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A B S T R A C T   

Calculating the amount of soil organic carbon (SOC) stored in coastal environments, including salt marshes, is 
needed to determine their role in mitigating the Climate Crisis. Several techniques exist to calculate the SOC 
content of a unit of land from the upscaling of soil cores. However, no comprehensive assessment has been made 
on the performance of commonly used SOC upscaling techniques until now. We measured the SOC content of soil 
cores gathered from two Scottish salt marshes. Two SOC values were used for upscaling; SOC content for a 1 m 
standardised depth (as recommended by the IPCC), and SOC content of the modern marsh deposit (identified in 
the stratigraphy as a transition from organic-rich (marsh) to mineral-rich (intertidal flat) soil. Twenty-two 
upscaling techniques were used (SOC content × area, interpolative, and regression-based extrapolative calcu-
lations). Leave-one-out cross-validation procedures and prediction interval widths were used to assess the ac-
curacy of each technique. Digital Terrain Models and Normalized Difference Vegetation Indices were used as 
covariate surfaces in the regression models. We found that marsh-scale SOC stocks varied by as much as fifty-two 
times depending on which sampling depth and upscaling technique was used. The largest differences emerged 
when comparing SOC stocks upscaled from 1 m deep and modern marsh deposits. Using the IPCC recommended 
1 m sampling depth inflated the SOC stocks of salt marshes, as intertidal flat environments were included in the 
calculation. Ensemble regression models from the weighted average of seven machine learning algorithm outputs 
produced the highest upscaling accuracies across marshes and sampling depths. Simple SOC content × area 
calculations produced marsh-scale SOC stocks that were comparable to stock values produced by more advanced 
ensemble regression models. However, regression models produced detailed maps of SOC distribution across a 
marsh, and the associated uncertainty in the SOC values. Our findings are broadly applicable for other envi-
ronments where large-scale SOC stock assessments and uncertainty are needed.   

1. Introduction 

Vegetated coastlines, including seagrass, mangroves, and salt 
marshes, are valued for their capacity to sequester and store large 
amounts of organic carbon in their soils (Mcleod et al., 2011). The 
importance of ‘blue carbon’ habitats in mitigating against climate 
change is now widely recognised (Macreadie et al., 2019), especially 
given that soil organic carbon (SOC) accumulation rates in coastal 
habitats are expected to increase in response to sea level rise, temper-
ature increase, and precipitation change (Rogers et al., 2019a; Wang 
et al. 2021; Herbert et al., 2021). However, coastal habitats are 
degrading globally, raising fears that blue carbon habitats could largely 
disappear by the end of this century (Crosby et al., 2016; Horton et al., 

2018; Saintilan et al., 2022) unless significant protection and restoration 
efforts are enacted (Macreadie et al., 2017a; Schuerch et al., 2018). 
Measuring the amount of stored SOC accurately is crucial for under-
standing the SOC-equivalent cost of habitat loss, and for justifying 
financial investment in protecting and enhancing the SOC storage ca-
pacity of coastal habitats (Theuerkauf et al., 2015; Rogers et al., 2019b; 
Smith and Kirwan, 2021). 

SOC stock assessments are based on the SOC content of soil cores. 
Upscaling SOC stocks from the local (soil core) to the landscape (coastal 
habitat) scale therefore depends on which statistical technique and soil 
core sampling strategy is used. Despite the publication of numerous 
upscaling techniques in both marine and terrestrial settings (Olaya-Abril 
et al., 2017; Kempen et al., 2019; Owusu et al., 2020), it remains unclear 
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how different upscaling techniques affect SOC stock assessment 
accuracy. 

Most upscaling techniques fall into one of four classes: (i) ‘back-of- 
envelope’ calculations: SOC content of single or multiple soil cores are 
multiplied by habitat extent; (ii) ‘distance-weighted’ interpolations: a 
prediction surface is generated between georeferenced soil core SOC 
values using a weighted function; (iii) ‘regression’ techniques: the 
relationship between SOC stock and predictor variables, to predict SOC 
stock values onto spatial covariate surfaces using machine learning al-
gorithms, and; (iv) ‘regression-kriging’ techniques: an extension of 
regression models that also accounts for spatial autocorrelation using 
distance-weighted methods (Hengl and MacMillan, 2019). 

Back-of-envelope calculations benefit from being relatively simple to 
apply (MacDonald et al., 2017) and are commonly used in large-scale, 
first-order assessments of SOC stocks (Atwood et al., 2017; Macreadie 
et al., 2017b; Rogers et al., 2019b). Distance-weighted and regression- 
based techniques are commonly used to produce soil carbon maps and 
are helpful in showing how SOC hotspots correlate with geomorphic or 
botanic features in the target habitat (van Ardenne et al., 2018). 
Regression analyses are being increasingly used over distance-weighted 
techniques to produce more detailed soil maps with better prediction 
accuracies (Li and Heap, 2011; Lieβ et al., 2016). However, the accuracy 
of regression models is dependent on the availability of highly correlated 
covariate surfaces and careful model tuning and selection (Hengl and 
MacMillan, 2019). 

Accuracies of all upscaling techniques are improved when intensive 
and stratified soil core sampling is employed (Young et al., 2018). This is 
because variation in SOC both within and between coastal habitats can 
be high. Vegetation type, inundation frequency, and grain size all in-
fluence SOC accumulation rates along coastal habitats (Kelleway et al., 
2016, 2017; Sousa et al., 2017; Ford et al., 2019). Microbial decompo-
sition rates, accretion history, and site-specific physical context also 
influence SOC content with depth (Bai et al., 2016; Van de Broek et al., 
2018). SOC content generally increases upon moving from sea to land, 
where more mature and organogenic deposits can become tens of metres 
deep (Allen, 2000; Van de Broek et al., 2018). Standard sampling of blue 
carbon habitats to 1 m is encouraged (Howard et al., 2014; Kennedy 
et al., 2014), yet not always achievable nor desirable if deposits are 
shallow or misrepresent much deeper deposits. 

Landscape-scale SOC stock calculations can therefore differ by orders 
of magnitude, depending on which upscaling technique and sampling 
strategy is employed. For example, two national SOC stock assessments 
of UK salt marshes produced values which ranged between 5 (Beaumont 
et al., 2014) and 13 Mt SOC (Luisetti et al., 2019). Whilst back-of- 
envelope, distance-weighted, and regression-based extrapolation tech-
niques have all been used to generate saltmarsh SOC inventories at 
global, regional, and local scales (Hinson et al., 2017; van Ardenne et al., 
2018; Rogers et al., 2019a; Smeaton et al., 2022), no rigorous assess-
ment has yet been made on the accuracy of commonly used upscaling 
techniques for calculating coastal habitat SOC stocks from core-based 

point observations. 
To address this gap, we evaluate the performance of 22 commonly 

used upscaling techniques in generating SOC stocks for two geo-
morphologically distinct salt marshes along the Scottish coastline. We 
measured SOC content from multiple cores taken across two marshes to 
use as the basis of each upscaling technique. 

2. Study area 

Soil coring and SOC upscaling were done for Skinflats and Caerla-
verock salt marshes in Scotland (Fig. 1). Skinflats is situated along the 
inner Firth of Forth, south-east Scotland. Skinflats is a silt-sand domi-
nated and mesotidal marsh (Webb and Metcalfe, 1987) with a smooth 
profile transitioning through Puccinellia maritima, Festuca rubra / Juncus 
gerardii, and Elymus repens plant communities (Haynes, 2016). Caerla-
verock marsh is situated in the hypertidal outer Solway Firth, south-west 
Scotland. Caerlaverock is an open-coast system, fronted by extensive 
tidal flats and flanked to the west by the river Nith (Marshall, 1962). 
Caerlaverock has a fine sand dominated substratum and a terraced 
topography characteristic of repeated lateral erosion and expansion 
phases (Allen, 1989). Abrupt shifts in vegetation community accompany 
the elevation changes. Salicornia europaea and Spartina anglica form the 
pioneer marsh, and the lower marsh is predominantly Puccinellia mar-
itima. Festuca rubra is the dominant species at the high marsh, which 
extends into the transitional marsh zone alongside Juncus effusus, Carex 
flacca, and Leontodon autumnalis (Haynes, 2016). Cattle grazing along 
fenced parts of the upper marsh maintain a short sward height. Skinflats 
is relatively narrow (250 m) and small (60 ha), compared to Caerla-
verock which ranges in width by between 1 and 1.5 km, and has a 
contiguous extent of ~ 920 ha. 

3. Methods 

Soil cores were used to calculate the SOC content of Skinflats and 
Caerlaverock salt marshes. Two values of SOC content per core were 
calculated (SOC content of the full core, and SOC content of the modern 
marsh deposit only, see section 3.1). Both SOC calculations were then 
used to generate separate marsh-scale SOC stocks using twenty-two 
upscaling techniques divided into four classes of statistical analysis 
type (see section 3.2). Uncertainty in each calculation was also calcu-
lated (see section 3.3). A total of 88 stock assessments were produced (2 
marshes × 2 soil core SOC values × 22 upscaling techniques) (Fig. 2). 
The stock calculations produced here represent a snapshot of the SOC 
present in each marsh from the time of sampling. The stocks therefore do 
not account for changes in the long-term storage of SOC affected by 
processes including microbial decomposition, autochthonous produc-
tion, and mineralisation of labile organic matter. All analyses were 
carried out using R, and the code is available in Appendix A. 

Fig. 1. A Skinflats (56◦03′33′′N, 003◦44′05′′W) and B Caerlaverock (54◦58′07′′N, 003◦30′39′′W) salt marshes, Scotland. White points indicate soil core sam-
pling locations. 
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3.1. Quantifying the organic carbon content of soil cores 

Soil cores were taken from Skinflats and Caerlaverock in the summer 
of 2019. Cores were retrieved along three transects at each site. Two 
transects were placed perpendicular to the shore intersecting high- to 
low-marsh zones, and a third transect ran diagonally on the shore 
intersecting the two other transects (Fig. 1; white points). Sampling 
interval was adjusted to capture any abrupt change in vegetation 
composition and elevation. Coordinates of each coring site were taken 
using a real-time-kinematic GPS to an average accuracy of ~ 2 cm. Soil 
coring was done using a narrow (30 mm) Eijkelkamp gouge auger. 
Gouge coring has been shown to cause minimal compaction of the 
sampled soil (Smeaton et al., 2020). To extract soil cores, the gouge 
auger was pushed by hand into the ground to either a depth of 1 m or 
until a resistant basal layer was reached. Properties of the soil core were 
then described using the Tröels-Smith classification scheme (Tröels- 
Smith, 1955) to provide a stratigraphic definition of where the modern 
saltmarsh deposit begins, typically defined as a basal transition from 
organic-rich to organic-poor, mineral soils (Hamilton et al., 2015; 
Swindles et al., 2018; Smeaton et al., 2020). Cores were then sub- 
sectioned in the field at depths of 0–2, 4–6, 10–12, 20–22, 30–32 and 
so on, until 90–92 cm. In total, 26 cores were recovered from Skinflats 
and 33 from Caerlaverock. 

Each 2 cm soil sample was dried (50 ◦C, 48 h) and weighted to 
calculate dry bulk density. No rock fragments were found in the soil 
samples, and so did not affect bulk density measurements. We only 
considered the presence of organic soil carbon deposits in this study, and 
therefore excluded any carbon contribution from calcareous (inorganic) 

material. The dried soil was milled and homogenised, and a 10 mg sub- 
sample was placed in a silver capsule and treated with HCl through acid 
fumigation to remove carbonates (Harris et al., 2001). After further 
drying (50 ◦C, 24 h), the samples were analysed for SOC content using an 
Elementar EL Vario (Verardo et al., 1990; Nieuwenhuize et al., 1994). 
Analytical precision of SOC content was estimated from repeat analyses 
of standard reference material B2178 (Medium Organic Content Stan-
dard; Elemental Microanalysis, UK). Standards deviated from known 
SOC reference values by 0.09 % (n = 38). Total organic carbon and dry 
bulk density values for cores from each marsh are shown in Fig. S1-4. 

A mass preserving spline (Bishop et al., 1999) was used to produce 
continuous SOC density values along the length of each soil core 
(Fig. S5-6; black line). Two values of SOC stock per core were calculated. 
The first SOC stock represented the sum of 1 cm SOC density subsection 
values across the entire core, following the recommended method out-
lined by Howard et al. (2014) and by the Intergovernmental Panel on 
Climate Change (IPCC) (Kennedy et al., 2014) for implementing na-
tional greenhouse gas inventories. These SOC stock values are hence-
forth referred to as ‘full core’ SOC stock values. As retrieving 1 m cores 
was not possible in all cases, ‘full core’ SOC stocks were standardised by 
core length to account for different coring depths between samples. The 
second SOC stock represented the sum of 1 cm SOC density subsection 
values to the bottom of modern marsh deposits (i.e., to the red dotted 
lines of each core in Fig. S5-6), representing SOC content of the salt-
marsh habitat only. These SOC stock values are henceforth referred to as 
‘stratified core’ stocks. 

Fig. 2. Steps taken to generate marsh-scale soil organic carbon stock calculations.  
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3.2. Measuring the carbon stocks of saltmarshes from soil cores 

Marsh-scale SOC stocks were calculated from the SOC content of soil 
cores, using 22 upscaling techniques frequently used for generating SOC 
stock assessments (Table 1). The areal extent of each salt marsh was used 
as a template upon which SOC values were mapped. Saltmarsh extents 
were taken from Haynes (2016). The geospatial vector data was con-
verted to a raster format in a geographic information system, to produce 
maps showing SOC stocks at a standard resolution of 2 m2 (chosen as the 
smallest possible resolution, see section 3.2.1). The sum of raster cell 
values multiplied by the area of the cell were used to calculate the total 
SOC content per upscaling technique. 

All 22 upscaling techniques can be divided into 4 classes of SOC 
calculation (Table 1). The ‘back-of-envelope’ class assign SOC values to 
a raster cell based on the SOC content of single or multiple soil cores. The 
‘distance-weighted’ class assign SOC values as a function of distance 
between points, weighted by the SOC content of surrounding points 
(Hengl and MacMillan, 2019). The ‘regression’ class use the relationship 
between response (SOC values) and predictor variables (see section 
3.2.1) to build a regression model. The model coefficients are then used 
to predict SOC values of each covariate raster cell (Li et al., 2011). 
Lastly, the ‘regression-kriging’ class attempts to improve the ‘regression’ 
class predictions by accounting for any spatial autocorrelation between 
points. This is done by adding the predictions generated by regression 
with ordinary kriging of the residuals (Knotters et al., 1995). In both 
‘regression’ and ‘regression-kriging’ classes, an additional marsh-scale 
SOC surface calculation, called ‘ensemble’, was generated by aver-
aging the SOC value per raster cell across all regression or regression- 
kriging calculations. Averaging was weighted against the R2 score be-
tween observed and predicted values (see section 3.3) of each regression 
or regression-kriging model (Hengl and MacMillan, 2019). The ‘gstat’ 
package was used to fit the Inverse Distance Weighting model (Pebesma, 
2004) and the optimal power decay rate was selected through model 
tuning (see Appendix A). The ‘automap’ package was used to determine 
the optimum variogram model of the residuals necessary to quantify 
autocorrelation in the ordinary kriging and all regression-kriging tech-
niques (Hiemstra, 2013). All semivariogram models are reported in 
Appendix A. The ‘caret’ package was used for model tuning and for 
fitting each optimal regression model (Kuhn, 2008). Parameters selected 
from the model tuning through a cross-validation procedure for each 
regression model are shown in Appendix A. 

3.2.1. Selecting predictor variables for regression-based upscaling 
All regression-based upscaling techniques used a set of predictor 

variables when calculating SOC values. When considering which pre-
dictor variables to use in our study, we referred to Jenny (1994) who 
describe soil SOC stock as a function of soil composition, climate, 
vegetation, relief, geology, and time. Continuous spatial layers of 
covariates can predict SOC stock for a given area when the correlation 
between the predictor variable and the response variable is high (Hengl 
and MacMillan, 2019). We excluded climate and underlying geology as 
predictor variables of SOC stock since the variability of both at the 
marsh-scale would likely be negligible. Although national layers of soil 
(including moisture content, grain size and soil texture) and vegetation 
(National Vegetation Classification surveys) composition exist for 
Scotland (e.g., Haynes, 2016; LandIS, 2020), these were considered too 
coarse or had inconsistent coverage to use in the upscaling procedure. 
Spectral reflectance of vegetation was instead used to detect variation in 
vegetation health, identity, and underlying soil composition. The Nor-
malised Difference Vegetation Index (NDVI) is a commonly applied 
plant-soil index and was used here as a proxy for distinguishing vege-
tation and soil texture types (Gholizadeh et al., 2018). 

Continuous NDVI spatial layers for Skinflats and Caerlaverock were 
generated from remote sensing. Cloud-free Sentinel-2 images from 04 to 
07-2019 and 27–06-2019 were downloaded from the Copernicus Open 
Access Hub (2021). The images had undergone Level-2A processing, 

Table 1 
Description of the 22 upscaling techniques, divided into 4 classes, used to create 
SOC maps for Skinflats and Caerlaverock salt marshes. See Appendix A for a full 
description of the analysis.  

Class and technique Code Calculation of soil organic carbon value per 
raster cell 

Back-of-envelope 
High HIGH SOC value of a single soil core taken from the 

high marsh zone. 
Mid MID SOC value of a single soil core taken from the 

mid marsh zone. 
Average (transect) TRAN Average SOC value of multiple soil cores taken 

along a land-to-sea transect. 
Average (all) ALL Average SOC value of all soil cores.  

Distance-weighted 
Inverse distance 

weighting 
IDW SOC values around each core location are 

interpolated from the weighted average value of 
nearby points and the inverse of the distance 
between those points as a power decay function. 

Ordinary kriging OK Similar to IDW, however spatial autocorrelation 
was used as a weighting function rather than 
distance.  

Regression and regression-kriging* 
Generalised linear 

model 
GLM Coefficients of the regression model used to 

calculate the SOC values of each raster cell. 
Weighted sum of the SOC predictor variables 
input into the linear model using a Gaussian link 
function. 

Generalised additive 
model 

GAM Coefficients of the regression model used to 
calculate the SOC values of each raster cell. 
Weighted sum of the SOC predictor variable 
input into the model using spline functions 
(calculated automatically using a restricted 
maximum likelihood model) that best 
represented non-linear trends. 

Random forest RF Coefficients of the regression model used to 
calculate the SOC values of each raster cell. 
Regression trees and branches grown from a 
bootstrap sample of the SOC predictor variables. 

Bayesian regularised 
neural network 

BRNN Coefficients of the regression model used to 
calculate the SOC values of each raster cell. An 
optimal model found from building successive 
mathematical structures between SOC value and 
SOC predictor variables from weighted values of 
preceding models. 

Cubist CUB Coefficients of the regression model used to 
calculate the SOC values of each raster cell. The 
model is identified by partitioning SOC values 
amongst groups of correlated SOC predictor 
variables using a hierarchical set of rules that 
follow an “if [condition is true] then [regress] or 
else [apply the next rule]” statement. 

Stochastic gradient 
boosting 

SGB Coefficients of the regression model to calculate 
the SOC values of each raster cell. A 
combination of bagging and boosting 
approaches is used for model selection. 

Support vector 
machine 

SVM Coefficients of the regression model to calculate 
the SOC values of each raster cell. A model is 
constructed from kernel functions that re- 
projected SOC predictor values as vectors onto a 
hyperspace to identify non-linear patterns in 
SOC. 

Ensemble ENS Average of all 7 regression model predictions, 
weighted by the R2 score between observed and 
predicted SOC values of each prediction. 

*Regression-kriging combines the output of the regression models with ordinary 
kriging of the regression residuals, to account for possible error introduced by 
spatial autocorrelation. Regression models have the suffix ‘.R’, whilst regression- 
kriging models have the suffix ‘.RK’. 
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meaning that images were geometrically, radiometrically and atmo-
spherically corrected (Mayer and Kylling, 2005). NDVI was calculated 
by: 

NDVI =
(B8- B4)

(B8 + B4)

Where B4 and B8 represent the red (650–680 nm) and near infrared 
(785–899 nm) Sentinel-2 spectral bands respectively. The resolution of 
the final NDVI layer was 10 m. 

Saltmarsh elevation is a good proxy of soil age, vegetation structure, 
and soil composition in marshes (Allen, 2000). Digital Terrain Models 
(DTMs) are available for much of Scotland and were therefore also used 
as a predictor of SOC stock for both marshes. DTMs with 2 m resolution, 
retrieved using Light Detection and Ranging aerial surveys, were 
downloaded from EDINA Digimap (2019) for Skinflats and Caerlaverock 
(2016–11-14). The Skinflats DTM was cropped to remove cells relating 
to bridge construction works above the marsh. NDVI and DTM surfaces 
for both marshes were resampled into spatial rasters with a 2 m2 cell size 
and cropped to fully overlap one another. The location of each soil core 
was then overlaid onto the covariate rasters, and the cell value from 
each raster was extracted and used as the predictor variables in the 
regression models. 

Distributions, outliers, and collinearity between predictor variables 
for SOC, NDVI, and DTM values were then inspected. Response and 
predictor variables were all normally distributed. Soil cores 8 and 26 in 
Skinflats reported NDVI and DTM values that were substantially below 
the mean and standard deviation values of the sample population (see 
Appendix A). Both soil core samples were taken at the salt marsh-tidal 
flat interface. It is possible that NDVI and DTM values did not accu-
rately represent the marsh where the cores were taken. The coarse (10 
m) resolution of Sentinel-2 images likely included reflectance from the 
tidal flat within the cell value, resulting in a lower NDVI index than 
expected for the vegetated marsh where the cores were taken. The marsh 
also appeared to have expanded seaward since LiDAR data was collected 
in November 2016, meaning that the DTM values represented lower- 
elevation tidal flats as opposed to the higher-elevation marshes where 
the soil cores were taken. For these reasons, soil cores 8 and 26 were 
identified as outliers and excluded from the regression analyses. 

Correlation plots between predictor variables showed no evidence of 
collinearity for either marsh. Selection of predictor variables to use in 
the regression analyses was done by inspecting correlation plots for re-
lationships with the response variables (linear or otherwise) and 
confirmed by inspecting the Akaike Information Criterion in a stepwise 
linear regression with forwards and backwards model selection. For 
Skinflats, DTM and NDVI showed no significant relationship with the 
full and stratified SOC values respectively, and were dropped from 
further analysis. For Caerlaverock, NDVI showed no significant rela-
tionship with either the full or stratified cores. NDVI observations for 
Caerlaverock were therefore dropped. 

3.3. Assessing the uncertainty of carbon stock values 

Uncertainty of each upscaling technique result was assessed using a 
leave-one-out cross-validation (LOOCV) resampling procedure. LOOCV 
leaves out one sample when generating a SOC map, then predicts the 
SOC value of that removed point based on its location on the map. This is 
repeated until all samples have been left out once. Two datasets are 
produced using LOOCV: predicted SOC values for each point observa-
tion, and a series of marsh-scale SOC maps each generated from all-bar- 
one of the points. The predicted values were then correlated against 
their corresponding observed values to generate an R2 statistic, root 
mean square error (RMSE), and mean absolute error (MAE) of predicted 
SOC values. The correlation plots of observed and predicted values were 
then checked for evidence of model bias (i.e., the overestimation or 
underestimation of predictions) and non-constant variance (i.e., 
whether the full range of SOC values were represented). Uncertainty 

maps were produced by extracting the 90 % prediction interval width (i. 
e., the difference between the 5 % and 95 % quantiles) for each raster 
cell of overlapping maps produced by the LOOCV procedure. These 
‘uncertainty maps’ were used to assess the performance of each SOC 
upscaling technique. A lower resolution raster size of 10 m2 was used to 
generate the uncertainty maps to reduce computing time. No uncer-
tainty assessment could be made for ‘HIGH’ and ‘MID’ upscaling tech-
niques since these are based on single cores only. For ‘TRAN’ and ‘ALL’ 
techniques, LOOCV would result in R2 values with a perfect fit (i.e., R2 =

1) since the observed and predicted points for each LOOCV iteration 
would be the same. Given that the R2 value would not give a meaningful 
indication of uncertainty in these cases, they were not reported in the 
results. 

4. Results 

4.1. Uncertainty assessment 

Uncertainty metrics for each upscaling technique and observed- 
predicted relationships of the best-performing techniques in each class 
(i.e., techniques that yielded the lowest RMSE score) are shown in 
Table 2 and Fig. 3 respectively. Of the best performing ‘back-of-enve-
lope’ class, mean SOC values derived from shore-normal transects 
yielded the lowest RMSE and MAE values across both marshes and 
sampling depths (Table 2). However, bias (i.e., the over- and under- 
prediction of SOC values away from the dashed 1:1 line) was high 
(Fig. 3 A, E, I, M). For the best performing ‘distance-weighted’ models, 
R2 values were comparable (R2 = 0.33–0.52) except for Caerlaverock 
(stratified cores) that yielded a lower R2 value of 0.12 (Table 2). Of 
these, only Caerlaverock (full cores) showed low bias (Fig. 3 B, F, J, N). 
Regression-kriging ensemble techniques consistently reported the 
lowest uncertainty scores across all mashes and depths (Table 2). R2 

values for Caerlaverock were higher (0.48–0.61) than Skinflats 
(0.00–0.26) for all singular regression and regression-kriging class 
models when full cores were used to calculate SOC stock. Values were 
comparable and low (0.00–0.29) when stratified cores were used 
(Table 2). When models were combined as ensembles, however, R2 

values were comparable and high for regression and regression-kriging 
techniques (0.59–1.00) across both sampling depths (Table 2). The 
ensemble models generally showed low bias (Fig. 3 C-D, G-H, K-L), 
except for Caerlaverock (stratified cores) that tended to underpredict 
SOC values (Fig. 3 O–P). Regression model performance only margin-
ally improved with kriging, likely due to little evidence of spatial 
autocorrelation amongst the soil core samples (see Appendix A). 

4.2. Marsh-scale carbon stocks and uncertainties 

Spatial calculations of marsh-scale SOC stock and corresponding 
prediction interval widths (a measure of model uncertainty) for the best 
performing models (see Table 2) are shown in Figs. 4-7. Surfaces derived 
from TRAN calculations showed a homogeneous coverage of SOC and 
prediction interval widths across each marsh (Figs. 4-7 A-B). Distance- 
weighted surfaces also homogenised ~ 50 m away from where the soil 
cores were taken (Figs. 4-5 and 7 C), apart from Caerlaverock (full core) 
where the OK model showed a general decrease in SOC stock moving 
from the landward to seaward edge (Fig. 6 C). Prediction interval width 
values increased along the same gradient (Fig. 6 D). ENS.R (Figs. 4-7 E) 
and ENS.RK (Figs. 4-7 G) models produced similar SOC calculations 
across each marsh and sampling depth. The ensemble regression-based 
surfaces captured more abrupt changes in SOC than back-of-envelope 
and distance-weighted classes. For Caerlaverock, SOC values declined 
abruptly beyond a marsh cliff (Fig. S7) by ~ 30 % for both sampling 
depths (Figs. 6-7 E-G), characterised as a drop in elevation and change in 
vegetation community. For the ENS models, elevated SOC values were 
calculated near the seaward marsh edge and channels for Skinflats 
(Figs. 4-5 E-G) and at a feature in the north-east corner of Caerlaverock 
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(Figs. 6-7 E-G) that greatly exceeded the SOC stock values obtained from 
the soil cores (see x-axis on Fig. 3). Prediction interval width values at 
these locations were also highest (Figs. 4-7, F-H), indicating these SOC 
values are unreliable and the result of extrapolation beyond the range 
predictor (DTM and NDVI surfaces) and response (observed soil core 
SOC) values used to fit the regression models. 

4.3. Carbon budget assessment 

Values of the total SOC content for each marsh section (i.e., the 
extent represented in Figs. 4-7), calculated from full and stratified soil 
cores for 22 upscaling techniques, are shown in Fig. 8. For Skinflats and 
Caerlaverock, the greatest difference in SOC values when comparing 
across all techniques and sampling depths were 52 and 24 times 
respectively. When averaged across all upscaling techniques, total SOC 
values for Skinflats and Caerlaverock were 16 and 10 times lower 
respectively when stratified soil cores were used over full cores. For each 
marsh and sampling depth, SOC values ranged by 41–55 % between 
upscaling techniques, except for Skinflats (stratified) where values 
ranged by as much as 86 %. Back-of-envelope calculations (HIGH, MID, 
TRAN, and ALL) ranged by 27–54 % across both marshes and sampling 
depths. HIGH calculated more SOC content than MID in all cases, 
although the range difference was much lower (3 %) for Caerlaverock 
(stratified) than the other techniques (that ranged by 17–54 %). ALL 
produced higher values of SOC than TRAN for Skinflats, and the pattern 
was reversed for Caerlaverock. The range difference was only 5–24 %. 
There was no consistent trend in whether TRAN and ALL calculations 
were higher or lower than HIGH and MID (Fig. 8). 

Distance-weighted classes (IDW and OK) calculated total SOC values 
that differed by 2–19 % for Skinflats and Caerlaverock. For Caerlaver-
ock, prediction interval widths (error bars) were markedly higher than 
IDW when stratified cores were used. SOC values from distance- 

weighted classes were comparable to TRAN and ALL values. Regres-
sion and regression-kriging model calculations were comparable within 
all marshes and sampling depths. The largest difference was found in 
Caerlaverock (stratified), where the SVM.R and SVM.RK values differed 
by 33 %. For SOC values derived from full depth cores, regression-based 
calculations ranged by 14–18 %. In contrast, calculations ranged by 86 
% for Skinflats and 43 % for Caerlaverock when stratified cores were 
used. The range difference was driven by high GAM calculations for 
Skinflats (stratified) and low SVM.R calculations for Caerlaverock 
(stratified). Because GAM regressions yielded the highest R2 values 
compared to all other regression-based models for Skinflats (stratified), 
ENS calculations (i.e., the calculation weighed by the R2 performance of 
each regression model) fell in between the GAM and other regression 
calculations. The high R2 scores from the GAM regression was likely 
caused by overfitting from poorly correlating variables (see Appendix 
A). 

5. Discussion 

Our study demonstrates that marsh-scale SOC stock calculations can 
differ by as much as 52 times depending on how upscaling from the scale 
of ‘soil core’ to ‘salt marsh’ is done. The reliability of SOC upscaling 
depends upon (i) which technique is used, (ii) how well covariates 
predict SOC stock (if a regression-based method is used), and (iii) 
whether soil core SOC values from a standardised depth (e.g., 1 m ac-
cording to IPCC standards) or stratified depth (e.g., only marsh deposits 
whilst excluding deeper stratigraphic horizons equivalent to tidal flat or 
glacial environments) are used. Differences in the approach taken when 
calculating habitat-scale SOC stocks would have significant conse-
quences on ecosystem service valuations. For example, the value of 
carbon credits in 2010 for regulated markets was estimated at $19.18 
USD/Mg (Ullman et al., 2013). Since Skinflats and Caerlaverock marshes 

Table 2 
R2, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) terms for 22 upscaling techniques. Best performing models from each model class are shown in 
bold. No RMSE, MAE, and R2 values are reported for ‘HIGH’ and ‘MID’ techniques since these used only a single value of SOC. R2 is not reported for ‘TRAN’ and ‘ALL’ 
since predicted values produced perfect fits.   

Skinflats Caerlaverock  

Full core Stratified core Full core Stratified core 

Class and technique R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

Back-of-envelope 
HIGH  –  166.72  136.46  –  22.61  19.36  –  140.64  127.30  –  19.45  10.88 
MID  –  245.69  210.49  –  23.24  17.77  –  109.77  95.06  –  19.53  10.86 
TRAN  –  115.74  92.02  –  14.83  13.22  –  101.71  88.23  –  19.01  13.70 
ALL  –  140.61  114.42  –  17.01  13.48  –  103.13  83.65  –  19.36  12.68  

Distance-weighted 
IDW  0.33  115.79  99.22  0.08  17.45  14.15  0.36  85.39  59.52  0.12  17.75  10.02 
OK  0.13  126.56  105.47  0.41  17.66  14.12  0.52  69.65  52.76  0.12  17.81  10.40 
Regression             
GLM.R  0.07  133.87  99.66  0.00  17.15  13.33  0.57  66.13  50.83  0.16  17.52  11.91 
GAM.R  0.22  123.74  95.29  0.29  13.80  10.84  0.57  66.13  50.83  0.16  17.52  11.91 
RF.R  0.17  127.03  96.83  0.12  15.44  13.02  0.50  72.70  55.30  0.09  20.10  13.42 
BRNN.R  0.06  145.60  116.01  0.02  18.69  14.94  0.51  72.61  53.61  0.15  17.57  11.90 
CUB.R  0.14  129.82  94.87  0.03  16.82  14.05  0.58  65.70  50.49  0.20  17.20  11.32 
SGB.R  0.16  126.38  98.14  0.20  14.40  12.12  0.54  67.93  50.75  0.10  17.94  12.00 
SVM.R  0.13  130.38  93.51  0.01  16.74  12.79  0.61  64.57  47.53  0.20  17.77  10.26 
ENS.R  0.59  96.95  69.91  0.80  8.54  6.75  0.70  55.53  42.27  0.37  15.12  9.85  

Regression-kriging 
GLM.RK  0.20  123.52  95.05  0.01  17.57  13.61  0.58  65.21  48.83  0.16  17.58  11.84 
GAM.RK  0.26  120.89  95.97  0.16  15.64  11.86  0.57  65.47  49.11  0.16  17.59  11.83 
RF.RK  0.22  123.89  95.16  0.04  16.87  13.98  0.48  74.89  56.58  0.08  20.44  13.62 
BRNN.RK  0.00  140.44  116.53  0.02  17.22  13.16  0.56  66.55  50.94  0.16  17.59  11.84 
CUB.RK  0.22  123.28  90.47  0.01  17.48  14.54  0.59  64.74  50.17  0.19  17.36  11.60 
SGB.RK  0.23  121.04  96.05  0.13  15.17  12.52  0.53  68.38  51.79  0.08  18.48  12.34 
SVM.RK  0.20  123.43  94.44  0.00  16.87  13.07  0.60  63.84  47.16  0.14  17.46  11.37 
ENS.RK  0.95  50.93  36.31  0.92  6.44  5.12  1.00  5.46  4.24  0.79  10.49  6.91  
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had SOC stocks that ranged by as much as 21,000 and 77,000 MgC 
respectively, valuations would range by $400,000 and $1,500,000 USD 
per site. These values do not take inflation and gain in the value of SOC 
into account since 2010, and only represent the section of each marsh 
considered here - not the full extent. Differences in valuation would 
therefore be expected to be even higher. Blue carbon stock assessments 
are being increasingly used to underpin social and ecological sustain-
ability programmes including habitat conservation and restoration 
projects (Gulliver et al., 2020), payments for ecosystem services schemes 
(Thompson et al., 2017), and climate change mitigation and adaptation 
policies (Hilmi et al., 2021). It is therefore imperative that an appro-
priate upscaling technique is used when calculating SOC stocks. 

The largest differences in SOC stock calculations arose when SOC 
values from either standardised 1 m cores or from modern marsh de-
posits alone were used. IPCC guidelines (Kennedy et al., 2014) and the 

Blue Carbon Manual (Howard et al., 2014) recommends that a standard 
sampling depth of 1 m should be used when assessing the SOC stocks of 
coastal ecosystems. Whilst a standardised depth of sampling makes it 
easier to compare between ecosystems (Duarte et al., 2013), marsh de-
posits in this study were shallow. Deposits only reached a maximum of 
16 and 22 cm for Skinflats and Caerlaverock respectively, resulting in 
near-surface marsh-scale SOC stocks that were as much as 16 times 
lower than if 1-metre standardised cores were used for upscaling. 
Sediment SOC stores beneath modern marsh deposits may represent 
paleo-habitats, such as intertidal flats before marsh colonisation, or 
terrestrial soils flooded during sea level transgression (Shi and Lamb, 
1991). Including such ‘pre-marsh’ deposits in stock calculations risks 
inflating the actual SOC storage value of modern salt marsh deposits. 
Habitat-specific blue carbon stocks are frequently cited when extoling 
ecosystem service benefits (e.g., Duarte et al., 2013) and are used in 

Fig. 3. Correlations between observed and predicted SOC stock values for the best performing upscaling techniques of each class (see Table 2) for Skinflats and 
Caerlaverock marshes using SOC values from full or stratified cores. Predicted values are derived from a leave-one-out cross validation resampling procedure. Dashed 
line indicates a perfect fit of observed and predicted values. See Appendix A for all observed-predicted relationships. 
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Fig. 4. Stock (red) and uncertainty (blue) of SOC upscaled from full soil cores for a section of Skinflats salt marsh, Scotland. Each map was generated from the best 
performing technique for each upscaling class (see Table 2). The specific upscaling technique is reported in each map panel. Uncertainty is presented using the 90% 
prediction interval width calculated from a leave-one-out cross validation resampling procedure, where high values indicate greater uncertainty. Normalised 
Vegetation Difference Index was used as the predictor in the regression models. Black dots indicate the location soil cores were gathered. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Stock (red) and uncertainty (blue) of SOC upscaled from stratified soil cores for a section of Skinflats salt marsh, Scotland. Each map was generated from the 
best performing technique for each upscaling class (see Table 2). The specific upscaling technique is reported in each map panel. Uncertainty is presented using the 
90% prediction interval width calculated from a leave-one-out cross validation resampling procedure, where high values indicate greater uncertainty. Elevation was 
used as the predictor in the regression models. Black dots indicate the location soil cores were gathered. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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Fig. 6. Stock (red) and uncertainty (blue) of SOC upscaled from full soil cores for a section of Caerlaverock salt marsh, Scotland. Each map was generated from the 
best performing technique for each upscaling class (see Table 2). The specific upscaling technique is reported in each map panel. Uncertainty is presented using the 
90% prediction interval width calculated from a leave-one-out cross validation resampling procedure, where high values indicate greater uncertainty. Elevation was 
used as the predictor in the regression models. Black dots indicate the location soil cores were gathered. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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Fig. 7. Stock (red) and uncertainty (blue) of SOC upscaled from stratified soil cores for a section of Caerlaverock salt marsh, Scotland. Each map was generated from 
the best performing technique for each upscaling class (see Table 2). The specific upscaling technique is reported in each map panel. Uncertainty is presented using 
the 90% prediction interval width calculated from a leave-one-out cross validation resampling procedure, where high values indicate greater uncertainty. Elevation 
was used as the predictor in the regression models. Black dots indicate the location soil cores were gathered. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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Fig. 8. Marsh-scale SOC content calculated from 22 upscaling techniques for Skinflats (A full and B stratified soil cores) and Caerlaverock (C full and D stratified soil 
cores). Error bars represent the 90% prediction interval width calculated from a leave-one-out cross validation resampling procedure. 
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policy briefings that argue for conservation and restoration measures (e. 
g., Spalding et al., 2021). Overstating the blue carbon value of an 
ecosystem would jeopardise SOC stock assessments upon which policy 
and planning is being increasingly based (Gulliver et al., 2020). SOC 
values could also be understated if marsh deposits exceed 1 m. Whilst 
soil depths of pioneer plant zones can be negligible, mature deposits 
nearest the land can reach tens of metres deep (Allen, 2000). In addition 
to reporting SOC values for 1 m deposits (Howard et al., 2014; Kennedy 
et al., 2014), we advocate for the parallel reporting of soil SOC stocks for 
distinct ecosystem deposits, where these can be clearly identified within 
stratigraphic sequences. 

Considering which upscaling technique to recommend, the ensemble 
of regression-based models consistently performed the best in our un-
certainty tests (after checking the strength of SOC-predictor correla-
tions, evidence of bias in observed-predicted SOC values, and prediction 
interval width ranges in SOC distribution maps). We therefore consider 
ensemble upscaling to be the closest estimate of the true SOC content of 
salt marshes in our study. This finding has several important implica-
tions. Firstly, satellite derived DTM and NDVI surfaces are now freely 
available for much of the globe (such as the Sentinel (Pham et al., 2019a) 
and Shuttle Radar Topography Missions (Zhao et al., 2018)), offering the 
possibility of generating global and accurate marsh SOC stock calcula-
tions (Holmquist et al., 2018; Pham et al., 2019b) in combination with 
ensemble machine learning. Secondly, regression models produce 
detailed maps that show how SOC is distributed throughout marsh soils, 
unlike back-of-envelope calculations which assume a homogeneous SOC 
distribution, or distance-weighted calculations which fail to account for 
sharp transitions in topography or plant community common in salt 
marshes (e.g., the presence of marsh terraces in Caerlaverock). Detailed 
SOC maps can help managers identify valuable and vulnerable parts of a 
marsh for targeted and cost-effective intervention at metre scales, and 
any unrealistic values can be easily identified using associated error 
surfaces. For example, the maps for Caerlaverock also clearly demon-
strate that soils with the highest SOC content are located nearest the 
land, in agreement with other studies (van Ardenne et al., 2018). The 
key driver of marsh loss across Great Britain has been the reclamation of 
landward facing marsh margins (Ladd, 2021), which causes the 
disproportionate loss of carbon dense marshland. Detailed SOC maps 
can therefore demonstrate how much SOC would be lost from human 
intervention. Thirdly, we found that a sample size as low as 26 soil cores 
was sufficient to produce accurate models of SOC stock calculation, in 
combination with well-fitted regression models; well below the recom-
mended minimum sample size of 40 (Young et al., 2018). Moreover, 
back-of-envelope calculations that used multiple cores generally resul-
ted in ballpark figures comparable to ensemble models. SOC values 
calculated from representative sampling, or shore-normal transects 
taken along the marsh, offer a suitably accurate alternative where co-
variate surfaces are unavailable for regression-based upscaling methods. 
In contrast, upscaling from single cores produced values that, at worse, 
varied by 65 % from ensemble calculations. We therefore caution 
against upscaling from single cores alone, to avoid over- or under- 
estimating marsh-scale SOC stocks. 

Ensemble regression models performed well, despite the poor cor-
relation between DTM and NDVI at Skinflats. A weak correlation be-
tween DTM and NDVI on SOC stock could be the result of the relatively 
homogeneous topography and low floristic diversity of the marsh 
(Haynes, 2016). DTM values ranged by only 0.4 m compared to 5 m in 
Caerlaverock, and NDVI values similarly had a restricted range of 0.08 
(see Appendix A). Low variation in DTM and NDVI values could amplify 
errors introduced in the generation the covariate surfaces, resulting in a 
weaker correlation with soil SOC content. The use of alternative co-
variate predictor surfaces could improve regression model fits. For 
example, Gholizadeh et al. (2018) used 18 different satellite band 
indices to predict SOC in agricultural sites. Marsh morphology, floristic 
composition, and microclimate will likely vary from site to site (Gorham 
et al., 2021), therefore optimum covariates are likely to be marsh- 

specific (Guevara et al., 2018). Nevertheless, accurate SOC stock cal-
culations can still be achieved when taking the weighted average of 
multiple regression models even when built on poorly correlated 
covariates. 

Interpolations perform poorly beyond where point samples are taken 
for distance-weighted classes and, by extension, regression-kriging 
techniques (Hengl and MacMillan, 2019). The performance of 
distance-weighted models can be improved if a gridded sampling design 
is adopted across the entire target site, with additional sampling taken 
along sharp topographic and vegetation community boundaries (van 
Ardenne et al., 2018). Regression models are less susceptible to under- 
representative sampling, since SOC stocks can be calculated across a 
range of DTM and NDVI values. However, any bias in the regression 
model can over- or under-estimate SOC stocks. Bias can be detected 
using observed-predicted plots (Bennett et al., 2013) and some bias was 
evident in all regression models nearest the tail ends of predicted SOC 
stocks. Prediction interval width surfaces again provide a means to 
detect where bias may exist in soil maps, here most notably along 
channels and marsh edges. Prediction interval width surfaces therefore 
provide a helpful tool for managers to identify areas where additional 
soil SOC sampling could improve marsh-scale SOC stock calculations. 

There is a growing need to better quantify the world’s carbon stores, 
to better measure progress towards mitigating climate change (e.g., for 
the ‘4 per 1000′ initiative; Minasny et al., 2017). Upscaling techniques 
described here apply to any scenario where large-scale SOC calculations 
can be derived from point samples and (where applicable) covariate 
surfaces. Our findings are therefore useful in calculating the carbon 
content of other terrestrial and marine deposits. 

6. Conclusion 

Policymakers require accurate inventories of soil SOC stock to inform 
conservation management, and therefore use of an appropriate sampling 
strategy and upscaling method are needed. Ensemble regression models 
from the weighted average of seven machine-learning algorithm calcu-
lations yielded the highest accuracy, even when covariate surfaces 
correlated poorly. Regression-based models have the advantage of pro-
ducing detailed soil SOC and associated uncertainty maps, which can be 
used to identify SOC hotspots, anomalous values, and data-sparse re-
gions. Covariate surfaces of key SOC predictors, such as elevation and 
vegetation composition, are now globally available and offer the pos-
sibility of generating large-scale and detailed soil SOC maps in salt 
marshes and other coastal vegetated systems. Simpler average values or 
distance-weighted techniques of a well-sampled marsh offer comparable 
marsh-scale SOC estimates to regression-based models; however, pre-
diction surfaces poorly represent the distribution of SOC throughout the 
marsh. The use of single measures to upscale SOC stock should be 
avoided, as single values may poorly represent the entire marsh and can 
bias total SOC stocks. Average SOC values of multiple cores taken either 
along single or multiple transects produce marsh-scale SOC stocks 
equivalent to ‘state-of-the-art’ machine learning tools and are especially 
appropriate if no covariate surfaces of the target site are available. We 
also advocate for the dual reporting of SOC stocks calculated from both 
the standard 1 m sampling depth and for the full depth of modern marsh 
deposits, for a fairer representation of the actual blue carbon value per 
site. Our findings also apply to non-coastal environments, where 
determining the SOC stock of a region from point measures is required. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

C.J.T. Ladd et al.                                                                                                                                                                                                                               



Geoderma 428 (2022) 116188

14

Data availability 

The soil core data used this study is held in the Environmental In-
formation Data Centre repository, available at: https://catalogue.ceh.ac. 
uk/documents/5cc9ee72-ed88-4e71-bd8d-e3511bb9ed12. 

Acknowledgements 

This work was supported by the Natural Environment Research 
Council (grant NE/R010846/1) Carbon Storage in Intertidal Environ-
ments (C-SIDE) project. We thank Lucy Miller, Simone Riegel, and Levi 
Austin for their valuable contribution to the fieldwork campaigns. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.geoderma.2022.116188. 

References 

Allen, J.R.L., 1989. Evolution of salt-marsh cliffs in muddy and sandy systems: a 
qualitative comparison of British West-Coast estuaries. Earth Surf. Process. Landf. 14 
(1), 85–92. https://doi.org/10.1002/esp.3290140108. 

Allen, J.R.L., 2000. Morphodynamics of Holocene salt marshes: a review sketch from the 
Atlantic and Southern North Sea coasts of Europe. Quat. Sci. Rev. 19 (12), 
1155–1231. https://doi.org/10.1016/S0277-3791(99)00034-7. 

Atwood, T.B., Connolly, R.M., Almahasheer, H., Carnell, P.E., Duarte, C.M., Ewers 
Lewis, C.J., Irigoien, X., Kelleway, J.J., Lavery, P.S., Macreadie, P.I., Serrano, O., 
Sanders, C.J., Santos, I., Steven, A.D.L., Lovelock, C.E., 2017. Global patterns in 
mangrove soil carbon stocks and losses. Nat. Clim. Change 7, 523–528. https://doi. 
org/10.1038/nclimate3326. 

Bai, J., Zhang, G., Zhao, Q., Lu, Q., Jia, J., Cui, B., Liu, X., 2016. Depth-distribution 
patterns and control of soil organic carbon in coastal salt marshes with different 
plant covers. Sci. Rep. 6, 34835. https://doi.org/10.1038/srep34835. 

Beaumont, N.J., Jones, L., Garbutt, A., Hansom, J.D., Toberman, M., 2014. The value of 
carbon sequestration and storage in coastal habitats. Estuar. Coast. Shelf Sci. 137, 
32–40. https://doi.org/10.1016/j.ecss.2013.11.022. 

Bennett, N.D., Croke, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H., 
Jakeman, A.J., Marsili-Libelli, S., Newham, L.T.H., Norton, J.P., Perrin, C., Pierce, S. 
A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013. 
Characterising performance of environmental models. Environ. Model. Softw. 40, 
1–20. https://doi.org/10.1016/j.envsoft.2012.09.011. 

Bishop, T.F.A., McBratney, A.B., Laslett, G.M., 1999. Modelling soil attribute depth 
functions with equal-area quadratic smoothing splines. Geoderma 91 (1–2), 27–45. 
https://doi.org/10.1016/S0016-7061(99)00003-8. 

Copernicus Open Access Hub, 2021. (accessed 6 April 2022). 
Crosby, S.C., Sax, D.F., Palmer, M.E., Booth, H.S., Deegan, L.A., Bertness, M.D., Leslie, H. 

M., 2016. Salt marsh persistence is threatened by predicted sea-level rise. Estuar. 
Coast. Shelf Sci. 181, 93–99. https://doi.org/10.1016/j.ecss.2016.08.018. 

Duarte, C.M., Losada, I.J., Hendriks, I.E., Mazarrasa, I., Marbà, N., 2013. The role of 
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Paltriguera, L., Johnson, M.T., Parker, E.R., Bakker, D.C.E., Weston, K., 2019. 
Quantifying and valuing carbon flows and stores in coastal and shelf ecosystems in 
the UK. Ecosyst. Serv. 35, 67–76. 10.1016/j.ecoser.2018.10.013. 

MacDonald, M.A., de Ruyck, C., Field, R.H., Bedford, A., Bradbury, R.B., 2017. Benefits 
of coastal managed realignment for society: evidence from ecosystem service 
assessments in two UK regions. Estuar. Coast. Shelf Sci. 244, 105609. 10.1016/j. 
ecss.2017.09.007. 

C.J.T. Ladd et al.                                                                                                                                                                                                                               

https://catalogue.ceh.ac.uk/documents/5cc9ee72-ed88-4e71-bd8d-e3511bb9ed12
https://catalogue.ceh.ac.uk/documents/5cc9ee72-ed88-4e71-bd8d-e3511bb9ed12
https://doi.org/10.1016/j.geoderma.2022.116188
https://doi.org/10.1016/j.geoderma.2022.116188
https://doi.org/10.1002/esp.3290140108
https://doi.org/10.1016/S0277-3791(99)00034-7
https://doi.org/10.1038/nclimate3326
https://doi.org/10.1038/nclimate3326
https://doi.org/10.1038/srep34835
https://doi.org/10.1016/j.ecss.2013.11.022
https://doi.org/10.1016/j.envsoft.2012.09.011
https://doi.org/10.1016/S0016-7061(99)00003-8
https://doi.org/10.1016/j.ecss.2016.08.018
https://doi.org/10.1038/nclimate1970
https://digimap.edina.ac.uk
https://doi.org/10.5194/bg-16-425-2019
https://doi.org/10.5194/bg-16-425-2019
https://doi.org/10.1016/j.rse.2018.09.015
https://doi.org/10.1016/j.rse.2018.09.015
https://doi.org/10.1007/s10021-020-00520-9
https://doi.org/10.5194/soil-4-173-2018
https://doi.org/10.3389/fmars.2020.00403
https://doi.org/10.1016//j.yqres.2015.07.001
https://doi.org/10.2136/sssaj2001.1853
http://refhub.elsevier.com/S0016-7061(22)00495-5/h0095
http://refhub.elsevier.com/S0016-7061(22)00495-5/h0095
http://refhub.elsevier.com/S0016-7061(22)00495-5/h0095
https://soilmapper.org
https://doi.org/10.1016/j.oneear.2021.02.011
https://doi.org/10.1016/j.oneear.2021.02.011
https://cran.r-project.org/web/packages/automap/automap.pdf
https://cran.r-project.org/web/packages/automap/automap.pdf
https://doi.org/10.3389/fclim.2021.710546
https://doi.org/10.3389/fclim.2021.710546
https://doi.org/10.1111/gcb.13811
https://doi.org/10.1038/s41598-018-26948-7
https://doi.org/10.1038/s41467-018-05080-0
http://refhub.elsevier.com/S0016-7061(22)00495-5/h0135
http://refhub.elsevier.com/S0016-7061(22)00495-5/h0135
http://refhub.elsevier.com/S0016-7061(22)00495-5/h0135
http://refhub.elsevier.com/S0016-7061(22)00495-5/h0135
http://refhub.elsevier.com/S0016-7061(22)00495-5/h0140
http://refhub.elsevier.com/S0016-7061(22)00495-5/h0140
https://doi.org/10.1007/s10021-016-9972-3
https://doi.org/10.5194/bg-14-3763-2017
https://doi.org/10.1016/j.geoderma.2018.09.011
https://doi.org/10.1016/j.geoderma.2018.09.011
http://refhub.elsevier.com/S0016-7061(22)00495-5/h0160
http://refhub.elsevier.com/S0016-7061(22)00495-5/h0160
http://refhub.elsevier.com/S0016-7061(22)00495-5/h0160
http://refhub.elsevier.com/S0016-7061(22)00495-5/h0160
http://refhub.elsevier.com/S0016-7061(22)00495-5/h0160
http://refhub.elsevier.com/S0016-7061(22)00495-5/h0160
https://doi.org/10.1016/0016-7061(95)00011-C
https://doi.org/10.1016/0016-7061(95)00011-C
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1016/j.pgeola.2021.02.005
https://doi.org/10.1016/j.pgeola.2021.02.005
https://doi.org/10.1016/j.envsoft.2011.07.004
https://doi.org/10.1016/j.ecoinf.2010.12.003


Geoderma 428 (2022) 116188

15

Macreadie, P.I., Nielsen, D.A., Kelleway, J.J., Atwood, T.B., Seymour, J.R., Petrou, K., 
Connolly, R.M., Thomson, A.C., Trevathan-Tackett, S.M., Ralph, P.J., 2017a. Can we 
manage coastal ecosystems to sequester more blue carbon? Front. Ecol. Environ. 15, 
206–213. https://doi.org/10.1002/fee.1484. 

Macreadie, P.I., Ollivier, Q.R., Kelleway, J.J., Serrano, O., Carnell, P.E., Ewers Lewis, C. 
J., Atwood, T.B., Sanderman, J., Baldock, J., Connolly, R.M., Duarte, C.M., Lavery, P. 
S., Steven, A., Lovelock, C.E., 2017b. Carbon sequestration by Australian tidal 
marshes. Sci. Rep. 7, 44071. https://doi.org/10.1038/srep44071. 

Macreadie, P.I., Anton, A., Raven, J.A., Beaumont, N., Connolly, R.M., Friess, D.A., 
Kelleway, J.J., Kennedy, H., Kuwae, T., Lavery, P.S., Lovelock, C.E., Smale, D.A., 
Apostolaki, E.T., Atwood, T.B., Baldock, J., Bianchi, T.S., Chmura, G.L., Eyre, B.D., 
Fourqurean, J.W., Hall-Spencer, J.M., Huxham, M., Hendriks, I.E., Krause- 
Jensen, D., Laffoley, D., Luisetti, T., Marbà, N., Masque, P., McGlathery, K.J., 
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