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Abstract
Marine protected areas (MPAs) are a promising management tool for the conservation and recovery of marine ecosystems,

as well as fishery management. MPAs are generally established as permanent closures but marine systems are dynamic, which
has generated debate in favour of more dynamic designs. As a consequence, the identification of priority areas should assess
their persistence in space and time. Here, we develop a step-by-step approach to assess the spatiotemporal dynamics of fishery
management priority areas using standard fishery-independent survey data. To do so, we fit Bayesian hierarchical spatiotempo-
ral SDM (species distribution model) models to different commercially important demersal species and use the resulting maps
to fit different spatial prioritisation configurations. The proposed method is illustrated through a western Mediterranean case
study using fishery-independent trawl survey data on six commercially important species collected over 17 years. We use these
results to assess the spatiotemporal dynamics of fishery priority areas. We identified two fishery priority area patterns in the
study area, each predominant during a different time period of the study, asserting the importance of regularly reassessing
MPA designs.

Résumé
Les aires marines protégées (AMP) constituent un outil de gestion prometteur pour la conservation et le rétablissement des

écosystèmes marins, ainsi que pour la gestion des pêches. Si les AMP sont généralement établies comme zones interdites à
la pêche permanentes, le caractère dynamique des systèmes marins est à l’origine d’arguments en faveur d’une conception
plus dynamique de ces aires. La délimitation de secteurs prioritaires devrait ainsi comprendre une évaluation de leur per-
sistance dans l’espace et le temps. Nous présentons une approche par étape pour évaluer la dynamique spatiotemporelle de
secteurs prioritaires pour la gestion des pêches qui fait appel à des données d’évaluation indépendantes des pêches standards.
Pour ce faire, nous ajustons des modèles de répartition d’espèces (MRE) spatiotemporels hiérarchiques bayésiens à différentes
espèces démersales d’importance commerciale et utilisons les cartes ainsi produites pour ajuster différentes configurations
de priorisation spatiale. La méthode proposée est illustrée par une étude de cas de l’ouest de la mer Méditerranée qui fait
appel à des données de relevés au chalut indépendantes de la pèche pour six espèces d’importance commerciale, recueillies
sur 17 années. Nous utilisons ces résultats pour évaluer la dynamique spatiotemporelle de secteurs prioritaires pour la pêche.
Nous cernons deux motifs de secteurs prioritaires pour la pêche dans la région d’étude, chacun étant prédominant durant
différentes périodes de l’étude, ce qui souligne l’importance d réévaluer régulièrement la conception des AMP. [Traduit par la
Rédaction]

1. Introduction
Large-scale implementation of marine protected areas

(MPAs) is expected worldwide in the near future. Different in-
ternational agreements concur on protecting 10% of coastal
and marine areas (CBD Aichi target 11, UN sustainable devel-
opment goal 14, EU Common Fisheries Policy target 14.5, etc.)
and nearly 200 governments committed to meet this goal by
2020 (Tittensor et al. 2014). Post-2020 global conservation tar-
gets have increased this target to 30% by 2030 and to 50% by

2050 (O’Leary et al. 2016; Baillie and Zhang 2018; Dinerstein
et al. 2019).

MPAs are a promising management tool for the conser-
vation and recovery of marine ecosystems (Leenhardt et al.
2015; Giakoumi et al. 2017), as well as for fishery manage-
ment (Kaiser et al. 2007; Di Franco et al. 2016; Petza et al.
2017, 2021; Fraschetti et al. 2018). MPAs protect fish stocks
in the no-take zone, promote greater reproductive output
(Kaiser et al. 2007), and therefore sustain density-dependent
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spill-over (Di Lorenzo et al. 2016) enhancing fishery catches
in the buffer zone and outside the MPAs (Hilborn et al. 2004;
Kerwath et al. 2013; Ovando et al. 2016).

Most MPAs are established as permanent closures (Game
et al. 2009), but marine systems are dynamic in space and
time (Halpern et al. 2015; Gordon et al. 2018; Kroeker et al.
2020), which has generated arguments in favour of more dy-
namic and adaptive MPA designs (Grafton and Kompas 2005;
Hobday and Hartmann 2006; Hughes et al. 2007). Therefore,
the assessment of new MPAs should quantify the spatiotem-
poral dynamics of priority areas.

A long-standing approach in designing MPAs is to use nu-
merical spatial prioritisation algorithms such as Marxan (Ball
and Possingham 2000), Zonation (Moilanen et al. 2009), or
prioritizr (Hanson et al. 2019), which identify priority areas
that cost-effectively optimise ecological objectives based on
several species-specific distribution maps and a set of user-
defined conditions. The quality and resolution of species dis-
tribution maps vary from the most basic species range maps,
based on presence data and (or) expert opinion, to the more
sophisticated species distribution maps produced by species
distribution models (SDMs). SDMs are particularly useful to
conservation biology (Rodríguez et al. 2007) and the selec-
tion of protected areas (Seo et al. 2009). In the spatiotempo-
ral framework, SDMs usually apply either generalized spa-
tiotemporal additive mixed models or spatiotemporal geosta-
tistical models to produce a series of maps. To account for
the spatiotemporal dimension in the prioritisation exercise,
users may optimise a single area solution using the full time
series together or produce a set of optimised areas disaggre-
gated by time, i.e., monthly, seasonally, yearly, etc. These re-
sults provide different information that users can employ to
investigate the spatiotemporal dynamics of priority areas.

Within this context, the purpose of this study was to iden-
tify priority areas for the management of the most econom-
ically important demersal species in the western Mediter-
ranean Geographical subarea (GSA) 06, with particular em-
phasis on nursery areas. The western Mediterranean fishing
fleet is characterised by small vessels, multiple landing sites,
and multispecies catches that sell for relatively high prices
(Lizaso et al. 2020). Approximately 90% of assessed stocks are
exploited above the maximum sustainable yield (MSY) limits
(Raicevich et al. 2018) and it has the highest percentage of
unsustainable fished stocks among the 16 major seas in the
world (FAO 2000). The socioeconomic models by Sola et al.
(2020) suggest that to achieve an MSY level of vulnerable
stocks requires 80% reduction of fishing effort following the
current spatial planning, which in practice seems to be unre-
alistic (Maynou 2014; Martín et al. 2019).

In this article, we identify and assess the spatiotemporal dy-
namics of fishery management priority areas based on stan-
dard fishery-independent survey data. To do so, we first apply
Bayesian hierarchical spatiotemporal SDMs to different com-
mercially important demersal species (Section 2.1). Then, we
use SDM results to fit different spatial prioritisation configu-
rations (Section 2.3) and assess the spatiotemporal dynamics
of fishery management priority areas through a number of
steps.

Fig. 1. Sampling locations (black dots) of the MEDITS sur-
veys (2000–2016). Bathymetric lines indicate the 200 m iso-
baths. Coastline is extracted from the European Environ-
mental Agency. Bathymetry was extracted from the EMOD-
net Bathymetry portal. Map projection is WGS 84——UTM zone
31N.

2. Material and methods
The data for this study come from the fishery-independent

Mediterranean trawl survey (MEDITS) project (Bertrand et al.
2002) carried out from April to June between 2000 and
2016. The MEDITS uses a stratified sampling design, where
strata are defined by bathymetry. Sampling stations were
initially placed randomly within each stratum at the begin-
ning of the project and trawl hauls were performed in sim-
ilar geographical locations every year. This study concerns
the trawlable grounds of GSA06, which borders the north-
ern Iberian Mediterranean coast, from Cap de Creus in the
north to Cabo de Palos in the south (Fig. 1). The data for
this study comprise six species: red mullet (Mullus barbatus),
striped red mullet (Mullus surmuletus), shortfin squid (Illex coin-
detii), European hake (Merluccius merluccius), monkfish (Lophius
piscatorius), and blackbellied monkfish (Lophius budegassa). Eu-
ropean hake and both monkfish species abundances were
segregated into recruits and non-recruits. The MEDITS survey
only samples the non-recruit stages of red mullet, striped red
mullet, and squid. Table 1 summarises the data comprised in
the study.
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Table 1. Overall presence probability and conditional-to-presence catch quantiles
per species and life stage in the western Mediterranean MEDITS survey data from
2000 to 2016.

Species Life stage Presence probability Q0.25 Q0.5 Q0.75

Merluccius merluccius Recruits 0.73 14 47 106

Merluccius merluccius Non-recruits 0.77 2 5 10

Lophius piscatorius Recruits 0.12 1 1 2

Lophius piscatorius Non-recruits 0.15 1 1 1

Lophius budegassa Recruits 0.20 1 1 2

Lophius budegassa Non-recruits 0.55 1 2 5

Illex coindetii Non-recruits 0.66 3 9 30

Mullus barbatus Non-recruits 0.55 5 18 45

Mullus surmuletus Non-recruits 0.38 1 2 6

Fig. 2. Calculating the predictive posterior distribution of hurdle models using Mullus barbatus results for the year 2000. From
left to right, top panels represent the mean occurrence probability posterior distribution, the conditional-to-presence mean
abundance posterior distribution, and the predictive delta abundance posterior distribution at a particular location. Solid
vertical lines represent the mean of the distribution. Bottom panels show mean probability, conditional-to-presence mean
abundance, and mean hurdle model abundance maps. Bathymetry and coastline sources as in Fig. 1.

2.1. Spatiotemporal fishery SDMs
To deal with zero catch observations and the interaction be-

tween space and time, we fitted Bayesian spatiotemporal two-
part or hurdle models. Hurdle models break the data into two
and fit separate models to the occurrence and the abundances
(Stefánsson 1996; Maunder and Punt 2004; Martin et al. 2005).

Our proposed spatiotemporal structure comprised a geosta-
tistical spatial field that evolved through a first-order autore-
gressive temporal effect. Autoregressive effects contain a cor-
relation parameter, namely ρ, that infers level of correla-
tion or similarity between subsequent spatial distributions.
Therefore, ρ provides important information on the degree
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of persistence in the process. The closer the ρ value is to
one, the more temporally persistent the process (i.e., very
high correlation between subsequent years), whereas ρ val-
ues closer to zero suggest more opportunistic distributions
(i.e., uncorrelated distributions). See Paradinas et al. (2017,
2020), Martínez-Minaya et al. (2018), and Izquierdo et al.
(2021) for further information on persistent, progressive, and
opportunistic spatiotemporal fish distributions.

Our spatiotemporal proposal also included a marginal tem-
poral trend and a nonlinear bathymetric explanatory ef-
fect, both fitted through second-order Random Walks (RW2),
which perform as Bayesian smoothing splines (Fahrmeir and
Lang 2001; Lang and Brezger 2004). RW2 models do not allow
shape constraints, and therefore we visually confirmed that
fitted bathymetric effects were sensible. In particular, if Zs,t

and Ys,t are, respectively, the occurrence and the abundance
at location s and time t, our proposed model can be formu-
lated as follows:

Zs,t ∼ Be (π (s, t ))

Ys,t ∼ NB (μ (s, t ) , φ )

logit (π (s, t )) = αZ + fZ (ds ) + VZ (s, t ) + fZ (t )

log (μ (s, t )) = αY + fY (ds ) + VY (s, t ) + fY (t )

V (s, t ) = Wt (s) + ρV (s, t − 1)

W ∼ N (0, Q (r, σ ))

(1)

where Be and NB stand for the Bernoulli and Negative bino-
mial distributions, respectively; π (s, t) represents the proba-
bility of occurrence at location s at time t; and μ(s, t) and φ are
the mean and variance of the conditional-to-presence abun-
dance, respectively. The linear predictors, which contain the
effects linked with the parameters π (s, t) and μ(s, t), include
αZ and αY, terms that represent the intercepts of each respec-
tive variable; f() represent RW2 functions with hyperparame-
ters γ , i.e. the variance of the RW2 model, and parameterised
as unknown values f = (f0, …, fi−1)T at i = 25 equidistant val-
ues of ds for the bathymetry and at i = 17 year values of t for
the marginal temporal trend.V(s, t) refers to a spatiotemporal
field that evolves through time given the correlation param-
eter ρ. Finally, W is a geostatistical field with a covariance
function defined by range r and standard deviation σ . Note
that the Be and NB processes present different V(s, t) fields,
VZ(s, t) and VZ(s, t), respectively.

We used the INLA package (Martins et al. 2013) for R (R Core
Team 2021) that allows relatively fast spatial and spatiotem-
poral modelling (Lindgren et al. 2011). The Bayesian approach
requires specification of the prior distributions for the pa-
rameters and hyperparameters of the model. We used R-INLA
default vague prior distributions for the dispersion of the
conditional-to-presence abundance and the fixed effects. The
hyperparameters of the spatiotemporal fields and the γ hy-
perparameters of the RW2 were set using penalized com-
plexity (PC) priors as described by Simpson et al. (2017) and
Fuglstad et al. (2019). Specifically, we used PC priors that
followed the following criteria: (a) the probability that the
spatial effect range was smaller than 150 km was 0.15,
to avoid very small spatial autocorrelation ranges, (b) the

probability that the spatial effect variance was greater than
1 was 0.20, to avoid masking the bathymetric effect through
the spatial effect, and (c) the probability that γ was greater
than 0.5 in the occurrence model and greater than the
observed conditional-to-presence abundance standard devia-
tion in the conditional-to-presence model were 0.01.

2.2. Quantity of interest
Hurdle models provide two estimates for every location

s and time t: a probability of occurrence (π (s, t)) and a
conditional-to-presence abundance (μ(s, t)). While both esti-
mates provide important information for the spatiotemporal
characterisation of a species, it is common to work with the
mean of a hurdle model, which can be obtained by multi-
plying the probability of presence and the conditional abun-
dance (Stefánsson 1996; Maunder and Punt 2004; Zuur et al.
2009; Lecomte et al. 2013). The analytical estimation of the
variance is slightly more complicated, and it varies depend-
ing on the likelihood of μ(s, t) (e.g., see Lecomte et al. (2013)
for the case of delta–gamma and Poisson–gamma models).
However, within the Bayesian paradigm, we can easily ap-
proximate hurdle model posterior distributions by resam-
pling from the marginal distributions of π (s, t) and μ(s, t). To
do so, we first predict n presence–absence values from π (s, t),
which generates m presences and l absences. Then, we sam-
ple m times from μ(s, t) and combine it with the absences
to produce hurdle model posterior distributions. Figure 2
shows an example using Mullus barbatus results for the year
2000.

2.3. Fishery management priority area
identification

Spatial prioritisation algorithms use several species distri-
bution maps to optimise priority areas based on user-defined
conservation objectives, constraints, and penalisations. Con-
servation objectives set the expected ecological targets to
meet. Constraints establish a set of prerequisites to the solu-
tions to ensure that solutions exhibit specific properties (e.g.,
select specific planning units for protection), and penalisa-
tions to penalise solutions according to specific metrics (e.g.,
connectivity).

This study identified demersal fishery management prior-
ity areas minimising the size of the area required (penalis-
ing area as a proxy of cost) to protect a minimum set ob-
jective, similar to the Marxan’s decision support tool (Ball
et al. 2009). The prioritisations were solved to within 1%
of optimality using Gurobi (version 8.1.0; Bixby 2007) and
the prioritizr R package (Hanson et al. 2017). We were par-
ticularly interested in protecting nursery grounds, so we set
our protection targets to 20% of recruits and 10% of non-
recruits. We hypothesized that recruit and non-recruit pri-
ority areas could be significantly different; thus, we fitted
three different scenarios based on these targets: one that
met both objectives, one that met recruit protection tar-
gets alone, and another that only met non-recruit protection
targets.

In fisheries, fishing effort may be regarded as a proxy to
economic impact, and therefore it is common to include
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Fig. 3. Difference between the overall map (left) and frequency map (right). These results are then used to assess the spatiotem-
poral dynamics of priority areas. Dashed lines represent the use of a spatial prioritisation algorithm.

Table 2. Summary of fitted species-specific spa-
tiotemporal pattern.

Species——life stage ρ Occurrence ρ NPUE

Merluccius
merluccius——R

0.98 (0.02) 0.98 (0.03)

Merluccius
merluccius——J/A

0.96 (0.04) 0.83 (0.08)

Lophius
piscatorius——R

0.48 (0.18) ——

Lophius
piscatorius——J/A

0.51 (0.19) ——

Lophius
budegassa——R

0.23 (0.15) 0.42 (0.26)

Lophius
budegassa——J/A

0.92 (0.06) 0.74 (0.06)

Illex coindetii——A 0.89 (0.06) 0.83 (0.07)

Mullus barbatus——A 0.98 (0.01) 0.97 (0.01)

Mullus
surmuletus——A

0.96 (0.02) 0.97 (0.02)

Note: R and J/A stand for recruits and non-recruits, respectively.
ρ is the temporal autocorrelation parameter of the spatiotempo-
ral structure and the value within the parenthesis is the associated
standard deviation. NPUE is number per unit effort.

Vessel Monitoring System (VMS)- or Automatic Identification
System (AIS)-derived data as a penalisation in the spatial pri-
oritisation algorithm (Afán et al. 2018; Giménez et al. 2020).
However, the current overexploitation of fishery resources is
driven by an excess of fishery effort (Brochier et al. 2018), and
therefore we decided to identify the most productive fishery
areas for protection, regardless of the impact on the fishery.

2.3.1. Persistence of priority areas

Marine ecosystems and fish assemblages change in space
and time (Halpern et al. 2015; Gordon et al. 2018; Kroeker
et al. 2020), which has generated arguments in favour of dy-
namic MPA designs (Grafton and Kompas 2005; Hobday and
Hartmann 2006; Hughes et al. 2007). As a result, we assessed

the spatiotemporal dynamics of priority areas. To do so, we
compared two spatiotemporal optimisations that provided
valuable information about the level of spatial persistence
of priority areas (see Fig. 3). One optimisation included all
available maps together (i.e., every time event in the series)
to optimise an overall priority area. The overall priority area
solution can be regarded as a temporally averaged solution.
The other optimisation fitted different priority areas to every
time event in the series, providing a temporal series of prior-
ity area maps. These maps were then summarised into a fre-
quency map (i.e., a map that overlaps the number of times an
area has been selected as a priority area over the time series).
The results from these two optimisations were then used to
assess the suitability of fixed, progressive, or other types of
dynamic MPA designs in the study area.

2.3.1.1. Persistent priority areas
Persistence was assessed by comparing the selected areas

in the overall priority area solution and the temporal fre-
quency map solution. High similarity between them implies
that yearly priority areas do not differ much from the overall
selected priority area, suggesting that priority areas are per-
sistent and therefore a fixed MPA design would be effective.
In contrast, divergence in priority areas between the two so-
lutions may suggest a dynamic scenario that requires further
considerations and more flexible designs.

2.3.1.2. Progressive priority areas
A difference between the overall priority area solution and

the temporal frequency map solution suggests some sort of
spatiotemporal variability in priority areas. Progressive pri-
ority area drifts were assessed using the Cohen’s kappa co-
efficient, which measure inter-rater reliability for qualitative
data (Landis and Koch 1977; McHugh 2012), and help us assess
the similarity between different priority area maps (Ban et al.
2009). By doing a pairwise comparison across every map in
the time series, we produced a kappa matrix that summarises
all the pairwise coefficients and follow the categorisation pro-
posed by Landis and Koch (1977): 0, “No agreement”; 0–0.2,

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

51
.9

.2
15

.1
53

 o
n 

11
/1

4/
22

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 

http://dx.doi.org/10.1139/cjfas-2021-0327


Canadian Science Publishing

1646 Can. J. Fish. Aquat. Sci. 79: 1641–1654 (2022) | dx.doi.org/10.1139/cjfas-2021-0327

Fig. 4. Averaged spatial distributions of the different species and life stage abundances between 2000 and 2016. Units are in
specimens per hour of trawl fishing using MEDITS gear. Visit tinyurl.com/42hy9e8m for yearly maps. R and J/A stand for recruits
and non-recruits, respectively. Bathymetry and coastline sources as in Fig. 1.

“Slight agreement”; 0.2–0.4, “Fair agreement”; 0.4–0.6, “Mod-
erate agreement”; 0.6–0.8, “Substantial agreement”; and 0.8–
1.0, “Almost perfect agreement”. We particularly looked at
the diagonal of the kappa matrix because it indicates the sim-
ilarity between successive yearly priority areas. Therefore, a
kappa matrix with consistently high diagonal values mani-
fests a progressive evolution in the distribution of priority
areas, and therefore, new MPA designs could be informed pro-
gressively based on the last fishery-independent survey data.

2.3.1.3. Other priority area dynamics
Inconsistent Cohen’s kappa matrix diagonal values imply

more flexible priority area dynamics. Under such a situation,
it is useful to identify patterns that help us further under-
stand the spatiotemporal process under study. While humans

are able to extract patterns from maps, quantifying similar-
ities and dissimilarities among them can be quite challeng-
ing, especially when working with several maps. In this re-
gard, we used multivariate methods to help us identify re-
current spatial patterns from the series of maps. Specifically,
we used ordination plots and cluster dendrograms to evalu-
ate similarities between spatial prioritisation solutions (Linke
et al. 2011). Non-metric multidimensional scaling procedure
(NMDS) allowed us to visualise similarities among different
solutions in several dimensions with the advantage that the
relative differences between solutions were conserved, so it
reflected true dissimilarities. In contrast, clustering methods
quantify distance between solutions and allowed us to organ-
ise them into a dendrogram to help us choose the number of
groups.
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Fig. 5. Fitted nonlinear bathymetric effects for each of demersal species considered. Y-axis values were standardized to be
between 0 and 1 for the sake of comparability. Each boxplot corresponds to an approximately 20 m depth interval. Each
box represents the interquartile range of the mean fitted values, the central bold line represents the median value, and dots
represent fitted values above 1.5 times and below 3 times the interquartile range beyond either end of the box. R and J/A stand
for recruits and non-recruits, respectively.

3. Results
SDM results are summarised in Table 2 and reveal rather

persistent distributions (ρ > 0.9) for Mullus barbatus, Mullus
surmuletus, and Merluccius merluccius recruits and non-recruits,
suggesting that the spatial distribution of these species and
life stages did not vary much from year to year. Illex coinde-
tii and Lophius budegassa non-recruits showed smooth spatial
distribution changes. Lophius budegassa recruit and Lophius pis-
catorius recruit and non-recruit distributions changed very
abruptly from year to year, falling in the opportunistic dis-
tribution category. Figure 4 visualises the average spatial dis-
tribution of each species and life stage from 2000 to 2016
(visit tinyurl.com/42hy9e8m for the full time series of maps).
Figures 5 and 6 present the fitted bathymetric distribution

and overall population size trends for each species and life
stage, respectively.

Figure 7 presents the overall priority areas solution and pri-
ority frequency maps for the three different scenarios consid-
ered in this study. These results provided two important con-
clusions for decision making. On the one hand, priority areas
that met both recruit and non-recruit protection targets were
very similar to the areas that met recruit protection targets
alone. In other words, by optimising the protection of 20% of
recruits, we also protected 10% of non-recruits in the study
area. As a consequence, from this point forward, the study fo-
cused on the scenario that combined the 20% recruit and 10%
non-recruit protection targets altogether. On the other hand,
the overall priority area solution and yearly priority area so-
lution were substantially different, implying non-persistent
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Fig. 6. Each species and life stage temporal trends from 2000 to 2016 in the study area. Solid lines represent the mean effect
in the linear predictor, and dotted lines represent the 95 credibility interval. R and J/A stand for recruits and non-recruits,
respectively.

priority areas during the study period. Therefore, we deduced
that a fixed MPA design could be ineffective and decided to
further explore the spatiotemporal dynamics of priority ar-
eas.

Cohen’s kappa matrix diagonal indicated that the similar-
ity between temporally subsequent priority areas was rather
inconsistent (Fig. 8). Therefore, we deduced that a progressive
MPA design based on the previous year’s survey result would
not be very effective.

NMDS and hierarchical clustering results suggested the
presence of either two or four patterns (Fig. 9). After care-
fully visualizing the maps obtained selecting two and four
clusters, and consulting local fishery scientists about better
representation of the results, we decided to select two clus-
ters as highlighted by the different colours (see Appendix A
for a visualization of the maps obtained by selecting four

clusters). Interestingly, there seems to be a clear temporal
pattern between these two clusters, one cluster occurring
during the first part of the series and the other one in the
second part (see the right panel in Fig. 9). We used these
results to create new frequency maps based on these two
clusters.

In the end, we obtained a portfolio of priority area maps
(Fig. 10) containing: an overall solution map (top left panel);
an overall frequency map (top right panel); and a set of fre-
quency maps for the selected number of clusters (bottom pan-
els). The different maps in Fig. 10 consistently identified a
number of priority areas. From north to south: (A) the area
around Cap de Creus; (B) the end of the continental shelf
around the Ebro delta; and (C) the shelf break in front of Va-
lencia. Lastly, despite the lower consistency of priority areas
in the south, the zone in front of Mar Menor seemed to be
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Fig. 7. Overall priority areas and priority area frequency maps for the different conservation targets. Blue lines represent the
90th percentile contour lines. Coastline source as in Fig. 1. [Colour online.]

a relatively important ecological area during the second half
of the time series (Cluster 1).

4. Discussion
This study assessed the spatiotemporal dynamics of fish-

ery priority areas using spatiotemporal SDMs; different spa-
tiotemporal prioritisation configurations; and a small set of
simple metrics and multivariate methods. The method was
applied over a western Mediterranean case study, and results
identified two temporally structured priority area patterns:
one occurring during the first half of the time series and an-
other during the second half. Identifying the drivers behind
these patterns was beyond the scope of this study, but could
indicate the presence of a large-scale driver such as the west-
ern Mediterranean oscillation or the impact of fishing pres-
sure in fish distribution patterns.

Species distribution maps represent the baseline unit for
the identification of fishery priority areas. Therefore, good
spatiotemporal SDMs are essential to adequately assess the
spatiotemporal dynamics of fishery priority areas. There is
a wide range of spatiotemporal SDM software available. In
fisheries, INLA (Cosandey-Godin et al. 2015;Paradinas et al.

2020), VAST (Thorson 2019), and mgcv (Schmiing et al. 2013;
Parra et al. 2017) may be the most widely used R packages
in fisheries. We provide R scripts (link) to fit generic spa-
tiotemporal hurdle SDMs using INLA so that other users
may apply them in other case studies and areas of in-
terest. It is important to note that our SDMs did not in-
clude spatiotemporally changing habitat variables (e.g., tem-
perature, salinity, etc.), so these models provide a good
view of what happened in the past but are not appro-
priate to predict the spatiotemporal distribution into the
future.

Our spatial prioritisation optimisations did not include
fishery effort as a penalization and identified fishery priority
areas based on conservation objectives alone. Far from con-
sidering the impact on fishers unimportant, given the over-
exploitation levels in the Mediterranean (FAO 2000; Sola et al.
2020), our objective was to identify the most important areas
for the species under study. In fact, the socioeconomic im-
pact may be assessed afterwards by calculating the amount
of fishing activity that would need to be relocated in other
areas using VMS- or AIS-derived data.

Our case study constitutes a clear example where fishery
priority areas change in space and time. Non-spatiotemporal
SDMs and (or) prioritisations would have ignored such vari-
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Fig. 8. Cohen’s kappa statistic matrix comparing pairwise yearly priority area maps. Of special interest is the diagonal of the
kappa matrix, which indicates the similarity between temporally subsequent priority areas. A scenario where kappa matrix
diagonal values are consistently high manifests a progressive evolution in the priority areas. [Colour online.]

0.38 0.38 0.61 0.54 0.55 0.23 0.32 0.55 0.61 0.07 0.18 0.53 0.04 0.21 0.4 0.32

0.29 0.3 0.24 0.2 0.02 0.38 0.3 0.39 0.16 0.26 0.21 0.2 0.44 0.47 0.54

0.85 0.54 0.52 0.25 0.27 0.58 0.64 0.14 0.17 0.53 0.08 0.15 0.35 0.33

0.63 0.53 0.26 0.31 0.66 0.71 0.14 0.17 0.48 0.11 0.18 0.37 0.34

0.79 0.26 0.42 0.87 0.73 0.02 0.05 0.39 0 0.08 0.28 0.1

0.42 0.53 0.69 0.64 0.06 0.07 0.34 0.01 0.07 0.25 0.13

0.46 0.15 0.21 0.23 0.25 0.2 0.25 0.1 0.05 0.28

0.38 0.44 0.3 0.32 0.12 0.28 0.46 0.47 0.38

0.78 0 0.06 0.4 0 0.14 0.34 0.15

0.08 0.16 0.39 0.06 0.22 0.39 0.35

0.77 0.26 0.67 0.6 0.45 0.07

0.27 0.61 0.63 0.47 0.18

0.35 0.2 0.35 0.1

0.53 0.36 0.16

0.72 0.25

0.22

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year

Ye
ar

Any

Slight

Fair

Moderate

Substantial

Almost perfect

Cohen's Kappa Agreement

Fig. 9. NMDS scatterplot (left panel) and hierarchical clustering dendrogram (centre panel) of yearly priority area results. The
right panel shows the time series of the selected clusters. [Colour online.]
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Fig. 10. Portfolio of proposed solutions to assess the spatiotemporal distribution of multispecies hotspots as described in
Section 2.3.1. The top left and top right panels represent the overall solution map and the overall priority area frequency map,
respectively. The bottom panels show the clustered frequency maps. A, B, and C point at areas that were consistently identified
as priority areas across solutions. Coastline source as in Fig. 1.

ability, potentially reducing the conservation impact. In this
regard, long-term surveys are essential to predict the spa-
tiotemporal distribution of species and assess the spatiotem-
poral variability of priority areas. Similarly, intraannual tem-
poral resolution is key to assess year-round persistence of pri-
ority areas. Unfortunately, fishery-independent surveys are
generally programmed once or twice a year, and identi-
fied conservation priority areas may not be representative
of all seasons. Fishery-dependent data could complement
survey data, but its spatial coverage is not always scalable
to survey data and target species estimates are affected by
the preferential sampling bias (Diggle et al. 2010; Pennino
et al. 2018). Another relatively cheap option to complement
fishery-independent surveys could be to seek the collabora-
tion of the fishery sector to scientifically sample the ocean
in different seasons. The Norwegian reference fleet (Nedreaas
et al. 2006) constitutes an excellent example of co-operation
between fishers and scientists.

The described procedure follows a clear step-by-step ap-
proach to assess the spatiotemporal dynamics of conserva-
tion priority areas. A good implementation requires high-
quality and long-term fishery data; on-site fishery knowl-
edge to select key conservation objectives; expertise to fit ro-
bust spatiotemporal SDMs; spatial planning software skills;
and basic multivariate analysis understanding. While this
method has been developed for fishery management, it is
also applicable to other multispecies systems that evolve with
time, no matter marine or terrestrial. Clearly, there is still a
considerable challenge ahead to collect quality fishery data
to inform the intra-annual dynamics of conservation prior-
ity areas. Lastly, we would like to suggest that, given the
spatiotemporal dynamics of marine systems and fishery mar-
kets, existing MPA designs should go through cyclical and it-
erative reassessments that incorporate new information and
adapt their objectives and measures according to the evolu-
tion of the socio-ecological system.
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Appendix A
In this appendix, we present the frequency maps that we

would have obtained if four clusters were selected (as op-
posed to the two clusters that we present in the results) af-
ter the NMDS exercise. The maps presented on the left-hand
side of Fig. A1constitute a single cluster in the article (clus-
ter 1), while the maps on the right-hand side constitute an-
other cluster (cluster 2 in Fig. 10). While there are certain dif-
ferences, we finally decided that a two-cluster representation
was better. We used local fishery scientist opinion to decide
whether a four-cluster representation made a significant dif-
ference from the two-cluster representation. We finally de-
cided that the two-cluster representation was a smoother de-
scription of the results.

Fig. A1. Visualization of the frequency maps that would have been obtained if we selected four clusters after the NMDS exercise
over the spatial prioritisation solutions. Coastline source as in Fig. 1. [Colour online.]
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