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ABSTRACT

Deep learning algorithms increasingly support automated systems in areas such as human activity
recognition and purchase recommendation. We identify a current trend in which data is transformed
first into abstract visualizations and then processed by a computer vision deep learning pipeline. We
call this VisuaLization As Intermediate Representation (VLAIR) and believe that it can be instrumental
to support accurate recognition in a number of fields while also enhancing humans’ ability to
interpret deep learning models for debugging purposes or for personal use. In this paper we describe
the potential advantages of this approach and explore various visualization mappings and deep
learning architectures. We evaluate several VLAIR alternatives for a specific problem (human activity
recognition in an apartment) and show that VLAIR attains classification accuracy above classical
machine learning algorithms and several other non-image-based deep learning algorithms with several
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data representations.
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1. Introduction

The use of machine learning and deep learning methods to
classify sensor input is now commonplace and widespread over a
broad set of application areas (e.g., Patel and Shah, 2019; Thomaz
et al,, 2012). These methods offer increasingly improved classi-
fication accuracy based on training algorithms that leverage the
statistical regularities found in training data to build models that
can then classify situations based on sensor states that have never
been encountered by the system.

For example, we are interested in using machine learning (ML)
classifiers to detect and classify human activities based on the
input from sensors distributed around a home (Bianchi et al,,
2019). Deploying sensors with a pretrained model in a home can
support a range of desirable applications where the system uses
the recognized human activity to react appropriately (a kind of
implicit interaction (Cook et al.,, 2013)). For example, a smart
home can regulate environmental factors such as temperature
or lighting that are appropriate to the activity (cooking requires
much light, but chatting around the table could benefit from
lower, more intimate lighting). Perhaps more critically, this kind
of system can assist the elderly or people with chronic conditions,
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disabilities or cognitive impairments by alerting of important
skipped activities (e.g., taking the daily medication), detecting
falls and accidents, or further helping diagnose the evolution of
these conditions (e.g., Alberdi et al., 2018).

Accurately classifying activities with sufficient granularity to
enable sophisticated applications remains a challenge. When bi-
nary sensors are used, this is compounded with the lack of obvi-
ous ways to integrate the location of the sensor and the timing
of its activation for the classification algorithm. For example,
when a user is wandering vs. working in the bedroom, the same
sensors might be activated, resulting in hard-to-separate sensor
features and leading to low accuracy in distinguishing these two
activities (Ye et al., 2015).

Inspired by the research field of visualization (e.g., Chegini
et al, 2019; Manovich, 2011; Stoiber et al.,, 2022), we trans-
form the raw data into visual representations that are then
used to train a vision-based deep learning algorithm. This ap-
proach, which we call VisuaLizations As Intermediate Representa-
tion (VLAIR), allows us to encode spatial and temporal
information of sensor onsets in a straightforward and human-
readable manner. We leverage knowledge in the field of informa-
tion visualization to create the visualizations. The intermediate
visual representation of the data is accessible to both machines
and humans, because they are visualizations that may be more
understandable by the human visual system than raw sensor
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data. This offers humans a common representation that might be
more beneficial to exploring certain classifications and supports
debugging of the algorithms and deployments. We also leverage
the computer vision algorithms to uncover spatial and temporal
patterns exhibited in the visualizations; that is, we employ a
Convolutional Neural Network—CNN, a Long Short-Term Memory
network—LSTM, and an attention mechanism.

Our contribution is twofold: we introduce the VLAIR technique
and we show, through a series of experiments on three datasets,
how it can increase accuracy for HAR from binary sensor data.
Classification improvements are of direct value to developers
of human activity recognition (HAR) applications. Furthermore,
because of the flexibility and the large remaining room for sophis-
tication in the design of visualization mappings, we believe that
VLAIR can be applied beyond binary sensor activity recognition
and deliver further classification performance gains in this and
other domains. We also provide preliminary recommendations on
how to apply it based on our own experiences.

2. Background and related work

VLAIR is an alternative approach to applying machine learning
(ML) and deep learning (DL) algorithms to classification problems.
It leverages existing computer vision and information visualiza-
tion techniques. In this section we start by relating our work to
traditional approaches. Because we apply VLAIR in first instance
to human activity recognition problems and, specifically, to hu-
man activity recognition through binary sensors, we review these
areas separately with a special focus on their application of ML
and DL techniques. We then discuss image-based applications of
ML/DL that we consider precursors or examples of VLAIR and
closest to our work.

2.1. Computer vision and traditional approaches to classification

Computer vision (CV) is one of the areas where DL has pro-
duced some of the most impressive recent advances, such as
object classification accuracy above human performance in im-
ages (e.g., LeCun et al. (2015)). One of the most common ar-
chitectures within computer vision pipelines is Convolutional
Neural Network (CNNs), which were first inspired by the human
visual system (LeCun et al., 2010). CNNs are particularly suit-
able for multi-layered machine learning because of their trans-
lation invariance and shared weights architecture, which keep
the numbers of connections relatively low and hence make the
classification of inputs with large number of features (or pixels)
tractable (LeCun et al., 2015).

CNNs are straightforward to apply to problems where the
input is directly arranged in a grid, such as the typical CV problem
of recognizing objects in raster images. In problems without a
straightforward spatial arrangement of data CNNs can still be
surprisingly useful (e.g., Fawaz et al., 2019) but data needs to be
rearranged into an appropriate shape, which might not be trivial.

When the data has a temporal component, such as in human
activity recognition from sensor networks, DL architectures might
include Recurrent Neural Networks (RNNs) (Graves et al.,, 2013).
These are particularly well suited to time-based problems be-
cause they recurse through temporal signals of arbitrary length
while sharing parameters across different points in time. Specif-
ically, Long Short-Term Memory networks (LSTMs) (Hochreiter
and Schmidhuber, 1997) have greatly increased accuracy for
time-dependent problems such as speech recognition (e.g. Graves
et al. (2013)).
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2.2. Classification of human activities through ML/DL

Our work is motivated, and first tested, on applications from
the area of human activity recognition. Much work in this area
has been devoted to applying ML/DL algorithms to data ob-
tained from sensors deployed in living spaces to classify activ-
ities by their occupants. This typically involves collecting and
integrating data from sensors, extracting features from the raw
data (Hammerla et al,, 2016), and applying learning techniques
to infer human behaviors. Various algorithms, including deci-
sion trees, support vector machines and, more recently, deep
neural networks (Wang et al., 2019), have been applied to clas-
sification, recognition and segmentation tasks. Deep learning can
demonstrably learn complex correlations between low-level sen-
sor data and high-level human activities. For example, Morales
and Roggen (2016) have employed a CNN to extract features
from raw accelerometer signals and an RNN to learn sequential
relationships of extracted features in human activities; Radu et al.
(2018) have designed a multimodal architecture for integrating
sensor data from different modalities to infer activities, and;
Sprint et al. have employed change detection on Fitbit's time
series data to track changes in physical activities during inpatient
rehabilitation (Sprint et al., 2017).

2.3. Sensor data visualization

Some existing techniques transform raw input sensor data
into spatial representations that are learnable through CNNs.
For example, an early data-driven approach (Zeng et al., 2014)
treats each dimension of accelerometer signals as a channel of
an RGB image to capture local dependencies of sensor signals,
and extracts scale-invariant sensor features with a CNN to infer
human activities such as ‘walking’ and ‘drink when standing’.
Other similar approaches are to adapt 1D sensor signal inputs
to form 1D virtual images and then leverage the advantages of
CNNs to automatically extract and learn discriminative sensor
features (Pourbabaee et al., 2017; Wang et al., 2017).

Ha et al. (2015) have combined all dimensions of sensor input
forming an image and use a 2D kernel to effectively capture
spatial dependency over sensors as well as local dependency over
time. They take into account two different modalities: sensors
in different positions and different sensing types. They group
sensors in different positions to capture spatial dependency over
signals via the 2D kernel and separate sensor types by padding
zeros between them. Compared with using a 1D kernel, their 2D
kernel method can obtain distinguishable features from multiple
sensors; e.g., accelerometers, gyroscopes and magnetometers, and
get better performance on common human activity recognition
tasks (Jiang and Yin, 2015; Ravi et al., 2016). However, it is still
challenging to overcome the need for large amounts of anno-
tated training data due to the use of supervised deep learning
techniques.

Singh et al. (2017) have addressed this limitation by utilizing
the knowledge from CNNs pre-trained on image data for their
sensor-based classification task. They linearly transfer 2D pres-
sure value mappings from force-sensitive resistor fabric sensors
into gray-scale images. By using a pre-trained CNN as a feature
extractor, they unify the feature extraction process for pressure
sensor data to better identify users from their footsteps. Our
previous work also visualizes binary event sensor data in a smart
home environment into color images and applies a customized
CNN for the classification task (Jiang et al., 2020). We consider
this work a precursor of the VLAIR approach since we use also
the transformation of data into images to let a computer vision
algorithm perform classification. VLAIR can be seen as a general-
ization of this approach in which data does not need to be strictly
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spatial (as in the grid-arranged pressure map of Singh et al.
(2017)), and can instead be more abstract, visually representing
characteristics of the data that are not explicitly spatial in nature
(e.g., the duration or sequence of activation of sensors).

2.4. Image-based transformation of abstract data for learning

Another stream of the research is to visualize traffic data
into heatmaps for the prediction task. Zhang et al. (2017) have
generated heatmaps to visualize inflow and outflow of grids
in a region based on mobile phone signals; that is, how many
people leave or enter a grid during an interval. They have applied
deep spatio-temporal residual networks (ST-ResNet) for crowd
flow prediction. Similarly, Zeng et al. (2020) have also generated
choropleth maps on tax transaction data and applied the same
ST-ResNet for traffic prediction. More importantly, this work has
allowed interactive visual exploration which benefits domain ex-
perts to perform visual analytics and collaboratively develop deep
traffic prediction models. Li et al. (2018) have visualized Multi-
player Online Battle Arena (MOBA) game data into a matrix and
employed interactive analytics with machine learning to analyze
the game performance and collaboration.

More recently, Chen et al. convert the software application’s
binary files into grayscale bitmap images that were then fed into
a deep learning algorithm for classification as malware (Chen,
2018). They argue that, by leveraging mostly a pre-trained com-
puter vision deep learning model that just trains a fully connected
layer at its end, they can achieve higher accuracy classification
than with traditional ML methods. They consider this an appli-
cation of the concept of transfer learning, because the network
is pre-trained with natural images but then applied to a different
domain (malware detection). A few other similar examples follow
a similar approach, but use different kinds of visual images.
For example, Hatami et al. (2018) have transformed time-series
data into recurrence plots and then apply CNNs, obtaining better
performance than with an SVM classifier on SIFT, Gabor and LBP
features. They have followed the work by Wang and Oates (2015),
which have used Markov Transition Fields and Gramian Angular
Field images to train Tiled Convolutional Neural Networks. Ah-
mad and Khan (2018) have processed depth data from a Kinect
sensor into Sequential Front view Images and inertial data into
signal images to feed AlexNet (Krizhevsky et al., 2012) and a CNN
in parallel to classify human activities.

We consider the above work as examples of the VLAIR ap-
proach because they leverage transformations into images of
data that is non-spatial in nature to be able to apply computer
vision algorithms (see Section 5 for a more detailed explanation
of the approach). However, in this paper we will argue that
visualizations are not limited to this type of frequency transfor-
mations and can leverage instead experience from the area of
visualization as applied for humans. Simultaneously, our work
argues that there is value in sharing representations that are both
interpretable by the human visual system and machine learning
algorithms.

3. VLAIR definition and main terms

We define the VisuaLizations As Intermediate Representation
(VLAIR) as the approach to Machine Learning that uses abstract
spatialized transformations of data (i.e., visualization mappings)
to generate bitmap images that are used as input to computer
vision learning algorithms. This approach is applicable to classi-
fication problems (the main focus of this paper), but could also
be applied to other tasks such as clustering (i.e., unsupervised
learning). The bitmaps that are generated from the data using the
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visualization mappings are visualizations of the data and, collec-
tively, form the intermediate representation of the data referred to
in the name of the technique. The visualization mappings that
determine how the data is transformed into visualizations can
be designed by a visualization expert (a human) or automatically
through an algorithm.

The mappings can be designed to optimize the ML task but,
crucially, can also be optimized for human perception, or both.
Specifics about how mappings affect visual efficiency are in the
next Section. The intermediate representations are consumed by
the generated CV model to perform automatic classification (or
other tasks). The CV model is, in turn, the output of the training
process specified by the computer vision deep learning pipeline,
which uses also (possibly labeled) intermediate representations
as input.

4. VLAIR visualizations

As discussed above, the core of the VLAIR technique is to
transform the raw data into visualizations. This section details
how we transformed the data from our specific domain into
visualizations. A very large number of combinations of mappings
are possible (Xiong et al., 2021), therefore a visualization is de-
termined by a designer (human or machine) through their choice
of mappings, which in turn, determines the effectiveness of the
visualization for certain observer tasks. For example, designers
might choose to map the dimensions of the data that they want
to emphasize to the horizontal and vertical positions of visual
objects (e.g., circles, dots, lines) in the plane, which have been
shown to be the most powerful visual variables (or channels) for
human perception of quantitative data (Heer and Bostock, 2010).
VLAIR’s main difference from ordinary visualization is that one of
the observers is a machine-vision algorithm rather than a human;
nevertheless we used simple mappings that we know would be
reasonably acceptable for people as a starting point. The rationale
is that since the structure of a convolutional neural network is
inspired by the human visual cortex (Fukushima, 1980), visual
stimuli that are known to work for humans could remain ef-
ficiently perceivable by the similarly structured CV algorithms.
Understanding, optimizing and automating the choice of map-
pings for the differences between humans and algorithms is a
promising avenue for future research, but out of the scope of this

paper.
4.1. HAR and sensor data

The section will briefly introduce the problem of HAR and
the type of sensors used, which motivates our visualization tech-
niques. HAR is a classification problem in which the input is
the timestamped stream of data from sensors and the output is,
for any given point in time, the name of the activity that was
being carried out at that time (usually from a pre-determined
set of existing activities). In this paper, we mainly focus on
binary event-driven sensors, which report ‘1’ or ‘ON’ when be-
ing activated. Examples include RFID sensors that are activated
when a tag is in close proximity (Logan et al., 2007), infra-red
passive motion sensors being activated when a user is in front of
them (Cook and Schmitter-Edgecombe, 2009), or switch sensors
that indicate the state of physical objects, such as whether a
cabinet door is open or closed (van Kasteren et al., 2011). These
sensors can unobtrusively monitor users’ activities and can be
deployed on a wide range of objects. The raw sensor data consists
of a temporally ordered sequence of binary sensor events that
are annotated with activity labels. Fig. 1(a) presents an example
of a deployment of these binary sensors in a home setting and
Fig. 1(b) presents an excerpt of sensor data and annotated activity
labels.
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(a) Spatial layout
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Date Time Sensor ID Sensor Value Activity Label

16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009
16/10/2009

03:55:53
03:55:58
03:56:05
03:56:07
03:56:08
03:56:09
03:56:11
03:56:13
03:56:18
03:56:20
03:56:22
03:56:35
03:56:38
03:56:50
03:58:14
03:58:26
03:58:28
03:58:36
03:58:42
03:58:44
03:58:53
03:58:53
03:58:53
03:58:53
03:58:54

M021
M021
M028
Mo028
Mo020
mo28
M028
M028
M020
M028
M025
Mo025
MO013
M013
M013
M013
M025
M025
MO028
M020
M021
M020
M020
mo28
MO021

ON Bed_to_Toilet begin
OFF
ON
OFF
ON
ON
OFF
ON
OFF

OFF
ON
OFF
ON
ON
ON
OFF
ON
OFF
OFF

Bed_to_Toilet end

Sleep begin

(b) Raw sensor data

Fig. 1. Spatial layout and the raw sensor record of the CASAS Milan dataset (Cook and Schmitter-Edgecombe, 2009).

4.2. Data pre-processing and organization

We consider two main visualization approaches. The first,
and simplest, which we refer to as static visualizations, segments
sensor events into 60-second slices and generates a single image
for each slice that represents the full time slice. Previous work
(e.g., Krishnan and Cook, 2014) has found that 60 s are appropri-
ate for this kind of classification task in this kind of data; smaller
periods do not capture sufficient events to successfully differ-
entiate activities, and longer periods are detrimental to timely
prediction and may contain data from multiple activities. The ad-
vantage of this approach is that the learning architecture required
to process a single image is simple. Note that representing timing
within the time slice is still possible. For example, it is possible to
color different elements of the visualization that represent events
according to how early in the 60-second period they took place.

The second approach, which we refer to as animations splits
each 60-second slice into a further six sub-intervals which are
visualized separately in the same way as with static visualizations,
but are fed as a sequence or animation of images to the machine
learning architecture. This approach is inspired by techniques of
small multiples and animation used to visualize dynamic systems
in visualization (e.g., Tversky et al.,, 2002). Animations encode
timing more explicitly but they require a DL architecture that can
process temporal signals (we discuss the requited architectures in
detail in Section 5). Fig. 3 illustrates the difference between the
two approaches.

4.3. Visualization design (mappings)

We iteratively developed a series of six initial visualization
types in collaboration with one of the authors, who is a visual-
ization practitioner and researcher. An initial session of approx-
imately 1 h with the visualization researcher provided the base
for an original set of four basic visualization types. An additional
two visualization types were designed with further suggestions
from fellow visualization experts.

The mappings are chosen to represent the features of the data
that we find most promising a priori (e.g., the sensor layout, the
activation ratios of the sensors, the sequences of activation) with
visual variables that are most effective for humans according to
best knowledge in information visualization (Stoiber et al., 2022)
and empirical research (Liu et al., 2021). Position in the 2D plane
usually ranks top in lists of visual channels ordered by efficiency
and accuracy, therefore all our visualizations map the position of
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sensors to the location of visual elements in the 2D visualization
(the 2D location visual variable). This is also a mapping that has
been used in the past for a similar purpose (Singh et al., 2017)
and that is understandable by human observers.

The mappings and visualization types presented below are
only a small fraction of what is possible; they provide an initial in-
formed guess of what can work, based on what works for humans.
All our visualizations are based on assigning the spatial layout of
sensors to horizontal and vertical position in the image. We then
progressively generate other variants by adding information on
sequences and sensor activation ratios, and temporal information
through additional visual variables (see Table 1). Many other
visualizations are possible, but their systematic exploration is
outside the scope of this paper.

The subsections below describe the mappings that we have
tried, except for the spatial mapping already described above,
which all visualizations use. For reproducibility, the code to gen-
erate each visualization type is in the supplementary materials.
Several mappings are combined in different ways to create the
five visualization variants displayed in Fig. 2.

4.3.1. Sensor activation to circle radius

For each sensor i out of S total sensors in the pre-determined T
interval we place a circle of radius r;, determined by Formula (1),
where k denotes the number of times that the ith sensor is
continuously being recorded as active, and tl." is the time duration
of the kth time segment, NEI’HT) is the number of records in the
time interval (t,t + T), and ryp,se i the pre-defined minimum
radius for a visiting sensor point, which is set as 2 in our design.

ko k(E,E4+T)
et

T
All mappings (Fig. 2, columns 1 to 5) use this.

ri(t,t+T) — * Thases (1 < k < NEt,H—T))

(1)

4.3.2. Node transitions to width-variable traces

We encode sequences of events by drawing traces. Considering
each activated sensor as a node, nodes activated consecutively
draw a line between the positions of these nodes. The thickness of
the line between nodes i and j varies according to Eq. (2), where
Wpase 1S the pre-defined minimum width (set as 2 in our design)
for a line indicating one-time visit and N;; is the total number of
visits between sensor i and sensor j in a T-length interval.

(2)

wij = Njj * Wpase

The visualizations of columns 1 to 4 in Fig. 2 use this.



A. Jiang, M.A. Nacenta and J. Ye

Table 1
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The different mappings (rows) that are applied to the different visualization types that we have tested (columns). T stands for traces,
R for Room shape shadows, DMT for Day and Minute Time, and BC for Bézier Curve.

Visualization type

T DMT RT RT+DMT RT+DMT+BC
Sensor x,y — Image x,y v v v v v
o Sensor Activation — Circle Radius (4.3.1) v v v v v
£ Node Transitions — Width-variable Traces (4.3.2) v v v v
% Node Transitions — Curvature-variable Traces (4.3.3) v
s Time of Day — Color (4.3.5) v v v v v
Room of Sensor — Room Shape Shading (4.3.4) v v v v
Full Timestamp — Color (R,G,B) (4.3.6) v v v
T DMT RT R+DMT R+DMT+BC
Kitchen_Activity
- (V-4 (-4 (V-4 @
Morning_Meds
B A

Leave_Home

Chores

Dining_Rm_Activity

Fig. 2. Summary of the transformed images for a collection of activities.

Image

Animation

Fig. 3. Static visualization (left) compared to the sequence of visualizations with the animation approach (right) for an activity “Housekeeping” with the R+DMT+BC

visualization type.

4.3.3. Node transitions to curvature-variable traces

The straight lines described in Section 4.3.2 can often overlap
if there exist multiple visits between the same pair of sensors.
To separate these traces, we provide an alternative that uses
curved connections between sensor locations with curvatures
progressively increasing when the same pair of sensors is acti-
vated multiple times. Here we employ Cubic Bezier Curves which
is defined by 2 target points (s; and s,) and their corresponding
control points (c; and c). The line between s; and c; is the
tangent of the curve on sy, whose distance determines how long
the curve moves into direction c; before turning towards s,. Here
we use the distance to encode the count of visits between two
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/
sensor points. Let Ns[f_t)]SZ be the count of visits from a sensor point

s1 to s, during the interval [t,t'], where t < t' < t + T. The
distance between c; and s; linearly increases with this count of
visits, which is defined as follows:

’ !
ditl = Ns[lti]sz * dpase, (3)

$1—>S2

where dpase is the pre-defined minimum distance for the control
points indicating one-time visit (set as 0.1 in our design). With the
increase in the count of visits, we can separate the visits between
the same pair of sensor points.

With cubic Bezier curves we can encode the change rate of a
sensor activation. For example in Fig. 4, the angle a; is between
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t1, Sq
1, S»

—>

Fig. 4. A Cubic Bézier curve. The text box represents the sensor activation records:

activated. The righthand side visualizes the corresponding cubic Bézier curve.

the line s; — c¢; and the angle is linearly proportional to the
elapsed time before the current sensor activation s;. Let ty be the
timestamp on a previous sensor activation, t; be the timestamp
that a sensor s; becomes active and t, be the timestamp that
another sensor s, is active (i.e., a trajectory from s; to s,), then
the angles a; and a, are calculated as

th —to

T
th —tq
. 5
. ©

To further make the trajectory more visible, the visits from s,
to s; will go under the line s; — s;; that is, the same angles but
minus 7.

The visualization of column 5 in Fig. 2 uses this.

(4)

aq

ap

4.3.4. Sensor location context to room shape

Sensors are located in rooms, which are useful delimiters of
human activity. We add gray shadings of the areas of all rooms
which have at least one of its sensors activated in the correspond-
ing period. RT, R+DMT, and R+DMT+BC, shown in Fig. 2, columns
3 to 5, use this.

4.3.5. Time-of-day to color

Time of day might be relevant for distinguishing activities with
similar sensor activation; e.g., preparing breakfast and dinner
typically occur at different times, even though they might trigger
a common set of sensors in the kitchen. Therefore we encode
time-of-day information by drawing all elements in the image
with a color that corresponds to the time of the day. The colormap
is taken from the Matplotlib built-in colormaps,’ where we select
24 different color levels from blue (early morning) to red (late
night). DMT, R+DMT, and R+DMT+BC, shown in Fig. 2, columns 2,
4 and 5, use this.

4.3.6. Full timestamps to color

More granular time information might be useful for distin-
guishing some activities from others. For example, the traces of
entering and leaving the house might look similar, but the order
in which sensors are activated will be reversed. In this mapping
we reserve the Red channel and Green channel of the image to
represent the hour of the day (24 levels) and the minute within
the hour (60 levels) respectively. The blue channel represents
the second within the visualization’s represented period, with
specific nodes being more or less blue depending on whether they
are activated at the end or beginning of the period. This color
coding on traces is shown in Fig. 2, columns 2, 4, and 5.

5. Machine learning architectures

Our proposed approach takes raw binary sensor data as input,
segments them into fixed intervals, and transforms each segment
into a VLAIR static image (static) or, alternatively, forms a short
sequence of shorter static images (animation). These two sources

T The matplotlib build-in colormaps can be access at: https://matplotlib.org/
tutorials/colors/colormaps.html.
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at the timestamp t;, a sensor s; is activated; and the next timestamp t,, s, is

of input have then to be processed with a machine learning work-
flow that outputs a model to classify static images or animations
accurately. In this section we describe the main architectures
and networks that we implemented. We considered three main
elements to combine in the architecture: a CNN, a RNN and an
attention mechanism.

Convolutional Neural Network We aimed first at a relatively
lightweight architecture that could run on a resource-
constrained device. A small-sized model requires relatively
short training time to converge and, in our case, we only
need to deal with simple images that largely consist of
primitive shapes such as curves, rectangles, and circles.
Driven by this purpose, we designed a CNN composed of
three 2D convolutional layers each followed by a rectified
linear unit (ReLU) and a max pooling layer, then a dense
layer followed by a softmax classification layer.

Recurrent Neural Network Our area of application (HAR) has
a temporal component, since activity patterns temporally
evolve governed by the motion of inhabitants. A natural
solution to be able to classify the animation visualizations
is to combine static image features with Recurrent Neural
Networks (RNN) for sequence pattern learning between
consecutive frames (Wu et al., 2017).

We explicitly model the VLAIR animation as an ordered se-
quence of frames by employing a Long Short-Term Memory
(LSTM) network (Fan et al., 2021) whose input is the frame-
level CNN features; that is, CNN outputs are processed for-
ward through time and upwards through stacked LSTMs. A
final softmax classifier is added to make a prediction.

Attention Mechanism One important property of human per-
ception is that humans tend not to process the whole scene
in its entirety at once. As we can see in Fig. 2, the activity
traces in our visualizations only take up a small area of a
VLAIR image and we wanted to explore whether focusing
only on the trace area would improve the activity recogni-
tion. To test that, we consider an attention mechanism that
concentrates on particular areas of an image rather than
treating the whole image equally (Xu et al., 2015).

A general way to do so is to use weighted image features;
that is, multiplying an attention map with the image fea-
ture map. The attention map represents a positive weight
for each spatial area of an image, indicating the impor-
tance of the area to the task. This is often referred to
as soft attention. In contrast, hard attention only samples
one area of an image to attend to at a time, rather than
inputting the whole image. However, hard attention is not
differentiable (Luong et al., 2015) and is computationally
expensive. Soft attention allows regular and easier back-
propagation, as the gradients can be directly computed
through the stochastic process (Xu et al., 2015).

A more recent attention mechanism, self-attention, uses
local receptive fields of convolutional operations (Wang
et al., 2018) to avoid excessively deep networks and im-
prove performance. This could help compute the response
at a position in a sequence by attending to all positions and
taking their weighted average in an embedding space.
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Fig. 5. Overview of CNN-based (upper) and LSTM-based (down) model architectures.

In our experiments we consider a basic soft attention and a self-
attention module as a complement to the underlying CNN and
LSTM neural networks as discussed above.

5.1. Overall architecture

One of the goals of our experiments is to determine what kind
of DL architecture would work best for the two types of input
considered (single images and animations). We combine the three
architectural elements discussed above according to the type of
input. For single-image classification we apply first the CNN and,
optionally, attention layers (no need for temporal networks since
this type of input does not contain sequences). Attention is either
soft attention or self attention. A final fully connected classifier
provides the activity prediction (see Fig. 5 top).

For the animation input, we connect the CNN layers, followed
(optionally) by the attention layers (soft attention or self at-
tention), followed (optionally) by the LSTM layers and a fully
connected classifier at the end as well (see Fig. 5 bottom).

6. Evaluation methodology

To validate the VLAIR approach we design a series of experi-
ments that test the different visualizations types of Fig. 2 against a
collection of state-of-the-art alternatives not based on images, as
well as with different supporting architectures. The experiments
are designed to answer the following questions:

Q1 Which type of VLAIR visualization leads to more accurate
recognition?

Q2 Which DL architecture results in best VLAIR accuracy?

Q3 Does VLAIR outperform existing raw sensor data-based
activity recognition approaches?

The following subsections describe the methodological design
choices for the experiments.
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6.1. Datasets

To demonstrate our approach, we work with three HAR datasets
based on binary event-driven sensors. The state-of-the-art third-
party datasets are from the CASAS project, published by Cook and
Schmitter-Edgecombe (2009) and represent data collected from
three deployments in homes in Aruba, Milan, and Tokyo.2 All
datasets are well annotated with the same procedure (although
with different categories) and contain varied user activities. The
activity labels were produced by the multiple annotators of the
CASAS team using the house plan, sensor positions and forms
completed by the residents with information of the times and
locations of their activities (Aminikhanghahi et al., 2018). Fig. 1(a)
presents the spatial layout of one of the smart home settings
(Milan), with the location of the sensors (marked in red circles).
Fig. 1(b) lists a small subset of the raw sensor data along with
their activity annotation. The activity classes and their distribu-
tion for each dataset can be found in Table 4. We additionally
extracted the relative 2D coordinates of the sensor locations
from the apartment layouts, which are also provided in the
supplementary materials.

In the Aruba dataset, a single elderly woman lived in the
apartment during 2010-2011 and performed daily activities such
as meal preparation, eating, and working. She lived with a dog,
and children and grandchildren visited her regularly. The Aruba
testbed had 31 wireless motion sensors, 4 door sensors, and 4
temperature sensors. We only keep motion sensors and door
sensors that are relevant to this study. The Milan dataset was
collected in the home of a female adult and a dog volunteer in
2009 through 28 wireless motion sensors. Her children visited
on several occasions. In the Tokyo dataset, the apartment housed
two residents (R1 and R2), who performed their daily activities
including working, preparing meals, and sleeping (for this reason,
we refer to this dataset as the Twor dataset). Real-world envi-
ronments usually contain multiple users and recognizing multi-
user concurrent activities is essential for scenarios such as smart

2 The three CASAS datasets can be accessed at http://casas.wsu.edu/datasets/.


http://casas.wsu.edu/datasets/

A. Jiang, M.A. Nacenta and J. Ye

Table 2

CNN configuration.
Type Configurations
Input N x M x 3 image
Convolution Filter: 64, Kernel size: 3 x 3, Stride: 1
Max pooling Kernel size: 2 x 2, Stride: 2
Convolution Filter: 64, Kernel size: 3 x 3, Stride: 1
Max pooling Kernel size: 2 x 2, Stride: 2
Convolution Filter: 128, Kernel size: 3 x 3, Stride: 1
Max pooling Kernel size: 2 x 2, Stride: 2
Fully connected 512 neurons
Softmax C neurons

homes. However, recognizing the activity of two people through
identity-agnostic sensors is challenging, and it mainly relies on
learning the subtle differences between users when they perform
the same activity (Ye et al., 2015).

We deliberately select these datasets because of the density of
sensor deployment and because they are well annotated with a
wide range of activities. The evaluation on these datasets will help
us to understand (1) whether our proposed method generalizes
to different smart home datasets, and (2) how the performance
compares to state-of-the-art methods when noise is present in
the normal sensor readings; e.g., the dog’s movement and family
visits can trigger abnormal sensor activation that is inconsistent
with usual activity patterns.

6.2. Comparisons

To address the questions in the previous section we have
to assess how VLAIR approaches compared to non-VLAIR (base-
line) approaches. Within VLAIR approaches, we also want to
know whether single images work better than animations and
whether attention mechanisms (soft-attention or self-attention)
help. Finally, we intend to assess which of the VLAIR visualiza-
tions proposed (T, DMT, RT, RT+DMT, RT+DMT+BC) works best.
To provide a fair assurance that VLAIR outperforms non-VLAIR
approaches, we have to cover a sufficient range of non-image-
based (non-VLAIR) approaches and architectures. Even though
there exist no state-of-the-art models for direct comparison to
VLAIR, we consider deep learning architectures of comparable so-
phistication to the ones used with VLAIR (LSTM and CNN), as well
as classical supervised learning algorithms (K-Nearest Neighbors,
Support Vector Machines and Random Forests). For the same fair-
ness and generalizability reasons, we consider three types of data
representations (Raw, Mutual Information, and Location+Time)
for each one of the non-VLAIR algorithms (further details on the
choice of baselines for comparison are in Section 6.4).

Because the number of combinations is too large to present
or compare, we do not provide a fully crossed measurement of
all the possibilities. Instead, we often select the best perform-
ing visualization-model-transformation-architecture of a certain
category, e.g., the best VLAIR approach, and report it when ap-
propriate.

6.3. Hyperparameter setting

Achieving good classification with image- or non-image-based
DL approaches requires some fine tuning of the parameters and
hyperparameters of the algorithms and architectures. We fol-
low the state-of-the-art fine-tuning methodologies on all the
approaches, and more details can be found in our supplementary
file. We summarize our setting in Table 2.
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Table 3
Key statistics of the datasets and their corresponding baseline representations.
Feature Dimension
D No. of | No. of Cl
ataset RAW ™I LOC+TIME o. of Instances o. of Classes
Aruba 31 31 913 217,407 11
Twor 43 43 847 82,283 23
Milan 28 28 414 69,372 15

6.4. Baselines

Regarding non-VLAIR approaches, we consider baselines from
two orthogonal dimensions of variation: data representation and
model type. Data representation refers to the feature set that
is provided to the machine learning algorithms. We consider
three alternatives: raw (RAW), location and time (LOC+TIME),
and Mutual Information (MI). The RAW representation contains
activation intensity for each sensor in each interval, as described

in Eq. (6).
N; P
L ifie[1,5]
pi= X (6)
0 otherwise

where N; is the number of the times that the ith sensor is
activated during the interval.

The LOC+TIME representation provides additional spatial and
temporal information in an equivalent way to the VLAIR ap-
proaches by adding sensor coordinates, room coordinates, hour
information, and transitions (equivalent to traces) information to
the data already in RAW. Finally, the MI representation encodes
the contribution of each sensor event based on temporal and
sensor mutual information, as described in Krishnan and Cook
(2014). In this approach, temporal dependency measures the con-
tribution of a sensor event in a segment based on its temporal
distance to the last event in the segment and sensor dependency
measures the probability of two sensors occurring consecutively.
Differently from the RAW representation, which counts sensor
events, the MI feature vector weighs the influence of sensor
events based both on their temporal dependency and sensor
mutual information. Table 3 summarizes the key dimensions of
the three representations.

The other orthogonal dimension concerns the model type,
which is coupled to the classification algorithm. We consider
the following model types, some of which have been previously
tested on this kind of data:

e classic supervised learning: Naive Bayes, K Nearest Neighbors
(KNN), Classification And Regression Tree (CART), Support
Vector Machine with linear and RBF kernels (SVM, SVM-
RBF), and Random Forests (RF). All implementations come
from the scikit-learn library (Pedregosa et al., 2011). Because
CART and linear-kernel SVM results are much poorer than all
other approaches, we omit them from the result reporting
and the discussion.

e deep learning: CNN and LSTM. The designed CNN is com-
posed of three groups of convolutional layers each of which
consists of a 2D convolutional layer followed by a max
pooling layer, a dense layer with 512 neurons followed by
a dropout layer, and a softmax classification layer. Besides
CNN, we also design a LSTM which is placed after the first
fully connected layer of CNN. We have experimented with
various numbers of layers and memory cells, and chose to
use three stacked LSTM layers, each with 512 neurons. We
use the same preprocessing criterion for the raw sensor
data. That is, n individual sensor segments are inputs into
n convolutional networks which are then connected to a
three-layer LSTM, in which the output from one LSTM layer
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Fig. 6. Comparison of performance on different VLAIR mappings. All the displayed mappings are trained with the CNN+LSTM architecture.

is input for the next layer. A dropout layer is added and a
dense layer provides the final predictions of the model.

For both CNN and LSTM, we have used the same methodol-
ogy as VLAIR for grid search on the hyperparameters such
as the number of neurons and layers, and learning rate. The
final configuration is selected to balance the accuracy and
computation efficiency.

In summary, we consider 3 classic machine learning tech-
niques KNN, SVM, and RF, and 2 deep learning techniques CNN
and LSTM. Each technique will be applied to 3 feature represen-
tations: RAW, MI, and LOC+TIME. In total, we compare VLAIR with
15 models on raw sensor data.

6.5. Validation methodology

For each of the VLAIR techniques, we run 5-fold cross valida-
tion, which is considered appropriate for long-term datasets and
has been applied on the same datasets (Feuz and Cook, 2017; Ye
et al., 2015). The validation set is obtained by splitting the training
data (i.e., the K-1 folds) into 80% for model training and 20% for
validation.

6.6. Metrics

We use F1-scores as our main accuracy measure because they
balance precision and recall. More specifically, we use macro F1-
scores (averaging the F1-scores from all activity classes) and micro
F1-scores (averaging across all instances). For every condition we
calculate the scores from the average of 5-fold cross validations.
We run all experiments on the same dedicated machine: an
Intel workstation with a processor i5-8500 CPU @ 3.00 GHz, 6
cores and 64 GB memory with a NVIDIA Quadro p6000 GPU, and
measure execution times.
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7. Results

Here we present the main findings from the experiments
grouped in three subsections corresponding to the three ques-
tions in Section 6. First we address the issue of what visualization
will produce the most accurate results, then which architec-
tures support this best, and then we compare the best VLAIR
results with non-VLAIR approaches. A final subsection describes
our execution time measurements.

7.1. Comparisons of VLAIR visualizations (Q1)

Fig. 6 visually summarizes the F1-scores of the CNN + LSTM
VLAIR architecture trained with different VLAIR mappings of the
animation type.> We present the F1-scores on each class and the
averaged micro and macro F1-scores at the end for each dataset.
Among all VLAIR variants, the RT+DMT+BC visualizations offer the
best micro and macro measures of accuracy for all the datasets.
R+DMT+BC is most accurate in 39 of the 49 classes across all
datasets.

Gray-scale sensor traces, T and RT, perform worst, and among
them, adding room shape does not improve the accuracy much,
which does not support our original assumption. There are two
significant improvements in DMT (which encodes temporal knowl-
edge of sensor traces) and in BC (which separates overlapping
traces). Both of them provide more information about human
movements in relation to the activity, including at what time
of a day an activity is performed, between which areas the
movements transition, and how often transitions between certain
areas take place.

To further explore the impact of different visualization ele-
ments, we have experimented with different resolution sizes and
different color transparency degrees. Fig. 7 compares F1-micro

3 This represents the most sophisticated architecture. We selected this one
for the VLAIR visualization comparisons based on preliminary tests on subsets
of the available datasets.
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and F1-macro scores with these settings on the Milan dataset.
As we can see in Fig. 7(a), with the increase of image size, both
F1 scores improve and converge around 200 x 200. Also the
training with larger images seems more stable and converges
better. We also experiment different transparency degrees on the
lines of visualizations of the Milan dataset. Fig. 7(b) shows that
the less transparent the lines, the higher the recognition accuracy.
These two experiments have confirmed that more information in
visualization will lead to better classification performance.

7.2. Comparisons of VLAIR DL architectures (Q2)

To select the most appropriate VLAIR architecture we compare
the performance of the best performing visualization (RT+DMT+BC)
in multiple combinations of the architectural components de-
scribed in Section 5. The accuracy results from an ablation anal-
ysis are displayed in Fig. 8. These measurements correspond to
architectures where certain components are removed so that we
can assess the contribution of that component towards accuracy.
The results show that with the RT+DMT+BC visualization the
addition of the LSTM component results in increased accuracy.
Fl-macro scores with CNN+LSTM are 3, 4 and 13 percentual
points higher than the best non-LSTM architecture on the Milan,
Twor, and Aruba datasets, respectively. Against our expectations,
adding an attention mechanism (self or soft) resulted in slightly
reduced accuracy across the board.
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7.3. Comparisons of VLAIR with baseline approaches (Q3)

We compare a selection of the best VLAIR models with the
baselines in accuracy and execution times of the different com-
putational elements of the workflow. The VLAIR architecture with
CNN+LSTM on animation input has shown to be the best in the
earlier experiments.

Table 4 shows a performance overview of the conditions in our
experiments. We present F1-scores on each activity with activi-
ties ordered by frequency. The table shows 5 VLAIR visualizations,
and 15 non-VLAIR conditions (3 data representations x 5 model
types) in columns. We compare the results on each class on all
the datasets and highlight the best F1-score on each activity class.
As we can see, VLAIR has outperformed the other comparison
techniques on most of the individual activities and the overall
accuracy.

Fig. 9 summarizes this data in visual form but shows only
the best variants in each category. The best accuracy overall
corresponds to VLAIR. The best visualization (R+DMT+BC) has
very high accuracy, slightly above than the second visualization
VLAIR R+DMT, and much better than RF LOC+TIME, which was
the best of the non-VLAIR alternatives by a substantial margin.
The VLAIR CNN-only architecture (with single image input) is
also consistently better than any of the non-VLAIR alternatives,
including those with LSTM elements, but the difference is not that
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Table 4
F1-scores of VLAIR mappings and baseline approaches. For each activity, we highlight the best F1-scores.
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Fig. 9. Fl-scores for VLAIR R+DMT+BC (violet), CNN+LSTM (orange), CNN (red) and RF (green) on LOC+TIME sensor features. Activities are ordered from left to right
in order of frequency (indicated below activity name). (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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Welch’s t-test statistics and p-values comparing VLAIR and the baselines in F1-scores. * means
statistically significant. All tests are run in R version 3.3.2.

b Aruba Milan Twor
- t(11) p-value t(15) p-value t(23) p-value
LOC+TIME 3.13 0.01066* 3.6 0.00288* 3.17 0.004425*
LSTM Mi 9.84 0.0000018* 9.3 0.0000002* 4.57 0.0001511*
RAW 3.49 0.005868* 3.72 0.002279* 4.51 0.0001755*
LOC+TIME 3.63 0.004617* 4.34 0.0006727* 3.23 0.003823*
CNN Mi 9.95 0.0000017* 8.72 0.0000005* 5.42 0.000019*
RAW 3.75 0.003793* 4.3 0.000738* 5.2 0.0000324*
LOC+TIME 2.85 0.01737* 4.12 0.001038* 2.7 0.0131*
KNN Mi 16.95 0* 6.62 0.0000115* 6.33 0.0000022*
RAW 3.03 0.01271* 3.8 0.001933* 3.53 0.001872*
LOC+TIME 3.21 0.009359* 3.79 0.001987 4.38 0.0002404*
SVM Mi 14.27 0.0000001* 8.24 1.00E-06 7.67 0.0000001*
RAW 3.53 0.00549* 3.73 0.00223 4.57 0.0001497*
LOC+TIME 2.82 0.01805* 3.76 0.002115 2.62 0.01573*
RF Mi 14.15 0.0000001* 7.16 4.90E-06 4.85 0.0000759*
RAW 2.96 0.0144* 3.86 0.001734 4.15 0.0004139*

evident (Fig. 9). Among non-VLAIR approaches, LOC+TIME repre-
sentations are the best, and the MI sensor data representations
the worst.

Looking at individual datasets, VLAIR R+DMT+BC achieves the
best scores for each datasets. Table 5 shows the results of one-
sided paired Welch's t-tests (with « = 0.05) comparing the
Fl-scores on each activity between the best VLAIR technique
(R+DMT+BC with CNN+LSTM and animation input) and all the
other techniques in non-VLAIR groups.

7.4. Execution times

Training times are expectedly large for deep learning models.
For the most accurate VLAIR model the per-epoch training time
is 351 s, 217 s and 558 s for Twor, Milan, and Aruba respectively.
The average total training time is 9 h, 6 h, 17 h respectively. This is
larger than the non-image-based deep learning models (5s, 6s and
12 s per epoch; 0.2 h, 0.2 h and 0.6 h total for the LSTM). As ex-
pected, total training times for classical models, which tend to be
computationally cheaper, are much lower (Random Forests, the
best of these, had training times of 120 s, 120 s and 720 s for the
three datasets respectively). In terms of comparing classification
time, for the most accurate VLAIR model the average per-image
classification time was 0.0006s, and 0.0002s for the non-VLAIR
model across all three datasets. Per-image classification time for
the best classical model is 0.0000003s on average, also much
shorter than with the deep models.

8. Discussion

Our tests comparing different visualizations show that there is
some variation in accuracy across visualizations. Unsurprisingly,
the richest and most sophisticated visualization resulted in the
best results. Specifically, some visualization techniques such as
avoiding overlap between transition traces through Bezier curves
with variable curvatures seem to result in a substantial improve-
ment. Interestingly, this is a mapping that we have developed
when realizing, as viewers of example visualizations, that sim-
ple straight traces would occlude important information about
the temporal relationships of multiple sequential activation of
Sensors.

In our tests, the best and the worst mappings are 17 to 19
percent points apart in the F1-macro scores, with more modest
differences between 1 and 10 percent points in F1-micro scores.
This suggests that the design of visualizations can have a substan-
tial effect on the performance, yet even the simplest visualiza-
tions showed performance comparable to non-VLAIR approaches.
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Our results shows that a competent, but simple, visualization ap-
proach will achieve comparable results to non-VLAIR approaches,
but to get a boost on performance it is necessary to design more
sophisticated visualizations.

The results also indicate that the animation data input, cou-
pled with a temporal architecture, results in better classification
accuracy. There is an interesting parallelism here with visualiza-
tion for humans: dynamic phenomena is often represented with
visualizations that split temporal states into many sequential
representations (small multiples), animations, or even interactive
time slices (Tversky et al.,, 2002; Lee et al,, 2020). Note that
it is not strictly necessary to encode time aspects in this way
(e.g., some of our own visualizations already encode the time di-
mension as color, and many visualizations encode time as space;
e.g., timelines), yet the architectures that have explicit temporal
components (LSTM) seem to be able to take better advantage of
this information.

Surprisingly, the attention mechanisms that we have tested
do not provide any obvious benefits in our experiments. This
might be because our particular set of visualizations contains only
basic connections and shapes that trace sensor activation during
short periods of time. Indiscriminate extraction of local features
at frame-level might be counterproductive because subregions of
interest may not always be relevant to the activity at hand.

The key finding from our experiment is that, when comparing
VLAIR and non-VLAIR approaches, the best VLAIR approaches
offer the best classification accuracy. This is despite our best
efforts to find architectures that are comparable in sophistica-
tion and that cover a broad set of non-visual representational
forms. The increase in accuracy due to the use of our top VLAIR
approach, compared to the best non-VLAIR approach is quite
substantial. Accuracy increases of between 14 and 26 percentual
points in Fl1-macro measures and between 1 percentual point
and 8 percentual points in F1-micro measures can easily justify
the additional computational cost of a deep learning approach
in many applications. Nevertheless, if computation time (during
training or for each individual classification) is a more impor-
tant concern, then some classical ML approaches do have an
advantage.

The best VLAIR approaches seem to be particularly good at
picking up infrequent activity classes that many non-VLAIR
approaches do not detect at all. For example, VLAIR correctly
classifies the relatively infrequent (0.27%) Morning_Meds of the
Milan dataset about half the time, whereas non-VLAIR approaches
almost never detect these (see Fig. 11).

The VLAIR approaches seemed also to be able to better distin-
guish the same activity when it was performed by two different
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Fig. 10. Comparison of RT+DMT+BC visualizations on R1 (top row) and R2 (bottom row) eating activities. The examples show that the visual encodings of time and

movement help to separate activities that share similar sensor patterns.
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Fig. 11. VLAIR RT+DMT+BC images on a pair of activities that have similar patterns (Milan dataset). The baseline approaches misclassify ‘Morning_Meds’(first row)
as ‘Kitchen_Activity’(second row) but VLAIR RT+DMT+BC can better distinguish them.

‘ ¢
T ——
R1_Bath R2_Bath

R1_Personal_Hygiene R2_Personal_Hygiene

Fig. 12. Examples of VLAIR RT+DMT+BC images of activities that result in similar patterns in the Twor dataset. The converted images of ‘Bath’ and ‘Personal_Hygiene’
are almost identical, since they happen in the same place (bathroom) and usually at the same time for most of the daily routine. There is not much difference in
their converted images on ‘Bath’ and ‘Personal_Hygiene’, but subtle difference between users on activation patterns (circles) and the users’ daily schedules (trace

color).

residents in the Tokyo dataset (see Fig. 10). The figure hints at
how the color encoding of time, the size of circle-nodes and
the thickness of lines could expose this information efficiently.
Unfortunately, the opposite could also be true; i.e., there might be
patterns that, due to their similarity in spatial and visual terms,
are visually obscured despite having statistically differentiable
characteristics (Fig. 12 might be one of these).

As to the reasons why VLAIR approaches might have shown
these advantages we can only speculate. It is possible that the
spatialization of the data allows the DNN to pick up patterns at
a more superficial level, patterns that could require much deeper

networks when analyzing data that is not previously spatialized.
We also considered the possibility that, as Chen (2018) argues,
that we can leverage existing sophisticated models of vision pre-
trained on large datasets (e.g.,VGG16 (Simonyan and Zisserman,
2014), ResNet (He et al., 2016), MobileNet (Howard et al., 2017),
DenseNet (Huang et al., 2017) and InceptionV3 (Szegedy et al.,
2016)) to achieve better accuracy. This is not the case for our
experiments, in which we do not use this kind of transfer learn-
ing. In fact, we have tried this approach (we used VGG16) and
have found that using a relatively simple CNN network trained
from scratch provides better results. However, it is possible that
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more sophisticated models could deliver better performance.
Specifically, models developed to recognize objects in computer-
generated graphics (rather than natural scenes from photographs)
could be particularly useful.

Finally, it is worth highlighting that the process of coming up
with visual mappings for a given dataset can be considered a
form of feature selection, and hence encodes some level of expert
knowledge about the data as well as about the characteristics of
visual classification.

8.1. Lessons learned for the design of VLAIR mappings

Since we have carried out the experiments described in Sec-
tion 6 we have been experimenting, ourselves and through stu-
dent projects, with applications of the VLAIR technique on binary
sensor data for human activity recognition. Here we advance
some practical and anecdotal experience gathered about how to
design visualization mappings for classification and regression
through CV pipelines. This might support those applying VLAIR
to start from a position of advantage.

e Color encodings, especially if they are subtle, are less effec-
tive than shapes or traces.

e Shapes, traces, and lines seem to work better than points
and isolated circles.

e With a canvas that is so limited in space, dealing with data
with high dynamic range requires careful thought.

e Representations of time-based data through sequences seem
to work better than other—more abstract—encodings, such
as color or thickness.

Notice that some of these might be consequences of the image
representations and architectures that we have chosen for the
CV pipeline; for example, color is split into three channels which
might take more than three layers to integrate meaningfully.

8.2. Limitations

Our set of experiments covers only a particular application
with one type of data. Although we tested three datasets it is
impossible to come to a definitive conclusion about whether a
majority, many, or only specific classification tasks can benefit
from the VLAIR approach. Providing strong evidence for VLAIR’s
advantage would require a very large number of experiments
over many different types of data, even if we only consider
supervised classification tasks. We think that it is unrealistic to
require this kind of evidence at this stage and that cautiously
advocating for the use of the technique is granted by the promis-
ing results shown in our study. There are also several potential
reasons beyond improved accuracy that might be attractive to
practitioners; we discuss those in the next Section.

We are also aware that our coverage of comparison learning
algorithms is not comprehensive. Despite our best efforts, we can-
not rule out that specific non-visual alternative transformations
of the data and other learning algorithms, including other deep
learning pipelines with specific parameters and meta-parameters
(e.g., more layers) might not outperform VLAIR approaches.

8.3. Potential opportunities for better interpretability

Intrinsic to the VLAIR process is the generation of visualiza-
tions from data. If these visualizations can also be efficiently
perceived by humans they open an opportunity for people to find
common ground with the machine learning algorithms. This, in
turn, can help interpretability of the model and offer opportu-
nities for debugging. Consider an example from our application
scenario: if a model often confuses two distinct categories such
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as taking the morning medicines and regular kitchen activity (see
Fig. 11) a technician could visually compare the patterns in the
visualizations of both groups and might be able to detect the
source of the misclassification. Perhaps an additional sensor in
the kitchen could help discriminate the two activities, or perhaps
a different visual mapping could make the two groups more
visually distinctive.

In essence, the shared common intermediate representations
might enable humans to use their own visual system as an ac-
cessible and very familiar surrogate of the computational model
(what Adadi and Berrada classify as post-hoc interpretability
(Adadi and Berrada, 2018), except that the explanatory model
does not have to be designed because it already comes standard
for most humans). It is important to highlight also that using
VLAIR does not preclude other interpretability or explainability
techniques already in use. In fact, it might enable the use of
techniques from CV that are not yet applicable in non-image
data. For example, Selvaraju et al.’s Grad-CAM could highlight the
areas of the visualization that dominate a particular classification
decision hence helping the viewer provide visual explanations for
issues (for other such methods see, e.g., Montavon et al. 2018).

This leads us to three main open research questions: Is human
visual observation of samples or augmented visual explanations
sufficiently accessible for humans to generate useful interpretation of
the model outputs?, Is the human visual system similar enough to the
generated CV model to function as a useful surrogate?, What type of
visualization mappings are good for both human interpretation and
machine learning accuracy?.

9. Conclusion and future work

This paper presents and discusses VLAIR, an approach to ap-
plying deep learning that leverages the strength of data visu-
alization in making inherent features explicit for deep learning
models. We have presented the approach, reviewed the existing
work that uses related principles, and discussed its potential
advantages especially in encoding and uncovering spatial and
temporal patterns that are not immediately visible in raw sen-
sor data. In a comparison with baselines from classical machine
learning and deep learning algorithms we have found that VLAIR
can significantly boost classification accuracy in a human activity
recognition example.

There are several additional avenues of research complemen-
tary to finding answers to the open questions raised above. First,
it is possible to explore whether more sophisticated mappings
from the vast visualization literature could outperform the rel-
atively simple ones that we tested. Second, it is important to
validate with user studies our own experience of the interpre-
tation of visualizations to iteratively design better mappings.
Third, a more customized CV pipeline design might provide a
better foundation for VLAIR approaches. Fourth, we might be
able to leverage differences between machine learning and com-
puter vision algorithms and the human visual system to provide
perception that goes beyond that of a human.
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