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Abstract

Let pn denote the nth prime, and consider the function 1/n 7→ 1/pn which maps the reciprocals

of the positive integers bijectively to the reciprocals of the primes. We show that Hölder continuity

of this function is equivalent to a parametrised family of Cramér type estimates on the gaps between

successive primes. Here the parametrisation comes from the Hölder exponent. In particular, we

show that Cramér’s conjecture is equivalent to the map 1/n 7→ 1/pn being Lipschitz. On the other

hand, we show that the inverse map 1/pn 7→ 1/n is Hölder of all orders but not Lipschitz and this is

independent of Cramér’s conjecture.
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1 Cramér’s conjecture, Hölder maps, and our main result

Understanding the asymptotic properties of the primes is a fundamental and multifaceted problem in

number theory. Let {pn}∞n=1 denote the set of primes where pn is the nth prime number and pn+1 > pn

for all n. Recall the Prime Number Theorem (PNT), which describes the asymptotic growth rate of pn,

and Rosser’s Theorem, which bounds the nth prime by

n

(
log n+ log log n− 3

2

)
≤ pn ≤ n

(
log n+ log log n− 1

2

)
for all n ≥ 20. For further discussion of these results see [3, 6] and references therein.

A related problem is to consider the gaps between successive primes, see [2, 4, 5, 7]. Cramér’s

conjecture asserts that there should exist a constant C > 0 such that

pn+1 − pn ≤ C(log pn)2

for all n ≥ 1. In particular, using Rosser’s theorem, Cramér’s conjecture gives

pn+1 − pn ≤ C ′(log n)2
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for all n ≥ 1 and a different constant C ′. The main objective of this paper is to connect Cramér’s

conjecture to a problem concerning Hölder exponents of the natural map between the reciprocals of the

positive integers and the reciprocals of the primes. This approach is motivated by various problems in

metric geometry where one tries to understand a given metric space by identifying those spaces which

are in the same bi-Lipschitz equivalence class. For example, bi-Lipschitz equivalence implies coincidence

of familiar notions of fractal dimension such as Hausdorff, box and Assouad dimension. To this end we

consider the bi-Hölder continuity of the map 1/n 7→ 1/pn mapping the reciprocals of the positive integers

bijectively to the reciprocals of the primes. Our first result proves this map has a Hölder inverse of all

orders. Recall that a map f : X → Y is Hölder (of order α ∈ (0, 1)) if there exists a constant c ≥ 1 such

that

|f(x)− f(y)| ≤ c|x− y|α

for all x, y ∈ X. We assume here that X and Y are bounded subsets of Euclidean space, but this is not

necessary in general. The map f is bi-Hölder if it is Hölder and has a Hölder inverse and Lipschitz if it

satisfies the Hölder condition but with the optimal order α = 1.

Theorem 1.1. For all ε > 0 there exists an integer N(ε) such that, for all m > n > N(ε), we have∣∣∣∣ 1

pn
− 1

pm

∣∣∣∣ ≥ 1

6
·
∣∣∣∣ 1n − 1

m

∣∣∣∣1+ε .
We note that Theorem 1.1 is sharp in the sense that it cannot be ‘upgraded’ to a Lipschitz bound.

For example, results on bounded gaps between primes, e.g. [7], show that

lim inf
n→∞

(pn+1 − pn) <∞.

In particular, applying this result together with the PNT yields

lim inf
n→∞

1
pn
− 1

pn+1

1
n −

1
n+1

= lim inf
n→∞

n(n+ 1)

pnpn+1
· (pn+1 − pn) = 0.

This proves that the map 1/pn 7→ 1/n is not Lipschitz.

Hölder continuity of the forward map is more subtle. Our next result shows that if m and n are

‘sufficiently separated’, then a bi-Lipschitz estimate can be derived, up to a logarithmic error.

Theorem 1.2. For all 0 < ε < 1 there exist an integer N(ε) such that for all n ≥ N(ε) and m > 1+ε
1−εn,

we have
1

(1 + ε)2
·
(

1

n
− 1

m

)
1

logm
≤ 1

pn
− 1

pm
≤ (1 + ε) ·

(
1

n
− 1

m

)
1

log n
.

It follows immediately from Theorem 1.2 that the forward map is actually Lipschitz continuous in the

range m ≥ 2n for sufficiently large n.

Corollary 1.1. For all 0 < ε < 1 there exists an integer N(ε) such that for all n ≥ N(ε) and m > 1+ε
1−εn,

we have
1

pn
− 1

pm
≤ 1 + ε

logN(ε)

(
1

n
− 1

m

)
.

Hölder continuity of the forward map over the full range is related to a parametrised family of Cramér

type bounds on prime gaps. This is the content of Theorems 1.3-1.4.

Theorem 1.3. Suppose that for ε ≥ 0, there exists a constant c(ε) and an integer N(ε) ≥ 20 such that,

for all n > N(ε), ∣∣∣∣ 1

pn
− 1

pn+1

∣∣∣∣ ≤ c(ε) ∣∣∣∣ 1n − 1

n+ 1

∣∣∣∣1−ε .
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Then, for all sufficiently large n, we have

pn+1 − pn ≤ 2c(ε)(nε log n)2.

Conversely, the weaker forms of Cramér’s conjecture imply the forward map is Hölder of all orders.

Theorem 1.4. Suppose that for ε ≥ 0, there exists a constant c(ε) and an integer N(ε) ≥ 20 such that,

for all n > N(ε),

pn+1 − pn ≤ c(ε)(nε log n)2.

Then, for all sufficiently large n, we have∣∣∣∣ 1

pn
− 1

pn+1

∣∣∣∣ ≤ c(ε) ∣∣∣∣ 1n − 1

n+ 1

∣∣∣∣1−ε .
Moreover, for all n < m < 2n with n sufficiently large, we have∣∣∣∣ 1

pn
− 1

pm

∣∣∣∣ ≤ c(ε) ∣∣∣∣ 1n − 1

m

∣∣∣∣1−2ε .
Combining Theorems 1.3, 1.4 and Corollary 1.1, we note that the ε = 0 case shows that Cramér’s

conjecture is equivalent to the map 1/n 7→ 1/pn being Lipschitz.

In light of Theorem 1.4, it is natural to ask for which ε > 0 are these weak Cramér bounds known to

hold. Note that Bertrand’s postulate may be regarded as the first step in this line of research, verifying

the case ε = 1. To the best of our knowledge the state of the art here is provided by Baker, Harman

and Pintz [1] who proved that the interval [n, n + n0.525] always contains a prime for sufficiently large

n. In particular, combining this with Theorem 1.4, Corollary 1.1 and Theorem 1.1 yields the following

corollary.

Corollary 1.2. For all ε > 0, there exists a constant C = C(ε) > 0 such that, for all m > n ≥ 1,

C−1
∣∣∣∣ 1n − 1

m

∣∣∣∣1+ε ≤ ∣∣∣∣ 1

pn
− 1

pm

∣∣∣∣ ≤ C ∣∣∣∣ 1n − 1

m

∣∣∣∣0.475 .
Proof. The result of Baker, Harman and Pintz [1] together with the PNT implies that for some constant

C ′ > 0 we have

pn+1 − pn ≤ p0.525n ≤ C ′(n0.525/2 log n)2

for sufficiently large n. Applying Theorem 1.4 (with ε = 0.525/2 and so 1−2ε = 0.475) proves the desired

upper bound for sufficiently large n and n < m < 2n. Corollary 1.1 takes care of the case when m ≥ 2n.

Theorem 1.1 provides the lower bound for sufficiently large n. Finally, the result follows by ensuring C

is chosen large enough to also deal with the small n.

Theorem 1.1 is proved in Section 2. Theorem 1.2 is proved in Section 3. Finally, Theorems 1.3 and

1.4 are proved in Section 4.

2 Proof of Theorem 1.1: Hölder continuity of inverse map

In this section, we prove Theorem 1.1, which uses Rosser’s theorem and the convex version of Jensen’s

inequality.
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Proof of Theorem 1.1. Fix ε > 0. For sufficiently large n, we have

2(log n) log(n+ 1) ≤ (n(n+ 1))
ε
2 .

Thus, by Rosser’s theorem, for sufficiently large n∣∣∣∣ 1

pn
− 1

pn+1

∣∣∣∣ ≥ 1

pnpn+1
≥ 1

n(n+ 1)
· 1

2(log n) log(n+ 1)
≥
(

1

n(n+ 1)

)1+ ε
2

=

∣∣∣∣ 1n − 1

n+ 1

∣∣∣∣1+ ε
2

.

We now consider two cases, assuming that n is sufficiently large for the above to hold.

Case 1. n < m ≤ 2n. It follows from the convex version of Jensen’s inequality that∣∣∣∣ 1

pn
− 1

pm

∣∣∣∣ =

∣∣∣∣ 1

pn
− 1

pn+1

∣∣∣∣+ · · ·+
∣∣∣∣ 1

pm−1
− 1

pm

∣∣∣∣
≥
∣∣∣∣ 1n − 1

n+ 1

∣∣∣∣1+ ε
2

+ · · ·+
∣∣∣∣ 1

m− 1
− 1

m

∣∣∣∣1+ ε
2

= (m− n) · 1

m− n
·

(∣∣∣∣ 1n − 1

n+ 1

∣∣∣∣1+ ε
2

+ · · ·+
∣∣∣∣ 1

m− 1
− 1

m

∣∣∣∣1+ ε
2

)

≥ (m− n) ·
(

1

m− n

)1+ ε
2

·
(

1

n
− 1

m

)1+ ε
2

=

(
1

m− n

) ε
2

·
(

1

n
− 1

m

)1+ ε
2

.

Since n < m ≤ 2n, we have(
1

m− n

) ε
2

·
(

1

n
− 1

m

)1+ ε
2

=

(
1

m− n

) ε
2

·
(

1

n
− 1

m

)− ε
2

·
(

1

n
− 1

m

)1+ε

≥
(

1

n
− 1

m

)1+ε

.

Case 2 m > 2n. It follows from Rosser’s Theorem that for sufficiently large n∣∣∣∣ 1

pn
− 1

pm

∣∣∣∣ ≥ ∣∣∣∣ 1

(3/2)n log n
− 1

2n log 2n

∣∣∣∣ ≥ 1

6
· 1

n log n
≥ 1

6
·
(

1

n

)1+ε

≥ 1

6
·
∣∣∣∣ 1n − 1

m

∣∣∣∣1+ε .
Taking case 1 and 2 together proves the result.

3 Proof of Theorem 1.2: Lipschitz continuity of forward map

We first provide an estimate for gaps between primes which will be used in the subsequent proof. We

remark that the estimate is false if m and n are not assumed to be sufficiently separated. For example,

results on bounded gaps between primes, e.g. [7], show that

lim inf
n→∞

(pn+1 − pn) <∞.

In particular, pn+1 − pn cannot be bounded below by any function which grows without bound, such as

log n.

Proposition 3.1. For all 0 < ε < 1, there exists an integer N(ε) such that for all n ≥ N(ε) and
1+ε
1−εn < m, we have

(m− n) log n ≤ pm − pn ≤ (1 + ε)(m− n) logm.

Proof. Fix 0 < ε < 1. By Rosser’s Theorem there exists an integer N(ε) such that for any n > N(ε), we

have

n (log n+ (1− ε) log log n) ≤ pn ≤ n (log n+ log log n)
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and

1 + log n ≤
(

1 +
ε

4

)
log n, log log n+

1

log n
≤ ε

2
log n.

Then, for any m ≥ 1+ε
1−εn, we obtain

(m logm− n log n) + ((1− ε)m log logm− n log log n) ≤ pm − pn

and

pm − pn ≤ (m logm− n log n) + (m log logm− (1− ε)n log log n) .

Consider the upper bound. Let c1(ε) = 3
2 −

ε
2 > 1 noting that

m log logm− (1− ε)n log log n ≤ c1(ε) (m log logm− n log log n) ,

and
c1(ε)− 1

c1(ε)− 1 + ε
=

1− ε
1 + ε

≥ n log log n

m log logm
.

The lower bound can be handled similarly. Let c2(ε) = 1−ε
2 ∈ (0, 1) noting that

(1− ε)m log logm− n log log n ≥ c2(ε)(m log logm− n log log n),

and
1− c2(ε)− ε

1− c2(ε)
=

1− ε
1 + ε

≥ n log log n

m log logm
.

Then, by mean value theorem applied to x log x and x log log x, we obtain

(1 + log n)(m− n) ≤ m logm− n log n ≤ (1 + logm)(m− n)

and (
log log n+

1

log n

)
(m− n) ≤ m log logm− n log log n ≤

(
log logm+

1

logm

)
(m− n).

Thus for the upper bound, we have

pm − pn ≤ (m− n)(1 + logm) + c1(ε)(m− n)

(
log logm+

1

logm

)
≤ (1 + ε) · (m− n) logm,

Similarly, for the lower bound, we have

pm − pn ≥ (m− n)(1 + log n) + c2(ε)(m− n)

(
log log n+

1

log n

)
≥ (m− n) log n,

completing the proof.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Fix ε > 0. By appealing to Rosser’s Theorem we may choose an integer N ′(ε) ≥
N(ε) where N(ε) is the constant from Proposition 3.1 such that, for any n ≥ N ′(ε), n log n ≤ pn ≤
(1 + ε)n log n.

Consider n ≥ N ′(ε) and m ≥ 1+ε
1−εn. For the upper bound, it follows from Proposition 3.1 that

1

pn
− 1

pm
=

pm − pn
pmpn

≤ (1 + ε) · (m− n) logm

mn logm log n
≤ (1 + ε)

(
1

n
− 1

m

)
1

log n
.

The lower bound is similar. It also follows from Rosser’s Theorem and Proposition 3.1 that

1

pn
− 1

pm
=
pm − pn
pmpn

≥ 1

(1 + ε)2
· (m− n) log n

mn logm log n
=

1

(1 + ε)2
·
(

1

n
− 1

m

)
1

logm

completing the proof.
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4 Proofs of Theorems 1.3-1.4: Hölder continuity of forward map

and Cramér type estimates

Theorem 1.3 shows that Hölder continuity of the forward map 1/n 7→ 1/pn implies a weak form of

Cramér’s conjecture. This follows easily from Rosser’s theorem.

Proof of Theorem 1.3. It follows from our assumption that for all n > N(ε),

pn+1 − pn
pnpn+1

≤ c(ε)
(

1

n(n+ 1)

)1−ε

.

Therefore, applying Rosser’s Theorem, for sufficiently large n

pn+1 − pn ≤ c(ε) · pnpn+1 ·
(

1

n(n+ 1)

)1−ε

≤ 2c(ε) · n2(log n)2 ·
(

1

n

)2−2ε

≤ 2c(ε) · (nε log n)2

as required.

Theorem 1.4 provides a converse to the above, and requires a little more to prove.

Proof of Theorem 1.4. Applying Rosser’s Theorem, for sufficiently large n,

pn ≥ n log n.

Fix ε ≥ 0. It follows from this estimate and our assumption that for sufficiently large n∣∣∣∣ 1

pn
− 1

pn+1

∣∣∣∣ =
pn+1 − pn
pnpn+1

≤ c(ε) · (nε log n)2

n · (n+ 1) · log n · log(n+ 1)

≤ c(ε) ·
(

1

n(n+ 1)

)1−ε

= c(ε)

∣∣∣∣ 1n − 1

n+ 1

∣∣∣∣1−ε .
Moreover, we can “upgrade” this estimate for n < m < 2n using the concave version of Jensen’s

inequality. We obtain∣∣∣∣ 1

pn
− 1

pm

∣∣∣∣ =

∣∣∣∣ 1

pn
− 1

pn+1

∣∣∣∣+ · · ·+
∣∣∣∣ 1

pm−1
− 1

pm

∣∣∣∣
= (m− n) · 1

m− n
·
(∣∣∣∣ 1

pn
− 1

pn+1

∣∣∣∣+ · · ·+
∣∣∣∣ 1

pm−1
− 1

pm

∣∣∣∣)
≤ c(ε) (m− n) · 1

m− n
·

((
1

n
− 1

n+ 1

)1−ε

+ · · ·+
(

1

m− 1
− 1

m

)1−ε
)

≤ c(ε) (m− n) ·
(

1

m− n

)1−ε(
1

n
− 1

m

)1−ε

= c(ε) (m− n)
ε ·
(

1

n
− 1

m

)ε
·
(

1

n
− 1

m

)1−2ε

≤ c(ε)
(

1

n
− 1

m

)1−2ε

completing the proof.
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