SUPPLEMENATARY MATERIALS

Next Generation QTAIM for the Design of Emitters Exhibiting Thermally-Activated Delayed Fluorescence (TADF)

Zi Li, Xing Nie, Alireza Azizi, Yong Yang, Tianlv Xu, Steven R. Kirk^{*} and Samantha Jenkins^{*}

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research and Key Laboratory of Resource National and Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China

email: steven.kirk@cantab.net email: samanthajsuman@gmail.com

1. Supplementary Materials S1. The QTAIM $\{q,q'\}$ path-packets of the cyclazine molecular graph for the S₁ and T₁ states without and with an applied electric (**E**)-field.

2. Supplementary Materials S2. The QTAIM $\{p,p'\}$ path-packets of the cyclazine molecular graph for the S₁ and T₁ states without and with an applied electric (**E**)-field.

3. Supplementary Materials S3. The values of the precession \mathbb{K} along the C3-C5 *BCP* bond-paths for the S₁ and T₁ states

1. Supplementary Materials S1.

For the precession of the $\{q,q'\}$ path-packet, defined by the \underline{e}_2 eigenvector, about the bond-path, $\beta = (\pi/2 - \alpha)$ and α is defined by equation (2) and the right panel of **Scheme 1** of the main text, we can write an expression \mathbb{K}' for the bond-path-flexibility:

$$\mathbb{K}' = 1 - \cos^2 \beta$$
, where $\cos \beta = \underline{\mathbf{e}}_2 \cdot \underline{\mathbf{u}}$, $\beta = (\pi/2 - \alpha)$ and $0 \le \mathbb{K}' \le 1$ (2)

For $\mathbb{K}' = 0$ we have a maximum degree of facile character and for $\mathbb{K} = 1$ we have the minimum degree of facile character and values of $\mathbb{K}' = 0$ and $\mathbb{K}' = 1$ therefore indicate bond-paths with the lowest and highest tendencies towards bond-path-flexibility respectively.

(b)

(d)

Figure S1(I). The QTAIM $\{q,q'\}$ path-packets of the cyclazine molecular graph corresponding to the S₁ (left panel) and T₁ (right panel) states of the unchirped pulse 30 fs, 40 fs, 50 fs and 75fs with a positive energy gap $\Delta E(S_1-T_1) > 0$ are presented in each of sub-figures (**a-d**) respectively.

(b)

Figure S1(II). The QTAIM {*q,q'*} path-packets of the cyclazine molecular graph corresponding to the S₁ (left panel) and T₁ (right panel) states of the unchirped pulse 5fs, 10fs, 60fs and 65fs with a negative energy gap $\Delta E(S_1-T_1) < 0$ are presented in each of sub-figures (**a-d**) respectively.

(b)

Figure S1(III). The QTAIM $\{q,q'\}$ path-packets of the cyclazine molecular graph corresponding to the S₁ (left panel) and T₁ (right panel) states of the chirped pulse 10 fs, 45 fs, 67 fs and 90 fs with a positive energy gap $\Delta E(S_1-T_1) > 0$ are presented in each of sub-figures (**a-d**) respectively.

(b)

Figure S1(IV). The QTAIM $\{q,q'\}$ path-packets of the cyclazine molecular graph corresponding to the S₁ (left panel) and T₁ (right panel) states of the chirped pulse 5fs, 30fs, 78fs and 100fs with a negative energy gap $\Delta E(S_1-T_1) < 0$ are presented in each of sub-figures (**a-d**) respectively.

(b)

Figure S1(V). The QTAIM $\{q,q'\}$ path-packets of the cyclazine molecular graph corresponding to the S₁ (left panel) and T₁ (right panel) states of an applied electric(**E**)-field = ± 0.2 a.u are presented in each of sub-figures (**a-b**) respectively.

2. Supplementary Materials S2.

(b)

(a)

(c)

(d)

Figure S2(I). The QTAIM {*p*,*p*'} path-packets of the cyclazine molecular graph corresponding to the S₁ (left panel) and T₁ (right panel) states of the unchirped pulse 30 fs, 40 fs, 50 fs and 75 fs with a positive energy gap $\Delta E(S_1-T_1) > 0$ are presented in each of sub-figures (**a-d**) respectively.

(a)

(c)

(b)

Figure S2(II). The QTAIM {*p*,*p'*} path-packets of the cyclazine molecular graph corresponding to the S₁ (left panel) and T₁ (right panel) states of the unchirped pulse 5fs, 10fs, 60fs and 65fs with a negative energy gap $\Delta E(S_1-T_1) < 0$ are presented in each of sub-figures (**a-d**) respectively.

(b)

Figure S2(III). The QTAIM $\{p,p'\}$ path-packets of the cyclazine molecular graph corresponding to the S₁ (left panel) and T₁ (right panel) states of the chirped pulse 10 fs, 45 fs, 67 fs and 90 fs with a positive energy gap $\Delta E(S_1-T_1) > 0$ are presented in each of sub-figures (**a-d**) respectively.

(b)

Figure S2(IV). The QTAIM $\{p,p'\}$ path-packets of the cyclazine molecular graph corresponding to the S₁ (left panel) and T₁ (right panel) states of the chirped pulse 5fs, 30fs, 78fs and 100fs with a negative energy gap $\Delta E(S_1-T_1) < 0$ are presented in each of sub-figures (**a-d**) respectively.

Figure S2(V). The QTAIM $\{p,p'\}$ path-packets of the cyclazine molecular graph corresponding to the S₁ (left panel) and T₁ (right panel) states of an applied electric(**E**)-field = ± 0.2 a.u are presented in each of sub-figures (**a-b**) respectively.

Figure S3(I). The values of the precession \mathbb{K} along the C7-N9 *BCP* bond-paths for the S₁ and T₁ states of the unchirped pulse with a positive energy gap $\Delta E(S_1-T_1) > 0$ (top-left) of sub-figure, the unchirped pulse with a negative energy gap $\Delta E(S_1-T_1) < 0$ (top-right) of sub-figure. The chirped pulse with $\Delta E(S_1-T_1) > 0$ (bottom-left) of sub-figure and the chirped pulses with $\Delta E(S_1-T_1) < 0$ (bottom-right) of sub-figure.

Figure S3(II). The values of the precession \mathbb{K} along the C13-N9 *BCP* bond-paths for the S₁ and T₁ states of the unchirped pulse with a positive energy gap $\Delta E(S_1-T_1) > 0$ (top-left) of sub-figure, the unchirped pulse with a negative energy gap $\Delta E(S_1-T_1) < 0$ (top-right) of sub-figure. The chirped pulse with $\Delta E(S_1-T_1) > 0$ (bottom-left) of sub-figure and the chirped pulses with $\Delta E(S_1-T_1) < 0$ (bottom-right) of sub-figure.

The profiles of the K for the C10-C2 *BCP* with the unchirped laser pulse corresponding to a S₁ state at a given time with $\Delta E(S_1-T_1) > 0$ responding less than the corresponding T₁ state the same time, see the top-left panel of **Figure S3(III**). The corresponding K for the C10-C2 *BCP* with $\Delta E(S_1-T_1) < 0$ and unchirped pulse result in a mixing of the K profiles of the S₁ and T₁ states, see the top-right panel of **Figure S3(III**). The effect of the chirped laser pulse on the K profiles with a positive energy gap $\Delta E(S_1-T_1) > 0$ is to spread out the K profiles of the S₁ and T₁ states, see the bottom-left panel of **Figure S3(III**). Conversely, the effect of the chirped pulse on negative energy gap $\Delta E(S_1-T_1) < 0$ is to contract the K profiles corresponding to the S₁ and T₁ states to closer together, see the bottom-right panel of **Figure S3(III**).

Figure S3(III). The values of the precession \mathbb{K} along the C10-C2 *BCP* bond-paths for the S₁ and T₁ states of the unchirped pulse with a positive energy gap $\Delta E(S_1-T_1) > 0$ (top-left) of sub-figure, the unchirped pulse with a negative energy gap $\Delta E(S_1-T_1) < 0$ (top-right) of sub-figure. The chirped pulse with $\Delta E(S_1-T_1) > 0$ (bottom-left) of sub-figure and the chirped pulse s with $\Delta E(S_1-T_1) < 0$ (bottom-right) of sub-figure.

Figure S3(IV). The values of the precession \mathbb{K} along the C3-C5 *BCP* bond-paths for the S₁ and T₁ states of the unchirped pulse with a positive energy gap $\Delta E(S_1-T_1) > 0$ (top-left) of sub-figure, the unchirped pulse with a negative energy gap $\Delta E(S_1-T_1) < 0$ (top-right) of sub-figure. The chirped pulse with $\Delta E(S_1-T_1) > 0$ (bottom-left) of sub-figure and the chirped pulse s with $\Delta E(S_1-T_1) < 0$ (bottom-right) of sub-figure.

Figure S3(V). The values of the precession \mathbb{K} along the C13-C16 *BCP* bond-paths for the S₁ and T₁ states of the unchirped pulse with a positive energy gap $\Delta E(S_1-T_1) > 0$ (top-left) of sub-figure, the unchirped pulse with a negative energy gap $\Delta E(S_1-T_1) < 0$ (top-right) of sub-figure. The chirped pulse with $\Delta E(S_1-T_1) > 0$ (bottom-left) of sub-figure and the chirped pulse s with $\Delta E(S_1-T_1) < 0$ (bottom-right) of sub-figure.