

Streamlined constraint reasoning: an automated approach

from high level constraint specifications

Patrick Spracklen

A thesis submitted for the degree of PhD
at the

University of St Andrews

2022

Full metadata for this item is available in
St Andrews Research Repository

at:
https://research-repository.st-andrews.ac.uk/

Identifier to use to cite or link to this thesis:

DOI: https://doi.org/10.17630/sta/212

This item is protected by original copyright

https://research-repository.st-andrews.ac.uk/
https://doi.org/10.17630/sta/212

Abstract

Constraint Programming (CP) is a powerful technique for solving large-scale

combinatorial (optimisation) problems. Solving a problem proceeds in two

distinct phases: modelling and solving. Effective modelling has a huge impact

on the performance of the solving process. Even with the advance of modern

automated modelling tools, search spaces involved can be so vast that problems

can still be difficult to solve. To further constrain the model a more aggressive

step that can be taken is the addition of streamliner constraints, which are not

guaranteed to be sound but are designed to focus effort on a highly restricted

but promising portion of the search space. Previously, producing effective

streamlined models was a manual, difficult and time-consuming task. This

thesis presents a completely automated process to the generation, search and

selection of streamliner portfolios to produce a substantial reduction in search

effort across a diverse range of problems.

First, we propose a method for the generation and evaluation of streamliner

conjectures automatically from the type structure present in an Essence

specification. Second, the possible streamliner combinations are structured

into a lattice and a multi-objective search method for searching the lattice of

combinations and building a portfolio of streamliner combinations is defined.

Third, the problem of "Streamliner Selection" is introduced which deals with

selecting from the portfolio an effective streamliner for an unseen instance.

The work is evaluated by presenting two sets of experiments on a variety

of problem classes. Lastly, we explore the effect of model selection in the

3

context of streamlined specifications and discuss the process of streamlining

for Constrained Optimization Problems.

Candidate's declaration

I, Patrick Spracklen, do hereby certify that this thesis, submitted for the degree of PhD, which is
approximately 38,000 words in length, has been written by me, and that it is the record of work
carried out by me, or principally by myself in collaboration with others as acknowledged, and
that it has not been submitted in any previous application for any degree. I confirm that any
appendices included in my thesis contain only material permitted by the 'Assessment of
Postgraduate Research Students' policy.

I was admitted as a research student at the University of St Andrews in January 2017.

I received funding from an organisation or institution and have acknowledged the funder(s) in
the full text of my thesis.

Date Signature of candidate

Supervisor's declaration

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations
appropriate for the degree of PhD in the University of St Andrews and that the candidate is
qualified to submit this thesis in application for that degree. I confirm that any appendices
included in the thesis contain only material permitted by the 'Assessment of Postgraduate
Research Students' policy.

Date Signature of supervisor

Permission for publication

In submitting this thesis to the University of St Andrews we understand that we are giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the work not
being affected thereby. We also understand, unless exempt by an award of an embargo as
requested below, that the title and the abstract will be published, and that a copy of the work
may be made and supplied to any bona fide library or research worker, that this thesis will be
electronically accessible for personal or research use and that the library has the right to
migrate this thesis into new electronic forms as required to ensure continued access to the
thesis.

I, Patrick Spracklen, confirm that my thesis does not contain any third-party material that
requires copyright clearance.

12/8/22

12/8/22

The following is an agreed request by candidate and supervisor regarding the publication of this
thesis:

Printed copy

No embargo on print copy.

Electronic copy

No embargo on electronic copy.

Date Signature of candidate

Date Signature of supervisor

12/8/22

12/8/22

Underpinning Research Data or Digital Outputs

Candidate's declaration

I, Patrick Spracklen, understand that by declaring that I have original research data or digital
outputs, I should make every effort in meeting the University's and research funders'
requirements on the deposit and sharing of research data or research digital outputs.

Date Signature of candidate

Permission for publication of underpinning research data or digital outputs

We understand that for any original research data or digital outputs which are deposited, we are
giving permission for them to be made available for use in accordance with the requirements of
the University and research funders, for the time being in force.

We also understand that the title and the description will be published, and that the
underpinning research data or digital outputs will be electronically accessible for use in
accordance with the license specified at the point of deposit, unless exempt by award of an
embargo as requested below.

The following is an agreed request by candidate and supervisor regarding the publication of
underpinning research data or digital outputs:

No embargo on underpinning research data or digital outputs.

Date Signature of candidate

Date Signature of supervisor 12/8/22

12/8/22

12/8/22

7

Funding

This work was supported by: EPSRC funding award EP/N509759/1

Research Data/Digital Outputs access statement

Research data underpinning this thesis is available at: https://doi.org/10.17630/

9805a859-d08d-4390-b986-7fce98f7fe70

https://doi.org/10.17630/9805a859-d08d-4390-b986-7fce98f7fe70
https://doi.org/10.17630/9805a859-d08d-4390-b986-7fce98f7fe70

Contents

Contents i

1 Introduction 1

1.1 Brief introduction of the toolchain . 3

1.2 Phase 1: Streamliner Generation . 5

1.3 Phase 2: Portfolio Construction . 6

1.4 Phase 3: Streamliner Selection and Application 6

1.5 Thesis Statement . 9

1.6 Publications . 9

1.7 Contributions . 11

1.8 Thesis Structure . 12

2 Background And Related Work 14

2.1 Constraint Programming . 14

2.2 Modelling Languages . 16

2.2.1 OPL . 16

2.2.2 Minizinc & Zinc . 16

2.2.3 Essence . 17

2.3 Automated Modeling Tools . 18

2.3.1 O’CASEY . 18

2.3.2 CONACQ . 18

2.3.3 Constraint Seeker and Model Seeker 19

2.3.4 Conjure & SavileRow . 19

2.4 Reformulation of the model . 20

i

ii CONTENTS

2.4.0.1 Symmetry breaking . 20

2.4.0.2 Implied Constraints . 22

2.4.0.3 Dominance Breaking Constraints 23

2.4.0.4 Streamlining Constraints 24

2.5 Summary . 29

3 From Conjectures to Streamlined Specifications 30

3.1 Utilizing Essence . 30

3.1.1 Utilizing Structure . 31

3.1.2 Multiple Formulations . 31

3.1.3 Automated Symmetry Breaking . 32

3.2 Streamliner Generation . 34

3.2.1 Conjecture-forming Rules . 34

3.2.2 Streamlining by Example . 35

3.2.3 Domain Attributes & Softened Rules 38

3.2.4 Application on CSPlib . 42

3.3 Modeling Pipeline . 44

3.4 Problems . 46

3.5 Summary . 50

4 Generating and Selecting Training Instances 51

4.1 Automated Instance Generation . 51

4.1.1 Instance Requirements . 53

4.1.2 Irace Search . 55

4.2 Streamliner Footprint Analysis . 57

4.3 Training Set Construction . 59

4.4 Summary . 61

5 Identifying Effective Combinations of Streamliners 62

5.1 Combining Streamliners . 62

5.2 Providing Structure: Definition of the Streamliner Lattice 64

CONTENTS iii

5.2.1 Exploiting Structure: Pruning the streamliner lattice 64

5.2.1.1 Pruning based upon tags 64

5.2.1.2 Pruning based upon failure 65

5.2.1.3 Pruning Softened Streamliners 66

5.3 Searching for a Streamliner Portfolio . 67

5.3.1 Focused Search . 67

5.3.2 Uninformed Search . 68

5.3.3 Defining a reward . 69

5.3.4 Exploration vs Exploitation . 71

5.3.5 MOMCTS . 72

5.3.6 Improving Portfolio Strength Using Hydra 76

5.3.7 The risk of overfitting . 78

5.4 Summary . 80

6 The Streamliner Selection Problem 81

6.1 Independent Portfolio Construction . 81

6.2 Constructed Portfolios . 83

6.3 Portfolio Analysis . 86

6.3.1 BACP-Chuffed . 86

6.3.2 CoveringArray-Chuffed . 87

6.3.3 Transshipment-Lingeling . 89

6.4 Streamliner Selection . 91

6.4.1 Single Best Solver . 91

6.4.2 Streamliner Scheduling . 91

6.4.2.1 Lexicographic Selection Methods 92

6.4.2.2 Dynamic Portfolio Filtering 93

6.4.3 Automated Algorithm Selection Methods 93

6.5 Summary . 94

7 Experimental Results 95

7.1 Experimental Setup . 95

iv CONTENTS

7.1.1 Algorithm Selection Setup . 96

7.2 Frequency and Magnitude of Search Reduction 97

7.3 A Practical Setting . 101

7.3.1 Streamliner Scheduling with fixed cutoff time 102

7.3.2 Portfolio Approach . 103

7.4 Results: Further Analysis . 108

7.4.1 Node Reduction and Solver Performance 109

7.4.2 SavileRow Formulation . 109

7.4.3 Savile Row Formulation Time . 112

7.4.4 Instance-oblivious Streamliner Application 113

7.4.5 Instance-specific Streamliner Application 114

7.5 Summary . 114

8 Streamlining for Constrained Optimization 115

8.1 Problems . 115

8.2 Searching for a Streamliner Portfolio . 117

8.3 Pruning the Streamliner Portfolio . 119

8.4 Selecting from the Streamliner Portfolio . 120

8.4.1 Lexicographic Selection Methods 121

8.4.2 UCB Streamliner Selection . 122

8.5 Experimental Setting . 123

8.6 Results . 124

8.6.1 UCB Streamliner Selection: Discussion 127

8.6.2 Time Allocated to the Streamliner Portfolio: Discussion 129

8.7 Summary . 129

9 Model Portfolios 131

9.1 From Essence Specifications to Constraint Models 131

9.2 Model Portfolios . 135

9.3 Model Racing . 135

9.3.1 ρ-Capping . 136

CONTENTS v

9.3.2 Racing using statistical tests . 136

9.3.3 Adaptive Capping . 137

9.3.4 Multi-Level Model Generation . 138

9.4 Experimental Results . 138

9.5 Portfolio Analysis . 142

9.5.1 Balanced Academic Curriculum Problem (BACP) 142

9.5.2 Fixed Length Error Correcting Codes (FLECC) 142

9.5.3 Car Sequencing . 143

9.5.4 Transshipment . 143

9.6 Summary . 144

10 Conclusions 145

10.1 Future Work . 147

10.1.1 Online Learning . 147

10.1.2 Performance Based Selection . 147

10.1.3 Streamlining from the other end: A Constraint Acquisition Approach148

10.1.4 Harder instances for portfolio construction 148

10.1.5 Generic Portfolio Prediction . 149

10.1.6 Solution Counting in streamlined subspaces 149

Bibliography 150

List of Figures 167

1Chapter One

Introduction

Challenging combinatorial problems, from domains such as planning, scheduling, packing
or configuration, often form problem classes: families of problem instances related by a
common set of parameters. Constraint Programming (CP) [170] provides a declarative
framework where a problem is defined as a set of decision variables, each having an
associated finite domain, and constraint expressions are added to limit the assignments
that are allowed in a feasible solution. In general it can be split up into two stages:
modeling is the first and incorporates the process of turning an abstract problem definition
(CSP) into a concrete model suitable for input to a solver. The second stage solving uses
search and inference to find a solution, an assignment of values to the problem variables
that satisfies all constraints, to the CSP.

CP offers a powerful means to solve these types of problem classes and over the last few
decades there has been a large amount of work and progress in improving the performance
of CP in these two areas. It is widely agreed that the Modeling stage is the most important
in determining the solving difficulty of the underlying CSP. As Smith once noted " there is
abundant evidence that how the problem to be solved is modelled as a Constraint Satisfaction
Problem (CSP) can have a dramatic effect on how easy it is to find a solution, or indeed
whether it can realistically be solved at all." [170] Freuder also stated "It is one thing to
say ‘all one has to do is express the problem constraints.’ It is another to express them
in a manner which permits efficient solution” [60] When modeling, decisions have to be
made on how to represent the problem, in particular the types of the variables and how
the constraints are encoded. These decisions can have considerable implications for the
performance of the resultant model and overall difficulty of the problem. [164]

For the well known N-Queens problem, Figure 1.1, where the goal is to place n queens on
a n x n chess board such that no queen can attack each other, two different representations

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: A solution to the 4 Queens problem [105]

can have drastically different search spaces. The first representation formulates the problem
as placing each queen on one of the available squares of the chessboard. For the 4-Queens
problem seen in Figure 1.1 the overall size space size would be 164. However, a different
representation might take advantage of the knowledge that there is exactly one queen per
row and instead formulate the problem as: placing a queen in each of the 4 different rows
which reduces the search space to only size 44 [61].

With the global constraint catalog [16] containing over 350 constraints across 2800 pages
it is very difficult for a novice user to formulate an efficient representation of the problem
at hand. This problem known as the modeling bottleneck is one of the the key challenges
facing the constraints field. There has been a large amount of progress in recent years in
automatically improving the modeling process. These include case-based reasoning [136],
machine learning to generate constraint models [21], tailoring of intermediate level model
representations [168] and refinement of abstract constraint model specifications [67, 58,
142]

Even with these advancements in modelling in certain problems the search spaces involved
are so vast that the model initially formulated is insufficient for the solver to find a solution
to the more difficult instances of a problem class in a timely manner. In response, a natural
step is to try and constrain the model further to reduce the size of the problem search
space. There are various techniques for doing this, which will be discussed in more detail
in Chapter 2. One approach is the identification of symmetry in the model. A symmetry is
a permutation of the {variable, value} pairs that doesn’t affect the solutions and if present
means there are equivalent states within the search space. Once a symmetry has been
identified symmetry breaking [82] can then be performed to remove these redundant parts
and reduce the size of the overall space that has to be searched. Another approach is to
add implied constraints, which can be inferred from the initial model and are therefore
guaranteed to be sound. Manual [70, 72] and automated [36, 48, 71] approaches to
generating implied constraints have been successful. Both symmetry-breaking and implied

1.1. BRIEF INTRODUCTION OF THE TOOLCHAIN 3

constraints are solution preserving techniques.

If none of these techniques is able to improve performance sufficiently, for satisfiable prob-
lems a more aggressive step is to add streamliner constraints [84], which are not guaranteed
to be sound but are designed to focus effort on a highly restricted but promising portion of
the search space. Streamliners trade the completeness offered by the previous approaches
for potentially much greater search reduction. Previously, producing effective streamlined
models was a difficult and time-consuming task. It involved manually inspecting the
solutions of small instances of the problem class in question to identify patterns to use as
the basis for streamliners [84, 124, 128, 130]. For example Gomes and Sellmann [84] added
a streamliner requiring a latin square structure when searching for diagonally ordered
magic squares [84].

The overarching goal of the work in this thesis is to: completely automate the process of
generating effective streamlined models to produce a substantial reduction in search effort
across a diverse range of problems. We begin with an overview of the architecture of our
system, before explaining each of its components in detail in the subsequent chapters.
Given a problem class of interest our streamlining approach, which is completely automated,
proceeds in three main phases as seen by Figure 1.3. First candidate streamliners are
generated from an Essence specification (Section 1.2). Candidate streamliners are
then evaluated and selected to construct a portfolio of streamliners with complementary
strengths (Section 1.3). Finally, given an unseen instance of the problem class, one or
more streamliner combinations are selected from the portfolio and scheduled for use in
solving (Section 1.4).

1.1 Brief introduction of the toolchain

To provide a better understanding for the following sections, which discuss the architecture
and phases of our system, it is necessary to briefly introduce the components of the
toolchain that we leverage:

Essence Essence is a language for writing problem specifications which operates at
a level of abstraction above which modelling decisions are made [65]. Figure 1.4
provides an example of an Essence specification. Essence does this by providing
the ability to have decisions variables whose domain values are combinatorial objects,
such as set, function, partition, etc which can be nested to an arbitrary depth. This

4 CHAPTER 1. INTRODUCTION

Figure 1.2: A top down view of how Essence, Conjure and Savile Row are integrated
into a toolchain tasked with solving combinatorial problems

allows the problem specification to be stated more directly and naturally and avoids
the need for the user to make any modelling decisions.

Conjure Conjure [1, 4] is an automated refinement system which operates on an
Essence specification to produce a set of constraint models in the solver independent
modelling language Essence Prime [155, 154]. Conjure operates at the problem
class level and is only invoked once to create the Essence Prime model.

Savile Row Savile Row [153, 154] is a modelling assistant for constraint programming
that translates an Essence Prime model into the input language of a target solver.
One of the benefits of Essence Prime is that it is a solver independent modelling
language and Savile Row provides the ability to target multiple different solving
paradigms and solvers.

Figure 1.2 provides an overview of how these components are combined into a tool chain
used for solving combinatorial problems. A more thorough description is provided in
Chapter 2.

1.2. PHASE 1: STREAMLINER GENERATION 5

1.2 Phase 1: Streamliner Generation

Our approach is situated in the automated constraint modelling system Conjure [6].
This system takes as input a specification in the abstract constraint specification language
Essence [62, 66]. Figure 1.4 presents an example specification, which asks us to sequence
cars on a production line so as not to exceed the capacity of any station along the
line, each of which installs an option such as sun roof. Essence supports a powerful
set of type constructors, such as set, multi set, function and relation, hence Essence
specifications are concise and highly structured. Existing constraint solvers do not support
these abstract decision variables directly. Therefore we use Conjure to refine abstract
constraint specifications into concrete constraint models, using constrained collections of
primitive variables (e.g. integer, Boolean) to represent the abstract structure.

Our method exploits the structure in an Essence specification to produce streamlined
models automatically, for example by imposing streamlining constraints on the function
present in the specification in Figure 1.4. For instance, a streamliner that is generated from
this specification enforces that approximatelyHalf of the range of the car function takes
odd values. We cannot expect a streamliner of this nature to be universally satisfiable,
however for certain instances it may retain at least one solution. In these cases as the
search space has been restricted by a high degree a solver may be able to uncover this
solution faster. The potential to remove solutions is what differentiates the process of
streamlining from that of other techniques such as symmetry and implied constraints.

The modified specification is refined automatically into a streamlined constraint model by
Conjure. These streamliners are generated through a set of prebuilt rules in Conjure
that pattern match against the types of the decision variables in the Essence specification.
Generally these rules will generate a number of candidate streamliners, 36 are generated
for the specification listed in Figure 1.4. The derivation and application of these rules
will be discussed in more detail in Chapter 3. Identifying and adding the streamlining
constraints at this level of abstraction is considerably easier than working directly with
the lower level constraint model, which would involve first recognising (for example) that
a certain collection of primitive variables and constraints together represent a function —
a potentially very costly process.

6 CHAPTER 1. INTRODUCTION

1.3 Phase 2: Portfolio Construction

Gomes & Selman [129] first identified the benefit of combining different streamliner
constraints together to further constrain a model and improve the deductions that can be
made during search. In order to utilize streamliner combinations the generated candidate
streamliners can be composed into a lattice structure with the root being the original
Essence specification. Search is then performed on this lattice structure to identify
effective streamlined combinations and build a portfolio of streamlined models (Chapter 5).

The rule based generation system in Conjure works purely upon the types present in
the specification and is oblivious to whether or not the generated constraint is effective
or satisfiable for the given problem. To reason about the effectiveness, each streamlined
model is evaluated on a diverse (to ensure an unbiased estimate) instance set drawn from
the problem class. To evaluate the performance of a streamlined specification, Conjure
is used to refine the specification into a constraint model (Figure 3.9). Via the constraint
modelling assistant tool Savile Row [153, 154], the streamlined model is translated into
the input for a CP or SAT solver (Figure 3.9)

In order to facilitate the evaluations, a set of benchmark instances from the given problem
class is required. We perform automated instance generation from the Essence specifica-
tion of the problem class using the system proposed by Akgun et al [2]. After obtaining the
instances, Feature Generation and Clustering are used to create a compressed training set
suitable for use when searching the streamliner lattice. See Chapter 4 for further details.

1.4 Phase 3: Streamliner Selection and Application

Once the streamliner portfolio has been constructed it may be used in the solution of
unseen instances from the problem class under consideration. Given such an instance, one
or more streamlined models are selected from the portfolio and scheduled in an attempt
to reduce the search effort to find a solution. We have implemented several automated
selection procedures, which are explained in detail in Chapter 6. One approach is to
use the features of the instance to decide which streamlined model to employ. This may
result in a better selection, but does incur the additional cost of training a selector for
the portfolio. Other approaches are less informed, but have a lower overhead. These
include simply selecting the streamlined model from the portfolio that was observed to
perform best on average during portfolio construction, and scheduling streamlined models

1.4. PHASE 3: STREAMLINER SELECTION AND APPLICATION 7

to promote either aggressive search reduction or retaining instance satisfiability.

Overall these three phases may seem computationally expensive and time consuming.
However it should be noted that this process is operating at the problem class level (families
of problems related by a common set of parameters) and so the cost is amortised over the
entire problem class for which the streamliner portfolios are applicable.

8 CHAPTER 1. INTRODUCTION

Figure 1.3: A summary of the main components and flow of our procedure for automatic
generation of Streamliner Portfolios. Our approach begins with the abstract specification
of a problem in Essence. Conjure is used to automatically generate a set of candidate
streamliners (Chapter 3). Instance generation is performed on the Essence specification
via generator instances [2] to produce a diverse training set (Chapter 4). Feature Generation
(Section 4.2) and Clustering (Section 4.3) are then used to create a compressed Training
Set suitable for input into our Lattice Search (Chapter 5). The output of the system is a
portfolio of streamliners with complementary strengths that will be used for solving any
unseen instance of the same problem (Chapter 6).

1.5. THESIS STATEMENT 9

1 given n_cars , n_classes , n_options : int (1..)
2 given quantity : function (total) Class --> int (1..),
3 maxcars : function (total) Option --> int (1..),
4 blksize_delta : function (total) Option --> int (1..),
5 usage : relation (minSize 1) of (Class * Option)
6 letting Slots be domain int (1.. n_cars),
7 Class be domain int (1.. n_classes),
8 Option be domain int (1.. n_options),
9 find car : function (total) Slots --> Class
10 such that
11 forAll c : Class . |preImage(car ,c)| = quantity(c),
12 forAll opt : Option .
13 forAll s : int (1..
14 n_cars +1-(maxcars(opt)+blksize_delta(opt))) .
15 (sum i : int(s..s+(maxcars(opt)+blksize_delta(opt)) -1) .
16 toInt(usage(car(i),opt))) <= maxcars(opt)

Figure 1.4: Essence specification of the Car Sequencing Problem [178], shown to be
NP-complete [80]. A number of cars (n_cars) are to be produced; they are not identical,
because different classes (n_classes) are available (quantity) as variants on the basic model.
The assembly line has different stations which install the various options (n_options) such
as air-conditioning and sun-roof (each class of cars requires certain options, represented by
usage). The cars requiring a certain option must not be bunched together, otherwise the
station will not be able to cope (maxcars). Furthermore, the stations have been designed to
handle at most a certain total number of the cars passing along the assembly line (maxcars
+ blksize_delta) at a time. Consequently, the cars must be arranged in a sequence so that
the capacity of each station is never exceeded.

1.5 Thesis Statement

The thesis defended in this dissertation is as follows: Through the use of structure
present in a high level abstract Essence specification a range of effective streamliner
constraints can be automatically generated. A best first search method can then be used
to search the single candidate streamliners and the lattice of combinations to find effective
conjectures and produce high quality streamliner portfolios. Large reductions in search
effort across unseen instance distributions can then be attained through the scheduling of
these respective portfolios.

1.6 Publications

In chronologic order of publication date:

10 CHAPTER 1. INTRODUCTION

• Automatic generation and selection of streamlined constraint models via
monte carlo search on a model lattice [184]

This work showcased the automatic generation of streamliner constraints from
an abstract Essence specification as well as the implementation of a best first
methodology to search for effective streamliners and its comparison to simpler
Breadth First Search and Depth First Search methods.

Disclaimer: There were two additional co-authors of this paper that contributed to
the development of these ideas. However, I had significant contributions : I added
the streamliner generation rules to the Conjure framework and built the system
for searching the lattice of combinations and evaluating each streamlined model.
I designed and implemented the best-first search algorithm that was used. I also
designed, implemented and ran all of the experiments.

• Automatic streamlining for constrained optimisation [185]

This work presented the first automated approach to generating streamliners au-
tomatically for constrained optimisation problems. Prior limitations of generating
only a single ’best’ streamliner were removed by providing a method to produce a
portfolio of streamliners each representing a different balance between three criteria:
how aggressively the search space is reduced, the proportion of training instances for
which the streamliner admitted at least one solution, and the average reduction in
quality of the objective value versus the unstreamlined model.

Disclaimer: There were three additional co-authors of this paper that contributed
to the development of these ideas. However, I had significant contributions : I
composed the multi-objective reward function that was used to balance the competing
properties of the streamliner conjectures. I designed and built the UCB selector that
experimentally performed the best. I also designed, implemented and ran all of the
experiments.

• Towards Portfolios of Streamlined Constraint Models: A Case Study with
the Balanced Academic Curriculum Problem [186]

The refinement of streamlined Essence specifications into constraint models suitable
for input to constraint solvers gives rise to a large number of modelling choices
in addition to those required for the base Essence specification. Prior automated
streamlining approaches were limited in evaluating only a single default encoding for
each streamlined specification. In this work we explore the effect of model selection

1.7. CONTRIBUTIONS 11

in the context of streamlined specifications with reference to the Balanced Academic
Curriculum Problem.

Disclaimer: There were three additional co-authors of this paper that contributed
to the development of these ideas. However, I had significant contributions : I was in
charge of modifying the streamliner generation system to allow it to handle multiple
models. I implemented the three different forms of racing that we utilized as well as
designed, implemented and ran all of the experiments.

1.7 Contributions

The principal contribution of this thesis is: the complete automation of the previously
laborious manual task of streamliner constraint generation, evaluation and application.

The following provides a breakdown of individual contributions:

Streamliner Generation Rules The additional of first-order and higher-order rules
to the Conjure tool-chain so that streamliner constraints can be automatically
generated based upon the type constructors of decision variables within an Essence
specification.

Instance Generation Empirical identification that streamliner constraints perform dif-
ferently across the instance space of a problem class. In order to ensure non-biased
streamliner evaluation a procedure for the automatic generation of a diverse training
instance set was created.

Lattice Search Implementation of a best-first search algorithm on the lattice of stream-
liner combinations. Empirical identification that for most problem classes there does
not exist a dominating streamliner and the use of multi-objective optimization to
build a portfolio of non-dominating streamliner constraints.

Streamliner Scheduling and Selection The creation of an architecture to schedule
streamliners from a portfolio onto an unseen instance. The use of Algorithm Selection
methods combined with instance features to predict streamliners on an instance
specific basis.

Model Portfolios The exploration during lattice search of the impact that different
refinement choices made by Conjure during modeling have on the performance of
streamliner constraints. The construction of streamliner model portfolios.

12 CHAPTER 1. INTRODUCTION

Streamliners for Constrained Optimization and Boolean Satisfiability Adapting
the original use of streamliners for constrained optimization problems and the appli-
cation of streamliners in the Boolean Satisfiabiltiy (SAT) paradigm

1.8 Thesis Structure

The thesis is structured as follows:

Chapter 2 initially outlines related work in automated modeling. It then discusses in more
detail alternative methods to reformulate and tighten constraint models using some of the
methods previously discussed such as symmetry or implied constraints. An explanation of
the theory underpinning streamlining and a history of prior work is presented.

Chapter 3 focuses on the method used to generate streamlined models automatically from
an Essence specification. A brief overview of the Essence modeling language is given
and the advantages of situating this system in a high level modeling language are discussed.
An overview is given of the rules embedded within Conjure and an example is used to
walkthrough how these work to automatically produce streamliner conjectures directly
from the types present in Essence. The modeling pipeline and the process for how an
abstract streamliner constraint at the Essence level is formulated down into a lower level
solver dependent representation is explained. Lastly, the seven constraint satisfaction
problems used within this thesis are formally defined and more generally the number of
conjectures generated by our rules across the entire CSPlib [110] is shown.

Chapter 4 discusses the importance of problem instances in the automatic evaluation of
model candidates and the construction of high quality streamliner portfolios. The automatic
process by which training instances are generated from the Essence specification of a
problem class and certain requirements these instances must possess is shown. An analysis
of the "footprint" that different streamliners have in the feature space is presented and
how performance similarity between instances can be used to construct a compressed
representative training distribution.

Chapter 5 introduces the concept of combining streamliner conjectures and discusses
the benefits in search reduction this can provide as well as the adverse effect on the
complexity of streamliner search. The structuring of the possible combinations into a
lattice structure and the use of pruning methods to remove ineffective combinations are
defined. Various approaches for searching through the lattice structure and producing a

1.8. THESIS STRUCTURE 13

portfolio of streamliner combinations are discussed and the search algorithm utilized in
this thesis is defined.

Chapter 6 begins by showing that the performance characteristics of a streamliner conjec-
ture can vary drastically between solving paradigms and demonstrates why it is necessary
to perform paradigm specific streamliner search and generate independent streamliner
portfolios. The constructed portfolios generated through the search method seen in the
previous chapter are then summarized; in particular visualizing the distribution and size
of the generated pareto fronts. For a subset of the problems, a more in-depth analysis
is then performed to discuss some of the interesting properties of the constructed port-
folios and analyze the performance of the constituent conjectures. Lastly, the problem
of "Streamliner Selection" is introduced which deals with selecting from the portfolio an
effective streamliner for an unseen instance. Various uninformed and informed methods
for solving this problem are discussed.

The prior chapters have presented a completely automated approach to the generation and
selection of streamliner constraints, hitherto a laborious manual task. Chapter 7 contains
two sets of experiments to test the efficacy of this approach. The first is designed only to
measure the frequency with which streamlining results in a reduction in search, and the
magnitude of that reduction. The second experiment aims to provide a more practical
setting in which the overall impact of streamlining across an entire instance distribution is
analyzed. Results across two unseen instance distributions with varying solving difficulty
are shown.

Chapter 8 presents the method and results on the application of streamlining for Con-
strained Optimization Problems.

Chapter 9 explores the effect of model selection in the context of streamlined specifications.
We explore augmenting our best-first search method to generate a portfolio of Pareto
Optimal streamliner-model combinations by evaluating for each streamliner a portfolio
of models to search and explore the variability in performance and find the optimal
model. Various forms of racing are utilised to constrain the computational cost of training.
Empirical results are shown that demonstrate drastic improvements in solving time for
some problem classes in comparison to a single-model approach.

2Chapter Two

Background And
Related Work

In this chapter we are initially going to look at the background work related to this thesis.
Firstly, an overview of modelling, in particular automated constraint modelling, and a
survey of different approaches that have been used to model CSPs. Related techniques used
to reformulate and constrain a model such as symmetry breaking, implied and dominance
constraints will then be discussed. Lastly an in-depth explanation behind the concept of
streamlining and a review of the prior literature will be presented.

2.1 Constraint Programming

Constraint Programming (CP) is a powerful tool for solving large scale combinatorial
problems such as vehicle routing [117], planning and scheduling [15]. To better illustrate
the fundamentals of CP let us use Sudoku, a very well known puzzle played throughout
the world. In Sudoku the objective is to complete a partially filled 9x9 grid by filling in the
missing entries with numbers from 1 to 9 such that for each row, column and individual 3x3
squares there are no duplicate numbers. An example is shown in Figure 2.1. The aim is to
solve the problem through deduction and reasoning rather than guessing. For a particular
empty square possible values can be removed via deduction based upon the existing values
in the row, column and square and the rule preventing duplicate numbers. Most who do
this however do not realize that this process of using propagation and inference to remove
values and arrive at a solution is at the heart of constraint programming [174].

14

2.1. CONSTRAINT PROGRAMMING 15

(a) An unsolved Sudoku in-
stance[174]

(b) The unique solution to the
Sudoku instance [174]

Figure 2.1

A Constraint Satisfaction Problem (CSP) is a general way in which we can represent and
solve these sorts of decision-making problems, such as the Sudoku problem. A CSP is
formally defined as a triple {X, D, C}, where:

X is a set of variables: {X1, . . . ,XN}

D is a set of domains : {D1, . . . ,DN}

C is a set of constraints: {C1, . . . ,CN}

Each variable in Xi ∈X is defined over a domain Di ∈D. Each constraint Ci ∈ C is a
relation on a subset of the variables in X. This relation restricts the range of values the
variables can be assigned from their respective domains. The goal is to find an assignment
to all of the variables (from their respective domains) such that no constraints are violated.

Figure 2.2 provides an overview of the two main stages involved within CP, Constraint
Modelling and Constraint Solving. Modelling involves mapping the features of a problem
onto the features of a constraint satisfaction problem (CSP). Modelling the Sudoku problem
produces a compact constraint model containing 81 variables, one for each of the squares
in the grid. Each variable (ignoring squares already populated) would have a finite domain
from {1. . . 9} and allDifferent constraints would be posted on each row, column and square
to prevent duplicates. Solving the CSP then typically involves the interleaving of two
processes, systematic search and constraint propagation. Systematic search attempts to
extend the set of partial assignments with the ability to backtrack if the chosen assignment
cannot be extended to a solution. Constraint propagation attempts to use deduction based
upon the current domains of the variables and the constraints to remove domain values
that cannot exist in a solution.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.2: Constraint Programming: Constraint Modelling & Solving

2.2 Modelling Languages

Over the years there has been a considerable amount of research into problem modelling
which has resulted in a progression of different modelling languages. In modern languages
the concept of solver independence, which allows for the same model to target different
solvers and paradigms, is considered to be very important [65, 166].

2.2.1 OPL

The programming language OPL [191, 93] was introduced in an aim to unify the orthogonal
strengths of the constraint and integer programming languages that came before it, such
as CHIP [175], AMPL [59], GAMS [113]. It combines the rich language of constraint
programming, that supports global, linear and non-linear constraints with the mathematical
modelling languages that through their support for algebraic and set notations can concisely
describe mathematical problems. Even though OPL only supports decision variables with
integer and enumerated types and has no support for abstract domains it is one of the first
high level modelling languages that abstracted away from the internals of the constraint
solver.

2.2.2 Minizinc & Zinc

Minizinc [150] is a medium level solver independent modelling language and is probably
the most popular and widely supported for constraint programming. It supports boolean
and integer domains, and arrays for collections of these variables but does not have support

2.2. MODELLING LANGUAGES 17

for high level abstract types such as function, partition, etc. Minizinc is used to define
parametrized problem class models which are then instantiated into an instance model
using the instance data however no automated reformulations of the specified model take
place. The instance model is compiled down into FlatZinc, a solver dependent language,
for use in a solver.

Zinc [142, 166, 14] is a higher level constraint modelling language in comparison to
MiniZinc. It supports more abstract domains than Minizinc, providing decision variables
with set domains as well as user defined record-like domains. The main novelty of Zinc
was that it was designed to support a modelling methodology where the same conceptual
model could be be mapped to different solving techniques and solvers. As Zinc is a very
high-level, expressive modeling language there is a considerable gap between a conceptual
Zinc model and a model designed to target a particular solver or search technique. Zinc
can be translated into Solver Independent Flattened Zinc Model (SI-FZM) which is at a
much closer level to existing constraint solvers [166]

2.2.3 Essence

Essence is a language for writing problem specifications which operates at a level of
abstraction above which modelling decisions are made [65]. Essence does this by providing
the ability to have decisions variables whose domain values are combinatorial objects,
such as set, function, partition, etc which can be nested to an arbitrary depth. A full list
of domain elements is given in Figure 2.3. This allows the problem specification to be
stated more directly and naturally and avoids the need for the user to make any modelling
decisions.

To better understand Essence let us walk through the example specification seen in
Chapter 1, Figure 1.4. Line 9 declares the find statement which defines the decisions
variables that the problem is searching for and their associated types. A specification can
have one or more find statements. To constrain the specification, such that statements are
used to post constraints onto the decision variables (Lines 10-16). given statements allow
parametrization of a problem class and the values of which define a given instance (Lines
1-5). letting statements are optional and allow aliases to be defined.

18 CHAPTER 2. BACKGROUND AND RELATED WORK

Type Domains
Concrete Int, Bool

Abstract tuple, record, variant, matrix, set,
mset, function, sequence, relation, partition

Figure 2.3: In Essence there are two types of domains, concrete and abstract. A concrete
domain is one which is natively supported by the target solver. An abstract domain is one
which is not natively supported and will be represented as a collection of more primitive
variables.

2.3 Automated Modeling Tools

As discussed initially in Chapter 1 modelling is a complex task and if done manually requires
great expertise to be done correctly and efficiently. Automated Constraint Modelling aims
to solve this by automating the process of defining a concrete model and there have been
a number of successful and different approaches to tackling this problem which we will
now discuss.

2.3.1 O’CASEY

O’Casey was a new approach that leveraged Case-Based Reasoning (CBR) to store, retrieve
and reuse prior experience to help write efficient constraint programs automatically [136].
In CBR a problem is not solved by reasoning from scratch instead stored solutions that
are similar to the problem at hand are retrieved and adapted to the current problem [122].
Here a case was a problem description combined with instances of that problem. The
experience that the system generally provided was the selection of propagators and search
heuristics. It did not reformulate constraint expressions or variable representations.

2.3.2 CONACQ

Conacq [25] is a SAT-based version space algorithm that builds a constraint network
consistent with an example set of solutions and non solutions of the given problem. In the
first version of Conacq [19, 22, 21] they utilized passive learning where the user provides
examples of solutions and non-solutions. The system is also provided with a set of variables
X, domains D as well as a learning bias β that contains constraints from the target solver.
Machine learning is then used to automatically generate constraints consistent with the
examples. One weakness of passive learning is that in order for the set of target constraints

2.3. AUTOMATED MODELING TOOLS 19

to be learnt a diverse set of examples needs to be provided. In the second version of Conacq
[23] active learning was used where the system proposed examples that the user had to
classify as a solution or non solution. The use of active learning has several advantages.
Firstly it can decrease the number of examples required to converge upon the set of target
constraints. Secondly, it removes the need for a human user. QUACQ [20], also an active
learner, was then introduced. From negative examples, QUACQ by asking the user to
classify partial queries, was able to learn a constraint from the target network in a number
of queries logarithmic to the number of variables.

2.3.3 Constraint Seeker and Model Seeker

Constraint Seeker [17] was a tool for finding and ranking global constraints based upon
examples. It didn’t create models but given a set of positive and negative examples, the
tool aimed to find candidate global constraints that satisfied these ground truths and
ranked them based upon perceived importance. Model Seeker [18] built upon this work to
build complete finite domain constraint models from positive example solutions.

2.3.4 Conjure & SavileRow

Conjure [1, 4] is an automated refinement system which operates on an Essence
specification to produce a set of constraint models in the solver independent modelling
language Essence Prime [155, 154]. Conjure operates at the problem class level and
is only invoked once to create the Essence Prime model. As Essence Prime is a
solver independent modeling language with only concrete domains and no support for
abstract types one of the main jobs of Conjure is to choose the representations for
variable domains. There is not just one way this decomposition can occur and variables
can be represented in different ways at a lower level. If we use the Social Golfers Problem
(shown later in Chapter 3, Figure 3.1b) [92] as an example the problem definition requires
partitioning a set of golfers across a schedule such that no golfer plays in the same group
as any other golfer on more than one occasion. Subject to additional constraints this can
be thought of as searching for a set of regular partitions. In order to solve this problem
this would require representing the set of regular partitions in terms of the lower level
primitive types. There are at least 72 different ways that this can be done [65]. Conjure
can explore these choices to create a portfolio of all models but defaults to producing just
a single model.

20 CHAPTER 2. BACKGROUND AND RELATED WORK

Savile Row [153, 154] is a modelling assistant for constraint programming that translates
an Essence Prime model into the input language of a target solver. One of the benefits
of Essence Prime is that it is a solver independent modelling language and Savile
Row provides the ability to target multiple different solving paradigms and solvers. At
this moment Savile Row can target CP: with output to Minion [81], Minizinc [150],
Gecode [189], Chuffed [39], as well as output to SAT [156], MaxSAT and SMT [51]. During
the translation process Savile Row applies various reformulations, such as common
subexpression elimination and domain reduction, to improve the performance of the model.
These reformulations, especially when combined together can result in significant gains in
performance [154].

2.4 Reformulation of the model

Even with all of these advancements there are still a number of problems from domains
such as Combinatorial Design [46] where even small instances of the problem class can be
very difficult to solve [85]. In these cases if the model has been efficiently encoded with no
obvious deficiencies a natural next step to take is to try and further constrain the model
in order to strengthen the inferences the solver can make, therefore detecting dead ends in
the search earlier and reducing overall search effort.

2.4.0.1 Symmetry breaking

Even though symmetry occurs in many constraint satisfaction problems [195, 144] it is
difficult to find one concrete definition and in the past it has been defined in fundamentally
different ways [82, 44]. Cohen et al [44] summarized the existing definitions into two
distinct viewpoints of symmetry, solution and constraint symmetry. solution symmetry
defines symmetry as a property of the set of solutions, any mapping that preserves the
solutions is a symmetry. constraint symmetry on the other hand preserves the set of
constraints, and therefore as a consequence also preserves the solutions. For all definitions,
a symmetry maps solutions to solutions and non-solutions to non-solutions.

To get a better understanding let us use the 4x4 chessboard shown in Figure 1.1 to explore
the different forms of symmetry that exist in the NQueens problem. For the NQueens
problem there are 8 inherent symmetries, as shown by Figure 2.4, obtained through
rotations and reflections of the chessboard. There are four rotations of: 0 (known as the

2.4. REFORMULATION OF THE MODEL 21

identity symmetry), 90, 180 and 270. There are then reflections on the x,y axes and on the
main diagonals. The concept of symmetry is important as the complexity of a problem
can often be reduced by detecting and exploiting these intrinsic symmetries [167].

The most common way of doing this is through symmetry breaking in which the goal is to
prevent search from ever visiting symmetric search states. If a particular set of assignments
is proven to be satisfiable or unsatisfiable then this inherent symmetry can be used to
infer that the 8 other states are equivalent without having to visit them specifically during
search. This effectively reduces the size of the search space by a factor of 8 and shows
how powerful the application of symmetry can be in a problem. It is useful to note that
symmetry is important both when searching for all solutions and when searching for just
one valid solution. The reason being that symmetry not only helps with finding equivalent
solutions but also in removing unsatisfiable assignment states.

One form of symmetry breaking involves reformulation of the model to reduce or remove
symmetry. Again referring back to the CarSequencing problem, Dincbas, Simonis and van
Hentenryck [52] discussed in their work the removal of symmetries where identical cars
could be swapped in the production line by switching to a viewpoint which used classes of
cars. This viewpoint is the one that we utilize in this thesis. This reduced the complexity
of the problem from NN to MN where N is the number of cars and M is the number of
classes.

Another popular method to break symmetry is the alteration of the base model with
the addition of symmetry breaking constraints [50, 165, 57]. The idea here is compose
a constraint that is satisfied by exactly one member of each of the symmetric points
in the search space. An example of this is if a model contained a matrix of integers
(X) the order of the matrix could be permuted which would give rise to symmetric
search states. To remove this a symmetry breaking constraint could be added to the
model to impose an ordering upon the values, X[0]≤X[1] . . .≤X[100]. This constraint
could be further constrained if we know that the values of the matrix must be unique,
X[0]<X[1] . . . < X[100]. Up to now this has generally been done manually by the modeler
who may discover symmetry within the model and then add constraints in an attempt
to remove it. There is no known polynomial time algorithm for detection of symmetries
however it can be done automatically through reduction of the CSP to an instance of the
graph isomorphism problem [140].

22 CHAPTER 2. BACKGROUND AND RELATED WORK

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

(a) identity

13 9 5 1
14 10 6 2
15 11 7 3
16 12 8 4

(b) r90

16 15 14 13
12 11 10 9
8 7 6 5
4 3 2 1

(c) r180

4 8 12 16
3 7 11 15
2 6 10 14
1 5 9 13

(d) r270
4 3 2 1
8 7 6 5
12 11 10 9
16 15 14 13

(e) x

13 14 15 16
9 10 11 12
5 6 7 8
1 2 3 4

(f) y

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

(g) d1

16 12 8 4
15 11 7 3
14 10 6 2
13 9 55 1

(h) d2

Figure 2.4: The 8 inherent symmetries obtained through rotations and reflections of the
chessboard

2.4.0.2 Implied Constraints

An implied constraint is a redundant constraint that captures an implicit property that
exists for all solutions [167]. Implied constraints retain all solutions to the original
problem but attempt to further constrain the search space through supplementary domain
reductions. They have been shown in the past to provide significant reductions in search on
a variety of domains such as the Golomb ruler [75, 181] and quasigroup existence problems
[181]. A good example of an implied constraint can be taken from the work of Regin et al
[167]. Suppose there is a constraint network with 100 variables each taking the domain
of {0,1,2,3,4,5}. The constraints on the network specify that every value except for 0
must be taken at least 5 times. Also suppose that the variable ordering is min-domain
(selecting the variable first with the smallest domain) and an ascending value ordering is
used. With this setup the solver can assign 95 of the variables to 0 before it detects an
inconsistency at which point it will start to try and backtrack. Fundamentally we know
that at most 80 of the variables can be assigned 0 (100− 4× 5 = 80) under the initial
constraints. Enforcing this as an implied constraint would allow the inconsistency to be
detected once 81 variables have been assigned 0, saving 514 = 6,103,515,625 instantiations.

Implied constraints can be very powerful but care has to be taken in making sure that
the pruning offered by the constraint must offset its overhead during propagation. They
are only useful if they allow for inconsistencies to be detected earlier and for partial
assignments to be failed where search would have continued otherwise. It is hard to reason
about their effectiveness without experimentation. For a long time choosing useful implied
constraints remained an art [181]. Colton and Miguel initially worked on an approach
to generating implied, symmetry breaking and specialization constraints directly from

2.4. REFORMULATION OF THE MODEL 23

the specification of a problem class and their application to group theory, quasigroup
construction and BIBD [47]. This initial implementation was semi-automatic and started
with the logical specification of a problem class. From there small instances of the problem
were generated and solved and the HR automated theory formation system was used to
invent concepts and theorems which were then proven by the Otter automated theorem
prover. Manual interpretation of the theorems led to the construction and addition of
implied constraints often exhibiting large reductions in solving time. In Charnley et al [37]
they removed the manual component to produce a fully automated system for generating
implied constraints. In some cases however they did find that the system failed to create
an improved solver model. The effectiveness of implied constraints are limited by the
constraint that all solutions to the original problem must be retained.

2.4.0.3 Dominance Breaking Constraints

Dominance relations, which are exhibited in many constraint problems, are a generalization
of symmetry relations and as such can offer a similar or larger reduction in search space
if exploited [145, 41]. Assuming a standard tree search, we can define S as the set of all
search states and f(s) an objective function on the best possible extension of s. Dominance
relations are easily to conceptualize in optimization problems, but they are still valid
in satisfaction problems where a solution can be assigned a minimum value of 0 and a
non-solution a value of ∞.

A dominance relation is a binary relation on search states that follows the following
properties [162]:

• si � sj =⇒ f(si)<= f(sj)

• � is a partial ordering

• If si � sj and si 6= sj then there exists some extension of s′i ∈ si such that for every
extension of s′j ∈ sj , s′i � s′j

Let us consider a simple CSP where we have a set of variables X: {x0,x1, . . . ,x10}
with domain D ∈ {1 . . .10} and an all_different constraint posted on the 10 variables:
all_diff ({x0,x1, . . . ,x10}). The objective is to minimize the sum ∑10

1 xi ∗ i. Now if we
consider two partial assignments to this problem, A1: {x0 = 2,x1 = 1, . . .} and A2:
{x0 = 1,x1 = 2, . . .}. The best extension of A1 is no better than the best extension
of A2 and so we can stipulate that A2 dominates A1 (A2 � A1). The search tree located

24 CHAPTER 2. BACKGROUND AND RELATED WORK

under the partial assignment A1 could then be pruned without affecting the optimality
of the objective function. The concept of dominance relations however remains far less
exploited than symmetry in CP [162]. Chu et al. developed a generic method for the
identification and exploitation of dominance relations via dominance breaking constraints
[41]. The enforcement of dominance breaking constraints, unlike symmetry and implied
constraints, can result in losing the full set of solutions.

2.4.0.4 Streamlining Constraints

Symmetry breaking and Implied constraints are solution preserving techniques up to
isomorphism. In Constraint Satisfaction Problems with all solutions being of equal value
it is not always necessary to preserve all solutions, one solution will do. Streamlined
constraint reasoning, introduced first by Gomes and Sellmann [84], differs drastically from
these previous approaches in that the conjectured constraints are not typically proven to
follow from a given constraint model and are often not proven to be sound or redundant.
The generated constraints attempt to focus effort on a highly restricted but promising
portion of the search space but the lack of proof means they often do drastically alter the
set of solutions for a given problem class and instance. Streamliners trade the completeness
offered by implied, symmetry-breaking and dominance-breaking constraints for potentially
much greater search reduction.

Gomes and Selmann in their introductory work on Streamlining worked on problems from
the field of Combinatorial Design [84]. Combinatorial design is a generic term for a field
that deals with the existence and construction of families of finite sets whose arrangement
satisfy certain properties and is one of the fields for which even very small instances of
a problems can be incredibly difficult for modern solvers. The difficulty arises from a
combination of the large assignment space and the presence of only a few solutions which
creates a low solution density meaning that without any special variable or value ordering
that leads directly to a solution the solver has to churn through a large search space. The
idea Gomes and Selman proposed behind streamliner constraints is that by "imposing
additional structural properties in advance we are steering the search first towards a small
and highly structured area of the search space." [84]. Restricting the search space can also
be thought of as a partitioning of the space into two halves: one much smaller streamlined
half for which the added constraint must hold and the other complement half containing
the assignment space for which the constraint does not hold as can be seen from Figure 2.6.
Search is then conducted in the streamlined subspace P1. If a solution is not found then
the complement half can then be streamlined again and the process repeated.

2.4. REFORMULATION OF THE MODEL 25

One of the problems that they investigated was the construction of Diagonally Ordered
Magic Squares (DOMS). Informally Magic Squares are n×n grids which contain numbers
in the range from 1 . . .n2 such that each cell in the grid contains a different number and
each row, column and diagonal must sum to the same number known as the magic constant.
This magic constant can be defined by M = n(n2 + 1)/2. Figure 2.5a shows a solution for
an order 4 DOMS. There are known polynomial time construction methods for normal
Magic Squares however for DOMS which enforce that additional to all the other constraints
the diagonals must be strictly ordered there are no known polynomial time construction
methods. Adding in the diagonal constraint reduces the number of solutions and thus
reduces solution density making it a much more difficult problem to solve. Gomes and
Sellman noted that even for small order magic squares finding solutions was considerably
difficult and on the base models only solutions up to order 9 were found.

Through analysis of the solutions of smaller order DOMS they noticed that certain
structural regularities often existed. One of these regularities was that numbers within the
magic square are quite evenly distributed, meaning that the large or small numbers are
not clumped together, Figure 2.5b. Intuitively this makes sense as if all of the rows and
columns and diagonals have to sum to the same number its not going to be feasible if all
of the larger order numbers are grouped in the same row. To formalize this regularity they
define L (Figure 2.5c) which associates with each entry in the order N Magic Square a
number drawn from b(mi,j−1)/n+ 1c, essentially splitting the numbers into evenly sized
intervals. If no two numbers from the same interval appear in the same row or column,
this will enforce even distribution of the numbers throughout the square and also means
that L represents a Latin Square structure. A Latin Square of order N is an N by N
matrix where each cell has one of N symbols and each symbol must be all different across
the row and column.

To exploit this realization they added Latin Squareness as an extra constraint to help
focus search onto magic squares that are hiding a latin square structure. Empirical results
showed they were able to substantially reduce the amount of time required to find a
solution. For instance, on an order 8 DOMS they reduced the time from over 5000s using
the base model to just under a second by adding in this latin square streamliner. There is
no guarantee that all orders of magic square will contain this structure but this enabled
them to extend the construction of DOMS up to order 18 which was clearly infeasible
before. This identification of a structural property that exists in the solutions of certain
instances and the formalization and use of that property to try and solve more difficult
instances from the same problem class is the general idea behind Streamlining.

26 CHAPTER 2. BACKGROUND AND RELATED WORK

6 9 13 6
12 7 13 2
15 4 10 5
1 14 8 11

(a) A solution for a Diago-
nally Ordered Magic Square
of order 4.

*
*

*
*

(b) The largest numbers are
evenly distributed through-
out the square

2 3 1 4
3 2 4 1
4 1 3 2
1 4 2 3

(c) The solution can be rep-
resented as a Latin Square

Figure 2.5

When constructing streamliner constraints there are a few factors that should be taken
into account. Firstly it is important that the constraint can effectively propagate within
the solver. All constraints add overhead and a poorly designed streamliner may be able
to reduce the search space but any pruning achieved will be outweighed by the expense
of propagation. Secondly, it may seem intuitive that streamliners should be constructed
with the goal of capturing common solution properties so that the number of solutions
in the streamlined subspace is maximized. However, this conflicts with the core aim of
restricting the space to reduce search. In fact very restrictive constraints that only retain
one or two solutions can be very effective as they reduce the search space so considerably
[84]. There is a tradeoff however with the use of very restrictive streamliners. As they
maintain only a few solutions they struggle to generalize across the instance space as the
property they capture may only exist for a few instances.

Since the introduction Streamlining has been used in a number of different contexts. Kouril
et al. refer to streamlining as “tunneling" [124]. In their work they were leveraging SAT
solvers to try and improve upon the bounds of the VanDerWaerden problem, where still to
this day only a few numbers are proven and most just have a known lower bound. Their
motivation was based upon an analysis of the search behavior of an off the shelf SAT solver
on a smaller VanDerWaerden formulae. They noticed that there was, as termed by them,
a "performance mountain" in the early stages where the breadth of search would explode
early in the search tree and the solver would struggle to make progress. Similar to Gomes
and Sellman [84] they devised three different tunnels through analysis of patterns in the
variable assignments for smaller Van der Waerden formulas. These additional clauses were
termed as tunnels as they were designed to tunnel under the "performance mountain" at
which point the breadth of search becomes moderately small and so search can continue
quickly. Empirically this led to a dramatic improvement in run time of the solver, allowing
much tighter bounds to be computed.

Gomes et al. used streamlining in the context of model counting, the classical problem of

2.4. REFORMULATION OF THE MODEL 27

Figure 2.6: Streamlining aims to focus search onto a small and highly structured search
space containing solutions. Here P represents the original problem to be solved. To
streamline conjecture S is enforced to divide P into two complementary subproblems P1
and P2. If the streamlined subproblem P1 does not contain a solution, the complementary
space P2 can again be streamlined.

computing the number of solutions of a given propositional formula [87]. In this work they
continuously added randomly generated XOR or parity streamliner constraints to constrain
the problem space in a controlled manner. They proved that with high probability the
number of additional XOR constraints added to the model before rendering the problem
unsatisfiable can be used to compute a bound on the model count of an input formula.
Using streamliners they were able to obtain the first non-trivial lower bounds on the
number of solutions of several complex combinatorial problems.

Fujita et al. [74] used streamlining in a different approach in their soft constraint guided
SAT solver on instances from the Ramsey graphs problem. In this work they prepared a
set of additional streamliner constraints (S) which are added to the problem to restrict
search in a preferable direction. In the original approach by Gomes et al. the streamliner
splits the space into two halfs, the streamlined subspace (S) and its complement (S). If
S, is unsatisfiable, search would continue on its complement S. Here instead if search
became unsatisfiable they do not work on S but instead form a relaxed view of the set of
constraints in S. They devised an iterative procedure to perform a series of relaxations

28 CHAPTER 2. BACKGROUND AND RELATED WORK

and restarts until a single model is found. Using this they were able to raise the known
best lower bound for the Ramsey number R(4,8) from 56 to 58.

Smith et al. built upon the introductory work of Gomes and Sellman and used streamlining
[182] in the local search setting to construct larger Spatially Balanced Latin Squares (SBLS)
up to order 35. The enormity of the search space for this problem and the low density
of solutions made the odds of local search finding a solution considerably low. In prior
work it was shown that a standard local search approach performed "remarkably poorly
at finding SBLS". In this work they streamlined the space substantially by starting the
local search solver at a randomly generated Latin Square and then performed swaps and
permutations of the columns until a SBLS was found.

Le Bras et al. used streamlining to help construct graceful double wheel graphs [128].
Constraints forcing certain parts of the colouring to form arithmetic sequences allowed
for the construction of colourings for much larger graphs. These constraints led to the
discovery of a polynomial time construction for such colourings, proving that all double
wheel graphs are graceful. Finally Le Bras et. al. made use of streamlining constraints to
compute new bounds on the Erdős discrepancy problem [130]. Here constraints enforcing
periodicity in the solution, the occurrence of the improved Walters sequence, and a partially
multiplicative property improved solver performance, allowing the discovery of new bounds.

In all of these prior works the concept of streamlining has proven to be incredibly valuable
allowing computational results to be found that were not feasible before. Given the results
that can be achieved it may be expected that the literature on streamliners would be
comprehensive, however it has had a rather lackluster adoption and application; mainly
being applied just to mathematical and combinatorial design problems. The main drawback
is that it has always involved a laborious manual component, the analysis of solution
patterns and derivation of streamliner constraints which has to be performed individually
for each problem class and takes considerable time and expertise. In this work, we aim to
increase the allure of streamlining by eradicating the need for this manual component and
showcasing how it can be applied to a wide number of realistic domains with impressive
results. We propose a fully automated system that supports the generation of streamliners
directly from the abstract specification of a problem, the automatic search for effective
candidate streamliners and combinations and the automatic scheduling and selection onto
unseen instances.

2.5. SUMMARY 29

2.5 Summary

In this chapter we have looked at the background work related to this thesis. Firstly,
an overview of modelling, in particular automated constraint modelling, and a survey of
different approaches that have been used to model CSPs was provided. Related techniques
used to reformulate and constrain a model such as symmetry breaking, implied and
dominance constraints were then discussed. Lastly an in-depth explanation behind the
concept of streamlining and a review of the prior literature was presented.

3Chapter Three

From Conjectures to
Streamlined

Specifications

This chapter focuses on the method used to generate streamlined models automatically
from an Essence specification. The advantages of situating this system in Essence, a
high level specification language, such as the ability to exploit the structure present within
the specification, the ability to target multiple model formulations from the same base
specification and automated symmetry breaking are discussed. An overview is given of
the rules embedded within Conjure and an example is used to illustrate the process by
which streamliner conjectures are generated directly from the types present in Essence.
The modeling pipeline and the process for how an abstract streamliner constraint at the
Essence level is formulated down into a lower level solver dependent representation is
explained. Lastly, the seven constraint satisfaction problems used within this thesis are
formally defined and more generally the number of conjectures generated by our rules
across the entire CSPlib [110] is shown.

3.1 Utilizing Essence

In the following sections we will give an overview of why we have chosen to build our
streamliner generation system around Essence specifications and an overview of some of
the advantages provided by using an abstract constraint specification and a refinement
based approach to streamlined model generation.

30

3.1. UTILIZING ESSENCE 31

3.1.1 Utilizing Structure

The highly structured description of a problem an Essence specification provides is better
suited to streamliner generation than a lower level representation, such as Essence Prime.
This is because, in Essence Prime, nested types like multiset of sets, functions, relations
must be represented as a constrained collection of more primitive variables, obscuring the
structure that is useful to drive streamliner generation. Figure 3.1 shows a comparison
between the representation of the Social Golfers Problem [92] in the constraint modeling
language Essence Prime (Figure 3.1a) and Essence (Figure 3.1b). As Essence Prime
does not support higher level types, this problem description has to be decomposed into
more primitive types; in this case matrices of integer values. Without prior knowledge
it would be difficult to extract the structure present and to understand the objective of
partitioning a set of golfers across a schedule such that no golfer plays in the same group
as any other golfer on more than one occasion.

It is possible to formulate streamliners without any knowledge of the actual types however
they would be limited in nature and lack sophistication. Also as the complexity of the
types grow, with the addition of nested domains such as multisets or sets of functions, the
complexity of type identification in Essence Prime and the generation of streamliners
would grow. Type identification in Essence is always possible regardless of the complexity
of the specification as arbitrarily nested types are supported natively. In fact having more
structure present within the Essence specification is beneficial to streamliner generation
as it allows more complex far reaching streamliners to be generated that can have large
effects on the search within the solver.

3.1.2 Multiple Formulations

With Essence the act of specifying problems does not require CP modeling decisions to
be made. This means that streamlined specifications generated in Essence are abstract
and are not bound to any particular formulation of a constraint model. With reference
to Figure 3.1b there are multiple ways in which the set of partitions at the Essence
level could be formulated, for instance using an occurrence or explicit representation [109].
Conjure by default uses a default heuristic to generate just one output constraint model,
however it can generate a portfolio of models representing the different modeling choices
made. As streamliners are generated at the Essence level, Conjure will automatically
encode them for the particular formulation chosen. Contrast this to Essence Prime

32 CHAPTER 3. FROM CONJECTURES TO STREAMLINED SPECIFICATIONS

in which for the specification shown in Figure 3.1 modelling decisions have already been
made. Any streamliners generated from this specification will be compatible only with
this particular formulation. If a different viewpoint is taken, the streamliners would have
to be regenerated to target that new viewpoint.

As discussed earlier an important property of a streamliner is its ability to effectively
propagate within the solver. Different formulations can affect the ability of a constraint to
propagate and as such the chosen formulation for a streamliner is important. With Essence
and Conjure it is easy to produce a portfolio of different formulations to investigate
which provides the best performance for the streamlined model. In Essence Prime
however in order to accomplish this you would need to maintain multiple different models.
Additionally, Conjure can produce multiple alternative (redundant) representations of
the same variable that may appear simultaneously in the same model and additionally
automatically generate channelling constraints between these representations to maintain
consistency [143]. This would have to be done by hand in Essence Prime. When
streamliners are combined, each individual constraint can target a different representation
of the decision variable to maximize its propagation. The ability to target multiple different
representations is discussed further in Chapter 9.

3.1.3 Automated Symmetry Breaking

Most symmetry enters constraint models through the process of constraint modelling [68].
An advantage of using Essence is that Conjure automates the process of generating
symmetry breaking constraints and can break symmetry in a model as it is introduced
by the modeling process [3]. With respect to streamliner generation this gives the use of
Essence a distinct advantage as when streamliner constraints are added to the original
model there is the possibility that they could introduce additional symmetries. With
Essence Prime these symmetries would have to be broken on a per instance basis.

3.1. UTILIZING ESSENCE 33

given w: int (1..)
given g: int (1..)
given s: int (1..)
letting let1 be g * s
find golfers:

matrix indexed by [int (1..w), int (1..g), int (1..s)] of int (1.. let1)
branching on [golfers]
such that

and([sum([toInt(or([or([golfers[q23 , q28 , q31] = g1
| q31 : int (1..s)])

/\
or([golfers[q23 , q28 , q33] = g2

| q33 : int (1..s)])
| q28 : int (1..g)])

/\ (or([g1 = q26 | q26 : int (1.. let1)]) /\ or([g2 = q26
| q26 : int (1.. let1)])))

| q23 : int (1..w)])
<= 1

| g1 : int (1..g * s), g2 : int (1..g * s), g1 != g2]),
and([flatten ([[golfers[q1, q11 , q12] | q12 : int (1..s)]

| q11 : int (1..g)])
<lex
flatten ([[golfers[q1 + 1, q13 , q14] | q14 : int (1..s)]

| q13 : int (1..g)])
| q1 : int (1..w - 1)]),

and([allDiff ([golfers[q2, q15 , q16]
| q15 : int (1..g), q16 : int (1..s)])

| q2 : int (1..w)]),
and([and([s >= 1 | q17 : int (1..g)]) | q2 : int (1..w)]),
and([and([[golfers[q2, q6, q18] | q18 : int (1..s)] <lex

[golfers[q2, q6 + 1, q19] | q19 : int (1..s)]
| q6 : int (1..g - 1)])

| q2 : int (1..w)]),
and([and([and([golfers[q2, q7, q8] <

golfers[q2, q7, q8 + 1]
| q8 : int (1..s - 1)])

| q7 : int (1..g)])
| q2 : int (1..w)]),

and([let1 = sum([s | q21 : int (1..g)]) | q2 : int (1..w)])

(a) Essence Prime specification

given w, g, s : int (1..)
letting Golfers be new type of size g * s
find sched : set (size w) of

$ regular is implied by numParts g and partSize s
partition (regular , numParts g, partSize s) from Golfers

such that
forAll g1, g2 : Golfers , g1 != g2 .

(sum week in sched . toInt(together ({g1, g2}, week))) <= 1

(b) Essence specification

Figure 3.1: Comparison between the Essence specification and Essence Prime model
of the Social Golfers Problem [92]

34 CHAPTER 3. FROM CONJECTURES TO STREAMLINED SPECIFICATIONS

3.2 Streamliner Generation

Our process is driven by the decision variables in an Essence specification, such as the
function in Figure 3.1b. Candidate conjectures are generated by applying a system of
conjecture forming rules. A conjecture forming rule takes as input the domain of an
existing Essence term (a reference to a decision variable, or parts of it) and produces a
constraint posted on this term. Abstract domains in Essence can be arbitrarily nested
and conjecture forming rules take advantage of this nested structure. A rule defined to
work on a domain D is lifted to work on a domain of the form set of D (and other abstract
domain constructors mset, function, sequence, relation, partition, tuple, etc) through high-
order rules. For each variable, the system forms conjectures of possible regularities that
impose additional restrictions on the values of that variable’s domain. Since the domains
of Essence decision variables have complex, nested types, these restrictions can have
far-reaching consequences for constraint models refined from the modified specification.
The intention is that the search space is reduced considerably, while retaining at least one
solution.

3.2.1 Conjecture-forming Rules

In order to generate a large variety of useful conjectures we employ a small set of rules,
categorised into two classes, First-Order and Higher-Order rules. First-Order rules add
constraints to reduce the domain of a decision variable directly. Let us look at the example
below where the decision variable X has just a simple integer domain. Here a First-Order
rule that may apply could be the odd rule that operates only on an integer domain and
restricts the acceptable assignments to only odd values. In this primitive example the
application of this streamliner would reduce the size of the search space by a factor of 2.

find X: int (1..10)

such that

$ odd(X)

x % 2 = 1

High-Order rules on the other hand allow for streamliners to be generated on the nested
structure that is often present within an Essence specification. We have modified the
example slightly so that now X is a collection (a set) containing integer values. Here if we
want to enforce a similar constraint enforcing that all of the values of X must also be odd
we cannot just use the odd rule directly as we did before because this doesn’t apply to

3.2. STREAMLINER GENERATION 35

a set domain. High-Order rules take another rule as an argument and lift its operation
onto a decision variable with a nested domain. Here we can use one of the Higher-Order
rules such as all combined with the First-Order rule odd to enforce the constraint on all
elements of the set X. Imposing extra structure in this manner can reduce search very
considerably.
find X: set of int (1..10)

such that

$ all(odd(X))

and([q1 % 2 = 1 | q1 <- x])

Streamliner generator rules given in Figure 3.2 and Figure 3.3 cover all domain constructors
in Essence and they can be applied recursively to nested domains.

3.2.2 Streamlining by Example

To make clear the process of streamlining directly from an Essence specification we are
going to walk through an example of how a real streamliner constraint is generated for the
Car Sequencing problem outlined in Figure 1.4. The streamliner rules outlined thus far
operate on the domains of the decision variables within the Essence specification. For
Car Sequencing this is a total function mapping between an available slot on the assembly
line and the class of car to be produced, both integer domains.
letting Slots be domain int (1.. n_cars),

letting Class be domain int (1.. n_classes)

find car: function (total) Slots --> Class

When this specification is streamlined the domain of the decision variable is extracted and
pattern matched against the conjecture rules within Conjure. In this case as a function
is a higher-level type both Higher-Order and First-Order rules can be applied. Only a
subset of the rules will fire however as they do not all accept or operate on a function
domain.

Some First-Order rules can apply directly to a function domain to generate streamliner
constraints. These are monotonicIncreasing, monotonicDecreasing, smallestFirst and
largestFirst. On this specification four streamliner constraints are generated by the
application of these First-Order rules.

Only two Higher-Order rules, range and defined are directly applicable to a function
type. Let us restrict ourselves for this example to looking at just the range rule. When

36 CHAPTER 3. FROM CONJECTURES TO STREAMLINED SPECIFICATIONS

Name odd (Similarly even)
Input X: int

Output X % 2 = 1

Tag IntOddEven

Name lowerHalf (Similarly upperHalf)
Input X: int(l..u)

Output X < l + (u - l) / 2

Tag IntLowerUpper

Name monotonicIncreasing (Similarly monotonicDecreasing)
Input X: function int --> int

Output forAll i,j in defined(X) . i < j -> X(i) <= X(j)

Tag FunctionIncreaseDecrease

Name smallestFirst (Similarly largestFirst)
Input X: function int(l..u) --> int

Output forAll i in defined(X) . X(min(defined(X)) <= X(i)

Tag FunctionSmallLarge

Name commutative (Similarly nonCommutative, associative)
Input X: function (D, D) --> D

Output forAll (i,j) in defined(X) . X((i,j)) = X((j,i))

Tag FunctionCommutative or FunctionAssociative

Name quasiRegular
Param k (softness)
Input X: partition from D

Output minPartSize(X, |participants(X)|/|parts(X)| - k) /\

maxPartSize(X, |participants(X)|/|parts(X)| + k)

Tag PartitionRegular

Name Add binary relation attributes
Input X: relation of (D, D)

Output reflexive(X)

Similarly irreflexive, coreflexive, symmetric, antiSymmetric, aSymmetric, transitive,
total, connex, Euclidean, serial, equivalence, partialOrder.

Tag BinaryRelation

Figure 3.2: The First-Order streamlining rules. For each rule we present the rule name,
rule’s input, output and the tag. The tags are used to filter trivially contradicting
streamliners during streamliner selection. We choose up to 1 streamliner from each tag.

3.2. STREAMLINER GENERATION 37

Name all (Similarly half, at most one)
Works on matrices, sets, msets, sequences, and relations.

Param R (another rule)
Input X: set of _

Output forAll i in X . R(i)

Name Approximately half
Works on matrices, sets, msets, sequences, and relations.

Param R (another rule)
Param k (softness)
Input X: set of _

Output (|X|/2-k <= sum i in X . toInt(R(i))) /\

(|X|/2+k >= sum i in X . toInt(R(i)))

Name range (Similarly defined)
The range and defined operators return the codomain and the domain sets of a
function variable, respectively.

Param R (another rule)
Input X: function _ --> _

Output R(range(X))

Name parts
The parts operator returns a set of sets view of the partition variable.

Param R (another rule)
Input X: partition of _

Output R(parts(X))

Figure 3.3: The Higher-Order streamlining rules. These rules lift existing first-order and
higher-order streamlining rules to work on nested domain constructors of Essence. They
do not introduce any additional tags, but they propagate the tags introduced by the rule
they are parameterised on.

38 CHAPTER 3. FROM CONJECTURES TO STREAMLINED SPECIFICATIONS

applied within Conjure this will extract the set domain from the function and also
take another rule as an argument. By default all rules will be matched and only those
which operate on a set domain will be applicable. As the domain that range produces
is a {set: Int} none of the first order rules can apply but a few of the higher-order rules
do such as approximatelyHalf, all, half and atMostOne. Being Higher-Order these again
will also take another rule as an argument. This recursive process continues until a
first-order rule is selected. For instance the odd rule may be selected to create the complete
rule range(approximatelyHalf(odd(car))). Figure 3.4 shows a sample of First-Order and
Higher-Order rules that fire on this specification alongside the generated streamliner
constraints. Conjure combines these constraints with the original specification to
produce a streamlined Essence specification.

These generated constraints can be quite effective in reducing search effort by a large degree.
Figure 3.5 shows that the aforementioned constraint approximatelyHalf(range(car, odd)) is
applicable on almost all of the 100 randomly selected training instances. In most cases it
is also able to achieve a drastic reduction in solving time for instances widely dispersed
across the x-axis showing that the streamliner’s performance is not just applicable to one
form of instance.

3.2.3 Domain Attributes & Softened Rules

Domain attributes can be added to Essence domains to restrict the set of acceptable
values. For example, a function variable domain may be restricted to be total or injective,
or a partition variable domain may be restricted to regular partitions. Hence, the simplest
source of streamliners is the systematic annotation of the decision variables in an input
specification. The existing Essence domain attributes are, however, of limited value.
They are very strong restrictions and so often remove all solutions to the original problem
when added to a specification.

If we take the BIBD Essence specification, Section 3.4, as an example it contains a
decision variable of the form find bibd : relation of (Obj * Block). A generated streamliner
from the rules encompassed in Figure 3.2 and Figure 3.3 might be symmetric(bibd) which
enforces that the relation must be symmetric. Enforcing this does restrict the size of
the search space and help propagation as when a pair (q1, q2) is added to the relation
it can be immediately propagated that (q2, q1) must also be in the relation to satisfy
the symmetric property. The problem however is that for a lot of BIBD instances this
additional constraint may be too strict and remove all solutions. It is thus important to

3.2. STREAMLINER GENERATION 39

First -Order Rules

$ Enforces that the car function must be monotonically increasing
such that if a value is less than another in the defined values
it must also be less than in the function

monotonicallyIncreasing(car)

forAll i,j in defined(car).
i < j -> image(car , i) <= image(car , j)

$ Enforces that the smallest defined value of the function must
have the lowest value in the function

smallestFirst(car)

forAll i in defined(car).
car(min(defined(car)) <= car(i)

Higher -Order Rules

$ Enforces that the range of the function must be even
range(even(car))

forAll i in range(car).
i % 2 = 0

$ Enforces that approximately half (with softness parameter) of the
range of the function must be odd

range(approximatelyHalf(odd(car)))

|range(car)| / 2 + k >= sum([toInt(q11 % 2 = 1) | q11 <-
range(car)]) /\\ |range(car)| / 2 - k <=

sum([toInt(q11 % 2 = 1) | q11 <- range(car)])

Figure 3.4: The application of First and Higher-Order rules on the function decision
variable domain in Car Sequencing

consider that there may be structural regularities that exist within problems that only
partially apply to a variable and not the variable as a whole. This premise has been seen
before in the literature where in their work on Double-Wheel Graphs, Bras et al showed
that one of the effective streamliners they generated enforced most of the inner wheel to
be odd [129].

We want to be able to generate streamliners that are flexible and can capture these smaller
regularities. Some of the rules that comprise our system are designed such that they
can take a softness argument which can control how strict the generated streamliner
constraint is going to be. Within Conjure there are hard coded softness parameters that
are drawn from the set {1,2,4,8,16,32}. Softness works by relaxing the strictness of the
streamliner on a given variable by the degree of the softness parameter. As a convention,

40 CHAPTER 3. FROM CONJECTURES TO STREAMLINED SPECIFICATIONS

Figure 3.5: For the Car Sequencing problem the performance comparison between the
unstreamlined model and streamliner approximatelyHalf(range(car, odd)) on 100 random
training instances with unstreamlined solving times between [10,300]s

2 : and([|‘int (1..v) ‘|*|‘int (1..v)‘| / 2 <= sum([toInt(bibd(q1, q2) ->
bibd(q2, q1)| q1 : int (1..v)])

4 : and([|‘int (1..v) ‘|*|‘int (1..v)‘| / 4 <= sum([toInt(bibd(q1, q2) ->
bibd(q2, q1)) | q1 : int (1..v)])

8 : and([|‘int (1..v) ‘|*|‘int (1..v)‘| / 8 <= sum([toInt(bibd(q1, q2) ->
bibd(q2, q1)) | q1,q2 : int (1..v))

Figure 3.6: A sample of the softened rules for the symmetric streamliner constraint on the
BIBD problem

smaller values of the softness parameters produce comparatively strict streamliners (hence
potentially causing greater reductions in the amount of search) and larger values produce
more applicable streamliners. For instance the symmetric rule noted above is one of these
softened rules and for each softness parameter (N) a softened constraint will be generated.
Figure 3.6 shows three of the softened constraints that would be generated for the softness
values of {2,4,8}.

As can be seen from Figure 3.7 the degree of softness can have a large impact on both
the applicability and reduction performance of a streamliner across an instance set. Here
applicability refers to the proportion of training instances for which the streamlined model
admits a solution and reduction the mean search reduction in solving time achieved by
the streamliner on those satisfiable instances. For the symmetric constraint described

3.2. STREAMLINER GENERATION 41

Figure 3.7: For the BIBD problem the Average Applicability and Reduction for various
softness parameter on the symmetric streamliner constraint

above it can be seen that enforcing the relation find bibd : relation of (Obj * Block) to
be symmetric results in all training instances being unsatisfiable (a softness value of 1 in
this context enforces no softness). If Obj and Block are not of the same domain size then
a fully symmetric relation is not achievable. If that is relaxed slightly such that at least
half of the relation elements are symmetric then solutions are found on over 35% of the
instances. As the softness parameter increases the percentage of instances for which a
solution is admitted also increases up to almost 50% for value 16. As the constraint is
relaxed it is able to capture smaller solution regularities that exist and so achieves greater
coverage of the instance set. This trend does not extend to softness value 32 where the
average applicability actually drops. Even though the search space of softness value 32 is
a strict superset of all prior values, as streamliners get encoded as additional constraints
they add overhead either in the form of extra clauses or extra constraints depending on
the paradigm. For a streamliner to be effective the benefit from search restriction must
outweigh the additional overhead and for value 32 because it is relaxed to such a high
degree this does not occur for all instances.

42 CHAPTER 3. FROM CONJECTURES TO STREAMLINED SPECIFICATIONS

For each softened constraint, and for each value of softness parameter an independent
constraint is generated by Conjure. Because of this there is a practical limit in the
range of the softness values that can be used. A larger range allows for the generation
of more fine grained streamliners that can detect the presence of smaller regularities in
the problem structure. As the range grows however so does the number of generated
conjectures which increases the complexity of identifying which conjectures are effective.
Also as the conjectures are continually softened their ability to restrict search and achieve
reductions is reduced. This can be seen from Figure 3.7 where for any softness value greater
than 4 the average reduction consistently drops as the streamliner is further relaxed.

3.2.4 Application on CSPlib

Table 3.1 shows the application of these rules across the set of satisfaction problems in
the CSPlib [110], a problem library for constraints. There are a diverse range of types
represented in this table, from partitions to functions to sequences to multi-sets to relations,
and the rules within Conjure are able to generate streamliners for each problem listed.

3.2. STREAMLINER GENERATION 43

Problem # Streamliners Essence features Refs
Transshipment 68 2 partial functions [103]
VanDerWaerden 65 partition of numbers [94, 53]
CarSequencing 36 function [52]
Template Design 40 1 1D function, 1 2D function [163]
QuasiGroupExistence 35 2D function [202]
AllIntervalSeries 72 2 bijective functions [78]
VesselLoading 144 4 functions [30]
Perfect Square Placement 72 2 functions [176]
Social Golfers Problem 260 set of partition [173]
Nonogram 64 2D matrix [54]
Schurs Lemma 65 partition [90]
Ramsey Numbers 32 function [83]
Magic Squares 68 2D matrix, int [193]
Magic Hexagon 68 2D matrix, int [194]
Langford 52 sequence and injective func-

tion
[5, 179]

Sports Tournament Schedul-
ing

12 relation of weeks, periods
and sets of teams

[171]

BIBD 168 relation of unnamed types [146]
Balanced Academic Curricu-
lum Problem

36 binary relation, function vari-
able

[97]

Fixed Length Error Correct-
ing Codes

64 set of functions [69]

NFractionsPuzzle 36 total, surjective function [64]
Steiner 64 matrix of set [45]
Covering Array 64 mset of function [98]
Number Partitioning 32 2 set variables [121]
DiamondFree 236 symmetric & irreflexive rela-

tion total function
[147]

Graceful Double Wheel
Graphs

72 injective functions [180]

Graceful Gears 72 injective functions [180]
Graceful Helms 72 injective functions [180]
Graceful Wheel Graphs 72 injective functions [180]
Nqueens 36 total, bijective function [105]
EFPA 144 set [104]
Killer Sudoku 64 matrix [152]
Tail Assignment 160 relations, sets of nested func-

tions
[89]

A Layout Problem 32 function [7]
Peg Solitaire 224 2 functions [108]
Production Line Sequencing 48 2 total functions, 1 total in-

jective function
[9]

Table 3.1: For the set of decision problems listed in CSPLib, the number of streamliners
automatically generated from their Essence specifications as well as the types of decisions
variables used.

44 CHAPTER 3. FROM CONJECTURES TO STREAMLINED SPECIFICATIONS

3.3 Modeling Pipeline

From an abstract specification Conjure generates JSON output detailing the streamliner
constraints that were automatically generated. A sample of this output is shown in
Figure 3.8. This JSON output defines for each streamliner the following:

• Numerical Id: Each streamliner constraint is allocated a numerically ascending
unique id which can be used to reference it when generating streamlined models.

• onVariable: The decision variable for which the streamliner constraint is imposed
upon

• groups: A list denoting the groups that this streamliner is part of. This is used
later to identify constraints that may be trivially incompatiable.

• constraint: The Essence description of the streamliner constraint

The streamlined conjectures are generated at the Essence specification level. Essence
specifications however cannot be solved directly by systematic constraint solvers, which
lack support for abstract types such as functions and partitions, and nested types. Hence,
an Essence specification must be refined into a constraint model where these types,

{"1": {" onVariable ": "car",
"groups ": [" FuncIncreaseDecrease "],
"constraint ": "and([and([q1 < q2 -> image(car , q1) <= image(car , q2)

| q2 <- defined(car)]) | q1 <- defined(
car)])"},

"2": {" onVariable ": "car",
"groups ": [" FuncIncreaseDecrease "],
"constraint ": "and([and([q3 < q4 -> image(car , q3) >= image(car , q4)

| q4 <- defined(car)]) | q3 <- defined(
car)])"},

"3": {" onVariable ": "car",
"groups ": [" FuncIncreaseDecrease "],
"constraint ": "and([image(car , min(defined(car))) <= image(car , q5)

| q5 <- defined(car)])"},
"4": {" onVariable ": "car",

"groups ": [" FuncIncreaseDecrease "],
"constraint ": "and([image(car , max(defined(car))) >= image(car , q6)

| q6 <- defined(car)])"},

Figure 3.8: Example JSON generated by Conjure detailing the streamliners automatically
generated from the specification

3.3. MODELING PIPELINE 45

SavileRow

CP: Chuffed SAT: Lingeling

Instance

Automated
Streamlined
Model
Refinement

Tailoring

Solving

Streamlined
E'Prime Model

Conjure

Flatzinc
File

Dimacs
File

Essence
Spec

Streamliner

Figure 3.9: Process of evaluating a streamliner

and the constraints on them, are modeled in terms of the target constraint language.
The process of evaluating a streamliner can then be split into three main components:
Conjure Modelling, Savile Row Reformulation and Solver evaluation as can be seen
from Figure 3.9.

Conjure modeling involves the refinement of the streamlined Essence model into
the solver-independent constraint language Essence Prime [155, 154]. Streamliner
constraints add additional complexity to the model and as such can have a negative impact
on the modelling time taken by Conjure. However for a given streamliner combination
Conjure only has to be invoked once to generate the Essence Prime model which can

46 CHAPTER 3. FROM CONJECTURES TO STREAMLINED SPECIFICATIONS

then be used for any instance of that problem class. The additional time added by the
streamliner is then amortized over the entire instance space.

The constraint modelling tool Savile Row is then invoked to translate and reformulate
the Essence Prime model together with the target instance into the input language of the
solver. During the translation process Savile Row applies various reformulations, such
as common subexpression elimination and domain reduction, to improve the performance
of the model.

One of the main benefits of utilizing this pipeline is that it is trivial to target multiple
different solver paradigms; for instance CP, SAT and SMT, without having to change the
generated streamlined specifications. In this stage the generated solver-model produced
by Savile Row is evaluated by the solver of choice.

3.4 Problems

We now introduce the problem classes studied in this thesis, in addition to the Car
Sequencing Problem presented in Figure 1.4 and the Social Golfer’s Problem listed in
Figure 3.1a. These problems will be used both to illustrate the remainder of our method
and for our empirical evaluation. We selected these problems, presented in Figure 3.10 to
give good coverage of the abstract domains available in Essence, including matrices, sets,
partitions, relations and functions.

The Covering Array problem [172] (Figure 3.10a) requires finding a matrix of integer
values indexed by k and b such that any subset of t rows can be used to encode numbers
from 0 to gt−1. In addition to the covering constraint, row and column symmetries are
broken using the lexicographic ordering constraints [57].

The Fixed Length Error Correction Codes problem (FLECC) [63] (Figure 3.10b) asks
us to find a set of code words of a uniform length such that each pair of code words are
at least a specified minimum distance from each other, as computed by a given distance
metric (e.g. hamming distance).

The Balanced Incomplete Block Design problem (BIBD) [161] (Figure 3.10c) is a standard
problem from design theory often used in the design of experiments. It asks us to find an
arrangement of v distinct objects into b blocks such that each block contains exactly k
distinct objects, each object occurs in exactly r different blocks, and every two distinct
objects occur together in exactly λ blocks. This problem is naturally specified as finding a

3.4. PROBLEMS 47

relation between objects and blocks.

The Transshipment problem [8] (Figure 3.10d) considers the design of a distribution network,
which includes a number of warehouses and transshipment points to serve a number of
customers. The cost of delivering items from each warehouse to each transshipment point
and from each transshipment point to each customer, and the amount of stock available
at each warehouse are given. We are asked to find a delivery plan that meets customer
demand within a cost budget. This is specified as a pair of functions describing the
amount of demand supplied between each warehouse and transshipment point, and each
transshipment point and customer.

The Balanced Academic Curriculum Problem (BACP) [96] (Figure 3.10e) (decision version)
is to design a balanced academic curriculum by assigning periods to courses. The constraints
include the minimum and maximum academic load for each period, the minimum and
maximum number of courses for each period, and the prerequisite relationships between
courses. This problem is also specified as finding a function from courses to periods.

48 CHAPTER 3. FROM CONJECTURES TO STREAMLINED SPECIFICATIONS

given t : int (1..) $ strength (size of subset of rows)
given k : int (1..) $ rows
given g : int (2..) $ number of values
given delta_b : int (1..) $ columns
where k >= t
letting b be g**t + delta_b

find CA: matrix indexed by [int (1..k), int (1..b)] of int (1..g)

such that
forAll rows : sequence (size t) of int (1..k) .

(forAll i : int (2..t) . rows(i-1) < rows(i)) ->
forAll values : sequence (size t) of int (1..g) .

exists column : int (1..b) .
forAll i : int (1..t) .

CA[rows(i), column] = values(i)

$ row & col symmetry breaking
such that forAll i : int (2..k) . CA[i-1,..] <=lex CA[i,..]
such that forAll i : int (2..b) . CA[..,i-1] <=lex CA[..,i]

(a) Essence specification for the Covering Array Problem (decision version) [172]

given nbCharacter : int (1..)
letting Character be domain int (1.. nbCharacter)
maxDist : int (1..) ,
codeWordLength : int (1..),
numOfCodeWords : int (1..)

letting Index be domain int (1.. codeWordLength),
String be domain function (total) Index --> Character

find c : set (size numOfCodeWords) of String
such that

forAll s1, s2 in c, s1 != s2 .
(sum i : Index . dist((s1(i),s2(i)))) >= minDist

(b) Essence specification for Fixed Length Error Correcting Codes problem [63]

3.4. PROBLEMS 49

given v, k, lambda , b, r : int (1..)
letting Obj be domain int (1..v)
letting Block be domain int (1..b)
find bibd : relation of (Obj * Block)
such that

forAll o : Obj . |toSet(bibd(o,_))| = r,
forAll bl : Block . |toSet(bibd(_,bl))| = k,
forAll o1, o2 : Obj , o1 != o2 .

|toSet(bibd(o1,_)) intersect toSet(bibd(o2,_))| = lambda

(c) Essence specification for Balanced Incomplete Block Design problem [161]

given n_warehouses , n_transshipment , n_customer , maxCost : int (1..)
letting W be domain int (1.. n_warehouses),

T be domain int (1.. n_transshipment),
C be domain int (1.. n_customer)

given costWT : function (total) (W, T) --> int (1..),
costTC : function (total) (T, C) --> int (1..),
stock : function (total) W --> int (1..),
demand : function (total) C --> int (1..),

find amountWT : function (W, T) --> int (1.. max(range(stock)))
find amountTC : function (T, C) --> int (1.. max(range(demand))
such that

forAll w : W .
sum([amount | ((w’, t), amount) <- amountWT , w = w’]) <= stock(w),

forAll t : T .
sum([amount | ((w, t’), amount) <- amountWT , t = t’]) =
sum([amount | ((t’, c), amount) <- amountTC , t = t’]),

forAll c : C .
sum([amount | ((t, c’), amount) <- amountTC , c = c’]) = demand(c),

sum([costWT(key) | (key , amount) <- amountWT]) +
sum([costTC(key) | (key , amount) <- amountTC]) <= maxCost

(d) Essence specification for Transshipment [8]

given n_courses , n_periods ,load_per_period_lb , load_per_period_ub ,
courses_per_period_lb , courses_per_period_ub : int (1..)

letting Course be domain int (1.. n_courses),
Period be domain int (1.. n_periods)

given prerequisite : relation of (Course * Course),
course_load : function (total) Course --> int (1..)

find curr : function (total) Course --> Period
such that

forAll c1,c2 : Course . prerequisite(c1,c2) -> curr(c1) < curr(c2),
forAll p : Period . (sum c in preImage(curr ,p) . course_load(c)) <=

load_per_period_ub /\ (sum c in preImage(curr ,p) . course_load(c)) >=
load_per_period_lb ,

forAll p : Period . |preImage(curr ,p)| <= courses_per_period_ub /\ |
preImage(curr ,p)| >= courses_per_period_lb

(e) Essence specifications for Balanced Academic Curriculum Problem [96]

Figure 3.10: Essence specifications for six problem classes used for evaluation, in addition
to the Car Sequencing problem given in Figure 1.4.

50 CHAPTER 3. FROM CONJECTURES TO STREAMLINED SPECIFICATIONS

3.5 Summary

This chapter has focused on providing an overview of the method used to generate
streamlined models automatically from an Essence specification. An introduction to the
Essence specification language was given and the advantage of situating the system in
a high level specification language were discussed. An overview was given of the rules
embedded within Conjure and a walkthrough of how an example streamliner conjecture
is generated directly from the types present in Essence was given. The modeling pipeline
and the process for how an abstract streamliner constraint at the Essence level is
formulated down into a lower level solver dependent representation is explained. Lastly,
the seven constraint satisfaction problems used within this thesis were formally defined
and the application of the rules across the entire CSPlib is shown.

4Chapter Four

Generating and
Selecting Training

Instances

The core idea underpinning this thesis is that an effective portfolio of streamliners can be
built on a training set and then employed to solve unseen instances from the same problem
class with substantially less effort than the original model. Because the streamliner
conjectures are generated purely based upon the types present in Essence, the automatic
evaluation of conjectures is essential to construct a high quality portfolio of streamlined
models. For this purpose, training instances from the problem class under consideration are
required. In this chapter we describe how training instances are automatically generated
and selected directly from the Essence specification of a problem class. Lastly an analysis
of the "footprint" that different streamliners have in the feature space is presented and how
performance similarity between similar instances can be used to construct a compressed
representative training distribution.

4.1 Automated Instance Generation

A potential for confusion in this chapter results from the use of the word instance and its
specific meaning. An instance can normally be thought of as the result of combining a
model and the instance data (particular values given for its parameters). Referring back
to the Social Golfers Problem, two models for the problem are detailed in Figure 3.1 and
a valid instance data example is provided below:

51

52 CHAPTER 4. GENERATING AND SELECTING TRAINING INSTANCES

language Essence 1.3

letting g be 17

letting s be 10

letting w be 2

To evaluate the performance of a particular streamliner we want to compare the same
instance under the original model and a streamlined model to gauge its reduction in search.
However, as streamlining typically alters the model through the addition of conjectures,
the instance produced given the same instance data is different between the original and
streamlined models. For this reason: in the rest of this chapter we often refer to an original
and streamlined representation of an instance and what is meant by that is using the same
instance data but under the original and streamlined Essence models.

We employ the automated instance generation system proposed in by Akgun et al [2].
Starting from the unstreamlined problem specification of a problem class in the Essence
language, several satisfiable instances with desirable properties are generated in a completely
automated fashion. The system includes two main steps, which we illustrate in what
follows with the Car Sequencing problem.

First, the original specification is automatically rewritten to produce an instance generation
specification. Rewrite rules embedded in Conjure transform each input parameter of the
problem specification into decision variables and constraints on the valid assignments for
these variables. Hence, solutions to this new specification correspond to instances of the
original specification. The instance generation specification is itself parameterised so that
it can be tuned to admit solutions from different parts of the instance space. An example
of the generator specification created by the system for the Car Sequencing problem is
presented in Figure 4.1.

Second, instances are generated by searching in the parameter space of the generator
using the automated algorithm configuration tool irace [137]. irace uses an iterated
racing approach to automatic algorithm configuration which consists of three steps. 1)
The generation of a set of candidate configurations by sampling from the parameter space,
which in our case is the space of the given parameters given to the generator specification.
2) Racing [141] to evaluate the performance and selecting the best configurations. Within
each race the CP solver Minion [81] is firstly invoked to search the generator specification
(Figure 4.1) for a valid instance to the Car Sequencing problem. If Minion is able to find
a solution, that generated instance is then evaluated by the solver of choice to determine

4.1. AUTOMATED INSTANCE GENERATION 53

language ESSENCE ’ 1.0

given n_cars_middle: int (1..200)
given n_cars_delta: int (0..99)
find n_cars: int (1..200)
given quantity_range_middle: int (1..200)
given quantity_range_delta: int (0..99)
find quantity_Function1DPartial_Flags: matrix indexed by [int (1..200)] of

bool
find quantity_Function1DPartial_Values: matrix indexed by [int (1..200)] of

int (1..200)

such that
n_cars >= n_cars_middle - n_cars_delta ,
n_cars <= n_cars_middle + n_cars_delta ,
and([q1 >= 1 /\ q1 <= n_classes <-> quantity_Function1DPartial_Flags[q1

] | q1 : int (1..200)]),
and([quantity_Function1DPartial_Flags[q16] ->

quantity_Function1DPartial_Values[q16] >= quantity_range_middle -
quantity_range_delta
| q16 : int (1..200)]),

and([quantity_Function1DPartial_Flags[q17] ->
quantity_Function1DPartial_Values[q17] <= quantity_range_middle +

quantity_range_delta
| q17 : int (1..200)]),

and([quantity_Function1DPartial_Flags[q5] = false ->
quantity_Function1DPartial_Values[q5] = 1 | q5 : int (1..200)])

Figure 4.1: Parts of Car Sequencing generator’s Essence specification automatically
created by the system in [2]. Given a generator’s parameter file created by irace during
the tuning, a random instance is created by solving this specification using the constraint
solver Minion [81]. For brevity, we omit the specification for nclasses, noptions, maxCars,
blksize and usage, as they are rewritten in exactly the same way as other parameters of
the same types.

whether it is satisfiable and the difficultly required to solve it. 3) Updating the sampling
distribution in order to bias the sampling towards the best configurations. These three
steps are repeated until a termination criterion is met.

4.1.1 Instance Requirements

irace searches for instances under one particular representation, the original model.
Not all instances found during search are selected to compose the training set however,
only those that are satisfiable. This requirement is necessary as an unsatisfiable instance
provides little utility in analyzing the performance of a streamliner as there is no way to

54 CHAPTER 4. GENERATING AND SELECTING TRAINING INSTANCES

reason about whether it retains solutions or aids in search reduction. Streamliners cannot
be used to prove unsatisfiability, because they are not inferred from the model, and so an
unsatisfiable instance is of little utility in our training set.

Secondly the instance must be graded, which we define as the solving difficulty falling
within a required range; the instance cannot be too easy or too difficult for the chosen
solver. In this work instances are selected that have a solving time in the range [10,300]s.

An upper bound on instance difficult is enforced for two main reasons. Firstly, as irace
initially randomly samples it generally needs to perform multiple iterations before it can
focus onto good configurations. If no bound on instance difficultly is enforced it is possible
that one of the initial candidate configurations lands in a difficult part of the instance space
and the entire budget given to instance generation could be consumed without completing
one iteration. By enforcing an upper bound it can be assured that irace will complete at
least a certain number of iterations in the given time budget. Secondly, streamlining in
the past has generally been used to solve difficult instances of a problem, i.e taking a few
hours or days to solve, and so ideally our training set would be composed of instances of a
similar character. The problem however is that during streamliner evaluation the worst
case time occurs on timeout where the solving time is then lower bounded by the time
taken by the original model. Based upon the number of conjectures that are generated
from a specification and need to be evaluated, to keep the cost of training manageable an
upper limit needs to be placed on the instance difficulty. We will show later in our results
that streamliner portfolios learned on instances of this character do extrapolate onto more
difficult instance distributions.

A lower bound is also defined to prevent instances from being trivially satisfiable as they
are not an effective medium for evaluating a streamliner. On evaluation they could be
used to tell if a streamliner was satisfiable, however as the solving time is negligible it
would be difficult to gauge whether the streamliner actually helped in reducing search.
Also as discussed in the previous chapter streamliners can add complexity to the solver
dependent model. As trivial instances require little or no search to find a solution it is
difficult to evaluate whether the complexity added will impact the performance of the
solver as this would only become apparent during search.

4.1. AUTOMATED INSTANCE GENERATION 55

4.1.2 Irace Search

The search of irace is guided via a scoring that rewards generator configurations covering
unsatisfiable, satisfiable and non-trivial instances. Each race is allocated a score based
upon its outcome:

• No instance produced by Minion: score = 0

• The generated instance is unsatisfiable: score = 0

• The generated instance times out: score = 0

• instance is satisfiable:

– instance trivial : score = solvingTime

– instance graded : score = minSolvingTime

Runs that generate no instance or an instance that is unsatisfiable or times out are
penalized to the highest degree with the lowest score of zero as they represent the worst
possible outcome during instance generation. If a satisfiable instance is found, the score is
based upon the solving time taken by the solver. This means that trivial instances will
be allocated a lower score than graded ones. As the objective of irace is to maximize
the score obtained on each run this will progressively push search towards the instance
space containing graded instances. During the iterated racing approach the sampling
distributions are updated in order to bias the sampling towards the best configurations
(those with the highest score) found during search. The space of all possible generator
configurations is large and this bias in the sampling aims to focus the search on a part of
the space that has already produced promising configurations. The hope is by focusing the
search other successful generator configurations can be found and as a result generate more
instances than would have been found under just a random exploration. This was shown
to be the case in the work done by Akgun et al [2]. The downside of this however is that
the irace search is going to focus on a particular region of the generator configuration
space and instances generated from this region may be similar and possess little diversity.

Each run of irace tends to focus in on a particular region of the generator configuration
space meaning that instances generated from the search tend to clump together in the
feature space. To overcome this irace can be run multiple times with different starting
seed values so that each search operates in a different region of the feature space as can

56 CHAPTER 4. GENERATING AND SELECTING TRAINING INSTANCES

Figure 4.2: The instances generated for the Car Sequencing problem by the three indepen-
dent runs of IRace. The instances are plotted on the two dimensional projection of the
original multi-dimensional instance feature space via Principle Component Analysis [40].
About 99.4% of the variance in the feature space is captured in these two dimensions.

be seen by Figure 4.2. In this work for each problem class instances are collected from
three different irace runs to ensure diversity. Table 4.1 provides a breakdown on the
distribution of the different outcomes during the irace searches. sat-graded is the only
type that results in an instance being collected for streamliner evaluation. Even though
each irace search helps to increase coverage of the feature space as can be seen from the
listed computation times instance generation is an expensive process and this is why we
limit it to only three runs per problem class.

4.2. STREAMLINER FOOTPRINT ANALYSIS 57

Irace Iteration Iteration Result Time
Spent
(cpu
hours)

no instance sat:
too-
easy

sat : graded unsat:
too-
easy

unsat:
graded

solver
time-
out

1 1542 1542 1429 3003 422 1405 609.61
2 1427 1927 1185 3893 362 1173 443.77
3 1576 841 3036 2854 348 1207 546.93

Total 4545 4310 5650 9750 1132 3785 1600.31

Table 4.1: Details of the three irace instance generation executions for the Car Sequencing
problem. The Iteration Result category details the number of iterations that resulted in
each category. The breakdown of the categories is defined as follows: no instance indicates
the parameters chosen for the generator configuration did not generate an instance in
the allotted time. The sat and unsat types indicate satisfiability and unsatisfiability
respectively. The subtypes of too-easy and graded indicate how long the solver took to
arrive at a solution. An instance is marked too-easy if it took < 10s and is marked graded
if the solver finished in the defined time range of [10,300]s. solver-timeout indicates the
solver went over 300s with no answer

4.2 Streamliner Footprint Analysis

We have seen in the previous chapters that different instances can react quite differently
to the application of a streamliner constraint, both in terms of satisfiability and the
degree of search reduction. Similar to the concept of an algorithm footprint [183], we can
consider the footprint of a streamliner to be its search reduction performance across a set
of instances. To visualize the streamliner performance FlatZinc features were extracted for
all instances using the fzn2feat tool (part of mzn2feat[10]). There are 95 features grouped
into 6 categories (variables, constraints, domains, global constraints, objective, and solving
features) [10]. Figure 4.3 shows in a transformed 2-D version of the feature space, using
Principle Component Analysis [40], the feature space for instances from the Fixed Length
Error Correcting Codes problem. In the feature space the instances arrange themselves
into two independent clusters. It is not possible however, because the dimensions produced
by PCA are a combination of features, to tell what is distinguishing attribute between
these two clusters.

These streamliner "footprints" vary across the feature space as can be seen from Figure
4.3. If we analyse the performance on the bottom grouping of instances the performance

58 CHAPTER 4. GENERATING AND SELECTING TRAINING INSTANCES

achieved by different streamliners varies drastically. Streamliner ’2’, which enforces that
each function representing a code word is monotonicallyDecreasing, is mostly satisfiable
across that group but generally it only achieves a reduction of less than 50%. Streamliner
’121’, which enforces that for approximately half of the code words the characters have
an odd domain value, on the other hand occasionally achieves good reductions but in
general it seems to be too strict and renders most instances infeasible. Note also that
we can vastly modify the footprint achieved by applying the combination of ’2’ and ’8’.
Streamliner ’8’ enforces that each code word is only composed of characters in the upper
half of the character domain. For most instances in the bottom group it seems that this is
a more effective combination as the general reduction has drastically increased to ≥ 50%.
However in other parts this combination makes the resulting instance too tight and as
such negatively affects its feasibility.

Because of this variation in how different instances respond to streamliners ideally the set of
instances we use for training should be diverse otherwise the generated streamliner portfolio
may be skewed towards instances of one or a limited number of types and so not generalise
across the problem class. As cautioned by Hooker [99, 100], there is a need to be careful
about the conclusions that can be drawn beyond the selected instances. For optimization
problems there have been documented cases where the benchmark library instances are
not very diverse [95] and as such there is a danger of overfitting where the algorithms
are developed and tuned to perform well on these instances without understanding the
performance that can be expected on instances with diverse properties.

In analyzing Figure 4.3 it can be seen that the variation of the footprints across the feature
space does not appear to be random. For each streamliner there are regions of the space
that exhibit satisfiability and a degree of reduction and then there are other parts that
tend to produce infeasibility. It appears that there is a relationship between the instance
features and the streamliner performance, such that instances located close together in
the high dimensional feature space will possess similar performance characteristics [112]
in relation to streamliner application. We can exploit this fact and use instance features
as a cheap proxy for performance data. For instance, if a streamliner has been proven
unsatisfiable on a particular instance we can draw the conclusion that other instances
located nearby in the feature space may have a similar result.

4.3. TRAINING SET CONSTRUCTION 59

Figure 4.3: Performance of three example streamliners on the training set of 4647 instances
generated for the Fixed Length Error Correcting Code problem with Chuffed. Each two
dimensional plot is a projection of the original multi-dimensional instance feature space
via Principle Component Analysis [40].

4.3 Training Set Construction

For some of the examined problem classes the instance sets generated through the auto-
mated instance generation procedure are too large to use in their entirety when searching
for effective streamliners. For example, on the Fixed Length Error Correcting Codes
problem 4647 and 6930 instances were generated for Chuffed and Lingeling respectively
as seen in Table 4.2. When using all instances, one candidate streamliner evaluation
could take around 15 CPU days, assuming a worst case of 5 minutes per instance. It is
thus necessary to form a compressed representation of the instance space that we can
use directly in search. During compression we want to retain as best as possible the
performance characteristics of the instance space. If our training set includes sampling
bias this will affect the conclusions that can be drawn and directly limit the ability of our
streamliner portfolios to generalize across the problem class.

As noted in Section 4.2 it appears that instances located close together in the high
dimensional feature space possess similar performance characteristics [112]. Based upon
this we can look for clusters of instances present in the feature space and select one or
more per cluster to compress the dataset but still retain the performance characteristics.
The accuracy of this method may not be perfect, however it should allow us to retain some
of the diversity of the dataset while being relatively cheap to use. GMeans [91] clustering
is used on the feature space to detect the number of instance clusters (column 4 of Table
4.2). An example of clustering results for the Fixed Length Error Correcting Code with

60 CHAPTER 4. GENERATING AND SELECTING TRAINING INSTANCES

Chuffed is shown in Figure 4.4. We can then build a compressed representation of the
training set by selecting a subset of instances per cluster.

Figure 4.4: GMeans clustering results, with 128 clusters detected, on the instance feature
space (projected to 2-dimensional space by PCA) for the Fixed Length Error Correcting
Codes problem with Chuffed. Each color represents a cluster.

To make sure that we have a sufficient number of representative training instances, we
define a minimum number of 50 instances to comprise our compressed training set. This
value was chosen based on the computational resources available for our experiments. If
the number of clusters detected by GMeans is larger than this minimum size then, in
order to keep the computational cost manageable while still retaining the diversity of the
instance space, only one representative instance per cluster is selected. In the scenarios
where the number of detected clusters is less than 50, a subset of instances per cluster
are chosen until the minimum number (50) is met. The number of instances selected
per cluster is proportional to the size of the cluster. In order to take into account the
information regarding instance difficulty in the selection of representative instances, for
each cluster, instead of using purely random selection or selection of the instances closest
to the centroid, we perform sampling without replacement of the median instance in terms
of its corresponding solving time by the unstreamlined model.

4.4. SUMMARY 61

Problem #Candidate #Instances #Clusters
Streamliners Chuffed Lingeling Chuffed Lingeling

BACP 108 235 133 - -
BIBD 200 427 272 - -

CoveringArray 64 4301 1641 153 54
Car Sequencing 36 4376 5651 171 149

FLECC 144 4647 6930 128 162
Transshipment 68 1534 3889 - 96

SocialGolfersProblem 260 709 340 - -

Table 4.2: For each problem class, the table shows the following fields: the number of
candidate streamliners automatically generated by Conjure, the total number of training
instances generated by the automated instance generation procedure, and the number
of clusters detected by GMeans. The instance-related fields are different per solver, as
instance generation is done separatedly for each solver. A - denotes that the number of
identified clusters was < 50.

4.4 Summary

This chapter discussed the importance of automatic conjecture evaluation in the con-
struction of high quality streamliner portfolios. The process by which a diverse set of
benchmark instances is generated from the Essence specification of the problem class was
introduced. Finally, the use of Feature Generation and Clustering to create a compressed
training set suitable for exploration is discussed.

5Chapter Five

Identifying Effective
Combinations of

Streamliners

In this Chapter we are initially going to look at the concept of combining streamliner
conjectures, introduced first by Lebras et al in their work on double-wheel graphs [128].
The benefits that this can bring in solving difficult problems is discussed as well as the
adverse effect that it can have on the complexity of search. The structuring of the possible
combinations into a lattice structure and several pruning methods utilized to remove
ineffective combinations are defined. Various approaches for searching and producing a
portfolio of streamliner combinations are discussed and the search algorithm utilized in
this thesis is defined.

5.1 Combining Streamliners

A major research challenge in discrete mathematics is to characterize what families of
graphs are graceful. A graceful graph is one in which all of the vertices can be labeled with
distinct integer values from {0, . . . , e} such that each edge has a unique value corresponding
to the absolute difference between its end points. A number of different families of graphs
have previously been proven to be graceful such as Wheels [73], Gears [138], Helms [13],
Webs [114]. Lebras et al used streamlined reasoning to help them construct the first
polynomial time construction method for double-wheel graphs thus proving them to be
graceful [129]. They used the same procedure as in their previous work where solutions

62

5.1. COMBINING STREAMLINERS 63

would be collected and would be manually analyzed for patterns and the onus was on the
human expert to construct a streamliner constraint that captured the regularity. What is
interesting in this work however is that in order to find larger double-wheel graphs Lebras
et al combined different streamliners together to a model simultaneously and showed
that it can result in larger performance gains than any of the conjectures in isolation.
Figure 5.1 shows the combinations of streamliners that were used to solve varying sizes of
double-wheel graphs.

With the original model, only graceful double wheel graphs up to size 9 could be constructed
within 60 seconds using standard constraint reasoning. Figure 5.1 shows that even relatively
simple streamliner conjectures can have a profound effect on performance. For instance
the streamliner r2 only enforces that the middle of the double-wheel graph is labelled
0 however it is able to allow solutions of size 18 to be discovered, twice the size of the
original model. The application of single streamliners can be very effective but the impact
is limited by the degree to which they can restrict the search space. To improve upon this
conjectures can be combined together to further restrict the search space and focus the
solver allowing solutions to be found faster. For instance, Lebras et al enforced that the
centre of the double wheel is labelled 0 combined with the fact that the inner circle only
contains odd numbers. The combination of these two regularities allowed larger graphs of
up to size 19 to be solved. This procedure can be recursively repeated to create larger and
larger combinations of conjectures.

Whilst combining streamliners can be very beneficial in providing larger reductions in
search and allowing more difficult problems to be solved it does have an adverse effect on
the complexity of search. To find effective streamliners not only does the set of candidate
streamliners have to be evaluated but now potentially the power set of all combinations
has to be explored.

64 CHAPTER 5. IDENTIFYING EFFECTIVE COMBINATIONS OF STREAMLINERS

Set of Streamliners Size
r0 : ∅ 9
r1 : { C1 is odd } 11
r2 : {0 at center } 18
r3 : r1∪ r2 19
r4 : r3∪ {Inc. steps of 2 in C1} -
r5 : r2∪ {Inc. steps of 2 in C1} ∪ { C1 mostly odd} 21
r6 : r5∪ {Dec. steps of 2 in C1} 22
r7 : r6∪ {Inc. steps of 2 in C2} 23
r8 : r7∪ {Dec. steps of of 2 in C2 } 38

Figure 5.1: In their work on Double Wheel Graphs, Lebras et al [84] combined conjectures
to further restrict search and solve graphs of a previously unattainable size

5.2 Providing Structure: Definition of the
Streamliner Lattice

The possible combinations of streamliners can be formulated as a lattice structure: the root
is the original Essence specification and an edge represents the addition of a streamliner
to the combination associated with the parent node as seen in Figure 5.2.

5.2.1 Exploiting Structure: Pruning the streamliner lattice

It is possible to apply some basic rules to the lattice to remove streamliner combinations
from evaluation that we know are sure to render an instance unsatisfiable. In this work
we employ three forms of pruning which are detailed in the following sections.

5.2.1.1 Pruning based upon tags

As discussed earlier in Chapter 3 when an Essence specification is streamlined each
generated conjecture is assigned one or more group tags. Conjectures that apply to the
same decision variable and share groups are not combined as they will be conflicting and
unsatisfiable. For instance these groups would prevent combining the conjectures that
would force a set simultaneously to contain only odd numbers and only contain even
numbers. This also removes the possibility of combining two different streamliners that
differ only in the values of their softness parameters.

5.2. PROVIDING STRUCTURE: DEFINITION OF THE STREAMLINER LATTICE 65

Figure 5.2: The power set of singleton candidate streamliners is explored to identify
combinations that result in powerful streamlined specifications. If small sets of conjectures
that fail to retain solutions are identified, such as CD, all supersets can be pruned from the
search, vastly reducing the number of vertices to be explored. Here streamliners A and B
are tagged (Section 3) mutually exclusive, and so no streamliner combinations containing
both will be evaluated however the lattice states are shown for informational purposes.

5.2.1.2 Pruning based upon failure

Up to now streamliners have been treated independently from one another; each conjecture
is evaluated independently and it is assumed that the performance of one conjecture has
no connection with another. This is valid for the single candidate streamliners as because
each conjecture imposes a different Essence restriction the performance characteristics
may differ vastly from one to another. The vast majority of states in the lattice however
are not single streamliners but instead combinations of conjectures that build upon
other combinations. These combinations will share performance characteristics with the
conjectures that comprise it. If upon evaluation the model with the addition of the
streamliner combination is proven to be unsatisfiable on a given instance, we know that
any superset of this combination will also be unsatisfiable. This knowledge can be used
to reduce the number of instances being unnecessarily evaluated at each lattice node.
At a given node in the lattice the intersection of the sets of satisfiable instances from
all available parents is used to construct the evaluation set. For example, given three
streamliners A, B, and C and a set of five instances. If we know that AB is only satisfiable
on instances 1,2 and 3, while AC is only satisfiable on instances 2 and 3. For ABC we
only need to evaluate the streamliner combination on instances 2 and 3. This reduces the
computation on the current node by 60%. If a conjecture has zero applicability across the

66 CHAPTER 5. IDENTIFYING EFFECTIVE COMBINATIONS OF STREAMLINERS

instance space, i.e it removes all solutions for all instances all supersets of this combination
are removed from the lattice (see Figure 5.2 for an example).

In order for this pruning to be enacted the conjecture must have been proven to be
unsatisfiable and this is an important stipulation. There can often be cases, as finding
a proof of unsatisfiability in a streamlined subspace can take far longer than finding a
solution to the original problem, where a streamliner is evaluated and timesout in the
given time limit. Pruning all supersets from evaluation could then be premature and
potentially remove good configurations from consideration. This need for a proof can often
limit the effectiveness of this pruning strategy.

Additionally the effectiveness of this pruning strategy is largely dependent on the ordering
of the traversal of the streamliner configurations. For instance in the example from
Figure 5.2 it can be seen that the streamliner CD is unsatisfiable which allows for certain
supersets of that configuration (ABCD, BCD) to be immediately pruned. However, this
pruning can only occur if the fact that CD is unsatisfiable is discovered before BCD and
ABCD are evaluated. Thus different traversal orderings can have a large impact on the
amount of pruning that can be performed.

5.2.1.3 Pruning Softened Streamliners

Softened Streamliners generate an independent constraint for each possible defined softness
value and as such have a large impact on the combinatorial size of the lattice to be searched.
Using the BIBD problem as an example if we take one of its softened streamliners, such
as (symmetric {1,2,4,8,16,32,64}), 7 independent constraints will be generated. These
constraints can be strictly ordered in terms of their strictness. This ordering can be used
for pruning during search as we know that these streamliners are semantically the same,
i.e they enforce the same underlying constraint but only differ in the required coverage.
Based upon this ranking if one softened constraint (symmetric(bibd)/16) is proven to
be unsatisfiable on an instance it then allows us to conclude that all stricter versions
(symmetric {1,2,4,8}) must also be unsatisfiable and can be pruned.

This pruning can have profound effects but its impact is governed by a large extent on
the ordering of traversal of the softened constraints. Two ways in which this could be
traversed are using a descending or ascending ordering. An ascending order, (1→ 2→ 4 . . .)
has limited pruning ability as you can’t extrapolate the result onto any other softened
constraints. Descending order (64→ 32→ 16→ 8 . . .) does profit from the ability to
prune however the downside is that the most relaxed version of the streamliner is being

5.3. SEARCHING FOR A STREAMLINER PORTFOLIO 67

applied first and as we have seen earlier this may not be that effective because of its
limited restrictive power. A more nuanced approach is to use a binary search method
where initially the softness parameter is started in the middle at 8. If the chosen value is
unsatisfiable we can then prune all stricter versions and then move to evaluate 32.

5.3 Searching for a Streamliner Portfolio

The three pruning rules described above only remove combinations that are sure to fail, or
are equivalent to a smaller set of conjectures. Therefore, even after pruning, the number
of combinations to consider is still typically too large to allow exhaustive enumeration. A
traversal of the lattice allowing good combinations to be identified rapidly is desirable.

5.3.1 Focused Search

For each problem the size of the lattice and number of valid streamliner combinations is
defined by 2NumberCandidateStreamliners. For even a relatively small number of candidate
conjectures the size of the space will quickly become infeasible to search. Whilst many of
the states within the lattice are theoretically valid they are likely to be ineffective. As
more conjectures are combined the resultant model becomes more and more restrictive
until at a certain point it will become so strict that for any given instance all solutions will
be removed. These ineffective states can encompass large swaths of the total lattice. For
instance, if we look at the number of combinations of size 300 for the BIBD problem there
will be ≈ 2.2×1096 valid states in the lattice. It is unlikely that for any of these states
the resultant model produced by combining 300 different conjectures will be effective.

Given our limited computational resources evaluating these "large" states, which we believe
a priori are going to be ineffective, would be wasteful. If it is believed that the combination
of too many streamliners is detrimental one could cap the maximum combination size
which would significantly limit the size of the search space to be explored. The problem is
that it would be difficult to define what is this bound for a given problem. For instance in
the work done by Lebras et al on Double Wheel Graphs they combined up to ten different
conjectures to allow them to construct graphs of up to size 38. If they had enforced an
arbitrary limit they may not have found this combination and been able to achieve this
result. In this work we focus search such that it always starts at the root, which represents
the original Essence specification. From there the lattice is explored, with the single

68 CHAPTER 5. IDENTIFYING EFFECTIVE COMBINATIONS OF STREAMLINERS

candidate streamliners and smaller combinations being explored first.

5.3.2 Uninformed Search

The simplest approach for searching this lattice would be to utilize systematic search
methods such as breadth-first search (BFS) and depth-first search (DFS) to explore the
streamliner lattice in an uninformed manner. Both of these methods however have intrinsic
deficiencies in their ability to effectively search the lattice structure. Using the full lattice
structure defined in Figure 5.2 as reference let us analyze these deficiencies.

Depth-First search will dive down into the lattice structure, evaluating larger and larger
combinations until the current set of conjectures has been proven to remove all solutions
at which point it can backtrack. For instance, Figure 5.3b shows an example of how DFS
may explore. One of the main issues with DFS is that its traversal ordering often affects
the amount of dynamic pruning that can be performed. In this example, as DFS dives
before evaluating all smaller combinations it means that combination {CD} is not found
to have failed which means that supersets {ACD} and {BCD} are unnecessarily evaluated.
Whilst the impact of this may seem small in this example as the number of candidate
streamliners increases and the size of the lattice grows the ability to prune whole supersets
from evaluation can have a significant impact on the complexity of exploration.

Another issue is that DFS will only backtrack if a proof of unsatisfiability can be obtained,
showing that the current combination removes all solutions on the given instance{s}. If a
streamliner is evaluated and times out before finding a solution it can’t be removed as
this is too strict; we can’t be sure that when combined with another conjecture it won’t
perform well. In the work done by Gomes et al there were cases where a single conjecture
by itself did not produce a reduction in search but when combined it became effective.
This proof of unsatisfiability however can be hard to obtain and often means DFS traverses
deep into an unsatisfiable subtree before eventually backtracking.

As seen by Figure 5.3a Breadth-First search performs sequential exploration of the levels in
the lattice. This sequential exploration solves both of the issues faced by DFS. Firstly, the
failure of combination {CD} would be discovered first and any supersets could be removed
from the lattice without evaluation. Secondly, this search will not get stuck exploring
large unsatisfiable subtrees in the lattice where no proof of unsatisfiability can be obtained.
The detriment with BFS however is in its lack of exploitation. Larger combinations can
be an effective component of a streamliner portfolio as theoretically because of their more

5.3. SEARCHING FOR A STREAMLINER PORTFOLIO 69

restrictive nature they can often achieve a higher reduction in search. Because every level
has to be fully explored before moving onto the next, in the time allocated to search the
lattice it is often infeasible to evaluate these larger combination sizes. For instance in this
thesis the smallest problem in terms of lattice size is CarSequencing with only 36 candidate
streamliners generated. As discussed more in Chapter 6 the largest combination in the
streamliner portfolio for the CarSequencing problem is composed of 3 conjectures. In the
worst case for BFS to find this combination it would have had to traverse and evaluate
through 46,656 conjectures. Due to the graded nature of the instances that we use, as
discussed in Chapter 4, the evaluation of one streamliner can take considerable time and it
is unlikely that in the allocated search budget this many conjectures could be evaluated.

(a) Breadth-First exploration of the stream-
liner lattice

(b) Depth-First exploration of the stream-
liner lattice

Figure 5.3

5.3.3 Defining a reward

The lattice is composed of conjectures automatically generated from the Essence specifi-
cation and so it is likely that there is going to be a distribution in how the conjectures
perform; some may be ineffective (providing little or no search reduction) or may even
remove all solutions and others may achieve substantial reductions. During traversal of
the lattice, when search arrives at a particular node, the combination of conjectures that
it represents is evaluated across the training set. After evaluation (Figure 3.9) information
is available on how the combination performed on each training instance. With the
previous uninformed search methods the lattice is systematically searched and the same

70 CHAPTER 5. IDENTIFYING EFFECTIVE COMBINATIONS OF STREAMLINERS

amount of effort is spent trying to extend suboptimal combinations rather than focusing on
combinations that have already proven to be effective. If our search is complete and we can
fully explore the lattice this is not a problem, however because of the cost of streamliner
evaluation and the inordinate size of the lattice a complete search is rarely if ever possible.

Instead if we can structure the information available from evaluation into a reward we
can use that to the search the lattice in a more informed manner. In reality, streamliner
generation has two conflicting goals: to uncover constraints that steer search towards
a small and highly structured area of the search space that yields a solution, versus
identifying streamliner constraints in training that generalise to as many instances as
possible. These goals conflict as generally the search reduction a streamliner achieves is
related to its tightness. The tighter a streamliner constraint the more propagation it can
achieve at each node of search resulting in a more restricted search space; this is the reason
that combining different candidate streamliners can provide superior results as with the
addition of each streamliner the search space is further restricted. As the search space is
further restricted however solutions will be continually removed up until the point that
no solutions remain. If a streamliner is too restrictive its ability to apply onto unseen
instances may be effected.

With two competing objectives, it is no longer feasible to find a single “best” streamlined
specification: a streamliner combination may be optimal in relation to one objective, but
at the expense of compromising the other.

To address these problems we adopt a multi-objective optimisation approach, where each
point x in the search space X is associated with a 2-dimensional (following the number of
objectives) reward vector rx in R2. Our two objectives:

1. Applicability. The proportion of training instances for which the streamlined
model admits a solution.

2. Search Reduction. The mean search reduction achieved by the streamliner on the
satisfiable instances.

With these two objectives for each streamliner combination we define a partial ordering
on Rd and so on X using the Pareto dominance definition in multi-objective optimisation.
Given x,x′ ∈X with vectorial rewards rx = (r1, . . . , rd) and rx′ = (r1′, . . . , rd′):

rx dominates rx′ ⇐⇒ ∀i ∈ [1..d], ri ≥ ri′,∃j ∈ [1..d], rj > rj′ (5.1)

5.3. SEARCHING FOR A STREAMLINER PORTFOLIO 71

Given a set of streamliners, the non-dominated solution set is a set of all the streamliners
that are not dominated by any other streamliner member of the solution set. The aim
of search is to find the pareto optimal set of streamliners which is defined as the non-
dominated set of the entire feasible decision space. We want our concept of reward to help
guide the search towards finding these non-dominated streamliner combinations. Initially
search begins with an empty pareto front and as it progresses streamliner combinations
in the lattice are evaluated and their vectorial reward for AverageApplicability and Aver-
ageReduction across the instance space are computed. In order to generate a reward for
that particular state and streamliner combination the current portfolio of non-dominated
streamliner combinations is used to compute the Pareto dominance test. If the current
vectorial reward is not dominated by any streamliner combination in the portfolio then
the evaluated streamliner combination is added to the portfolio and a reward of 1 is given,
otherwise 0. Formally defined as:

ru;dom =

1 1 if @r ∈ P,r � ru
0 otherwise

When the pareto dominance test is calculated, any dominated streamliner combinations
presently in the portfolio are removed. One consideration that has to be taken into
account is that as the pareto front evolves over time then the reward values of the Pareto
dominance test are non stationary since they depend on the portfolio. This means that
earlier in search when less combinations have been evaluated it is easier for a combination
to get a positive reward value as it is only being compared against a small subset of the
configuration space. As search progresses the portfolio will begin to approximate the
pareto optimal set and so it becomes more and more difficult to achieve a positive reward.
The effect of this is that in the lattice there will be actions that appear to have a high
reward but this may not be representative of the true value of the action but just related
to the fact that is was evaluated early on in search. To combat this we use the cumulative
discounted dominance (CDD) [196] reward mechanism during reward update.

5.3.4 Exploration vs Exploitation

We want to use the reward of the conjectures to help guide the search and indicate which
parts of the lattice to focus our resources on. Doing this however raises the issue of
the exploration/exploitation problem: if we can identify a combination of streamliners

72 CHAPTER 5. IDENTIFYING EFFECTIVE COMBINATIONS OF STREAMLINERS

that performs well, should we try and exploit that combination further by evaluating the
addition of further streamliners, or should we explore other combinations that may at
present seem less promising?

When traversing the lattice structure we can formalize the exploration/exploitation problem
faced at each node as a Multi-Armed Bandit. Bandit Problems [177, 115, 12, 139] are
sequential decision problems where at each stage there are k possible actions, each yielding
an unknown payoff, and one of these k actions must be chosen in order to maximise
the total reward. The reward distributions amongst the actions are initially unknown
however information on rewards can be gained through playing each action. Formally a
set of K probability distributions (D1, . . . ,Dk) with associated expected values (µ1, . . . ,µk).
The probability distributions (D1, . . . ,Dk) generally correspond to different arms on a
slot-machine. For each turn the player selects one of the arms, with index j(t) and receives
a reward r(t) Dj(t). The idea behind the Bandit-Problem, is to try and find out which
of the arms yields the highest payoff whilst still maximising our possible reward [125].
Whilst the player balances their exploration and exploitation of the different arms they
will inevitably not pick the arm with the highest reward on every turn. The difference
between the actual given reward for a player and the theoretical maximum possible reward
for any turn T is know as the total expected regret and can be defined as:

RT = Tµ∗−
T∑
t=1

µj(t)

where µ∗ represents the reward from the best arm. The total regret for a player can then
be defined as:

RN = µ∗T −µj
K∑
j=1

E(TK(T))

where µ∗ represents the reward from the best arm and ∑E(Tk(T)) represents the predicted
number of plays for arm k after turn T.

From Lay and Robbins (1985) [127] it can be seen that for any algorithm designed to solve
the bandit-problem the growth of regret is lower bounded by σ(logt). If an algorithm is
able to get within constant factors of this growth then it is said to solve the bandit-problem.

5.3.5 MOMCTS

Monte Carlo Tree Search (MCTS) [32, 49] attempts to solve the exploration/exploitation
dilemma during tree search by treating the choice of where to explore at each node as

5.3. SEARCHING FOR A STREAMLINER PORTFOLIO 73

a multi-armed bandit problem. It has been proven to be very effective in a number of
competitive settings [56, 77]. However its application is not limited just to games: it can
also be effective for single-agent sequential decision problems [187].

To search the lattice structure for a portfolio of Pareto optimal streamlined models we have
adapted the Dominance-based Multi-Objective Monte Carlo Tree Search (MOMCTS-DOM)
algorithm [196]. The algorithm has four phases, as summarised below. The full Algorithm
is defined in Algorithm 1 and an illustration example of the four phases are shown in
Figure 5.4.

1. Selection: Starting at the root node, the Upper Confidence Bound applied to Trees
(UCT) [31] policy is applied to traverse the explored part of the lattice until an
unexpanded node is reached.

A child node is selected to maximise:

UCT =Xj + 2Cp

√√√√2lnn
nj

where n is the number of times the current (parent) node in the lattice has been
visited, nj the number of times child j has been visited, Xj is the cumulative reward
associated with child j and Cp > 0 is a constant

One deviation from standard MCTS and rollout algorithms in general is that Xj

represents a cumulative reward here instead of an average. The reason for this is
that only a very small number of the simulations performed will be able to discover
a non-dominated streamliner and so if an average is used the rewards of even good
trajectories through the lattice will tend towards 0 over time which makes the
exploration factor the dominating term in the UCT calculation thus making MCTS
effectively degenerate to random search.

2. Expansion: Uniformly select and expand an admissible child.

3. Simulation: The collection of streamliners associated with the expanded node are
evaluated.

4. BackPropagation: The result of the evaluation is propagated back up through all
paths in the lattice to update CDD reward values, as shown in Figure 5.4. At each
node updated during back-propagation a discount mechanism is used to discount
the effects of non stationarity, introduced by the evolving portfolio, by attempting

74 CHAPTER 5. IDENTIFYING EFFECTIVE COMBINATIONS OF STREAMLINERS

to forget old rewards and reflect up to date information. A reward is updated as
follows:

r′s,a;dom← r′s,a;dom ∗σδt+ ru;dom

ts,a← t;

where ts,a denotes the index of the last update that affected (s,a) and σ ∈ [0,1] and
ru;dom represents the reward of the most recent simulation.

Since our search is operating over a lattice, a node may have multiple parents. This
requires an alteration to the back propagation employed in MCTS: when we perform
back propagation that reward value is back propagated up all paths from that node
to the root. To illustrate consider a problem with two streamliners {A,B} and we
are back propagating from a node in the lattice representing the combination {AB}.
There are two paths by which this node could have been reached, {root → A → B}
and {root → B → A}. Even though the algorithm will have only descended one
of these paths, because the reward value of a node in the lattice is representative
of the ability of the streamliner combination represented by that node to combine
and produce effective reductions in search the node in the lattice which represents
streamliner combination {B} should also receive this reward. For this reason both
paths are rewarded accordingly and the reward generated is back propagated up all
paths from that node to the root. We also ensure that a node that lies on more than
one such path is rewarded only once.

We must also consider the situation where a node in a path back to the root has
not yet been expanded. If we simply ignore such nodes, their true reward will not
be reflected in their reward values because all reward values back propagated from
child nodes prior to their creation will be lost. Our approach is that when a node
is expanded, it absorbs the reward value and visit count of any of its immediate
children that already exist in the lattice. This avoids caching a potentially large set
of values but still means that reward values are maintained for nodes around the
focus of our tree search.

5.3. SEARCHING FOR A STREAMLINER PORTFOLIO 75

Algorithm 1 Multi Objective Monte Carlo Tree Search
1: procedure MOMCTS-DOM(originalModel, numIterations, VBS, paretoFront,

cache)
2: node ← originalModel,
3: P ← paretoFront . Streamliner Portfolio
4: n ← 1
5: while n < numIterations do
6: node ← UCTSelection(node)
7: child ← randomly expand child of node
8: streamliners ← pathFromRootToNode(child)
9: if streamliners in cache then

10: (Applic,MeanReduc) ← cache{streamliners}
11: else
12: (Applic,MeanReduc) ← eval(streamliners, VBS, cache)
13: n ← n+ 1 . Increment iteration count
14: end if
15: BackProp((Applic, MeanReduc), child)
16: end while
17: end procedure
18: procedure BackProp(ru, currNode)
19: if ru is not dominated by any point in P then
20: Prune all points dominated by ru in P
21: P ← P ∪{ru}
22: r ← 1 . Reward Value
23: else
24: r ← 0 . Reward Value
25: end if
26: NodesToVisit ← getAllNodesInPathToRoot()
27: for TreeNode ← NodesToVisit do
28: discount ← CalcDiscount()
29: reward ← (TreeNode.reward * discount) + r
30: updateRewardValue(TreeNode, reward)
31: updateVisitCount()
32: end for
33: end procedure
34: procedure Eval(streamliners, VBS, cache)
35: ResultsDict ← run(streamliners) . Run streamliners on training set
36: cache[streamliners] = ResultsDict . Cache results
37: for (instance, streamlinerResult) ← ResultsDict do
38: if VBS[instance] better streamlinerResult then
39: ResultsDict[instance] ← VBS[instance]
40: end if
41: end for
42: return {Applic(ResultsDict), MeanReduc(ResultsDict)}
43: end procedure

76 CHAPTER 5. IDENTIFYING EFFECTIVE COMBINATIONS OF STREAMLINERS

Figure 5.4: MOMCTS-DOM operating on the streamliner lattice. A, B and C refer
to single candidate streamliners generated from the original Essence specification. As
MOMCTS-DOM descends down through the lattice the streamliners are combined through
the conjunction of the individual streamliners (AB, ABC). The nodes are labelled with
CDD reward value divided by the number of times visited.

After the streamliner has been evaluated the vectorial reward 〈Applicablity, Search
Reduction〉 across the set of training instances is calculated and returned.

5.3.6 Improving Portfolio Strength Using Hydra

In our initial implementation the multi-objective search of the lattice is performed until
either the computational budget is reached or the lattice is fully explored. During this time
one portfolio of non-dominated streamliners is built where domination is defined across
the two objectives defined in Section 5.3. There are two deficiencies with this method that
can be highlighted through an example. Consider a setting with three instances {A,B,C}
and two singleton streamliners {S1, S2}. S1 retains satisfiability on instances {A,C}
with {50%, 25%} reduction percentage respectively but renders instance {B} unsatifiable,
yielding {AvgReduction:37.5%, AvgApplicability: 66.6%} in terms of our two objectives.
{S2} renders instance {A} unsatisfiable but retains satisfiability on instances {B,C} with
{30%, 35%} reduction respectively, resulting in {AvgReduction:32.5%, AvgApplicability:
66.6%}. The resultant portfolio at the end of search will only ever contain S1 as S2 is
always Pareto dominated and so will be disregarded. However S2 actually possesses some
interesting qualities that we might not want to overlook. Firstly, it manages to cover

5.3. SEARCHING FOR A STREAMLINER PORTFOLIO 77

instance B which is not covered by the current portfolio and it also manages to achieve
a higher reduction on instance C. Given this in our ideal setting we would like to retain
streamliner S2 as part of our portfolio. By averaging the performance of a streamliner and
maintaining just one Pareto front it makes it difficult to distinguish cases like this and
will often mean that the resultant portfolio will be suboptimal.

In order to solve this issue, we adapted our search to incorporate elements of Hydra
[198], a portfolio builder approach that automatically builds a set of solvers or parameter
configurations of solvers with complementary strengths by iteratively configuring (a set of)
algorithms. Instead of performing just one lattice search and building one portfolio, we
now perform multiple rounds of search. In each round a portfolio is built to complement
the strengths of the combined portfolios built in the prior rounds.

Following the ideas of Hydra, in the first round an MO-MCTS search with our original
performance metric, which tries to optimise both applicability and solving-time reduction
on the training set, is done and a portfolio of streamliners is constructed. In each subsequent
round, a new MO-MCTS search is started using a modified performance metric. For
each instance i, the best streamliner p for i (the one that has the highest solving-time
reduction on i) in the combined portfolios from previous rounds is identified if it is existed.
For any new streamliner q being evaluated in the search of the current round, if it has
better reduction than p on i, or if i was not yet solved by any streamliner in the current
combined portfolio, performance of q on i is used, otherwise, the reduction value of p on i
is used instead. This means that the new streamliner q will not be penalised for its poor
performance on an instance if the instance is already efficiently solved by the combined
portfolio in the previous rounds. Therefore, the MO-MCTS can focus on trying to improve
performance in regions of instance space where the current portfolio is weak at. The final
result is a combined portfolio with complementary strengths that can perform well on all
parts of the training instance set.

Performance of all evaluated streamliners are cached and re-used across rounds. In each
round, at least M iterations (not including iterations using cached results) have to be
completed. After that, the round is stopped if it spends N consecutive iterations without
finding anything to add to the current portfolio, as it is an indication that we might
have reached the point of diminishing returns for the current round. The whole Hydra
search is terminated if the current combined portfolio remains unchanged after a round.
In our experiments M and N are set as 10 and 5 respectively. Hydra is very effective in
this domain and is able to from round to round find new streamliner combinations that
complement the solving strengths of previous portfolios. This can be seen from Figure 5.5

78 CHAPTER 5. IDENTIFYING EFFECTIVE COMBINATIONS OF STREAMLINERS

where for all 4 of the problems present Hydra produces a portfolio in each round that
produces a drastic decrease in logarithmic solving time showing that it is finding new
streamliners that complement the previous solving strengths.

5.3.7 The risk of overfitting

Even though Hydra has great strengths one important thing that has to be taken into
account is the tendency to produce portfolios that over-fit the training data. In Machine
Learning there is a tradeoff between the bias and variance of a model. The bias represents
the accuracy of the model and the bias error is calculated as the difference between the
expected model prediction and the correct value. The variance represents the consistency
of the model in its predictions and the variance error is due to the variability in the model
prediction for a given data point. In general simpler models tend to have higher bias as
they fail to fit regularities in the training data and as the model complexity increases
the bias decreases but as a result the variance begins to increase [149]. Ideally a learnt
model should have low bias and low variance however the bias-variance trade-off is a well
documented problem in machine learning [120, 76].

The aim of Streamliner Search is to try and identify structural regularities that exist in
the instance space and use these to solve unseen instances. However if Hydra is left to run
it has a tendency to produce a highly complex portfolio which over-fits the training set.
From Figure 5.5 it can be seen that the idea of complementary portfolios works very well
and a large decrease in solving time can be noticed in the first few rounds. However, for all
3 problems they reach a point in which the decrease in solving time plateaus. In the given
time budget this plateau can extend for a large number of rounds and during this time as
seen from Figure 5.5 the size and complexity of the portfolio steadily increases. This can
create two problems. Firstly, a streamliner can be added to the portfolio if it provides
a greater performance on just one or more instances from the training set. This means
that in later stages there is a risk that streamliners will be added that don’t represent
any structural property in the instance space but just by chance happen to work on a
particular instance and produce a good reduction. It is not expected that the performance
will translate onto unseen instances and as such it complicates the scheduling process.
Secondly, as can be seen from Figure 5.5 for the 3 problems shown there is a large increase
in portfolio complexity which is not accompanied by a substantial decrease in Solving
Time. Because of this we may want to cap the size of the portfolio so we can benefit from
the positive benefits of Hydra but not have a resultant complex portfolio.

5.3. SEARCHING FOR A STREAMLINER PORTFOLIO 79

Figure 5.5: For three problems, BACP, CarSequencing and Transshipment a comparison
between the log solving time (blue line) of the validation distribution and the size of the
portfolio (histogram) across multiple rounds of our search algorithm. The red dotted line
displays the round at which there is no further reduction in solving time.

A validation set can be used to try and alleviate some of these issues. The validation
set is constructed in a similar means to the Training set from Section 4.3. When the set
of clusters are identified using GMeans for each cluster another instance can be chosen
to form a validation set of the same size and distribution of the training set. The idea
behind this validation set is to validate that the streamliner does capture some structural
regularity and that the performance across the feature space is maintained. There are
a variety of ways in which the validation set could be leveraged. The simplest method
is to take each streamliner evaluated on the training set and additionally evaluate its
performance on the validation set but this would constitute a large increase in the training
overhead.

Another method, which we use in this work, is to only utilize the validation set when the
current streamliner is non pareto dominated and would be added to the portfolio. Addition
to the portfolio occurs rarely and means that the increase in cost of utilizing the validation
set is only marginal. The validation set here is used by evaluating the streamliner on the
same satisfiable clusters from the training set. More precisely for every instance (which
constitutes a cluster) upon which the streamliner on the training set is satisfiable the
streamliner will be evaluated on the same satisfiable clusters within the validation set.
Through evaluation it will become apparent, based upon if the conjecture maintains its
performance, whether or not it captures a structural regularity. The validation set helps
to control the complexity of the generated portfolio. Firstly, it helps to reduce overfitting
of the training set where streamliners can be added to the portfolio purely by improving
on one or more instances by chance. In this case we can prevent increasing the complexity

80 CHAPTER 5. IDENTIFYING EFFECTIVE COMBINATIONS OF STREAMLINERS

of the portfolio unnecessarily.

5.4 Summary

In this Chapter the idea of combining streamliner conjectures to provide larger overall
reductions in search was introduced. The "streamliner lattice" was defined and its utility
in providing structure for search and pruning was discussed. Alternative approaches for
searching the lattice and building a streamliner portfolio were explored and the algorithm
utilized in this thesis was defined.

6Chapter Six

The Streamliner
Selection Problem

This chapter initially shows how the performance characteristics of a streamliner conjecture
can vary drastically between solving paradigms and why it is necessary to perform paradigm
specific search and generate independent streamliner portfolios. The constructed portfolios
generated through the search method seen in the previous chapter are then summarized;
in particular visualizing the distribution and size of the generated pareto fronts. For a
subset of the problems, a more in-depth analysis is then performed to discuss some of the
interesting properties of the constructed portfolios and analyze the performance of the
constituent conjectures. Lastly, the problem of "Streamliner Selection" is introduced which
deals with selecting from the portfolio an effective streamliner for an unseen instance.
Various uninformed and informed methods for solving this problem are discussed.

6.1 Independent Portfolio Construction

For each problem an independent streamliner search is performed for both of the solvers and
paradigms used in this paper, Chuffed (CP) [43] and Lingeling (SAT) [26]. As streamliners
are generated from the Essence specification of a problem class which is solver independent
it may seem unnecessary to perform two independent searches. An effective streamliner
captures a structural regularity within the problem and this should exist regardless of the
solver used; a streamliner that is effective for Chuffed will also be effective in Lingeling and
vice-versa. However, the intricacies of solvers such as heuristics, propagation mechanisms
and restarts can be so different that the performance of a constraint can vary wildly. Also,

81

82 CHAPTER 6. THE STREAMLINER SELECTION PROBLEM

the streamliners are defined in Essence and how they are represented in a constraint or
SAT model can be very different. One streamliner that can be efficiently represented in a
constraint model might be incredibly verbose in the SAT encoding, which may result in
substantial overhead during search and as such affect performance. In Savile Row the
default encodings for SAT are order encoding [188] for sums and support encoding [79] for
binary constraints.

Figure 6.1 shows that the performance of a streamliner when tested on the same instance
sets can drastically differ between CP and SAT. In Transshipment the streamliners that
comprise the portfolio found via Chuffed search do elicit reductions in Lingeling albeit
not as strong as their Chuffed counterpart. In CarSequencing however almost all of the
Chuffed portfolio produces a negative reduction in solving time when applied in Lingeling.
This could be for a variety of reasons. The same streamliner might not achieve the same
propagation in SAT as it does in CP or the encoding of the streamliner may become too
verbose and the overhead of the additional clauses outweighs any reduction the streamliner
might achieve.

6.2. CONSTRUCTED PORTFOLIOS 83

Figure 6.1: For Transshipment and CarSequencing the portfolios generated during the
Chuffed streamliner search are tested on Lingeling on the same set of test instances. The
Average Reduction across the two portfolios are represented for both paradigms. The same
set of test instances are used so that any variation in the reductions of the streamliners is
purely due to the different setting.

6.2 Constructed Portfolios

The output of Streamliner Search (Chapter 5) is a portfolio of streamliners possessing
complementary strengths on the training distribution.

Figure 6.2a shows for each portfolio the performance of the constituent streamliners in
terms of the two objectives used, AverageReduction and AverageApplicability. Due to
the portfolio builder technique that is used during search the figures will not be a true
representation of a pareto front as any conjectures added in later rounds may be pareto
dominated but will remain. Comparing the performance of the portfolios across problems
it does seem that some problems are more conducive to streamlining than others. For
instance, across both solvers the performance of the portfolios for Transshipment and
BACP dominate those of BIBD and SocialGolfers. It is an open research question however

84 CHAPTER 6. THE STREAMLINER SELECTION PROBLEM

whether this is due to an inherent property of those problems that makes them difficult
to streamline; for instance the structural regularities that do exist in solutions cannot
be captured concisely; or due to nature of the streamliners generated from Essence.
Transshipment and BACP both have function domains whereas BIBD and SocialGolfers
have relation and set domains.

It may initially be expected that as streamlining is such an aggressive technique that
generated conjectures may work well for some instances but in general will have limited
success across the instance space. Figure 6.2a shows the opposite however in that many
of the conjectures generated by our system attain a high % applicability and reduction
across the training set. Excluding one or two problems in general there are consistently
conjectures in the portfolio that work on more than 50% of the training set and achieve
more than a 50% reduction in search. These conjectures generated automatically from the
Essence specification must be capturing concisely some structural regularity that exists
in many of the instances within the training set.

Figure 6.2a also shows the benefit of constructing a portfolio of streamliners. For all of
these problems there is no one dominating conjecture but instead the conjectures form a
distribution in terms of the two competing objectives. The use of a portfolio approach
during search allows this diversity to be captured. From Figure 6.2b, which details the
overall size as well as the max combination size of the generated portfolio for each problem
and solver, it can be seen that the constructed portfolios are not trivial and generally
contain a number of different combinations ranging from the smallest for FLECC at 11
conjectures to the largest with CarSequencing at 64.

Across all portfolios the largest combination found is composed of three different conjec-
tures. Initially this may seem relatively small and it may be expected with the use of
MOMCTS that search could dive deep into the lattice and the portfolio would contain
larger combinations. One of the reasons for this is that the large numbers of conjectures
generated from the Essence spec means with the limited resources available it can be
difficult to descend far into the lattice before the resources are exhausted. MCTS is
a best first search variant. However, because it explicitly aims to balance exploration
and exploitation, it has the problem that when search reaches a new node, all potential
children have to be explored before that combination can be further exploited. For some
problems this means that even getting down to a combination of size 3 could involve the
generation of ≈ 900 conjectures which could take a considerable amount of time given that
streamliner evaluation is not trivial. Also, for many of the problems there are multiple
effective candidate streamliners and this means that MCTS has to balance its exploitation

6.2. CONSTRUCTED PORTFOLIOS 85

(a)

Problem Chuffed Lingeling
Portfolio Size Max Comb. Portfolio Size Max Comb.

Size Size
BIBD 27 2 20 2
BACP 26 3 41 3

CarSequencing 45 3 64 3
FLECC 11 2 21 2

Transshipment 35 3 37 3
SocialGolfersProblem 12 1 14 2

CoveringArray 15 2 23 2
(b)

Figure 6.2: Portfolio sizes

amongst multiple viable paths in the lattice which ultimately affects the overall depth it
can achieve.

It should not be seen as a failure of search however to have absent large combinations in
the generated portfolio. A large combination is not necessarily more effective, it depends
on the strictness of the composing conjectures. For instance, if the problem contains a
decision variable of the type Set (int 1. . .), a single conjecture enforcing that the set only
contains odd numbers would be more restrictive than two combined conjectures enforcing
that approximatelyHalf of the set contains odd numbers and approximatelyHalf of the
set is from the upperHalf of the int domain. However the lack of combinations in some
problems such as SocialGolfersProblem may be indicative that we need to inspect the type
present within the problem to generate different types of conjectures or more fine grained
conjectures that can be better combined.

86 CHAPTER 6. THE STREAMLINER SELECTION PROBLEM

6.3 Portfolio Analysis

In what follows we are going to analyze and discuss some of the interesting properties of
the constructed portfolios and analyze the performance of the constituent conjectures.

6.3.1 BACP-Chuffed

For BACP-Chuffed what is interesting about the constructed portfolio is the substantial
reduction in search that some constituent conjectures can achieve. There are seven
streamliners in the portfolio that can achieve greater than a 99.9% reduction in search on
the training distribution. Streamliner 1 is an example that works on 26% of the training
distribution with a mean reduction in search time of 99.89% and a mean reduction in
search nodes of 99.97%. This streamliner enforces that the curr function which maps
courses to periods is monotonicallyIncreasing, such that for the defined values of curr :

q1 < q2 =⇒ curr(q1)≤ curr(q2)

q1, q2← defined(curr)

This streamliner often doesn’t work however, being proven to be unsatisfiable on 74% of the
training distribution but in some cases it can be an aggressive technique that reduces search
substantially. Figure 6.3 provides a comparison between the search tree of an unstreamlined
model (Figure 6.3a) vs a streamlined model (Figure 6.3b) on a representative training
instance. The streamlined model on this instance is able to elicit a 99.97% reduction in
search time and a 99.8% reduction in search nodes to solution. There is a stark difference
between the search trees of the two models which really depicts the substantial impact
that streamliners can have on the search procedure of the solver and the effort required
to arrive at a solution. Without the focus provided by the streamliner the solver has to
descend, backtrack and explore large swaths of the assignment space before a solution is
found. In both models, the function decision variable is represented as a 1-D matrix of size
int(1 . . . n_courses) indexed by int(1 . . . n_periods). Figure 6.3c shows the assignment to
each search node on the path to solution for the streamlined model. An ascending variable
ordering is being used by Chuffed here. On each assignment to the matrix variable the
presence of the streamliner constraint removes any values from subsequent variables that
violate the monotonicallyIncreasing condition through the propagation mechanisms of the

6.3. PORTFOLIO ANALYSIS 87

solver. In this case it helps prevent search from getting into unsatisfiable subtrees and
allows the solver to almost walk to a solution with minimal effort.

6.3.2 CoveringArray-Chuffed

For CoveringArray-Chuffed what is interesting about the generated portfolio is that there
are a number of conjectures that are able to achieve over 99% applicability across the
Training Set, which equates to ≈ 151 instances out of the 153 evaluated. These same
conjectures also achieve reductions in search time/nodes of ≈ 60% and ≈ 80% respectfully.
One of the conjectures that performs well is Streamliner 7 which enforces that for all of
the matrix rows, the values of exactly half of the columns must be in the lower half of
the matrix domain. To understand why this streamliner is effective let us use an example
instance with k = 20, v = 90 and t = 1. In the Covering Array problem the decision
variable is represented as a 2-D matrix. This should be a trivial instance as the strength
of the covering is only set to 1 meaning that the coverage of configurations only applies
individually to each row. Any valid covering array must satisfy the t-covering property
which states that when any t of the k rows are chosen, all vt of the possible t-tuples must
appear among the columns. For t= 1, a valid covering array would be one in which for
each row all of the 90 possible configurations are listed. The problem is that the original
model from CSPLib does not enforce that each configuration must appear at least once
or limit the number of times a value can appear within a row in the matrix and because
of this the Chuffed solver thrashes a lot during search. One of the common problems
it faces is that it will assign a large chunk of the variables in one row the same values
v0 = 1,v1 = 1,v2 = 1,v3 = 1 . . . and it takes a while before the constraints detect that this
prevents all configurations from being assigned. This streamliner is effective as it helps
mitigate this issue to some degree by forcing the solver to spread out the values equally
amongst the lower and upper half of the domain.

88 CHAPTER 6. THE STREAMLINER SELECTION PROBLEM

(a) A slice of the search tree under the unstreamlined model. Overall solver statistics for
Chuffed are detailed: {solveTime: 30.854s, nodes: 130216, nogoods: 119015, backjumps: 3954,
propagations: 3252465, restarts: 271 }

(b) The complete search tree under stream-
liner 1 which enforces the curr function
to be monotonicallyIncreasing. {solveTime:
0.008, nodes: 232, nogoods: 161, backjumps:
17, propagations: 28181, restarts: 1}

(c) The assignment to each search node on
the path to solution. During assignment
the streamliner constraint through solver
propagation removes domain values from
subsequent nodes that would violate the
monotonicallyIncreasing condition.

Figure 6.3: A comparison of the search trees in the Chuffed solver between a streamlined
and unstreamlined model representation.

6.3. PORTFOLIO ANALYSIS 89

6.3.3 Transshipment-Lingeling

In the last two sections we have looked at the portfolios generated for the CP domain,
however it is very reassuring to see that our approach can also generate effective portfolios
for the SAT domain. Lingeling, a SAT solver, takes a considerably different approach
to solving problems than Chuffed however streamliners can still be found that produce
large reductions in search time and decisions. Figure 6.4 shows the performance of the
constructed portfolio across the 96 instances that compose the training distribution. On
the top of the x-axis the values detail the maximum reduction in solving time achieved by
any of the constituent streamliners for each training instance. On the whole reductions are
overwhelmingly positive with large reductions being found across the training distribution
with the min,max,mean values at 64.2%, 98.2%, 81.5% respectfully. Every instance from
the distribution is also solved by at least one streamliner from the portfolio, there are no
gaps in applicability.

It is interesting to see that some instances from the training distribution seem to be much
more receptive to streamlining than others. For example, on instance 44 all streamliners
from the constructed portfolio are satisfiable and almost all are incredibly effective with
most attaining a reduction in solving time in the ≈ 90% range. In contrast there are other
instances for which only a few constituent streamliners work. Instance 94 provides such
an example. Here, only 3 streamliners from the portfolio find a solution 53, 36 and 26.
This shows the strength of the portfolio builder technique that the final portfolio contains
these Pareto dominated streamliners because they maintain applicability on these difficult
instances.

90 CHAPTER 6. THE STREAMLINER SELECTION PROBLEM

Figure 6.4: Performance of the constructed portfolio across the 96 instances that composed
the Training distribution. The red cross indicates that the evaluated streamliner timed
out or was proven to be unsatisfiable on the instance. The labels across the top of the
x-axis detail the maximum reduction in solving time achieved by any of the streamliners
in the portfolio.

6.4. STREAMLINER SELECTION 91

6.4 Streamliner Selection

Having constructed a streamliner portfolio for a particular problem class using MOMCTS
and the set of training instances, for a given test instance the question arises as to which
streamlined models from the portfolio should be used, in what order, and according to
what schedule. The reason a portfolio is constructed, which complicates this selection
process, is that in general there is no one dominating streamliner for a problem. Larger
more aggressive streamliner combinations will generally yield a higher reduction but as a
result of their strictness they are very specific to a certain subset of the instance space
and cannot generalize well. This creates the problem of for a particular test instance
which algorithm to choose. It has long been observed in many domains such as SAT, CP,
ASP where there are multiple high-performance algorithms that in general there is no
one dominating algorithm and different algorithms will exhibit complementary solving
strengths and dominate on different types of problem instances known as performance
complementarity [116, 169, 88, 126, 131, 199, 157]. In general this gives rise to the
problem of for a particular instance what is the best algorithm or algorithms to use to
solve the instance. There are many closely related methods that aim to solve this same
general problem such as algorithm schedules [111, 101, 11], parallel algorithm portfolios
[88, 133] and Algorithm Selection [169, 123, 116]. In this work both algorithm schedules
and Algorithm Selection methods are utilized and compared.

6.4.1 Single Best Solver

The most basic streamliner application approach, namely the SingleBestStreamliner (SBS),
is to choose from the portfolio the streamliner that results in the lowest average solving
time across all training instances, and applying that chosen one for any unseen future
instance. The deficiency of this approach is that streamliners that may not perform well on
average across the instance space are neglected even if they may exhibit good performance
on a subset of the instances.

6.4.2 Streamliner Scheduling

No Algorithm Selection system is perfect and will always make some degree of miss-
classifications. This can happen for a variety of reasons such as uninformative instance
features used for training or using a classification model that has over-fit the training data

92 CHAPTER 6. THE STREAMLINER SELECTION PROBLEM

Algorithm 2 Lexicographic Streamliner Selection
procedure Selection(Portfolio P, Ordering, Timetotal, Instance)

P← sort(P, by = Ordering)
TimeTaken ← 0
while TimeTaken ≤ TimeTotal do

Streamliner ← P.next()
Stats ← Apply(Streamliner, Instance)
if Stats→sat() then

Return . Instance Solved
end if
TimeTaken + = Stats.time

end while
end procedure

and that cannot generalize to unseen instances. An extension of algorithm selection is
to select a schedule of multiple algorithms at least one of which performs well [135, 132].
The general idea is to have an ordered sequence of Algorithms which are run one after
another each for a given budget in the hope that one of the Algorithms will be successful.
The budgets can differ between Algorithms and are generally calculated based upon the
performance on the training set. Utilizing a schedule of well-performing algorithms provides
another way of exploiting performance complementarity as the idea is that the schedule
will contain the dominating algorithm for the instance. In this work we focus on the use of
static Algorithm Schedules which are instance agnostic and are applied uniformly across
the instance space.

6.4.2.1 Lexicographic Selection Methods

It is possible to order the streamlined models in a portfolio lexicographically by, for
example, prioritizing Applicability, then Search Reduction. Given two objectives, there
are two such orderings to consider. Thus two lexicographic selection methods are used
herein: AppFirst, which prioritises applicability over search reduction, and ReducFirst,
which has the reverse priority.

The selection process involves traversing the portfolio (using the defined ordering) for a
given time period and applying each streamliner in turn to the given instance as shown in
Algorithm 2. The schedule is static in that it only moves to the next streamlined model
when the search space of the current one is exhausted.

6.4. STREAMLINER SELECTION 93

6.4.2.2 Dynamic Portfolio Filtering

When traversing a schedule it is possible to dynamically filter streamliners based upon
prior results. If for a given instance we are evaluating the static schedule containing the
streamliners {S-1, S-3, S-1-2} in their respective ordering. When evaluating this on a
given instance if the first streamliner S-1 renders the test instance unsatisfiable, and this
is proven within the given time limit, then this allows us to filter the rest of the schedule
and remove S-1-2 since any superset of S-1 is guaranteed also to render the test instance
unsatisfiable.

6.4.3 Automated Algorithm Selection Methods

Automated Algorithm Selection (AS) techniques [169, 123, 116] utilize instance charac-
teristics to select from a set of algorithms the one(s) expected to solve a given problem
instance most efficiently. Algorithm selectors have had great success and have been shown
empirically to improve the state of the art for solving heterogeneous instance sets [134,
201].

This is a very similar setting to our portfolio of streamliners, with complementary solving
strengths and no single dominating streamliner exists. In this work we employ the algorithm
selection system Autofolio [134]. Given a particular problem instance the goal is to have
Autofolio, based upon the features of the instance, predict which streamliner from the
generated portfolio will most efficiently solve the instance.

When applying algorithm selection to a new domain a number of questions arise. First,
there are multiple different algorithm selection techniques and there is the question of
which particular AS technique is best for the current domain. Second, AS approaches
generally contain several parameters and there is the need to set these effectively to
obtain good performance. The AS framework Autofolio [134] addresses these questions
by integrating several AS techniques and automatically choosing the best one as well
as configuring their hyper-parameters using the automatic algorithm configuration tools
SMAC [106]. Autofolio also supports a pre-solving schedule, a static schedule built from a
small subset of streamlined models. This schedule is run for a small amount of time. If it
fails to solve an instance, the model chosen by the prediction model is applied. Autofolio
chooses whether to use a pre-solving schedule during its configuration phase by SMAC.

94 CHAPTER 6. THE STREAMLINER SELECTION PROBLEM

6.5 Summary

This chapter initially demonstrated the drastic differences in performance that can occur
between identical streamliner conjectures in the SAT and CP paradigms and explained why
it is necessary to perform paradigm specific search to generate independent streamliner
portfolios. Analysis of the constructed portfolios was then performed, in particular the
visualization of the distribution and size of the generated pareto fronts was presented.
For a subset of the problems, a more in-depth analysis was then performed to highlight
interesting properties of the constructed portfolios and analyze the performance of a sample
of constituent conjectures. Lastly, the problem of "Streamliner Selection" was introduced
and the application of various uninformed and informed methods for solving this problem
were discussed.

7Chapter Seven

Experimental Results

In the preceding chapters we have presented a completely automated approach to the
generation and selection of streamliner constraints, hitherto a laborious manual task.
In this chapter we present two sets of experiments to test the efficacy of this approach.
The first is designed only to measure the frequency with which streamlining results in a
reduction in search, and the magnitude of that reduction. Imperfect streamliner selection
however means that streamlining is not always guaranteed to be effective and on certain
instances negative reductions can occur. The second experiment aims to provide a more
practical setting in which the overall impact of streamlining across an entire instance
distribution is analyzed. Results across two unseen instance distributions with varying
solving difficulty are shown.

7.1 Experimental Setup

All experiments were run on a cluster of 280 nodes, each with two 2.1 GHz, 18-core Intel
Xeon E5-2695 processors. The streamliner portfolio construction phase was run on a single
core with a maximum time budget of 4 CPU days for each pair of problem class and
solving paradigm (CP/SAT).

The generated streamliner portfolios were evaluated on two different instance distributions,
distinguished by the comprising instance difficulty. The first one, denoted Distribution A,
consists of instances with similar difficulty to those used during the portfolio construction
phase (Chapter 5), i.e. satisfiable instances with a solving time within [10,300] seconds
by the original model. We use this to analyze the generalization performance of the
streamliner portfolios on similarly difficult instances unseen by the portfolio construction.

95

96 CHAPTER 7. EXPERIMENTAL RESULTS

The second test set, denoted Distribution B, includes instances generated by the same
method (Section 4.1), but drawn from a different distribution with a solving time limit of
(300,3600] seconds (by the original model). Distribution B allows us to study the ability
of the portfolio and streamliner scheduling/selection methods to generalise to instances of
higher difficulty.

Each irace run of the instance generation process (for either instance distribution) was
given a wall-time limit of 48 CPU hours on a cluster node with 36 parallel processes. As the
instance distribution space is problem dependent and given a fixed budget the number of
generated instances for Distribution A and Distribution B (listed in Table 7.1 & Table 7.2)
varies. For the CP paradigm the learning solver Chuffed [39] was used with its default
parameter setting as the target solver. For the SAT paradigm the Lingeling [26] solver
was used. In Savile Row the default encodings for SAT are order encoding [188] for sums
and support encoding [79] for binary constraints. Savile Row was also used to produce
the FlatZinc inputs for the fzn2feat feature extraction tool. These features are used by
the Algorithm Selection method Autofolio for prediction as described in Section 6.4.3.

We report performance of the two simple streamliner scheduling approaches ApplicFirst
and ReducFirst (Section 6.4.2.1), the Single Best Streamliner (SBS, Section 6.4.1), and
the automated algorithm selection approach Autofolio (Section 6.4.3). We also report as a
reference point the theoretically best performance, namely the Oracle, where we assume
that the best solving model (either original or streamlined) for each instance is used.

7.1.1 Algorithm Selection Setup

In this work we are evaluating performance on two instance distributions with disjoint
solving difficulties. For Algorithm Selection the simplest approach would be to generate a
single model that predicts streamliners for instances from both distributions. A question
then arises as to whether or not the performance of the constituent streamliners will
vary across the distributions which could affect the validity of the predictions. Figure 7.1
compares on two different instance distributions with different solving difficulty the average
speedup performance of the seven portfolios in both the SAT and CP paradigms. As can be
seen there is a large amount of variation in performance with some streamliners attaining
differing reductions in the two distributions. This variances complicates the problem of
learning a single effective prediction model. As such we build two different prediction
models for each distribution evaluated. The prediction model for Distribution A is learnt
on the set of instances used for streamliner portfolio construction, detailed in Section 4.1,

7.2. FREQUENCY AND MAGNITUDE OF SEARCH REDUCTION 97

as these are of a similar solving difficulty. For Distribution B the prediction model is again
built on a similar set of instances generated with a solving time in [300,3600]s.

In order to evaluate Autofolio for each Solver/Problem variant the ASlib format [28], which
defines a standard format for representing algorithm selection scenarios, was generated for
each Training set. For each problem Autofolio was run ten times in tuning mode with
a 1 day CPU budget to configure claspfolio2 for that particular domain. 10-Fold cross
validation was used and the model that provided the best average cross-validation score
was selected for prediction.

Figure 7.1: Average Percentage Reduction achieved by the streamliner portfolios on the
Distributions {A & B} across the 7 problem classes

7.2 Frequency and Magnitude of Search Reduction

The results for the two distributions are presented in Figures 7.2 and 7.3. We begin by
considering the setting where the instances are solved with the CP solver Chuffed. The
very strong performance of the oracle on all problem classes demonstrates that there
is almost always a streamliner in our portfolio that can be used to reduce search for a
given unseen instance. As might be expected, the magnitude of the search reduction
does vary with problem class. For BACP, Car Sequencing, and Transshipment it is most
pronounced, approaching one hundred percent, which would indicate a solution obtained
without resorting to search. For others, like Social Golfers and BIBD, the reduction is less,
and this will of course depend on the nature of the problem class and the streamliners we
are able to generate for it.

98 CHAPTER 7. EXPERIMENTAL RESULTS

Performance across all problem classes significantly improves for Distribution B, suggesting
that the impact of streamlining grows with the difficulty of the problem instance. This
is as expected: the size of the search space typically increases with that of the instance,
providing the opportunity for the selected streamliner to prune larger parts of the search
space, and so reduce search further.

Our automated streamliner selection approaches are able to deliver a substantial fraction
of the performance of the oracle in terms of the percentage of instances improved. The
most robust performance in this respect comes from Autofolio. The simple lexicographic
approaches sometimes perform well, but for some problem classes, such as Covering Array,
their performance is relatively weak. The Single Best Streamliner approach, which requires
no further training following the streamliner search, offers a good compromise between
performance and cost before solving unseen instances. Where automated selection is
selecting a streamliner that does not lead to an improvement, in most cases this is due to
the search exceeding the time taken by the unstreamlined model, rather than the instance
being rendered unsatisfiable. This suggests a bad interaction with the search strategy,
which we will study in future.

Performance in the SAT domain is generally less strong than for Constraint Programming.
Although the performance of the oracle again indicates that there is almost always a
streamliner in our portfolio that can improve search, in Distribution A on three of the seven
problem classes the magnitude of this reduction is small. On the remaining four problem
classes, performance is stronger and in some cases exceeds the improvement delivered in
the corresponding CP setting. Once again performance clearly improves on Distribution B
relative to Distribution A, suggesting that for SAT also the impact of streamlining grows
with difficulty.

7.2. FREQUENCY AND MAGNITUDE OF SEARCH REDUCTION 99

(a) Chuffed on Distribution A.

(b) Lingeling on Distribution A.

Figure 7.2: Results with Chuffed and Lingeling on Distribution A. The top of each
pair of charts shows how frequently the associated approach produces an improvement (%
improved), and also indicates the reason for failure to improve on the remainder of the
instances: the instance was rendered unsatisfiable (% UNSAT), or the search completed
more slowly than the original model (% non-improved). The bottom of each pair of
charts shows the magnitude of the solving time reduction on those instances where an
improvement was obtained (% reduction). Hence, care must be taken when comparing
approaches, since an infrequently applicable approach may do well on the few instances it
does improve. The best approaches are both frequently applicable and result in a large
search reduction.

100 CHAPTER 7. EXPERIMENTAL RESULTS

(a) Chuffed on Distribution B

(b) Lingeling on Distribution B

Figure 7.3: Results with Chuffed and Lingeling on Distribution B. Detailed meaning
of the plots are described in Figure 7.2.

7.3. A PRACTICAL SETTING 101

7.3 A Practical Setting

By employing the algorithm selection techniques described in Section 6.4 our aim is to
maximise the occasions on which streamlining produces a reduction in search effort. In
the previous section we restricted ourselves to only looking at such occasions. However to
a practitioner who is leveraging this method the alternative cases where the streamliner
failed to be effective are also important. We cannot expect an aggressive technique such
as streamlining to be universally applicable: in particular, the selected streamliner may
render the instance under consideration unsatisfiable, or the streamliner may be ineffective
on the given instance. Even though streamlined models operate on a subspace of the
original model it is not guaranteed that they will finish faster. Figure 7.4 combines the
conjectures from all constructed portfolios and displays their performance across three
different instance distributions. Performance is represented on the y-axis as the speedup
in solving time relative to the original model defined as:

Speedup= (Original_SolvingT ime)/(Streamlined_TotalSolvingT ime)

Note because some evaluations time out or are proven unsatisfiable in these cases the
diagram is comparing the time taken for the original model to find a solution vs the total
time taken by the streamlined model. The red dotted line separates the cases: any entry
above represents an improvement (a positive speedup) and any value below represents a
negative improvement (a negative speedup) in solving time relative to the original model.
The vast majority of these evaluations are ideal from the perspective of the practitioner; a
solution is found in the streamlined subspace and a positive speedup in solving time is
achieved on the instance.

What is interesting however is that not all evaluations produce a positive speedup, there
are many cases where the application of a streamliner actually increases the time taken.
This raises the practical issue of trying to define the amount of time that should be
allocated to the streamliner{s} in the schedule when solving an unknown instance. The
most basic method would be to apply the streamliners composing the schedule until either
a solution is found or each streamliner has completed. As no schedule or AS prediction
is going to be perfect and will always make some degree of mis-classifications this basic
method however has a very real danger for some instances of actually increasing the time
to find a solution substantially relative to the original model. In this section we discuss
different scheduling procedures that attempt to balance achieving substantial performance

102 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.4: The diagram groups the evaluations into four different categories. SolverTime-
Out represents the cases where the solver timed out during evaluation. The timeout value
for the Training Set and Distribution A is set at 5 minutes and for Distribution B at 1 hour.
ProvenUnsat represents the cases where the streamlined subspace was proven to contain
no solutions in the given time budget. The last two categories, {SolverSatisfiable-Improved,
SolverSatisfiable-NonImproved} represent the cases where a solution was found in the
streamlined subspace. What differentiates them is whether or not the time taken to find
this solution was an improvement over the original model

whilst restricting the worst case possible reduction.

7.3.1 Streamliner Scheduling with fixed cutoff time

In order to restrict the worst possible reduction one approach is to give a fixed cutoff to
the evaluation of the streamliner{s} before reverting back to running the original model.
The benefit of this fixed cutoff is that it will still allow streamliners that achieve large
reductions to be effective whilst capping those that perform poorly. There is however no
easy way to decide what value should be used for that cutoff as for an unseen instance we
do not know its difficulty. If the instance is difficult and the allotted cutoff time is too
short then large potential reductions could be missed. For example, if the instance takes
an hour to solve under the original model and the streamliner achieves a large reduction
of 50% with a cutoff less than 30 minutes this reduction will be missed. On the other hand
if the cutoff time is too high then the runtime of ineffective or unsatisfiable streamliners
can exceed that of the original model producing large negative reductions.

There are two ideal solutions to this problem. Firstly, if there existed an oracle that could
predict precisely the amount of time the original model would take on an instance this
would allow us to cap the amount of time the streamliner portfolio would run for and
as a result cap the maximum negative reduction. Unfortunately, computationally cheap,
perfect oracles of this nature are not available for any NP-complete problem and we cannot

7.3. A PRACTICAL SETTING 103

precisely determine an arbitrary algorithm’s runtime on an arbitrary instance without
actually running it [200]. A second approach would be to try and predict the satisfiability
of a streamlined model before running it. If the prediction was accurate we would be able
to remove any streamliners in the portfolio that render the current instance unsatisfiable
and as such avoid the potential for negative reductions. However again there is currently
no way to accurately predict the satisfiability for any NP-complete problem. Xu et al [197]
using deep learning were able to achieve high prediction accuracy of satisifiability but only
on boolean binary constraint satisfaction problems.

Figure 7.5 displays the distribution of both positive and negative reductions as a factor of
the cut-off time for instances from Distribution B. It can be seen that as the cutoff time is
increased the spread of the distribution also largely increases. For a small cutoff time of
30s there is a dense cluster of reductions centered close to 0% reduction and another small
cluster centered close to the 100% reduction mark. This occurs as in most cases the cutoff
time is too short to allow a selected streamliner to solve the instance and as such the
time spent on streamliner evaluation results in a small negative reduction. In some cases
however the streamliner can attain a very high reduction in search near 100%. As the
cutoff time is increased the distribution starts to spread out and the probability of receiving
larger negative reductions is increased. For 3600s for instance, negative reductions of up to
-1000% are found. These large negative reductions can occur because as we have seen in
Figure 7.4 search can take considerably longer in a streamlined subspace than the original
model. The probability of these large negative reductions is often very low with respect to
the entire instance space however when analyzing the overall impact of streamlining their
presence can mask the positive reductions attained.

7.3.2 Portfolio Approach

Another approach is one in which a streamliner portfolio is a constituent of a wider
portfolio containing other more conservative approaches. The simplest such setting, which
we employ here, is to run the streamliner portfolio in parallel with the original model. This
helps in two ways. Firstly if the streamliner selected renders an instance unsatisfiable the
original model will produce a solution. Secondly if the selected streamliner is ineffective it
cannot exceed the wall time of the original model and in terms of CPU time the worst
case negative speedup is capped at 0.5.

We evaluated this parallel configuration on both Distribution A and B. Our results are
summarised in Tables 7.1 and 7.2, which present the Overall Speedup of each approach

104 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.5: For the Fixed Length Error Correcting codes problem under the Chuffed solver:
The distribution of reductions along with the Kernel Density Estimation [118, 29, 190] of
the probability density function is shown as the fixed cutoff time is varied.

7.3. A PRACTICAL SETTING 105

across the seven different problem classes with two solving paradigms, CP and SAT. Overall
Speedup represents the total time of the original model divided by the total streamlined
time across all instances. This metric gives an indication of the overall reduction in search
effort across each instance distribution.

Across both distributions, Autofolio is clearly the best performing among our different
streamliner selection approaches. It achieves geometric mean speedups of 1.9× and 1.57×
for Distribution A and 4.72× and 3.53× for Distribution B, with maximum speedups on
Distribution A of over 4× for both CP and SAT, and on Distribution B of over 40× for
CP and over 10× for SAT. As in the results presented in Section 7.2, there is a pronounced
increase in the speedups achieved for the more difficult Distribution B instances.

Solver Problem # Instances Oracle SBS ApplicFirst ReducFirst Autofolio

Chuffed

BACP 100 25.61 2.84 2.01 2.81 2.48
BIBD 98 1.63 1.05 1.05 1.03 1.15

CarSequencing 100 11.21 3.77 3.35 3.66 4.46
CoveringArray 100 1.73 1.45 1.05 1.05 1.57

FLECC 100 2.42 1.90 1.88 1.71 1.90
SocialGolfersProblem 100 1.12 1.02 1.07 1.07 1.09

Transshipment 100 9.19 2.44 2.58 2.63 2.17
Geometric-Mean Speedup 4.12 1.86 1.68 1.76 1.90

Lingeling

BACP 82 3.22 1.32 1.32 1.16 1.19
BIBD 99 1.03 1.01 1.01 1.01 1.01

CarSequencing 100 1.04 1.01 1.01 1.00 1.00
CoveringArray 100 3.73 1.60 1.01 1.01 1.46

FLECC 100 4.06 2.72 2.79 2.40 3.08
SocialGolfersProblem 91 1.10 1.05 1.01 1.01 1.04

Transshipment 99 6.13 1.84 1.95 3.20 4.15
Geometric-Mean Speedup 2.31 1.41 1.33 1.38 1.57

Table 7.1: Performance comparison between ApplicFirst, ReducFirst, Autofolio the Oracle
and the SBS using the overall speedup on Distribution A, containing instances with
unstreamlined solving times in [10,300] seconds.

Solver Problem # Instances Oracle SBS ApplicFirst ReducFirst Autofolio

Chuffed

BACP 16 53.47 1.47 3.98 5.99 46.56
BIBD 59 2.25 1.13 1.32 1.09 1.71

CarSequencing 52 8.77 1.91 2.75 1.88 6.77
CoveringArray 46 3.36 2.20 2.42 1.41 3.20

FLECC 192 3.95 2.18 1.04 1.63 2.24
SocialGolfersProblem 19 2.53 1.28 1.04 1.05 2.53

Transshipment 216 16.21 2.77 1.89 2.79 5.39
Geometric-Mean Speedup 6.65 1.77 1.84 1.88 4.72

Lingeling

BACP 15 5.92 2.20 1.52 1.66 4.91
BIBD 25 2.26 1.25 1.19 1.21 1.30

CarSequencing 69 3.32 1.06 1.16 1.16 2.95
CoveringArray 34 16.65 2.19 2.10 3.14 10.81

FLECC 166 5.89 1.62 1.18 1.51 3.39
SocialGolfersProblem 17 2.23 1.14 1.20 1.14 1.89

Transshipment 68 12.42 3.59 2.13 4.32 5.25
Geometric-Mean Speedup 5.32 1.71 1.45 1.77 3.53

Table 7.2: Performance comparison between ApplicFirst, ReducFirst, Autofolio the Oracle
and the SBS using the overall speedup on Distribution B, containing instances with
unstreamlined solving times in [300,3600] seconds.

106 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.6: Distribution of speedup values (in base 10 logarithmic scale) for the Oracle,
Autofolio and Single Best Solver on Distribution B

Overall Speedup is quite a coarse metric, which can obscure the individual instance speedups
being obtained. For example, if a streamliner is evaluated on 10 instances and for half its
application makes them trivial reducing the solving time to near zero but for the other half
it is unsatisfiable the Overall Speedup will be ≈ 2×. This does not provide a good indication
that on half of the instance distribution the streamliner is restricting the search space
to such a high degree. In order to better visualize this Figure 7.6 shows the distribution
of speedup values across instance distribution B for the Oracle, SingleBestSolver and
Autofolio methods. The minimum speedup obtained for a streamliner in this setup is
1 (log10(0)) as these are the cases where the chosen streamliner is not satisfiable and
as such is solved by the original model providing no speedup. If we restrict our scope
to individual problem classes it can be seen that the application of streamliners can
decimate the search space and provide substantial speedups. Using the Chuffed CP solver,
BACP and Transshipment are two problem classes where Autofolio is able to obtain large
speedups for a majority of the instance distribution. In the case of BACP the speedups
range from ≈ 8× to ≈ 2568× with the 1st and 3rd quartiles having values at {q1 ≈ 103×,
q3 ≈ 1458×}. For Transshipment the speedups range from ≈ 1× to ≈ 1120× with the 1st
and 3rd quartiles having values at {q1 ≈ 6×, q3 ≈ 120×}. These large speedups are not
just restricted to CP and under the SAT paradigm CoveringArray and Transshipment
are also examples where this search space decimation can occur. For Transshipment the
speedups range from ≈ 1× to ≈ 141× with the 1st and 3rd quartiles having values at
{q1 ≈ 25×, q3 ≈ 35×}. For CoveringArray the speedups range from ≈ 1× to ≈ 244× with
the 1st and 3rd quartiles having values at {q1 ≈ 6×, q3 ≈ 25×}.

We must be mindful that all results presented thus far in this section are in terms of the

7.3. A PRACTICAL SETTING 107

reduction/speedup in wall-time of the portfolio approach vs the original model. Since the
portfolio method utilizes two cores, one for the original model and one for the portfolio a
possible critique may be this is an unfair comparison as we are consuming more resources
to arrive at the solution. To combat this Figure 7.7 displays the cumulative cpu time of
the scheduling methods across the instances comprising Distribution B. Here the total
CPU time of the portfolio approach to solve all instances, taking into account both cores,
is compared against that of the original model. For the Chuffed solver on 6 of the
problems, BIBD being the exception, Autofolio is still able to reduce the overall time
with in some cases a substantial reduction. BACP, CarSequencing and Transshipment
experience speedups of ≈ 23x, ≈ 3.38x and ≈ 4.07x approximately. For Lingeling, on
every problem except BIBD and SocialGolfers positive speedups in overall time are achieved
again with substantial results for some problems. For Transshipment, CoveringArray and
BACP speedups of ≈ 5.56x, ≈ 3.99x and ≈ 2.54x are achieved.

It is useful to note that the cpu time speedup of the portfolio approach is not always
half that of the wall time speedup. The reason for this is that the portfolio approach
does not always use twice the cpu resource of the original model. Let us use an example
to illustrate this point. We have an instance I_0 which takes 100s under the original
model. If during evaluation the selected streamliner (S_0) is proven to be unsatisfiable
at T0 = 50s then from 50s → 100s only one core will utilized running the original model.
The cpu time speedup of the portfolio approach is then 2

3 compared to a speedup of 1.0
for the wall time approach.

108 CHAPTER 7. EXPERIMENTAL RESULTS

(a) Chuffed

(b) Lingeling

Figure 7.7: Across the 7 problems the cumulative CPU time of the different scheduling
variants is shown for instance Distribution B for the Chuffed a) and Lingeling b)
solvers

7.4 Results: Further Analysis

In this section we discuss and analyse in further detail the results presented thus far. Firstly,
we look more closely into various factors that impact performance when streamliners are
added into a model specification. Those include: (i) the reduction in number of search
nodes required to reach a satisfiable solution and the change in solver performance in
terms of number of search nodes (CP) or number of decisions (SAT) made per second

7.4. RESULTS: FURTHER ANALYSIS 109

(Section 7.4.1); and (ii) the various optimisation strategies provided by Savile Row
during its automated reformulation process (Section 7.4.2) and its cost. Those factors
can lead to either substantial speedups or decreases in performance depending on certain
situations. Secondly, we provide more insights into the behaviours of all streamliner
portfolio application methods under study (Section 7.4.4 and Section 7.4.5).

7.4.1 Node Reduction and Solver Performance

The substantial speedup in solving time enabled by some streamliners can be explained
by the large reduction in the number of search nodes (CP) or decisions (SAT) the solver
has to traverse before reaching a solution. Streamliners help to partition the search space
into two disjoint sub-problems where the streamlined subspace is generally much smaller
than its complement [84], and if a solution for a decision problem exists in the streamlined
subspace, the considered instance can be solved efficiently by the solver. Figure 7.8a shows
the number of search nodes/decisions to a solution (for instances from Distribution B) on
a sample set of streamliners where large speedups in solving time are obtained. In all four
problems, there is a strong correlation between the reduction in search nodes/decisions
and the corresponding speedup in solving time. For some cases such as BACP (where the
largest speedups are found), streamliners can turn a difficult instance taking millions of
search nodes to a trivial instance taking less than 1000 nodes to solve.

Reducing the number of nodes/decision required to reach a solution is not the only way
that streamliners achieve their speedups. In various cases, the addition of streamliner
constraints into a problem specification may actually increases a solver’s performance: the
number of nodes (for CP) or decisions (for SAT) the solver can traverse per second. As
shown in Figure 7.8b, there were a large number of cases where the solver’s performance
on the streamlined model was faster than on the original model. In particular, for
Transshipment-Chuffed and CoveringArray-Lingeling, increases in solver performance up
to 10× were often observed. Such increases were possible thanks to a reduction in model
complexity introduced during the formulation process by Savile Row, which will be
discussed in further detail in the next section.

7.4.2 SavileRow Formulation

The presence of streamlined conjectures in the Essence Prime can impact the formulation
of the solver model. The most profound impact is on the size of the generated solver

110 CHAPTER 7. EXPERIMENTAL RESULTS

(a) For four different problem/solver settings a comparison of the speedup
in time to arrive at a solution (y-axis) vs the speedup in nodes to solution
(x-axis) under a streamlined representation.

(b) For the same four settings as fig. 7.8a the speedup in time to arrive at a
solution (y-axis) vs the speedup in nodes/decisions per second completed by
the solver (x-axis) under a streamlined representation.

Figure 7.8

dependent model produced by Savile Row. Figure 7.9 presents the effect of a portfolio of
different streamliners in the SAT paradigm on the size of the resulting dimacs representation
across three problems classses. The impact the streamliners impart is very problem
dependent. For two of the problems listed, BIBD and CarSequencing, the streamliners
drastically increase the number of clauses and variables and in turn the complexity of
the model. For BIBD the delta is ≈ 8× increase in the number of clauses and a ≈ 1.5×
increase in the number of variables. In Savile Row the default encodings for SAT are
order encoding [188] for sums and support encoding [79] for binary constraints. A majority
of the generated streamliners for Car Sequencing and BIBD contain sum expressions which
explode when formulated in the dimacs format.

The opposite effect however was seen on Transshipment which is initially surprising. It
might be expected that as streamliner constraints are additional constraints added onto an
Essence Prime model that they would always increase the complexity of the generated
solver-dependent model. Having a closer look into the Savile Row formulation process,
we find out that there are two optimisation strategies in Savile Row, namely domain

7.4. RESULTS: FURTHER ANALYSIS 111

Figure 7.9: Effect of Streamliners on #Variables/#Clauses in a SAT model

filtering and identical common sub expressions (cse), that contribute to the simplification
of the generated output.

The first strategy, domain filtering, removes values that cannot take part in any solution.
It is implemented in Savile Row by using the standard propagation of the CP solver
Minion in combination with single consistency applied to the upper and lower bound of
variables’ domains. In some cases, domain filtering can help Savile Row to quickly prove
that a streamlined model is unsatisfiable on an instance without even fully formulating
the model or invoking the solver. Those cases are represented by the green dots in Figure
7.9. A trivial example of how this could occur is presented in Figure 7.10

find x : int (1..100)
such that

x % 2 == 0,
$ Added streamliner
x % 2 == 1

Figure 7.10: By forcing x to both be simultaneously odd and even this model becomes
trivially unsatisfiable and through the application of domain filtering Savile Row will be
able to prove that the plausible domain for x is empty.

The second strategy, identical-cse, assigns the same auxiliary variable for all syntactically
identical sub-expressions that need to be flattened. For Transshipment, the addition of
streamliners helps to increase the amount of domain filtering and identical-cse that occurs,
resulting in simpler and smaller solver input sizes.

112 CHAPTER 7. EXPERIMENTAL RESULTS

7.4.3 Savile Row Formulation Time

The Savile Row formulation process is not trivial and can take considerable time and
resources depending on both the complexity of the Essence Prime specification and the
given instance. Unlike Conjure, Savile Row has to be invoked for every application of
a streamliner on a given problem instance. This means that any overhead a streamliner
imparts during formulation needs to be taken into account when evaluating performance
on an instance. Figure 7.11 shows that streamliners can also have a profound impact on
the time taken by Savile Row to formulate the solver output with respect to the original
model. There is a high correlation between the delta in Savile Row formulation time
and the delta in complexity of the streamlined and original solver-dependent models. In
the cases where the complexity of the output model drastically increases this is generally
associated with an increase in formulation time and vice versa.

Figure 7.11: Effect of Streamliners on Savile Row formulation time

7.4. RESULTS: FURTHER ANALYSIS 113

Figure 7.12: The size of the constructed portfolios and the number of streamliners used by
the Oracle and Autofolio for instances from Distrbution B.

7.4.4 Instance-oblivious Streamliner Application

The simplest streamliner application method on an unseen problem instance is to use the
Single Best Streamliner (SBS), i.e., the streamliner with the lowest average solving time
across all training instances. The SBS shows competitive performance on the easy instances
(Distribution A, Table 7.1). However, on the more difficult instances (Distribution B, Table
7.2), SBS is no longer performing well compared to the instance-specific approach based
on Autofolio. It indicates that for the difficult instances, performance of the streamliners
in the constructed portfolio varies among instances and there is no single best streamliner
that works well on all instances. This is illustrated in Figure 7.12 where we show the
number of streamliners used by the Oracle for all instances from Distribution B. In all
cases the Oracle is composed of at least 10 streamliners, showing that to achieve the
performance of the Oracle a substantial part of the portfolio needs to be used.

Other instance-oblivious streamliner application methods used in this work include Ap-
plicFirst and ReducFirst, the two lexicographic schedules built based on prioritising
streamliners with higher applicability (ApplicFirst) and solving time reduction (Reduc-
First) across all training instances. ApplicFirst is a conservative approach since it always
starts with the “safest” streamliners from the portfolio, i.e., the ones that are less restrictive
to the solution space and therefore more likely to provide a solution given enough time.

114 CHAPTER 7. EXPERIMENTAL RESULTS

Those streamliners are mostly composed of only one or a few candidate streamliners.
ReducFirst, on the other hand, starts with the most restrictive streamliners from the
portfolio, which can offer great reduction but are also more likely unsatisfiable. The key
to whether or not ReducFirst manages to work more effectively compared to ApplicFirst
is the speed at which it can dismiss unsatisfiable streamliners from the schedule. As an
example, for BACP-Chuffed on Distribution B where it manages to achieve a speedup
range with the 1st and 3rd quartiles at ≈ 68× and ≈ 1564×, respectively, on average 5
streamliners are applied before either the time budget is exhausted or a solution is found.
This is in contrast to BIBD-Lingeling where only marginal speedups are attained, on
average only 2 streamliners from the schedule are evaluated.

7.4.5 Instance-specific Streamliner Application

Autofolio is considered an instance-specific approach since it takes into account instance
features to decide which streamliner(s) to apply on an unseen instance. Compared
with instance-oblivious approaches, Autofolio is very competitive on Distribution A and
dominates on Distribution B. However, for some problems such as Transshipment, the fairly
large gap with the Oracle indicates that there is still quite some room for improvement.
This is expected, as algorithm selection has long-known to be a difficult problem and
has been a research focus for several years [116]. Figure 7.12 shows the number of
streamliners used by AutoFolio compared to the Oracle. Interestingly, for some cases such
as CoveringArray-Chuffed, SocialGolfersProblem-Chuffed and CarSequencing-Lingeling,
Autofolio only needs a small subset of the streamliner portfolio to almost reach the ideal
performance of the Oracle.

7.5 Summary

This chapter demonstrated two sets of experiments that tested the efficacy of our automated
approach to the generation and selection of streamliner constraints, across seven problem
classes in both SAT and CP. The first examined the frequency for which streamlining
resulted in a reduction in search, and the magnitude of that reduction. One deficiency of
this experiment was that it only examined cases where the chosen streamliner was effective.
The second experiment displayed a more practical setting and analyzed the overall impact
of streamlining across an entire instance distribution. Overall positive results in both
experiments for a majority of the problems evaluated were shown.

8Chapter Eight

Streamlining for
Constrained
Optimization

Up to this point the use of Streamlined Constraint Reasoning has solely been reserved
for Constraint Satisfaction problems where all solutions are of equal value. A great many
problems however can be defined as Constrained Optimization Problems (COP) where
aside from finding a solution to the problem there is a secondary goal of maximizing or
minimizing a specific objective. In this chapter we discuss the process of streamlining
Constrained Optimization Problems and the required adaptations to our base search and
scheduling methods. Empirical results shown demonstrate drastic improvements in both
time to optimality and time to proof for all problems evaluated.

8.1 Problems

We now introduce the three problem classes studied in this chapter, which will be used both
to illustrate the remainder of our method and for our empirical evaluation. We selected
these problems, presented in Figure 8.1 to give good coverage of the abstract domains
available in ESSENCE, such as set, multi-set and function. Furthermore, SONET and
Progressive Party have nested domains: multi-set of set and set of function respectively.

The Progressive Party Problem defines the problem of trying to timetable a party at a
yacht club. Certain boats are designated hosts, and the crews of the remaining boats in

115

116 CHAPTER 8. STREAMLINING FOR CONSTRAINED OPTIMIZATION

turn visit the host boats for defined periods. The crew of a host boat remains on board to
act as hosts while the crew of a guest boat together visits several hosts. Every boat can
only hold a limited number of people at a time (its capacity) and crew sizes are different.
The total number of people aboard a boat, including the host crew and guest crews, must
not exceed the capacity. A table with boat capacities and crew sizes can be found below;
there were six time periods. A guest boat cannot not revisit a host and guest crews cannot
meet more than once. The problem facing the rally organizer is that of minimizing the
number of host boats [192].

The Minimum Energy Broadcast (MEB) problem aims to configure the power level in each
device of an ad hoc network such that if a specified source device broadcasts a message it
will reach every other device either directly or by being retransmitted by an intermediate
device (a broadcast tree is formed). The desired configuration is that which minimises the
total energy required by all devices, thus increasing the lifetime of the network [33].

In the SONET problem a number of rings and nodes are defined. For each pair of nodes
a demand is given (which is the number of channels required to carry network traffic
between the two nodes), which may be zero. A node is installed on a ring using a piece of
equipment called an add-drop multiplexer (ADM). Each node may be installed on more
than one ring. Network traffic can be transmitted from one node to another only if they
are both installed on the same ring. Each ring has an upper limit on the number of nodes,
and a limit on the number of channels. The demand of a pair of nodes may be split
between multiple rings. The objective is to minimise the total number of ADMs used
while satisfying all demands [151].

8.2. SEARCHING FOR A STREAMLINER PORTFOLIO 117

$ SONET
given nnodes , nrings , capacity : int (1..)
letting Nodes be domain int (1.. nnodes)
given demand : set of set (size 2) of Nodes

find network : mset (size nrings) of
set (maxSize capacity) of Nodes

minimising sum ring in network . |ring|,
such that forAll pair in demand .

exists ring in network . pair subsetEq ring

$ Minimum Energy Broadcast
letting dNodes be domain int (1.. n_nodes)
letting dDepths be domain int (1.. n_nodes)
find parents: function (total)

dNodes --> dNodes ,
depths : function (total)

dNodes --> dDepths
find optVar : int (0.. numberNodes * max([cost | (_,cost) <- linkCosts]))
minimising optVar

$ Progressive Party
letting Boat be domain int (1.. n_boats)
find hosts: set (minSize 1) of Boat ,

sched: set (size n_periods) of
function (total) Boat --> Boat

find optVar : int (0.. n_boats)
optVar = |hosts|

minimising optVar

Figure 8.1: Essence specifications for the three problem classes considered herein.
Synchronous Optical Networking (SONET) [151] is given in full. For brevity, only the
parameters, decision variable declarations (from which streamliners are generated) and
optimization variables are shown for the Progressive Party Problem [192] and the Minimum
Energy Broadcast Problem [33]

8.2 Searching for a Streamliner Portfolio

From a cursory analysis of Figure 8.2 one might come to the conclusion that streamliner
combination 44-5 is the most effective as in terms of these three instances it always finishes
first and achieves the largest speedup relative to the Original model. The problem however
is that as streamlining can modify the solution space a candidate streamlined model may
find a solution quickly, but of poor quality, and may exclude the set of optimal solutions
entirely. Even though 44-5 does finish the fastest it does not for any of the three instances
reach the same objective value as that of the Original model. In this case the gaps are

118 CHAPTER 8. STREAMLINING FOR CONSTRAINED OPTIMIZATION

relatively small with the largest occurring on instance 494-1-238598565 where the Original
reaches a best objective value of 6 vs 8 for streamliner 44-5. In comparison Streamliner
41 takes slightly longer to complete however in contrast on all three instances it retains
the optimal objective value. For COP it is no longer sufficient to just analyze the time to
complete; as with satisfaction problems; but additionally the value of the objective must
be taken into account. Depending on the goal of the practitioner both of these streamliners
could be an effective choice. For 44-5 considering the speedup attained one could argue
that not maintaining exactly the optimal solution is an acceptable tradeoff. However
dependent on the domain even small disparities in the objective value could have large
consequences in overall performance and so 41 might be the proficient choice. Neither
of these streamliners dominate each other and so the portfolio constructed during search
should contain both.

To accomplish this, we modify the search show in Chapter 5, to add a third objective to
allow us explicitly to balance considerations of solution quality against how aggressively
the streamlined model reduces search:

1. Applicability. The proportion of training instances for which the streamlined
model admits a solution.

2. Search Reduction. The mean reduction in time to prove optimality in comparison
with the original model.

3. Optimality Gap. The mean percentage difference between the optimal value found
by the streamlined model and the true optimal value under the Original model.

Figure 8.2: A comparison of the search progress between the Original model and two
streamliner combinations (41 and 44-5) for the MEB problem across three instances. The
solver in this setting is Minion and the objective is to be minimized

8.3. PRUNING THE STREAMLINER PORTFOLIO 119

8.3 Pruning the Streamliner Portfolio

As the number of objectives increases so, typically, does the size of the Pareto front,
and hence the size of the generated streamliner portfolio. This is demonstrated in Table
8.1, which, in column 2, records the size of the streamliner portfolios generated through
MOMCTS for our three problem classes. A large portfolio is cumbersome when considering
streamliner selection and scheduling. We observed, however, that the streamlined models
were not distributed evenly across the Pareto front. Therefore, GMeans clustering is used
to identify the number of clusters present in the portfolio and a point from each cluster is
then selected to form a representative subset of the full portfolio (see column 3 of Table
8.1).

Initial Pruned
Problem Portfolio Size Portfolio Size
SONET 57 6
MEB 56 3
PPP 64 9

Table 8.1: We prune an initially generated streamliner portfolio through GMeans clustering
and select a representative point from each cluster.

Table 8.2 presents some of the candidate streamliners that compose the final portfolio for
each problem. Detailed alongside is the % Applicability, % Reduction and % ∆ OptVar
achieved on the training distribution during the search process. The last three columns
gives a glimpse of how the search balances the three considerations of applicability vs
solution quality vs how aggressively the streamlined model reduces search. For instance,
for the PPP problem streamliner combination 7 - 27 achieves 100% applicability with an
average ≈ 17.9% reduction to a solution that is ≈ 3.6% worse than than the optimal. 164-
103 also achieves 100% applicability however it attains an average ≈ 99.9% reduction to a
solution that is ≈ 71.2% worse than than the optimal. In comparing these two conjectures
there is a tradeoff between the speed of completion vs the value of the objective retained.
Having both conjectures present in the portfolio is important such that a practitioner can
weigh which objective is most important for their particular setting.

Interestingly there is one streamliner combination found 41-18 for the MEB problem that
is able to maintain 100% applicability and in all cases maintain the optimal solution. Upon
further analysis however it became apparent that it is not an implied constraint as on a
number of instances the solution space was modified and not all optimal solutions retained.

120 CHAPTER 8. STREAMLINING FOR CONSTRAINED OPTIMIZATION

Problem Streamliner Id Description % Applic % Reduction % ∆ OptVar
Sonet 13 Approx. half the nodes installed on each ring are odd 100 63.7 0.01

13 -15 13 & Approx. half the nodes on each ring are from the
lower half of the Nodes domain

100 83.2 1.5

13-67 13 & The objective variable is constrained to the lower
half of its domain

42 56.9 0

13-59 13 & For Approx. half of the rings at most one node
can be from the lower half of the Nodes domain

100 73.3 0.81

6-67 Exactly half the nodes installed on each ring are odd &
The objective variable is constrained to the lower half of
its domain

32 97.9 3.8

6-52-67 Exactly half the nodes installed on each ring are odd &
The objective variable is constrained to the lower half of
its domain & For Approx. half of the rings at most one
node can be from the upper half of the Nodes domain

32 98.9 4.3

MEB 41-18 The range of the depths function contains all odd entries
& Approx. half of the entries in the range of the parents
function must be even

100 99.7 0

42-44 The range of the depths function contains: all even
entries & all values must be from the upper half of the
Nodes domain

84 99.9 98.7

41-25 The range of the depths function contains all odd entries
& exactly half of the defined values of the parents function
are odd

34 99.8 0

PPP 7 - 14 For half of the hosts the boats must be in the lower half
of the Boats domain & For approx. half of the hosts the
Boats must be odd

100 30.7 3.8

164-103 The objective must lie in the upper half of the Boats
domain & there can be at most one period where more
than one entry from the range of the period is in the
lower half of the boats domain

100 99.9 71.2

7 - 27 For all periods, for half the range of the function the
values must lie in the lower half of the Boat domain &
For half of the hosts the boats must be in the lower half
of the Boats domain

100 17.9 3.6

Table 8.2: Sample streamliner combinations from the three generated portfolios for the
problem classes we consider (see Figure 8.1 for their Essence specifications). References
to odd/even are with respect to the integer identifiers associated with entities such as
nodes or boats. Streamliner Id is a unique reference given to a streamliner when generated
through Conjure; we shall refer to these examples in Section 8.6.1

8.4 Selecting from the Streamliner Portfolio

Having constructed a streamliner portfolio for a particular problem class using MOMCTS
and the set of training instances, for a given test instance the question arises as to which
streamlined models from the portfolio should be used, in what order, and according to
what schedule. We consider both static lexicographic selection methods, which establish a
priority order over our three objectives of Applicability, Search Reduction and Optimality
Gap, and a dynamic method, which adjusts the selection based on the performance on the
instance thus far.

8.4. SELECTING FROM THE STREAMLINER PORTFOLIO 121

Algorithm 3 Lexicographic Streamliner Selection
procedure Selection(Portfolio P, Ordering, Timetotal, Instance)

P← sort(P, by = Ordering)
TimeTaken ← 0
while TimeTaken ≤ TimeTotal do

Streamliner ← P.next()
Stats ← Apply(Streamliner, Instance)
if Stats→sat() then

setBound(Instance, Stats.bound) . Set new bound on the instance
end if
TimeTaken + = Stats.time

end while
end procedure

8.4.1 Lexicographic Selection Methods

As discussed earlier in Section 6.4.2.1 it is possible to order the streamlined models in a
portfolio lexicographically. In the optimization setting there are three objectives and six
such orderings to consider. Through preliminary testing it became apparent that only two
of these orderings are effective, where the Applicability objective is prioritised. The other
orderings trade Applicability for either Search Reduction or a better Optimality Gap. On
more difficult test instances, significant search effort can be required to prove that an
aggressive streamliner has rendered an instance unsatisfiable, which can lead to poor overall
performance. Thus two lexicographic selection methods are used herein: {Applicability
First, Optimality Second, Reduction Third} and {Applicability First, Reduction Second,
Optimality Third}.

The selection process involves traversing the portfolio (using the defined ordering) for a
given time period and applying each streamliner in turn to the given instance as shown in
Algorithm 3. The schedule is static in that it only moves to the next streamlined model
when the search space of the current one is exhausted. A key parameter is Timetotal, which
specifies the total budget in seconds for traversing the streamliner portfolio. In Section 9.4
for each selection method four different settings for this parameter are experimented with
to explore its effect on overall performance.

122 CHAPTER 8. STREAMLINING FOR CONSTRAINED OPTIMIZATION

Algorithm 4 UCBSelection
procedure Selection(Portfolio, Ordering, Timetotal, Instance)

Timetaken ← 0
UCBTimeLimit ← 1
NumberOfIterations ← 0
Map . Mapping from Streamliner to Process
while Timetaken ≤ Timetotal do

Streamliner ← UCTSelection(Portfolio)
if Map[Streamliner].restart then

Process ← remodel(instance, streamliner) . Remodel with the new bound
Map[Streamliner].process ← Process
Stats ← run(Process, UCBTimeLimit)

else
Process ← Map[Streamliner].process
Stats ← run(Process, UCBTimeLimit) . Continue running existing process

end if
Map[Streamliner].visits += 1
NumberOfIterations += 1
if Stats→sat() then

Map[Streamliner].reward += 1
setBound(Instance, Stats.bound) . Set new bound on the instance
for S←Map do

if S != Streamliner then
Map[S].restart = True . New Bound was found; restart all other

processes
end if

end for
end if
Timetaken + = Stats.time

end while
end procedure

8.4.2 UCB Streamliner Selection

During optimisation, typically a number of feasible solutions are discovered before the
optimal objective value is found. This intermediate information can be used as an indicator
of the performance of the streamlined model. For a given instance we have no prior
knowledge of the suitability of a particular streamlined model and as such it is important
to balance the time taken exploring the portfolio to identify the performance of each
model while exploiting those that have already found solutions. Representing this as a
multi-armed bandit problem allows us to employ well known regret-minimising algorithms
to deal with the exploration/exploitation dilemma.

8.5. EXPERIMENTAL SETTING 123

For each streamliner k we record the average reward xk and the number of times k
has been tried in the selection nj out of a total of n iterations. On each iteration a
streamliner is chosen that maximizes xj +

√
2log(n)/nj . The reward distributions for

an individual streamliner are not fixed, so this is not a Stationary Multi-Armed Bandit
problem. However, if a streamliner performs well, we expect it will continue performing
well during search even if there is a slight variation in the mean reward. We have found
that using UCB1 gives good results. Future work could investigate the use of Upper
Confidence Bound policies for non-stationary bandit problems, such as the family of Exp3
algorithms [119, 148].

When traversing the portfolio UCB performs incremental evaluation, it runs a streamliner
for a set time, observes the results, and potentially moves on before the corresponding
search space has been exhausted. When the streamliner is pre-empted it is necessary to
pause the search in order to avoid repeating work if it is rescheduled at a later point.
The only exception to this is whenever a new bound on the objective is discovered all
of the streamliners from the portfolio, aside from the current streamliner, are restarted
and remodeled with the new bound. There are two main benefits to doing this. Firstly,
by restarting the streamliner has the newly constrained bound at the top of the search
tree which allows it to make more informed decisions higher up without descending into
unsatisfactory subtrees. Secondly, by remodeling it takes advantage of the toolchain
(Conjure and Savile Row) which may be able to reformulate the model based upon
this new information and produce reductions at the solver level. Algorithm 4 shows the
UCBSelection process in detail.

8.5 Experimental Setting

We evaluate our automated streamlining approach on the three problem classes in Figure
8.1. We selected these problems to give good coverage of the abstract domains available
in Essence, such as set, multi-set and function. Furthermore, SONET and Progressive
Party have nested domains: multi-set of set and set of function respectively.

Our hypothesis is that a streamliner portfolio, generated automatically on a set of auto-
matically generated training instances from a given problem class, can be employed to
solve more difficult test instances to deliver substantial performance improvements relative
to the original model. Training instances were generated as per Chapter 4, with a time
limit of [10,300] seconds. Test instances are generated using the same instance generator

124 CHAPTER 8. STREAMLINING FOR CONSTRAINED OPTIMIZATION

and the tuning tool irace but with a time limit of (300,3600] seconds. 50 instances are
selected randomly to form the test set.

Care must be taken when considering the proof of optimality of our test instances. Although
in solving a streamlined model the constraint solver may exhaust the search space this is
not a proof that the current objective value is optimal. This is because streamliners are
not necessarily sound, hence a streamlined model may exclude the set of optimal solutions.
For this reason, after the streamliner portfolio has been run for its allotted time, we use the
remainder of the time budget to run the original model, starting from the best objective
value found by the streamliner portfolio, to provide the optimality proof. The benefit of
streamlining in this context is in finding high quality solutions much more quickly than
the original model.

All experiments were run on a cluster of 280 nodes, each with two 2.1 GHz, 18-core Intel
Xeon E5-2695 processors. MOMCTS was run on a single core with a budget of 4 CPU
days for each problem class. The number of instances solved within the limit and the time
reduction ratio of the streamliner selection strategies are reported. The percentage of time
reduction (for both reduction to optimality and reduction to proof) is calculated with
respect to the original model under the same random seed. Every test instance was run
with three random seeds.

8.6 Results

Table 8.3 summarises results on 50 test instances for each of our three problem classes.
We evaluate four different approaches: the original model, and streamliner portfolios with
UCB selection, lexicographic ordering {Applicability First, Optimality Second, Reduction
Third} (denoted opt-second), and lexicographic ordering {Applicability First, Reduction
Second, Optimality Third} (denoted red-second). For each streamliner selection method, a
parameter is the amount of time allocated to the streamliner portfolio before handing over
to the original model to prove optimality. Four different values for this time budget were
tested: 30, 60, 120 and 300 seconds.

The second column (labelled #proved) gives a broad view of overall performance. It
reports the average number of instances (3 runs per instance with 3 different random
seeds) where an optimal solution is reached and optimality proved within one CPU hour.
1 All streamliner portfolio variants significantly outperform the original model by this

1Tuning and generation of test instances is performed on the basis of one seed. On the two other seeds

8.6. RESULTS 125

mean Finding an optimal solution Finding and prove optimality
Strategy #proved time(s) speed-up ratio time(s) speed-up ratio

(1-hour) p10 p50 p90 p10 p50 p90 p10 p50 p90 p10 p50 p90

M
E

B

unstreamlined 35 157.9 1185.2 13893.9 311.1 1976.2 16781.3
UCB-30s 50 6.1 8 11.0 14.2 158.2 1583 15.2 22.2 176.7 6.6 43.6 492.2
UCB-60s 50 4.4 7.2 12 15 150.3 1552.2 16.1 24.6 188.7 6.9 35.6 521.9
UCB-120s 50 4.5 7.8 12.1 14.9 158 1604 15.1 24.8 220.9 6.2 36.1 518.4
UCB-300s 50 4.5 7.1 12.1 15 157.5 1605.4 14.9 24.9 345.1 5.2 32.1 416.6
opt-second-30s 49.7 4.1 6.3 13.4 14.1 171.1 1701.5 11.6 22.9 221.3 7.3 44.6 605.9
opt-second-60s 49.7 4.1 6.6 14.9 15.7 174.3 1833.4 11.7 22.5 199.6 7 45.3 625.4
opt-second-120s 50 4.2 6.2 13.6 19.9 178.3 1776.7 11.7 21.8 181.6 7.3 46.5 594.9
opt-second-300s 50 4.1 6.1 12.8 19.9 170.9 1865.8 11.5 21.8 176.9 7.5 47.6 647.0
red-second-30s 49.7 4.1 6.7 13.6 14.1 156 1845.1 11.8 22.8 249.1 7.3 43 532.2
red-second-60s 49.7 4.2 6.1 12.8 15.3 187.0 1878.3 11.8 21.7 198.7 7.3 45 646.3
red-second-120s 50 4.1 6.2 12.6 16.9 177.4 1903.5 11.6 22.1 178.1 7.2 46.3 605.4
red-second-300s 50 4.1 6.1 13.5 16.8 167.5 1891 11.7 22.3 178.8 7.6 47.5 625.1

P
P

P

unstreamlined 41.3 73.4 564.3 3123 313 1339.7 6908.1
UCB-30s 47.7 13 73.7 1007.9 1.2 4.1 52 49.2 350.8 1946.6 1.0 3.0 29.3
UCB-60s 48.3 19.2 105.9 1078.7 0.9 2.9 28.7 86.1 428.8 2141.5 0.9 2.5 24.4
UCB-120s 48.3 18.9 163.3 1129.7 0.7 2.5 31.8 135.5 449.6 1936.2 0.9 2.1 16.8
UCB-300s 48.3 19 344.6 1311.3 0.4 1.6 30.1 323.9 646.3 2273.2 0.6 1.4 10.5
opt-second-30s 46.7 8.3 105.1 1340.5 0.9 3.5 75.1 44.1 419.4 2592.5 0.9 2.4 26.2
opt-second-60s 47 8.1 105.8 1444.2 0.8 3.4 75.2 73.7 453.5 2640.3 0.8 2.3 18.9
opt-second-120s 47.3 8.9 142.9 1765.1 0.7 3.6 76.5 113.1 486 2716.7 0.8 1.9 17.6
opt-second-300s 47.7 8.9 211 1349.3 0.5 3.1 72.4 110.8 599.1 2703.2 0.7 1.8 15.5
red-second-30s 45 14.7 177.7 2344.7 0.7 2 18.9 73.3 626.2 3537.7 0.8 1.7 14.8
red-second-60s 45.3 21.2 195.2 2341.6 0.6 2.1 15.6 96.1 643.2 3174.7 0.7 1.8 13.8
red-second-120s 45.7 13.6 175.7 2384 0.6 2.1 17.5 136.5 591.5 3095 0.6 1.8 11.1
red-second-300s 45.3 13.6 228 2731.5 0.6 1.9 16.8 157 657.6 3339.1 0.6 1.4 8.4

SO
N

E
T

unstreamlined 43 539.5 1263.2 3820.3 574.4 1417.8 3954
UCB-30s 50 5 21.8 121.9 10.3 49.7 341.5 34 42.3 174.0 6.6 23.4 60.5
UCB-60s 50 6.1 28 131.9 8.5 38.1 300.3 63.3 75.3 198.7 4.9 14.4 42.1
UCB-120s 46 6 31.1 246.8 3.4 31.5 321.9 121.2 132.2 581.2 2.3 7.6 32.1
UCB-300s 50 7 30.7 344.5 3.8 33.4 287.3 111.8 310.8 437.8 1.7 4.2 22.9
opt-second-30s 49.3 3.5 9 1023.8 1.4 112.7 553.9 27.7 72.7 1023.2 1.4 19.2 70.5
opt-second-60s 49.7 3.5 9 443.2 1.5 113.1 611.4 27.6 93.6 644 1.5 15.9 66.9
opt-second-120s 49.3 3.3 8.3 455.6 1.3 117.3 677.9 26.9 120.7 701 1.3 14.6 68.6
opt-second-300s 49.3 3.7 8.4 549 3.6 121.0 549.9 28 123.1 770.6 1.1 10.3 69.4
red-second-30s 47.7 3.0 115.4 1749.6 0.8 10.6 483.5 27.7 227.3 2167.4 0.8 5.2 61.7
red-second-60s 47.7 3.0 105.3 1760.9 0.8 14.2 530.9 28.1 185 2137.2 0.8 7.2 64.1
red-second-120s 47.3 3.0 96.7 1532.5 0.8 16 506.3 28.3 157.8 2295.6 0.8 7.6 62.6
red-second-300s 47.7 3.0 96 1451.4 0.9 18.2 533.8 27.1 221.4 1717.6 0.8 6.1 65.2

Table 8.3: Summary results on 50 test instances (3 runs/instance) on three optimisation
problem classes: MEB, PPP and SONET. Reported results include: the average number of
instances solved within one-hour (#proved 1-hour); the time to reach an optimal solution,
the time to both reach an optimal solution and prove its optimality; and the corresponding
time-reduction percentages when compared to the original model. A time-reduction value
of 99% means the solve time was reduced by 99%. For each measurement (except #proved
1-hour), we report the 10th percentile (p10), the median (p50), and the 90th percentile
(p90).

126 CHAPTER 8. STREAMLINING FOR CONSTRAINED OPTIMIZATION

simple measure.

We then proceed to report more detailed results, where each run is now given a maximum
amount of 96 CPU hours (4 days). The amount of time to reach an optimal solution value,
as well as the time to both reach and prove optimality are reported. The corresponding
reduction percentage of those two values compared to the original model are also listed.
For each measurement, we report the 10th percentile, the median and the 90th percentile
values. These values are reported as the mean can be skewed by outliers. In particular, if
the optimal solution is not proved this results in a large time value (96 hours = 345600
seconds) for that run. The percentiles avoid this situation and show a clearer overall trend.

Results in Table 8.3 are strongly positive. They show that all the streamliner portfolio
approaches can not only find an optimal solution and prove optimality on more test
instances than the original model, but also vastly reduce the amount of time required
for both tasks. In general, the UCB-30s variant has the best overall performance across
the three problem classes, and provides consistently robust improvement over the original
model.

More details on how the streamliner approaches improve on the original models on an
instance basis are presented in Figure 8.3. For brevity, we only show results of the
streamliner variants with the time limit of 30 seconds. Each data point in the plot
corresponds to a pair of instances and random seeds. The plots show that the solving time
of the test instances are well distributed across the x-axis, which is a good indication for
the diversity of the test instance set. There are several cases where the original model
cannot find or prove optimality within the time budget and the streamliner can, which are
represented by the data points on the rightmost side after the vertical red lines.

The MEB results demonstrate strong performance of all three streamliner approaches on
all test instances. On SONET, UCB-30s clearly has better performance compared with
the other two approaches, which aligns with the summary results in Table 8.3. While still
strongly positive, on PPP the reduction provided by the streamliner approaches is not
quite as strong as for the other two problem classes. There are a minority of cases where
even the best streamliner approach, UCB-30s, cannot find or prove optimality within the
time budget, as shown by the data points in the bottom-right corners.

As can be seen from Table 8.3 and Figure 8.3, the time to prove optimality is very
significantly reduced through the application of streamliners. This stems directly from
their ability to find high quality feasible solutions very quickly. Therefore, once the time
it is possible for the unstreamlined model to time out at one CPU hour

8.6. RESULTS 127

allocated to the streamlined models has been spent, the original model is run starting
from a very high quality or even optimal objective value, requiring much less effort to
exhaust the search space.

8.6.1 UCB Streamliner Selection: Discussion

In this section, we discuss the UCB approach for streamliner selection in more detail, as
UCB-30s achieves the best overall performance across the three problem classes, both
in terms of reduction to finding the optimal objective value and reduction to proving

0 500 1000 1500 2000 2500 3000 3500 unreached
-3.0
-1.0

0

1

(a) MEB - time to optimal

0 500 1000 1500 2000 2500 3000 3500 unproved

unproved

-3.0
-1.00

1 opt-second-30s
red-second-30s
UCB-30s

(b) MEB - time to proof

0 500 1000 1500 2000 2500 3000 3500 unreached

unreached

-31.0
-15.0

0

1

(c) PPP - time to optimal

0 500 1000 1500 2000 2500 3000 3500 unproved

unproved

-11.0
-5.0

0

1 opt-second-30s
red-second-30s
UCB-30s

(d) PPP - time to proof

0 500 1000 1500 2000 2500 3000 3500 unreached
-2.0
-1.0

0

1

(e) SONET - time to optimal

0 500 1000 1500 2000 2500 3000 3500 unproved

unproved

-2.0
-1.0

0

1 opt-second-30s
red-second-30s
UCB-30s

(f) SONET - time to proof

Figure 8.3: Reduction ratio of streamliner approaches with 30 seconds for streamliner
portfolio. Two reduction ratio values are reported: reduction in time to reach an optimal
solution, and reduction in time to reach an optimal solution and prove its optimality.
The x-axis represents the time required by the original model. The y-axis shows the the
reduction value. Each data point correspond to a pair of (instance, random seed). These
plots focus on the region within a 1-hour time limit: all data points outside that ranges are
shrunk into the same region. More specifically, runs where the (original model) streamliner
approaches do not reach an optimal solution or does not prove optimality in one hour are
separated by the red (vertical) horizontal lines. The reduction values, however, are still
the true values calculated based on the 4-day CPU limit. As most data points lie within
the range of y ∈ [0,1], the plot is rescaled so that this range is zoomed in for a better
visualisation.

128 CHAPTER 8. STREAMLINING FOR CONSTRAINED OPTIMIZATION

Figure 8.4: Objective value progression from the original model compared with its
progression under the UCB selection method for a representative SONET instance.

optimality. In contrast to the lexicographic methods, which only move on to the next
streamlined model when the search space of the current one is exhausted, UCB benefits from
its ability to sample the entire streamliner portfolio. After the initial exploration phase,
where each streamliner is given its initial application, UCB then selects streamliners based
upon the observed rewards. It main advantage is the ability to balance the exploration
and exploitation of the streamlined models in the portfolio.

It is not always the case that the objective is found purely through the application of one
streamliner. In fact for SONET, on average three streamliners are used across the 50 test
instances to arrive at the optimal objective value. Having access to the whole portfolio
allows UCB to descend upon the optimal objective value more quickly and is one of the
reasons for its success. The application of several different streamliners at different time
points can be used to reduce the bound of the objective in an effective manner as can be
seen from Figure 8.4.

The UCB algorithm exploits the streamliners that have previously been shown to produce
an improvement in the objective value. This can be very clearly shown from Figure 8.4
where for an instance from SONET the streamliners 13, 13-67 and 6-672(explained in
Table 8.2) improve the objective multiple times during the course of the selection process.
This is due to the fact that UCB is continuing to exploit those streamliners as previously
they had success. However, it is also crucial to continually explore the portfolio in an
attempt to find streamliners that did not initially have success but may do after a certain
number of iterations. Streamliner 13-15 is an example of such a case.

213-67, for example, indicates a streamlined model including both streamliner 13 and 67

8.7. SUMMARY 129

8.6.2 Time Allocated to the Streamliner Portfolio: Discussion

From Table 8.3 it can be seen that the TimeTotal parameter as defined in Algorithms 3 and
4 can have a large observable impact on the overall performance of the selection method.
There is a general trend (excluding MEB which will be discussed separately) that as the
TimeTotal increases the time both to find and prove the optimal objective value increases.
This may seem puzzling initially: if using a TimeTotal of 30s reduces the time to find the
optimal objective value to a certain extent, it might be expected that a TimeTotal of 300s
will do equally as well. However, there are two things to consider. First, streamliners from
the portfolio are not guaranteed to preserve the optimal value and so there is the potential
for an optimality gap between what the streamliners can find and the true optimal of
the instance. Therefore, the true optimal is only found after the switch to the original
model occurs. Second, on average the streamliners converge upon their optimal value in a
very short period of time, 17s, 7s and 12s for SONET, MEB and PPP respectively. By
increasing the TimeTotal parameter it delays the point at which the switch occurs to the
original model which in turn delays the point at which the true optimal is found. However,
for MEB the TimeTotal does not have a large impact on performance and this is due to
the fact that the streamliners in the portfolio generally exhaust their search space very
quickly. This means that the whole portfolio can be traversed before TimeTotal is reached
and so the time at which the switch to the original model occurs is generally the same
across all parameter settings.

The increase in time to prove optimality occurs as if the Ttotal parameter is set too large
then when the optimal value is found at time Topt, the whole duration from Topt→ Ttotal

is spent proving the optimality of that solution in the streamlined subspaces. As was
discussed earlier, proving optimality with respect to the streamliners does not prove
optimality on the original model and so the whole time from Topt→ Ttotal is wasted.

8.7 Summary

We have presented the first automated approach to generating streamliners automatically
for optimisation problems, and for their selection and scheduling when employed on unseen
instances. On three quite different problem classes the results are very encouraging, with
vastly reduced effort both to find and to prove optimal objective values. An important
question we plan to investigate further is the applicability of our method to identify in
which contexts our streamliner can and cannot help. In the context of optimisation the

130 CHAPTER 8. STREAMLINING FOR CONSTRAINED OPTIMIZATION

benefit of streamlining lies in the early identification of the optimal, or at least high quality,
values for the objective. Where the original model is able to identify the optimal value
quickly, the benefit of streamlining will be limited.

Furthermore, there are several methods for devising good search strategies for constrained
optimisation problems. Recent research suggest using machine learning to design a
promising search ordering [42], using solution density as a heuristic indicator [159] and a
number of value ordering heuristics to find good solutions early [158, 55]. Streamlining
constraints can potentially be used in combination with the existing methods for devising
good variable and value selection heuristics to achieve even better results.

9Chapter Nine

Model Portfolios

The refinement of streamlined Essence specifications into constraint models suitable for
input to constraint solvers gives rise to a large number of modelling choices in addition to
those required for the base Essence specification. Up to now in this thesis the automated
streamlining approaches have been limited in evaluating only a single default model
representation for each streamlined specification. In this chapter we explore the effect
of model selection in the context of streamlined specifications. We explore augmenting
our best-first search method to generate a portfolio of Pareto Optimal streamliner-model
combinations by evaluating for each streamliner a portfolio of models to search and
explore the variability in performance and find the optimal model. Various forms of
racing are utilised to constrain the computational cost of training. Empirical results
demonstrate drastic improvements in solving time for some problem classes in comparison
to a single-model approach.

9.1 From Essence Specifications to Constraint
Models

In the prior chapters the Conjure automated modelling system has been used to refine a
streamlined Essence specification into a constraint model for evaluation. However it is
limited to accepting Conjure’s default choice for each of the modelling decisions that
need to be made, such as how to represent abstract variables as constrained collections
of more primitive variables, resulting in a single streamlined model. The hypothesis that
motivates the work in this chapter is that these default modelling choices are unlikely

131

132 CHAPTER 9. MODEL PORTFOLIOS

always to result in the most effective model, and that the best modelling choices may vary
according to which streamliner constraints are added to the original specification.

There are typically many alternative models of an Essence specification, corresponding
to alternative modelling choices for the abstract types, and the constraints upon them,
present in the specification. Different models can exhibit significantly different performance
behaviour, which can also vary according to the particular instance of the problem class
modelled. Conjure is able to enumerate models of an Essence specification by applying
the different refinement rules corresponding to the possible modelling choices.

We use the Transshipment problem (Figure 3.10d) as a running example to illustrate how
Conjure produces alternative models. This specification has two find statements, both
with function domains: amountWT and amountTC. Each of these can be modelled in
three different ways in the current version of Conjure. The first is the most compact
and utilises two matrices, one Boolean matrix to represent the domain of the function (as
it is not known to be total) and another integer matrix to contain the values. Both are
of the form matrix indexed by [int(1..n_warehouses), int(1..n_transshipment)].
An alternative interpretation models the function as a binary relation first, followed by
modelling the relation in two different ways. Both representations use two integer matrices
matrix indexed by [int(1..n_warehouses * n_transshipment * maxStock)] for each
component of the relation. They differ in how they represent the cardinality of the function,
one using a single integer marker and the other one using a Boolean matrix as flags to
denote whether the value is in the relation.

Hence, from the two find statements alone there are nine possible combinations of modelling
choices. However, Conjure also has to model other types of objects such as given
parameters, auxiliary variables and quantified variables each of which could have multiple
different representations. Conjure also has the ability to implement automated channelling
[38] in which each reference to a variable in a constraint expression can be modelled
differently. Each of these components increases the number of modelling choices and
as a result a single abstract Essence specification can typically be refined into a large
number of constraint models. Figure 9.1 shows for the Transshipment problem the
number of candidate models on the unstreamlined Essence and how this changes with the
introduction of streamliner constraints. Over 6000 different models can be generated for the
unstreamlined specification alone and with the additional modelling choices streamliners
radically increase this number. Even though a large number of these models are small
modifications of other models, some models are significantly different from others and they
have very different performance characteristics. Moreover, different models are also likely

9.1. FROM ESSENCE SPECIFICATIONS TO CONSTRAINT MODELS 133

to benefit from the addition of streamliner constraints differently.

In Chapter 5 and Chapter 8 this choice is handled by utilising the default heuristic of
Conjure. This is a heuristic employed during refinement to commit greedily to promising
modelling choices at each point where an abstract type or a constraint expression may
be refined in multiple ways [3]. The default heuristic is a combination of two other
heuristics: compact for decision variables and constraint expressions and Sparse for
parameters. compact favours transformations that produce smaller expressions. For an
abstract type, we define an ordering as follows: concrete domains (such as bool, matrix)
are smaller than abstract domains; within concrete domains, bool is smaller than int and
int is smaller than matrix. Abstract type constructors have the ordering set < mset <
sequence < function < relation < partition. These rules are applied recursively so that
compact will select the smallest domain according to this order. The Sparse heuristic is
designed to choose the domain representations that will generate the smallest Essence
Prime parameter files for sparse objects. Some representations represent every potential
member of a domain explicitly whereas some representations only represent the actual
members of a domain. For a constraint expression (and the objective), it chooses the
refinement with the most shallow abstract syntax tree. For a parameter, consider a domain
such as set of int(1..M) where M is a very large value. Representing this set using a
Boolean list indexed by int(1..M) would create a Boolean value for every potential value,
whereas an integer list indexed by int(1..C) (where C is the computed cardinality of the

Figure 9.1: The number of models refined from the original Essence specification and
with a sample set of single candidate streamliners for the Transshipment problem. The
streamliners are represented in Conjure via numeric values which are presented.

134 CHAPTER 9. MODEL PORTFOLIOS

set) would only create an integer value for actual members of the set.

Why this is important is that in Constraint Programming the underlying structure of the
constraint model can have a drastic impact on the overall efficiency of the constraints
that compose the model. A poorly performing model may inhibit the propagation of the
constraints resulting in less aggressive domain value reduction leading to a larger overall
search tree to be explored. Candidate Streamliners are themselves purely just additional
constraints encoded on top of the base model and as such it is possible that their efficiency
is also governed largely by the choices made on the underlying constraint model.

Figure 9.2 shows the performance of streamlined models for two different problem classes
across 8 different models. For Transshipment the default model does produce the best
encoding for streamliner 5, which places restrictions on which Transshipment locations
that can be used. It is able to achieve roughly a 61% reduction, far greater than the
other models. However the picture for BACP is quite different. For Streamliner 10, which
enforces that half of the courses must be placed in even numbered periods, the default
model is only able to achieve around a 20% reduction in time, far inferior to the 60%
reduction achieved by the best model. This shows two things: firstly across different
model representations there can be a large variability in the streamliner performance and
secondly that the default heuristic may not always provide the best performance.

Figure 9.2: Variance in streamliner performance across 8 models for Transshipment and
BACP. Each model is named with respect to the generating heuristic (table 9.1)

9.2. MODEL PORTFOLIOS 135

Heuristic Declaration Type Additional Flags
Find Given Auxiliaries Quantifieds Channelling Levels

default compact sparse compact compact False True
compact compact compact compact compact False True
sparse sparse sparse sparse sparse False True
nochPrunedLevels all sparse compact compact False True
nochAllLevels all sparse compact compact False False
chPrunedLevels all sparse compact compact True True
chAllLevels all sparse compact compact True False
fullPrunedLevels all sparse all all True True
fullAllLevels all sparse all all True False
fullParamsPrunedLevels all all all all True True
fullParamsAllLevels all all all all True False

Table 9.1: The ranked set of heuristics we use when generating a portfolio of models.

9.2 Model Portfolios

As seen from Figure 9.1 the number of possible models that can be refined, especially from
a streamlined specification, means that refining and evaluating all possible models for each
streamliner is not feasible. Instead, a sample of N models can be evaluated where N is
controlled to balance the computational cost against the exploratory benefit. Conjure
allows for the customisation of the modelling process in several ways. First, different
strategies can be employed for the modelling of different types of objects. A distinction
can be made among four different forms of declarations, {find, given, auxiliary, quantified}
depending upon their origin in the specification. find and given statements define decision
variables and problem parameters, auxiliaries are decision variables created by Conjure
during model reformulation, and quantified variables are defined by quantified expressions
like forAll, exists and sum. Second, automated channelling and precedence levels can
be activated and deactivated to further customise the modelling heuristic. To produce a
portfolio of N models we use a set of heuristics (Table 9.1), ranked based on two criteria.
First, in ascending order of the predicted number of generated models and second our
perceived effectiveness of the generated models. These heuristics can be then invoked in
an iterative fashion until a portfolio of N models has been generated.

9.3 Model Racing

Evaluating all candidate models for each considered streamliner combination is expensive.
Poorly-performing streamliner/model combinations can timeout on several instances
and consume a large amount of the training budget. Hence, we employ various racing

136 CHAPTER 9. MODEL PORTFOLIOS

techniques [27, 107, 3, 34] to terminate poorly-performing combinations early. The
streamliner search can then allocate more time to evaluate promising streamliners and
gain a more accurate estimation of their performance.

Racing is performed at each lattice node of the search, representing a combination of
streamliners. We race among the multiple models generated by Conjure on the given
streamliner combination, and try to eliminate the poorly performing models without
having to fully evaluate them. We first describe the three racing strategies we used,
ρ-Capping [3], racing based on statistical tests [27, 137] and adaptive capping [107] and then
discuss how they are combined together in our streamliner search through a multi-level
model generation approach.

9.3.1 ρ-Capping

We conduct a race across multiple models for each training instance. Given a parameter
ρ≥ 1, a model is ρ-dominated [3] on an instance by another model if the solving time of
the latter is at least ρ times faster on the given instance. All models enter each race, but
a model is terminated as soon as it is ρ−dominated by some other model. Hence, the
running time of a model on an instance is capped by ρ times the best solving time of all
models in the race.

9.3.2 Racing using statistical tests

Racing using statistical tests for the automated configuration of parameterised algo-
rithms [102] was first proposed in [27], and later extended and implemented in the
automated algorithm configuration tool irace [137]. Bad algorithm configurations are
discarded from a race as soon as sufficient statistical evidence is observed. We apply the
same idea to remove bad models early during a race.

At the beginning of a race, all models generated by Conjure at the current lattice node
are evaluated on a number of instances, denoted by Tfirst, and their solving times are
measured. The model with the best average solving time on those instances is identified,
and a paired Student t-test (with a significance level of 0.05) between that model and
each of the other models is conducted. The Bonferroni correction is used for adjusting
the multiple-comparison statistical tests. Models showing statistically significantly worse
performance than the current best-average one are eliminated. The survivors continue

9.3. MODEL RACING 137

to be evaluated on an additional number of Tnext instances before a new best model
is calculated and statistical tests are applied again. This is repeated until all training
instances are examined. We use irace’s default values for Tfirst (10) and Tnext (5).

In the original implementation of irace, parallelisation is done on an instance-basis. If
the number of models is smaller than the number of cores available, there will be idle
resources not being used. This under-utilisation of cores is particularly likely to happen at
the end of each race as the number of surviving models gets smaller. Therefore, in our
implementation, as soon as idle cores are available, the best models in the current stage
are speculatively executed on the next stage. This has the benefit of keeping our CPUs
fully utilized and of calculating results that we may need in the next stage in advance.
Once the current stage is completed, results of the eliminated models, if calculated, are
simply discarded.

9.3.3 Adaptive Capping

Adaptive capping is another technique in automated algorithm configuration to terminate
poorly-performing algorithm configurations early when optimising running time of a
parameterised algorithm. It was first proposed in the local search-based automated
algorithm configuration tool ParamILS [107], and was later integrated into irace [34].
The technique has been shown to significantly speed up the search for the best algorithm
configurations in many cases [107, 106, 34]. Our streamliner search makes use of the
adaptive capping mechanism of irace.

The main idea is to reduce the time wasted in the evaluation of poorly performing models
in the current race by enforcing an upper bound on their running time. Bounds are
calculated based upon a set of elite models (best-performing models) obtained from a
previous race. More specifically, let M denote a set of candidate models in the current
race, I = {i1, i2, .., in} a set of instances, ME a set of elite models and pmk the average
solving time of a model m on the instance subset {i1, i2, .., ik} (k ≤ n). Given the fact that
we already know the values of pme

k for all me ∈ME and k ≤ n from the previous race, the
maximum running time bmk+1 (k < n) for a model m ∈M on instance ik+1 is calculated as:
medianme∈ME

{pme
k+1}∗ (k+ 1)− pmk ∗k. This bound can be thought of as the minimum

performance a current model must achieve on an instance subset to be competitive with the
elites up to that point. If the running time of a model ever exceeds the calculated bound,
it is eliminated from the race. As the bound for an instance is calculated based upon the
time taken on preceding instances, adaptive capping can be sensitive to the ordering of

138 CHAPTER 9. MODEL PORTFOLIOS

the instance set I. Therefore, the training instance set is shuffled at the beginning of every
race.

9.3.4 Multi-Level Model Generation

At each lattice node of the streamliner search, the three forms of racing are combined in a
multi-level model generation approach. On each level, a portfolio of models is generated
and a new race is started. The size of the portfolio is doubled with each level and the
model set created is a strict superset of the models in any preceding level. On the first
level a single model is generated (default model) and is evaluated on the whole training
set. Since it is currently the only model, it becomes an elite for the subsequent level. The
second level is then started with a portfolio of size 2, containing default and a newly
created model. On this level all three racing techniques are utilized to eliminate poorly
performing models. Adaptive capping will make use of the elite models from the preceding
level to calculate its bound and perform its elimination. Any results from previous levels
that have already been calculated are cached and reused. In our experiments, we allow a
maximum of four levels at each lattice node.

Iterative deepening of the portfolio size allows us to initially evaluate the models that we
believe are most likely to perform best based upon the ranking in Table 9.1. The use of
elite models derived from previous levels helps the adaptive capping mechanism to speed
up the evaluations in the next levels substantially. This allows the search to explore larger
portfolio sizes within a reasonable amount of time. It is especially useful where the truly
best model for a particular streamliner combination is actually located in a lower ranked
heuristic.

9.4 Experimental Results

Experiments were run on a cluster of 280 nodes, each with two 2.1 GHz, 18-core Intel
Xeon E5-2695 processors. MOMCTS-DOM was run with leaf parallelisation [35] using
up to 30 cores with a maximum budget of 4 wall-time days per problem class. Difficult
test instances, with solving time in [300s,3600s], were generated automatically using the
same instance generation system [2] used for training instance construction. We will show
that although the portfolios of streamlined models are trained on easy instances (solved
in [10s,300s]), their large improvement in solving time transfers to difficult, unseen test

9.4. EXPERIMENTAL RESULTS 139

instances.

To demonstrate the positive impact of adding multiple-model exploration during streamliner
search, two independent searches were conducted for each problem class: one with the
single default model, and one with the multiple-model approach. Our hypothesis is that
even though each round of a multiple-model search is generally more expensive than its
single-model counterpart, the opportunity of exploring multiple models and our enhanced
search method using model-racing will be able to produce higher-quality portfolios of
streamlined models within the same time budget.

Figure 9.3 presents the composition of the portfolio of models produced for each problem
class. It is immediately apparent that Conjure’s default heuristic is not always the best
choice and there are alternative representations available that provide superior performance.
It is not just for one or two esoteric conjectures that this occurs: for CarSequencing-
Chuffed and BACP-Chuffed there are over 25 different combinations that perform better
in an alternative representation. If we focus on Chuffed for the problems BACP, BIBD,
CarSequencing and FLECC the default heuristic actually ends up encompassing a
minority share of the overall portfolio. What is interesting is that it is not always a single
model that dominates the portfolio and for a number of problems there is diversity where
different model representations are chosen for different streamliner combinations (BACP-
Chuffed, BACP-Lingeling and CarSequencing-Lingeling). For a number of problems, no or
limited diversity is found and the default model does dominate showing it is an effective
choice generally.

Table 9.2 shows our experimental results of the single-model and multiple-model settings on
the seven problem classes under study. We report results of the Virtual Best Solver (VBS)
for each setting to showcase the best possible improvement that a multi model approach
can yield. The first observation is that streamlining is very effective on these problem
classes, resulting in very substantial reduction in search effort which we would expect from
our results in the previous chapters. The success of the Multi-Model approach however is
quite varied. On several problems such as BACP-Chuffed, CarSequencing-Chuffed and
FLECC-Chuffed large speedups relative to the default model are observed of ≈ 2.3x,
≈ 1.37x and ≈ 2.3x respectfully. These are significant gains over the already impressive
performance of the default model. For other problems, BIBD-Lingeling, CarSequencing-
Lingeling, and SocialGolfersProblem-Lingeling speedups are observed but they are not as
pronounced. For the cases where no model diversity is found during streamliner search
(Chuffed-Transshipment, CoveringArray-Lingeling, etc.) the multi-model exploration does
not negatively impact the speedups attained. Due to the racing and capping methods

140 CHAPTER 9. MODEL PORTFOLIOS

(a) Chuffed

(b) Lingeling

Figure 9.3: Composition of the portfolio generated by our multi-model search for each
problem class. The x-axis represents heuristic rules (Table 9.1) used by Conjure.
The y-axis shows the number of streamlined models in the portfolio generated by the
corresponding heuristics rules. Note that models refined according to the same set of
rules can still differ due to the additional modelling choices introduced by the added
streamliners.

implemented during search the MM exploration is able to discover an equivalent portfolio
of streamliners to that of the single model exploration within the same time limit.

There are several cases however where diversity is exhibited in the streamliner portfolio
however overall it performs worse than the default single model portfolio. One of the
problems with our method is that during streamliner search we identify which of the
expanded models performs best for each streamliner. If we focus on BIBD-Chuffed we
see that almost all streamliners perform the best under the models generated by the

9.4. EXPERIMENTAL RESULTS 141

Solver Problem # Instances Model VBS
WallSpeedup CPUSpeedup

Chuffed

BACP 25 MM 19.35 9.67
D 8.31 5.32

BIBD 93 MM 1.47 0.80
D 1.82 0.96

CarSequencing 26 MM 8.55 4.27
D 6.21 3.11

CoveringArray 69 MM 2.96 1.53
D 3.03 1.56

FixedLengthErrorCorrectingCodes 80 MM 2.79 1.76
D 1.20 1.14

SocialGolfersProblem 35 MM 1.55 0.83
D 1.72 0.86

Transshipment 50 MM 105.02 52.51
D 105.02 52.51

Lingeling

BACP 31 MM 3.42 1.71
D 3.79 1.90

BIBD 40 MM 2.05 1.03
D 1.84 0.92

CarSequencing 103 MM 3.10 1.57
D 2.67 1.33

CoveringArray 50 MM 9.82 4.91
D 9.82 4.91

SocialGolfersProblem 33 MM 2.53 1.73
D 2.47 1.41

Transshipment 101 MM 9.32 4.81
D 9.32 4.81

Table 9.2: Results of the Virtual Best Solver (VBS) on the test instances of the seven
problem classes, under the default model setting (D) and the multi-model (MM) setting.
Overall speedup in terms of wall time and CPU time are presented.

chPrunedLevels heuristic. During evaluation when a streamliner is scheduled each unseen
instance will then be modelled with regards to that particular heuristic. The problem is
that not every instance evaluated is going to perform well under the model generated by
the chPrunedLevels heuristic; this representation may be a bad choice for that particular
instance. By blanket modeling every unseen instance with this heuristic in some cases
we could be making them much harder to solve than say using the default model. The
default heuristic is chosen to be the "default" as it is a relatively safe choice by choosing
the most compact option at every decision point. By choosing a bad representation, it can
make the instance much more difficult to solve and even though the streamliner performs
best under that representation it begins at a detriment and so the gains it achieves relative
to the default model are inhibited.

A more nuanced approach to the use of multiple models in a streamlined portfolio would be

142 CHAPTER 9. MODEL PORTFOLIOS

for each unseen instance to firstly try and predict using instance features which heuristic
was the best representation and then attempt to match that with a streamliner from the
portfolio that performed best under that representation.

9.5 Portfolio Analysis

9.5.1 Balanced Academic Curriculum Problem (BACP)

The BACP portfolio is the most diverse of the four problem classes. It is comprised of
various models generated from five different heuristics. Some models have both channelling
and precedence levels for representations enabled whereas others have both disabled. Those
modelling choices interact with the candidate streamliners and enable efficient propagation
during the search, leading to the improvement in all performance measurements as shown
in Table 9.2.

To give a concrete example Streamliner 1 in BACP enforces that the curr function
is monotonically increasing. For this streamliner the best model enables channelling.
The default model chooses only one representation for the curr function matrix

indexed by [int(1..n_courses)] of int(1..n_periods) whereas in the dominating
model a second representation is also used matrix indexed by [int(1..n_courses),

int(1..n_periods)] of bool and Conjure will automatically add channelling con-
straints between these two representations. Having these two representations present in
the model makes a large difference in the reduction achieved by Streamliner 1. Another
example is for Streamliner 10 which restricts half of the values of the range of the curr
function to be even. In this case, representing the function as a 2-dimensional Boolean
matrix (as above) instead of a 1-dimensional integer matrix allows the streamliner to again
achieve a higher overall average reduction.

9.5.2 Fixed Length Error Correcting Codes (FLECC)

For FLECC, switching from single-model to multi-model search results in a large increase
in the percentage of improved test cases (nearly 60% for both VBS and Autofolio). There
are two clearly dominating heuristic rules. When the additional modelling choices for the
added streamliners are also considered, four different streamlined models are found. Three
of these make use of automated channelling, an option that is disabled in the default

9.5. PORTFOLIO ANALYSIS 143

model. In these models, channelling allows a decision variable to be represented using
multiple viewpoints, which is likely to allow better constraint propagation. Streamliner
7 which achieves high applicability of 95% across the Training Set enforces that the
Characters that compose the error correcting codes are drawn from the lower half of
the Character domain. This streamliner achieves better performance under a channelled
representation than under the default model. In one case, however, moving to the
default heuristic (channelling disabled) provides the best performance. This occurs for
the streamliner combination 8-6 which enforces that not only are the Characters that
compose the error correcting codes drawn from the upper half of the Character domain
but additionally their integer index is odd.

9.5.3 Car Sequencing

This portfolio comprises models generated using a single heuristic, compact, which differs
from default in the way in which it treats parameters. In the Essence specification for
CarSequencing Figure 1.4 3 of the given parameters are total functions and are represented
using an integer matrix by both heuristics. The usage relation in the compact model is
represented using an occurrence representation: matrix indexed by [int(1..n_classes),

int(1..n_options)] of bool. The default model, however, has an explicit representa-
tion with two integer matrices. Even though the occurrence representation will generally
have a larger footprint the size is only related to the product of the Class and Option
parameters, which are generally not large enough to become prohibitive. The use of a
single matrix then allows for easier representation of base constraints and the propagation
of the generated streamliner constraints. When combining this heuristic set with the
additional modelling choices for the streamliners, there are five models presented in the
final portfolio. Although the number of improved test instances are the same as in the
single-model search, the solving time reduction is increased by 4.7% for the VBS and by
18.9% for Autofolio.

9.5.4 Transshipment

For Transshipment the default heuristic performs best across the streamliner lattice.
The reason for this is that the other models used in the portfolio have quite a verbose
encoding, especially with the addition of streamlining constraints, which increases the time
taken to refine the Essence and for Savile Row to prepare the resulting model for input

144 CHAPTER 9. MODEL PORTFOLIOS

to a constraint solver. default favours the least verbose option for each modelling choice
and hence avoids this expense. For instance in the Essence specification there are two
function decision variables. As the functions are not known to be total the default model
represents each function as two independent matrices: one Boolean matrix which contains
the domain of the function and another integer matrix which contains the values of the
function. An alternative model in the portfolio represents these same decision variables
using a representation which will encode these functions as a relation. This representation
creates 3 independent matrices to contain the values of the relation each with a defined
max size of int(1..n_warehouses * n_transshipment * maxStock). Not only can the
size of the these matrices become prohibitive for larger Transshipment instances but also
the base model constraints are much more verbose for this representation.

9.6 Summary

We have demonstrated that searching for the right model to pair with a streamliner can
improve performance significantly over a fixed, default model. Racing can be used to
constrain the computational search cost by removing inferior models early. Future work is
to investigate additional modelling choices such as when and how it is beneficial to encode
streamliners to different representations such as SAT or SMT.

10Chapter Ten

Conclusions

Streamliner generation has been the exclusive province of human experts, requiring sub-
stantial effort in examining the solutions to instances of a problem class, manually forming
conjectures as to good streamliners, and then testing their efficacy in practice. In this
work we have presented a completely automated method of generating effective stream-
liners, achieved through the exploitation of the structure present in abstract constraint
specifications written in Essence, a best-first search among streamliner candidates, and a
procedure to select and apply streamliners when faced with an unseen problem instance.

In Chapter 3 we looked at the method used to generate streamlined models automatically
from an Essence specification. We discussed the advantages of situating this system
in Essence, a high level modeling language, such as the ability to exploit the structure
present within the model, the ability to target multiple model formulations from the same
base specification and automated symmetry breaking. An overview of the process and
description of the rules embedded with Conjure with an example walkthrough of how a
streamlined model is generated was shown.

In Chapter 4 we discussed the need for training instances from the problem class under
evaluation in order to construct high quality streamliner portfolios. The process by which
training instances are automatically generated from the Essence specification of a problem
class and the requirements that these instances must meet was shown. An analysis of the
"footprint" that different streamliners have in the feature space was presented and how
performance similarity between similar instances can be used to construct a compressed
representative training distribution.

In Chapter 5 we initially discussed the concept introduced first by Lebras et al in their work
on double-wheel graphs on the process of combining streamliner conjectures. The benefits

145

146 CHAPTER 10. CONCLUSIONS

that this can bring in solving difficult problems was discussed as well as the adverse effect
that it can have on the complexity of search. The structuring of the possible combinations
into a lattice structure and the use of several pruning methods to reduce the complexity and
remove ineffective combinations were defined. Various approaches for searching through
the lattice structure and producing a portfolio of streamliner combinations were discussed
and the search algorithm utilized in this thesis defined.

Chapter 6 initially shows how the performance characteristics of a streamliner conjecture
can vary drastically between solving paradigms and why it is necessary to perform
paradigm specific streamliner search and generate independent streamliner portfolios. The
constructed portfolios generated through the search method are then summarized; in
particular the visualization of the distribution and size of the generated pareto fronts. For
a subset of the problems, a more in-depth analysis was performed to discuss interesting
properties of the constructed portfolios and analyze the performance of the constituent
conjectures. Lastly, the problem of Streamliner Selection was introduced which deals with
selecting from the portfolio an effective streamliner for an unseen instance and various
uninformed and informed methods for solving this problem were discussed.

In Chapter 7 two sets of experiments were presented designed to test the efficacy of
our automated streamlining approach. The first analyzed the frequency with which
streamlining results in a reduction in search, and the magnitude of that reduction. Due to
the nature of imperfect streamliner selection the second experiment aimed to provide a
more practical setting in which the overall impact of streamlining across an entire instance
distribution was analyzed. Results across two unseen instance distributions with varying
solving difficulty were shown.

In Chapter 8 the process of streamlining Constrained Optimization Problems and the
required adaptations to the base search and scheduling methods were discussed. Empirical
results were shown demonstrating drastic improvements in both time to optimality and
time to proof for all problems evaluated.

Chapter 9 explored the effect of model selection in the context of streamlined specifications.
The augmentations to the best-first search method to evaluate at each lattice node a
portfolio of models to search and explore the variability in performance and find the
optimal model were discussed. Various forms of racing to constrain the computational
cost of training were introduced. Empirical results demonstrated drastic improvements in
solving time for some problem classes in comparison to a single-model approach.

Streamliner generation has been the exclusive province of human experts, requiring sub-

10.1. FUTURE WORK 147

stantial effort in examining the solutions to instances of a problem class, manually forming
conjectures as to good streamliners, and then testing their efficacy in practice. This work
has presented the first completely automated method of generating effective streamliners,
achieved through the exploitation of the structure present in abstract constraint speci-
fications written in Essence, a best-first search among streamliner candidates, and a
procedure to select and apply streamliners when faced with an unseen problem instance.
The empirical results demonstrate the success of this approach. In conclusion this thesis
meets its original goal outlined in Chapter 1 to: completely automate the process of
generating effective streamlined models to produce a substantial reduction in search effort
across a diverse range of problems.

10.1 Future Work

10.1.1 Online Learning

One of the pitfalls of the Streamliner Selection system presented in this thesis Chapter 6
is that the learning procedure is static. For instance, for Autofolio a prediction model is
learnt based upon the performance of the streamliners in the portfolio across the training
distribution and that model is never updated. This means that if for a particular part
of the instance space the generalizations learnt by Autofolio are ineffective the imperfect
predictions made by the model will never be adjusted. The reason for this limitation
in the thesis is that Autofolio is a supervised learning system and so to perform online
learning after each instance would require complete information on how each streamliner
from the portfolio performs. This is not possible as in practise we only know how the
selected streamliner performed.

An avenue of future research could be to investigate leveraging an online reinforcement
learning algorithm to update the predictions of the model based upon the reward of the
chosen streamliner. In our portfolio setting, this reward could be defined as the speedup
achieved relative to the original model.

10.1.2 Performance Based Selection

Currently selection is a black box system where for a given instance the streamlined model
is invoked and only the output is inspected to see whether the model was satisfiable,

148 CHAPTER 10. CONCLUSIONS

unsatisfiable or timed out. We saw in Section 7.4 that streamliners can have a large impact
not only on the complexity of the model but also how the solver performs. A potential
avenue of research would be to investigate whether some dynamic analysis of how the
streamlined conjectures are performing in the solver could be used to predict whether
or not the chosen streamliner is going to be effective. A potential example could be: if
for the given instance the streamlined model is so complex that it adversely affects the
performance of the solver, search could be stopped prematurely to evaluate a different
model.

10.1.3 Streamlining from the other end: A Constraint
Acquisition Approach

In this thesis the streamliners are built from the structure and types present in the Essence
specification of the problem. One of the pitfalls of this is that many of these generated
conjectures may not be satisfiable and a great amount of resource can be spent evaluating
and removing these invalid conjectures. Another approach that could be investigated
would be to take an approach more similar to that done initially by Gomes et al where
streamliners are generated instead from the solutions of the problem.

Here an Essence specification would be provided and instances of the problem automat-
ically generated as done in this thesis. However, instead of generating and evaluating
conjectures from the specification the instances would be unaltered and solved to provide
a set of solutions. Similar solutions could be grouped together and from here, the system
would use a process similar to that of constraint acquisition where the goal would be to
induce a constraint network that uses combinations of constraints from the language and
that is consistent with the solutions [24]. These different constraint networks generated
based upon different sets of solutions could be thought of as different streamlined models.
The advantage here is that these models are generated directly from the solutions and so
we know that they represent a valid structural regularity within the problem space.

10.1.4 Harder instances for portfolio construction

The approach detailed within this thesis attempts to limit training time by restricting
the set of training instances used to those that can be solved within five minutes of
compute time. A problem however may be that the patterns identified by the streamliner
conjectures may not exist or be as effective in the more difficult instance distributions.

10.1. FUTURE WORK 149

Another approach would be to utilize a training distribution of a similar character to the
instances that are being solved to investigate whether there is better generalization from
training to test.

10.1.5 Generic Portfolio Prediction

The approach detailed in this thesis is a compute intensive process. For each problem the
set of conjectures is generated from the Essence specification and search is invoked to
build the streamliner portfolio. Currently each search is independent and no knowledge is
shared or reused amongst problems. Even though the cost is amortized across the entire
instance space it is acknowledged that this is a large upfront cost for each problem that a
practitioner wants to solve.

An interesting avenue of research would be to investigate the concept of building a generic
streamliner prediction model. If a practitioner did not want to spend the upfront training
cost they could leverage this generic model to predict a portfolio of streamliners for their
current problem. This prediction model would operate upon features generated and
extracted from the high-level Essence specification. An Essence specification contains
a wealth of data: the types of the decision variables, the types of the givens as well as all
of the constraints posted on those variables.

Using a variety of diverse problems, with diverse type information, one could build (using
Machine or Deep Learning methodologies) a generic model that could with limited cost
predict potentially powerful portfolios on unseen problem classes.

10.1.6 Solution Counting in streamlined subspaces

Currently during evaluation of a streamliner on a given instance the solver will return
once a solution in the streamlined subspace has been found. Instead of stopping on first
solution, solution counting heuristics [86, 160] could be employed to try and estimate the
number of solutions in the streamlined subspace. These counts could be used to develop
more robust search heuristics in the streamliner lattice.

Bibliography
[1] Özgür Akgün. “Extensible automated constraint modelling via refinement of abstract

problem specifications”. PhD thesis. University of St Andrews, 2014.

[2] Özgür Akgün, Nguyen Dang, Ian Miguel, András Z Salamon, and Christopher
Stone. “Instance generation via generator instances”. In: International Conference
on Principles and Practice of Constraint Programming. Springer. 2019, pp. 3–19.

[3] Özgür Akgün, Alan M Frisch, Ian P Gent, Bilal Syed Hussain, Christopher Jefferson,
Lars Kotthoff, Ian Miguel, and Peter Nightingale. “Automated symmetry breaking
and model selection in Conjure”. In: International Conference on Principles and
Practice of Constraint Programming. Springer. 2013, pp. 107–116.

[4] Özgür Akgün, Ian P Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale.
“Breaking Conditional Symmetry in Automated Constraint Modelling with Conjure.”
In: ECAI. 2014, pp. 3–8.

[5] Özgür Akgün and Ian Miguel. “Modelling Langford’s Problem: A Viewpoint for
Search”. In: Proceedings of the 17th International Workshop on Reformulating
Constraint Satisfaction Problems. 2018.

[6] Özgür Akgün, Ian Miguel, Christopher Jefferson, Alan M. Frisch, and Brahim
Hnich. “Extensible Automated Constraint Modelling”. In: AAAI-11: Twenty-Fifth
Conference on Artificial Intelligence. 2011.

[7] Özgür Akgün. CSPLib Problem 132: A Layout Problem. Ed. by Christopher Jeffer-
son, Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent. http://www.csplib.
org/Problems/prob132.

[8] Özgür Akgün. CSPLib Problem 83: Transshipment Problem. Ed. by Christopher
Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent. http://www.
csplib.org/Problems/prob083.

[9] Özgür Akgün and Zeynep Kiziltan. CSPLib Problem 131: Production Line Sequenc-
ing. Ed. by Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, and
Ian P. Gent. http://www.csplib.org/Problems/prob131.

150

http://www.csplib.org/Problems/prob132
http://www.csplib.org/Problems/prob132
http://www.csplib.org/Problems/prob083
http://www.csplib.org/Problems/prob083
http://www.csplib.org/Problems/prob131

BIBLIOGRAPHY 151

[10] Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. “An Enhanced Features
Extractor for a Portfolio of Constraint Solvers”. In: SAC 2014: Proceedings of
the 29th Annual ACM Symposium on Applied Computing. Code available from
https://github.com/CP-Unibo/mzn2feat. Gyeongju, Republic of Korea: ACM,
2014, pp. 1357–1359. isbn: 978-1-4503-2469-4. doi: 10.1145/2554850.2555114.

[11] Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. “SUNNY-CP: a sequen-
tial CP portfolio solver”. In: Proceedings of the 30th Annual ACM Symposium on
Applied Computing. 2015, pp. 1861–1867.

[12] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the
multiarmed bandit problem”. In: Machine learning 47.2-3 (2002), pp. 235–256.

[13] Jacqueline Ayel and Odile Favaron. The helms are graceful. Université Paris-Sud,
Centre d’Orsay, Laboratoire de recherche en Informatique, 1981.

[14] Maria Garcia de la Banda, Kim Marriott, Reza Rafeh, and Mark Wallace. “The
modelling language Zinc”. In: International Conference on Principles and Practice
of Constraint Programming. Springer. 2006, pp. 700–705.

[15] Philippe Baptiste, Philippe Laborie, Claude Le Pape, and Wim Nuijten. “Constraint-
based scheduling and planning”. In: Foundations of artificial intelligence. Vol. 2.
Elsevier, 2006, pp. 761–799.

[16] Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global constraint
catalog. 2010.

[17] Nicolas Beldiceanu and Helmut Simonis. “A constraint seeker: Finding and ranking
global constraints from examples”. In: International Conference on Principles and
Practice of Constraint Programming. Springer. 2011, pp. 12–26.

[18] Nicolas Beldiceanu and Helmut Simonis. “A model seeker: Extracting global con-
straint models from positive examples”. In: International Conference on Principles
and Practice of Constraint Programming. Springer. 2012, pp. 141–157.

[19] Christian Bessiere, Remi Coletta, Eugene C Freuder, and Barry O’Sullivan. “Lever-
aging the learning power of examples in automated constraint acquisition”. In:
International Conference on Principles and Practice of Constraint Programming.
Springer. 2004, pp. 123–137.

[20] Christian Bessiere, Remi Coletta, Emmanuel Hebrard, George Katsirelos, Nadjib
Lazaar, Nina Narodytska, Claude-Guy Quimper, and Toby Walsh. “Constraint
acquisition via partial queries”. In: Twenty-Third International Joint Conference
on Artificial Intelligence. 2013.

https://github.com/CP-Unibo/mzn2feat
https://doi.org/10.1145/2554850.2555114

152 BIBLIOGRAPHY

[21] Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry O’Sullivan. “Acquir-
ing constraint networks using a SAT-based version space algorithm”. In: PROCEED-
INGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE.
Vol. 21. 2. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999. 2006, p. 1565.

[22] Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry O’Sullivan. “A SAT-
based version space algorithm for acquiring constraint satisfaction problems”. In:
European Conference on Machine Learning. Springer. 2005, pp. 23–34.

[23] Christian Bessiere, Remi Coletta, Barry O’Sullivan, Mathias Paulin, et al. “Query-
Driven Constraint Acquisition.” In: IJCAI. Vol. 7. 2007, pp. 50–55.

[24] Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan. “Con-
straint acquisition”. In: Artificial Intelligence 244 (2017), pp. 315–342.

[25] Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan. “Con-
straint acquisition”. In: Artificial Intelligence 244 (2017). Combining Constraint
Solving with Mining and Learning, pp. 315–342. issn: 0004-3702. doi: https:
//doi.org/10.1016/j.artint.2015.08.001. url: https://www.sciencedirect.
com/science/article/pii/S0004370215001162.

[26] Armin Biere. “Lingeling Essentials, A Tutorial on Design and Implementation
Aspects of the the SAT Solver Lingeling.” In: POS@ SAT 27 (2014), p. 88.

[27] Mauro Birattari, Thomas Stützle, Luis Paquete, Klaus Varrentrapp, et al. “A
Racing Algorithm for Configuring Metaheuristics.” In: Gecco. Vol. 2. 2002. 2002.

[28] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky,
Alexandre Fréchette, Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin
Tierney, et al. “Aslib: A benchmark library for algorithm selection”. In: Artificial
Intelligence 237 (2016), pp. 41–58.

[29] Zdravko I Botev, Joseph F Grotowski, and Dirk P Kroese. “Kernel density estimation
via diffusion”. In: The annals of Statistics 38.5 (2010), pp. 2916–2957.

[30] Kenneth N Brown. “Loading supply vessels by forward checking and unenforced
guillotine cuts”. In: 17th Workshop of the UK Planning and Scheduling SIG. 1998.

[31] Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Peter I.
Cowling, Stephen Tavener, Diego Perez, Spyridon Samothrakis, Simon Colton, and
et al. “A survey of Monte Carlo tree search methods”. In: IEEE Transactions on
Computational Intelligence and AI (2012).

https://doi.org/https://doi.org/10.1016/j.artint.2015.08.001
https://doi.org/https://doi.org/10.1016/j.artint.2015.08.001
https://www.sciencedirect.com/science/article/pii/S0004370215001162
https://www.sciencedirect.com/science/article/pii/S0004370215001162

BIBLIOGRAPHY 153

[32] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. “A survey of monte carlo tree search methods”. In: IEEE
Transactions on Computational Intelligence and AI in games 4.1 (2012), pp. 1–43.

[33] David A. Burke and Kenneth N. Brown. CSPLib Problem 048: Minimum Energy
Broadcast (MEB). Ed. by Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby
Walsh, and Ian P. Gent. http://www.csplib.org/Problems/prob048.

[34] Leslie Pérez Cáceres, Manuel López-Ibáñez, Holger Hoos, and Thomas Stützle. “An
experimental study of adaptive capping in irace”. In: International Conference on
Learning and Intelligent Optimization. Springer. 2017, pp. 235–250.

[35] Tristan Cazenave and Nicolas Jouandeau. “On the parallelization of UCT”. In:
2007.

[36] John Charnley, Simon Colton, and Ian Miguel. “Automatic generation of implied
constraints”. In: ECAI. Vol. 141. 2006, pp. 73–77.

[37] John Charnley, Simon Colton, and Ian Miguel. “Automatic generation of implied
constraints”. In: ECAI. Vol. 141. 2006, pp. 73–77.

[38] BMW Cheng, Kenneth M. F. Choi, Jimmy Ho-Man Lee, and JCK Wu. “Increas-
ing constraint propagation by redundant modeling: an experience report”. In:
Constraints 4.2 (1999), pp. 167–192.

[39] Geoffrey Chu, Maria de la Banda, and Peter Stuckey. “Exploiting subproblem
dominance in constraint programming”. In: Constraints 17.1 (2012). Code available
from https://github.com/chuffed/chuffed, pp. 1–38. issn: 1383-7133. doi:
10.1007/s10601-011-9112-9.

[40] Geoffrey Chu and Peter J Stuckey. “A generic method for identifying and exploiting
dominance relations”. In: International Conference on Principles and Practice of
Constraint Programming. Springer. 2012, pp. 6–22.

[41] Geoffrey Chu and Peter J Stuckey. “Dominance breaking constraints”. In: Con-
straints 20.2 (2015), pp. 155–182.

[42] Geoffrey Chu and Peter J Stuckey. “Learning value heuristics for constraint pro-
gramming”. In: International Conference on AI and OR Techniques in Constriant
Programming for Combinatorial Optimization Problems. Springer. 2015, pp. 108–
123.

[43] Geoffrey Chu, PJ Stuckey, A Schutt, T Ehlers, G Gange, and K Francis. Chuffed,
a lazy clause generation solver, 2016.

http://www.csplib.org/Problems/prob048
https://github.com/chuffed/chuffed
https://doi.org/10.1007/s10601-011-9112-9

154 BIBLIOGRAPHY

[44] David Cohen, Peter Jeavons, Christopher Jefferson, Karen E Petrie, and Barbara M
Smith. “Symmetry definitions for constraint satisfaction problems”. In: Constraints
11.2-3 (2006), pp. 115–137.

[45] Charles J Colbourn. “Embedding partial Steiner triple systems is NP-complete”.
In: Journal of Combinatorial Theory, Series A 35.1 (1983), pp. 100–105.

[46] Charles J Colbourn and Jeffrey H Dinitz. The CRC handbook of combinatorial
designs. Vol. 5005. CRC Press, Boca Raton, FL, 2007.

[47] S. Colton and I. Miguel. “Constraint Generation via Automated Theory Formation”.
In: Proceedings of the Seventh International Conference on Principles and Practice
of Constraint Programming. Ed. by T. Walsh. 2001, pp. 575–579.

[48] Simon Colton and Ian Miguel. “Constraint generation via automated theory for-
mation”. In: International Conference on Principles and Practice of Constraint
Programming. Springer. 2001, pp. 575–579.

[49] Rémi Coulom. “Efficient selectivity and backup operators in Monte-Carlo tree
search”. In: International conference on computers and games. Springer. 2006,
pp. 72–83.

[50] James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. “Symmetry-
breaking predicates for search problems”. In: KR 96.1996 (1996), pp. 148–159.

[51] Ewan Davidson, Özgür Akgün, Joan Espasa, and Peter Nightingale. “Effective En-
codings of Constraint Programming Models to SMT”. In: International Conference
on Principles and Practice of Constraint Programming. Springer. 2020, pp. 143–159.

[52] Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. “Solving the Car-
Sequencing Problem in Constraint Logic Programming.” In: ECAI. Vol. 88. 1988,
pp. 290–295.

[53] Michael R. Dransfield, Victor W. Marek, and Mirosław Truszczyński. “Satisfiabil-
ity and Computing van der Waerden Numbers”. In: Theory and Applications of
Satisfiability Testing. Ed. by Enrico Giunchiglia and Armando Tacchella. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 1–13. isbn: 978-3-540-24605-3.

[54] Gary Duncan and Ian Gent. CSPLib Problem 012: Nonogram. Ed. by Christopher
Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent. http://www.
csplib.org/Problems/prob012.

[55] Jean-Guillaume Fages and Charles Prud’Homme. “Making the first solution good!”
In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence
(ICTAI). IEEE. 2017, pp. 1073–1077.

http://www.csplib.org/Problems/prob012
http://www.csplib.org/Problems/prob012

BIBLIOGRAPHY 155

[56] Hilmar Finnsson and Yngvi Björnsson. “Simulation-Based Approach to General
Game Playing.” In: Aaai. Vol. 8. 2008, pp. 259–264.

[57] Pierre Flener, Alan M Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin
Pearson, and Toby Walsh. “Breaking row and column symmetries in matrix models”.
In: International Conference on Principles and Practice of Constraint Programming.
Springer. 2002, pp. 462–477.

[58] Pierre Flener, Justin Pearson, and Magnus Ågren. “Introducing ESRA, a relational
language for modelling combinatorial problems”. In: International Symposium on
Logic-Based Program Synthesis and Transformation. Springer. 2003, pp. 214–232.

[59] Robert Fourer, David M Gay, and Brian W Kernighan. “A modeling language for
mathematical programming”. In: Management Science 36.5 (1990), pp. 519–554.

[60] Eugene C Freuder. “In pursuit of the holy grail”. In: Constraints 2.1 (1997), pp. 57–
61.

[61] Eugene C Freuder. “Progress towards the holy grail”. In: Constraints 23.2 (2018),
pp. 158–171.

[62] A. M. Frisch, C. Jefferson, B. Martinez Hernandez, and I. Miguel. “The Rules of
Constraint Modelling”. In: Proc. of the IJCAI 2005. 2005, pp. 109–116.

[63] Alan Frisch, Chris Jefferson, and Ian Miguel. CSPLib Problem 036: Fixed Length
Error Correcting Codes. Ed. by Christopher Jefferson, Ian Miguel, Brahim Hnich,
Toby Walsh, and Ian P. Gent. http://www.csplib.org/Problems/prob036.

[64] Alan Frisch, Christopher Jefferson, Ian Miguel, and Toby Walsh. CSPLib Problem
041: The n-Fractions Puzzle. Ed. by Christopher Jefferson, Ian Miguel, Brahim
Hnich, Toby Walsh, and Ian P. Gent. http://www.csplib.org/Problems/prob041.

[65] Alan M Frisch, Matthew Grum, Christopher Jefferson, Bernadette Martínez Hernán-
dez, and Ian Miguel. “The Design of ESSENCE: A Constraint Language for Speci-
fying Combinatorial Problems.” In: IJCAI. Vol. 7. 2007, pp. 80–87.

[66] Alan M. Frisch, Warwick Harvey, Chris Jefferson, Bernadette Martínez-Hernández,
and Ian Miguel. “Essence: A constraint language for specifying combinatorial
problems”. En. In: Constraints 13(3) (2008), pp. 268–306. issn: 1572-9354. url:
http://dx.doi.org/10.1007/s10601-008-9047-y.

[67] Alan M Frisch, Warwick Harvey, Chris Jefferson, Bernadette Martínez-Hernández,
and Ian Miguel. “Essence: A constraint language for specifying combinatorial
problems”. In: Constraints 13.3 (2008), pp. 268–306.

http://www.csplib.org/Problems/prob036
http://www.csplib.org/Problems/prob041
http://dx.doi.org/10.1007/s10601-008-9047-y

156 BIBLIOGRAPHY

[68] Alan M Frisch, Chris Jefferson, Bernadette Martinez-Hernandez, and Ian Miguel.
“Symmetry in the generation of constraint models”. In: Proceedings of the interna-
tional symmetry conference. 2007.

[69] Alan M Frisch, Christopher Jefferson, and Ian Miguel. “Constraints for Breaking
More Row and Column Symmetries”. In: Proceedings of 9th International Conference
on Principles and Practice of Constraint Programming {CP-2003}. Ed. by Francesca
Rossi. Vol. 2833. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2003, pp. 318–332. isbn: 978-3-540-20202-8. doi: 10.1007/978-3-540-45193-
8_22.

[70] Alan M Frisch, Christopher Jefferson, and Ian Miguel. “Symmetry breaking as a
prelude to implied constraints: A constraint modelling pattern”. In: ECAI. Vol. 16.
2004, p. 171.

[71] Alan M Frisch, Ian Miguel, and Toby Walsh. “CGRASS: A system for transforming
constraint satisfaction problems”. In: Recent Advances in Constraints. Springer,
2003, pp. 15–30.

[72] Alan M Frisch, Ian Miguel, and Toby Walsh. “Symmetry and implied constraints
in the steel mill slab design problem”. In: Proc. CP01 Workshop on Modelling and
Problem Formulation. 2001.

[73] Roberto Frucht. “Graceful numbering of wheels and related graphs”. In: Annals of
the New York Academy of Sciences 319.1 (1979), pp. 219–229.

[74] Hiroshi Fujita, Miyuki Koshimura, and Ryuzo Hasegawa. “SCSat: a soft constraint
guided SAT solver”. In: International Conference on Theory and Applications of
Satisfiability Testing. Springer. 2013, pp. 415–421.

[75] Philippe Galinier and Centre for Research on Transportation. A constraint-based
approach to the Golomb ruler problem. Universite de Montreal, Centre de recherche
sur les transports, 2003.

[76] Stuart Geman, Elie Bienenstock, and René Doursat. “Neural networks and the
bias/variance dilemma”. In: Neural computation 4.1 (1992), pp. 1–58.

[77] Michael Genesereth and Michael Thielscher. “General game playing”. In: Synthesis
Lectures on Artificial Intelligence and Machine Learning 8.2 (2014), pp. 1–229.

[78] I P Gent, I McDonald, and B M Smith. “Conditional Symmetry in the All-Interval
Seris Problem”. 2003.

[79] Ian P Gent. “Arc consistency in SAT”. In: ECAI. Vol. 2. 2002, pp. 121–125.

https://doi.org/10.1007/978-3-540-45193-8_22
https://doi.org/10.1007/978-3-540-45193-8_22

BIBLIOGRAPHY 157

[80] Ian P Gent. “Two results on car-sequencing problems”. In: Report University of
Strathclyde, APES-02-98 7 (1998).

[81] Ian P Gent, Christopher Jefferson, and Ian Miguel. “Minion: A fast scalable
constraint solver”. In: ECAI. Vol. 141. 2006, pp. 98–102.

[82] Ian P Gent, Karen E Petrie, and Jean-François Puget. “Symmetry in constraint
programming”. In: Foundations of Artificial Intelligence 2 (2006), pp. 329–376.

[83] Ian P Gent and Barbara Smith. Symmetry breaking during search in constraint
programming. Citeseer, 1999.

[84] Carla Gomes and Meinolf Sellmann. “Streamlined constraint reasoning”. In: Prin-
ciples and Practice of Constraint Programming - CP 2004. Springer, 2004, pp. 274–
289.

[85] Carla Gomes and Meinolf Sellmann. “Streamlined constraint reasoning”. In: In-
ternational Conference on Principles and Practice of Constraint Programming.
Springer. 2004, pp. 274–289.

[86] Carla P Gomes, Willem Jan van Hoeve, Ashish Sabharwal, and Bart Selman.
“Counting CSP solutions using generalized XOR constraints”. In: AAAI. 2007,
pp. 204–209.

[87] Carla P Gomes, Ashish Sabharwal, and Bart Selman. “Model counting: A new
strategy for obtaining good bounds”. In: AAAI. 2006, pp. 54–61.

[88] Carla P Gomes and Bart Selman. “Algorithm portfolios”. In: Artificial Intelligence
126.1-2 (2001), pp. 43–62.

[89] Mattias Grönkvist. “A constraint programming model for tail assignment”. In: In-
ternational Conference on Integration of Artificial Intelligence (AI) and Operations
Research (OR) Techniques in Constraint Programming. Springer. 2004, pp. 142–156.

[90] R. Guy. Unsolved Problems in Number Theory. Problem Books in Mathematics /
Unsolved Problems in Intuitive Mathematics. Springer, 2004. isbn: 9780387208602.
url: http://books.google.co.uk/books?id=1AP2CEGxTkgC.

[91] Greg Hamerly and Charles Elkan. “Learning the k in k-means”. In: Advances in
neural information processing systems. 2004, pp. 281–288.

[92] Warwick Harvey. CSPLib Problem 010: Social Golfers Problem. Ed. by Christopher
Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent. http://www.
csplib.org/Problems/prob010.

[93] Pascal Van Hentenryck. “Constraint and integer programming in OPL”. In: IN-
FORMS Journal on Computing 14.4 (2002), pp. 345–372.

http://books.google.co.uk/books?id=1AP2CEGxTkgC
http://www.csplib.org/Problems/prob010
http://www.csplib.org/Problems/prob010

158 BIBLIOGRAPHY

[94] Marijn Heule and Toby Walsh. “Symmetry within solutions”. In: Proceedings of
AAAI. Vol. 10. 2010, pp. 77–82.

[95] Raymond R Hill and Charles H Reilly. “The effects of coefficient correlation structure
in two-dimensional knapsack problems on solution procedure performance”. In:
Management Science 46.2 (2000), pp. 302–317.

[96] Brahim Hnich, Zeynep Kiziltan, and Toby Walsh. CSPLib Problem 030: Balanced
Academic Curriculum Problem (BACP). Ed. by Christopher Jefferson, Ian Miguel,
Brahim Hnich, Toby Walsh, and Ian P. Gent. http://www.csplib.org/Problems/
prob030.

[97] Brahim Hnich, Zeynep Kiziltan, and Toby Walsh. “Modelling a Balanced Academic
Curriculum Problem”. In: CP-AI-OR-2002. 2002, pp. 121–131.

[98] Brahim Hnich, Steven D Prestwich, Evgeny Selensky, and Barbara M Smith.
“Constraint models for the covering test problem”. In: Constraints 11.2-3 (2006),
pp. 199–219.

[99] John N Hooker. “Needed: An empirical science of algorithms”. In: Operations
Research 42.2 (1994), pp. 201–212.

[100] John N Hooker. “Testing heuristics: We have it all wrong”. In: Journal of heuristics
1.1 (1995), pp. 33–42.

[101] Holger Hoos, Roland Kaminski, Marius Lindauer, and Torsten Schaub. “aspeed:
Solver scheduling via answer set programming 1”. In: Theory and Practice of Logic
Programming 15.1 (2015), pp. 117–142.

[102] Holger H Hoos. “Automated algorithm configuration and parameter tuning”. In:
Autonomous search. Springer, 2011, pp. 37–71.

[103] Bruce Hoppe and Éva Tardos. “The quickest transshipment problem”. In: Mathe-
matics of Operations Research 25.1 (2000), pp. 36–62.

[104] Sophie Huczynska, Paul McKay, Ian Miguel, and Peter Nightingale. “Modelling
equidistant frequency permutation arrays: An application of constraints to math-
ematics”. In: International Conference on Principles and Practice of Constraint
Programming. Springer. 2009, pp. 50–64.

[105] Bilal Syed Hussain. CSPLib Problem 054: N-Queens. Ed. by Christopher Jefferson,
Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent. http://www.csplib.
org/Problems/prob054.

http://www.csplib.org/Problems/prob030
http://www.csplib.org/Problems/prob030
http://www.csplib.org/Problems/prob054
http://www.csplib.org/Problems/prob054

BIBLIOGRAPHY 159

[106] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. “Sequential model-based
optimization for general algorithm configuration”. In: International conference on
learning and intelligent optimization. Springer. 2011, pp. 507–523.

[107] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. “ParamILS:
an automatic algorithm configuration framework”. In: Journal of Artificial Intelli-
gence Research 36 (2009), pp. 267–306.

[108] Chris Jefferson, Angela Miguel, Ian Miguel, and Armagan Tarim. CSPLib Problem
037: Peg Solitaire. Ed. by Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby
Walsh, and Ian P. Gent. http://www.csplib.org/Problems/prob037.

[109] Christopher Jefferson. “Representations in constraint programming”. PhD thesis.
Citeseer, 2007.

[110] Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent,
eds. CSPLib: A problem library for constraints. http://www.csplib.org. 1999.

[111] Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf
Sellmann. “Algorithm selection and scheduling”. In: International conference on
principles and practice of constraint programming. Springer. 2011, pp. 454–469.

[112] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. “ISAC:
Instance-Specific Algorithm Configuration”. In: ECAI. Vol. 215. 2010, pp. 751–756.

[113] Josef Kallrath. Modeling languages in mathematical optimization. Vol. 88. Springer
Science & Business Media, 2013.

[114] Q-D Kang, Z-H Liang, Y-Z Gao, and G-H Yang. “On labeling of some graphs”. In:
Journal of Combinatorial Mathematics and Combinatorial Computing 22 (1996),
pp. 193–210.

[115] Michael N Katehakis and Arthur F Veinott Jr. “The multi-armed bandit problem:
decomposition and computation”. In: Mathematics of Operations Research 12.2
(1987), pp. 262–268.

[116] Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. “Auto-
mated algorithm selection: Survey and perspectives”. In: Evolutionary computation
27.1 (2019), pp. 3–45.

[117] Philip Kilby and Paul Shaw. “Vehicle routing”. In: Foundations of Artificial Intelli-
gence. Vol. 2. Elsevier, 2006, pp. 801–836.

[118] JooSeuk Kim and Clayton D Scott. “Robust kernel density estimation”. In: The
Journal of Machine Learning Research 13.1 (2012), pp. 2529–2565.

http://www.csplib.org/Problems/prob037
http://www.csplib.org

160 BIBLIOGRAPHY

[119] Levente Kocsis and Csaba Szepesvári. “Bandit Based Monte-Carlo Planning”. In:
ECML. LNCS 4212. Berlin, Germany: Springer, 2006, pp. 282–293. isbn: 978-3-
540-46056-5. doi: 10.1007\/11871842_29.

[120] Ron Kohavi, David H Wolpert, et al. “Bias plus variance decomposition for zero-one
loss functions”. In: ICML. Vol. 96. 1996, pp. 275–83.

[121] Jelena Kojić. “Integer linear programming model for multidimensional two-way
number partitioning problem”. In: Computers & Mathematics with Applications
60.8 (2010), pp. 2302–2308.

[122] Janet Kolodner and Case-Based Reasoning. “Morgan Kaufmann Publishers”. In:
San Mateo, CA (1993).

[123] Lars Kotthoff. “Algorithm selection for combinatorial search problems: A survey”.
In: Data Mining and Constraint Programming. Springer, 2016, pp. 149–190.

[124] Michal Kouril and John Franco. “Resolution tunnels for improved SAT solver
performance”. In: Theory and Applications of Satisfiability Testing. Springer. 2005,
pp. 143–157.

[125] Volodymyr Kuleshov and Doina Precup. “Algorithms for multi-armed bandit prob-
lems”. In: arXiv preprint arXiv:1402.6028 (2014).

[126] Michail G Lagoudakis and Michael L Littman. “Learning to select branching rules in
the DPLL procedure for satisfiability”. In: Electronic Notes in Discrete Mathematics
9 (2001), pp. 344–359.

[127] Tze Leung Lai and Herbert Robbins. “Asymptotically efficient adaptive allocation
rules”. In: Advances in applied mathematics 6.1 (1985), pp. 4–22.

[128] Ronan Le Bras, Carla P Gomes, and Bart Selman. “Double-wheel graphs are
graceful”. In: Proceedings of the Twenty-Third international joint conference on
Artificial Intelligence. AAAI Press. 2013, pp. 587–593.

[129] Ronan Le Bras, Carla P. Gomes, and Bart Selman. “Double-wheel Graphs Are
Graceful”. In: Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence. IJCAI ’13. Beijing, China: AAAI Press, 2013, pp. 587–593.
isbn: 978-1-57735-633-2. url: http://dl.acm.org/citation.cfm?id=2540128.
2540214.

[130] Ronan Le Bras, Carla P Gomes, and Bart Selman. “On the Erdos Discrepancy Prob-
lem”. In: Principles and Practice of Constraint Programming: 20th International
Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings. Vol. 8656.
Springer. 2014, p. 440.

https://doi.org/10.1007\/11871842_29
http://dl.acm.org/citation.cfm?id=2540128.2540214
http://dl.acm.org/citation.cfm?id=2540128.2540214

BIBLIOGRAPHY 161

[131] Kevin Leyton-Brown, Eugene Nudelman, Galen Andrew, Jim McFadden, Yoav
Shoham, et al. “A portfolio approach to algorithm selection”. In: IJCAI. Vol. 3.
2003, pp. 1542–1543.

[132] Marius Lindauer, Rolf-David Bergdoll, and Frank Hutter. “An empirical study of
per-instance algorithm scheduling”. In: International Conference on Learning and
Intelligent Optimization. Springer. 2016, pp. 253–259.

[133] Marius Lindauer, Holger Hoos, Kevin Leyton-Brown, and Torsten Schaub. “Auto-
matic construction of parallel portfolios via algorithm configuration”. In: Artificial
Intelligence 244 (2017). Combining Constraint Solving with Mining and Learn-
ing, pp. 272–290. issn: 0004-3702. doi: https://doi.org/10.1016/j.artint.
2016.05.004. url: https://www.sciencedirect.com/science/article/pii/
S0004370216300625.

[134] Marius Lindauer, Holger H Hoos, Frank Hutter, and Torsten Schaub. “Autofolio: An
automatically configured algorithm selector”. In: Journal of Artificial Intelligence
Research 53 (2015), pp. 745–778.

[135] Marius T Lindauer. “Algorithm selection, scheduling and configuration of Boolean
constraint solvers”. PhD thesis. Universit "a t Potsdam, Institut f ü r Informatik,
2015.

[136] James Little, Cormac Gebruers, Derek G Bridge, and Eugene C Freuder. “Using
case-based reasoning to write constraint programs”. In: CP. Citeseer. 2003, p. 983.

[137] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Bi-
rattari, and Thomas Stützle. “The irace package: Iterated racing for automatic
algorithm configuration”. In: Operations Research Perspectives 3 (2016), pp. 43–58.

[138] KJ Ma and CJ Feng. “On the gracefulness of gear graphs”. In: Math. Practice
Theory 4 (1984), pp. 72–73.

[139] Aditya Mahajan and Demosthenis Teneketzis. “Multi-armed bandit problems”. In:
Foundations and applications of sensor management. Springer, 2008, pp. 121–151.

[140] Toni Mancini and Marco Cadoli. “Detecting and breaking symmetries by rea-
soning on problem specifications”. In: International Symposium on Abstraction,
Reformulation, and Approximation. Springer. 2005, pp. 165–181.

[141] Oded Maron and Andrew W Moore. “The racing algorithm: Model selection for
lazy learners”. In: Lazy learning. Springer, 1997, pp. 193–225.

https://doi.org/https://doi.org/10.1016/j.artint.2016.05.004
https://doi.org/https://doi.org/10.1016/j.artint.2016.05.004
https://www.sciencedirect.com/science/article/pii/S0004370216300625
https://www.sciencedirect.com/science/article/pii/S0004370216300625

162 BIBLIOGRAPHY

[142] Kim Marriott, Nicholas Nethercote, Reza Rafeh, Peter J Stuckey, Maria Garcia
De La Banda, and Mark Wallace. “The design of the Zinc modelling language”. In:
Constraints 13.3 (2008), pp. 229–267.

[143] B Martínez-Hernández and Alan M Frisch. “Towards the systematic generation of
channelling constraints”. In: International Conference on Principles and Practice
of Constraint Programming. Springer. 2005, pp. 859–859.

[144] Christopher Mears, M Garcia De La Banda, and Mark Wallace. “On implementing
symmetry detection”. In: Constraints 14.4 (2009), pp. 443–477.

[145] Christopher Mears and Maria Garcia De La Banda. “Towards automatic dominance
breaking for constraint optimization problems”. In: Twenty-Fourth International
Joint Conference on Artificial Intelligence. 2015.

[146] P Meseguer and C Torras. “Exploiting Symmetries within Constraint Satisfaction
Search”. In: Artificial Intelligence 129.1-2 (2001), pp. 133–163.

[147] Alice Miller and Patrick Prosser. CSPLib Problem 050: Diamond-free Degree Se-
quences. Ed. by Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, and
Ian P. Gent. http://www.csplib.org/Problems/prob050.

[148] Rémi Munos. “From Bandits to Monte-Carlo Tree Search: The Optimistic Principle
Applied to Optimization and Planning”. In: FTML 7.1 (2014), pp. 1–129. issn:
1935-8237. doi: 10.1561/2200000038.

[149] Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna,
Simon Lacoste-Julien, and Ioannis Mitliagkas. “A modern take on the bias-variance
tradeoff in neural networks”. In: arXiv preprint arXiv:1810.08591 (2018).

[150] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J
Duck, and Guido Tack. “MiniZinc: Towards a standard CP modelling language”. In:
International Conference on Principles and Practice of Constraint Programming.
Springer. 2007, pp. 529–543.

[151] Peter Nightingale. CSPLib Problem 056: Synchronous Optical Networking (SONET)
Problem. Ed. by Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh,
and Ian P. Gent. http://www.csplib.org/Problems/prob056.

[152] Peter Nightingale. CSPLib Problem 057: Killer Sudoku. Ed. by Christopher Jefferson,
Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent. http://www.csplib.
org/Problems/prob057.

http://www.csplib.org/Problems/prob050
https://doi.org/10.1561/2200000038
http://www.csplib.org/Problems/prob056
http://www.csplib.org/Problems/prob057
http://www.csplib.org/Problems/prob057

BIBLIOGRAPHY 163

[153] Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, and Ian Miguel.
“Automatically Improving Constraint Models in Savile Row through Associative-
Commutative Common Subexpression Elimination”. In: Principles and Practice of
Constraint Programming - CP 2014. Springer, 2014.

[154] Peter Nightingale, Özgür Akgün, Ian P Gent, Christopher Jefferson, Ian Miguel,
and Patrick Spracklen. “Automatically improving constraint models in Savile Row”.
In: Artificial Intelligence 251 (2017), pp. 35–61.

[155] Peter Nightingale and Andrea Rendl. “Essence’description”. In: arXiv preprint
arXiv:1601.02865 (2016).

[156] Peter Nightingale, Patrick Spracklen, and Ian Miguel. “Automatically Improving
SAT Encoding of Constraint Problems through Common Subexpression Elimination
in Savile Row”. In: Proceedings of the 21st International Conference on Principles
and Practice of Constraint Programming (CP 2015). Springer, 2015, pp. 330–340.

[157] Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and Barry
O’Sullivan. “Using case-based reasoning in an algorithm portfolio for constraint
solving”. In: Irish conference on artificial intelligence and cognitive science. 2008,
pp. 210–216.

[158] Anthony Palmieri and Guillaume Perez. “Objective as a Feature for Robust Search
Strategies”. In: International Conference on Principles and Practice of Constraint
Programming. Springer. 2018, pp. 328–344.

[159] Gilles Pesant. “Counting-based search for constraint optimization problems”. In:
Thirtieth AAAI Conference on Artificial Intelligence. 2016.

[160] Gilles Pesant. “Counting solutions of CSPs: A structural approach”. In: IJCAI.
Citeseer. 2005, pp. 260–265.

[161] Steven Prestwich. CSPLib Problem 028: Balanced Incomplete Block Designs. Ed. by
Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent.
http://www.csplib.org/Problems/prob028.

[162] Steven Prestwich and J Christopher Beck. “Exploiting dominance in three sym-
metric problems”. In: Fourth international workshop on symmetry and constraint
satisfaction problems. Citeseer. 2004, pp. 63–70.

[163] Les Proll and Barbara Smith. “Integer linear programming and constraint pro-
gramming approaches to a template design problem”. In: INFORMS Journal on
Computing 10.3 (1998), pp. 265–275.

http://www.csplib.org/Problems/prob028

164 BIBLIOGRAPHY

[164] Jean-Francois Puget. “Constraint programming next challenge: Simplicity of use”.
In: International Conference on Principles and Practice of Constraint Programming.
Springer. 2004, pp. 5–8.

[165] Jean-Francois Puget. “On the satisfiability of symmetrical constrained satisfaction
problems”. In: International Symposium on Methodologies for Intelligent Systems.
Springer. 1993, pp. 350–361.

[166] Reza Rafeh, Maria Garcia de la Banda, Kim Marriott, and Mark Wallace. “From
Zinc to design model”. In: International Symposium on Practical Aspects of Declar-
ative Languages. Springer. 2007, pp. 215–229.

[167] Jean-Charles Régin. “Minimization of the number of breaks in sports scheduling
problems using constraint programming”. In: DIMACS series in discrete mathe-
matics and theoretical computer science 57 (2001), pp. 115–130.

[168] Andrea Rendl. “Effective compilation of constraint models”. PhD thesis. University
of St Andrews, 2010.

[169] John R Rice. “The algorithm selection problem”. In: Advances in computers. Vol. 15.
Elsevier, 1976, pp. 65–118.

[170] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint pro-
gramming. Elsevier, 2006.

[171] Andrea Schaerf. “Scheduling sport tournaments using constraint logic programming”.
In: Constraints 4.1 (1999), pp. 43–65.

[172] Evgeny Selensky. CSPLib Problem 045: The Covering Array Problem. Ed. by
Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent.
http://www.csplib.org/Problems/prob045.

[173] Meinolf Sellmann and Warwick Harvey. “Heuristic constraint propagation–using
local search for incomplete pruning and domain filtering of redundant constraints
for the social golfer problem”. In: CPAIOR’02. Citeseer. 2002.

[174] Helmut Simonis. “Sudoku as a constraint problem”. In: CP Workshop on modeling
and reformulating Constraint Satisfaction Problems. Vol. 12. Citeseer. 2005, pp. 13–
27.

[175] Helmut Simonis. “The CHIP system and its applications”. In: International Con-
ference on Principles and Practice of Constraint Programming. Springer. 1995,
pp. 643–646.

http://www.csplib.org/Problems/prob045

BIBLIOGRAPHY 165

[176] Helmut Simonis and Barry O’Sullivan. “Search strategies for rectangle packing”. In:
International Conference on Principles and Practice of Constraint Programming.
Springer. 2008, pp. 52–66.

[177] Aleksandrs Slivkins. “Introduction to multi-armed bandits”. In: arXiv preprint
arXiv:1904.07272 (2019).

[178] Barbara Smith. CSPLib Problem 001: Car Sequencing. Ed. by Christopher Jefferson,
Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent. http://www.csplib.
org/Problems/prob001.

[179] Barbara M Smith. “Modelling a permutation problem”. In: (2000).

[180] Barbara M Smith and Jean-François Puget. “Constraint models for graceful graphs”.
In: Constraints 15.1 (2010), pp. 64–92.

[181] Barbara M Smith, Kostas Stergiou, and Toby Walsh. “Using auxiliary variables
and implied constraints to model non-binary problems”. In: AAAI/IAAI. 2000,
pp. 182–187.

[182] Casey Smith, Carla Gomes, and Cesar Fernandez. “Streamlining local search for
spatially balanced latin squares”. In: IJCAI. Vol. 5. Citeseer. 2005, pp. 1539–1541.

[183] Kate Smith-Miles, Davaatseren Baatar, Brendan Wreford, and Rhyd Lewis. “To-
wards objective measures of algorithm performance across instance space”. In:
Computers & Operations Research 45 (2014), pp. 12–24.

[184] Patrick Spracklen, Özgür Akgün, and Ian Miguel. “Automatic generation and
selection of streamlined constraint models via monte carlo search on a model
lattice”. In: International Conference on Principles and Practice of Constraint
Programming. Springer. 2018, pp. 362–372.

[185] Patrick Spracklen, Nguyen Dang, Özgür Akgün, and Ian Miguel. “Automatic Stream-
lining for Constrained Optimisation”. In: International Conference on Principles
and Practice of Constraint Programming. Springer. 2019, pp. 366–383.

[186] Patrick Spracklen, Nguyen Dang, Özgür Akgün, and Ian Miguel. “Towards Portfolios
of Streamlined Constraint Models: A Case Study with the Balanced Academic
Curriculum Problem”. In: arXiv preprint arXiv:2009.10152 (2020).

[187] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[188] Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. “Com-
piling finite linear CSP into SAT”. In: Constraints 14.2 (2009), pp. 254–272.

http://www.csplib.org/Problems/prob001
http://www.csplib.org/Problems/prob001

166 BIBLIOGRAPHY

[189] Gecode Team. Gecode: Generic constraint development environment, 2006. 2008.

[190] George R Terrell and David W Scott. “Variable kernel density estimation”. In: The
Annals of Statistics (1992), pp. 1236–1265.

[191] Pascal Van Hentenryck, Laurent Michel, Laurent Perron, and J-C Régin. “Constraint
programming in OPL”. In: International Conference on Principles and Practice of
Declarative Programming. Springer. 1999, pp. 98–116.

[192] Toby Walsh. CSPLib Problem 013: Progressive Party Problem. Ed. by Christopher
Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent. http://www.
csplib.org/Problems/prob013.

[193] TobyWalsh. CSPLib Problem 019: Magic Squares and Sequences. Ed. by Christopher
Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent. http://www.
csplib.org/Problems/prob019.

[194] Toby Walsh. CSPLib Problem 023: Magic Hexagon . Ed. by
Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P. Gent.
http://www.csplib.org/Problems/prob023.

[195] Toby Walsh. “General symmetry breaking constraints”. In: International Conference
on Principles and Practice of Constraint Programming. Springer. 2006, pp. 650–664.

[196] Weijia Wang and Michèle Sebag. “Hypervolume indicator and dominance reward
based multi-objective Monte-Carlo Tree Search”. In: Machine learning 92.2-3 (2013),
pp. 403–429.

[197] Hong Xu, Sven Koenig, and TK Satish Kumar. “Towards effective deep learning
for constraint satisfaction problems”. In: International Conference on Principles
and Practice of Constraint Programming. Springer. 2018, pp. 588–597.

[198] Lin Xu, Holger Hoos, and Kevin Leyton-Brown. “Hydra: Automatically configuring
algorithms for portfolio-based selection”. In: Twenty-Fourth AAAI Conference on
Artificial Intelligence. 2010.

[199] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. “SATzilla-07: The
design and analysis of an algorithm portfolio for SAT”. In: International Conference
on Principles and Practice of Constraint Programming. Springer. 2007, pp. 712–727.

[200] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. “SATzilla: portfolio-
based algorithm selection for SAT”. In: Journal of artificial intelligence research 32
(2008), pp. 565–606.

http://www.csplib.org/Problems/prob013
http://www.csplib.org/Problems/prob013
http://www.csplib.org/Problems/prob019
http://www.csplib.org/Problems/prob019
http://www.csplib.org/Problems/prob023

[201] Lin Xu, Frank Hutter, Jonathan Shen, Holger H Hoos, and Kevin Leyton-Brown.
“SATzilla2012: Improved algorithm selection based on cost-sensitive classification
models”. In: Proceedings of SAT Challenge (2012), pp. 57–58.

[202] Hantao Zhang. “Specifying latin square problems in propositional logic”. In: Au-
tomated Reasoning and Its Applications: Essays in Honor of Larry Wos (1997),
pp. 115–146.

List of Figures

1.1 A solution to the 4 Queens problem [105] . 2
1.2 A top down view of how Essence, Conjure and Savile Row are integrated

into a toolchain tasked with solving combinatorial problems 4
1.3 A summary of the main components and flow of our procedure for automatic

generation of Streamliner Portfolios. Our approach begins with the abstract
specification of a problem in Essence. Conjure is used to automatically
generate a set of candidate streamliners (Chapter 3). Instance generation is
performed on the Essence specification via generator instances [2] to produce
a diverse training set (Chapter 4). Feature Generation (Section 4.2) and
Clustering (Section 4.3) are then used to create a compressed Training Set
suitable for input into our Lattice Search (Chapter 5). The output of the
system is a portfolio of streamliners with complementary strengths that will be
used for solving any unseen instance of the same problem (Chapter 6). 8

167

168 List of Figures

1.4 Essence specification of the Car Sequencing Problem [178], shown to be
NP-complete [80]. A number of cars (n_cars) are to be produced; they are
not identical, because different classes (n_classes) are available (quantity) as
variants on the basic model. The assembly line has different stations which
install the various options (n_options) such as air-conditioning and sun-roof
(each class of cars requires certain options, represented by usage). The cars
requiring a certain option must not be bunched together, otherwise the station
will not be able to cope (maxcars). Furthermore, the stations have been designed
to handle at most a certain total number of the cars passing along the assembly
line (maxcars + blksize_delta) at a time. Consequently, the cars must be
arranged in a sequence so that the capacity of each station is never exceeded. . 9

2.1 . 15
2.2 Constraint Programming: Constraint Modelling & Solving 16
2.3 In Essence there are two types of domains, concrete and abstract. A concrete

domain is one which is natively supported by the target solver. An abstract
domain is one which is not natively supported and will be represented as a
collection of more primitive variables. 18

2.4 The 8 inherent symmetries obtained through rotations and reflections of the
chessboard . 22

2.5 . 26
2.6 Streamlining aims to focus search onto a small and highly structured search

space containing solutions. Here P represents the original problem to be solved.
To streamline conjecture S is enforced to divide P into two complementary
subproblems P1 and P2. If the streamlined subproblem P1 does not contain
a solution, the complementary space P2 can again be streamlined. 27

3.1 Comparison between the Essence specification and Essence Prime model
of the Social Golfers Problem [92] . 33

3.2 The First-Order streamlining rules. For each rule we present the rule name,
rule’s input, output and the tag. The tags are used to filter trivially contradict-
ing streamliners during streamliner selection. We choose up to 1 streamliner
from each tag. 36

3.3 The Higher-Order streamlining rules. These rules lift existing first-order and
higher-order streamlining rules to work on nested domain constructors of
Essence. They do not introduce any additional tags, but they propagate the
tags introduced by the rule they are parameterised on. 37

List of Figures 169

3.4 The application of First and Higher-Order rules on the function decision
variable domain in Car Sequencing . 39

3.5 For the Car Sequencing problem the performance comparison between the
unstreamlined model and streamliner approximatelyHalf(range(car, odd)) on
100 random training instances with unstreamlined solving times between [10,300]s 40

3.6 A sample of the softened rules for the symmetric streamliner constraint on the
BIBD problem . 40

3.7 For the BIBD problem the Average Applicability and Reduction for various
softness parameter on the symmetric streamliner constraint 41

3.8 Example JSON generated by Conjure detailing the streamliners automatically
generated from the specification . 44

3.9 Process of evaluating a streamliner . 45
3.10 Essence specifications for six problem classes used for evaluation, in addition

to the Car Sequencing problem given in Figure 1.4. 49

4.1 Parts of Car Sequencing generator’s Essence specification automatically cre-
ated by the system in [2]. Given a generator’s parameter file created by irace
during the tuning, a random instance is created by solving this specification
using the constraint solver Minion [81]. For brevity, we omit the specification
for nclasses, noptions, maxCars, blksize and usage, as they are rewritten in
exactly the same way as other parameters of the same types. 53

4.2 The instances generated for the Car Sequencing problem by the three inde-
pendent runs of IRace. The instances are plotted on the two dimensional
projection of the original multi-dimensional instance feature space via Principle
Component Analysis [40]. About 99.4% of the variance in the feature space is
captured in these two dimensions. 56

4.3 Performance of three example streamliners on the training set of 4647 instances
generated for the Fixed Length Error Correcting Code problem with Chuffed.
Each two dimensional plot is a projection of the original multi-dimensional
instance feature space via Principle Component Analysis [40]. 59

4.4 GMeans clustering results, with 128 clusters detected, on the instance feature
space (projected to 2-dimensional space by PCA) for the Fixed Length Error
Correcting Codes problem with Chuffed. Each color represents a cluster. . . 60

5.1 In their work on Double Wheel Graphs, Lebras et al [84] combined conjectures
to further restrict search and solve graphs of a previously unattainable size . . 64

170 List of Figures

5.2 The power set of singleton candidate streamliners is explored to identify com-
binations that result in powerful streamlined specifications. If small sets of
conjectures that fail to retain solutions are identified, such as CD, all supersets
can be pruned from the search, vastly reducing the number of vertices to be
explored. Here streamliners A and B are tagged (Section 3) mutually exclusive,
and so no streamliner combinations containing both will be evaluated however
the lattice states are shown for informational purposes. 65

5.3 . 69
5.4 MOMCTS-DOM operating on the streamliner lattice. A, B and C refer to

single candidate streamliners generated from the original Essence specification.
As MOMCTS-DOM descends down through the lattice the streamliners are
combined through the conjunction of the individual streamliners (AB, ABC).
The nodes are labelled with CDD reward value divided by the number of times
visited. 76

5.5 For three problems, BACP, CarSequencing and Transshipment a comparison
between the log solving time (blue line) of the validation distribution and the
size of the portfolio (histogram) across multiple rounds of our search algorithm.
The red dotted line displays the round at which there is no further reduction
in solving time. 79

6.1 For Transshipment and CarSequencing the portfolios generated during the
Chuffed streamliner search are tested on Lingeling on the same set of test
instances. The Average Reduction across the two portfolios are represented for
both paradigms. The same set of test instances are used so that any variation
in the reductions of the streamliners is purely due to the different setting. . . 83

6.2 Portfolio sizes . 85
6.3 A comparison of the search trees in the Chuffed solver between a streamlined

and unstreamlined model representation. 88
6.4 Performance of the constructed portfolio across the 96 instances that composed

the Training distribution. The red cross indicates that the evaluated streamliner
timed out or was proven to be unsatisfiable on the instance. The labels across
the top of the x-axis detail the maximum reduction in solving time achieved by
any of the streamliners in the portfolio. 90

7.1 Average Percentage Reduction achieved by the streamliner portfolios on the
Distributions {A & B} across the 7 problem classes 97

List of Figures 171

7.2 Results with Chuffed and Lingeling on Distribution A. The top of each
pair of charts shows how frequently the associated approach produces an
improvement (% improved), and also indicates the reason for failure to improve
on the remainder of the instances: the instance was rendered unsatisfiable (%
UNSAT), or the search completed more slowly than the original model (%
non-improved). The bottom of each pair of charts shows the magnitude of the
solving time reduction on those instances where an improvement was obtained
(% reduction). Hence, care must be taken when comparing approaches, since
an infrequently applicable approach may do well on the few instances it does
improve. The best approaches are both frequently applicable and result in a
large search reduction. 99

7.3 Results with Chuffed and Lingeling on Distribution B. Detailed meaning
of the plots are described in Figure 7.2. 100

7.4 The diagram groups the evaluations into four different categories. SolverTime-
Out represents the cases where the solver timed out during evaluation. The
timeout value for the Training Set and Distribution A is set at 5 minutes and for
Distribution B at 1 hour. ProvenUnsat represents the cases where the stream-
lined subspace was proven to contain no solutions in the given time budget. The
last two categories, {SolverSatisfiable-Improved, SolverSatisfiable-NonImproved}
represent the cases where a solution was found in the streamlined subspace.
What differentiates them is whether or not the time taken to find this solution
was an improvement over the original model 102

7.5 For the Fixed Length Error Correcting codes problem under the Chuffed solver:
The distribution of reductions along with the Kernel Density Estimation [118,
29, 190] of the probability density function is shown as the fixed cutoff time is
varied. 104

7.6 Distribution of speedup values (in base 10 logarithmic scale) for the Oracle,
Autofolio and Single Best Solver on Distribution B 106

7.7 Across the 7 problems the cumulative CPU time of the different scheduling vari-
ants is shown for instance Distribution B for the Chuffed a) and Lingeling
b) solvers . 108

7.8 . 110
7.9 Effect of Streamliners on #Variables/#Clauses in a SAT model 111
7.10 By forcing x to both be simultaneously odd and even this model becomes

trivially unsatisfiable and through the application of domain filtering Savile
Row will be able to prove that the plausible domain for x is empty. 111

172 List of Figures

7.11 Effect of Streamliners on Savile Row formulation time 112
7.12 The size of the constructed portfolios and the number of streamliners used by

the Oracle and Autofolio for instances from Distrbution B. 113

8.1 Essence specifications for the three problem classes considered herein. Syn-
chronous Optical Networking (SONET) [151] is given in full. For brevity, only
the parameters, decision variable declarations (from which streamliners are
generated) and optimization variables are shown for the Progressive Party
Problem [192] and the Minimum Energy Broadcast Problem [33] 117

8.2 A comparison of the search progress between the Original model and two
streamliner combinations (41 and 44-5) for the MEB problem across three
instances. The solver in this setting is Minion and the objective is to be
minimized . 118

8.3 Reduction ratio of streamliner approaches with 30 seconds for streamliner
portfolio. Two reduction ratio values are reported: reduction in time to reach
an optimal solution, and reduction in time to reach an optimal solution and
prove its optimality. The x-axis represents the time required by the original
model. The y-axis shows the the reduction value. Each data point correspond
to a pair of (instance, random seed). These plots focus on the region within
a 1-hour time limit: all data points outside that ranges are shrunk into the
same region. More specifically, runs where the (original model) streamliner
approaches do not reach an optimal solution or does not prove optimality in
one hour are separated by the red (vertical) horizontal lines. The reduction
values, however, are still the true values calculated based on the 4-day CPU
limit. As most data points lie within the range of y ∈ [0,1], the plot is rescaled
so that this range is zoomed in for a better visualisation. 127

8.4 Objective value progression from the original model compared with its progres-
sion under the UCB selection method for a representative SONET instance. . 128

9.1 The number of models refined from the original Essence specification and with
a sample set of single candidate streamliners for the Transshipment problem.
The streamliners are represented in Conjure via numeric values which are
presented. 133

9.2 Variance in streamliner performance across 8 models for Transshipment and
BACP. Each model is named with respect to the generating heuristic (table 9.1) 134

List of Figures 173

9.3 Composition of the portfolio generated by our multi-model search for each prob-
lem class. The x-axis represents heuristic rules (Table 9.1) used by Conjure.
The y-axis shows the number of streamlined models in the portfolio generated
by the corresponding heuristics rules. Note that models refined according to
the same set of rules can still differ due to the additional modelling choices
introduced by the added streamliners. 140

	Contents
	Introduction
	Brief introduction of the toolchain
	Phase 1: Streamliner Generation
	Phase 2: Portfolio Construction
	Phase 3: Streamliner Selection and Application
	Thesis Statement
	Publications
	Contributions
	Thesis Structure

	Background And Related Work
	Constraint Programming
	Modelling Languages
	OPL
	Minizinc & Zinc
	Essence

	Automated Modeling Tools
	O'CASEY
	CONACQ
	Constraint Seeker and Model Seeker
	Conjure & SavileRow

	Reformulation of the model
	Symmetry breaking
	Implied Constraints
	Dominance Breaking Constraints
	Streamlining Constraints

	Summary

	From Conjectures to Streamlined Specifications
	Utilizing Essence
	Utilizing Structure
	Multiple Formulations
	Automated Symmetry Breaking

	Streamliner Generation
	Conjecture-forming Rules
	Streamlining by Example
	Domain Attributes & Softened Rules
	Application on CSPlib

	Modeling Pipeline
	Problems
	Summary

	Generating and Selecting Training Instances
	Automated Instance Generation
	Instance Requirements
	Irace Search

	Streamliner Footprint Analysis
	Training Set Construction
	Summary

	Identifying Effective Combinations of Streamliners
	Combining Streamliners
	Providing Structure: Definition of the Streamliner Lattice
	Exploiting Structure: Pruning the streamliner lattice
	Pruning based upon tags
	Pruning based upon failure
	Pruning Softened Streamliners

	Searching for a Streamliner Portfolio
	Focused Search
	Uninformed Search
	Defining a reward
	Exploration vs Exploitation
	MOMCTS
	Improving Portfolio Strength Using Hydra
	The risk of overfitting

	Summary

	The Streamliner Selection Problem
	Independent Portfolio Construction
	Constructed Portfolios
	Portfolio Analysis
	BACP-Chuffed
	CoveringArray-Chuffed
	Transshipment-Lingeling

	Streamliner Selection
	Single Best Solver
	Streamliner Scheduling
	Lexicographic Selection Methods
	Dynamic Portfolio Filtering

	Automated Algorithm Selection Methods

	Summary

	Experimental Results
	Experimental Setup
	Algorithm Selection Setup

	Frequency and Magnitude of Search Reduction
	A Practical Setting
	Streamliner Scheduling with fixed cutoff time
	Portfolio Approach

	Results: Further Analysis
	Node Reduction and Solver Performance
	SavileRow Formulation
	Savile Row Formulation Time
	Instance-oblivious Streamliner Application
	Instance-specific Streamliner Application

	Summary

	Streamlining for Constrained Optimization
	Problems
	Searching for a Streamliner Portfolio
	Pruning the Streamliner Portfolio
	Selecting from the Streamliner Portfolio
	Lexicographic Selection Methods
	UCB Streamliner Selection

	Experimental Setting
	Results
	UCB Streamliner Selection: Discussion
	Time Allocated to the Streamliner Portfolio: Discussion

	Summary

	Model Portfolios
	From Essence Specifications to Constraint Models
	Model Portfolios
	Model Racing
	-Capping
	Racing using statistical tests
	Adaptive Capping
	Multi-Level Model Generation

	Experimental Results
	Portfolio Analysis
	Balanced Academic Curriculum Problem (BACP)
	Fixed Length Error Correcting Codes (FLECC)
	Car Sequencing
	Transshipment

	Summary

	Conclusions
	Future Work
	Online Learning
	Performance Based Selection
	Streamlining from the other end: A Constraint Acquisition Approach
	Harder instances for portfolio construction
	Generic Portfolio Prediction
	Solution Counting in streamlined subspaces

	Bibliography
	List of Figures

