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Abstract
Deconvolution is a challenging inverse problem, particularly in techniques that employ complex engineered point-
spread functions, such as microscopy with propagation-invariant beams. Here, we present a deep-learning method for
deconvolution that, in lieu of end-to-end training with ground truths, is trained using known physics of the imaging
system. Specifically, we train a generative adversarial network with images generated with the known point-spread
function of the system, and combine this with unpaired experimental data that preserve perceptual content. Our
method rapidly and robustly deconvolves and super-resolves microscopy images, demonstrating a two-fold
improvement in image contrast to conventional deconvolution methods. In contrast to common end-to-end
networks that often require 1000–10,000s paired images, our method is experimentally unsupervised and can be
trained solely on a few hundred regions of interest. We demonstrate its performance on light-sheet microscopy with
propagation-invariant Airy beams in oocytes, preimplantation embryos and excised brain tissue, as well as illustrate its
utility for Bessel-beam LSM. This method aims to democratise learned methods for deconvolution, as it does not
require data acquisition outwith the conventional imaging protocol.

Introduction
Deconvolution is a well-known problem in many fields of

engineering and science1–3. Specifically in computational
imaging, the problem of deconvolution is one of the accurate
reconstruction of the imaged object from data encoded by
the imaging system. This encoding, for instance through the
use of structured light fields and engineered point-spread
functions (PSF), can convey much greater information about
the imaged object than is possible with conventional ima-
ging4. Propagation-invariant beams, in particular, have
extended the field of view and resolution5,6, and have
demonstrated deeper penetration into scattering tissues7,8.

These methods have pushed the envelope of many impor-
tant trade-offs, such as those between the resolution, con-
trast, field of view, imaging speed and photodamage.
Specifically, Airy and Bessel beams have enabled rapid

multiscale imaging at exceptional resolution in light-sheet
microscopy (LSM)5,9. These beam shapes can be gener-
ated using accessible optical components and imple-
mented in simple optical geometries5,10,11. Despite their
superior performance5,9, they are yet to be broadly
adopted by the microscopy community due to the prac-
tical challenges of deconvolution. This is because these
PSFs are often burdened with side-lobe structures, which
challenge contemporary deconvolution algorithms, more-
so than a Gaussian blur, especially in the presence of poor
signal-to-noise (SNR), scattering and speckle3. As a con-
sequence, LSM with propagation-invariant beams often
fails to produce image contrast that exceeds conventional
Gaussian-beam LSM at focus.
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To overcome these major barriers, in this paper, we
introduce experimentally unsupervised deconvolution based
on deep learning that is capable of robustly and rapidly
deconvolving and super-resolving microscopy images with
arbitrary PSFs. Recently, deep learning has emerged as a
method to solve a variety of inverse problems in micro-
scopy4,12. For instance, deep learning has enabled super-
resolution from single images13,14. These networks are
typically trained using a supervised end-to-end approach,
where the network learns directly the transformation from
low-resolution inputs to high-resolution ground truths,
which are paired and co-registered experimentally using
higher-resolution acquisition modes or even across mod-
alities14, typically requiring several 1000–10,000s of images.
Image enhancement methods have further been extended to
3D using efficient dense residual network architectures15,16.
Whilst such networks would likely be capable of addressing
deconvolution of PSFs from propagation-invariant beams,
the onus is placed on the user to acquire sufficient data that
matches structured PSFs with high-resolution ground truths
through modifications to imaging instruments and extended
experiments. Further, many such methods learn, non-dis-
criminately, the inversion of the physical system and the
properties of the samples contained in the training set4. This
may lead to poor generalisation and, thus, poor performance
when a trained network is applied to samples outwith the
training parameters17. Thus, the user is required train
bespoke networks for each system and sample imaged,
which is a present and major barrier to broad adoption.
Recent networks have also addressed the onus of extensive

ground truth matching. For instance, unpaired high-
resolution ground truths were digitally degraded to esti-
mate low-resolution network inputs, such that subsequent
undersampled acquisitions may be reconstructed closer to
the original image quality16, enabling thigh-throughput
imaging. Alternatively, super-resolution ground truths
could be generated computationally using conventional
algorithms, such as SRRF16. In similar “model-based”
approaches, the output of deconvolution using a back-
projection algorithm was used to train a network to speed
up processing18, and high-resolution xy cross-sections in
microscopy have been used as a ground truth target to
deconvolve xz sections to achieve isotropic volumes19. In
these methods, deep learning has provided an exceptional
speed-up and has reduced data requirements. However,
these approaches still either require experimental ground
truths or are unlikely to exceed the quality of the original
numerical algorithms used to train them.
Experimentally unsupervised networks, trained using

simulated ground truth data, have emerged for image
recovery problems12. Such methods have been instrumental
in phase unwrapping20, where ground truths are intractable
to obtain experimentally, and have recently enabled the
reconstruction of structured illumination microscopy21.

CARE microscopy has proposed the use of simulated
ground truths that resembled expected sample content, such
as microtubules and secondary granules, showing superior
deblurring to conventional deconvolution methods13. In this
paper, we extend this work, and illustrate that a generalised
network for deconvolution of engineered PSFs can be
trained with good performance without any measurement or
prediction of ground truths. We achieve this by training a
network that is informed by physics priors, i.e., a priori
knowledge of the physics of the imaging system, and mini-
mising content priors, such as the predictions of what the
image content should look like4,22. This physics-informed
learning has emerged to reduce the need for experimental
training data and to direct training towards generalisation
that is agnostic of the samples being imaged4,12, bridging the
gap between conventional algorithms and data-driven end-
to-end networks. In this paper, we follow the inspiration of
such networks and make use of three key priors: (1) we
make use of the known PSF of the imaging system to gen-
erate simulated paired data that is consistent with images
that can be generated by the experiment; (2) the generated
images are controlled in their spatial and spatial-frequency
content, thus, provide control over the sparsity expected in
the network outputs; and (3) we use experimental images to
guide reconstruction towards the perceptual quality and
power-spectral content expected in the imaging system.
Importantly, our method is entirely experimentally

unsupervised, i.e., it does not require experimental ground
truths, and may be trained rapidly on a single light-sheet
volume, including the one that is desired to be deconvolved.
Our network is a simple approach to deconvolution with a
known PSF that mirrors the utility of common algorithms
such as Richardson–Lucy deconvolution. We demonstrate
that the learned approach is superior to iterative deconvo-
lution methods in its ability to achieve a more symmetric
deconvolved PSF, a 3–5 dB% increased peak signal-to-noise
ratio, and can be performed rapidly at 0.2 s per widefield
image. Further, we illustrate that our method is robust to
noise and is threefold more resistant to model mismatch,
which is advantageous in the presence of misalignment or
aberrations. We validate our method experimentally on
LSM using an Airy beam in calibration beads, auto-
fluorescent mouse oocytes and embryos, and excised mouse
brain tissue. We supplement this validation with demon-
strations in multiphoton LSM with the commonly used
Bessel beam for developmental biology. The method gen-
eralises well, learning primarily the inversion of the imaging
operator, which we demonstrate by training only a single
network for each beam shape, and applying it to all of the
samples we subsequently image. Our approach to deep
learning makes the use of structured light fields and
deconvolution highly accessible as it does not require
acquisition outwith the conventional imaging protocol.
Towards this, we illustrate its use in an openly available
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dataset, and provide the deep-learning code as open source
to facilitate broad evaluation of this approach among the
imaging community.

Results
Network design
Figure 1 illustrates the architecture of our method under

training in the context of the LSM setup. The network
architecture is described in detail in “Materials and meth-
ods”, and briefly summarised here. We perform deep
learning based on a generative adversarial network (GAN)23

and several tuned training loss functions (TLFs). The
inverse problem, i.e., the transformation between an image
encoded with a structured PSF (LR) to a high-resolution
estimate of the ground truth, is learned using a Generator
(G) network, based on a 16-layer residual network
(ResNet)24 (Supplementary Notes 1 and 4). Concurrently,
another Discriminator (D) network (PatchGAN25) is trained
to identify network outputs (DL) and real ground truths
(GT). We have found that this adversarial training leads to
the learning of strong image features that are consistent
with the GT and that are difficult to capture using pixel-
wise TLFs (Supplementary Note 3), which is consistent with
the previous investigations26.

Figure 1a illustrates the LSM geometry (see “Materials and
methods” for details). An Airy light field is generated using a
nematic spatial light modulator (SLM) in diffractive mode,
encoding the appropriate cubic phase profile (the Fourier
transform of the Airy function). The SLM enables precise
control of the field intensity and phase in illumination. The
desired pupil phase function (Fig. 1c), i.e., the spatial Fourier
transform of the beam cross-section at focus, is projected
onto the SLM (Supplementary Note 14). In this way, it is
trivial to estimate the PSF of the LSM by combining the
Fourier transform of the pupil, evaluated at the spatial
coordinates established by the various lenses, and the
diffraction-limited Gaussian spot size of the detection. Here,
we train and perform deconvolution in 2D, in the cross-
sectional plane of the illumination and detection objective
(Fig. 1a, inset (1)). This plane includes the PSF structure of
the propagation-invariant light fields, and corresponds to the
lowest resolution plane of the system. In this geometry,
training and deconvolution in 2D is a close approximant to a
3D model, whilst remaining computationally accessible to
consumer hardware (Supplementary Note 8).
During a single training iteration, a batch of simulated

images consistent with the LSM is fed into G. These images
comprise two domains: a sparse collection of points, and

1

FT

1st order

0th order

L5

L1

NF

WP

ObjB

A

BS
SLM

PH

L2L3L4
ObjI

ObjD

NF

BF

TL

CAM

SF

488 nm

Galvo

x ′

z ′

y

a

PupilIllumination
PSF

c

LR

R
ea

l

GTDL

+ +

S
im

V

b

DG

+

+

x16

LR DL

Sparse Speckle

Bases

π–π10

x

z

Per

Adu

L1

Fig. 1 Light-sheet microscopy system and physics-informed learned deconvolution training. a Optical geometry of the system. Insets marked
by (1) show the optical and physical positioning of the sample, which are denoted using the x′z′ and xz coordinates, respectively. b Deep-learning
method, consistent with c the physics of beam shaping using a spatial light modulator (SLM). Obj B, I, D: objectives for beam expansion, illumination
and detection, respectively. A 488-nm laser source is filtered using a notch filter (NF), half-wave plate (WP), pinhole (PH) and aperture (A). L1-5: lenses.
BS: beamsplitter. The SLM shapes the illumination field in diffraction mode to match the pupil function in (c), which is filtered using a spatial filter (SF)
and scanned as a light sheet using a galvonometer-driven mirror. Sample fluorescence filtered using a bandpass filter (BF) and a notch filter (NF), and
imaged using a tube lens (TL) onto the camera (CAM). Deep learning learns from simulated images generated from sparse and speckle bases and the
known PSF, and the real images captured by the CAM. During training, the generator (G) learns from a combination of L1 pixel loss, adversarial loss
from the discriminator (D) and perceptual loss from the perceptual loss network (V)

Wijesinghe et al. Light: Science & Applications          (2022) 11:319 Page 3 of 15



speckle (Fig. 1b). Network inputs and their ground truths
are formed, respectively, by convolving the images with the
system PSF and a Gaussian spot set to 1=

ffiffiffi
2

p
of the dif-

fraction limit of the objectives. The sparse points provide
strong gradients for the network to learn the PSF shape.
Speckle is a Fourier-transform pair to a uniformly dis-
tributed random phase and a Gaussian spectral amplitude.
Thus, speckle images encode a wide spatial-frequency
content with low sparsity. This pushes the network to
prioritise physical learning (i.e., the transformation by the
PSF) over content learning (i.e., the expectation of what
microscopy images should look like), which benefits gen-
eralisation. During training, the network outputs are com-
pared to the ground truths using the Discriminator
(adversarial loss), and using L1-norm error (pixel loss).
Concurrently, a random selection of experimental images
are processed by G. The inputs and outputs of the network
are compared using a pre-trained perceptual loss network
(VGG-1627), V (Fig. 1b), which focuses on the conservation
of salient image content28 (Supplementary Note 2). The
addition of this TLF leads to the preservation of the power-
spectral density of experimental images, which is an
important prior29, and is effective at eliminating network
artefacts. The combined loss of G is the linear combination
of the adversarial, pixel and perceptual losses. The Dis-
criminator is trained using conventional means25, and
training is alternated evenly between G and D.
Our method and architecture result in a robust and

generalised model. Importantly, and in contrast with most
learned image enhancement methods12, we demonstrate
this by training only a single network for each beam shape
using only one experimental low-resolution volume of
mouse embryos (~200 images) and no experimental
ground truths. We apply this network, non-discriminately,
to a wide array of samples, namely fluorescent beads
samples, other embryos, oocytes, turbid brain tissue and
zebrafish embryos.

Learned deconvolution
Here, we illustrate that DL can achieve superior perfor-

mance to numerical methods, specifically the well-known
Richardson–Lucy (RL) algorithm30,31 and RL with added
total variation regularisation. This is because, firstly, we
forego the common assumption that noise is a uniform and
randomly distributed Poisson process3. Secondly, neural
networks naturally use sparsity in images to improve
reconstruction32. Finally, as we will demonstrate, our net-
work is less prescriptive than RL deconvolution and can
tolerate greater model mismatch, for instance, when the
theoretical and experimental PSFs differ. This means that
our network is likely to preserve its good performance even
if the microscope is not perfectly aligned.
First, we quantify performance with simulated data on

several propagation-invariant beam types. Figure 2a

evaluates deconvolution in images simulated by convolving a
blastocyst embryo GT with PSFs generated by the Airy,
Bessel and Gaussian beams. The networks were trained
solely on a collection of sparse and speckle bases with no
knowledge of the blastocyst images. The generation of the
various beam shapes is described in “Materials and meth-
ods” and in Supplementary Note 14. Briefly, the Airy beams
are generated by a cubic phase in the pupil plane, with a
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scale-invariant α parameter that corresponds to the gradient
of the cubic function. The Bessel beams are formed by a ring
in the pupil plane, parameterised by a ring’s radius and
cross-sectional width. We later focus on the Airy and
Gaussian beams in the experiment as they are readily gen-
erated by our LSM configuration.
From Fig. 2a, it is evident that when using propagation-

invariant beams, light-sheet images (LR) exhibit substantial
side lobes. Here, the LR images include randomly dis-
tributed Gaussian (thermal) and Poisson (shot) noise. The
conventional RL algorithm is able to reduce side lobes and
present a spatially consistent image to the GT. However,
RL-deconvolved images fail to present a visual quality
matching that of the GT or the high-resolution Gaussian
beam. Despite losing the structure, side lobes persist as
elevated background intensities. We further include a
common implementation of RL deconvolution with total
variation regularisation (TV), which exhibits a similar
performance to RL but with reduced high-frequency noise.
The improvement from DL is also consistent when com-
pared to other direct and iterative deconvolution algo-
rithms3, which we illustrate in Supplementary Note 6.
Beam shapes marked by a black bar in Fig. 2a carry

similar spatial resolution. DL is capable of deconvolving LR
images much closer to the GT, eliminating the side lobes
and presenting a Gaussian-like PSF. This is especially clear
in simulated images of beads in Supplementary Note 5.
Figure 2b quantifies the performance of these methods
using the peak signal-to-noise ratio (PSNR) over 240 simu-
lated images. It is evident that DL substantially outperforms
RL and TV deconvolution, achieving a 30–33 dB PSNR,
whilst RL and TV range in 25–30 dB (similar to other
deconvolution algorithms in Supplementary Note 6). We
note that a 3-dB change in PSNR is approximately a two-
fold change in noise. DL further outperforms RL con-
sistently with increasing noise and with added background
fluorescence (Supplementary Note 7). It is important to
note that convergence of RL iterations leads to high image
noise and early truncation is often used as a spatial reg-
ulariser. Here, and for all further RL deconvolution, we have
truncated RL to six iterations specifically to maximise
the PSNR parameter for a best-case comparison. Further,
we used a TV regularisation parameter of 0.001 for the
most visually compelling recovery.
A major challenge in deconvolution and in deep learning

with priors is model mismatch4. Here, this arises when the
theoretical PSF differs from that of the imaging system, for
instance, due to misalignment or aberrations. Figure 2c
illustrates the robustness of our method to model mismatch.
Specifically, we have generated LR images corresponding to
Airy beams with α values in the range of 1 to 3. However, to
deconvolve the images, we have used a network trained on
an Airy beam with an α= 1. Similarly, we have used a
single Airy (α= 1) PSF as a reference for RL and TV

deconvolution. The matched training and testing case of
α= 1 was used as a reference. Figure 2c shows the relative
degradation in the PSNR (to the known GT) as greater
mismatch is introduced. It is clear that DL tolerates much
greater mismatch than RL and TV deconvolution, on the
order of threefold improvement (2.7–3.8 times) to the error
metrics. While blind deconvolution methods may overcome
some issues of mismatch, we have observed that blind
deconvolution struggles to converge when the PSF is
structured (i.e., it is not monotonically decreasing from a
central peak) and when images are not spatially sparse,
which is consistent with the previous observations3.
Figure 3 extends the demonstration of our DL method to

experimental data of 200-nm beads. Using the SLM, we
readily generate a Gaussian illumination (Fig. 3a), and
compare it to the Airy beam with α parameters of 0.5, 1 and
2, respectively (Fig. 3b–d). The red bar indicates the Rayleigh
range of each beam shape, which corresponds to the field of
view available for LSM. The acquired LSM images are
labelled as LR, and are deconvolved using DL and RL
deconvolution. Here, we exclude TV regularisation for
clarity due to its emphasis on sharp discontinuities. For each
beam shape, the network was trained on one acquisition of
tissue data (see “Materials and methods”) and applied to all
experimental data included in this work. The diameter of the
200-nm beads is below the sub-diffraction limit, thus,
represent the system response or the PSF. We can see that
DL offers superior image quality to RL deconvolution. This
is clear in the transverse profile of the beads marked by the
red box. The Airy function can be seen in the LR profiles.
The RL deconvolution removes the structure of the side
lobes, but fails to substantially reduce the envelope, leading
to an asymmetric PSF. The superior performance of DL is
evident by the sharp and more Gaussian-like PSF.
In addition to decoding the structure, DL leads to a

super-resolution of individual beads beyond the dif-
fraction limit of the light field. We can quantify this
performance over many beads in the field of view using
the autocorrelation function (Fig. 3e), which represents
the shift invariance and relates to the depth or axial LSM
resolution. From the Wiener–Khinchin theorem, we
know that the ACF of intensity is a Fourier pair to the
power-spectral density, i.e., the square of the modula-
tion transfer function (MTF). Figure 3f shows the MTF
of the Gaussian LSM and the Airy (α= 1) beams com-
pared to their theoretical MTF, as well as the RL and DL
deconvolutions. We can see that the MTF in the
acquired images match theory well (dashed lines). The
dotted line marks the 5% threshold of the MTF, which
corresponds approximately to the full width at half-
maximum (FWHM) of the PSF. We note that the
intersection of the Gaussian and Airy beam MTFs at the
5% threshold indicates their capacity to carry similar
high-frequency content. However, this information is
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not well conveyed by the Airy images in the spatial
coordinate space as illustrated by the widened ACF. As
expected, RL deconvolution decodes Airy images (LR) to
improve the ACF width with little benefit seen in the
MTF. Remarkably, DL expands the MTF beyond that of
the Gaussian beam, and extends the crossing of the 5%
threshold by a factor of

ffiffiffi
2

p
. The improvement in the

resolution is consistent with the simulation of the HR
training data at

ffiffiffi
2

p
of the LR images. In principle, it is

possible to tailor the resolution improvement based on
the choice of the priors. However, larger resolution
improvements are met with lowered contrast at lower
spatial frequencies. Our choice of a

ffiffiffi
2

p
improvement

was motivated empirically by visually inspecting the
network outputs. This improved performance is also
evident by the rapidly decreasing ACF. The FWHM
resolution was quantified as 2.6 μm in the Gaussian and
Airy images, and 1.7 μm with the use of DL. This
exemplifies the power of deep learning as a method to
solve inverse problems that leverages sparsity, learned
noise statistics and the imaging operator to both decode
information and extend the bandwidth limit.

DL has provided the Airy LSM a
ffiffiffi
2

p
enhancement in

resolution over a substantially wider FOV of up to 372 μm
vs. the 27-μm FOV of the Gaussian beam, a greater than
13-fold improvement. The accessible and rapid inference
of DL, the wide FOV and the ease of generating
propagation-invariant beams confers exemplary potential
to multiscale imaging applications. To demonstrate this,
we explore our DL method in mouse oocytes and
embryos, and in excised mouse brain tissue.

Oocytes and embryos
Rapid minimally invasive imaging of embryos is impor-

tant for diagnostics and may aid in the monitoring of
embryo development following in vitro fertilisation
(IVF)33,34. LSM is particularly promising in this area due to
its rapid volumetric imaging, reduced photodamage and
low cost compared to confocal microscopy33. Our DL-
assisted Airy LSM is capable of performing cross-sectional
imaging of the entire depth of an embryo in one shot, i.e.,
within a single acquisition on the camera. Further, it is able
to convey high-resolution morphological and functional
information from autofluorescence.
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Figure 4 demonstrates the performance of DL
deconvolution in mouse blastocyst-stage embryos. The
blastocyst is the final stage of preimplantation embryo
development, and comprises two sub-populations of
cells: the inner cell mass (ICM) which forms the foetus,
and the trophectoderm (TE) which leads to the devel-
opment of all extra-embryonic tissues, including the
placenta35. Figure 4a shows a cross-section through a
blastocyst imaged with an Airy (α= 1) beam and
deconvolved using RL and DL methods. The same
region was imaged using a Gaussian beam (G). We can
see that DL readily decodes the Airy PSF from the LR
image, and matches and exceeds the image quality
presented by the Gaussian LSM. We illustrate this fur-
ther by taking a profile marked by the red triangles. In
Fig. 4b, we can see that quantitatively the DL profile
matches that of the Gaussian GT, while the RL fails to
match the relative intensity profile. It is important to
mention that the LR profile does not match that of G.
This is because the Airy PSF structure (here, extending
top-right to bottom-left in the images) has distinct
oscillating side lobes. Thus, the local intensity varies
non-monotonically with distance from the scattering
object. Deconvolution must be performed on such
images to decode the underlying quantitative fluores-
cence distribution, which in our case is done well with
DL compared to RL. This can be further evidenced in
similar cross-section in Supplementary Note 9. Using
Fourier analysis (Supplementary Note 10), the spatial
resolution was quantified as 5.0 μm in LR, 4.9 μm in RL,
3.8 μm in G, and 3.4 μm in DL images.
We now focus on demonstrating the advantage of

using the Airy beam LSM with deep-learning deconvo-
lution compared to the conventional Gaussian LSM,
which represents the most popular embodiment of LSM.
Figure 4c shows several cross-sections from different

blastocyst-stage embryos imaged with a Gaussian LSM
(G) compared to matching regions imaged with an Airy
LSM with DL, hereafter referred to as “Airy DL” for
succinctness. Visually, we see an improvement in con-
trast and resolution in the DL images. Line profiles
marked by the red triangles and inset into the figures
further illustrate that DL is able to distinguish auto-
fluorescent features with a higher spatial resolution. We
attribute these bright features to active mitochondria
performing high levels of metabolic activity and, thus,
generating a higher amount of intracellular fluorophores,
such as flavin adenine dinucleotide (FAD)36. This is
consistent with the excitation and emission filters in our
LSM setup. Resolution, intensity and count of these
features may be an important metric for IVF success34. It
is clear that the added resolution may assist the counting
of individual sharp features, and the FOV in-depth
enabled doing so in a single-camera snapshot.
Figure 5 compares a Gaussian LSM to Airy LSM with

DL in mouse cumulus–oocyte complexes (COCs). COCs
comprise of an oocyte at the centre, surrounded by much
smaller cumulus cells. Imaging of the COC may provide
an opportunity to assess the health of the oocyte prior to
IVF36. The larger field of view encompassing multiple
COCs emphasises the major advantage of using an Airy
beam, namely, the extended depth of field (DOF).
Figure 5a, b shows the widefield cross-sections and
Fig. 5c emphasises the image enhancement of Airy DL
over conventional Gaussian LSM in the identification and
inspection of cumulus cells in COCs. These sections are
maximum intensity projections over a 50 μm range to
emphasise COC morphology. Figure 5a, b marks the
focus and DOF of the illumination beams by the red
triangle and bar, respectively. It is clear that much of the
Gaussian cross-sections are out of focus. Airy DL is able
to maintain the COC volume in the focal region and
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Fig. 4 Cross-sectional images of mouse blastocyst-stage embryos. a Airy LSM image (LR) is deconvolved with Richardson–Lucy (RL) and deep-
learning (DL) deconvolution, and compared with a Gaussian LSM (G). b Intensity profiles marked by the red arrows in (a). c Cross-sections of
blastocyst-stage embryos imaged with a Gaussian LSM (G) and compared to an Airy LSM with deep-learning deconvolution (DL). Profiles marked by
the red triangles are displayed as insets. Scale bar is 50 μm
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demonstrates clear morphological features and enhanced
resolution, both in and out of focus. In the Fig. 5c, we can
see the clear demarcation of cumulus cells, even in
regions well beyond the focus available to the Gaussian
beam. In focus, we have quantified the resolution (Sup-
plementary Note 10) to be 4.3 μm for LR, 3.9 μm for
Gaussian and 3.1 μm for Airy DL images.
The volumetric and widefield imaging capacity of

Airy DL LSM is further detailed in Supplementary Note
11. It shows enface (xy) sections corresponding to Fig. 5
and illustrates an oocyte arrested at the metaphase II
stage of meiosis. During metaphase, the chromosomes
are aligned and held in place by the meiotic spindle
along a plane termed the metaphase plate. This can be
seen by the white line that separates two darker sphe-
rical regions that depict the spindle barrel. This mor-
phology is particularly prominent in the Airy DL
images, and can be confirmed for all oocytes by
inspecting the volume (see “Data availability”). This is
an essential event for an oocyte undergoing nuclear
maturation, necessary for fertilisation. As described for
the blastocyst-stage embryo, the small bright regions
within the oocyte are indicative of metabolic activity of
mitochondria through FAD autofluorescence. The
multitude of morphological features enhanced by Airy
DL over a wide FOV and depth range underlines its
potential for label-free and low-phototoxic imaging for
embryo health and IVF success. Revealing the source
and implications of these markers would be of con-
siderable interest for future bioimaging studies.

Brain
LSM is a powerful emerging technique for neu-

roscience37. It is well positioned to address multiscale
imaging at depth, combining imaging at the resolutions
and timescales of synapses, over tailored fields-of-view
corresponding to whole brains of model organisms or
regions of pathogenesis. However, the penetration depth
is a present challenge, especially in single-photon mod-
alities. The Airy light field has several properties that are
of great benefit in this area. Beyond its propagation
invariance, Airy light fields are self-healing. If a portion of
the field is blocked or scattered, the beam cross-section
will reform into its expected Airy function. This has led to
several observations that Airy light fields penetrates on
the order of 30% deeper into tissues7,38.
Towards this, we demonstrate our technique in

excised mouse brain that expresses enhanced YFP in
parvalbumin-positive (PV+) neurons. Figure 6a, b
shows enface (xy) sections with depth taken from
cortical areas, including the hippocampus. These
regions were selected from a larger acquired volume,
indicated in the cross-sectional xz image (Fig. 6c). To
the right of each xy image are zoomed-in regions cor-
responding to the areas marked by the white dashed
rectangles. The xy sections visualise the imaging per-
formance in-depth and focus on regions of interest
selected by the plane of brain dissection. Because PV+
neurons provide somatic inhibition in the hippo-
campus39 and the neocortex40, we hypothesise that
axonal boutons in perisomatic regions (around the cell
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Fig. 5 Cross-sectional LSM images of mouse cumulus–oocyte complexes (COCs) with Gaussian and Airy beams with deep-learning
deconvolution. a, b Widefield cross-sectional maximum intensity projections (range: 50 μm). c Zoomed-in regions of cumulus cells (i–iv)
emphasising the enhancement of Airy DL over Gaussian LSM from corresponding regions in (a, b) marked by red rectangles. The red line on the
left of (a, b) shows the theoretical DOF of the Gaussian and Airy beams. The red triangle marks the focal position. Scale bars are a, b 50 μm and
c 10 μm
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body) clearly mark PV+ neurons in Airy DL images as
bright rings (red asterisks). While PV+ neurons are
clearly seen, axonal terminals (bright small spots)
around the cell bodies (large dark circles) are also
visible in other neurons in lower numbers. Close to the
surface, the enhancement in contrast and resolution of
the Airy DL, for instance when inspecting the areas
marked by the red asterisk, matches that seen in the
blastocysts (Fig. 4). We have quantified the resolution
(Supplementary Note 10) to be 7.1 μm for LR, 5.3 μm
for Gaussian and 4.5 μm for Airy DL images. Image
quality in the Gaussian LSM rapidly deteriorates with
depth, showing substantial blurring and loss of con-
trast. However, image quality is preserved in-depth
with Airy DL LSM, distinguishing sharper fluorescent
features. This is particularly evident at 52 μm depth in
the regions marked by the red triangles. The capacity to
image optically thick sections of the brain with high
resolution and contrast enables the inspection of axo-
nal connections with minimal damage, in contrast with,
for instance, microtome sectioning needed for con-
ventional fluorescence microscopy. Airy DL LSM pro-
vides attractive opportunities for detailed studies of
morphology, neurodegeneration and broader patho-
genesis in neuroscience.

Multiphoton LSM with a Bessel beam
We have demonstrated our DL method with Airy LSM

because of the facile control of the PSF, enabling Gaussian
LSM ground truths. However, our method is also readily
adaptable to deconvolution of other PSFs, such as the Bessel
beam which is common to many micropscopy methods6,8

and underpins lattice LSM methods9. Towards this, we
briefly demonstrate the application of DL to a multiphoton
LSM system using a Bessel beam, generated using an axicon
lens11. The setup and data acquisition methods are pre-
sented in detail in ref. 41. Figure 7 illustrates the low-
resolution Bessel images (LR) deconvolved with a DL net-
work trained on a manually matched Bessel PSF. Figure 7a
clearly illustrates the capacity to remove the side-lobe
structures generated by the Bessel beam. The resolution
improvement in Fig. 7a can be quantified as the FWHM of
the PSF profiles. Resolution improved from 2.3 μm in LR to
1.6 μm in DL images, which is consistent with the
improvements in the Airy LSM (Fig. 3).
Figure 7b–f illustrates DL deconvolution in images of a

Zebrafish embryo, which is a common model organism for
developmental and cardiovascular studies41. Figure 7b–e
shows the performance of DL in different sections of the
Zebrafish corresponding to regions marked in Fig. 7f.
Image intensities were normalised to the background
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Fig. 6 Excised brain tissue from a mouse expressing enhanced YFP in parvalbumin-positive (PV+) neurons. a, b Enface sections in-depth
imaged using a Gaussian and Airy LSM with deep-learning deconvolution. Sections correspond to the a hippocampus and b deeper cortical regions.
Insets to the right correspond to the regions marked by a dashed rectangle. Red asterisks mark PV+ neurons. Red triangles mark regions that
illustrate enhanced performance from the combination of an Airy beam and deep learning at depth. c Cross-sectional image (z is depth) showing the
regions displayed in (a) and (b). Scale bars are 100 μm
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intensity. It is evident that DL images present sharper
contrast and, importantly a reduction in a haze from the
side-lobe structures generated by the Bessel beam (e.g.,
Fig. 7c) in both the zoomed-in regions and the maximum
intensity projections in Fig. 7f The spatial resolution was
improved from 2.6 μm in LR to 1.9 μm in DL images
(Supplementary Note 10).
In Supplementary Note 12, we further demonstrate the

broad applicability of our method by deconvolving data
made openly available by others. Specifically, timelapses of
developing Medaka larvae imaged using multiphoton
LSM with a Bessel beam, provided by Takabezawa et al.42,
as open source. The full timelapse videos are available as
Supplementary Movies S1 and S2.

Discussion
We have demonstrated that experimentally unsupervised

deconvolution using physics priors in lieu of experimental
ground truths can achieve powerful and generalised
deconvolution, with performance exceeding that of con-
ventional deconvolution methods. The improvements of DL
we compared in detail to RL deconvolution, including with
TV regularisation, which are among the top performing and
commonly used algorithms3 (Supplementary Note 6).
Compared to typical end-to-end approaches, our method
simplifies the requirements to solely images that would be

collected in a standard experiment and, importantly, does
not require investment in new imaging hardware and
experiments solely for training the network. This physics-
informed learning is a marked contrast to data-driven
approaches13–15, which derive their performance, in part,
from sample-specific priors, thus, requiring training for each
class of sample. The use of physics theory to train neural
networks has emerged in recent works12, including in cor-
recting for scattering43 and enabling deconvolution of spa-
tially varying PSFs for diffuser-based imaging44. It is likely
that more complex physics simulations, such as those
including the simulation of aberration and scattering, will
lead to better-performing networks12. Accurate physics
simulations have already demonstrated substantial
improvements in computational methods in light-field
microscopy45, phase unwrapping20 and structured illumi-
nation microscopy21. Further, aberrations from alignment
incorporated in a network via Zernike polynomials have
improved phase-retrieval46. In future work, more complex
priors may also be matched with the capacity for deeper or
volumetric network training, or training with multi-step
networks to address individual image enhancement tasks, as
demonstrated by RCAN15 and DSP-Net16 networks. Whilst
our method could be readily extended to 3D deconvolution,
3D network training is memory-intensive and requires costly
graphics hardware (Supplementary Note 13). In LSM, for
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instance, the accuracy of 2D deconvolution was only 2–3%
poorer than that of 3D (Supplementary Note 8), which is an
acceptable trade-off for accessible and rapid training and
inference.
Many image restoration methods rely on enhancing a

finite amount of information carried by an image, which is
naturally an underdetermined inverse problem. As such,
constraints must be placed on inversion to achieve a unique
and accurate result30. For example, regularisation schemes,
such as total variation or L2-norm minimisation, have been
used with deconvolution. Deep learning achieves this
exceptionally well using feature learning by generating
outputs that are most similar to expected images, whilst
excluding those solutions that are unlikely to be encoun-
tered in microscopy. Specifically, we can consider deep
learning to comprise physical and content learning4,22.
Physical learning encourages consistency with the trans-
formation by the imaging system, for instance, the blur
from the finite bandwidth of optical elements or the noise in
detectors. Content learning encourages output images to
resemble features observed in the ground truths related to,
for instance, the type of samples or spectral contrast
expected. While physics-informed learning simplifies
training and enables broad generalisation by favouring
physical learning4,12, the addition of content learning
through accurate experimental ground truths offers the
greatest constraints to optimisation and inversion tasks.
Thus, content learning will likely still offer the greatest
performance, which is evident in cross-modality restora-
tion14,15. Though, care must be taken to ensure that accu-
rate image content is recovered through adequate
generalisation for a particular type of sample17 and, further,
broader generalisation leads to poorer performing networks
for a particular sample set. The challenge in paired data
acquisition further limits the broad uptake of such methods,
which may become only feasible for routine imaging of
samples with fixed optical instruments, for instance, with
commercially available microscopes. We discuss these
methods in more detail in Supplementary Note 13. It may
be possible to augment data-driven approaches with physics
priors to reduce the volume of data required and optimise
the balance in physical vs. content learning12. In future
studies, a detailed comparison of simulation-based and
data-driven methods would be instrumental in determining
the right balance between physical and content learning.
Our DL method is particularly useful for LSM with

propagation-invariant Airy and Bessel beams, decoding
image content with a high contrast, over an extended
field of view and additionally provide super-resolution
capacity. Specifically, we show that DL is superior to
conventional deconvolution in its ability to achieve a
more symmetric deconvolved PSF, a PSNR of 30–33 dB
compared to 25–30 dB for RL deconvolution, and a
threefold improvement in the tolerance to a

mismatched PSF. Importantly, we also show that the
combined Airy DL method exceeds the performance
of a conventional Gaussian LSM, exceeding both the
resolution and the contrast, as illustrated by the MTF
(Fig. 4f and Supplementary Note 10). It is important to
note that the use of propagation-invariant beams leads
to a reduction in contrast due to the distribution of
power into the side lobes5, establishing a trade-off in
resolution, contrast and DOF. Scattering through tur-
bid biological tissues and background fluorescence can
lead to a reduction in resolution and contrast (Sup-
plementary Note 10). DL, however, has extended both
resolution and contrast compared to the Gaussian
LSM, which reduces one of the key downsides of
propagation-invariant beams and offers new opportu-
nities for rapid multiscale bioimaging, such as in
embryology and neuroscience.
Further, the support of DL by contemporary hardware,

such as the GPU, promise ultrafast and even real-time
processing with a low barrier-to-entry. Airy and Bessel
beams can be generated readily using cheap optical
components5,10,11. The combination of DL with com-
pact and inexpensive LSM may provide a powerful and
accessible tool for bioimaging. This may further demo-
cratise other precision LSM setups, such as the lattice
light sheet9 and more broadly other microscopic
approaches that employ deconvolution.

Conclusion
We have demonstrated learned deconvolution of

propagation-invariant beam shapes in LSM, leading to the
recovery of high-resolution and high-contrast information
over extended fields-of-view, with superior performance to
conventional deconvolution methods. Our method is further
distinguished from many other learned methods in that
it is experimentally unsupervised and requires no high-
resolution ground truths, which has led to good perfor-
mance and generality. The application to embryology and
neuroscience shows attractive potential across a range of
bioimaging studies. Our method, which is provided to the
reader as open source, may enable ready implementation
accessible to many imaging setups.

Materials and methods
Network
Let us consider LSM imaging as a linear process described

by y=H(x)+ ϵ, where x is the ground truth (GT), y is the
recorded image (LR), H is the imaging operator that we seek
to invert, and ϵ is some noise. The goal of deep learning is to
train a network, G, such that it provides a good estimate of
the ground truth (DL) from LR images, x̂ ¼ GðyÞ. This is
achieved by minimising a training loss function (TLF), LG,
i.e., argminG LGf g. We implement this process using a
generative adversarial network (GAN)23, where G is trained
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concurrently with an adversarial discriminator network, D,
that seeks to maximise its ability to discriminate between x
and x̂. D features in LG , and leads G towards optimising the
adversarial min–max game23.
The discriminator, D, is trained to minimise the fol-

lowing TLF based on least-squares47:

LD ¼ 1
2
E½ðDðxÞ � δT Þ2� þ 1

2
E½ðDðGðyÞÞ � δFÞ2�

where δT and δF are the “true” and “false” labels, and E is
the expected value evaluated over the entire training
batch. We utilise one sided smooth labels, i.e.,δT= 0.9 and
δF= 0 to prevent D from over-saturating learning from a
particular strong feature. D is based on the PatchGAN
architecture25 (Supplementary Note 1).
The Generator, G, is trained to minimise a linear

combination of three TLFs:

LG ¼ LAdv þ λLL1 þ γLPer

which are the adversarial, L1-norm and perceptual losses,
respectively. Weights λ and γ are chosen such that LAdv and
LL1 have approximately equal contribution to LG at the
end of training (here, λ= 30). Perceptual loss acts as a
regulariser, and was manually chosen as 1 × 10−4 (Supple-
mentary Note 2). G is based on a 16-layer residual network
(ResNet)24, inspired by SRGAN26 (Supplementary Note 1).
We further use multi-objective training48, i.e., we train two

independent discriminators, D1 and D2. Using each dis-
criminator, we evaluate a least-squares adversarial loss47:

LAdv1;2 ¼ E½ðD1;2ðGðyÞÞ � δT Þ2�

The minimum of the two is used to update the gradients
of G:

LAdv ¼ min LAdv1 ;LAdv2f g

Multi-objective training prevents a singe D and G being
locked into a min–max game over a single strong feature.
In such a case, the second discriminator becomes
momentarily free of the min–max game, and is able to
reestablish a good training gradient.
Pixel loss using L1-norm establishes spatial consistency

between DL (G(y)) and GT (x) images, and is given as:

LL1 ¼ E½jjGðyÞ � xjj1�

A further perceptual loss is provided with a pre-trained
and publicly available VGG-1627 network (V). Inference of
an image with V leads to its layers possessing some
quantification of image content that is less dependent on
its precise pixel values28. Specifically, we compare LR and
DL image content by extracting intermediate features of

their V inference:

LPer ¼ E
X
i

ðV iðGðy0ÞÞ � V iðy0ÞÞ2
" #

where i are the selected layers of V.
It is important to note that LAdv and LL1 are calculated

using the DL and GT images that are simulated based on
the known light propagation in the LSM (Fig. 1). Real
acquired LR images feature solely in LPer . Perceptual loss,
in this instance, plays an important role in directing G
towards good performance in real tissues. If a pixel-wise
loss was to be used instead, it would act to make DL images
look like LR images, which is counter-productive. Instead,
perceptual loss provides two important features (Supple-
mentary Note 2). First, it focuses on preserving content
that is present in the LR images, namely, the distribution of
spectral density, contrast and brightness, and the low-
resolution content that should be unaffected by the
deconvolution process. Second, it flags network artefacts,
such as fixed pattern noise, with strong increases the loss.
This makes it a valuable regularisation parameter to bridge
mismatch between the content that can be efficiently
simulated, and real samples. Perceptual loss has previously
been valuable for phase-retrieval in microscopy49.

Training and inference
Training was performed using simulated LR images and

their GT, and real LR images of tissue. All inputs and DL
outputs were 64 × 64 pixel grayscale images. LR images
were simulated by convolving a sparse or speckle bases
(Fig. 1b) with a known PSF. The PSF was evaluated by
superimposing a Gaussian detection beam orthogonal to
an illumination beam. The beam propagation models are
described in the subsequent sections. GT images were
simulated by convolving the same basis used for LR with a
Gaussian spot at 1=

ffiffiffi
2

p
the diffraction limit. Real LR

images were retrieved from an LSM volume of a blas-
tocyst in an automated fashion by identifying the brightest
region of interest in each cross-section and applying a
random spatial shift. Simulated LR and GT images were
normalised to a range of (0.1, 0.9) to avoid clipping. The
real LR images were scaled to the minimum and max-
imum intensity of the entire LSM volume.
Training for each beam type was performed using a

total of 512 sparse and 512 speckle simulations, and 215
LR images from a blastocyst volume. Of these, a random
selection of 32 sparse and 32 speckle LR images were used
for validation. Due to the adversarial nature of GAN
training, no early stopping was used. This is because
adversarial loss is not an indication of convergence. We
used a batch size of 8 and trained for 300 epochs.
Gradient-based optimisation was performed using the
Adam optimiser with learning rates of 1 × 10−4 and
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4 × 10−4 for G and D, respectively, and hyper-parameters
β1= 0.5 and β2= 0.999. Training was performed using
PyTorch and an NVidia RTX 2060, and took ~2.5 h.
Inference on widefield images was performed by a
64 × 64 sliding window with an 8-pixel overlap to avoid
boundary issues. Inference took 3ms for a single LR
image, which corresponds to ~0.5 s for a widefield LSM
image. We replicated training and inference on an NVidia
RTX 3090, which reduced the total training time to 1.2 h,
and inference time to 1ms and 0.2 s for single and
widefield sections, respectively. This is comparable to RL
deconvolution, which took 0.3 s for a widefield image or
0.5 s with TV regularisation.

Richardson–Lucy deconvolution
Richardson–Lucy deconvolution was performed in 2D

(and 3D in Supplementary Note 8) using a Python
interface to ImageJ, which also includes common imple-
mentations, such as using total variation regularisation, as
part of its Ops framework.

Imaging system
The imaging setup is illustrated in Figure 1a. A 488-nm

laser source (TOPTICA, Germany) was used for illumina-
tion. The beam was expanded with an objective (ObjB,
RMS10X, 0.25NA, 10X, Olympus) and lens (L1, f: 150mm),
and apodised using an aperture. The beam was filtered
spectrally using a notch filter (λc: 480 nm, Δλ: 17 nm) and
spatially using a pinhole (15-μm diameter) at the objective
focus. A half-wave plate controlled polarisation to maximise
the efficiency of the spatial light modulator (SLM, X10468,
Hamamatsu, Japan). Phase and amplitude were controlled
by using the SLM in diffraction mode. The desired phase
was projected onto the SLM, and the desired intensity was
modulated by a phase ramp, realising a blazed grating. The
first-order diffraction was spatially filtered using an aperture
(SF). The beam was relayed by lenses (L2–L5, f: 250, 100,
50, 75mm) and the illumination objective (ObjI, 54-10-12,
0.367NA 4X, Navitar). The light sheet was generated by a
galvo scanner (Galvo, Thorlabs, NJ) in the Fourier plane.
Fluorescence was collected by the detection objective
(ObjD, 54-10-12, 0.367NA 4X, Navitar) and relayed to the
camera (CAM, Iris 15, Teledyne Photometrics, AZ) by a
tube lens (TL, f: 200mm). Fluorescence was filtered using a
bandpass filter (BP, λc: 532 nm, Δλ: 50 nm) and a notch
filter (NF, λc: 488 nm).

Acquisition
LSM volumes were acquired by placing the sample at the

focus of the objectives and laterally scanning using a
motorised transducer (M-230.10, Physik Instrumente Ltd).
The scanning position was synchronised to the camera
acquisition, and images were acquired in 0.5-μm steps. Due
to the geometry illustrated in the inset in Figure 1a, lateral

scanning was at 45° to the detection plane (also detailed in
ref. 38). Due to this shearing, acquired image stacks were
transformed to the physical Cartesian coordinate space
using in-house built software (MATLAB, MA) based on
interpolation. All LSM images presented in this paper were
sampled with an isotropic 0.85-μm pixel size.

Structured light fields
The description of the beams used in this work is provided

in Supplementary Note 14. Briefly, all beam shapes are
described in the pupil plane. The Gaussian beam is descri-
bed by its 1/e2 waist size (w0). The Airy beam is described by
the 1/e2 waist size (w0) of a Gaussian intensity and a scale-
invariant α parameter that represents the cubic phase
modulation rate. The Bessel beam is described by a ring with
a 1/e2 waist size (w0) and a ring radius (rr). Table 1 lists the
beam parameters used in this work.

Phantoms
Phantoms were utilised to characterise the system’s PSF

and demonstrate DL performance. Phantoms were fabri-
cated from 200-nm diameter green fluorescent micro-
spheres (G200, Duke Scientific, CA) manually mixed with
1.5% agarose. The samples were pipetted into and cured
in a 3D-printed sample holder. The sample holder fea-
tured a thin fluorinated ethylene propylene (FEP) window
for imaging and index matching (RI: 1.344).

Mouse oocytes and embryos
Female (21–23 days) CBA x C57BL/6 first filial (CBAF1)

generation mice were obtained from Laboratory Animal
Services (University of Adelaide, Australia) and main-
tained on a 12 h light:12 h dark cycle with rodent chow
and water provided ad libitum. All studies were approved
by the University of Adelaide’s Animal Ethics Committee
(M-2019-097) and were conducted in accordance with
the Australian Code of Practice for the Care and Use of
Animals for Scientific Purposes.
Female mice were administered intraperitoneally (i.p.)

with 5 IU of equine chorionic gonadotropin (eCG; Folli-
gon, Braeside, VIC, Australia), followed by 5 IU human
chorionic gonadotrophin (hCG, i.p.; Kilsyth, VIC, Aus-
tralia) 48 h later. Mice were culled by cervical dislocation
14 h post-hCG administration and the oviducts carefully
removed. Cumulus–oocyte complexes (COCs) were har-
vested by gently puncturing the ampullae of the oviduct
using a 29-gauge insulin syringe with needle (Terumo
Australia Pty Ltd, Australia). These COCs were either
fixed immediately in 4% paraformaldehyde (PFA) or co-
incubated with sperm for IVF. In vitro fertilisation (IVF)
occurred through co-incubation of matured COCs with
sperm in Research Fertilisation medium (ARTLab Solu-
tions, Australia) for 4 h at 37 °C. The resulting pre-
sumptive zygotes were transferred into Research Cleave
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medium (ARTLab Solutions, Australia) under paraffin oil
and allowed to develop to the blastocyst stage (96 h post-
IVF) at 37 °C in 5% O2.
Cumulus–oocyte complexes (COCs) and blastocyst-

stage embryos were fixed in 4% PFA for 30 min at room
temperature, followed by washes in PBV (phosphate
buffer saline; PBS containing 0.3 mg/ml of polyvinyl
alcohol; PVA). Fixed COCs and blastocyst-stage embryos
were mounted under oil on a 3D-printed sample holder
with an FEP window for imaging.

Mouse brain tissue
All animal experiments in Figure 6 were performed in

accordance with the United Kingdom Animals (Scien-
tific Procedures) Act of 1986 Home Office regulates and
approved by the Home Office (PPL70/8883). Detailed
procedures are described elsewhere50. Briefly, a female
adult (8.4 months old) PV-Cre::Ai32 mouse (PV-Cre,
JAX008069; Ai32, JAX012569) was used. This mouse
expressed channelrhodopsin-2 (ChR2) tagged with
enhanced YFP (EYFP) in parvalbumin-positive (PV+)
neurons. The mouse was deeply anaesthetised with a
mixture of pentobarbital and lidocaine, and perfused
transcardially with physiological saline followed by 4%
paraformaldehyde/0.1 M phosphate buffer, pH 7.4.
After an overnight post-fixation in the same fixative, the
brain was immersed in 30% sucrose in phosphate-
buffered saline (PBS) at 4 °C for cryoprotection. The
brain was cut into 1-mm thick coronal sections and
kept in PBS until imaged. The imaging was focused on
the cortex and hippocampus regions.

Multiphoton LSM
The data and setup used for multiphoton LSM experi-

ments on the zebrafish were used with permission from
our previous work41.
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