left) trajectories of stable, trapped null geodesics within the spacetime
of an Nf = 90 Einstein–Dirac soliton with redshift z = 8.02, and (middle) examples of unstable
null geodesics within the same spacetime that escape to infinity. Stable and unstable photon
spheres are depicted by dark blue and red dashed lines, respectively. Also shown (right) are the
effective potentials experienced by both null and massive geodesics, the latter for the values of
angular momentum L indicated. The vertical dashed lines are the radii at which the four geodesics
shown left are initialised.

The trajectories for a few (non-circular) null geodesics are illustrated in the two left-

hand panels of Fig. 3.5, for the κ = 90, z = 8.02 redshift state shown in previous figures.

These are obtained by solving the energy equation (3.11) with zero initial radial velocity

and taking L = 1 (noting that varying the value of L simply equates to a rescaling of the

affine parameter). The two geodesics shown in the left-hand plot are initialised at radii

close to those of the two stable photon spheres, and we observe that these indeed equate

to stable, trapped orbits, which oscillate between a minimum and maximum radius. In

contrast, the geodesics shown in the middle plot are started just outside the unstable

photon spheres, and consequently their trajectories escape to infinity. This behaviour

can also be predicted by analysing the effective potential Veff to which null geodesics are

subject. This is included in the right-hand panel of Fig. 3.5, where the dashed lines indicate

the radii at which the aforementioned geodesics are initialised. From this we conclude that

trapped orbits can only occur within the potential wells that surround the stable photon

spheres, which become progressively shallower as we move outwards in radius.

Figure 3.5 also contains information concerning the behaviour of massive, time-like

geodesics. These obey the condition L = −1, from which we obtain the slightly altered

effective potential:

Veff =
L2

2r2T 2
+

1

2T 2
, (3.15)

where L is now the angular momentum per unit mass. Massive circular orbits will occur

at radii where V ′
eff = 0, which evaluates to:

(rT )′ =
T

1 + L2/r2
. (3.16)

For geodesics that are highly-relativistic (those with large values of L), this will approx-

imate the equivalent null condition (rT )′ = 0, as will also be the case at small r. This
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behaviour can be observed in the right-hand plot of Fig. 3.5, where we plot the effective

potential for massive geodesics with various angular momenta. These closely match the

form of the null potential at small r, but gradually diverge at larger radius, with those at

lowest angular momentum showing the greatest divergence. An additional circular orbit

(in comparison to the null case) also appears for intermediate values of L, located at a

larger radius, around which massive particles may become trapped but null particles will

not. Finally, we note that the right hand side of (3.16) is strictly positive, and hence

massive circular orbits can only exist in regions in which the derivative of ρ = rT is sim-

ilarly positive. By considering the optical embedding diagrams in Fig. 3.4, we conclude

that stable massive circular geodesics must occur at radii slightly inside the corresponding

stable photon spheres, whereas unstable massive circular geodesics must occur slightly

outside their null counterparts.

3.3 Self-trapping interpretation

We are now finally in a position to explain the wavefunction splitting observed for rel-

ativistic many-fermion Dirac solitons, described earlier in section 3.1. The geodesic and

optical geometry analysis above has established that the spacetimes of such objects contain

regions in which null and (sufficiently relativistic) massive particles can become trapped,

due to the presence of photon spheres. One might ask, however, how any of this relates to

the behaviour of the fermion wavefunction, since the fermions comprising Dirac solitons

are typically of the order of the Planck mass, and hence one would expect their behaviour

to be far removed from that of massless particles.

The key to understanding this is to note that, as mentioned, photon spheres occur at

relatively small radii, within the power-law zone of solutions, where recall the fermion mass

term in the equations of motion is negligible compared to the fermion energy (m ≪ ωT ).

In some sense, therefore, the fermion wavefunction can be considered ‘relativistic’ within

the power-law zone. This can be understood by employing a semi-classical, WKB-type

argument, in which it should be possible to approximate the form of the fermion wave-

function by considering the orbits of classical particles. Certainly, from a purely classical

perspective, high-angular-momentum fermions that orbit at small radii must indeed be

highly relativistic, and hence we would expect the structure of the wavefunction to reflect

this. Thus we conclude that the fermion wavefunction within the power-law zone should

be subject to the same trapping mechanisms as highly-relativistic classical fermions.

This trapping effect is illustrated in Fig. 3.6, where in the left-hand panel we have

overlaid the radial co-ordinate in the optical geometry, ρ = rT , on top of the radial

fermion energy density r2ρf , for the highest redshift, 90-fermion state shown previously.

From this, it is clear to see that the peaks in the fermion density line up almost precisely
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Figure 3.6: Illustration of the fermion-self trapping effect for a highly-relativistic, 90-fermion
Einstein–Dirac soliton. Shown (left) is the radial profile of the radial fermion energy density r2ρf ,
alongside the optical geometry radial co-ordinate ρ = rT . The dashed lines indicate the radii at
which stable photon spheres occur. The derivatives of these functions are also shown (right), with
the dashed portions of the curves corresponding to regions in which the derivatives are negative.

with the positions of the stable photon spheres in the optical geometry (the maxima in

rT ), at least for the first five oscillations. This strongly implies that indeed the fermion

wavefunction has become trapped within the regions surrounding stable photon spheres, as

suggested by the argument above. In addition, the unstable photon spheres (located at the

minima of rT ) produce an overall repulsive effect on the wavefunction, in common with the

behaviour of classical null geodesics shown earlier in Fig. 3.5. Combined, these two factors

can account for the observed splitting of the fermion wavefunction into a series of distinct

peaks. This trapping effect can also explain the relative heights and widths of the energy

density peaks, since more pronounced bulges in the optical geometry, which equate to more

highly distorted regions of spacetime, result in deeper and more highly-confined potential

wells. Since the depth of the bottleneck structures in the optical geometry decreases as we

move outwards in radius, this then implies that the inner photon spheres should produce a

stronger trapping effect, resulting in a larger proportion of fermions confined to a smaller

region of spacetime, precisely as observed. Indeed, the trapping effect of the first two

photon spheres is so strong that it causes the first two peaks in the fermion wavefunction

to become almost entirely spatially separated from the remainder. This is not the case for

subsequent peaks, however, since the associated potential wells are relatively shallow.

The precise correspondence between the fermion energy density peaks and the opti-

cal geometry can be seen more clearly in the right-hand panel of Fig. 3.6, where we plot

together the radial derivatives of rT and r2ρf . As can be evidenced, there in an excellent

agreement between the extrema of these functions for the first five oscillations, even ex-

tending to the minima in the energy density. As we move outwards in radius, however,

the correspondence becomes progressively worse, and indeed at large radii there exist os-

cillations in the fermion energy density that are not accompanied by an associated photon

sphere. This can be understood by noting that the fermion wavefunction becomes progres-
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sively less relativistic as the power-law zone is traversed, since ωT decreases monotonically

with radius. Thus it is not surprising that the inner peaks of the energy density match

the optical geometry more closely, since the effective potential experienced by highly-

relativistic fermions resembles more closely that of null particles (as can be deduced from

(3.16)). Towards the outer end of the power-law zone, as the wavefunction becomes less

relativistic, the effective potential will begin to deviate significantly from the null case, to

such an extent that in fact additional potential wells can appear, as shown in Fig. 3.5. This

explains why the oscillations in the fermion energy density continue beyond those of the

optical geometry, in agreement with the simple intuition that massive particles should be

easier to trap than massless ones. Even at smaller radii, the agreement between the energy

density and the optical geometry is not perfect, as can be seen from the inset shown in the

right-hand panel of Fig. 3.6. We should not expect it to be, however, since the fermions

are never strictly massless — what we would expect, however, is for the energy density

peaks to occur slightly inside the stable photon spheres, and the minima to occur slightly

outside their unstable counterparts, as argued in the previous section when analysing the

effective potentials for massive geodesics. This indeed matches precisely what we observe.

Having introduced this trapping interpretation, it is important to reflect on the ori-

gins of the fermion wavefunction and the spacetime in which it has become trapped. In

particular, it should be emphasised that here we have not first constructed a fixed space-

time (containing a series of photon spheres), and subsequently determined the form of

the fermion wavefunction that responds to it — instead, both the metric and the fermion

fields are solved for simultaneously. Thus the highly-distorted regions in which the fermion

wavefunction becomes trapped are created solely by the energy density of the wavefunc-

tion itself, in a completely self-consistent way. It is therefore more appropriate to refer to

this phenomenon as a ‘self-trapping’ effect. We also note that the discovery of this effect

is heavily dependent on the accurate modelling of back-reaction, an ability only possible

within semi-classical approaches of the type utilised here. Without the automatic inclu-

sion of back-reaction, it would seem unlikely that structures such as those in evidence here

could ever be obtained without prior knowledge of their existence.

Back-reaction is also crucial in understanding why the self-trapping effect is most

prominent in systems containing large numbers of fermions. As mentioned, power-law os-

cillations are in fact present for Dirac solitons with any value of Nf , but it is only at large

fermion number that these induce such extreme effects as wavefunction splitting. This

is simply because a larger number of fermions produces a larger combined gravitational

effect, and thus the back-reaction of the total wavefunction on the spacetime is greater,

in turn creating more pronounced bottlenecks in the optical geometry. Hence for systems

with small numbers of fermions, the spacetime distortion caused by the fermion energy

density is insignificant, and thus the fermion wavefunction exhibits only small-amplitude

oscillations, representing slight over and under-densities arising from the attractive (and

49



Chapter 3. The fermion self-trapping effect 3.4. Families of many-fermion states

repulsive) effects of the photon spheres. From a purely mathematical perspective, this can

be understood in terms of an increase in non-linearity of the FSY equations (2.28)–(2.31)

as the fermion number is increased.

3.4 Families of many-fermion states

Following on from the above analysis of individual states, we now discuss the behaviour of

the families of many-fermion Einstein–Dirac solitons, and demonstrate that the resulting

spiralling structures are heavily influenced by the self-trapping effect. As before, our

analysis is here restricted to n = 0 ground states, with excited states being addressed in

Chapter 4.

3.4.1 Spiralling behaviour

As is the case for the two-fermion system, the set of many-fermion states with common

Nf constitute a one-parameter family of solutions, parametrised by the central redshift z

or equivalently the unscaled parameter α̃1. We similarly find that physical properties such

as the fermion mass, fermion energy and ADM mass all oscillate towards their respective

infinite-redshift values, and that as a consequence spiralling behaviour is observed. The

visual appearance of these spiralling structures, however, differs significantly from the two-

fermion case, as is illustrated for the Nf = 90 system in Fig. 3.7. In the upper panels we

plot the fermion binding energy m − ω and the soliton radius R99, both as a function of

fermion mass. These can be compared with the equivalent two-fermion diagrams shown

in Fig. 2.2. In addition, in the lower panels, we plot the fermion mass, fermion energy,

ADM mass and soliton radius as a function of the central redshift. Overall, we find that

the oscillations in redshift are of significantly larger amplitude than those seen in the two-

fermion system, and as a result the spirals occupy a significantly larger area, to such an

extent that the upper redshift limit of our numerics is still a considerable distance from

the centre.

There are a number of features to note from these figures. Most importantly, there

appear to be values of redshift at which all quantities exhibit a sudden, marked change

in behaviour — m, ω and M all contain cusp-like points at the first few minima of their

oscillatory periods, and these are accompanied by a discontinuous jump in the soliton ra-

dius R99. The appearance of these can be understood by again invoking the self-trapping

interpretation, as follows. At low values of redshift (z < 1), the states are non-relativistic,

there is no power-law zone, and the fermion wavefunction contains only a single peak.

In this regime, the curves therefore approximate the low-redshift relationships derived in

Appendix A. As the redshift is increased beyond z = 1, however, the central compact-

ness of the soliton increases to such an extent that a pair of photon spheres appears (at

some critical value of redshift) at radii outside the bulk of the fermion source. As soon as
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Figure 3.7: Plots summarising the behaviour of the family of ground-state 90-fermion Dirac
solitons, showing (top) the spiralling nature of the fermion mass-binding energy and mass-radius
relations. The locations of the three states presented in Fig. 3.1 are indicated on the latter curve.
Also shown (bottom) are the the fermion mass m, fermion energy ω, ADM mass M and soliton
radius R99, all as a function of central redshift.

this occurs, the fermion wavefunction rearranges itself such that a small amount becomes

trapped within the resulting bottleneck structure. The radius of the soliton therefore

increases substantially (by a factor of over 100), to reflect this new doubly-peaked distri-

bution of the fermion source. In addition, the redshift trajectories of the fermion mass,

energy and ADM mass are also affected, since the subsequent evolution of the wavefunc-

tion is dominated by the gradual population of this new outer shell, as opposed to the

continued development of the inner shell. As the redshift is increased further, a second

pair of photon spheres materialise, causing this behaviour to repeat, and so on. Note

that the jumps in radius become progressively smaller as the redshift increases, since each

subsequent bottleneck is shallower than the last, resulting in a less confined outer trapping

region. Ultimately, there will come a redshift beyond which new photon spheres begin to

appear within the fermion source, as opposed to outside, and thus eventually the soliton

radius becomes entirely continuous, and further cusps in m, ω and M no longer occur.

The evolution of the spiral curves as the fermion number is varied is illustrated in

Fig. 3.8, where we plot the fermion binding energy and the mass-radius relations for the

families of states with Nf = 6, 12 and 30, respectively. This clearly shows a gradual

appearance of cusps and discontinuities, with the Nf = 6 curve appearing smooth, al-

though still larger in extent than the Nf = 2 case, and the Nf = 12 curve exhibiting only

a single jump in radius, before becoming continuous. Again this behaviour is related to
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Figure 3.8: Plots showing the fermion binding energy (top) and mass-radius relations (bottom)
for the families of ground states with Nf values of 6, 12 and 30.

the self-trapping effect. At small fermion number, all photon spheres materialise within

the fermion source, and thus no discontinuities arise, whereas for intermediate numbers,

it may be the case that only the first trapping region is spatially separated, and thus

only the first oscillation is discontinuous. We note that these discontinuities are present

partly due to employing R99 as our definition of soliton radius, i.e. the radius at which

99.9% of the ADM mass is first enclosed. With a more nuanced definition, such as R̄, the

radius becomes entirely continuous and instead cusp-like points appear, similar to those

exhibited by the fermion mass and energy curves.

Given the importance of the fermion trapping to the visual appearance of these spi-

ralling structures, it is perhaps tempting to conclude that the very existence of a spiralling

behaviour is itself a direct consequence of the self-trapping effect. Indeed in ref. [4], it is

asserted that, in the two-fermion system, the oscillations exhibited by physical observables

are in fact caused by the oscillations of the fields themselves within the power-law zone.

Since we have now provided an interpretation for these power-law oscillations, in the form

of a fermion self-trapping effect, this does suggest a strong link to the spiralling behaviour.

We explore this possibility further in Fig. 3.9, which shows the derivative of the fermion

energy-redshift curves, ω′(z), for three different values of Nf . The redshift values at which

new peaks in the radial fermion energy density first occur are then indicated by the dashed

red lines. Considering first the Nf = 90 case, it can be clearly seen that, for z > 1, each

oscillation in ω is indeed accompanied by the appearance of a new trapped region, in

agreement with our earlier arguments. This is also the case for the first four oscillations

in the Nf = 30 case, but once the curve become smooth, it appears that more than one

oscillation completes before the appearance of each subsequent trapped region. This is

substantiated by the Nf = 6 case (for which the curve is entirely smooth), where we find
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Figure 3.9: An investigation of the relationship between the oscillatory nature of the fermion
energy ω and the fermion self-trapping effect. These plots show the absolute value of the derivative
of the fermion energy dω/dz as a function of redshift, for the families of states with the Nf values
indicated. The dashed red lines signify the values at which new trapped peaks in the radial fermion
energy density first appear.

that new trapped regions appear approximately every one and a half oscillations in ω.

How are we to interpret these results? One the one hand, they undoubtedly indicate a

link between strong self-trapping effects and the properties of ω, but on the other, the pe-

riodicity of ω does not appear to match that of the self-trapping when the latter becomes

weak, although they are indeed both evenly-spaced in redshift. We therefore tentatively

conclude that the spiralling nature of Dirac solitons is not purely a consequence of the

fermion self-trapping effect, although there is certainly a relation between the two.

3.4.2 Calculating the fermion energy

Having established a link between the physical properties of Dirac solitons and the fermion

self-trapping effect, we now present a calculation through which an estimate of the fermion

energy can be obtained by considering solely the form of the optical geometry. This is

partly inspired by a similar calculation performed by Abramovich et al. [78], who suc-

cessfully approximate the frequencies of gravitational wave modes that become trapped

within the bottleneck structures associated with ultra-compact stars.

Our calculation relies on a semi-classical WKB-type argument, where we assume that

the fermion wavefunction can be well approximated by considering the paths of classi-

cal particles, as discussed previously. In particular, we aim to relate the travel time of

trapped null geodesics to the value of the fermion energy, noting that, for highly-relativistic

fermions, this should differ only slightly from that of massive geodesics. As a first approx-

imation, let us consider purely circular null geodesics (photon spheres), the equation of

motion for which can be obtained by setting ds2 = dr2 = 0 in (2.3):

0 = − 1

T 2
dt2 + r2dϕ2 =⇒ dt

dϕ
= rT , (3.17)

where we have confined the motion to the equatorial plane θ = π/2, without loss of

generality. Integrating over one complete orbit, we acquire a simple expression for the
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travel time τc of a circular null geodesic:

τc(r) = 2πrT (r) . (3.18)

Note that this is precisely equal to the distance travelled by circular paths in the optical

geometry. For highly-relativistic states, multiple stable photon spheres can exist within

the spacetime, and in those cases we should aim to obtain an averaged travel time, with

an appropriate weighting applied to each path. In a true WKB analysis, this weighting

is provided by the classical action, but here we choose instead to utilise the radial width

of each trapping region, since this is observed to be roughly proportional to the amount

of fermion energy that becomes trapped. Note that we are purposely avoiding using any

explicit information from the fermionic sector, and thus we cannot use as a weighting the

relative fermion density, for example. The mean travel time around the stable photon

spheres within the optical geometry is then:

τog,circ =

∑
n(r

+
n − r−n )τc(rn)∑
n(r

+
n − r−n )

, (3.19)

where rn is the radius of the nth stable photon sphere, and r±n are the outer boundaries of

the nth trapping region, calculated using the observed form of the null effective potential.

We now wish to relate this mean travel time to the energy of the fermion wavefunction.

This can be achieved by considering, instead of a classical particle, a planar matter wave

propagating purely in the ϕ-direction, with angular momentum j and energy ωp, of the

form ei(jϕ−ωpt). For this to reinforce constructively, the phase acquired after a single radial

orbit must be set equal to that acquired after a temporal orbit τ , i.e. ωpτ = 2πj. For

Dirac solitons, j = (Nf −1)/2, and hence a relation between travel time and energy can be

extracted. This argument, however, arises from a non-relativistic, flat-space perspective,

and we would not expect it to hold precisely in our circumstance. Given the lack of an

obvious appropriate generalisation, we instead turn to the power-law solution (2.60), for

which the following analytic relation between energy and travel time, τ = 2πrT , exists:

ωpl =
2π

τ

√
N2

f

4
− 1

3
≡ 2πξ

τ
. (3.20)

We note that this approximates the form obtained from the argument above when the

number of fermions is large. We are now in a position to express the fermion energy solely

using information concerning the circular motion of null geodesics:

ωog,circ =
2πξ

τog,circ
. (3.21)

A comparison between this expression and the true fermion energy is shown in Fig. 3.10,

where we plot both as a function of redshift for the Nf = 50 fermion system, focusing on
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Figure 3.10: Predictions for the fermion en-
ergy, applied to the Nf = 50 system, obtained
by analysing the travel time of null geodesics
within the optical geometry. This shows the
true fermion energy ω, as a function of redshift,
alongside the approximations derived by first
considering only circular orbits (blue) and sub-
sequently including slanted orbits (red). Note
that the curves do not agree at the low-redshift
end of this plot, since this is prior to the forma-
tion of the first photon sphere.

the relativistic regime. From this, it can be seen that our approximation has successfully

captured the desired oscillatory behaviour of ω, but the precise numerical values are con-

sistently on the low side, suggesting that our estimate of the travel time is slightly too

high.

With the aim of improving this approximation, we note that the above analysis equates

to treating the fermion wavefunction as a series of delta functions located at the radii

of stable photon spheres. This is clearly unrepresentative, since the self-trapping effect

confines the wavefunction not to specific points but to regions surrounding them. To

rectify this, we should therefore include geodesics that are non-circular, i.e. those that

exhibit trapped ‘rosette’ orbits of the kind shown earlier in Fig. 3.5. We model these,

somewhat crudely, as slanted orbits, for which the travel time is simply:

τslant(r, rc) = 2π
√

r2T (r)2 + (r − rc)2 , (3.22)

where rc is the radius of the associated photon sphere. Weighting each path equally, we

can then calculate an average travel time for the null geodesics trapped around each bulge

in the optical geometry:

τbulge(rc) =
1

(r+ − r−)

∫ r+

r−
τslant(r, rc) dr . (3.23)

As before, we then use the width of the trapping regions as the weighting factor to obtain

a new estimate for the fermion energy, now including slanted, non-circular orbits:

ωog,slant =
2πξ

∑
n(r

+
n − r−n )∑

n(r
+
n − r−n )τbulge(rn)

. (3.24)

The application of this expression to the Nf = 50 system is also included in Fig. 3.10,

resulting in a clear improvement compared to our earlier prediction. The numerical match

to the true fermion energy is still not exact, but this is not surprising given the obvious

shortcomings of our analysis. Indeed, since we have neglected the mass of the fermions,

modelled non-circular geodesics only crudely, and implemented a somewhat ad-hoc weight-
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ing system, the agreement is perhaps more accurate than one might have anticipated.

Regardless, it is clear that the principle behind the calculation is sound, i.e. the

fermion energy can be obtained by analysing only the properties of the optical geometry,

at least to a first approximation. We should not be overly surprised by this, since the

fermion wavefunction and the spacetime metric are inherently coupled, in such a way that

the spacetime should indeed respond precisely to the fermion energy density. What is

perhaps more surprising, however, is the fact that states exist for which this calculation

proves relatively simple, a characteristic that only arises due to the fermion self-trapping

effect.

3.5 Discussion

Before closing this chapter, we briefly summarise the main results and provide a further

discussion. Overall, we have shown that, at large fermion number, and sufficiently high

redshift, the fermion wavefunction splits into a series of separated peaks, such that its

appearance is more akin to a multiple-shell model. We have attributed this phenomenon

to the appearance of a self-trapping effect, in which the fermion wavefunction becomes

trapped within regions of spacetime surrounding stable photon spheres. This in turn affects

the behaviour of physical observables, resulting in a marked difference in appearance of

the binding energy and mass-radius spirals when compared with the two-fermion system.

Although the self-trapping effect is indeed present for systems with any number of fermions,

its consequences are most pronounced when the fermion number is large, due to the

stronger back-reaction of the fermion energy on the spacetime metric.

One issue that we have not yet addressed is the precise origin of the self-trapping effect,

i.e. why do the spacetimes of highly-relativistic Dirac solitons exhibit a series of photon

spheres? The answer to this question is not entirely obvious. Certainly the appearance of a

single photon sphere (or a single pair) can be understood by invoking the comparison with

ultra-compact astrophysical objects. In these systems, a photon sphere is an inevitable

consequence of the central compactness reaching a threshold value, due to the large spatial

distortion caused by the object. The behaviour of Dirac solitons is clearly analogous,

despite the obvious difference in scale — the central compression of the state is measured

by the central redshift, and thus the appearance of a pair of photon spheres at some

threshold value of z is entirely expected. The emergence of subsequent photon spheres,

however, proves more difficult to explain. From an astrophysical perspective, objects

with multiple photon spheres appear uncommon, and in fact there are proofs prohibiting

such structures in static, vacuum spacetimes [84, 85], although recently hairy black holes

containing three photon spheres have been discovered in the context of Einstein–Maxwell–

scalar theory [86, 87]. Of more relevance here perhaps are the studies by Karlovini et al.
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Figure 3.11: A possible indication of horizon
avoidance for the z = 92.1, Nf = 90 state anal-
ysed previously. This shows the enclosed grav-
itational mass M(r) as a function of radius, as
obtained from the Komar mass (blue) and the
ADM mass (red). We suspect the latter quan-
tity to provide a more accurate measure. The
dashed line r = 2M(r) indicates the threshold
above which the formation of a horizon proves
inevitable.

[88, 89], who construct ultra-compact stars with an arbitrary number of photon spheres,

using a physically reasonable equation of state, although no interpretation of the resulting

structures is provided.

In the case of Dirac solitons, the appearance of multiple photon spheres may be

related to the issue of horizon avoidance. It was shown in refs. [43–47] that systems of

this type cannot contain horizons while continuing to remain static, and thus the central

compression of states must be increased in such a way that the formation of a horizon is

somehow avoided. We tentatively suggest that the emergence of photon spheres, and the

associated fermion self-trapping, is the mechanism by which this is achieved. As evidence

for this, consider Fig. 3.11, in which we plot the enclosed gravitational mass as a function

of radius, for the highest-redshift Nf = 90 state shown in Fig. 3.1. Two measures for

the enclosed mass are included — the Komar mass, defined in (2.47), and the enclosed

ADM mass, which is obtained by calculating the deviation of A from unity. Given that

the metric is of an approximate Schwarzschild form between the trapped peaks, it is likely

that this latter quantity provides a more accurate measure of the enclosed gravitational

mass in this case. Also included is the line r = 2M(r), representing the threshold above

which a horizon must inevitably form. As can be seen, at many points the enclosed ADM

mass appears on course to overshoot this threshold, only for a sudden plateau to occur

before the function rises once again. These plateaus correspond to the regions around

the unstable photon spheres, from which the fermion wavefunction is effectively repelled.

We therefore surmise that the division of the wavefunction into distinct trapped shells

is precisely what prevents the enclosed gravitational mass becoming large enough in any

one region for a horizon to form, effectively allowing the central density of the soliton to

increase without limit, while ensuring static equilibrium is maintained.

It would be interesting to establish whether the appearance of multiple photon spheres

in other systems is similarly accompanied by a feature resembling horizon avoidance. As

mentioned, however, these are few and far between, although the models of ultra-compact

stars studied by Karlovini et al. [88, 89] do exhibit other similarities to Dirac solitons.

In particular, a ‘skeleton’ solution is shown to exist (the optical geometry of which is

similar to that of our infinite-redshift states), towards which finite-density solutions spiral
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Figure 3.12: The overall binding energy per
fermion as a function of radius, for the families
of ground-state solutions with the Nf values
indicated. In all cases, we would expect stable
solutions to be those with central redshift less
than that of the state with minimum binding
energy. Thus high-redshift states, in which
the fermion self-trapping effect is in evidence,
are expected to be dynamically unstable, since
these are located along the spiralling portions
of the curves.

as the number of photon spheres is increased. This lends further evidence to the claim

that the spiralling nature exhibited by objects of this type is related to the appearance

of photon spheres, and by extension, at least in the Einstein–Dirac system, the fermion

self-trapping effect. A possible physical interpretation for this spiralling behaviour is de-

tailed as follows. Recall that one of the surprising aspects associated with Dirac solitons

is that, for relativistic states, there can exist multiple ground-state solutions that have the

same value of the fermion mass. This is contrary to our naive Newtonian intuition that

there should exist a unique equilibrium configuration for a collection of gravitationally

interacting fermions of mass m, as proves to be the case in the non-relativistic limit. In

general relativity, however, the presence of photon spheres permits the possibility of alter-

native configurations in which the fermions are trapped within the associated bottleneck

structures, but equilibrium is still maintained. Thus one can obtain states for which the

fermion mass is identical, but the properties of which differ depending on the number of

photon spheres present. It remains to be seen whether this argument can be extended to

other systems, or whether the appearance of photon spheres is a common feature of spi-

ralling, self-gravitating systems. The most obvious candidates for testing these hypotheses

are boson stars, and indeed recent results obtained for ℓ-boson stars [90] show indications

of a similar self-trapping effect to that discovered here.

We finish by briefly addressing the issue of stability. It is important to point out

that, despite the perhaps misleading terminology of ‘trapping’, all states exhibiting the

self-trapping effect have an overall positive binding energy, and thus we would in fact

expect them to be unstable to perturbations. This is illustrated in Fig. 3.12, where we

plot the binding energy per fermion as a function of soliton radius. Thus the self-trapping

effect is arguably of more academic interest, having little relevance to the application

of constructing stable particle-like objects. The possibility remains, however, that the

inclusion of additional interactions could act to stabilise states in which the self-trapping

is in evidence. It is also likely that the dynamical evolution of unstable solutions is

somewhat influenced by its presence.
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Chapter 4

Many-fermion excited states

In the previous chapter, we discussed in detail the behaviour of ground-state solutions

to the many-fermion Einstein–Dirac system. Here, we shall extend this analysis to the

corresponding excited states, i.e. those with multiple nodes in the fermion wavefunction.

As we shall show, multivaluedness becomes an issue even for relatively small fermion

numbers (Nf ≥ 6), with the central redshift no longer uniquely identifying excited states

in the relativistic regime. Within these multivalued regions, it is observed that the physical

properties of states are often very similar to those of lower excited states, a feature that

can be explained by analysing their internal structure. In what follows, we shall first

briefly discuss the numerical challenges that arise when generating excited-state solutions,

before presenting results illustrating the behaviour of the first excited states as the fermion

number is varied. An analysis of higher excited states then follows, which are shown to

display an even larger multiplicity. Note that we shall again restrict our analysis to states

of even parity (even values of n), with the expectation that their odd-parity counterparts

will exhibit a similar behaviour.

4.1 Numerical method

4.1.1 Review of the two-fermion case

Before discussing the complications that arise at large fermion number, we first briefly re-

cap the numerical method used to obtain states in the two-fermion Einstein–Dirac system.

Since this was previously described in detail in section 2.2, we shall here only highlight

the most relevant aspects.

First, recall that directly imposing the boundary conditions of asymptotic flatness

and normalisation proves numerically challenging, and thus a rescaling technique is imple-

mented, in which we first seek ‘unscaled’ solutions to the system (denoted by an additional

tilde), from which the physical states can subsequently be obtained by rescaling the fields
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and parameters as appropriate. For each value of the unscaled parameter α̃1, there exists

a unique ground state with unscaled fermion energy ω̃0, proceeded by a (presumably in-

finite) tower of excited states, each with a higher value of ω̃n than the previous. States

are distinguished by the total number of fermion nodes n in the fields α̃ and β̃, which, for

even-parity states, is required to be even. Since each value of n uniquely identifies each

state, it is relatively straightforward to obtain the precise values of ω̃n, for example by

performing a simple binary chop in which solutions with the desired number of fermion

nodes are sought.

Upon rescaling, the nodal structure of solutions is preserved, but the values of the

physical fermion mass m and energy ω differ from those in the unscaled system. In addi-

tion, the physical parameter α1 no longer uniquely identifies each state, and instead the

appropriate parameter to use for this purpose is the central redshift z. One-parameter

families of solutions can then be generated, one for each value of n, by varying the value

of the central redshift from zero to infinity. Since α̃1 is found to be in one-to-one corre-

spondence with z, the families could equivalently be parametrised by the former quantity,

although it has no physical interpretation. A summary of the two-fermion system can be

seen in Fig. 4.1, which shows the behaviour of the ground and first three (even-parity)

excited states. Note that, even after the rescaling, the fermion energy-redshift curves for

the families of states remain well-separated, i.e. at each redshift, the state with n nodes is

always of higher energy than the corresponding state with n− 2 nodes. This will cease to

be the case when considering systems with larger numbers of fermions. The mass-radius
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Figure 4.1: Summary of the two-fermion system, showing (top left) the fermion energy as a
function of redshift, alongside (top right) the mass-radius relations, for the families of ground and
first three even-parity excited states. Include also (bottom) are the radial profiles of the fermion
fields for the states located at the points A–D, each having a redshift value of 2.00.
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relations are similarly distinct, with the observed general increase in radius with n a con-

sequence of accommodating the additional fermion nodes. Note that here, and throughout

this chapter, we use the averaged radius R̄ as the primary measure of the radial extent of

solutions, since this quantity always remain continuous in z.

Also shown in Fig. 4.1 are examples of four individual solutions, corresponding to the

ground and first three even-parity excited states that occur at a redshift value of z = 2.00.

The internal structure of these is as described in section 2.5, with a clear separation

into four distinct zones: the core, the power-law zone, the wave-zone and the evanescent

zone. Although too small to be visible on the plots shown, the fields exhibit oscillations

within the power-law zone, the appearance of which is attributed to a fermion self-trapping

effect, as discussed. These have long since decayed by the time the wave zone is reached, at

which point the fermion fields perform large-amplitude oscillations that ultimately define

the value of n. As we shall see, the situation is altered somewhat at large fermion number,

where we find that fermion field nodes are no longer confined simply to the wave zone,

leading to a reassessment of the previously discovered zonal structure.

4.1.2 The many-fermion system

The behaviour described above extends also to the Nf = 4 system, as well as being valid

in the non-relativistic regime (z < 1), regardless of the fermion number. From Nf = 6

onwards, however, we find that neither α̃1 nor z can be used to uniquely identify all

states in the relativistic regime, i.e. multiple states (with the same n) may be found with

identical values of these parameters. Note that this multiplicity applies only to excited

states (n ≥ 2), and there always remains a unique n = 0 ground state for each value of α̃1

and z. Thus an identical procedure to the two-fermion case can be used to obtain ground

state solutions, as detailed in the previous chapter. The same method cannot be used,

however, to generate excited-state solutions, since multiple states may exist with the same

value of n, making a simple binary chop unworkable.

The severity of the problem is illustrated in Fig. 4.2, where we show the unscaled

fermion energy spectra for two values of α̃1, one non-relativistic (left) and the other rela-

tivistic (right), for the Nf = 40 system. These plots are to be interpreted as follows. The

x-axis shows various values of ω̃, while the y-axis indicates the number of fermion nodes

n obtained when solving the FSY equations (2.28)–(2.31) using each ω̃ value. Note that

normalisable solutions, corresponding to physical states after rescaling, are located only

at specific values of ω̃; for the remainder (and vast majority), the fermion fields ultimately

diverge to infinity at large r. Also note that the x-axes here are not linear in ω̃ (although

they are monotonic), and instead simply represent a sequence of unevenly-spaced ω̃ values.

Considering first the non-relativistic case, we observe the familiar behaviour present in the

two-fermion system — a gradual monotonic increase in the number of fermion nodes as

ω̃ is increased, with this continuing indefinitely, although here we restrict to n < 10. The
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locations of the five normalisable states contained within this region (one on each plateau)

are indicated on the x-axis, with their values given in the caption.

Turning to the relativistic case, we observe an entirely different, and much more

complex, behaviour. Instead of a single tower of states, we now appear to have a series

of ascending and descending sequences, where in each there exist a presumably infinite

number of excited states (although again we have capped the figure at n = 9), contained

within a finite ω̃ range. Here, a normalisable state is located along every even-n plateau,

and thus there are a total of 37 individual states depicted in the figure. Note that,

although each upward sequence of states extends to n = ∞, the downward sequences do

not all descend to the same value of n. In fact none of them return all the way to n = 0

(and hence the ground state remains unique), with only two returning to n = 1. The final

sequence, on the far right of the plot, increases indefinitely but never returns, reaching

n = ∞ at strictly infinite ω̃. We thus conclude that there exist a total of five n = 2 states

for this value of α̃1, but nine n = 4 states, and eleven n = 6 and n = 8 states.

Given the evident high degree of multivaluedness present at large fermion number,

how does one go about determining the energies of the excited states, i.e. how does one

obtain the energy spectrum shown in Fig. 4.2. As mentioned, a binary chop cannot be

used, although this can be employed once the energy spectrum has been obtained, and

unfortunately the sequences of states tend never to be particularly well-separated in ω̃.

Indeed, we find that entire sequences often exist within tiny regions of ω̃, as indicated by

the values of ω̃a−e given in the caption of the figure. With no other clear options, we are

therefore forced to perform a thorough search of ω̃-space, starting with an initial sweep

of 500 ω̃ values ranging from the ground state ω̃0 to 1.05 ω̃0, with a similar, more focused

sweep implemented once the final sequence of states has been identified. Thereafter,
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Figure 4.2: The extent of multivaluedness in the 40-fermion system. Shown are the unscaled
energy spectra, in which ω̃ is plotted against the number of fermion nodes n, for (left) a non-
relativistic value of α̃1 = 10−30 and (right) a relativistic value α̃1 = 106. In the left-hand panel,
the values of ω̃ for the ground and first four even-parity excited states are indicated, these being
ω̃0 = 1.1568, ω̃2 = 1.1601, ω̃4 = 1.1617, ω̃6 = 1.1628 and ω̃8 = 1.1637. In the right-hand panel,
ω̃0 = 40.1196 and the points a–e are (relative to the ground state): ω̃a − ω̃0 = 1.434 × 10−7,
ω̃b − ω̃0 = 8.575× 10−6, ω̃c − ω̃0 = 1.037× 10−5, ω̃d − ω̃0 = 0.3141 and ω̃e − ω̃0 = 0.3897.
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various methods are used to ensure that all sequences have been identified. These include,

for example, sweeping regions in which a jump is observed in the number of fermion nodes,

expanding the regions around observed peaks in the radius at which the final fermion node

occurs, or simply searching close to already discovered solutions. This procedure can of

course be automated, again using Mathematica, although on occasion a final manual

search is required if the number of solutions discovered is fewer than expected. Once the

complete energy spectrum is obtained, the precise values of ω̃ for each state can then

be determined by implementing a binary chop within the plateaus in which states are

known to exist. These unscaled solutions are then converted into physical states using the

rescaling method outlined in section 2.2.2.

Clearly, generating solutions using the method described above comes at a much

greater computational cost than a simply binary chop. One way this can be reduced is

to search only for solutions in which the number of fermion nodes is less than a specified

threshold. Here, as indicated in Fig. 4.2, we set this limit at n = 9, allowing us to

obtain up to and including fourth even-parity excited states (n = 8). Even with this

restriction, however, the maximum fermion number that we can obtain is significantly less

than in Chapter 3, recalling that as the fermion number increases so must the numerical

precision. We are therefore limited, when considering entire families of solutions, to Nf <

40, although if the energy spectrum at only a single value of α̃1 is required, this can be

increased to Nf ≈ 70.

As a final remark, one might be concerned as to whether this multivaluedness is a

feature solely of the unscaled equation system, and in fact disappears when considering

rescaled, physical states. We emphasise that this is not the case, however. Indeed, α̃1 and

z remain in one-to-one correspondence, and hence the same multivaluedness that appears

in α̃1 is also present in the central redshift.

4.2 1st excited states (n = 2)

Having outlined the numerical method used to generate solutions, we now present results

illustrating the behaviour of the excited-state many-fermion system as the number of

fermions is varied. We shall begin with an analysis of the first even-parity excited states

(n = 2), before proceeding to discuss higher excited states in section 4.3.

4.2.1 Varying Nf

The evolution of the fermion energy-redshift curves, as we gradually increase the fermion

number from Nf = 4 to Nf = 14 is illustrated in Fig. 4.3. These can be compared with

the corresponding plot for the two-fermion system shown previously in Fig. 4.1. Note

that here we focus solely on the relativistic regime (z > 1), since, as mentioned, the non-
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Figure 4.3: Plots summarising the behaviour of the first even-parity excited states as the fermion
number is varied, showing the fermion energy as a function of redshift for the families of n = 0
and n = 2 states, for the values of Nf indicated. Note the gradual emergence of multivaluedness
as the fermion number is increased.

relativistic behaviour is identical to that observed for Nf = 2. The families of ground-state

solutions (shown in red) exhibit the characteristics discussed in Chapter 3, with the first

minimum of the curve gradually evolving into a cusp as the fermion number is increased, as

a consequence of the increased strength of the fermion self-trapping effect. The behaviour

of the first excited states is markedly different, however. Even at Nf = 4, we observe a

slight distortion around the first oscillation in the n = 2 energy-redshift curve, with this

developing into a multivalued region (or ‘fold’) as Nf increases. Within these regions, the

curves initially reverse direction at some value of redshift, and subsequently approach close

to the first minima of the corresponding ground-state curves, before reversing direction

once again and continuing to infinite redshift. The extent of this multivalued portion is

greater at larger fermion number, and indeed at Nf = 14 the reversal occurs at a redshift

value beyond the limit of our numerics. In addition, from Nf = 12 onwards, a second

fold begins to emerge, with a similar structure to the first, but located around the second

minimum in the ground-state curve.

It is important to note that, despite this multivalued nature, the energy-redshift curves

remain entirely continuous for all values of Nf . Thus they still represent one-parameter

families of solutions, but the appropriate parameter to use is no longer the central redshift.

We shall discuss an attempt at obtaining a single-valued parametrisation of these curves

in section 4.4. Note also that, for Nf ≥ 14, we cannot be certain that the n = 2 energy-

redshift curves reverse direction at a strictly finite value of redshift; it may be the case that

they extend all the way to z = ∞ before eventually reversing. An argument against this

is to note that the intermediate portion of each n = 2 curve appears to perform damped
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oscillations around the corresponding ground-state solution, and thus if this portion were

to extend to z = ∞, its endpoint would ultimately coincide with the infinite-redshift

n = 0 solution. This would imply that there exists a degeneracy associated with the

infinite-redshift states, a feature that we do not detect during their numerical generation.

This argument is not conclusive, however, since it may be the case, for example, that

a perturbation analysis is required in order to reveal a previously hidden degeneracy.

Whether the curves do indeed reverse at finite redshift therefore remains an open question.

The corresponding behaviour of the mass-radius relations, for the same values of Nf , is

illustrated in Fig. 4.4. Here we observe that the family of n = 2 states gradually begins to

wrap around the ground-state family as the fermion number increases, with the region in

which this occurs corresponding to the multivalued portion of the energy-redshift curves.

One end of this region becomes fixed at the first sharp turning point of the ground-state

curve, whereas the other moves progressively inwards, nearing the centre of the ground-

state spiral. Indeed, at Nf = 14, it appears (at least visually) that the n = 2 curve

completes two spirals, the first following the n = 0 relation, and the second around the

n = 2 infinite-redshift state. As mentioned, however, we cannot be certain whether the

n = 2 curve truly reaches the centre of the ground-state spiral.

4.2.2 The Nf = 12 system: a closer look

There are a number of obvious questions that immediately arise concerning the behaviour

outlined in the preceding section. In particular, why do the n = 2 curves contain multival-

ued portions, and why do the properties of states within these regions so closely resemble

0.3 0.4 0.5 0.6 0.7

5

10

50

100

0.3 0.4 0.5 0.6 0.7
5

10

50

100

0.3 0.4 0.5 0.6

10

20

50

100

0.3 0.4 0.5 0.6

10

20

50

100

0.3 0.4 0.5 0.6

10

20

50

100

0.3 0.4 0.5 0.6

20

50

100

Figure 4.4: Plots illustrating the change in behaviour of the mass-radius relations for the family
of first even-parity excited states (n = 2), as the fermion number is increased. Note the appearance
of a distortion in the n = 2 curve that gradually wraps itself around the ground-state spiral.
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those of ground-state solutions? The answers to these questions can at least partially be

obtained by analysing the internal structure of individual solutions along the curves. In

this section, we therefore present a more detailed analysis of the family of Nf = 12 states,

focusing on the multivalued region.

The results of this analysis are summarised in Fig. 4.5, where we show the radial pro-

files of the fermion fields α and β for twelve individual states located in and around the

multivalued region. The precise positions of these are indicated on the fermion energy-

redshift and mass-radius curves. This figure allows us to track the evolution of the fermion

wavefunction as the fold in the energy-redshift curve is traversed. The general behaviour

can be described as follows. Entering from the low-redshift regime, solution A is encoun-

tered first, which exhibits the structure expected from a non-relativistic n = 2 state, with

a single node in each fermion field separating a pair of extrema. As we move further along
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Figure 4.5: A closer look at the behaviour of the Nf = 12 system, detailing the evolution of the
n = 2 fermion wavefunction as the multivalued region is traversed. Shown (top) are the fermion
energy-redshift and mass-radius relations for the families of n = 0 and n = 2 states, with the
former restricted to the multivalued portion. Shown (bottom) are the fermion field profiles for
12 individual n = 2 states, with the locations of these indicated on the curves above.
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the curve (into the multivalued region), a secondary minimum begins to form, located out-

side the fermion nodes (i.e. at a larger radius), with the amplitude of this reaching a peak

around solution C. This minimum subsequently subsides and in fact disappears entirely

by the time solution E is reached, where once again only two extrema in each field are

present. Solutions F–H are located along the portion of the curve that travels backwards

in redshift, and following these cases, we see that the maxima located inside the fermion

nodes (i.e. those at smaller radii) gradually grow in amplitude, while the minima outside

shrink. In fact, in solution H, located just prior to the second redshift reversal point, the

minima in the fermion fields are almost invisible. These do not, however, disappear en-

tirely, and instead, once the curve has reversed in redshift, a new fermion field peak begins

to form at a radius inside the fermion nodes (see solution I). As we now move forwards

in redshift, this additional peak increases in amplitude, and upon exiting the multivalued

region, the wavefunction structure is as shown in solution L.

In order to interpret this evolution, it is useful first to recap the corresponding be-

haviour of the two-fermion system. There, non-relativistic states (resembling solution A)

evolve gradually into high-redshift states via the addition of successive fermion field oscil-

lations within the power-law zone. The evolution would structurally resemble the sequence

A→J→K→L, with new peaks forming inside the radius of the fermion field nodes. In the

Nf = 12 case, however, we note that solutions exist, such as C, in which an additional

peak is present outside the fermion nodes, a feature never observed in the two-fermion

system. In such cases, it appears that the fermion nodes are located within the power-law

zone, and not within the expected wave zone; in fact the wave zone here ceases to exist at

all. This will become clearer when we consider the Nf = 20 system in section 4.2.3.

It is important to note that the evolution of the fermion fields shown in Fig. 4.5 is

entirely continuous, i.e. the wavefunction is deformed through solutions A–L in a contin-

uous manner, ensuring a single node in each fermion field is always present. Along this

process, there exist solutions (e.g. H and I) in which the oscillations around the fermion

nodes are of very small, but non-vanishing, amplitude, and hence the resulting wavefunc-

tions visually resemble ground-state solutions. This explains why the properties of some

n = 2 states are so similar to their ground-state counterparts. Despite this, we should

undoubtedly still refer to these as n = 2 states, since they contain a single node in each

fermion field, and are continuously connected to the more-conventionally structured n = 2

solutions. Whether the terminology of ‘excited state’ remains appropriate, however, is a

more debatable issue, given that solutions such as B–E have a lower fermion energy than

the ground-state solution with corresponding redshift. Nonetheless, we shall continue to

refer to states with n ≥ 2 fermion nodes as ‘excited’, with this caveat acknowledged.
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4.2.3 The Nf = 20 system

A clearer appreciation of the situation can be obtained by considering the structure of

high-redshift states. To do so, we are required to increase the fermion number such that

the multivalued portion of the fermion energy-redshift curve extends to a sufficiently high

redshift. From Fig. 4.3, we note that this first occurs at Nf = 14, but here we shall

consider the Nf = 20 system, since the slightly stronger self-trapping effect will aid the

analysis.

A summary of the behaviour of the Nf = 20 system is presented in Fig. 4.6, where

we plot the fermion energy-redshift and mass-radius relations for the families of n = 0

and n = 2 states, together with four individual solutions located at high redshift. This

is again a case in which the intermediate portion of the energy-redshift curve extends

beyond the limit of our numerics, and hence there are always at least three n = 2 states

within the relativistic regime. Since the plots depicting the families of states are somewhat

convoluted, we have separated the n = 2 curves colour-wise into three distinct sections, as

follows. The light-blue portion of the energy-redshift curve enters from the non-relativistic

regime and oscillates towards the n = 0 infinite-redshift state. The orange section then

indicates the part of the curve that subsequently travels backwards in redshift, with the

purple portion occurring beyond the redshift reversal at z = 2.1. This colour-coding is

similarly reproduced for the n = 2 mass-radius relation, which as before is seen to exhibit
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Figure 4.6: Plots summarising the behaviour of the Nf = 20 system, showing (top) the fermion
energy-redshift and mass-radius relations for the families of ground and first even-parity excited
states. These are colour-coded to indicate the respective incoming and outgoing branches. Also
included (bottom) are four individual states (one n = 0 and three n = 2), each with redshift
z ≈ 40, the positions of which are located on the curves above. The dashed lines represent the
radial profiles of the infinite-redshift states around which the solutions oscillate.
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two spirals, towards both the n = 0 and n = 2 infinite-redshift states.

Considering the structure of the individual solutions shown in Fig. 4.6, we see first that

the ground state (A) now contains an extended power-law zone, with a series of fermion

field oscillations around the n = 0 infinite-redshift state (indicated by the dashed curves)

in evidence. Note that, due to the strong self-trapping effect, the first minimum in both α

and β is very close to zero. Turning to the n = 2 states, solution D, which is located along

the final outgoing portion of the energy-redshift curve, exhibits the standard behaviour

expected for an n = 2 state, with a single fermion node in each field located outside the

power-law zone. In solutions B and C, however, the fermion nodes clearly occur within the

power-law zone, just outside the first trapped peak, with the remainder of the solution now

oscillating around the negative version of the infinite-redshift state. These two solutions

are located along the intermediate portion of the energy-redshift curve, on the outgoing

and incoming branches respectively, and are close to the centre of the n = 0 mass-radius

spiral.

Why do the properties of solutions B and C so closely resemble those of ground states?

To understand this, we first note that the majority of the fermion probability density is

contained within the outer regions of the soliton, towards the end of the power-law zone

and within the wave and evanescent zones. Thus the properties of a state are determined

primarily by the form of the wavefunction at large r. In addition, physical observables are

calculated solely using bilinears involving α and β, and are hence entirely insensitive to

the sign of the fermion fields. With this information, it becomes clear that the properties

of a solution are overwhelmingly dictated by the number of fermion nodes located within

the wave zone. Since solutions B and C have zero such nodes (in fact the wave zone

does not exist), it is therefore not surprising that their physical properties are similar to

those of ground states. Finally, it is worth noting that, although B and C are located

along different branches of the energy-redshift curve, there appear to be no discernable

structural differences between the two solutions. We find that this is indeed always the

case — states on the outgoing and incoming portions of the same fold are identical in

nodal structure.

The structural evolution of states can be discerned by considering the radii at which

fermion nodes occur, as a function of redshift. This is shown in Fig. 4.7, in which we have

colour-coded the curves in the same manner as before. The evolution proceeds as follows.

Entering from the non-relativistic regime, the fermion field nodes initially travel radially

inwards (along the light blue branches), before reversing at some (possibly infinite) value of

redshift, and subsequently moving outwards (along the orange branches). The states along

these portions of the curve are those in which the fermion nodes are located within the

power-law zone, and thus the nodes are carried radially inwards as the redshift is increased,

along with the inner boundary of the zone. Note that, for states on the incoming branch

(orange), the fermion nodes consistently occur at a slightly larger radius than for those on
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Figure 4.7: The radii of fermion nodes, as
a function of redshift, for the family of first
even-parity excited states (n = 2) that ex-
ists in the 20-fermion system. This should
be interpreted as one continuous curve, sep-
arated into three colour-coded branches as
in Fig. 4.6. Note that the radius of the node
in α always occurs slightly inside the cor-
responding node in β. Note also that we
have multiplied the node radii by a factor of
ω in order to mask the oscillatory features
present in the power-law zone.

the outgoing branch (light blue), a feature that is reflected in the structures of solutions

B and C in Fig. 4.6. Once the curve returns to z = 2.1, the structure of the wavefunction

transitions such that the fermion nodes are now located within the wave zone, and the

curve then oscillates around a constant radius. Note that along this section, it can be

seen that a secondary fold in the curve has begun to develop, indicating that five distinct

solutions are present within the region z ≈ 5.3 – 7.1. This additional fold is also in evidence

in the fermion energy-redshift plot shown in Fig. 4.6. To analyse this properly, however,

we must increase the fermion number even further.

4.2.4 The Nf = 38 system

We now consider the Nf = 38 system, which represents the upper limit of our numerics,

at least with regard to generating complete families of solutions. For values of the fermion

number that are this large, the second fold discussed above now extends into the high-

redshift regime, allowing us to analyse the structure of the states located along it. This

is shown in Fig. 4.8, where we again plot the fermion energy-redshift and mass-radius

relations for the n = 2 family of states. These may appear significantly more complicated

than their Nf = 20 equivalents, but the overall behaviour is in fact similar. The major

difference concerns the second fold, which is observed to oscillate around the n = 0 infinite-

redshift state, in conjunction with the first. Thus the mass-radius curve completes three

spirals: two around the ground state, followed by one around the n = 2 infinite-redshift

solution. In order to make this behaviour more apparent, we have again separated the

curves into distinct branches, with the blue section containing the first fold, the orange the

second fold, and the purple the final portion that ultimately reaches infinite redshift. The

outgoing and incoming portions (with respect to redshift direction) are distinguished by

solid and dashed lines, respectively. Note that the second fold does not return to the same

value of redshift as the first (z = 1.95), but instead reverses direction at z = 4.68, which

corresponds to the position of the second cusp-like feature in the ground-state curve.

Considering now the individual states shown in the lower panels of Fig.4.8, these have

a common redshift value of z ≈ 41, and there are now five distinct n = 2 states (B–F),
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Figure 4.8: Summary of the Nf = 38 system, showing (top) the fermion energy-redshift and
mass-radius relations for the families of n = 0 and n = 2 states. These are separated into colour-
coded branches, which progress in the order light blue → orange → purple. Shown also (bottom)
are the fermion field profiles for the six individual states with z ≈ 41, five of these being n = 2
solutions (B–F), and the other the unique ground state (A).

accompanied by a single n = 0 ground state (A). As is evident, the fermion self-trapping

is even stronger at this value of Nf , with the first peak in the ground-state wavefunction

having begun to separate from the remainder, and in addition the second minimum now

also approaches close to zero. With regard to the n = 2 states, solutions B, C and F are

similar in structure to those discovered in the Nf = 20 system, with the fermion nodes in B

and C occurring just outside the first power-law oscillation, while in F they are contained

within the wave zone. Unsurprisingly, we find that states B and C are located along the

first fold in the energy-redshift curve, while F is located along the final spiralling portion.

The two new solutions, D and E, which lie along the second fold, exhibit a structure unseen

at Nf = 20 — the fermion nodes are still located within the power-law zone, but they are

now preceded by two trapped peaks. This explains why the second fold does not return to

the same redshift value as the first. Along the first fold, the transition of the fermion nodes

from the power-law to the wave zone occurs at the redshift at which the power-law zone

first forms, but for the second fold, this transition can occur only once the second power-
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law oscillation is present, i.e. at higher redshift. Using the rationale discussed earlier, we

can also explain why the second fold oscillates around the n = 0 curve. This is simply

due to the lack of fermion nodes within the wave zone of solutions, as is evident from the

structure of the n = 2 states D and E. Note that since these occur along the same fold,

they do not exhibit any clear differences in nodal structure, as mentioned previously.

We are also now in a position to explain, at least partially, why there exists such a

multiplicity of states at high fermion number. The key feature once again appears to be

the fermion self-trapping effect. As this grows in strength with increasing fermion num-

ber, the minima in the wavefunction, associated with the locations of unstable photon

spheres, become progressively more pronounced. At some point, the first minimum ap-

proaches so close to zero that it becomes possible for the fermion fields to switch sign

prematurely, resulting in a pair of fermion nodes occurring within the power-law zone.

As Nf is subsequently increased, the value at the second minimum also approaches zero,

and there is now a possibility of fermion nodes appearing outside the second trapped peak

in the fermion wavefunction, but still within the power-law zone. If the fermion number

were to be increased even further, we surmise that, as each subsequent minimum in the

wavefunction drops towards zero, new solutions will appear in which the fermion nodes

are located outside the third, fourth and fifth power-law peaks, and so on. One might

wonder whether, at some point, the power-law zone will ‘run out’ of oscillations that can

be converted into fermion nodes. For a fixed value of redshift, this will indeed be the case,

but it is solely a reflection of the fact that each additional fold in the energy-redshift curve

begins at a slightly higher redshift than the last. Thus given a particular value of redshift,

there will be a maximum number of n = 2 states that can exist, regardless of the fermion

number, but this will becomes infinite as both z and Nf tend to infinity.

This concludes our analysis of the first even-parity excited states. We turn now to the

issue of higher excited states, for which the landscape becomes increasingly complex.

4.3 Higher excited states

As indicated earlier in section 4.1.2, when considering the unscaled Nf = 40 system

(Fig. 4.2), the number of excited-state solutions present at a particular value of redshift

tends to increase with increasing n (provided of course that the system is sufficiently

relativistic). Here, we shall analyse the behaviour of higher excited states (n ≥ 4) in detail,

and show that this is indeed the case, with the arrival of new solutions being attributed

to the increased number of ways in which multiple fermion nodes can be arranged within

the power-law zone. As a result, the system becomes increasingly multivalued as both n

and Nf are increased.
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4.3.1 Small fermion number

We begin, however, by first reviewing the situation at relatively small fermion number,

where the number of solutions remains manageable. A summary of this, for the Nf = 6,

8 and 12 systems, is presented in Fig. 4.9. This shows the fermion energy-redshift and

mass-radius relations for the families of ground and first three even-parity excited states.

These can be compared with the corresponding curves for the two-fermion system, shown

previously in Fig. 4.1. At each value of Nf , the overall behaviour of the three excited-state

families is qualitatively similar, with a multivalued region emerging in each energy-redshift

curve, with these encompassing approximately the same redshift range. By considering the

mass-radius relations, we observe that, as the fermion number is increased, each subsequent

excited state gradually begins to wrap around the previous, before ultimately spiralling

towards the appropriate infinite-redshift solution.

It therefore appears that, for systems containing relatively small numbers of fermions,

the higher excited states are no more multivalued than the first. This is a consequence of

the weak nature of the self-trapping effect at such fermion numbers, since only the first

minimum in the wavefunction is close enough to zero to allow a fermion node to form.

Thus only a single fermion node can occur within the power-law zone, irrespective of the

value of n, with the remainder confined to the wave zone. Families of states with n total

nodes therefore wrap around the families with n−1 nodes, since solutions located in these

regions contain exactly one fewer fermion node in their outer wave zones. Hence the total

number of excited states at a particular value of redshift is identical for each value of n, a
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Figure 4.9: Plots illustrating the self-similar behaviour exhibited by the first three even-parity
excited states, for systems with relatively small numbers of fermions. Shown (top) are the fermion
energy-redshift and (bottom) mass-radius relations for the families of n = 0, 2, 4 and 6 states, at
Nf values of 6, 8 and 12 respectively.
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feature that remains the case for systems containing up to and including 24 fermions.

4.3.2 The Nf = 38 system: n = 4 states

To observe a significant disparity between the relative number of excited states, it proves

necessary to once again increase the fermion number. We thus return to the Nf = 38

system, now analysing the behaviour of the second even-parity (n = 4) states.

A summary of this is presented in Fig. 4.10, in which we again show the fermion

energy-redshift and mass-radius relations, in this case solely for the family of n = 4 states.

These plots are somewhat cluttered, to say the least, but we have once again separated

the curves into colour-coded branches, in an attempt to make them intelligible. There

are here a total of four folds in the n = 4 energy-redshift curve (compared to two in the

corresponding n = 2 curve), the order of which can be described as follows. Entering from

the non-relativistic regime, we first traverse the red portion of the curve, which oscillates

towards the n = 0 infinite-redshift state, before reversing direction (following the dashed

portion) and transitioning to the light blue branch at z = 2.24. This oscillates around the

n = 2 infinite-redshift solution, reverses, and transitions to the orange branch at z = 4.78,

which once again oscillates around the n = 0 infinite-redshift state. This then reverses

direction at high redshift, returning to z = 1.95, and transitions to the purple branch,

which in turn oscillates around the n = 1 infinite-redshift state, before the final transition

to the black branch occurs at z = 4.68. This behaviour is mirrored in the mass-radius

relations, in which it can clearly be seen that the curve spirals twice towards the n = 0

infinite-redshift state (along the red and orange sections), twice towards the n = 2 infinite-

redshift state (along the light blue and purple sections), followed by a final spiral towards

the n = 4 infinite-redshift state. Note that the appearance of these two additional folds

(relative to the n = 2 case) is not a consequence of a distortion occurring in the region

surrounding the third cusp-like feature in the fermion energy-redshift curve, as one might

have expected. Indeed, one can see that this has only partially begun to develop, even at

Nf = 38. These are instead ‘folds within folds‘, which emerge along those already present.

How are we to interpret the presence of these new folds? As before, clues can be

obtained by considering the structure of individual high-redshift solutions, which, for the

case of z ≈ 40, are shown in the lower panels of Fig. 4.10. In total, there are nine distinct

n = 4 states, each containing exactly two fermion nodes within each fermion field, as

required. Five of these states (C, D, G, H and I) are analogous to the five previously

discovered n = 2 states (see Fig. 4.8), in that they are identical in nodal structure, expect

for the presence of an additional fermion node within the outer wave zone. These states

are located along the branches that spiral towards the n = 2 infinite-redshift state (in

the case of C, D, G, and H) and the n = 4 infinite-redshift state (in the case of solution

I). The four new solutions (A, B, E and F) therefore reside along the sections that spiral

towards the n = 0 infinite-redshift state, as could be predicted by their lack of wave-zone
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Figure 4.10: Plots summarising the behaviour of the second even-parity excited states, for the
Nf = 38 system, showing (top) the fermion energy-redshift and mass-radius relations for the
family of n = 4 states. The curves are separated into colour-coded branches, with the outgoing
and incoming portions denoted by solid and dashed lines, respectively. The profiles of the fermion
fields for nine n = 4 states, each with a common redshift of z ≈ 40, are also shown (bottom),
with their locations indicated on the plots above.

nodes. In all four cases, the two fermion nodes are located within the power-law zone,

but it is not entirely clear how to interpret the almost identical structures exhibited by

the fermion wavefunctions. Our best guess is as follows. Solutions A and B, which are

located along the outgoing and incoming red branches of the curves, respectively, contain

two fermion nodes sandwiched between the first and second trapped peaks, with this being

more obvious in solution A. By contrast, solutions E and F contain only one node between

the first and second peaks (the latter of which has become a minimum), while the other

is located between the second and third peaks.
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Assuming this interpretation to be accurate, we might have anticipated the appearance

of solutions E and F at Nf = 38, since both the first and second minima in the ground state

are sufficiently close to zero to allow nodes to form. It seems reasonable, therefore, that

two nodes could be contained within the power-law zone, with each minimum converting to

a node, as observed. What is somewhat unexpected, however, is the presence of solutions

A and B, in which both nodes are seemingly located between the first and second trapped

peaks. To explain this, we note that, as mentioned briefly in Chapter 3, the strength of

the self-trapping effect at large Nf is such that the first peak in the fermion wavefunction

becomes spatially separated from the remainder (which are evenly spaced in log(r)). Due

to the large radial extent of the resulting void, it would appear that, for sufficiently large

Nf , there is room to fit two fermion nodes between the first two trapped peaks. Given

that the spatial separation of peaks continues to increase alongside the fermion number,

this suggests that, at even higher Nf , it may be possible to fit three, or potentially even

more, nodes between the first two peaks, and indeed that multiple nodes may appear

within the corresponding voids between the second, third and fourth peaks, and so on.

This would act to magnify the multiplicity of excited states even further as the fermion

number continues to increase.

4.3.3 Varying Nf : A summary

Although we cannot be certain as to whether the nodal interpretation discussed above

is correct, our analysis of individual states for systems containing up to and including

70 fermions has established that scenarios such as those described can indeed occur. We

shall now summarise these results, with particular emphasis on the number and relative

structure of states present at each fermion number.

Figure 4.11 provides a detailed overview of the excited-state system as the number

of fermions is increased. Here, we plot the soliton radius (strictly speaking R̄/
√
Nf ) as

a function of fermion number, for all solutions with z ≈ 100, up to an including fourth

even-parity excited states (n = 8). This provides a convenient method for separating

states based on the number of fermion nodes present within their wave zones. Note

that we have here included both non-even and non-integer values of Nf , in order for the

behaviour to become apparent, but it should be emphasised that only even values of Nf

are physically acceptable. This of course does not prevent one from solving the FSY

equations (2.28)–(2.31) with an arbitrary non-integer value of Nf , as has been performed

when generating these figures. Consider first the relatively simple behaviour of the n = 2

states. For small numbers of fermions, only a single state exists at each value of Nf ,

with this exhibiting a single fermion node (in each field) located within the wave zone.

As the fermion number is increased, recall that a fold appears in the fermion energy-

redshift curves, as previously described, with this gradually extending outwards in redshift,

reaching z = 100 at Nf = 13.39. At this point, a new pair of solutions therefore appears,

for which the fermion nodes are located within the power-law zone (hence the smaller
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Figure 4.11: Plots summarising the behaviour of the first four even-parity excited states as
a function of fermion number, showing the radius of all solutions present at a redshift value of
z ≈ 100. The emergence of new pairs of states as the fermion number is increased can clearly be
seen, with the radii of these indicating the number of fermion nodes contained within the wave
zone. Note that we have colour-coded the curves such that branches appearing at the same value
of Nf have the same colour.

radial extent), just outside the first trapped peak. There remain only three solutions up

until Nf = 35.19, where a second new pair appears, these corresponding to states along

the second fold, which has now extended outwards to z = 100. The fermion nodes for these

states are similarly located in the power-law zone, but now between the second and third

peaks. Finally, at Nf = 64.98, a third pair of states emerges, for which the self-trapping

effect is now strong enough to allow nodes to form between the third and fourth trapped

peaks.

Turning now to the behaviour of the n = 4 states, we observe that this is similar

to the n = 2 case up until Nf = 24.36, where an additional pair of solutions is seen to

emerge. These are of significantly smaller radius than the three already present, and hence

we conclude that the two fermion nodes in these states are located within the power-law

zone, both between the first and second trapped peaks. At Nf = 35.19, the strength

of the self-trapping is such that the second minimum in the fermion wavefunction can

now convert to a node. We therefore observe the concurrent appearance of two pairs of

new states, one of these having a single fermion node within the power-law zone (located

after the second peak), and the other having two (one located after the first peak, and the
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Figure 4.12: The total number of solu-
tions, for the ground and first four even-
parity excited states, plotted as a func-
tion of fermion number. This indicates
the number of states of each type present
at z ≈ 100. There exists always a unique
n = 0 ground state, but the number of ex-
cited states becomes progressively larger
as both n and Nf increase.

other the second). Thereafter, subsequent pairs of states emerge atNf = 44.7, Nf = 53.88,

followed by two pairs at Nf = 64.98, making a total of 19 distinct n = 4 states.

The corresponding plots for the n = 6 and n = 8 states are also presented, although

we shall not provide a detailed account of their behaviour. Note that, to aid readability,

we have colour-coded the curves to indicate branches that emerge at approximately the

same value of Nf . Suffice to say the number of states increases substantially with each

subsequent excited state, due to the possibility of additional nodal configurations. The

overarching nodal structure of states can be read off the plots in a straightforward manner,

by noting that the number of wave-zone nodes is related to the soliton radius. For example,

at Nf = 50, there are a total of 17 n = 8 states: 2 with no wave-zone nodes, 4 with one

pair, 6 with two pairs, 4 with three pairs, and 1 with four pairs. Beyond this classification,

states are distinguished by the precise distribution of nodes within their power-law zones.

The total number of excited states present at each value of Nf is shown in Fig. 4.12

(again at constant z ≈ 100). From this we see that there is always a unique n = 0 ground

state, regardless of fermion number, and that the excited states are also unique up until

Nf = 13.939. Between this and Nf = 24.36, three solutions exist for each value of n > 0,

but beyond this the number of solutions differs with n, with the curves becoming ever

more separated as the fermion number increases. Thus at Nf = 68, the limit of our nu-

merics, there are a total of 7 n = 2 states, 19 n = 4 states, 31 n = 6 states and 39 n = 8

states. Note that jumps in the number of states occur for approximately every 10 fermions

added, and that the precise values of these can differ slightly from state to state. We have

established that this latter feature is not a numerical artefact, but its interpretation is not

entirely clear.

4.4 Discussion

In this chapter, we have analysed thoroughly the excited states of relativistic many-fermion

Einstein–Dirac solitons, showing that their behaviour differs significantly from that ob-
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served in the two-fermion system. In particular, the central redshift can no longer be used

to uniquely identify states, with physical quantities such as the fermion energy becoming

multivalued with respect to this parametrisation. This can be attributed to a breakdown

in the zonal structure of solutions, in which fermion nodes can form within the power-law

zone, a feature permitted at large fermion number due to the strength of the fermion

self-trapping effect. The system becomes increasingly multivalued when considering ever

higher excited states, a consequence of multiple nodes existing within the power-law zone,

and thus the spectrum of states becomes increasingly complex as both n and Nf are

increased.

Although we have presented a detailed review of the overall landscape, there remain

a number of unanswered questions. First, we can provide no physical interpretation for

the nodal structures observed in the excited-state solutions. Certainly the fermion self-

trapping effect appears to be relevant, in allowing the fermion wavefunction to drop suffi-

ciently close to zero, but exactly what causes the fermion fields to switch sign prematurely

is unknown. Also unclear is why the folds in the fermion energy-redshift curves have only

a finite redshift extent (at least in many cases). Perhaps there exists some mechanism that

prevents nodes from forming at sufficiently small r. From a purely physical perspective,

the most we can say is to note that the Einstein–Dirac system becomes increasingly non-

linear as the fermion number is increased, and thus we should not be entirely surprised by

the presence of multiple solutions. It would be interesting to determine whether similar

systems, such as excited boson or Proca stars, exhibit an equivalent behaviour. There

is indeed tentative evidence that this may be the case, in the context of rotating boson

stars [91], in which multivaluedness is similarly observed, although the validity of this

comparison is debatable.

We also note that, when presenting individual solutions throughout this chapter, we

have omitted to display the structure of the corresponding metric fields, partly due to

space constraints. One might wonder whether these, or indeed the forms of the optical

geometry, are able to shed light on the situation. We therefore present an example of

both the metric fields and optical geometry for a many-fermion excited state in Fig. 4.13,

corresponding to solution A shown earlier in Fig. 4.10. We also include the corresponding

ground-state plots, for comparison. Note that in this case, the two pairs of additional

fermion nodes are both located between the first and second trapped peaks in the fermion

wavefunction. As one can see, the effect of the fermion nodes is to somewhat dilute the

first minimum in the metric field A (relative to its ground-state form), causing it to split

into multiple smaller oscillations of the type previously only associated with the wave

zone. There is also a corresponding change in the optical geometry, with the first trapping

region becoming less pronounced and covering a larger spatial extent. The behaviours of

both plots can be understood by considering the excited-state form of the radial fermion

energy density r2ρf (r). Due to the presence of the fermion nodes, the first trapped shell
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Figure 4.13: Plots showing the radial profiles of the metric fields (left), radial optical geometry
co-ordinate ρ = rT (middle) and radial fermion energy density r2ρf (right) for the ground state
(top) and a fourth even-parity excited state (bottom) of the Nf = 38 system. Both of these have
a central redshift of z ≈ 40, and the excited state corresponds to solution A shown in Fig. 4.10.
The locations of stable and unstable photon spheres are indicated by dashed light blue and red
lines, respectively.

splits in a series of three distinct peaks, resulting in a more evenly-spread distribution

of energy. Thus the accompanying metric distortion is slightly less prominent, with the

triple peaks causing a corresponding oscillatory behaviour in A. Note of course that the

separation of these three peaks is not a consequence of the self-trapping effect (as can be

seen from the optical geometry), but is purely due to the presence of the fermion field

nodes. Overall, although this behaviour is interesting in its own right, it does not appear

to clarify any remaining questions regarding interpretation.

Finally, we emphasise that, although the fermion energy-redshift curves at large

fermion number are multivalued as a function of redshift, they nonetheless still represent

continuous, one-parameter families of states. The complication is that the central redshift

z no longer provides the appropriate parametrisation. It should therefore be possible, at

least in principle, to employ an alternative parametrisation in which the curves become

entirely single-valued. An attempt at this is briefly summarised as follows. Recall that

the fermion field nodes transition continuously from the power-law zone to the outer wave

zone as the curves are traversed, suggesting that progress could be made by constructing

‘redshift-like’ parameters from the values of T at each node, relative to its central value:

zpα =
T (0)

T (rpα)
− 1 . (4.1)

Here, rpα is the radius of the pth node in the field α, and we have subtracted 1 in order to
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Figure 4.14: The results of parametrising families of excited states by the central redshift z0
(top) compared to the quantity z1α (bottom). We show three different cases, corresponding to
the Nf and n values indicated. Note that the dashed lines contained within the two right-hand
plots correspond to redshift regions that are beyond the upper limit of our numerics.

ensure zpα runs from zero to infinity. For nodes which are located within the outer wave

zone, this parameter will differ only slightly from the central redshift (which we here refer

to as z0), but for those in the power-law zone, the deviation will be significant. Various

results of this new parametrisation are shown in Fig. 4.14, where we plot the fermion energy

as a function of both central redshift z0 and the parameter z1α, for three different families

of solutions, at three different fermion numbers. As can be seen, this new parametrisation

is entirely successful for the Nf = 12, n = 2 case, with the curve becoming completely

single-valued. For the Nf = 20, n = 2 curve, however, a small multivalued still remains

(see inset), although we suspect that this can be removed by constructing a parameter

that incorporates nodes in both α and β. For these n = 2 states, the application of the

parametrisation above is unambiguous, since only one node exists in each fermion field.

When considering higher excited states, however, it is not clear how to proceed, since

there are now multiple nodes present. The result of parametrising the Nf = 38, n = 4

state by solely z1α is shown in the figure, but we find that significant multivalued sections

remain, corresponding to regions in which the second fermion node transitions from the

power-law to the wave zone. It is clear therefore that an alternative is required. Our

attempts at constructing composite parameters, involving multiple nodes, however, have

proved unsuccessful, although we note that switching parameters between branches does

in fact produce curves that are no longer multivalued. This is somewhat outwith the spirit

of a single-valued parametrisation, however, as it requires prior knowledge of the entire

family of states. The construction of a true single-valued parameter, valid for arbitrary

values of n and Nf , therefore remains an open problem.
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Chapter 5

Einstein–Dirac–Higgs solitons

The Einstein–Dirac system considered thus far provides a relatively simple toy model in

which one can study interactions between neutral, fermionic quantum particles in general

relativity. Although this proves useful in analysing purely gravitational effects, its ap-

plicability to physically relevant fermions, which interact via the additional mechanisms

described within the Standard Model, is limited. Various extensions to the Einstein–Dirac

formalism have therefore been considered, namely the addition of electromagnetic inter-

actions [41], the electroweak force [42], and more recently a Higgs mechanism by Leggat

[53]. This latter study, however, considers the inclusion of a conformally coupled Higgs

field (which is subsequently applied in the context of conformal gravity), and numerical

issues prevent a detailed evaluation of the resulting particle-like states.

In this chapter, we therefore present a more thorough analysis of the Einstein–Dirac–

Higgs system, in which the addition of a minimally-coupled Higgs field is considered, as

is the case in the Standard Model, and demonstrate that indeed particle-like states exist

within this context, which we shall refer to as ‘Einstein–Dirac–Higgs solitons’. Although

these largely exhibit similar properties to their Einstein–Dirac counterparts, we intrigu-

ingly discover the presence of a mass-scale separation at strong fermion-Higgs coupling,

in which the ADM mass of a state is no longer proportional to the mass of its constituent

fermions. This chapter is structured as follows. We first discuss the application of the

Higgs mechanism to this problem, and derive the appropriate equations of motion, before

presenting examples of localised particle-like solutions for the two-fermion system. We sub-

sequently analyse the properties of the families of these states, showing that they exhibit

a similar spiralling behaviour to that observed in the Einstein–Dirac system. Thereafter

follows a detailed discussion concerning the mass-scale separation observed at strong cou-

pling, along with possible reasons for its appearance, including the results of a large-r

analysis. We then briefly present results concerning the zonal structure of solutions, along

with an example of an infinite-redshift state, before concluding with a short discussion.
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5.1 The Einstein–Dirac–Higgs system

We begin by deriving the equations of motion describing static, spherically symmetric

configurations of gravitationally-interacting fermions, modelled within the Einstein–Dirac

formalism, with a minimally-coupled scalar Higgs field now included. As we shall detail,

various subtleties arise concerning the application of the Higgs mechanism within this

semi-classical context, which have implications when considering localised particle-like

solutions. As noted, this system has previously been studied by Leggat [53] (although

with regard to a conformal coupling), and thus much of the proceeding derivation and

discussion is contained therein.

5.1.1 Setup

In the Standard Model, the Higgs mechanism is responsible for generating the observed

masses of elementary particles (including the Higgs boson itself), via a spontaneous sym-

metry breaking that occurs at the electroweak energy scale. This is achieved by the Higgs

field h relaxing to the minimum of its quartic ‘Mexican-hat’ potential (see Fig. 5.1), and

consequently obtaining a non-zero vacuum expectation value (vev) v. For fermionic parti-

cles, the Higgs field is incorporated via the addition of a standard Yukawa coupling term,

µΨ̄hΨ, and thus the mass of each fermion is given by its respective coupling strength µ

multiplied by the value of the Higgs vev.

Although the Standard model Higgs is strictly a complex SU(2) doublet, we shall here

consider the simplified case of a real scalar field, denoted h, leading us to write the total

action for the Einstein–Dirac–Higgs system as:

SEDH =

∫ (
R

16πG
+ Lm

)√
−g d4x , (5.1)

where the matter Lagrangian density is now:

Lm = Ψ( /D − µh)Ψ− 1

2
(∇νh)(∇νh)− V (h) . (5.2)

Here, µ is the strength of the fermion-Higgs coupling, which we shall leave unspecified,

while the Higgs potential V (h) is taken to be of the usual Mexican-hat form:

V (h) = λ(h2 − v2)2 , (5.3)

where λ is an overall scaling factor and v is the Higgs vacuum expectation value, the values

of both of which we shall allow to vary. As in the Einstein–Dirac system, the variation of

the action (5.1) with respect to the spinor Ψ produces the Dirac equation, while variation

with respect to the metric gµν results in the Einstein equations. There is also an equation

of motion for the Higgs field, found by varying the action with respect to h, or equivalently
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by evaluating the Euler-Lagrange equations for h using Lm, as follows:

δLm

δh
= ∇µ

(
δLm

δ(∇µh)

)
=⇒ ∇µ∇µh = µΨΨ+

dV

dh
. (5.4)

Notice that this contains a term that depends on the spinor wavefunction, and therefore

does not simply represent a statement asserting the stability of the minima of V (h).

Instead, it leads us to define an effective Higgs potential:

Veff(h) = µhΨ̄Ψ + V (h) , (5.5)

the form of which now governs the dynamics of the Higgs field, as follows. In the absence

of the fermion wavefunction (i.e. in vacuum), the effective potential reduces to the usual

Mexican-hat form, and hence the Higgs field is pinned at its vacuum expectation value

v. At positions where the spinor field is non-zero, however, the effective potential conse-

quently acquires an additional tilt, dependent on the value of the fermion wavefunction at

that point, resulting in the minima of Veff no longer coinciding with h = ±v. The Higgs

field will therefore tend to deviate from its vacuum expectation value in the presence of

a fermion source, such as a localised particle-like state, becoming instead a function of

position. This in turn implies that the fermion mass, µh, of such an object must also be

position-dependent, with its value varying within the fermion source, but approaching an

asymptotic value, µv, as the wavefunction decays and the Higgs field returns to its vacuum

expectation value. It is this asymptotic value that we shall define as the fermion mass mf

of a localised object, i.e. that calculated by an observer at spatial infinity:

mf = µv . (5.6)

In contrast, the mass associated with the Higgs field itself is indeed a fixed quantity, and

is calculated by considering the displacement of the field around its vacuum expectation

value. In order to obtain an explicit expression, we therefore write h = ν + δh, and

substitute this into the matter Lagrangian density:

Lm = Ψ( /D − µh)Ψ− 1

2
(∇µδh)(∇µδh)− λ

(
(v + δh)2 − v2

)2
(5.7)

= Ψ( /D − µh)Ψ− 1

2
(∇µδh)(∇µδh)− 4λv2δh2 − 4λvδh3 − λδh4 . (5.8)

Comparing this with the standard form for a real scalar field, we conclude that the Higgs

mass mH takes the value:

mH = 2v
√
2λ . (5.9)

As a final remark, we note that this type of behaviour does not arise in the Standard

model, partly because fermions are treated as point particles in quantum field theory, but

also due to the fact that corrections to the Higgs potential due to fermionic interactions
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are negligible at leading order. The phenomenon of a locally-varying fermion mass is

therefore purely a consequence of considering extended localised objects within a semi-

classical framework.

5.1.2 Equations of motion

Having outlined the general problem, we now present a brief summary detailing the deriva-

tion of the equations of motion valid for a static, spherically symmetric collection of

fermions. This system was first considered in ref. [53], within the context of a conformally

coupled Higgs field, and the expressions given therein reduce to those presented here when

the conformal coupling ζ is set to zero.

We begin by restating the metric and spinor ansatzes used in the Einstein–Dirac case,

which can be applied without modification to the system under consideration here:

gµν = diag

(
− 1

T (r)2
,

1

A(r)
, r2, r2 sin2 θ

)
; (5.10)

Ψ±
jk(t, r, θ, ϕ) =

√
T (r)

r

χk
j∓ 1

2

α(r)

iχk
j± 1

2

β(r)

 e−iωt . (5.11)

Using these, an explicit expression for the Dirac equation can be derived in precisely the

same manner as in the Einstein–Dirac system, with the sole alteration being that the

fermion mass is replaced by the now locally-varying quantity µh:

√
Aα′ = +

κα

2r
− (ωT + µh)β ; (5.12)

√
Aβ′ = −κβ

2r
+ (ωT − µh)α . (5.13)

Turning to the Einstein equations, the contribution to the energy-momentum tensor from

the fermionic sector is again identical to the Einstein–Dirac case, taking the form given in

(2.15). To determine the contribution from the Higgs terms, we evaluate:

Tµν [h] =
−2√
−g

δ

δgµν

[√
−g

(
−1

2
(∇σh)(∇σh)− V (h)

)]
= (∇µh)(∇νh)−

(
1

2
(∇σh)(∇σh) + V (h)

)
gµν , (5.14)

where we have used the following identity for the variation of the metric determinant:

δ
√
−g = −1

2

√
−g gµν δg

µν . (5.15)

Thus the total (mixed) energy-momentum tensor is:

Tµ
ν = −

j∑
k=−j

ℜ
{
Ψ

±
jk (iγ

µ∂ν)Ψ
±
jk

}
+ (∇µh)(∇νh)−

(
1

2
(∇σh)(∇σh) + V (h)

)
δµν , (5.16)
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the non-zero components of which evaluate to:

T t
t = −|κ|ω

r2
T 2
(
α2 + β2

)
− 1

2
A(h′)2 − V (h) ; (5.17)

T r
r =

|κ|
r2

T
√
A
(
αβ′ − βα′)+ 1

2
A(h′)2 − V (h) ; (5.18)

T θ
θ = T ϕ

ϕ =
κ|κ|
2r3

Tαβ − 1

2
A(h′)2 − V (h) . (5.19)

Since the form of the metric remains unchanged from the Einstein–Dirac case, the com-

ponents of the Einstein tensor are precisely those given in (2.19)–(2.21), and therefore we

can write the tt and rr Einstein equations as:

1

r2
(
−1 +A+ rA′) = 8πG

[
−|κ|ω

r2
T 2
(
α2 + β2

)
− 1

2
A(h′)2 − V (h)

]
; (5.20)

1

r2

(
−1 +A− 2rA

T ′

T

)
= 8πG

[
|κ|
r2

T
√
A
(
αβ′ − α′β

)
+

1

2
A(h′)2 − V (h)

]
. (5.21)

Note that once again only two of the four Einstein equations are independent. It only

remains to derive an explicit expression for the Higgs equation (5.4), for which we require

the evaluation of ΨΨ:

ΨΨ =

j∑
k=−j

Ψ
±
jkΨ

±
jk =

T

r2

j∑
k=−j

(
α2 χ̄k

j∓ 1
2

χk
j∓ 1

2

− β2 χ̄k
j± 1

2

χk
j± 1

2

)
=

|κ|
r2

T (α2 − β2) . (5.22)

Then, using the metric ansatz (5.10) to evaluate the covariant derivatives, we arrive at

the final expression for the Higgs equation:

Ah′′ −A

(
T ′

T
− A′

2A
− 2

r

)
h′ =

|κ|µ
r2

T (α2 − β2) +
dV

dh
. (5.23)

This, along with (5.12), (5.13), (5.20) and (5.21), constitutes a set of five coupled differen-

tial equations, for the five unknown fields {α, β,A, T, h}, that fully define the behaviour of

a static filled shell of neutral fermions interacting both gravitationally and via a minimally-

coupled Higgs field. We shall hereafter refer to these as the ‘EDH equations’.

5.1.3 Particle-like solutions

We now discuss the boundary conditions required to generate particle-like solutions to the

EDH equations. As in the Einstein–Dirac system, we require the spacetime of solutions to

be asymptotically flat, i.e A(r), T (r) → 1 as r → ∞, as well imposing the normalisation

of each spinor wavefunction:

4π

∫ ∞

0

T√
A

(
α2 + β2

)
dr = 1 . (5.24)
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Figure 5.1: The intrinsic Higgs po-
tential V (h) (left) alongside the effec-
tive Higgs potential Veff(h) (right).
The latter is inverted due to the static
nature of the system, and obtains
an additional tilt at radii inside the
fermion source.

In order to ensure asymptotic flatness, the contribution to the Einstein equations (5.20)

and (5.21) from the terms involving the Higgs field must vanish as r → ∞. This is

guaranteed provided the Higgs field asymptotes towards its vacuum expectation value

outside the fermion source, matching the expected behaviour outlined earlier. It is not

the case, however, that this occurs naturally, in that the Higgs field will not automatically

relax to its vacuum expectation value in the absence of the fermion wavefunction. The

reason for this can be understood as follows, where we employ the same rationale as

Schlögel et al. [92]. First, let us consider the situation outside the fermion source, at a

point where the spinor fields have decayed sufficiently for their contribution to the Higgs

equation (5.23) to be negligible. Let us also temporarily introduce a time-dependence to

the system, such that the dynamics of the Higgs field is now governed by the following

equation:

T 2ḧ−Ah′′ +A

(
T ′

T
− A′

2A
− 2

r

)
h′ = −dV

dh
, (5.25)

where a dot represents the derivative with respect to time. The important point to note

from this expression is that the time derivative of the Higgs field is of the opposite sign

to the spatial derivative, and therefore the two dynamically stable minima in the Higgs

potential are in fact unstable maxima from the point of view of spatial variations. Thus, in

the purely static case considered here, the Higgs potential is effectively inverted compared

to its usual intrinsic form, as is illustrated in Fig. 5.1. In addition, within the fermion

source, the Higgs potential also acquires a tilt due to the presence of the fermion wave-

function, as discussed previously, resulting in an effective Higgs potential of the explicit

form:

Veff(h) = λ(h2 − v2)2 +
µ|κ|
r2

T (α2 − β2)h . (5.26)

An example of this tilt is also shown in Fig. 5.1. Note that, for states that are fermion

dominated (as opposed to anti-fermion dominated), i.e. those in which the fermion field

α is dominant, the cumulative effect of this tilt is always to guide the Higgs field from a

lower value to a higher one. Thus, in order to obtain states in which the (asymptotic)

fermion mass is positive, the Higgs field is forced to take a value h0 < v at the centre of the

fermion source. Asymptotically flat states are therefore those in which the value of h0 is

such that the fermion tilt guides the Higgs field to precisely its vacuum expectation value

h = +v as r → ∞. Since we consider here only positive parity states, this is precisely the

situation that arises, although we note that (negative parity) states with negative fermion

mass do exist in which the the value of h0 is similarly tuned, but now in order to guide
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the Higgs field to the opposite minimum h = −v.

The final boundary conditions required to define particle-like solutions are those en-

forced at r = 0. As before, we desire states to be singularity free, leading us to consider

a similar small-r asymptotic expansion to that utilised in the Einstein–Dirac case, but

now including a Higgs field that tends to a constant value as r → 0. We note that this

is not guaranteed to be the unique non-singular expansion, an issue which we have not

yet fully addressed, although it is certainly the expansion that will produce states most

analogous to Einstein–Dirac solitons. Interestingly, the explicit form for this expansion

differs depending on the value of the fermion number Nf = |κ|. The two-fermion system

turns out to be something of a special case, in which the fermion and Higgs energy densi-

ties both contribute to the energy-momentum tensor at small r, resulting in the following

asymptotic expansion (valid only for positive parity):

α(r) = α1r +O
(
r3
)
; (5.27)

β(r) =
1

3
(ωT0 − µv)α1r

2 +O
(
r4
)
; (5.28)

T (r) = T0 +
4πG

3
T0

(
λ[h20 − v2]2 + α2

1T0[µh0 − ωT0]
)
r2 +O

(
r4
)
; (5.29)

A(r) = 1− 8πG

3

(
λ[h20 − v2]2 + 2ωα2

1T
2
0

)
r2 +O

(
r4
)
; (5.30)

h(r) = h0 +
1

3

(
2λh0[h

2
0 − v2] + µα2

1T0

)
r2 +O

(
r3
)
, (5.31)

where there are three unconstrained parameters: α1, T0 and h0. For Nf > 2, however, the

leading order terms in the fermion fields α and β become negligible compared to that of the

Higgs field, and therefore it is only the latter that contributes to the energy-momentum

tensor at next-to-leading order. The small-r expansion in this case (valid for Nf > 2) is

hence:

α(r) = α1r
κ/2 +O

(
rκ/2+2

)
; (5.32)

β(r) =
1

3
(ωT0 − µv)α1r

κ/2+1 +O
(
rκ/2+3

)
; (5.33)

T (r) = T0 +
4πG

3
T0λ

(
h20 − v2

)2
rκ +O

(
rκ+2

)
; (5.34)

A(r) = 1− 8πG

3
λ
(
h20 − v2

)2
rκ +O

(
rκ+2

)
; (5.35)

h(r) = h0 +
1

3

(
2λh0[h

2
0 − v2] + µα2

1T0

)
r2 +O

(
r3
)
, (5.36)

which is again valid only for positive parity states. In what follows we shall consider

primarily the two-fermion system, although an example of an Nf = 20 state is included

in section 5.4.2.
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5.2 Einstein–Dirac–Higgs solitons

We now proceed to the issue of generating particle-like states of the Einstein–Dirac–Higgs

system, which we shall refer to as ‘Einstein–Dirac–Higgs solitons’. We shall first briefly

discuss the numerical method via which these can be obtained, before presenting examples

of individual solutions (for the two-fermion system), followed by an analysis of the resulting

families of states.

5.2.1 Numerical method

The small-r expansions detailed in the previous section exhibit three unconstrained pa-

rameters: α1, T0 and h0. In addition, the values of ω, µ, v and λ are all taken to be

unspecified, although the last three would presumably be fixed by the physical properties

of the Higgs potential and the strength of the fermion-Higgs coupling for the particular

fermion species under consideration. In total, it appears that there are therefore seven

free parameters in the system (for a fixed value of Nf ), which is three more than in the

Einstein–Dirac case. As in that system, however, three of these supposed degrees of free-

dom are removed by imposing the conditions of asymptotic flatness and normalisation,

and in addition the value of h0 must here be fixed such that the Higgs field asymptotes

towards its vacuum expectation value. Thus only three unspecified parameters remain.

As in the Einstein–Dirac system, the numerical difficulties that arise when imposing

normalisation and asymptotic flatness can be avoided by employing a rescaling technique,

in which we first construct unscaled solutions (denoted by an additional tilde) where T̃0 = 1

and µ̃ = 1/(2v), from which the physical states can be subsequently obtained by rescaling

the fields and parameters as follows [53]:

α(r) =

√
τ

χ
α̃(χr) ; β(r) =

√
τ

χ
β̃(χr) ; T (r) =

1

τ
T̃ (χr) ; A(r) = Ã(χr) ;

h(r) = h̃(χr) ; ω = χτω̃ ; µ = χµ̃ ; λ = χ2λ̃ , (5.37)

where the quantities τ and χ are defined as:

τ = lim
r→∞

T̃ (r) ; χ2 = 4π

∫ ∞

0

(
α̃2 + β̃2

)
T̃ Ã−1/2 dr . (5.38)

Note that the value of the Higgs field itself, and hence also its vacuum expectation value,

remain unaltered after this rescaling.

In the unscaled system, we once again find that the parameter α̃1 is the appropriate

quantity that parametrises the families of states, with the analogous physical parameter

being the central redshift z = T0 − 1. As before, the value of ω̃ must be tuned in order

to obtain normalisable solutions (containing the desired number of fermion nodes n), and

in addition we are required to tune h0 such that h → v as r → ∞. This leaves only µ,
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λ and v to consider, which, as discussed above, together constitute only two degrees of

freedom, i.e. the value of one of these is always determined by the values of the other

two. Using these, we wish to construct two parameters that can be used to identify the

respective families of states. From a purely numerical perspective, it proves significantly

more convenient to choose quantities that are invariant under the rescaling procedure,

leading us to take the Higgs vev, v, as one as these, and the other as the Higgs-to-fermion

mass ratio:

ξ ≡ mH

mf
=

2
√
2λ

µ
. (5.39)

We note that this choice is of course far from unique, and an example of an alternative

parametrisation is discussed in section 5.5. To summarise, each individual state is therefore

uniquely identified by its values of the set of quantities {Nf , n, ξ, v, z}, with the one-

parameter families of states defined using the first four.

In order to generate solutions numerically, we again use Mathematica’s built-in

differential equation solver with an explicit Runge-Kutta method, initialising the solver at

a starting radius of rin = 10−8, using the small-r expansion (5.32)–(5.36). To determine

the values of ω̃ and h0, it would appear that a two-parameter shooting is required, but

fortunately we are able to circumvent this by instead implementing a sequential one-

parameter shooting procedure. This involves a binary chop in both variables, in which

we first determine the value of ω̃ corresponding to normalisability for a specific value of

h0, and then subsequently tune h0 such that the Higgs field asymptotes to its vacuum

expectation value, determining a new value for ω̃ at each step. Although this may be

slightly less efficient than employing a more formal two-parameter shooting algorithm, it

proves robust enough for us to obtain states with widely-varying values of z, ξ and v.

A few complications do arise, however. First, at strong fermion-Higgs coupling, we find

that a low degree of multivaluedness develops, where multiple solutions are present at the

same value of α̃1. This is at most a three-fold degeneracy, however, and is also confined to

the binary chop in h0, making it fairly straightforward to negotiate by simply performing

a broad initial sweep of the expected region. Second, we find that, for large values of ξ, it

becomes necessary to switch the order of the sequential one-parameter shooting, such that

the value of h0 is now determined for each ω̃ value along the binary chop. In addition,

we also struggle to obtain low-redshift solutions, in which the Higgs field is only slightly

displaced from its vacuum expectation value, for any values of ξ and v. The reasons behind

both these features will become clearer when we derive the large-r expansion in section

5.3.2. Of more concern is our inability to generate states with v ⪅ 0.07, irrespective of the

value of ξ. We are unsure whether this represents a limit below which solutions do not

exist, or whether it is purely related to numerical issues. We currently suspect the latter,

since indications of a further multivaluedness become apparent below this value, which

involves not only the binary chop in h0, but also that in ω̃, resulting in a breakdown of

our sequential one-parameter shooting method.
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5.2.2 Individual states

Having outlined the numerical approach, we now present particle-like solutions to the

Einstein–Dirac–Higgs system, for the two-fermion case, and discuss their overall behaviour.

A selection of these are shown in Fig. 5.2, where we plot the profiles of the fermion, metric

and Higgs fields, for three states with the values of n, z, ξ and v indicated.

Consider first the two n = 0 ground states, which are generated with the same values

of ξ and v, but have different values of the central redshift. In both cases, the Higgs field

rises monotonically from a constant central value h0, and asymptotes towards its vacuum

expectation value v, in precisely the manner described earlier. Its motion is guided by the

effective Higgs potential (5.26), which acquires a tilt proportional to α2 − β2, causing the

extrema of Veff to become displaced relative to their vacuum values. Near the centre of

the soliton, this tilt is large enough that only a single minimum in the effective potential

remains, as indicated by the curves heq included alongside the Higgs field. Comparing the

two states, we observe that, for the non-relativistic case z = 0.134, the Higgs field deviates

only slightly from its vacuum expectation value throughout the fermion source, whereas
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Figure 5.2: Examples of three Einstein–Dirac–Higgs solitons, each constituting a pair of
gravitationally-localised neutral fermions interacting with a minimally-coupled Higgs field. Shown
are the radial profiles of the fermion, metric and Higgs fields for (left) a non-relativistic n = 0
ground state, (middle) a relativistic n = 0 ground state, and (right) a fourth even-parity excited
state, with the values of v and ξ as indicated. Included alongside the Higgs field profiles are the
locations of the extrema of the effective Higgs potential (5.26).

91



Chapter 5. Einstein–Dirac–Higgs solitons 5.2. Einstein–Dirac–Higgs solitons

in contrast, for the relativistic state z = 1.88, the fermion tilt is such that the Higgs field

becomes negative for small values of r. This implies that the local fermion mass µh is also

negative within this region, although of course the asymptotic fermion mass mf = µv (as

measured by an observer at spatial infinity) remains positive. The reason that the non-

relativistic state does not exhibit the same extreme behaviour is that the fermion source

is much more diffuse, and hence the tilt in the effective potential acts over a larger radial

region, allowing the Higgs field to asymptote gradually towards its maximum. Indeed we

find that, as states become increasingly non-relativistic, the required value of h0 tends

towards v.

Also included in Fig. 5.2 is an example of an n = 8 excited state, in which eight fermion

nodes (four in each field) are located within the wave zone of the soliton. The additional

oscillations in the fermion fields have a knock-on effect with regard to the effective Higgs

potential, causing it to oscillate around its vacuum configuration, as can be seen from the

form of heq. This does not, however, have a particularly pronounced effect on the profile

of the Higgs field itself, with h(r) continuing its monotonic increase, although at a visibly

variable rate.

We find that the qualitative behaviour of states is visually similar to that outlined

above for all values of ξ and v, at least in the two-fermion system, with the primary

difference being the value of h0 at which the Higgs field must be initiated. The properties

of these states, however, and their associated physical observables, are found to vary

significantly with ξ and v, as we shall detail in the proceeding sections.

5.2.3 Families of states

Recall that we choose to distinguish Einstein–Dirac–Higgs solitons by their values of the

Higgs-to-fermion mass ratio ξ and the Higgs vev v, with each set of states of constant

{n, ξ, v} forming a one-parameter family of solutions, parametrised by the value of the

central redshift z. We note that, at least for the two-fermion system, this parametrisation

is always found to be single-valued, even in cases where the unscaled parameter α̃1 is

degenerate. Here we shall consider only the families of n = 0 ground states, presenting

results outlining their behaviour as both ξ and v are varied.

A summary of this is presented in Fig. 5.3, where we vary the Higgs-to-fermion mass

ratio ξ while keeping v at a constant value of 0.1. In the upper panels, we show the

fermion mass-energy and ADM mass-radius relations for each family of states, alongside

the equivalent curves for the Einstein–Dirac system. As mentioned, generating low-redshift

solutions proves numerically challenging, and hence we have been unable to extend the

curves significantly in this direction, although it is clear that they will continue to asymp-

tote towards the Einstein–Dirac relations, for the reasons outlined earlier (h0 → v as

z → 0). The most noticeable feature evident from these plots is the rapid increase in
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Figure 5.3: Plots summarising the behaviour of the families of n = 0 ground-state Einstein–
Dirac–Higgs solitons, for a selection of Higgs-to-fermion mass ratios ξ at fixed Higgs vev v. Shown
in the upper panels are the fermion mass-energy and ADM mass-radius relations for each respective
family, alongside the corresponding Einstein–Dirac curves. Included in the lower panels are the
values of mf , mH , M , ω, µ and h0 for each family, all as a function of central redshift z.

fermion mass as ξ is decreased, with the state of maximum mass for the ξ = 0.28 curve

located at more than twice the fermion mass of its Einstein–Dirac equivalent. Intriguingly,

neither the ADM mass nor the fermion energy exhibit a corresponding increase, with in

fact a general decrease observed in the latter quantity. We shall discuss this in more detail

in section 5.3. Another feature to note from the mass-energy and mass-radius relations is

the gradual approach of the curves towards the Einstein–Dirac relations as ξ is increased.

This can be understood by recalling that ξ ∝
√
λ/µ, and hence large values of ξ corre-

spond to situations in which the Higgs potential is very steep. Any subsequent tilt to the

potential will therefore cause the Higgs field to vary rapidly, and consequently the value of

h(r) must never stray far from the Higgs vev. In the limit of ξ → ∞, we would therefore

expect the Higgs field at all radii to be pinned at h = v, and thus the Einstein–Dirac case

to be recovered.

Also included in Fig. 5.3 are plots showing various quantities, such as the fermion mass
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and energy, as a function of redshift. Here, we can see clearly that the fermion mass for

small values of ξ exhibits a strong peak, at a redshift just beyond the relativistic transition

point, and that this is not accompanied by a similar peak in either the fermion energy or

the ADM mass. Since the value of v is held constant for these families, this increase in

fermion mass is purely a consequence of entering the strong fermion-Higgs coupling regime

(corresponding to large values of µ), which appears only accessible for small values of ξ.

Note also from these plots that the central value of the Higgs field, h0, shows a general

increase with increasing ξ, in agreement with the argument given above, and that the

Higgs mass exhibits a similar increase, since ξ ∝ mH .

Equivalent plots for families of states with a constant value of ξ but differing values

of v are shown in Fig. 5.4. The overall behaviour is similar, with again a strong peak ap-

pearing in the fermion mass, now for small values of v, accompanied by a general decrease

in the fermion energy. As before, this ultimately arises due to the strong fermion-Higgs

coupling in evidence within this redshift region. In addition, the curves are observed to
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Figure 5.4: Plots summarising the behaviour of the families of n = 0 ground states as the value
of the Higgs vev v is varied, while keeping the Higgs-to-fermion mass ratio constant. The upper
panels show the fermion mass-energy and ADM mass-radius relations for each family, while the
lower panels indicate the behaviour of various quantities as a function of redshift.
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approach the Einstein–Dirac relation as v increases, a feature that can be understood by

noting that an increase in v moves the unstable maxima in the Higgs potential apart,

therefore flattening its overall landscape. Finally, we note that the spiralling nature of

the families of states implies the presence of an infinite-redshift state, and potentially an

accompanying power-law solution, a topic that we shall return to in section 5.4.1.

5.3 Mass-scale separation

The results presented in the preceding section imply the presence of an intriguing feature

within the Einstein–Dirac–Higgs system, i.e. that of mass-scale separation, where the ADM

mass of a state is no longer approximately proportional to the mass of its constituent

fermions.

This is summarised in Fig. 5.5, where we plot the fermion mass of the maximally-

bound state against its ADM mass, for a selection of solution families with v = 0.08 and

the ξ values indicated. Note that the state that is maximally bound in each family is also

that of maximum fermion mass. As can be seen, for large values of ξ, the states lie just

to the right of the line M = 2mf , indicating that the ADM mass is only slightly lower

than the total fermion mass, as anticipated for states which have a small negative binding

energy. This is precisely as observed in the Einstein–Dirac system, which as discussed

is approached in the limit ξ → ∞. At ξ ≈ 2, however, we observe a distinct change

in behaviour, with states below this value no longer following the expected relation —

instead the fermion mass increases substantially with decreasing ξ, despite the ADM mass

continuing to decrease. Thus at the lowest value of ξ shown (representing the limit of our

numerics), we find that the total fermion mass of the minimally-bound state outweighs

its gravitational mass by a factor of over ten. Although we are unable to verify whether

this relationship continues to even lower values of ξ, an extrapolation would suggest that,

in the limit of ξ → 0, we would obtain states in which the total ADM mass is almost

negligible, despite the constituent fermions being infinitely massive. Such states would
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Figure 5.5: Mass-scale separation in
the strongly-coupled Einstein–Dirac–Higgs
system, showing the relationship between
the fermion mass and ADM mass for the
maximally-bound state in each family, with
v held constant and ξ varying along the
curve. Also included is the corresponding
relationship in the Einstein–Dirac system,
which is approached as ξ → ∞, along with
the anticipated relation M = 2mf . We
note that similar curves exist for larger val-
ues of v, although the mass-scale separa-
tion in such cases is less pronounced.

95



Chapter 5. Einstein–Dirac–Higgs solitons 5.3. Mass-scale separation

correspond to situations in which the Higgs mass also tends to zero, as can be deduced

from Fig. 5.3, and where the fermion-Higgs coupling µ is infinitely strong.

There are two main questions that arise from this analysis — why does a strong

coupling between the fermion and Higgs sectors result in the somewhat unexpected phe-

nomenon of mass-scale separation, and why is the strong coupling regime only accessible

to systems that exhibit small values of both ξ and v. We shall attempt to provide at least

partial answers to these questions in the following sections.

5.3.1 Strong coupling

Before exploring possible mechanisms related to the mass-scale separation, we should first

verify the claim that this phenomenon is associated with strong coupling µ, and occurs

for only small values of both the Higgs-to-fermion mass ratio ξ and the Higgs vev v.

Although the figures presented in the preceding sections certainly suggest that this is the

case, these only represent specific sections through a 2-dimensional phase space spanned by

ξ and v. Exploring this space more thoroughly, however, proves challenging, since it is not

computationally feasible to generate entire families of solutions for a large enough selection

of parameter values. In order to make progress, we utilise the fact that the minimally-

bound state in each family occurs at a roughly constant value of α̃1 = 0.25, irrespective of

the values of ξ and v, and thus we can extract a reasonable comparison between families

by considering the properties of states at this value. Note that the minimally-bound state

is not the state of maximum mass (this being the maximally-bound state), but is still

within the general region where the mass-scale separation is observed.

The results of this analysis are shown in Fig. 5.6, where we plot the values of the

fermion mass mf , ADM mass M and coupling strength µ, for the states with α̃1 = 0.25,

as a function of both ξ and v. These clearly indicate an overall increase in the fermion

mass as both ξ and v are decreased, while the ADM mass stays roughly constant (even

decreasing somewhat with decreasing v). The fermion-Higgs coupling µ is also observed to

be significantly stronger for smaller values of both ξ and v, although the correspondence

between this and the fermion mass is perhaps weaker than anticipated. Regardless, it

certainly appears that the mass-scale separation is primarily driven by the increase in

coupling strength, and that this strong coupling regime is accessible only when ξ and

v take small values. It indeed makes sense that small values of ξ should correspond

to strong coupling, since recall ξ ∝ 1/µ (assuming the Higgs potential scaling λ remains

fairly constant), but the reason why small values of v imply the same is somewhat unclear.

Perhaps it is the case that an effective Higgs potential with a strong fermion tilt (recall

this is proportional to µ) can only guide the Higgs field to its vacuum expectation value

provided v is sufficiently small, although why this should be so is not immediately obvious.

Having established the link to strong coupling, we now consider the question of why
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Figure 5.6: Contour plots illustrating the change in the fermion mass mf (left), ADM mass M
(middle) and fermion-Higgs coupling µ (right) as the phase space spanned by the the Higgs-to-
fermion mass ratio ξ and the Higgs vev v is explored. Note that the contours become increasingly
less smooth as ξ and v are decreased, due to the numerical difficulties in obtaining solutions within
this region.

a mass-scale separation occurs at large values of µ. Although we have not been able to

obtain a definitive answer to this, we shall discuss a number of features that are potentially

related. As a starting point, consider Fig. 5.7, in which we plot the profiles of the fermion

and Higgs energy densities, ρf and ρH , along with the Higgs field itself, for three distinct

states with differing values of ξ, but roughly equal values of both v and z. We note that

the Higgs energy density is defined using the energy-momentum tensor, and takes the

explicit form:

ρH(r) =
1

2
A(h′)2 + V (h) . (5.40)

The three states shown exhibit varying degrees of mass-scale separation (as indicated by

the values given in the caption), with the strongest in evidence for the ξ = 0.03 solution

and none whatsoever for the ξ = 2.82 state. There are a number of features to note from

these. First, although the Higgs field for the two strongly-coupled states (ξ = 0.03 and

ξ = 0.28) is highly negative within the central regions of the fermion source, this cannot be

related to the mass-scale separation since the ξ = 0.28 state is consistently more negative

than its counterpart. A feature that may be more relevant is the observed outward redial

progression of the fermion energy density peak as ξ is decreased. We interpret this as being

a direct consequence of the increase in coupling strength, since one would naively expect

this to result in an effective attraction between the Higgs and fermion energy densities

(the latter of which peaks around the most rapid increase in h), although the precise

mechanism via which this occurs in unclear. Another feature to note is related to the

relative decay rates of the Higgs and fermion fields. Whereas the Higgs field in all three

cases asymptotes towards its vacuum expectation value at approximately the same rate,

the fermion density of the ξ = 0.03 state decays significantly more quickly when compared

to the other two. As a consequence, the fermion density becomes negligible significantly

prior to the Higgs field reaching its vacuum expectation value, and thus the fermion source

never experiences the asymptotic value of the fermion mass.

We shall return to the issue of whether either of these features can explain the phe-
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Figure 5.7: Plots illustrating the change in structure of Einstein–Dirac–Higgs solitons as the
fermion-Higgs coupling strength µ is varied. Shown are the radial profiles of the fermion energy
density (left), the Higgs energy density (middle) and the Higgs field itself (right), for three
states with the values of ξ indicated. All three have the same values of v = 0.1 and z ≈ 2.15.
Selected parameter values for these states are: (a): {mf = 3.665, M = 0.8952, ω = 0.2716}, (b):
{mf = 1.155, M = 0.9541, ω = 0.2413} and (c): {mf = 0.4569, M = 0.9894, ω = 0.3106}. Note
the appearance of a mass-scale separation for the two states with lowest ξ values.

nomenon of mass-scale separation in section 5.3.3, but before doing so we analyse in more

detail the observed disparity between the decay rates of the Higgs and fermion fields, by

considering the equations of motion at large r.

5.3.2 Large-r analysis

Our aim in this section is to derive approximate expressions valid for the Higgs and fermion

fields at large r, allowing us to analyse more quantitatively their relative decay rates. To

do so, we must first construct suitable ansatzes for the general forms of the fields within

the evanescent zone. In analogy with the Einstein–Dirac case, we assume the fermion

fields to decay exponentially, with an additional subdominant power-law decay, and the

metric fields to be approximately Schwarzschild. This leads to the following asymptotic

expansions for the fields, valid at large r:

α(r) = (D0r
γ +D1r

γ−1 + ...)e−δr ; (5.41)

β(r) = (E0r
γ + E1r

γ−1 + ...)e−δr ; (5.42)

T (r) = 1 +Mr−1 + ... ; (5.43)

A(r) = 1− 2Mr−1 + ... , (5.44)

where γ, δ, D0, D1, E0 and E1 are constants, the values of which are to be determined.

This leaves only the Higgs field to consider, for which there appear two options: a simple

power-law decay, or an exponential decay similar to that above. We find that a power-

law decay is in fact incompatible with the equations of motion, in that there is no way

to balance the potential term in the Higgs equation (5.23) at leading order, and thus

we quickly conclude that the Higgs field must exhibit an exponential decay towards its

vacuum expectation value, taken to be of the following form:

h(r) = v − (C0r
σ + C1r

σ−1 + ...)e−ϵr , (5.45)
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where again the values of the decay rates σ and ϵ, along with the coefficients C0 and C1

are to be determined.

Substituting these expansions into the two Dirac equations (5.12) and (5.13), retaining

only leading order terms (rγ), results in the following relations:

−D0r
γe−δrδ = −(ω + µv)E0r

γe−δr ; (5.46)

−E0r
γe−δrδ = (ω − µv)D0r

γe−δr , (5.47)

which can be combined to give expressions for the relative magnitudes of the leading-order

fermion coefficients D0 and E0, along with the fermion exponential decay rate δ:

D0

E0
=

√
µv + ω

µv − ω
≡ Λ ; (5.48)

δ =
√
µ2v2 − ω2 . (5.49)

We can then obtain an expression for the fermion power-law decay rate γ by evaluating

the Dirac equations at next-to-leading order (rγ+1), from which we extract the following

two relations:

γD0 + δMD0 − δD1 =
κD0

2
− (ω + µv)E1 − ωME0 ; (5.50)

γE0 + δME0 − δE1 = −κE0

2
+ (ω − µv)D1 + ωMD0 . (5.51)

Multiplying the second equation by Λ, and combining with the first, we can eliminate

both D1 and E1 to obtain an explicit expression for γ:

γD0 + δMD0 + γD0 + δMD0 =
κD0

2
− ωME0 −

D0κ

2
+ ωMΛD0

2γ + 2δM = ωM(Λ− Λ−1)

γ = M
2ω2 − µ2v2√
µ2v2 − ω2

. (5.52)

Note that the Higgs field (beyond its vacuum expectation value) has not entered this

analysis, implying that the precise form of the Higgs decay towards v does not influence

the exponential decay of the fermion fields.

We now turn to the Higgs equation (5.23), which for convenience we reproduce below,

in order to obtain information regarding the Higgs decay rates:

Ah′′ −A

(
T ′

T
− A′

2A
− 2

r

)
h′ =

κµ

r2
T (α2 − β2) + 4λh(h2 − v2) . (5.53)

Considering first the overarching exponential decay, we can immediately eliminate the

possibility that the Higgs field decays more than twice as quickly as the fermion fields
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(ϵ > 2δ), since this would require α and β to balance each other at leading order, in turn

implying E0 = D0 and consequently ω = 0. This can be interpreted physically by noting

that it should not be possible for the Higgs field to reach its vacuum expectation value

before the fermion tilt in Veff has been turned off. This leaves two options: (I) ϵ < 2δ and

(II) ϵ = 2δ. We shall consider each of these in turn.

(I): ϵ < 2δ. In this case, the fermion fields do not contribute to the Higgs equation

at large r, and we obtain the following expression by considering the leading order terms:

−ϵ2C0r
σ = −8λv2C0r

σ =⇒ ϵ = 2v
√
2λ . (5.54)

At next-to-leading order (rσ−1), we then obtain:

2ϵ2MC0 − ϵ2C1 + 2ϵσC0 + 2ϵC0 = −8λv2C1

=⇒ σ = −1− 2Mv
√
2λ (5.55)

Using these, along with the form for δ given in (5.49), the relation ϵ < 2δ can be rewritten

to find a condition on ω:

ω2 < v2(µ2 − 2λ) . (5.56)

This in turn implies that µ2 > 2λ, which can equivalently be written as ξ < 2. Thus we

conclude that the fermion density can decay more quickly than the Higgs field only when

ξ < 2 and when the fermion energy obeys the relation specified above.

(II): ϵ = 2δ. We now consider the case where the Higgs field decays at exactly half

the rate of the fermion fields, i.e. at an equal rate to the fermion density. Now both the

fermion and Higgs terms contribute at leading order, with the Higgs equation becoming:

−ϵ2C0r
σ = µκ(D2

0 − E2
0)r

2γ−2 − 8λv2C0r
σ . (5.57)

As noted above, the fermion terms cannot balance each other, and therefore we arrive at

two further options: (a) σ > 2γ− 2 and (b) σ = 2γ− 2. Both of these can achieve balance

at leading order, and we shall again consider each in turn:

(a): σ > 2γ − 2. In this case, the fermion terms do not contribute at leading order,

and we thus obtain the relation ϵ = 2v
√
2λ as in case (I). Setting this equal to 2δ,

we obtain the following expression for ω:

ω = v2(µ2 − 2λ) , (5.58)

which again implies ξ < 2. At next-to-leading order, the Higgs equation then be-

comes: (
2ϵ2MC0 + 2ϵσC0 + 2ϵC0

)
rσ−1 = µκ(D2

0 − E2
0)r

2γ−2 . (5.59)
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Again, it appears we have the option to choose whether the fermion terms contribute

at this order, but in reality one can show that ω < 0 is implied if they are not

retained. Thus we must obtain balance by setting σ = 2γ − 1, resulting in an

expression for σ in terms of C0:

σ =
µκ

2ϵC0
(D2

0 − E2
0)− ϵM − 1 . (5.60)

The condition σ = 2γ − 1 then reduces to:

C0 =
µκ(D2

0 − E2
0)

8Mω2
. (5.61)

Overall, this case represents the situation where the exponential decay rates of the

Higgs field and fermion density are equal, but the fermion fields decay slightly more

quickly due to the smaller power-law dependence. This can only occur for states in

which ξ < 2 and for which the aforementioned condition on ω is satisfied.

(b): σ = 2γ − 2. In this case, both the fermion and Higgs terms contribute to

the Higgs equation at leading order, from which we obtain an expression for C0

(using ϵ = 2δ):

C0 =
µκ(D2

0 − E2
0)

4(ω2 + v2[2λ− µ2])
. (5.62)

Since we require this to be strictly positive (h(r) must approach v from below), a

condition on ω can again be extracted:

ω2 > v2(µ2 − 2λ) . (5.63)

Note that this does not here imply a corresponding condition on ξ. Finally, at

next-to-leading order, the Higgs equation becomes:

2C0ϵ (ϵM + σ + 1) = µκ
[
M(D2

0 − E2
0) + 2(D0D1 − E0E1)

]
, (5.64)

from which one could in principle obtain an equation relating D1 and E1. Overall,

this case represents the situation where the Higgs field and fermion density decay

rates are precisely equal at leading order, including their power-law dependences,

which can only occur for states in which the above condition on ω holds.

From the above analysis, we conclude that the relative decay rates of the fermion and

Higgs fields depend almost entirely on the values of ξ and ω. To summarise, we find that

both the fermion and Higgs fields decay exponentially at large r:

α(r) = (D0r
γ +D1r

γ−1 + ...)e−δr ; (5.65)

β(r) = (E0r
γ + E1r

γ−1 + ...)e−δr ; (5.66)
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h(r) = v − (C0r
σ + C1r

σ−1 + ...)e−ϵr , (5.67)

where the fermion exponential and power-law decay rates are as follows:

δ =
√
µ2v2 − ω2 ; γ = M

2ω2 − µ2v2√
µ2v2 − ω2

. (5.68)

There are then three options for the decay profile of the Higgs field: (1) the exponential

decay of the Higgs field is less than that of the fermion density (ϵ < 2δ), (2) the exponential

decay rates of the two fields are equal but the Higgs power-law dependence results in a

slower decay rate (ϵ = 2δ, σ = 2γ − 1), and (3) both the exponential and power-law

decay rates of the Higgs and fermion fields are equal (ϵ = 2δ, σ = 2γ − 2). The explicit

expressions for these, along with the associated conditions, are summarised as follows:

(1): ξ < 2; ω2 < v2(µ2 − 2λ); ϵ = 2v
√
2λ; σ = −1− 2Mv

√
2λ; (5.69)

(2): ξ < 2; ω2 = v2(µ2 − 2λ); ϵ = 2v
√
2λ; σ = Mv

√
2

λ
(µ2 − 4λ)− 1; (5.70)

(3): ξ > 0; ω2 > v2(µ2 − 2λ); ϵ = 2
√
µ2v2 − ω2; σ = 2M

2ω2 − µ2v2√
µ2v2 − ω2

− 2. (5.71)

Note that, for states with ξ ≥ 2, the only option available is case (3), where the Higgs

and fermion fields exhibit precisely the same decay rates, whereas for ξ < 2 all options are

accessible to the system, with the precise value of ω determining which is followed. Note

also that v2(µ2−2λ) can be equivalently written as m2
f −m2

H/4, and hence the conditions

on ω correspond to its value relative to the Higgs and fermion masses.

An illustration of this analysis ‘in action’ is shown in Fig. 5.8, where we plot the

values of ω2 alongside the quantity v2(µ2−2λ), as a function of redshift, for three families

of states with differing values of ξ. For the ξ = 2.26 case, we observe that ω is always

greater than v2(µ2 − 2λ), as predicted by the large-r analysis above, indicating that the

fermion and Higgs fields for all states decay at precisely the same rate. For the ξ = 1.41
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Figure 5.8: Plots showing the values of the (squared) fermion energy ω2 and the quantity v2(µ2−
2λ), as a function of redshift, for three families of states with differing values of ξ. The relative
values of these indicate the relative decay rates of the fermion and Higgs fields. Also included on
each plot is the corresponding fermion energy-redshift curve for the Einstein–Dirac system.
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family, however, the curves cross at two separate redshift values, and hence different decay

profiles apply in different regions, with the points of crossing corresponding to option (2)

above. As the value of ξ is decreased further, we observe in the ξ = 0.57 case that ω is less

than v2(µ2 − 2λ) for the majority of the redshift range, only dropping below this value at

the non-relativistic end of the curve. This indicates that the fermion density decays more

quickly than the Higgs field for almost all states in the family, doing so significantly in the

mid-redshift regime.

It should be noted that we have verified the analysis in this section by comparing the

large-r profiles of our numerical solutions with the predicted forms in (5.69)–(5.71), with

an excellent agreement found with respect to both the power-law and exponential decay

rates. As a final remark, we also note that the behaviour illustrated in Fig. 5.8 can also

explain some of the peculiarities of our numerical method. In particular, the difficulties

associated with generating solutions at low redshift, and also at large ξ, can be understood

by noting that the decay rates of the Higgs and fermion fields are precisely equal for these

states, and as such our sequential one-parameter shooting method proves unreliable, since

the behaviour of the Higgs and fermion fields at large r is linked.

5.3.3 Discussion

We now return to the issue of mass-scale separation, and discuss whether the observed

disparity in decay rates with varying ξ is at all related. At first glance, it would certainly

appear that a connection is present, since for example the change in large-r behaviour

occurs at a value of ξ = 2, precisely at the point the mass-scale separation is observed to

emerge (see Fig. 5.5). Further evidence in favour of this can be seen in Fig. 5.9, in which we

analyse the large-r behaviour of states as a function of both ξ and v, where the solutions

correspond to the least bound state in each family (as in Fig. 5.6). The leftmost panel

shows the value of ω2 relative to the quantity v2(µ2− 2λ), with a larger disparity between
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Figure 5.9: Contour plots indicating the change in relative decay rate of the Higgs and fermion
fields as a function of both v and ξ. Shown are (left) the value of ω2 relative to the quantity
v2(µ2 − 2λ), (middle) the ratio of the fermion to Higgs exponential decay rate, and (right) the
ratio of the fermion to Higgs power-law decay rate. These latter quantities are both always positive,
indicating that the fermion density decays more rapidly than the Higgs field within the regions
plotted.
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these clearly observed for small values of both ξ and v, indicating that the fermion density

for such states decays significantly more quickly than the Higgs field. This is corroborated

by the two rightmost plots, which show the relative exponential and power-law decay rates

of the two fields, with both of these proving important in determining the overall large-r

behaviour. Thus we conclude that it is indeed the case that states in which the mass-scale

separation is most pronounced exhibit a large disparity between the decay rates of the

fermion and Higgs fields.

Of course this does not necessarily imply that the mass-scale separation is a direct

consequence of the decay rate disparity; instead it may be that the latter is simply an

outcome of strong coupling, and unrelated to the increase in mf . Given the lack of a

definitive mechanism through which these are connected, we should at least entertain the

possibility of alternative explanations. It is therefore instructive to consider the mass-

scale separation itself in more detail. In particular, we note that the surprising feature

of this phenomenon is not necessarily the increase in fermion mass, but the lack of an

associated increase in the ADM mass. To investigate this further, we can analyse the

various contributions to the ADM mass by considering the Komar integral, which, for the

Einstein–Dirac–Higgs system, is found to take the following volume integral form:

M = MK(∞) = 8π

∫ ∞

0

[
2ωT (α2 + β2)− µh(α2 − β2)− r2

T
V (h)

]
1√
A

dr (5.72)

= 4ω − 8π

∫ ∞

0

[
µh(α2 − β2) +

r2

T
V (h)

]
1√
A

dr , (5.73)

where in the second line we have used the normalisation integral (5.24) to evaluate the

first term. The relative contributions of the three terms to the integrand of (5.72) are

shown in Fig. 5.10, corresponding to solution (a) in Fig. 5.7, where there is a significant

mass-scale separation. From this, we observe that by far the dominant contribution to the

ADM mass comes in fact from the term involving the fermion energy ω, with both terms

involving the Higgs field negligible in comparison. In particular, we note that the overall

contribution from the local fermion mass µh is further reduced by the fact that it changes
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Figure 5.10: The relative contributions of
the terms involving the fermion energy ω,
the local fermion mass µh, and the Higgs
potential V (h) to the integrand of (5.72),
from which the total ADM mass is calcu-
lated. Dashed sections indicate regions in
which the quantities become negative. Note
that the state shown here corresponds to so-
lution (a) in Fig. 5.7, where the mass-scale
separation is in evidence.
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sign due to h(r) becoming negative in the inner regions of the fermion source. We therefore

conclude that the total ADM mass of states exhibiting mass-scale separation is primarily

determined by the value of ω, and in fact at strong coupling is approximately equal to 4ω,

which can be verified by noting the parameter values in the caption of Fig. 5.7. Hence an

increase in the fermion mass does not directly imply a corresponding increase in the ADM

mass, and the two therefore become decoupled.

This does not fully explain the origin of the mass-separation, however, since we would

clearly expect the fermion energy ω to increase in proportion to the fermion mass. This

is not observed to occur, however, with ω instead tending to decrease as the fermion mass

becomes larger. With no knowledge of how ω itself is determined, we are therefore no

closer to a satisfactory explanation. Perhaps it is indeed the case that the lack of increase

in ω is somehow related to the observed disparity in decay rates, or conceivably the re-

distribution of the fermion density towards the outer regions of the fermion source. From

a semi-classical point of view, one might be tempted to conclude that this latter feature

may be responsible, since the bulk of the fermion wavefunction is located within a region

where the ‘local’ fermion energy ωT is relatively small. This argument does not prove

particularly convincing, however, and hence the true origin of the mass-scale separation

remains an open question.

5.4 Other results

Before concluding this chapter, we first briefly present a selection of miscellaneous results

relating to the Einstein–Dirac–Higgs system. These constitute a discussion concerning the

zonal structure of states, including a derivation of the associated power-law solution, as

well as the presentation of anNf = 20 state for which the effect of the fermion self-trapping

is investigated.

5.4.1 Zonal structure & infinite-redshift states

As mentioned previously, the spiralling behaviour exhibited by the families of Einstein–

Dirac–Higgs solitons suggests the presence of a zonal structure similar to that outlined in

section 2.5, along with the associated existence of infinite-redshift states. In the Einstein–

Dirac case, much of the underlying structure can be understood in relation to an analytic

‘power-law’ solution, around which the fields oscillate within the power-law zone, and

which sources the small-r expansion used to obtain infinite-redshift states. We shall here

derive the equivalent solution valid in the Einstein–Dirac–Higgs system, the equations of

motion for which we restate below, for convenience:

√
Aα′ = +

κα

2r
− (ωT + µh)β ; (5.74)
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√
Aβ′ = −κβ

2r
+ (ωT − µh)α ; (5.75)

1

r2
(
−1 +A+ rA′) = 8πG

[
−|κ|ω

r2
T 2
(
α2 + β2

)
− 1

2
A(h′)2 − V (h)

]
; (5.76)

1

r2

(
−1 +A− 2rA

T ′

T

)
= 8πG

[
|κ|
r2

T
√
A
(
αβ′ − α′β

)
+

1

2
A(h′)2 − V (h)

]
; (5.77)

Ah′′ −A

(
T ′

T
− A′

2A
− 2

r

)
h′ =

|κ|µ
r2

T (α2 − β2) +
dV

dh
. (5.78)

In the Einstein–Dirac system, the power-law solution is obtained by setting the fermion

mass equal to zero, but of course doing so here would imply that the Higgs field vanishes

at all radii. We therefore instead seek an approximate solution in which the local fermion

mass µh is assumed to be negligible in comparison to the local fermion energy ωT , with the

aim of applying this to the inner regions of high-redshift states. In this case, we can neglect

the fermion mass terms in the two Dirac equations, and also the terms involving the Higgs

field in the Einstein equations, since these are related to the Higgs energy density. The

first four equations above hence reduce to precisely the massless Einstein–Dirac system,

resulting in the same power-law dependences for the fermion and metric fields as those

detailed in section 2.5:

α(r) =

√
ω

12πGN2
fκ−

r ; A(r) =
1

3
;

β(r) =

√
ω

12πGN2
fκ+

r ; T (r) =
1

ω

√
N2

f

4
− 1

3
r−1 , (5.79)

where κ± = κ/2 ±
√
1/3. This leaves only the Higgs equation to consider. Substituting

the power-law forms for α, β, A and T into (5.78), we obtain:

1

3
h′′ +

1

r
h′ =

1

r

µ

6
√
3πG

1

κ
√
κ+κ−

+ 4λ(h3 − v2h) . (5.80)

To make further progress, we assume the solution to be valid only at small r (certainly the

power-law zone of high-redshift solutions should occur within that region), and in addition

assume the Higgs field to also exhibit a simple power-law dependence at leading order, of

the form h(r) = hpr
γ . Thus, in order for the Higgs energy density not to contribute to the

Einstein equations at small r, we require γ > 0, and hence we can immediately neglect

the terms arising from the potential in (5.80). We can then straightforwardly solve the

resulting equation for h to obtain:

h(r) =
µ

6
√
3πG

1

κ
√
κ+κ−

r − c1
2r2

+ c2 , (5.81)

where c1 and c2 are constants. As argued, the leading order power of h must be greater

than zero, forcing us to take c1 = 0, and we therefore arrive at our final expression for the
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100 Figure 5.11: An illustration of the zonal
structure of a high-redshift ground-state
Einstein–Dirac–Higgs soliton with the pa-
rameter values indicated. The behaviour
is similar to the Einstein–Dirac case, with
three distinct zones in evidence: the core,
the power-law zone and the evanescent
zone. Within the power-law zone, the
fields approximate a simple power-law de-
pendence, in agreement with the forms de-
rived. Also included is the predicted value
of h′ within the power-law zone.

Higgs field within the power-law zone:

h(r) =
µ

6
√
3πG

1

κ
√
κ+κ−

r + c2 . (5.82)

We can verify the validity of the expressions derived above by analysing the structure

of high-redshift states, an example of which is presented in Fig. 5.11. From this we see

that indeed a power-law zone develops at high redshift, around which the field perform

small-amplitude oscillations, as a consequence of the fermion self-trapping effect discussed

in Chapter 3. We also observe that, within the power-law zone, the fields exhibit the

general power-law dependences predicted from the above analysis, with in particular h′

found to oscillate around a constant value corresponding to that implied from (5.82).

In analogy with the Einstein–Dirac system, we conjecture that the power-law zone

of Einstein–Dirac–Higgs states will gradually encroach upon the central core region as

the redshift is increased, implying that the power-law zone extends all the way to r = 0

at z = ∞. This indeed turns out to be the case, and an example of an infinite-redshift

solution, located at the centre of one of the spiralling families, is shown in Fig. 5.12. This

is generated by replacing the regular asymptotic small-r expansions (5.27)–(5.31) with the

power-law expressions derived above. One can clearly see that the Higgs field in this case

must be initialised at r = 0 with a non-zero slope, and that the metric field T diverges

as r → ∞. In addition, this state contains a central singularity, as can be verified by

evaluating the Ricci scalar, which in the Einstein–Dirac–Higgs system takes the following

general form:

R = 8πG
µh|κ|
r2

T (α2 − β2)−A(h′)2 − 4V (h) . (5.83)

Substituting in the power-law dependences given in (5.79) and (5.82), we then obtain:

R = ± 4µc2√
9κ2 − 12

1

r
+O

(
r0
)
, (5.84)

where ± indicates positive or negative parity. This indeed diverges as r → 0, and thus we
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Figure 5.12: An example of an infinite-redshift state in the Einstein–Dirac–Higgs system, which
lies at the centre of the ξ = 0.28, v = 0.10 spiral. Shown are the radial profiles of the fermion
fields (left), metric fields (middle) and Higgs field (right). Note that T (r) is singular at r = 0
and h(r) is initialised with a non-zero slope.

conclude that the infinite-redshift states in the Einstein–Dirac–Higgs system are singular.

Note that there is an intriguing caveat to this statement, in that it may be possible for

c2 to equal zero, i.e. for the Higgs field to be initialised at precisely r = 0, but with a

non-zero initial slope. In such a case, the Ricci scalar would then lead like a constant, and

hence no central singularity would be present. This of course relies on the assumption

that infinite-redshift states exist where h(0) = 0, which is not guaranteed.

5.4.2 Many-fermion states

So far in this chapter, we have presented numerical solutions solely to the two-fermion

system, although the equations of motion, along with the majority of the analytic analysis,

have been derived for the generalised many-fermion case. Although in principle solutions

can therefore be constructed for any (even) value of Nf , numerical complications arise

when extending the system to higher numbers of fermions, with in particular our sequential

one-parameter shooting method proving less reliable. We are therefore unable to generate

many-fermion states consistently, limiting the analysis that can be performed.

Despite this, we here present an example of a high-redshift Nf = 20 solution, which

is shown in Fig. 5.13. As can be seen, the fermion self-trapping effect is the dominant

feature of this state, with the fermion density splitting into a series of peaks located at

the radii of stable photon spheres. Considering the Higgs field, we note that, although

the effective Higgs potential oscillates significantly throughout the solution, as evidenced

by the locations of the extrema in Veff (represented by the curves heq), the Higgs field

itself nonetheless remains relatively close to its vacuum expectation value throughout

the fermion source. It no longer, however, increases strictly monotonically, with small

decreases observed between the fermion shells. The Higgs energy density is also interesting

to note, in that the kinetic part of this becomes concentrated around the locations of the

stable photon spheres. Whether this constitutes a trapping of the Higgs field is debatable,

however, since it may be the case that its profile is simply dictated by the distribution of

the fermion source, as opposed to gravitational considerations.
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Figure 5.13: An example of a high-redshift Nf = 20 state, in which the fermion self-trapping
effect is clearly evident. Shown are the radial profiles of (top) the fermion, metric and Higgs
fields, and (bottom) the radial fermion energy density, the Higgs energy density, along with a
more detailed view of the Higgs field. Note that the dashed lines in the energy density plots
represent the locations of stable photon spheres.

Unfortunately, we have not been able to perform a more thorough analysis of the

many-fermion system, and so it remains unclear whether effects such as the mass-scale

separation also apply to states with higher fermion numbers. We do note that the Nf = 20

state presented here does not appear to exhibit this behaviour (as indicated by the param-

eter values given in Appendix B), despite having small values of both ξ and v. A detailed

analysis, however, is beyond our capabilities.

5.5 Discussion

In this chapter, we have presented particle-like solutions to the minimally-coupled Einstein–

Dirac–Higgs system, and analysed the properties of the two-fermion states in detail. Some-

what surprisingly, we discover that, when the fermion-Higgs coupling is sufficiently strong,

the various mass scales in the system can become decoupled, with the ADM mass of a state

no longer remaining in proportion to the total fermion mass of its constituents. Although

we are unable to provide a definitive explanation for this phenomenon, it may be related

to a disparity in decay rates that arises at strong coupling, which we have derived using

a large-r analysis. There are a number of points concerning this, and other features, that

are worthy of further discussion.

First, we should consider in more detail the possible implications of the observed

mass-scale separation. In the most extreme cases, we find that, while the overall gravi-

tational mass of the state is roughly of the order of one Planck mass, the total mass of
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the constituent fermions exceeds this by a factor of more than ten. Hence the majority of

the mass contained within the fermion source does not appear to gravitate, at least from

the perspective of an observer at spatial infinity, and thus the results of a gravitational

measurement would conclude the fermion mass to be much lower than its true value. Of

course this relies on the assumption that the fermion mass should rightly be measured by

its asymptotic value. Perhaps instead one should average over the local fermion mass µh,

weighted for example by the probability distribution of the fermion source, and hence ob-

tain an alternative measure for mf . This could potentially lower the overall fermion mass,

particularly at strong coupling where the fermion density decays prior to the Higgs field

reaching its vacuum expectation value. Which approach is correct depends largely on how

the fermion mass is actually measured by an observer - would a non-gravitational measure-

ment probe the inner regions of the fermion source, or simply return its asymptotic value?

The answer is somewhat unclear, and may even depend on the type of measurement con-

ducted. Of course it is important to note that this issue does not arise when considering

Standard Model fermions, due to their point-like structure, but such complications appear

to be an inevitable consequence of considering particles with a finite spatial extent.

On a more technical note, recall that we choose to identify the various families of

Einstein–Dirac–Higgs solitons by the values of the Higgs-to-fermion mass ratio ξ and the

Higgs vev v. This is purely for numerical convenience, however, and it should in principle

be possible to instead parametrise families by any two independent combinations of µ, λ

and v. An example of such an alternative parametrisation is presented in Fig. 5.14, which

shows the family of states defined by the values v = 0.30 and λ = 0.053. We have only been

able to obtain a few states along the curve, due to the difficulty in generating solutions

with a specified value of λ, but it is nonetheless clear that a similar spiralling behaviour

exists within this parametrisation. Of perhaps more interest would be to construct families

where one of the defining parameters is µ, since this would allow a more rigorous analysis

of the strong coupling regime, and by extension the mass-scale separation. Unfortunately

this does not prove numerically viable, at least via the method utilised here.

Another topic of particular interest is the stability and dynamical evolution of Einstein–
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Figure 5.14: An example of an alternative
parametrisation for the families of Einstien–
Dirac–Higgs solitons, showing the fermion
mass-energy relation for a family of states de-
fined by the values of v = 0.30 and λ = 0.053.
Also included is the corresponding curve for
the Einstein–Dirac system. Note that only a
small number of states have been included,
due to numerical issues relating to their con-
struction.
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values v = 0.08 and ξ = 0.14. Observe that
this entire curve is bound, due to the high
degree of mass-scale separation present, in
contrast to the Einstein–Dirac case (inset).
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the branches along which states are assumed
to be stable.

Dirac–Higgs solitons. A rough indication of this can be obtained by considering the total

binding energy of states, which recall is defined as Eb = M − 2mf , i.e. the difference

between the energy of the state and that of two spatially separated fermions. For states

in which the mass-scale separation is most pronounced, one would expect the binding

energy to be highly negative, since the fermion mass far outweighs the ADM mass. Indeed

it is even the case that entire families of solutions can become bound, as is illustrated

in Fig. 5.15. Of course a negative binding energy does not necessarily imply stability,

and instead we would expect states with redshifts above that of the maximum-mass state

to be unstable, as is the case in the Einstein–Dirac system. Nonetheless, we would still

expect the stable branch to include states with high degrees of mass-scale separation. The

ultimate fate of the states on the unstable branch is unclear, although a negative binding

energy should ensure that they at least remain as localised objects, perhaps forming black

holes or decaying to the stable branch. A numerical evolution of these would certainly

prove enlightening, and in particular it would be interesting to note how the profile of the

Higgs field changes as the solutions evolve.

As a final remark, we mention that we have here modelled the Higgs field as a real

scalar field. In the Standard Model, however, the Higgs is formally a complex quantity,

although it is subsequently made real by employing the unitary gauge. Such a concept

does not apply here, however, and hence one might wonder whether a complex scalar field

would be more physically realistic. We find, however, that the inclusion of a field h = Heiφ

is incompatible with the requirement of regularity at r = 0, and as a result the phase φ is

forced to take a constant value for all r. We are then free to set this constant to zero by

a redefinition of φ, and hence h becomes purely real. Thus we are justified in our choice

of modelling the Higgs as a real scalar field.
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Chapter 6

Singular solutions

Returning to the Einstein–Dirac system, we present in this chapter a number of new

singular solutions to the FSY equations (2.28)–(2.31) that nonetheless are localised and

entirely normalisable. These are found by varying the small-r expansion used to gener-

ate numerical solutions. As we shall show, these singular states often exhibit somewhat

unusual properties, such as a negative gravitational mass, but, despite this, many can in

fact be related to the original non-singular solutions initially obtained by Finster, Smoller

& Yau [3], and discussed here in chapters 2–4. For the purposes of this discussion, we

shall here refer to these as the ‘FSY states’. In section 6.2, we shall also present a new

analytic solution to the Einstein–Dirac system, valid when ω = 0 and A(r) = 1, which we

understand constitutes the first analytic particle-like solution to the system.

6.1 Small-r analysis

We begin by noting that the small-r asymptotic expansion (2.35)–(2.38) used to generate

the FSY states is not guaranteed to be unique. Indeed, we have already seen that the

infinite-redshift states obey an entirely different expansion, as discussed in section 2.5.

One might therefore wonder whether other types of localised solutions can be constructed

in the Einstein–Dirac system, for which the asymptotic small-r expansions take alternative

forms yet to be considered. We have therefore undertaken a rigorous analysis of the small-

r behaviour of the FSY equations, and found that there are in fact twelve(!) possible

asymptotic expansions, with all but three of these resulting in normalisable, localised

states. Only two of the twelve expansions are non-singular, however, and only one of

these (the FSY case) can be used to construct normalisable solutions. Thus, despite the

multitude of new states presented in this chapter, the FSY states remain the only localised,

non-singular solutions in the Einstein–Dirac system.

We shall briefly outline the method through which we obtain these alternative small-r
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expansions, noting that the calculation is straightforward but somewhat lengthy. Although

this was initially performed by hand, we have in fact been able to fully automate the

procedure, allowing us to use Mathematica to verify our results. For convenience, we

first restate the FSY equations for general κ (valid for both positive and negative parity):

√
Aα′ = +

κα

2r
− (ωT +m)β ; (6.1)

√
Aβ′ = −κβ

2r
+ (ωT −m)α ; (6.2)

−1 +A+ rA′ = −ξ|κ|ωT 2
(
α2 + β2

)
; (6.3)

−1 +A− 2rA
T ′

T
= ξ|κ|T

√
A
(
αβ′ − α′β

)
, (6.4)

where we have defined ξ = 8πG. In addition, the normalisation condition is:

4π

∫ ∞

0

T√
A

(
α2 + β2

)
dr = 1 . (6.5)

We note that the requirement of normalisability is not necessarily guaranteed even in the

case of a localised state, since we must also ensure that the integrand here does not become

infinite as r → 0. With regard to our small-r expansions, one might therefore expect that

imposing normalisability would eliminate a number of options, but in fact we find that

all expansions compatible with the equations of motion are automatically normalisable at

r = 0, a perhaps surprising result for which we lack an explanation.

Our strategy for analysing equations (6.1)–(6.4) at small r can be summarised as

follows. Assuming that all fields lead with a simple power-law dependence, we can write

their small-r asymptotic expansions as:

α(r) = α0r
a0 + α1r

a1 + ... ; (6.6)

β(r) = β0r
b0 + β1r

b1 + ... ; (6.7)

A(r) = A0r
c0 +A1r

c1 + ... ; (6.8)

T (r) = T0r
d0 + T1r

d1 + ... , (6.9)

where our aim is to determine all possible real values for the leading-order powers a0,

b0, c0 and d0. In order to do so, we substitute these expressions into the FSY equations,

keeping only terms that might conceivably contribute at leading order. This requires some

degree of care, since it may be the case that one or more fields leads like a constant, and

hence next-to-leading order terms must be included when considering derivatives. The

four equations at leading order are therefore:

a0
√

A0α0r
a0+

c0
2
−1 + δa0a1

√
A0α1r

a1+
c0
2
−1 =

κ

2
α0r

a0−1 − ωT0β0r
b0+d0 −mβ0r

b0 ; (6.10)
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b0
√

A0β0r
b0+

c0
2
−1 + δb0b1

√
A0β1r

b1+
c0
2
−1 = −κ

2
β0r

b0−1 + ωT0α0r
a0+d0 −mα0r

a0 ;

(6.11)

−1 + (1 + c0)A0r
c0 + δc0c1A1r

c1−1 = −ξ|κ|ω
(
T 2
0α

2
0r

2a0+2d0 + T 2
0 β

2
0r

2b0+2d0
)
; (6.12)

− 1 + (1 + c0)A0r
c0 − 2d0A0r

c0 − δd02d1A0
T1

T0
rc0+d1

= ξ|κ|
√
A0T0

[
a0α0β0r

a0+b0+
c0
2
+d0−1 − b0α0β0r

a0+b0+
c0
2
+d0−1

+δa0a1α1β0r
a1+b0+

c0
2
+d0−1 − δb0b1α0β1r

a0+b1+
c0
2
+d0−1

]
, (6.13)

where the inclusion of the Kronecker delta functions ensures that the next-to-leading order

terms are only present when the appropriate leading-order power is equal to zero. We then

consider each equation in turn, determining the various possible ways in which balance

between terms can be achieved, along with the resulting leading-order equations obeyed

by the coefficients. Finally, the constraints arising from each equation are combined, in

order to identify the options that are mutually compatible. It should be clear that this

calculation quickly gets out of hand, due to the sheer number of possible combinations,

and hence it is advantageous to automate the procedure. Even then, care must be taken

to ensure that the computational cost remains manageable.

Overall, as mentioned, we obtain a total of twelve asymptotic expansions that are

consistent with the FSY equations, which we shall now consider in turn. Note that, when

generating numerical solutions for these, we shall aim to construct states where the num-

ber of fermion nodes n = 0 and the fermion mass is positive, which on occasion forces us

to consider negative parity.

6.1.1 Case [A]: {α, β,A, T} ∼ {rκ/2, rκ/2+1, r0, r0} (FSY states)

The first case to consider is where both metric fields A(r) and T (r) are non-zero constants

at r = 0, while the leading-order powers of α(r) and β(r) depend on the fermion number

in the manner indicated. This is precisely the ansatz used to generate the FSY states,

with the small-r expansion taking the form shown previously in section 2.2:

α(r) = α0r
κ/2 +O

(
rκ/2+2

)
; (6.14)

β(r) =
1

κ+ 1
α0(ωT0 −m)rκ/2+1 +O

(
rκ/2+3

)
; (6.15)

A(r) = 1− ξκ

κ+ 1
ωT0α

2
0r

κ +O
(
rκ+2

)
; (6.16)

T (r) = T0 −
ξ

2κ+ 2
(2ωT0 −m)T 2

0α
2
0r

κ +O
(
rκ+2

)
, (6.17)

where we note that this is valid only for positive parity, with the corresponding negative

parity expansion having the powers of α(r) and β(r) interchanged (a common feature of
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all the expansions). One can easily verify that this case is non-singular by calculating the

corresponding expansions for the Ricci and/or Kretschmann scalar, giving:

R = ξmκα2
0T0r

κ−2 + ... ; (6.18)

K =
ξ2κ2α4

0T
2
0

(1 + κ)2
[
m2(3− 2κ+ κ2)− 4mωT0(1− κ+ κ2)

+2ω2T 2
0 (2 + 2κ+ 3κ2)

]
r−4+2κ + ... . (6.19)

Provided κ ≥ 2, neither of these will diverge at r = 0, and hence we conclude that

physically relevant FSY states do not contain a central singularity.

Solutions generated using this expansion have of course been presented throughout

this thesis, and we shall therefore refrain from doing so here. There are, however, some

features of the asymptotic expansion that are worth emphasising, since these can aid our

analysis of the remaining cases below. First, note that there are here two unconstrained

leading-order coefficients, α0 and T0, and two free physical parameters m and ω. As

mentioned previously, imposing normalisation and asymptotic flatness effectively removes

three of these supposed degrees of freedom, and we therefore obtain a one-parameter

family of states (for constant n and κ). Thus, by a simple parameter-counting, one can

straightforwardly infer the dimensionality of the resulting parametrisation of states. Sec-

ond, the rescaling method outlined in section 2.2.2 allows us to temporarily fix the values

of two of the four ‘free’ parameters (chosen here to be m and T0), with the physical values

of these recovered upon rescaling the solution. Since the rescaling itself is a generic feature

of the FSY equations, it is guaranteed to apply to any valid small-r expansion, and hence

we can utilise the same method for the other forthcoming cases.

6.1.2 Case [B]: {α, β,A, T} ∼ {rκ/2, r3κ/2+1, r0, r0}

Note that the expansion for the FSY states above fails to hold when ωT0 = m, since

the leading power of β(r) will vanish. There is therefore the possibility of an alternative

expansion valid in this case, which we find to be (for positive κ):

α(r) = α0r
κ/2 +

ξκm2α3
0

4ω(κ+ 1)
r3κ/2 + ... ; (6.20)

β(r) = − ξκm3α3
0

2ωκ(κ+ 1)(2κ+ 1)
r3κ/2+1 + ... ; (6.21)

A(r) = 1− ξκm2α2
0

ω(κ+ 1)
rκ + ... ; (6.22)

T (r) =
m

ω
− ξκm3α2

0

2ωκ(κ+ 1)
rκ + ... . (6.23)
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The Ricci and Kretschmann scalars here evaluate to:

R =
ξκm2α2

0

ω
rκ−2 + ... ; K =

3κ2m4α4
0

ω2
r2κ−4 + ...+O (rκ) , (6.24)

and hence, for κ ≥ 2, there is therefore no central singularity. Note that, for κ > 4, the

Kretschmann scalar will lead like rκ, but this is of course still non-singular.

The expansion here contains only a single unconstrained coefficient, α0, and thus we

would expect any resulting states to represent single points in the m–ω plane, since there

are zero degrees of freedom in the system. We are unable, however, to generate any lo-

calised solutions using this expansion, regardless of the value of κ, although we have no

formal proof that they do not exist. Even if such a state could be constructed, it would

not necessarily represent a new solution, but rather a special case of the FSY states in

which the central redshift z = T0 − 1 happens to coincide precisely with the value of

m/ω− 1. We therefore conclude that this expansion does not produce an alternative class

of non-singular states in the Einstein–Dirac system.

6.1.3 Case [C]: {α, β,A, T} ∼ {r1, r1, r0, r−1} (z = ∞ states)

The next case to consider is that obeyed by the infinite-redshift solutions, where the

leading-order expansion is independent of the fermion mass, and thus the coefficients are

related to those in the analytic massless ‘power-law’ solution. The expansion at small r

takes the following form:

α(r) =

√
2ω

3ξκ2κ−
r + ... ; A(r) =

1

3
+ ... ;

β(r) =

√
2ω

3ξκ2κ+
r + ... ; T (r) =

1

ω

√
κ2

4
− 1

3
r−1 + ... , (6.25)

where κ± = κ/2 ±
√
1/3. This is valid for both positive and negative parity, but note

that it requires |κ| > 2/
√
3 ≈ 1.1547. Although this of course encompasses all physically

acceptable values of κ, one might nonetheless wonder how the system behaves when |κ| <
2
√
3, an issue that will be addressed when considering case [D]. The asymptotic forms for

the Ricci and Kretschmann scalars (for positive parity) are:

R =
8m

3κ
√
3κ22− 4

r−1 + ... ; K = −8

3
r−4 + ... , (6.26)

and hence the expansion in singular. As discussed previously, the localised solutions as-

sociated with this expansion reside at the centres of the families of FSY states, and an

example can be seen in Fig. 2.5. An interesting point to note, however, is that in the

above expansion all leading-order coefficients are constrained, and thus it would appear
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that only two degrees of freedom (m and ω) are present. Since imposing normalisation

and asymptotic flatness is known to remove three degrees of freedom, this feature is some-

what puzzling. Furthermore, when we generate infinite-redshift states numerically, we are

forced to include an additional parameter in the small-r expansion, the value of which

must then determined by a shooting procedure (although its value is found to be very

close to unity). The reason for this behaviour, however, is not entirely clear.

6.1.4 Case [D]: {α, β,A, T} ∼ {rΩ, r1, r0, r−Ω}

Here, the leading-order powers in the asymptotic expansion are similar to those in case

[C], but now α(r) and T (r) are no longer constrained to lead like r and 1/r respectively,

with instead their dependences allowed to vary. At small r, the relevant leading-order

forms for the fields are:

α(r) = α0r
Ω + ... ; β(r) = ±

√
ω

ξκ

( √
Λ

2κ+
√
16− 2Λ

)
r + ... ; (6.27)

A(r) = 1− Λ

8
+ ... ; T (r) = ± Λ

2α0
√
2κξω

r−Ω + ... , (6.28)

where

Ω =

√
2κ√

8− Λ
; Λ = κ(κ+

√
16− 3κ2) . (6.29)

Note that these are valid only for positive parity, and that β0 and T0 must have the same

overall sign, although this can be either positive or negative. In the latter case, α0 must

also be taken negative in order to ensure a positive probability density. We also find that

the value of κ is now constrained to |κ| ≤ 2/
√
3, noting that this condition cannot be

ascertained by considering the forms of the above expansion, but instead arises during

their derivation. Hence this case represents the analogue of case [C] for fermion numbers

less than ≈ 1.1547. The Ricci and Kretschmann scalars here evaluate to:

R = ±
√
ξκmΛα0

2
√
2ω

r−2+Ω + ... ; (6.30)

K =
Λ

16

(
3 + Λ2 +

12Λκ2

(
√
16− 2κ+ 2κ)2

− 2κ
√
2Λ(3 + Λ)√

16− 2κ+ 2κ

)
r−4 + ... , (6.31)

where the sign of the Ricci scalar is governed by that of β0 and T0. The condition on κ

restricts Ω ≤ 1, and thus the expansion is singular at r = 0.

There is only one unconstrained leading-order coefficient in the system, α0, and hence

any associated localised states are expected to represent single points in phase space. We

find that such solutions do indeed exist, apparently only when the signs of β0 and T0 are

taken positive, and that they are located at the centres of the FSY spirals with κ ≤ 2
√
3.
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Figure 6.1: Plots summarising the behaviour of the FSY system for κ ≤ 2/
√
3. The upper panels

show the fermion binding energy and mass-radius relations for three families of n = 0 FSY states
with the values of κ indicated, alongside the equivalent two-fermion curves. At the centre of the
spirals lie the states generated using the small-r expansion in case [D], one of which (for κ = 1) is
shown in the lower panels. Note that this is singular, as indicated by the divergence of the fermion
energy density ρf at small r.

One can therefore interpret these as the infinite-redshift FSY states for fermion numbers

below 1.1547. Although such values are entirely unphysical, it is nonetheless interesting

to consider the associated behaviour of the system, which is summarised in Fig. 6.1. From

this, we observe that the fermion binding energy and mass-radius relations exhibit the

usual spiralling structure, although the spiral itself becomes progressively tighter as the

fermion number is decreased. Note that, as discussed previously, all states along these

curves are in fact singular. We have also included the radial profiles of the infinite-redshift

state that lies at the centre of the κ = 1 spiral, this having been generated using the

small-r expansion above.

The existence of separate infinite-redshift states for κ ≤ 2/
√
3 and κ > 2

√
3 implies

that there should be a corresponding difference in the zonal structure of FSY states for

the two cases. Indeed, we find that the power-law zone for FSY states with κ ≤ 2/
√
3 is

replaced by an equivalent zone in which the fields approximate the alternative power-law

forms given in (6.27)–(6.28). This appears to be related to the fact that neither the mass

term nor the fermion energy term contribute to the Dirac equations (6.1) and (6.2) within

this new zone, although the precise reason for this is unclear. Given the unphysical nature

of the system for κ ≤ 2/
√
3, however, it is perhaps not worth considering at length.
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6.1.5 Case [E]: {α, β,A, T} ∼ {r0, r0, r−2, r−1}

So far, the expansions we have presented have either been previously considered, or equate

to slight alterations of limited interest. The remainder of the cases, however, prove more

interesting, with their application resulting in new families of states that are entirely

separate from those previously studied. The first of these is case [E], where the relevant

asymptotic expansion takes the following form (valid for both positive and negative parity):

α(r) = α0 +
α2
0 + 2β2

0

β0

√
ω

ξ|κ|(α2
0 + β2

0)
r +O

(
r2
)
; (6.32)

β(r) = β0 −
2α2

0 + β2
0

α0

√
ω

ξ|κ|(α2
0 + β2

0)
r +O

(
r2
)
; (6.33)

A(r) =
|κ|3ξα2

0β
2
0

4ω(α2
0 + β2

0)
r−2 +O

(
r−1
)
; (6.34)

T (r) = − κα0β0
2ω(α2

0 + β2
0)

r−1 + T1 +O (r) . (6.35)

Here, both α(r) and β(r) approach non-zero constants at small r, the values of which are

unconstrained, whereas A(r) and T (r) now both diverge as r → 0. Note that, for positive

parity, one of either α0 or β0 must be negative, in order to ensure T (0) remains positive.

The Ricci and Kretschmann scalars for this case are:

R = −ξκ2mα0β0(α
2
0 − β2

0)

2ω(α2
0 + β2

0)
r−3 + ... ; K =

3ξ2κ6α4
0β

4
0

2ω2(α2
0 + β2

0)
r−8 + ... , (6.36)

and hence the expansion is singular for all values of κ.

Considering now the potential localised states associated with this expansion, we note

that there are two unconstrained coefficients, α0 and β0, which is precisely the same

number as in the FSY case, and hence we should expect a single one-parameter family of

solutions. For numerical convenience, we choose the quantity that parametrises this family

to be p0 ≡ α0/β0 − 1, since this remains invariant under the rescaling procedure. We find

that indeed localised solutions can be constructed for any value of this parameter, from

zero to infinity, and in addition that positive fermion mass states can only be obtained for

negative parity. We shall here therefore restrict our numerical analysis to the states with

κ = −2, although we emphasise that solutions exist for all values (and both signs) of κ.

Note that the numerical procedure for obtaining states is very similar to that employed in

the FSY case, with a one-parameter shooting in ω̃ required to initially obtain an unscaled

solution (where β̃0 = 1), after which the physical state is recovered by rescaling the fields

and parameters.

The overall behaviour of the family of states is illustrated in Fig. 6.2, where we plot

the fermion mass-energy and mass-radius relations, along with a variety of quantities

plotted as a function of p0. It is clear even from a cursory glance that these states are
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Figure 6.2: Plots summarising the behaviour of the singular states generated using the asymptotic
expansion [E]. In the upper panels, we show the fermion mass-energy and mass-radius relations for
the one-parameter family of states with κ = −2, alongside the corresponding curves for the FSY
case (κ = 2, n = 0). Included in the lower panels are plots of the fermion mass and energy, the
ADM mass, and the average radius as a function of the parameter p0 = α0/β0 − 1.

far removed from their FSY equivalents, with the only similarity being that both m and

ω tend towards zero at large values of p0. We note, however, that the relationship in this

region approximates m = 3ω, as opposed to m = ω for the FSY states. Furthermore,

despite the fermion mass and energy both vanishing at large p0, along with the ADM

mass, the radius of the states somewhat confusingly tends towards a constant value of

R̄ ≈ 0.697. This suggests that perhaps there exists an analytic solution at infinite p0,

towards which the solutions approach, although we have been unable to obtain it. At the

other extreme, we observe that both m and ω become infinite as p0 → 0, whereas both the

ADM mass and the radius tend towards zero. This is perhaps an even stranger scenario,

since the gravitational mass of these states is almost non-existent, despite the presence of

two ultra-high mass fermions. This is somewhat reminiscent of the mass-scale separation

observed in the Einstein–Dirac–Higgs system, although here the degree of separation is

significantly greater.

Examples of three individual states are shown in Fig. 6.3, where for each we plot the

radial profiles of the fermion fields, metric fields and enclosed Komar mass. The loca-

tions of these states correspond to the points labelled in Fig. 6.3. Considering first the

p0 = 0.05 solution, we see that the fermion fields α(r) and β(r) are almost equal through-

out the fermion source, initially following an almost elliptical trajectory before abruptly

transitioning to an exponential decay. The metric fields exhibit a similarly odd behaviour,
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Figure 6.3: Examples of three individual states generated using the asymptotic expansion [E],
showing for each the radial profiles of the fermion and metric fields, along with the enclosed Komar
mass. The locations of these states are indicated on the curves shown in Fig. 6.2. Note that the
parameter values for these solutions can be found in Appendix B.

with A(r) and T (r) gradually decreasing from their central infinite values, before crossing

at large r, after which A(r) starts to increase, following its asymptotic Schwarzschild form.

This crossing ensures that the ADM mass of the state remains positive, although its actual

value is infinitesimal, due to the approximately flat slope of the metric fields at large r.

The enclosed Komar mass indicates even an stranger behaviour, since it no longer remains

monotonic. This implies that an observer within the fermion source would experience the

gravitational effects of a much more massive object than would an observer at infinity,

i.e. much of the gravitational mass of the fermion source is hidden from external measure-

ment. The overall qualitative behaviour does not change significantly as p0 is increased,

although we note that the total ADM mass is much larger for the intermediate state, but

once again almost infinitesimal for the p0 = 1000 state.

Unfortunately, we have no satisfactory explanation for the somewhat counter-intuitive

properties exhibited by this family of states. Our only comment is to emphasise that these

solutions are singular, and that the presence of a central singularity can seemingly result in

a wide variety of unusual phenomena. This will become a common theme as we continue

our review of the various asymptotic expansions.
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6.1.6 Case [F]: {α, β,A, T} ∼ {rκ/2, r−κ/2, r0, r1}

In this case, the fermion field β(r) diverges at small r, but all other fields are regular. The

accompanying asymptotic expansion (valid for both positive and negative parity) is:

α(r) = α0r
κ
2 +O

(
r1−

κ
2

)
; β(r) = β0r

−κ
2 +O

(
r1+

κ
2

)
; (6.37)

A(r) = 1 +O
(
r2−|κ|

)
; T (r) =

2

ξκ|κ|α0β0
r +O

(
r2−|κ|

)
, (6.38)

where the value of κ is constrained to lie within −1 < κ < 1. The Ricci and Kretschmann

scalars take the following forms:

R = − 2mβ0
|κ|α0β0

r−κ−1 + ... ; K = 24r−4 + ... , (6.39)

and hence indeed a central singularity is present. This is one of only three expansions for

which we have been unable to construct localised solutions, although we have no formal

proof that they do not exist. Given the unphysical constraint on κ, however, we shall not

dwell further on this case.

6.1.7 Case [G]: {α, β,A, T} ∼ {r0, r−1, r0, r2}

Here, we once again have a divergent β(r), while all other fields are regular, with the

small-r expansion valid for positive parity taking the following form:

α(r) = − 2
√
2ω

m
√
6ξ

+ α1r + ... ; β(r) = − 2
√
2ω

m2
√
6ξ

r−1 +
2
√
2ω√
6ξ

r + ... ; (6.40)

A(r) = 1− 2m2r2 + ... ; T (r) =
3m3

2ω
r2 +

3
√
6ξm4α1√
2ω3

r3 + ... , (6.41)

where the derivation of this enforces κ = 2. Note that the corresponding negative parity

expansion can be obtained by interchanging the power-law dependences of α(r) and β(r).

Considering the Ricci and Kretschmann scalars, we obtain the following simple expressions:

R = −4r−2 + ... ; K = −16r−4 + ... , (6.42)

indicating that indeed a central singularity is present. The situation for this expansion is

somewhat unusual, in that the leading-order coefficients are constrained to take definite

values, but the next-to-leading order coefficient α1 is not. Even stranger, it turns out

that there is a further redundancy at fourth order, resulting in a second unconstrained

coefficient, which we take to be T4. We shall not here detail the full expansion up to this

order, but simply note that, contrary to appearances, there are indeed four free parameters

in the system, and we therefore expect any localised states associated with this expansion

to constitute a one-parameter family of solutions. Since there does not appear to be a
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Figure 6.4: The one-parameter family of solutions with small-r behaviour governed by the asymp-
totic expansion [G]. Shown in the upper panels are the fermion mass-energy and mass-radius rela-
tions, alongside the corresponding curves in the FSY case. The lower panels indicate the behaviour
of the fermion mass, fermion energy, ADM mass and average radius as a function of the unscaled
parameter α̃1, which we use to parametrise the family of solutions.

straightforward quantity that remains invariant under the rescaling, we simply parametrise

this family using the unscaled coefficient α̃1, while fixing the value of T̃4 = 1.

There indeed exist localised solutions in this case, which we have successfully obtained

numerically, with the behaviour of the one-parameter family of states being summarised

in Fig. 6.4. Again we plot the fermion mass-energy and mass-radius relations, along with

the values of various physical quantities as a function of α̃1. As in case [E], we find that

the family of solutions is entirely disconnected from the FSY states, and does not exhibit a

spiralling behaviour. Instead, at small values of α̃1, all physical properties of the solutions

become constant, and thus the mass-energy and mass-radius curves terminate at a specific

point in phase space. In contrast, at large α̃1, all quantities tend towards zero, and hence

the solutions within this region represent highly-localised states, consisting of low-mass

fermions confined around a central singularity.

The locations of two individual states are labelled on the mass-energy and mass-radius

relations, with the radial profiles of these shown in Fig. 6.5. Consider first the solution with

α̃1 = 10, which is located along the portion of the curves that tends towards zero. For this

we plot the profiles of not only the fermion fields, metric fields and enclosed Komar mass,

but also the optical geometry radial co-ordinate ρ = rT , the radial fermion energy density,

and the Ricci scalar. For all quantities, there is a distinct change in behaviour at a radius
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of r ≈ 0.15, with the forms of the metric fields indicating that a horizon is very nearly

formed at this point. Indeed, A(r) drops to a very small but ultimately non-zero value,

before latching on to its asymptotic Schwarzschild dependence. This radius is associated

with a highly-pronounced bottleneck in the optical geometry, due to the maximum in T (r),

with the fermion energy density heavily peaked around the location of the accompanying

stable photon sphere. Hence the fermion wavefunction is trapped within an exceedingly

narrow radial region. Considering the profile of the Komar mass, we note a somewhat

unusual behaviour, in that the enclosed gravitational mass is negative within the central

regions of the state (in fact tending to negative infinity as r → 0), only becoming positive

at around the radius of the pseudo-horizon. Recall that the Komar mass at a radius r

is calculated by considering the gravitational force on a test particle held stationary at

that radius, and hence a negative value indicates that this force will be repulsive. The

fermion source appears therefore to have two distinct regions — first, an extended inner

core, in which the probability of finding a fermion is negligible and there exists effectively

a bare spacetime singularity (with an overall repulsive effect), and second, a narrow region

within which the fermion wavefunction is highly trapped, with the outer boundary of this
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Figure 6.5: Examples of two singular solutions generated using the asymptotic expansions [G].
For both states, we plot the radial profiles of the fermion fields, metric fields and enclosed Komar
mass, and in addition, for the α̃1 = 10 solution, the profiles of the radial co-ordinate in the optical
geometry, ρ = rT , the radial fermion energy density r2ρ, and the Ricci scalar R. Note that this
last quantity diverges at r = 0, indicating the presence of a central singularity. Also note that the
fermion fields are both negative for all values of r, and hence here we plot their absolute values.
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corresponding to a pseudo-horizon. Another interesting feature to note from the Komar

mass is that the transition from negative to positive implies that a radius exists at which

the enclosed gravitational mass is measured to be zero, and thus an observer located at

that point will experience no gravitational force whatsoever. We have verified that this is

indeed the case using a geodesic analysis.

To summarise, although the overall behaviour of the α̃1 = 10 state is somewhat un-

usual, it is entirely self-consistent. The apparent strong repulsive effect of the central

singularity pushes the central portion of the fermion wavefunction outwards in radius,

resulting in the outer region of the fermion source becoming highly dense. This in turn

creates a significant distortion in the metric, accompanied by the appearance of a stable

photon sphere, around which the fermion density becomes trapped. Questions remain,

however, such as why the central singularity is effectively repulsive, and indeed how we

should interpret this type of solution. Finally, we note that the qualitative behaviour of

the states does not change significantly as α̃1 is decreased, as indicated by the profiles of

the α̃1 = 0.02 solution also included in Fig. 6.5. Rather, we find that the pseudo-horizon

gradually disappears, and the fermion energy density becomes trapped within an increas-

ingly broad radial region. As a final remark, we note that, as mentioned when considering

the family of states, the solutions at small α̃1 approach a constant overall form, similar in

structure to the α̃1 = 0.02 state shown, although we can identify no features suggesting

why this should be the case.

6.1.8 Case [H]: {α, β,A, T} ∼ {r−κ/2+1, r−κ/2, r0, rκ}

At first glance, this case appears to be the many-fermion generalisation of case [G], since

the power-law dependences coincide when κ = 2. Although this is indeed correct, and in

fact this case is valid only when κ ̸= 2, the behaviour of the expansion here is significantly

different, and we are consequently unable to construct localised solutions. At small r, we

have the following leading-order expansion, valid for positive parity:

α(r) = α0r
−κ

2
+1 +O

(
r−κ/2+3

)
; β(r) =

κ− 1

m
α0r

−κ
2 +O

(
r−κ/2+2

)
; (6.43)

A(r) = 1 +O (rκ) ; T (r) =
2mκ

ξκ(κ− 1)α2
0

rκ +O
(
rκ+2

)
. (6.44)

The Ricci and Kretschmann scalars for this case are:

R = 2κ(κ− 1)r−2 + ... ; K = 4κ2(3 + 2κ+ κ2)r−4 + ... , (6.45)

and thus there is a central singularity. Although it might appear that there is a single

unconstrained parameter, α0, in the expansion above, this in fact becomes constrained

due to a redundancy at higher order, and hence the system contains only two free parame-

ters. This is incompatible with the construction of localised solutions, since the boundary
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conditions in principle remove three degrees of freedom, although we note that this did

not prevent the generation of the infinite-redshift states in case [C], for reasons that are

unclear. Such an exception does not appear to apply here, however, and our attempts at

obtaining localised numerical solutions have been unsuccessful.

6.1.9 Case [I]: {α, β,A, T} ∼ {r0, r0, r−1, r0}

Here we now return to a situation in which the leading-order powers are independent of

the fermion number, with now all but the metric field A(r) leading like a constant. The

small-r expansion for this case (valid for both positive and negative parity) is:

α(r) = α0 +
κα0√

−ξκ3α0β0T0

r1/2 + ... ; (6.46)

β(r) = β0 −
κβ0√

−ξκ3α0β0T0

r1/2 + ... ; (6.47)

A(r) = −ξκ|κ|α0β0T0r
−1 + 1− ξ|κ|ωT 2

0 (α
2
0 + β2

0) + ... ; (6.48)

T (r) = T0 +
T0

3κα0β0

(
2ωT0[α

2
0 + β2

0 ]−m[α2
0 − β2

0 ]
)
r + ... , (6.49)

where we note that, for positive κ, one of either α0 or β0 is forced to be negative, and that

there are no constraints on κ that arise when deriving these expressions. The Ricci and

Kretschmann scalars here take the following forms:

R = ξκmT0(α
2
0 − β2

0)r
−2 + ... ; K = 6ξ2κ3(3κ− 2|κ|)α2

0β
2
0T

2
0 r

−6 + ... , (6.50)

implying that there is indeed a central singularity. The expansion above contains a total

of three unconstrained coefficients, α0, β0 and T0, none of which are subject to any further

constraints at higher order (as far as we can tell). Any localised states associated with

this expansion should therefore constitute a 1-dimensional set of 1-parameter solutions,

i.e. each family of states is itself defined by the value of a second parameter. For numer-

ical convenience, we specify the two free parameters in the system as p0 = α0/β0 and

p1 = α0

√
mT0, which are both invariant under the rescaling. We shall take p1 to be the

parameter that identify the respective families, and p0 as the quantity that distinguishes

the states within them. In addition, in order to obtain positive mass states, we are forced

to consider the negative parity asymptotic expansion.

We have been successful in generating localised solutions using this expansion for a

variety of κ values, with the overall behaviour for κ = −2 illustrated in Fig. 6.6. Here,

we plot the mass-energy and mass-radius relations, along with quantities as a function

of p0, for three families of states with p1 values of 0.4, 0.5 and 0.6. We note that there

appears only to be a narrow range of parameter values for which solutions can be obtained.

Considering the mass-energy curves, we see that once again these singular solutions are
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Figure 6.6: Families of states generated using the small-r asymptotic expansion [I]. There are
now multiple families of solutions, distinguished by their respective values of the parameter p1 =
α0

√
mT0, with the three cases shown corresponding to p1 = 0.4, 0.5 and 0.6, all with κ = −2.

In the upper panels, we plot the fermion mass-energy and mass-radius relations, and in the lower
panels, m, ω, M and R̄ as a function of the second parameter p0 = α0/β0. Note that all states
have a negative ADM mass, and in addition there exist those in which the fermion energy is also
negative.

unrelated to the FSY states, although indeed m and ω both tend to zero as p0 → ∞.

Interestingly, at small values of p0, the value of the fermion energy becomes negative

(one could argue that this is somewhat unphysical, however), and the curves appear to

asymptote towards finite values of p0. The most intriguing feature of these states, however,

is that their total ADM masses are negative, irrespective of the value of p0. This implies

that they are gravitationally repulsive, despite containing positive mass fermions with

positive energy (at least in the majority of cases). Again, the only explanation for this

appears to be the presence of the central singularity, although the physical mechanism

through which this permits negative gravitational mass is unclear.

Examples of two individual states are shown in Fig. 6.7, both corresponding to p1

values of 0.4, but with different values of p0. Their locations are indicated on the p1 = 0.4

curves in the previous figure. There are a few interesting features to note from these plots.

First, unlike in some of the previous cases, the metric fields here do not cross, and hence

they approach their asymptotic forms from the ‘wrong’ direction. This explains why the

states exhibit a negative gravitational mass. What is perhaps surprising, however, is that

the Komar mass in fact decreases towards this value, and is precisely zero at the centre

of the fermion source. This implies that, although the overall gravitational effect of these
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Figure 6.7: Examples of two individual solutions constructed using the small-r expansion [I].
These have a common value of p1 = 0.4, but differing values of p0, with their locations along the
family of p1 = 0.4 states indicated in Fig. 6.6. Note that the ADM mass of the states here is
negative, since the metric fields approach their asymptotic forms from the opposite direction to
that usually encountered.

states is repulsive, the strength of this decreases as one moves further within the fermion

source. This is precisely the situation one would expect for an object consisting of neg-

atively gravitating particles, but as we emphasise, there is no such exotic matter present

here.

6.1.10 Case [J]: {α, β,A, T} ∼ {r3/2, r0, r−1, r1/2}

We now encounter another case in which the leading-order powers do not depend on the

fermion number, but here only β(r) leads like a constant. The small-r expansion takes

the following form (for positive parity):

α(r) = − 2mβ0

3
√
A0

r
3
2 +

(2mκ− 3ω
√
A0T0)β0

6
√
A0

r2 + ... ; (6.51)

β(r) = β0 −
κβ0√
A0

r
1
2 + ... ; (6.52)

A(r) = A0r
−1 + 1 + ... ; (6.53)

T (r) = T0r
1/2 − T0

2A0
r3/2 + ... , (6.54)

where we note that, for positive mass solutions, α0 and β0 must have the opposite sign,

and that there are no constraints on the value of κ. The expansions for the Ricci and

Kretschmann scalars for this case are:

R = −ξmβ2
0T0r

−3/2 + ... ; K = 12A2
0r

−6 + ... , (6.55)
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indicating the presence of a central singularity. There are here three unconstrained param-

eters in the expansion (β0, A0 and T0), and hence any localised states should constitute a

one-dimensional set of one-parameter families of solutions, similar to the situation observed

in case [I]. Again, we choose to use parameters that are invariant under the rescaling, these

being p0 = mA0 and p1 = m0T0β
2
0 , with the former parametrising the families and the

latter distinguishing between them.

We find that indeed localised solutions can be generated for this case, although pos-

itive mass states are required to exhibit at least one fermion node. The behaviour of the

families of states (for κ = 2) is illustrated in Fig. 6.8, where we plot the fermion mass-

energy and mass-radius relations for the families with p1 values of 0.01 and 0.1, along

with various quantities as a function of p0. We observe that the singular solutions here

are not disconnected from the FSY states, instead approaching them in the limit p0 → 0,

and indeed both the mass-energy and mass-radius curves closely follow their FSY equiva-

lents. This behaviour only continues up until a particular value of p0, however, after which

the curves separate from the FSY case and diverge to infinity. Note that the p1 = 0.1

family follows the FSY curve for a slightly longer period than the p1 = 0.01 family, and

we therefore surmise that the point at which the curves detach from the FSY states be-

comes progressively closer to the centre of the FSY spiral as p1 increases. It is difficult to

verify this, however, since states with large values of p1 are not straightforward to gen-
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Figure 6.8: Plots summarising the behaviour of the families of singular states generated using
the asymptotic expansion [J], with κ = 2. Shown are the fermion mass-energy and mass-radius
relations for two families of states, with parameter values p1 = 0.01 and p1 = 0.1, respectively,
along with plots of the quantities m, ω, M and R̄ as a function of p0. Note that the curves follow
closely the low-redshift portion of the FSY spiral, before diverging at large values of p0.
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erate numerically, due to the appearance of multivaluedness. This behaviour is certainly

surprising, even more so when one considers the fact that the families of singular states

contain a single fermion node, while the FSY states shown do not.

To understand this behaviour, we must consider the profiles of individual solutions,

two of which are presented in Fig. 6.9, corresponding to states (a) and (b) marked on the

previous figure. Considering first the p0 = 500 state, which is located beyond the point

at which the curve detaches from the FSY spiral, we note that the metric fields again

cross at a reasonably large radius, and thus the total ADM mass of the state is positive.

The profile of the Komar mass indicates, however, that the enclosed gravitational mass

become negative within the inner regions of the fermion source, and consequently there

exists a radius at which an observer will experience no gravitational force whatsoever.

Turning to the p0 = 0.0001 state, we observe from the fermion field profiles that the

solution has effectively split into two distinct regions: a core, in which β(r) is positive and

α(r) is negligible, and an outer region, located beyond the single fermion node. Somewhat

surprisingly, the profile of the fermion fields (and indeed the metric fields) within the outer

zone is almost precisely that of an n = 0 FSY state, explaining why the family of solutions

approaches so closely the FSY curve for small values of p0. Note that this argument relies

on the fact that the inner regions of the fermion source contain a negligible amount of

fermion density, and thus the properties of the solution are primarily determined at large

r. Unfortunately, we have no explanation for this overall behaviour, other than the plots

presented.
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Figure 6.9: Examples of two singular states constructed using the asymptotic expansion [J], these
both having the same value of the parameter p1, but differing in their values of p0. Shown for each
state are the radial profiles of the fermion fields, metric fields and Komar mass. The locations of
these solutions along the family of p1 = 0.1 states is indicated in Fig. 6.8.
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6.1.11 Case [K]: {α, β,A, T} ∼ {r0, r3/2, r−1, r1/2}

This case appears to be a variation on case [J], with simply the leading-order dependences

of the two fermion fields switched. The expansion is therefore similar to that above:

α(r) = α0 −
κα0√
A0

r
1
2 + ... ; (6.56)

β(r) = −2mα0

3
√
A0

r
3
2 − (2mκ− 3ω

√
A0T0)α0

6
√
A0

r2 + ... ; (6.57)

A(r) = A0r
−1 + 1 + ... ; (6.58)

T (r) = T0r
1/2 − T0

2A0
r3/2 + ... . (6.59)

The corresponding expansions for the Ricci and Kretschmann scalars are:

R = ξmα2
0T0r

−3/2 + ... ; K = 12A2
0r

−6 + ... , (6.60)

and indeed there is a central singularity. We find that the states associated with this

expansion behave in an identical manner to those of case [J], as might be expected, and

thus we shall not dwell further on this case.

6.1.12 Case [L]: {α, β,A, T} ∼ {r0, r0, r−1, r1/2}

We finally arrive at the twelfth and final small-r expansion, for which the fields again have

no leading-order dependence on κ, with now both α(r) and β(r) leading like constants.

The small-r expansion in this case is (valid for positive parity):

α(r) = α0 +
κα0√
A0

r1/2 + ... ; β(r) = β0 −
κβ0√
A0

r1/2 + ... ; (6.61)

A(r) = A0r
−1 + 1 + ... ; T (r) = T0r

1/2 + ξκ2
T 2
0α0β0
A0

r + ... , (6.62)

which is found to exist for any value of κ. The corresponding expansions for the Ricci and

Kretschmann scalars are:

R = ξκmT0(α
2
0 − β2

0)r
−3/2 + ... ; K = 12A2

0r
−6 + ... , (6.63)

and consequently a central singularity is present. Note that here we have a total of

four unconstrained parameters in the expansion (α0, β0, A0 and T0), and as such any

resulting localised solutions should constitute a 2-dimensional set of 1-parameter families

of solutions. It is again convenient to construct parameters that are invariant under the

rescaling procedure, and to this end we therefore choose to identify families by their values

of p1 = mA0 and p2 = β4
0T

2
0A

−1
0 , and distinguish the solutions contained therein by the

parameter p0 = α0/β0.
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Figure 6.10: Plots indicating the behaviour of the families of singular states generated using the
small-r expansion [L]. Shown in the upper panels are the fermion mass-energy and mass-radius
relations for two families of states with the values of p1 and p2 indicated. These are observed to
spiral towards the same infinite-redshift state as the FSY family. The lower panels plot the values
of m, ω, M and R̄, as a function of the parameter p0 = α0/β0, for the same two families.

Given the high dimensionality of the parameter space, we have been unable to perform

a thorough analysis of this class of solutions, and therefore simply present here a sample of

the observed behaviour. This is illustrated in Fig. 6.10, where we plot the mass-energy and

mass-radius relations for examples of two families, along with the behaviour of physical

quantities as a function of p0. Again, we see that the singular states closely follow the

FSY curve, this time spiralling towards the infinite-redshift state at large values of p0, but

detaching from the spiral at low redshift. Thus the infinite-redshift solution appears to be

a limiting case not only for the FSY states but also the states contained in class [L]. On

the other hand, for small values of p0, we find that the families terminate at seemingly

arbitrary states, which exhibit both negative fermion energy and negative ADM mass.

We can again partially explain this behaviour by analysing the structure of individual

states, two of which are shown in Fig. 6.11, these corresponding to solutions located within

the {p1 = 1, p2 = 0.01} family shown in the previous figure. Solution (a) lies along the

portion of the curve that has detached from the FSY spiral, and we observe a fairly

straightforward structure, noting that the metric fields do not cross at any radius, and

hence the total ADM mass of the state is negative. Interestingly, the enclosed gravitational

mass is observed to decrease as one moves towards r = 0. In contrast, solution (b), which

is located towards the centre of the FSY spiral, exhibits a more complex behaviour, and

we see once again a separation into two distinct regions. These appear analogous to the
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Figure 6.11: Examples of two singular solutions generated using the asymptotic expansion [L],
both with parameter values p1 = 1 and p2 = 0.01, but differing values of p0. Shown for each state
are the radial profiles of the fermion fields, metric fields and Komar mass. The locations of these
two states are indicated on the mass-energy curve in Fig. 6.10.

core and power-law zones of the FSY states, and indeed we observe a similar oscillatory

behaviour around the pure power-law solution to that which occurs in the FSY case. We

therefore conclude that these singular solutions differ only from the FSY states with respect

to the small-r expansion that the fields approximate within the core zone. This explains

why the two cases exhibit similar properties, with the appearance of a common spiralling

behaviour related to the fermion self-trapping effect that occurs within the power-law

zone. Again, however, a physical interpretation for this similarity, or indeed these families

of singular states, is lacking.

This concludes our somewhat lengthy summary of the various singular solutions ob-

tained by varying the small-r expansions for the equations of motion. In total, we have

identified 12 possible expansions, with 9 of these resulting in localised states, 8 of which

are singular. Overall, therefore, we conclude that the FSY states are the only non-singular

localised states in the Einstein–Dirac system.

6.2 ω = 0, A = 1 analytic solution

Before concluding this chapter, we first discuss a new analytic solution to the Einstein–

Dirac equations that does not appear to have been presented elsewhere. Although this

solution contains a central singularity, it is entirely normalisable, and hence to our knowl-

edge the resulting states represent the first analytic, localised solutions to the Einstein–

Dirac system. The solution is valid for the somewhat unusual specific case of zero fermion
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energy (ω = 0) and entirely flat space (A(r) = 1), noting that this latter condition does

not of course imply flat space-time. We shall first outline the derivation of the solution,

for both the two-fermion system and its many-fermion generalisation, before discussing its

properties and interpretation.

We begin by setting ω = 0 and A(r) = 1 in the FSY equations (6.1)–(6.4), reducing

them to the following set of three differential equations:

α′ =
Nf

2r
α−mβ ; (6.64)

β′ = −mα−
Nf

2r
β ; (6.65)

−2r
T ′

T
= NfξT

(
αβ′ − α′β

)
, (6.66)

where ξ = 8πG and we have assumed positive parity. In addition, the normalisation

condition (6.5) simplifies to:

4π

∫ ∞

0
T
(
α2 + β2

)
dr = 1 . (6.67)

Differentiating (6.64) and eliminating β(r) using (6.65), we can obtain the following dif-

ferential equation for α(r):

α′′ =

(
m2 −

Nf

2r2
+

N2
f

4r2

)
α . (6.68)

Note that this simplifies considerably for the case of Nf = 2, in which the final two terms

cancel, and we shall therefore consider this case separately, before tackling the many-

fermion generalisation.

6.2.1 The two-fermion solution

For Nf = 2, the equation for α simplifies to α′′ = m2α, which can be easily solved to give:

α(r) = c1e
−mr + c2e

mr . (6.69)

where c1 and c2 are arbitrary constants. Since our aim is to construct normalisable states,

we eliminate the growing mode by setting c2 = 0. Then, substituting this back into (6.64),

we can solve for β(r):

β(r) =
1

m

(
1

r
α− α′

)
= c1

(
1

mr
+ 1

)
e−mr . (6.70)
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Using these expressions, the remaining Einstein equation (6.66) reduces to the following

differential equation for T (r):

T ′

T 2
=− ξ

r

(
c21e

−2mr

[
−m− 1

r
− 1

mr2

]
− c21e

−2mr

(
1 +

1

mr

)
(−m)

)
=

c21ξ

mr3
e−2mr , (6.71)

which can be solved by separation of variables:∫ ∞

r

dT

T 2
= c21ξ

∫ ∞

r

1

ms3
e−2msds . (6.72)

Note that we are integrating radially inwards from infinity, in order to avoid the singularity

at r = 0. The left-hand side of this can be straightforwardly evaluated, noting that

normalisable states must be asymptotically flat, i.e. T (∞) = 1. We can solve the integral

on the right-hand side using integration by parts, with a change of variable to u = 2ms

proving useful. Our equation therefore becomes:

−1− 1

T (r)
= 4mc21ξ

∫ ∞

2mr

1

u3
e−u du

= 4mc21ξ

(
1

8m2r2
e−2mr − 1

2

∫ ∞

2mr

1

u2
e−u du

)
= 4mc21ξ

(
1

8m2r2
e−2mr − 1

4mr
e−2mr +

1

2

∫ ∞

2mr

1

u
eu du

)
= c21ξ

([
1− 2mr

2mr2

]
e−2mr − 2mEi(−2mr)

)
, (6.73)

where Ei(x) is the exponential integral, defined as:

Ei(x) = −
∫ ∞

−x

1

t
e−t dt . (6.74)

Note that this tends to negative infinity as x → 0 and zero as x → −∞. Thus we arrive

at the following final expressions for α(r), β(r) and T (r), valid in the two-fermion system:

α(r) = c1e
−mr ; (6.75)

β(r) = c1

(
1

mr
+ 1

)
e−mr ; (6.76)

T (r) =
2mr2

2mr2 + c21ξ [(1− 2mr)e−2mr − 4m2r2Ei(−2mr)]
. (6.77)

Whether this solution is normalisable depends on the behaviour of the normalisation

integrand in (6.67). Certainly no issues arise at large r, since α(r) and β(r) both decay

exponentially, while T (r) asymptotes towards 1, but we must also consider the possibility

of a singularity at r = 0. To analyse this, we must determine the behaviour of T (r) at
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small r, for which we can utilise the following series expansion of the exponential integral:

Ei(−x) = log(x) + γE − x+
x2

4
+ ... , (6.78)

where γE is Euler’s constant. This allows us to perform a small-r expansion of (6.77), for

which we obtain:

T (r) =
2mr2

2mr2 + c21ξ [(1− 2mr)(1− 2mr + ...)− 4m2r2 (log(2mr) + γE + ...)]

=
2mr2

c21ξ

(
1 + 4mr + 4m2r2 log(2mr) + ...

)
. (6.79)

We can now consider the corresponding small-r behaviour of the normalisation integrand,

this evaluating to:

T (α2 + β2) =
2mr2

c21ξ

(
1 + 4mr + 4m2r2 log(2mr)

)
c21 (1− 2mr)

(
1

m2r2

)
+ ...

=
2

mξ

(
1 + 4mr + 4m2r2 log(2mr) + ...

)
. (6.80)

This is entirely well-behaved at r = 0 and hence we conclude that the solution presented

here is indeed normalisable. We can therefore rewrite the normalisation condition (6.67)

by substituting in the forms for α(r), β(r) and T (r), which gives:

1 =
8πc21
m

∫ ∞

0

(2m2r2 + 2mr + 1)e−2mr

2mr2 + c21ξ [(1− 2mr)e−2mr − 4m2r2Ei(−2mr)]
dr . (6.81)

This represents an implicit equation that can be solved to determine the value of c1

for which the solution is correctly normalised. This therefore leaves only a single free

parameter in the system, the fermion mass m, which our numerical analysis indicates can

take any positive value.

As mentioned, we find that this solution is singular at r = 0, which can be confirmed

by considering the form of the Ricci scalar at small r. Using the expression for this given

in (2.51), we obtain the following expansion:

R =
2ξm

r2
T (α2 − β2)

=
2ξm

r2
2mr2

c21ξ
(1 + 4mr + ...) c21(−1− 2mr)

1

m2r2
+ ...

= − 4

r2
− 16m

r
− 16m2 log(2mr) + ... . (6.82)

This diverges at r = 0, and hence the spacetime contains a central singularity. Another

quantity to consider is the total ADM mass of the solution. Since the metric is not

asymptotically Schwarzschild, however, we cannot extract this information from the large

r form, and instead must consider the enclosed Komar mass (2.47), which can be simply
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read off the Einstein equation:

MK(r) = −r2
T ′

T 2
= −c21ξ

mr
e−2mr . (6.83)

Note that this diverges to negative infinity at r = 0 and decays exponentially at large r.

We therefore conclude that the total ADM mass of the state is zero, but at a finite radius

the enclosed gravitational mass is negative. Hence, from a purely gravitational point of

view, the fermion source is entirely invisible to an observer at r = ∞, but produces a

repulsive effect on test particles at finite r, with this increasing in strength as r → 0.

The overall behaviour of the solution is illustrated in Fig. 6.12, for states with fermion

mass values of m = 0.1, 1 and 10. The most notable feature here is that the metric field
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Figure 6.12: Plots summarising the behaviour of the localised analytic solution to the two-fermion
Einstein–Dirac system, which is valid when ω = 0 and A(r) = 1. Shown are the radial profiles
of the fermion fields, metric fields, radial fermion number density and enclosed Komar mass, for
states with fermion masses of (left) m = 0.1, (middle) m = 1 and (right) m = 10. Note that in
all three cases the Komar mass tends to zero as r → ∞.
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T (r) becomes progressively steeper as m increases, with this being accompanied by a peak

developing in the radial fermion number density at a non-zero radius. Hence the fermion

source becomes confined to an increasingly narrow region as m becomes larger. We note

that the radius of the state (measured by the quantity R̄), however, does not exhibit a

monotonic behaviour in m, instead initially rising at small m, with R ∼ m1/2, before

reaching a maximum radius at m ≈ 1.5, after which the radius subsequently decreases

as R ∼ m−1/4. Hence states comprising fermions with masses of m = 0 and m = ∞
both have zero radial extent, somewhat surprisingly. We shall discuss further the various

properties of this solution in section 6.2.3.

6.2.2 The many-fermion solution

We now consider the many-fermion system, in which an equivalent analytic solution can

be found, exhibiting many of the same properties as that in the two-fermion case. The

derivation is slightly more involved, however, since there is no longer the same cancellation

between terms in (6.68), with the differential equation for α(r) now taking the form:

α′′ =

(
m2 −

Nf

2r2
+

N2
f

4r2

)
α . (6.84)

In order to solve this, we first change variables to γ = α/
√
r, allowing us to rewrite the

equation as:

1√
r
γ′ +

√
r γ′′ − 1

4r
√
r
γ =

(
m2 −

Nf

2r2
+

N2
f

4r2

)
√
r γ

r2γ′′ + rγ′ =

(
m2r2 +

[
Nf − 1

2

]2)
γ . (6.85)

The solutions to this are the modified Bessel functions In and Kn, and hence we can write

α(r) as a linear combination of these:

α(r) =
√
r
(
c1KN−1

2
(mr) + c2IN−1

2
(mr)

)
, (6.86)

where we have dropped the subscript f on the fermion number for purposes of presenta-

tion. Note that In grows exponentially at large r, while Kn decays, and thus to obtain

normalisable solutions we should set c2 = 0. We can then perform a similar calculation to

obtain β(r), the result of which is:

β(r) = c1
√
rKN+1

2
(mr) . (6.87)
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Substituting these expressions into the Einstein equation (6.66), we now obtain the fol-

lowing equation for T (r):

−2r
T ′

T 2
=

1

2
ξNmc21r

(
KN+1

2
(mr)

[
KN−3

2
(mr) +KN+1

2
(mr)

]
−KN−1

2
(mr)

[
KN−1

2
(mr) +KN+3

2
(mr)

])
. (6.88)

For general Nf , this does not appear to reduce to anything tractable, although Mathe-

matica is able to find an analytic (although lengthy) solution involving hypergeometric

functions. For physical acceptable states, however, the value of Nf must be even, which

fortunately simplifies the problem considerably due to the properties of the half-integer

Bessel functions. Again using Mathematica, we can then ascertain that T (r) must take

the following form, valid in the case of even Nf :

T (r) =

[
1 + π2c21(mr)−Ne−2mr

N−1∑
n=0

λn(mr)n + 4(−1)
N
2
+1π2c21NEi(−2mr)

]−1

, (6.89)

where λn are numerical coefficients that vary depending on the value of Nf . We have been

unable to obtain an explicit expression for these, although we suspect that in principle a

closed form exists, which could be ascertained by undertaking a full analytic derivation

of the above equation. The general form of T (r) is similar to the two-fermion case, with

the addition of a power series presumably arising from a repeated integration by parts.

Note that we have verified that this solution does indeed reduce to that presented in the

previous section when Nf = 2. As before, the value of c1 here becomes constrained when

imposing normalisation, resulting in a similar integral condition to (6.81).

We find that the properties of this many-fermion solution are qualitatively similar

to the two-fermion case, with the exception that α(r) now also diverges as r → 0 (for

Nf ≥ 4). Again, we find that the solution is singular, and that states can exist for any

value of the fermion mass, with the behaviour as a function of m mirroring that presented

in Fig. 6.12.

6.2.3 Interpretation

The precise interpretation of the analytic solution presented here is not entirely clear.

Both the conditions ω = 0 and A(r) = 1 are admittedly somewhat unusual, although

neither necessarily proves problematic from a physical perspective. Certainly zero energy

does not cause any issues in the type of semi-classical situation considered here, although

it does imply that the fermion wavefunction is entirely static, and thus has no internal

conception of time. The condition A(r) = 1 is also perfectly acceptable, with this simply

corresponding to the absence of spatial variations in the metric. It is indeed unusual for

this to be accompanied by anything other than a flat space-time, with the scenario here

implying that the fermion source creates a time dilation, but without an accompanying
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length contraction. We note of course that this impression of flat space is entirely restricted

to inertial observers at r = ∞, and that a Lorentz boost could in principle be applied to

remove this imbalance.

The physical properties of the solution are also difficult to interpret. As mentioned,

the total ADM mass is always zero, and is therefore entirely decoupled from the fermion

mass, this being a free parameter within the system. An observer far outside the fermion

source will therefore measure the gravitational mass of the state to be almost negligi-

ble, despite it containing fermions of potentially infinite mass. The behaviour as one

approaches the fermion source is even more counter-intuitive, with the state producing an

overall repulsive force which increases with decreasing radius, ultimately preventing any

test particle from ever reaching r = 0. We unfortunately have no physical explanation for

these features, and simply remark that, for states with a central singularity, any type of

behaviour appears possible.

6.3 Discussion

In this chapter, we have presented a variety of new singular solutions to the Einstein–

Dirac system, both numerical and analytic, and shown that these often exhibit unusual

properties, the only explanation for which appears to be related to the presence of the

central singularity. Although the majority of these are far removed from the original FSY

states, there are a number of cases where certain families of singular solutions can be

continuously connected with the FSY curves in some limit, due to the peculiarities of

their zonal structures.

There are a number of points to discuss. First, we note that the small-r analysis

performed here assumes that all fields lead with a simple power of r, and hence we cannot

exclude the possibility of alternative expansions existing in which one or more fields exhibit,

for example, a logarithmic dependence at small r. It may even transpire that a non-singular

solution can be constructed using such an expansion, although we consider this unlikely.

Assuming this proves not to be the case, our analysis here has established that the FSY

states are the only non-singular localised solutions to the Einstein–Dirac system, thereby

cementing their position as the only potential particle-like objects within the theory.

How, then, should we view the various singular solutions presented in this chapter –

do they represent possible physical states, or are they simply mathematical curiosities?

The answer to this question most probably depends on their stability. If any prove to be

perturbatively stable, then we see no reason why they should not be taken seriously as

alternatives to the FSY states, despite the somewhat undesirable presence of singularities.

To establish this would require either an analytic perturbation analysis or a full dynamical

evolution, both of which are entirely feasible, although outwith the scope of this thesis.
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Even if none of the cases presented here prove to be stable, they nonetheless represent

interesting examples of the way in which quantum wavefunctions (and indeed classical

fields) can interact with singularities in general relativity.

As a final remark, we note that the solutions presented here contain ‘naked singular-

ities’, i.e. singularities for which there is no accompanying horizon, and hence the interior

region of the spacetime is visible to an external observer. These are of considerable inter-

est in the study of gravitational collapse, and have long been considered alternatives to

black holes, although the general consensus is that such situations are either unphysical or

unlikely to occur (see e.g. [93] for a review). Although the appearance of naked singular-

ities in the context of the Einstein–Dirac system appears unrelated to this question, it is

nonetheless interesting to observe that such structures do indeed exist, and that they do

not require the presence of unphysical or exotic types of matter, at least in this scenario.
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Summary & Discussion

Within this thesis, we have presented a number of new discoveries related to the study of

Dirac solitons. In particular, we have analysed in detail the many-fermion extension to

the Einstein–Dirac system, and generated the first soliton-like solutions for configurations

containing up to 90 fermions. We have demonstrated that these exhibit a fermion self-

trapping effect, in which the fermion wavefunction becomes trapped around regions of

spacetime containing stable photon spheres, resulting in the appearance of a multiple-shell-

like structure. The corresponding excited states for the many-fermion system have also

been thoroughly analysed, and found to become increasingly multivalued as the fermion

number is increased, a feature that can be explained by considering the internal structure

of individual solutions. Furthermore, we have presented particle-like solutions to the

minimally-coupled Einstein–Dirac–Higgs system, and shown that these exhibit the same

qualitative behaviour as those in the Einstein–Dirac case. The exception to this is the

discovery of a mass-scale separation at strong coupling, in which the gravitational mass of

the state and the mass of the constituent fermions become effectively decoupled. Finally,

we have presented a selection of new singular solutions to the Einstein–Dirac system,

generated by varying the leading-order behaviour of the fields at small radii, and shown

that these exhibit somewhat counter-intuitive features.

Since we have presented a detailed discussion at the end of each chapter, we here

confine our remarks to more general aspects related to Dirac solitons. First, we should

briefly discuss the applicability of the Einstein–Dirac approach itself. As mentioned, this

provides a semi-classical framework in which one can study the interaction between gravity

and a quantum wavefunction, but the extent to which it can be considered a low-level

approximation to a full theory of quantum gravity is perhaps debatable. In particular,

one might be concerned as to the applicability of describing the quantum sector by a simple

wavefunction, as opposed to a quantum field, although it is difficult to quantify precisely

what information is lost by doing so. There are certainly some features that the Einstein–
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Dirac system does indeed model, such as particle number conservation, but concepts such

as the quantum vacuum are entirely absent. The implications for Einstein–Dirac solitons

is unclear, and it remains to be seen whether these objects have counterparts within the

context of quantum field theory. Taking an optimistic point of view, it might even be the

case that the consideration of objects such as Dirac solitons can help to regularise the

divergences that occur in quantum field theory, as discussed in ref. [94]. Alternatively, it

may be that the inclusion of quantum vacuum fluctuations destroys the delicate balance

required for localised states of this type to form, in which case it would be difficult to

envisage any physical applications for Dirac solitons.

Regardless, the semi-classical Einstein–Dirac system still provides a rare context in

which to study the interaction of quantum objects while including the full dynamics of

general relativity. In particular, it automatically incorporates the effects of back-reaction,

one of the most important features of general relativity, and one which is often (necessarily)

neglected when considering quantum effects. Even from a purely classical point of view,

the spacetimes associated with Dirac solitons are interesting in their own right, as we

have demonstrated here with the self-trapping effect for example. Furthermore, much of

the analysis in general relativity is confined to objects assumed to obey specific equations

of state, or to vacuum solutions upon which matter is subsequently added. More exotic

structures are often discarded due to concerns over physical applicability, but as we have

seen here, it is entirely possible to obtain highly non-trivial spacetimes in which the matter

content nonetheless remains physically acceptable. The study of systems such as the

Einstein–Dirac could therefore potentially prove useful in the field of classical general

relativity.

We conclude with some brief remarks concerning future directions. There are a num-

ber of potentially fruitful avenues related to Dirac solitons that are yet to be explored.

These include issues relating to their interactions, particularly with regard to head-on

collisions, which could establish whether these localised states are indeed solitons, in the

true mathematical sense. It would also be interesting to establish the ultimate fate of

unstable Dirac solitons, and whether they do indeed decay to corresponding stable states,

or simply collapse to black-hole type structures. On a more ambitious note, we mention

that constructing a soliton-like object corresponding to a Standard Model particle is not

necessarily out of reach, since the electromagnetic field, electroweak interaction and Higgs

mechanism have now all been individually addressed, and localised states demonstrated

to exist in the context of each. The notable absence is of course the strong force, but this

would not be required to model, say, a Standard Model electron. If a particle-like state

could be found in a system combining these interactions, it would represent a significant

step towards Dirac solitons being considered seriously as models for fundamental particles.
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Low-redshift relations

In this appendix, we shall derive various scaling relations that exist between properties of

Einstein–Dirac solitons in the non-relativistic limit (low redshift).

We begin with the relationship between the ADM mass of a state and its radius,

which is observed to approximate M ∼ R−1/3 in the low-redshift regime. To derive this,

we note that in the non-relativistic limit, localised states are held in equilibrium by the

balance between their mutual Newtonian gravitational attraction and their kinetic energy.

Equating these, for a system of Nf fermions each of mass m, gives:

Nf
p2

2m
= Nf

GMm

R
, (A.1)

where p is the momentum of each fermion. Since we are dealing with quantum particles,

we can relate momentum and displacement via the uncertainty principle: ∆p∆x ∼ 1.

For a filled shell of fermions, the exclusion principle does not apply, and hence each

fermion wavefunction occupies an effective volume of R3, implying ∆x ∼ R and p ∼ 1/R.

Substituting this into the expression above gives:

1

2mR2
∼ GMm

R
. (A.2)

In the Einstein–Dirac system, the fermion mass m is not a constant within the families of

states, and should be eliminated in favour of the ADM mass M . To do so, we note that,

in the non-relativistic limit, M ≈ Nfm, and hence we obtain the following relation:

Nf

2MR2
∼ GM2

NfR
=⇒ M ∼

(
2GR

N2
f

)−1/3

. (A.3)

Thus the families of states at constant Nf will approximate the relation M ∼ R−1/3 at

low-redshift, as observed.
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We now proceed to derive explicit non-relativistic relationships for the scalings of ω, m

and R, as a function of central redshift z. We do so by considering the form of the metric

field T (r) for low-redshift states, noting that it will remain at a relatively constant value

of T (0) = 1 + z throughout the fermion source, before latching on to the Schwarzschild

solution at approximately the radius of the soliton R. Matching these two regimes at the

boundary, we obtain:

1 + z =

(
1− 2GM

R

)−1/2

≈ 1 +
GM

R
=⇒ z ≈ GM

R
. (A.4)

Using the mass-radius relationship above, and the fact that M ≈ Nfm, we can directly

infer the following scaling relations:

R ∼ z−3/4 ; M ∼ z1/4 ; m ∼ z1/4 . (A.5)

In order to include the fermion energy ω in this analysis, we require information concerning

the ground state of the Newton-Schrödinger system. We can obtain this by invoking an

analogy with the Bohr model of the Hydrogen atom, where we replace the electrostatic

force with gravity, i.e.
e2

4πϵ0
→ GMm. (A.6)

In the Bohr model, the energy of the ground state E0 is proportional to the Rydberg

constant RH , which in turn can be related to the Bohr radius a0:

E0 ∼ RH =
1

ma20
=

me4

16πϵ20
. (A.7)

By analogy, we therefore conclude that the ground state of the Newton-Schrödinger system

will have an energy E0 ∼ G2M2m3 ∼ z5/4, where we have utilised the redshift scalings

for m and M . Identifying this with the fermion binding energy (m − ω), we obtain the

relation:

(m− ω) ∼ z5/4 =⇒ ω ∼ z1/4 , (A.8)

where the final step follows since the binding energy relation forces m and ω to scale as the

same power. Note that we have verified numerically that the various scalings presented

here are indeed valid for low-redshift Einstein–Dirac solitons.

We note that the mass-radius relation M ∼ R−1/3 derived above differs from the

known expressions for both astrophysical fermionic objects (neutron stars, white dwarfs

etc.) and also boson stars. To see why, we shall briefly derive the relationships valid in

those cases using the method outlined above. For astrophysical objects, the key difference

is that the exclusion principle must now be incorporated, with the resulting degeneracy

pressure effectively reducing the volume occupied by each fermion wavefunction to R3/Nf .
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Hence now p ∼ N
1/3
f R−1, and the balance equation (A.1) becomes:

M2/3

2m5/3R2
∼ GMm

R
=⇒ M ∼ 1

m8R3
. (A.9)

Since the fermion mass is taken to be a constant, we therefore recover the often quoted

M ∼ R−3 relationship for diffuse fermionic astrophysical objects.

For boson stars, there is again no degeneracy pressure, and the balance equation (A.1)

is thus precisely the same as for the Einstein–Dirac case:

1

2mR2
∼ GMm

R
. (A.10)

When considering boson stars, however, the lack of a normalisation condition results in

the boson mass becoming a free parameter, while the number of bosons varies along the

mass-radius curves, as previously discussed in section 1.3.1. Hence the relationship can be

read as stated, i.e. M ∼ R−1, which should hold for boson stars with low central densities.
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Data for Figures

In this appendix, we list the values of the various parameters and physical observables

associated with the individual states presented in the figures throughout this thesis. These

are divided into the relevant chapters, with the figure number indicated, followed by either

an alphabetical or positional identifier to distinguish subfigures. Examples of these are

(l): left, (m): middle and (r): right. Note that, for states that are included across multiple

figures, only the first instance is recorded here.

Chapter 3:

Fig. κ n z m ω M R̄ R99 α̃1

2.1 (l) 2 0 2.0041 0.50403 0.36939 1.0652 3.1766 10.711 0.17000

2.1 (m) -2 1 2.0000 0.55054 0.43627 1.2467 3.8611 12.123 0.10875

2.1 (r) 2 8 2.0000 1.2406 1.0731 2.4741 14.197 25.543 0.15672

2.4 (l) 2 4 1.8194× 106 1.1818 1.0822 2.3894 21.521 38.244 200.00

2.5 2 0 ∞ 0.41509 0.34523 1.0108 4.2815 16.737 –

3.1 (l) 90 0 0.091870 0.43925 0.41270 38.791 482.16 568.01 1.× 10−100

3.1 (m) 90 0 8.0166 0.34432 0.31473 43.725 172.46 315.24 1.2× 10−30

3.1 (r) 90 0 92.087 0.30048 0.28299 42.902 115.80 255.71 7.5× 1015

3.2 (l) 40 0 92.083 0.31086 0.28978 19.165 57.113 149.46 5.5094× 1012

3.2 (m) 20 0 92.113 0.31717 0.29206 9.5970 28.630 77.716 1.5601× 108

3.2 (r) 6 0 92.104 0.34035 0.30286 2.8968 9.8418 33.031 322.14

3.4 (iv) 90 0 ∞ 0.30483 0.28611 43.025 121.05 293.25 –
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Chapter 4:

Fig. κ n z m ω M R̄ R99 α̃1

4.1 (A) 2 0 2.0000 0.50435 0.36961 1.0655 3.1778 10.744 0.16976

4.1 (B) 2 2 2.0001 0.71733 0.59135 1.4794 6.5071 16.100 0.16615

4.1 (C) 2 4 2.0002 0.91640 0.77680 1.8555 9.4184 19.674 0.16191

4.1 (D) 2 6 2.0003 1.0885 0.93448 2.1831 11.944 22.759 0.15894

4.5 (A) 12 2 1.8958 0.43709 0.32453 6.0672 14.609 25.952 0.00016581

4.5 (B) 12 2 3.9581 0.27822 0.26114 5.5711 13.149 42.091 0.021847

4.5 (C) 12 2 4.9498 0.29833 0.28181 5.6386 23.176 88.379 0.064947

4.5 (D) 12 2 5.1193 0.27964 0.26493 5.5761 14.969 65.819 0.078162

4.5 (E) 12 2 4.6535 0.33687 0.28819 5.7501 14.333 31.166 0.028376

4.5 (F) 12 2 3.0479 0.40829 0.35579 6.0531 24.403 51.046 0.0045503

4.5 (G) 12 2 2.3526 0.28674 0.27635 5.3308 48.092 147.81 0.0026826

4.5 (H) 12 2 2.2940 0.23612 0.23077 5.1683 11.405 19.579 0.0026248

4.5 (I) 12 2 2.2994 0.23473 0.23049 5.1661 11.785 19.938 0.0027268

4.5 (J) 12 2 2.3288 0.26697 0.26112 5.2551 72.098 248.76 0.0028097

4.5 (K) 12 2 2.7541 0.41758 0.38664 6.1931 45.823 96.279 0.0041705

4.5 (L) 12 2 5.1160 0.43367 0.36668 6.3370 22.115 45.766 0.042004

4.6 (A) 20 0 39.891 0.32270 0.29554 9.6314 29.173 75.938 47012

4.6 (B) 20 2 39.706 0.31187 0.28968 9.5616 29.499 87.679 47012

4.6 (C) 20 2 39.912 0.32191 0.29474 9.6261 28.784 74.598 47012

4.6 (D) 20 2 39.490 0.34589 0.31992 9.8406 44.932 115.15 47012

4.8 (A) 38 0 41.015 0.30735 0.28578 18.156 49.597 114.80 664250

4.8 (B) 38 2 40.975 0.30968 0.28750 18.186 50.586 118.52 559350

4.8 (C) 38 2 41.018 0.30733 0.28577 18.155 49.593 114.81 665470

4.8 (D) 38 2 41.038 0.31233 0.29103 18.220 55.869 148.64 696140

4.8 (E) 38 2 41.000 0.30017 0.28190 18.075 48.923 130.17 806480

4.8 (F) 38 2 40.943 0.33585 0.30899 18.555 67.679 159.94 536910

4.10 (A) 38 4 39.962 0.31424 0.29110 18.244 53.103 127.67 331130

4.10 (B) 38 4 39.973 0.31113 0.28845 18.203 51.004 118.85 349710

4.10 (C) 38 4 39.957 0.33370 0.30805 18.527 68.981 167.48 322620

4.10 (D) 38 4 39.969 0.33682 0.30972 18.570 67.977 159.97 344780

4.10 (E) 38 4 39.999 0.30174 0.28265 18.092 48.835 122.58 494560

4.10 (F) 38 4 39.989 0.31062 0.29000 18.199 55.806 152.65 464950

4.10 (G) 38 4 40.004 0.31126 0.29317 18.216 69.241 215.09 544850

4.10 (H) 38 4 39.997 0.32862 0.30433 18.451 67.863 169.51 394400

4.10 (I) 38 4 39.989 0.34797 0.32160 18.775 83.346 194.30 379700

148



Appendix B. Data for Figures

Chapter 5:

Fig. κ n ξ ν z mf mH ω M R̄ R99 α̃1

5.2 (l) 2 0 0.6 0.1 0.1338 0.3761 0.2256 0.3344 0.7415 9.840 28.96 0.025

5.2 (m) 2 0 0.6 0.1 1.881 0.7408 0.4445 0.2638 0.9733 2.540 6.876 0.08

5.2 (r) 2 8 0.2828 0.1 1.172 1.161 0.3283 0.9859 2.302 13.84 24.35 0.075

5.7 (a) 2 0 0.02828 0.1 2.151 3.665 0.1037 0.2176 0.8952 1.937 10.03 0.01039

5.7 (b) 2 0 0.2828 0.1 2.167 1.155 0.3267 0.2413 0.9541 2.261 7.522 0.05377

5.7 (c) 2 0 2.263 0.1 2.147 0.4569 1.034 0.3105 0.9894 2.881 9.781 0.1319

5.11 2 0 0.2828 0.1 34180 0.4724 0.1336 0.2591 0.9421 2.901 13.6 15.00

5.12 2 0 0.2828 0.1 ∞ 0.4677 0.1323 0.2596 0.9417 2.908 12.45 –

5.13 20 0 0.1414 0.05 28.22 0.2648 0.03745 0.2324 8.974 20.65 37.11 1.00

Chapter 6:

Fig. κ n m ω M R̄ Parameter values

6.1 1 0 0.51273 0.41663 0.55386 2.9351 –

6.3 (a) -2 0 467.92 2.5200 0.038176 0.073515 p0 = 0.05

6.3 (b) -2 0 8.4574 0.74590 0.11606 0.28676 p0 = 1

6.3 (c) -2 0 0.095187 0.031723 0.00013111 0.69391 p0 = 1000

6.5 (a) 2 0 0.84245 0.0097571 0.073589 0.12352 α̃1 = 10

6.5 (b) 2 0 0.78891 0.14573 0.16093 0.56197 α̃1 = 0.02

6.7 (a) -2 0 0.029827 0.0077174 -0.047010 2.2698 p0 = 4000, p1 = 0.4

6.7 (b) -2 0 0.54505 -0.19594 -1.9180 2.2994 p0 = 10, p1 = 0.4

6.9 (a) 2 0 5.5920 0.66886 1.3243 2.2741 p0 = 500, p1 = 0.1

6.9 (b) 2 0 0.52163 0.49158 1.0246 13.734 p0 = 0.0001, p1 = 0.1

6.11 (a) 2 0 0.20936 -0.057728 -2.5011 18.462 p0 = 0.05, p1 = 1, p2 = 0.01

6.11 (b) 2 0 0.41429 0.34518 1.0101 22.178 p0 = 1, p1 = 1, p2 = 0.01
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