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Liang Liang, Rosa Filgueira, Yan Yan, Thomas Heinis

• Three adaptive optimization techniques are proposed to
improve the scalability of stream-based workflows.

• Two techniques are for the static deployment of work-
flows, in which resources are pre-assigned to processing
elements before starting their executions. Both focus on
finding the best resource allocation based on workflows
features.

• The third technique enables workflows to adapt to fluc-
tuations in the data-rate and workloads by assigning re-
sources dynamically to processing elements without stop-
ping their executions.

• Evaluations were performed across several platforms and
applications to test their effectiveness and adaptivity.
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Abstract

This work presents three new adaptive optimization techniques to maximize the performance of dispel4py workflows. dispel4py
is a parallel Python-based stream-oriented dataflow framework that acts as a bridge to existing parallel programming frameworks
like MPI or Python multiprocessing. When a user runs a dispel4py workflow, the original framework performs a fixed workload dis-
tribution among the processes available for the run. This allocation does not take into account the features of the workflows, which
can cause scalability issues, especially for data-intensive scientific workflows. Our aim, therefore, is to improve the performance
of dispel4py workflows by testing different workload strategies that automatically adapt to workflows at runtime. For achieving
this objective, we have implemented three new techniques, called Naive Assignment, Staging and Dynamic Scheduling. We
have evaluated our proposal with several workflows from different domains and across different computing resources. The results
show that our proposed techniques have significantly (up to 10X) improved the performance of the original dispel4py framework.
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1. Introduction

Many scientific fields have become highly data-driven with re-
cent advances in the computational sciences [1]. Areas such
as health, seismology, and social computing have come to rely
on data-intensive scientific discovery as large volumes of data
of various kinds are becoming available. A commonality be-
tween all these disciplines is that they generate an enormous
complex dataset that requires automated analysis, which has
now become a key part of the scientific method, yet remains
a highly demanding data- and compute-intensive process.

Scientific communities nowadays have the possibility to ac-
cess a variety of computing resources and often have computa-
tional problems that are best addressed using parallel comput-
ing technology. However, successful use of these technologies
requires much additional machinery whose use is not straight-
forward for non-experts. Consequently, various scientific work-
flow systems [2] designed for bridging the gap between scien-
tific problems and technologies by automatically handling low-
level data processing have recently emerged [3].

Among them, stream-based workflow systems have been at-
tracting growing attention from both industry and academia by
virtue of their abilities to process unlimited data flows as well as
providing lower latency compared to batch-based systems [4].
Therefore, many stream-based workflow systems have been im-
plemented for solving diverse objectives, including dispel4py
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[5]. dispel4py is a python library for distributed stream pro-
cessing which has been well-developed and gained recognition
of many scientists from different disciplines varying from seis-
mology to astronomy [6, 7]. It offers mappings to several enact-
ment engines, such as MPI [8], Storm [9], or multiprocessing1,
provides smooth transitions from local development to scalable
executions, and reduces the I/O activity by avoiding disk reads
and writes.

For constructing dispel4py workflows, users have to de-
sign, compose and connect different processing elements (PE).
PEs represent the basic computational blocks of any dispel4py
workflow. So users connect PEs as they desire in graphs, also
named abstract workflows.

A data-streaming system typically passes small data units
along its streams compared with the volume of each data unit
(file) passed between stages in task-oriented workflows.

Then, dispel4py automatically maps those abstract work-
flows to concrete ones, depending on the selected enactment
engine. Since abstract workflows are independent of the under-
lying communication mechanism, these workflows are portable
among different computing resources.

However, dispel4py performs a very basic and rigid work-
load allocation by mapping PEs to a collection of processes,
as it is shown in Figure 1. Depending on the number of tar-
geted processes (e.g. 10 and 7 processes in Figure 1), which
the user specifies when executing a dispel4py workflow, mul-
tiple instances of each PE are created to make use of all avail-
able processes. Note that each PE instance runs in a process.

1https://docs.python.org/3/library/multiprocessing.html
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Figure 1: An abstract dispel4py workflow and its default workload allocation using 10 (left) and 7 processes (right). dispel4py evenly distributes the execution
of a concrete workflow on the available processes using a round-robin strategy. Each time a data unit is produced by the PE1 instance, it is sent/streamed to one of
the connected PE2 instances, using a round-robin strategy. Identically, for each of PE2 instances, every time a new data unit is produced, it is sent/streamed to one
of the connected P3 instances, and so on. If we use more processes for executing a dispel4py workflow, the data is more distributed, allowing more calculations
in parallel at the same time, and prevents CPU overloading.

The default workload allocation is performed by dividing the
number of processes by the number of PEs, with the excep-
tion of the first PE, which is always assigned to one process
to prevent the generation of duplicate data blocks. When we
execute the abstract workflow shown in Figure 1, with 10 pro-
cesses (Execution-1), dispel4py assigns three processes (PE
instances) to each PE, whereas if we execute it with 7 processes
(Execution-2) dispel4py assigns two processes to each PE,
with the exception (for both executions) of the first PE. Notice
that in dispel4py workflows, the data is being produced and
processed in real-time while the workflows are running. There-
fore, for our example in Figure 1, only when the workflow is
executed, the PE1 instance starts emitting data and distributing
to the rest of the topology of the concrete workflow.

This default allocation neither takes into account the data-
rate consumed and produced per PE, the execution time per PE,
the number of times that a PE is executed, nor the connections
between PEs, which could lead to a PE needing to be mapped to
more or fewer processes. Furthermore, dispel4py adopts the
static deployment, which means that once a PE is assigned to a
process, we can not do anything about it apart from manually
intervening to stop the current execution and re-assign it.

In this work, we have created two adaptive optimization
techniques for the static deployment of dispel4py: 1) Naive
Assignment; 2) Staging. Both employ different workload al-
location strategies taking into account different workflow’s fea-
tures (e.g. data-rate consumed/produced per PE, PEs execution
time or PEs connectivity).

Another aspect of our work is to enable dynamic deploy-
ment of dispel4py workflows, in which PEs are assigned to
processes dynamically. We have therefore developed the Dynamic
Scheduling technique to enable dispel4py to allocate re-
sources dynamically while a workflow is running. All tech-
niques have been compared with the default workload alloca-
tion and evaluated in two computer infrastructures: An HPC
Cluster (Cirrus), HPC at Imperial College London and a Lap-
top. Two different mappings, multi and MPI are used for the

experiments. We have also conducted an experiment to evaluate
the effectiveness of our techniques under unexpected deviation
of workload distribution.

The rest of the paper is structured as follows. Section 2
presents the relevant background and formulates the research
question. Section 3 presents three workflows: Seismic Cross-
correlation, Internal Extinction of Galaxies and Window Join.
Section 4 presents the different optimization techniques. Using
the previous dispel4py workflows as case-studies, we evalu-
ate in Section 5 the optimization techniques on different plat-
forms. Then, we have extended our evaluations in Section 6
to run our static optimizations using a more complex and re-
cent seismological application. We conclude in Section 7 with
a summary of achievements and outline some future work.

2. Background

This section explains the main dispel4py concepts and intro-
duces the related work about optimization techniques for scien-
tific workflows.

2.1. dispel4py concepts

The most important dispel4py concepts [5] in the context are
as follows:

• Processing element (PE) is the computational activity for
processing a task or transforming data which can be con-
sidered as the node in the workflow graph. PEs are con-
nected by specifying the input and output; the data will
be passed among connected PEs as a stream rather than
using the file in the task-based workflow system.

• Instance refers to the copy of PE that can be executed
by the computing process. A PE could be assigned to
more than one instance. Instances allows us to scale out
a dispel4py workflow. One of the challenges that our
static techniques try to solve in this work is to calculate
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the suitable number of instances per PE (or per partition)
in a workflow, taking into account the processes available
for workflow execution, as well the workflow’s features.

• Connection streams data from one output of a PE in-
stance to one or more input ports on other PE instances.
The rate of data consumption and production depends on
the behavior of the source and destination PEs. Conse-
quently, a connection needs to provide adequate buffer-
ing.

• Abstract Workflow defines the ways in which PEs are
connected and hence the paths taken by data. This is the
workflow defined by the user.

• Concrete Workflow is the directed acyclic graph that is
automatically built by dispel4py during enactment, based
on the abstract workflow. This is the workflow executed
by the compute infrastructures.

• Partition can be conducive to optimize the performance
of the workflow, which can co-allocate multiple PEs into
one process. This forces to run several PEs in a single
process. Currently, the user should define partitions man-
ually. Otherwise, each PE is allocated to one partition
automatically. Figure 3 shows an example of a partition
with three PEs wrapped together. The other challenge ad-
dressed by our static techniques is to automatically create
the most suitable partitions to minimize the communica-
tion time among PEs, taking into account the workflow’s
features.

• Grouping specifies, for an input connection, the com-
munication pattern between PEs. Four different group-
ings are available: shuffle, group-by, one-to-all, all-to-
one. Each grouping arranges that there is a set of re-
ceiving PE instances. The shuffle grouping randomly dis-
tributes data units to the instances, whereas group-by en-
sures that each value that occurs in the specified elements
of each data unit is received by the same instance. In this
case, the effect is that an instance receives all of the data
units with its particular value. Finally, one-to-all means
that all PE instances send copies of their output data to
all the connected instances, and all-to-one means that all
data is received by a single instance.

• Workflow execution time (makespan, runtime), is the time
needed to finish all PE instances in the workflow. In
dispel4py, the workflow execution time varies depend-
ing on the number of processes used for running a work-
flow, obtaining (ideally) a lower execution time when the
amount of resources is increased. The ultimate goal of all
techniques presented in this work is to reduce the work-
flow execution time for a given number of resources.

• Path in the abstract workflow is a sequence of the depen-
dent PEs, which starts at the head PE (a PE that does not
have the predecessors, like PE1 in Figure 1) and finishes
at any of the tail PEs (PEs that are not followed by any

other tasks). The number of paths increases with each
fork in the workflow.

• Path in the concrete workflow is a sequence of the depen-
dent PE instances, which start at the head PE instance,
and finishes at any of the tail PE instances. The results
(output connections) from one PE instance are transferred
to one (or more) of the next connected PE instance(s).
In order to select which PE instance to send the results,
dispel4py usually applies the round-robin technique (de-
pending on the connected PE groupings), and therefore
creates a circulating path between connected PE instances.

One of dispel4py’s strengths is the level of abstraction
that allows the creation and refinement of workflows without
knowledge of the hardware or middle-ware context in which
they will be executed. Users can therefore focus on designing
their workflows at an abstract level, describing actions, input
and output streams, and how they are connected. The dispel4py
system then maps these descriptions to the selected enactment
platforms.

Currently, dispel4py supports multiple mappings, such as
simple, MPI, multiprocessing, among others. dispel4py cre-
ates automatically and at runtime different concrete workflows,
depending on the mapping selected by users. For example,
when users select to execute their workflows with the simple
mapping, dispel4py executes them in sequence within a sin-
gle process. On the other hand, if users select the MPI map-
ping, dispel4py assigns PEs to a collection of MPI processes.
And if the selection is the multiprocessing mapping (also called
multi), dispel4py creates a pool of processes and assigns each
PE instance to its own process.

During enactment and prior to execution, for both MPI and
multi mappings, dispel4py performs an equally and fixed al-
location of processes to PEs, in which each PE is translated into
one or more instances. The number of processes is divided by
the number of PEs, obtaining the number of PE instances which
will be assigned to each PE. The only exception is the head PE,
which will be only assigned to one instance. An example of
the default allocation can be seen in Figure 2, in which three
PEs have been allocated to seven processes (two PE instances
for PE2 to PE4, and one PE instance for PE1) using the mutli
mapping. The limitation of the default allocation is that number
of processors have to be greater (or at least the same) than the
number of PEs. Given this fact, the hardware resources have
to be always considered when designing workflow. More im-
portantly, the default allocation can not always lead to the best
performance in most circumstances, which can be formulated
and proven by following equations (from Equation 1 to Equa-
tion 6).

DAG = G{V, L} (1)

V = {PE0, PE1...PEN−1} (2)

L = {(PE0 → PE1), (PE1 → PE2)...(PEN−2 → PEN−1)} (3)
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Equation 1, 2 and 3 indicate the abstract workflow represented
by Directed Acyclic Graph (DAG) with N vertexes (V) and
N − 1 links (L). To simplify the question, we assume that rela-
tionships to PEs in the abstract workflow are one to one.

E(V) ∝
∼

k
P

, where k is constant (4)

C(L) ∝
∼

P (5)

E(V) in Equation 4 represents the execution time of pro-
cessing tasks in PEs, excluding the communication, which is
inversely proportional to the number of partitions (P). Because,
with the decrease of the P caused by co-allocating PEs into the
same partition, the workload of some processes may increase,
thereby increasing the overall execution time of PEs E(V). By
contrast, the communication cost C(L) of the workflow can be
reduced by the decrease of the P, because the communication
of PEs in the same partition does not result in extra costs (Equa-
tion 5).

E(DAG) = E(V) + C(L)

∝
∼

k
P

+ P , where k is constant
(6)

Therefore, the total cost of DAG (E(DAG)) can be repre-
sented as the function with indeterminate constant k and pa-
rameter P. Both k and P are greater than 0 since the execution
time should be a positive number, and there must be at least one
partition. The function with these conditions has minimal, and
we can thus conclude that the default configuration, which sim-
ply assigns each PE to each process, cannot always be optimal.
Therefore, we propose both static and dynamic techniques for
improving the performance of dispel4py, which is how to find
the optimal configurations.

Figure 2: Example of the default workload allocation. In this example, the user
has indicated to run the workflow using the multi mapping with seven processes.
Each PE instance runs in a different process.

2.2. Related Work
Considerable research efforts have been made by previous re-
searchers to improve the performance of scientific workflows
[10, 11, 12], nevertheless, the problem persists.

We have classified those into two groups: a) optimization
methods and b) scheduling techniques. Among the optimiza-
tion methods, we can find: heuristic, meta-heuristic, greedy,
partitioning, fuzzy and modelling. In comparison, scheduling

Figure 3: Example of a partition in dispel4py. In this example, the user has
defined a partition wrapping together PE2, PE3 and PE4, using 4 processes to
run it. Process 0 executes the PE1 instance, while the other processes (Processes
1, 2, 3) execute a copy of the partition (PE2-PE3-PE4).

techniques are usually classified as either static or dynamic de-
ployment.

We have noticed that scientific workflows mostly use heuris-
tics and meta-heuristics as the optimization method to improve
their performance [13, 14], being Dynamic Constraint Algo-
rithm (DCA) [15] and Workflow Orchestrator for Distributed
Systems (WORDS) [16] two representative examples. DCA is
a user-friendly method for handling issues of bi-criteria of dy-
namic scheduling. However, DCA may need more number of
executions to meet user-defined criteria, such as reliability or
the execution requirements. As for WORDS, this approach de-
tects the discrepant features of Cloud computing and provides
an effective orchestration to achieve a moderate quality of ser-
vice over different resources.

Partitioning methods, such as Multi-Constraint Graph Par-
titioning (MCGP) [17], are also very often used to minimise the
communication cost of scientific workflows. Partitioning meth-
ods are not only used in Scientific workflows, as well in other
Big-Data Frameworks, such as Apache Spark [18]. Apache
Spark applies a partitioning method [19] for grouping a set of
independent tasks into the same Spark job, where all the tasks
have the same shuffle dependencies, reducing the communica-
tions across processes.

A number of meta-heuristics suitable for task scheduling on
heterogeneous resources have been suggested; a comparative
evaluation of twenty different heuristics can be found in [20].
Among these heuristics, the list-based heuristic algorithms, such
as Critical Path on a Processor (CPOP), Heterogeneous Ear-
liest Finish Time (HEFT) [21, 22] have become widely used
for workflow task scheduling, such as the HEFT modification
(GRP-HEFT) presented [23] for minimizing the makespan of a
given workflow subject to a budget limit. A list-based heuristic
first prioritizes the tasks according to a metric such as Upward
and Downward Ranking, then assigns the tasks to the fastest
processors, having the advantage of simplicity and producing
generally good schedules with a short makespan. Genetic Al-
gorithms (GA) have also been widely reckoned as useful meta-
heuristics for obtaining high-quality solutions to a broad range
of combinatorial optimization problems, including the work-
flow task scheduling problem [24].
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Many scheduling algorithms have also been proposed to
optimize throughput or resource utilization for different data
streaming frameworks, such as [25, 26] for Apache Storm [27],
for Apache Spark or for Apache Flink [28]. However, all these
scheduling techniques have been implemented for a particular
data-streaming framework in mind.

While conducting the literature review, we also noticed that
most of the scientific workflows apply a static deployment [13]
since this technique is usually lightweight and easy to imple-
ment. However, to re-balance the allocation performed by a
static scheduling technique, we need to stop the current execu-
tion and re-assign the workload either manually or by applying
an assignment algorithm based on previous executions.

On the contrary, dynamic deployment can re-balance the
workload of scientific workflow on-the-fly, meaning that if a
task needs more or fewer resources, it dynamically scale up or
down without stopping the workflow execution.

In this work, we have used two optimization techniques
(Naive Assignment and Staging) to improve the current static
deployment in dispel4py by taking into account the commu-
nication patterns among PEs trying to place PEs in the same
partitions and assigning the most suitable number of processes
to each partition, applying in each technique a different set of
heuristics. While the Naive Assignment uses a heuristic that
shares some similarities with HEFT, the Staging uses a heuris-
tic inspired by Apache Spark Stage method [29]. Our static
optimization techniques do not aim to schedule the PEs’ execu-
tion order, like previous work, because the order is fixed by the
dispel4py static deployment. Instead, their aim is to reduce
the workflow execution time and to maximize the throughput
by finding find the best configuration of a) partitions (to reduce
the cost of moving data through the network links); and b) the
number of processes assigned to those partitions.

Furthermore, we have also developed a new scheduling tech-
nique, Dynamic Scheduling, to enable dynamic deployment
in dispel4py.

Finally, we would like to highlight that since dispel4py

offers mappings to several engines (e.g. Apache Storm, MPI,
etc.), our proposed techniques are completely independent of
the framework used underneath to run dispel4py workflows,
allowing us to apply our techniques to several enactment en-
gines, and not to specific ones.

3. Use Cases

The following subsections describe the dispel4py workflows
used to evaluate our optimization techniques.

3.1. Seismic Cross-Correlation

The workflow has been designed to monitor and analyze the
geological waveform data from several seismic stations 2. Its
main goal is to assess and forecast the risk and probability of
volcanic eruptions and earthquakes in real-time [6].

2https://www.fdsn.org

Figure 4 illustrates all components of the workflow, which
can be classified into two phases, prepossessing the data col-
lected from stations and calculating the cross-correlation. Each
phase has been implemented as a dispel4py workflow. Dur-
ing Phase One, each continuous time series from a given seis-
mic station (called a trace) is subject to a series of treatments
(all of them included in the Prep composite PE). The process-
ing of each trace is independent of any other, making this phase
embarrassingly parallel. Phase Two pairs all stations and calcu-
lates the cross-correlation for each pair.

In this work, we have selected the Phase One of this ap-
plication and decomposed the Prep Composite PE into several
PEs.

Figure 4: A simplified abstract workflow for seismic cross-correlation.

3.2. Internal Extinction of Galaxies

This workflow has been implemented to calculate the extinc-
tion within the galaxies, which is a significant property in as-
trophysics [30]. This property reflects the dust extinction of the
internal galaxies and is used for measuring the optical luminos-
ity3. This workflow is reusable since it can be regarded as a
prior step for other complex tasks which require this property.

As we can see in Figure 5, this workflow has four PEs. Read
PE loads the input file which stores the coordinates data of in-
terest. Then, Votab downloads the corresponding VOTable 4

from Virtual Observatory website 5 based on those coordinates.
Afterwards, Filt PE parses the VOTable by using astropy li-
brary6and filters the parsed data by selecting needed columns.
Finally, Intext PE calculates the internal extinction based on
data from Filt PE.

Figure 5: Workflow for calculating the internal extinction of galaxies.

3http://amiga.iaa.es/p/1-homepage.html
4http://www.ivoa.net/documents/PR/VOTable/

VOTable-20040322.html#ToC9
5http://ivoa.net
6Python library designed for use in astronomy: https://www.astropy.

org/

5



3.3. Synthetic Workflow - Window Join

We have developed this new synthetic workflow7, which has
a more complex topology than both previous workflows. The
Window Join workflow aims to simulate a fundamental query
operation, window join, in streaming processing, which pro-
duces the result from unbounded streams by using concepts of
the window to limit the scope of data for join [31].

As we can see in Figure 6, this workflow consists of six
PEs connected via a fork-join manner. Read PE loads the data
from Customer and Supplier TPC-H Tables8. Then, data is sent
to FilterCus and FilterSup PEs. FilterCus selects the
data from Customer table, whereas FilterSup retains the data
from Supplier table. CleanCus and CleanSup clean their cor-
responding data received from FilterCus and FilterSup re-
spectively. Finally, the data are joined by Join, which exploits
tuple-slide window to restrict the range of the unbounded data
to perform the join.

Figure 6: Workflow representing the Window Join synthetic application.

This workflow uses the all-to-one grouping for joining
the data from previous PEs. This means, that all instances of
CleanCus and CleanSup send their data to one instance Join
PE. Although Join PE can be assigned to more than one pro-
cess, data are only sent to one instance.

4. Optimizations

This section presents three new adaptive optimization techniques
developed to improve the performance of dispel4py work-
flows. Although we have developed them for dispel4py, they
can easily be applied to other stream-based workflow systems.

Naive Assignment and Staging are in the range of static de-
ployment, while Dynamic scheduling can definitely be regarded
as a dynamic deployment. Figure 7 shows which part of the
life-cycle of dispel4py on which those optimization methods
based and focus.

4.1. Naive Assignment Technique

This technique aims to reduce the overall workflow execution
time by identifying hot connections among PEs and grouping
them together into the same partition. It works offline by analysing

7https://git.ecdf.ed.ac.uk/msc-19-20/s1980912/tree/

master/workflows/join
8http://www.tpc.org/tpch

Figure 7: Overview of the adaptive optimization techniques proposed for
dispel4py.

the previously recorded data and adapting the workload alloca-
tion to it. Notice that by default, when partitions are not indi-
cated by the user, each PE runs in a single partition.

This technique relies on the dispel4py monitoring frame-
work, which collects (while a workflow is running): a) execu-
tion and communication times per PE; b) number of PEs; c) the
number of iterations; d) data size, and e) mapping used. The
Naive Assignment Technique analyses offline these data to
discover which is the best workload allocation (partitions and
number of processes assigned to each partition) for that specific
workflow under the same circumstances.

Figure 8: Application of the Naive assignment technique over the Seismic
Cross-correlation workflow using 16 processes.

To calculate the most suitable partitions, the technique groups
together all connected PEs that have communication times higher
than their execution time (hot connection), with the exception
of the first PE, which is always assigned to a single partition.
This criterion has been implemented using the Algorithm 1. In
this algorithm, there is an important prerequisite to combine
two PEs into the same partition: the connected PEs should be
one-to-one relationship; otherwise, the partition could result in
incorrectness since PEs without a one-to-one relationship can-
not receive or send data from or to PEs in other partitions.

Figure 8 shows an example of the Naive Assignment tech-
nique over the Seismic Cross-correlation workflow introduced
in Section 3.1.

The next step is to calculate the number of processes as-
signed to each partition. As the default dispel4py allocation,
the first partition (for the first PE), only one process is assigned
to it. For calculating the remaining processes, we have devel-
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Algorithm 1: Assigning Partition
1: Require: Workflow consisting of N PEs (PE0, PE1 ...

PEN−1), Execution time of each PE (E(PEi)), Communication
time between adjacent PEs (C(PEi, PEi+1))

2: for i = 0 to i = N-2 do
3: if i = 0 then
4: PEi is assigned to single partition
5: else
6: if C(PEi, PEi+1) > MIN(E(PEi), E(PEi+1)) and PEi and

PEi+1 is one-to-one relationship then
7: PEi and PEi+1 are assigned to the same partition or PEi+1

is added into the existing partition which PEi is in
8: end if
9: end if

10: end for

oped Algorithm 2. This algorithm calculates the execution time
of each partition (adding the execution time of all PEs included
in each partition) and divides it by the total execution time of
all partitions (except the first partition). This result is multiplied
by the number of processes available (minus one, which is as-
signed to the first PE), then obtaining the suitable number of
processes per partition.

Algorithm 2: Assigning Process
1: Require: Workflow consisting of M PART s (PART0, PART1

... PARTM−1) or including N PEs (PE0, PE1 ... PEN−1), Total
number of processes (TotalNumProcess), Execution time of
each PE (E(PEi))

2: Define: Execution time of each partition as E(PARTi),
Number of processes for each partition (NumProcess(PARTi)),
Total execution time (E(TOT AL))

3: for i = 1 to i = N-1 do
4: E(TOT AL) = E(TOT AL) + E(PEi)
5: end for
6: for i = 0 to i = M-1 do
7: if i = 0 then
8: NumProcess(PARTi) = 1
9: else

10: for PE in PARTi do
11: E(PARTi) = E(PARTi) + E(PE)
12: end for
13: NumProcess(PARTi) = (TotalNumProcess − 1) × E(PARTi)

E(TOT AL)
14: end if
15: end for

The Naive Assignment shares some similarities with Het-
erogeneous Earliest Finish Time (or HEFT) heuristic, since both
use the execution and communication times for assigning tasks
(or PEs) to processes and therefore reduce the workflow execu-
tion time. HEFT takes a set of tasks, represented as a DAG, a set
of processes, the times to execute each task on each process, and
the times to communicate the results from each job to each of its
children between each pair of processes. While HEFT assigns
a task to processes after prioritizing them based on the aver-
age execution and communication times (using Earliest Finish
Time (EFT)), the Naive Assignment uses the average execu-

tion and communication times to determine hot connections and
therefore to calculate the best workload allocation for running
the same workflow under the same conditions.

4.2. Staging Technique
Our next technique has been inspired by Apache Spark Stage
method9, which aggregates into the same stage all operations
which do not require shuffling data 10

Our Staging technique aims to reduce the overall work-
flow execution time by grouping PEs that do not require shuf-
fling data. Unlike the Naive Assignment, Staging creates in
runtime the number of partitions by analysing the dependencies
between PEs specified in the workflow.

In order to allocate a PE into the previous partition, the fol-
lowing conditions need to be met: a) one-to-one relations be-
tween PEs; b) there is no grouping in the destination PE. c) the
first PE is always assigned to its own partition.

To calculate the number of processes allocated to each parti-
tion, we applied the default method of dispel4py. The number
of partitions is equally distributed among the processes, with
the exception of the first partition, which will be allocated to
just one process.

Staging first generates the data structure for representing
the source and destination of PE (see Algorithm 3). Since the
workflow is a one-way graph, Algorithm 3 finds the correspond-
ing source PE and destination PE according to each edge of
the graph; then stores all of the PEs that can be regarded as
source into a dictionary, and also stores all the PEs that can be
regarded as destination into another dictionary. These two dic-
tionaries have the same structure, where the key is PE, and the
corresponding value is a list composed of the direction tuple of
the edge related to this PE. Moreover, for the dictionary of the
source PE, the direction tuple only records the PE as the source
of the edge. Similarly, for the dictionary of the destination PE,
the direction tuple only records this PE as the destination of the
edge.

After establishing these two dictionaries, Staging performs
the specific partition steps (see Algorithm 4). Since the root PE
of each graph can only be assigned to a single partition, Algo-
rithm 4 finds the root PE of the graph and places it in a separate
partition. Then, this algorithm traverses each key in the source
PE dictionary. If the PE has not been classified into any par-
tition, then it would find out whether this PE has a one-to-one
relationship with connected PEs, and in this one-to-one rela-
tionship, the destination PE does not contain grouping param-
eters. If there is such a relationship, then the algorithm places
the PEs involved in the relationship into one partition; however,
if there is no such relationship, it places the PEs into different
partitions.

There is an example of this technique applied to the Window
Join workflow (introduced in Section 3.3) in Figure 9.

9https://spark.apache.org/docs/1.2.1/api/java/org/

apache/spark/scheduler/Stage.html
10The process of moving the data from partition to partition in order to ag-

gregate, join, match up, or spread out in some other way, is known as shuffling.
The aggregation/reduction that takes place before data is moved across parti-
tions is known as a map-side shuffle.
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Algorithm 3: Create S ource dict and Dest dict
1: FUNCTION: Create S ource dict and Dest dict
2: Require: Workflow graph (G) consisting of N PEs (PE0,

PE1 ... PEN−1)
3: Define: Dictionary of source PE (S ource dict), Dictionary of

destination PE dictionary (Dest dict), All edges of PE (Edges),
Source PE of edge (S ource PE), Destination PE of edge
(Dest PE)

4: Return: S ource dict and Dest dict
5: for PE in G do
6: Edges = G.edges(PE)
7: for Edge in Edges do
8: get S ource PE and Dest PE based on two direction of the

Edge
9: if S ource PE == PE then

10: Update the S ource dict with key as S ource PE value as
all destination PEs in form of list of tuple(s) (S ource PE
and Dest PE)

11: end if
12: if Dest PE == PE then
13: Update the Dest dict with key as Dest PE value as all

source PEs in form of list of tuple(s) (S ource PE and
Dest PE)

14: end if
15: end for
16: end for
17: EndFunction

Algorithm 4: Staging Algorithm
1: Require: Workflow graph (G) consisting of N PEs (PE0,

PE1 ... PEN−1)
2: Define: Dictionary of source PE (S ource dict), Dictionary of

destination PE dictionary (Dest dict)
3: S ource dict, Dest dict = Create S ource dict and Dest dict(G)
4: for PE in S ource dict.keys() do
5: if PE not in Dest dict.keys() then
6: put PE into a single partition
7: else
8: if PE is not assigned to any partition and PEi and PEi+1 is

one-to-one relationship then
9: get partition by calling Find one to one()

10: if this partition is empty then
11: put PE into a single partition
12: end if
13: end if
14: end if
15: end for
16: for PE in dest dict.keys() do
17: if PE is not assigned to any partition then
18: put PE into a single partition
19: end if
20: end for

4.3. Dynamic Scheduling Technique

Workload skewness [32] and variance are common phenomena
in distributed stream processing engines. When massive stream
data flood into a distributed system for processing and analy-
sis, even slight changes in the distribution of the incoming data

Figure 9: Example of the Staging technique applied to Window-Join work-
flow.

stream may significantly affect the system performance. Our
previous static techniques do not take into account changes in
the data stream but instead only the communication patterns
to find the suitable number of partitions, potentially generating
suboptimal performance when the evolving workload deviates
from the expectation.

In order to tackle this problem, we propose the Dynamic

Scheduling technique. In this case, processes are not locked
to specific PEs, scheduling PE instances on-the-fly, meaning
that if a PE needs more or less “resources”, this technique dy-
namically scale up or down, re-balancing automatically graph
without stopping the workflow execution. This technique al-
lows users to design workflows without any restriction of re-
sources such as the maximum number of threads supported by
a single node, and it can deal with workload skewness.

The implementation of this technique is based on the Python
multiprocessing11 package, meaning that we can only deploy
workflows dynamically on shared-memory architectures, using
the dispel4py multi mapping.

When a dispel4py workflow is executed using the dy-
namic deployment, all processes receive a copy of the abstract
workflow (so all are aware of the PEs dependencies) at the
beginning of the workflow execution. Dynamic scheduling

uses a global queue to store PEs and data coming up, which is
available to all processes. The main idea is that each process,
as soon as it is “free”, goes to the global queue to pull the next
PE to execute along with the necessary data. After finishing the
execution of the PE, it returns to the global queue to push the
output data.

This technique is currently not compatible with a workflow
with groupings given that they are stateful operations. If a user
uses a grouping over a PE, all data received by this particular
PE has to go to a particular PE instance always running in the
same process to preserve its state. The current implementation

11https://docs.python.org/3/library/multiprocessing.html
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of the Dynamic Scheduling technique can not guarantee such
behaviour.

Figure 10: Example of the Dynamic Scheduling technique applied to the
Internal Extinction of Galaxies workflow.

Figure 11: This diagram shows the main blocks of Dynamic Scheduling,
and their relationships. This information is complementary to the pseudo-code
shown in Algorithm 5.

An overview of the Dynamic Scheduling technique ap-
plied to the Internal Extinction of Galaxies workflow (intro-
duced in Section 3.2) can be seen in Figure 10.

To explain in more detail how Dynamic Schedulingworks,
we show the main components of this technique (and their re-
lationship) in Figure 11. Each of them can be described as fol-
lows:

• process: this function is the entry point for the Dynamic
Scheduling technique. It is responsible for creating the
global queue (see Figure 10), distributing copies of an
abstract workflow to processes and also orchestrating the
execution of a workflow with available processes.

• process worker: this function allows processes to fetch
‘work‘ from the global queue. More specifically, pro-
cesses pull PEs (one at a time) from the queue, execute
their work and return the results (and destination PEs)
back to the queue.

• communicate: this function handles all the communi-
cations from and to the global queue, pulling PEs (and
their data) and pushing back results and destination PEs.

• get destination: this function is responsible for iden-
tifying PE’s destinations. Taking the example shown in
Figure 10, when a process executes Votab PE, this func-
tion identifies that Filt is its destination PE, and returns
this information to communicate function. Subsequently,
communicate pushes back to the queue the results of

Votab PE and Filt PE.

Algorithm 5 shows the pseudo-code of the previous compo-
nents and all the steps previously described.

5. Experimental Evaluation

This section presents the experimental evaluations for the pro-
posed techniques in Section 4. For each experiment, we have
run one of the workflows introduced previously using the multi
and MPI mapping , modifying the number of processes, and
selecting one of the following allocations techniques:

• Default: We apply the default dispel4py workload allo-
cation. Each PE runs in a single partition, and the number
of processes allocated to each PE (or partition) is calcu-
lated by dividing the number of processes between the
number of PEs (or partitions).

• Naive 1: We apply just the first algorithm (Algorithm 1)
of Naive Assignment to calculate the most suitable num-
ber of partitions by identifying hot connections. The num-
ber of processes assigned to each partition is calculated
using the default method: dividing the number of pro-
cesses between the number of partitions previously cal-
culated by Algorithm 1. This technique implies running
previously the same workflow under the same conditions
collecting the necessary information using the monitor-
ing framework of dispel4py.

• Naive 2: We apply the full Naive Assignment tech-
nique, which includes Algorithm 1 to calculate the num-
ber of partitions (by identifying hot connections), and Al-
gorithm 2 to calculate the number of processes assigned
to each partition. This method also implies to run the
same workflow previously using the monitoring frame-
work of dispel4py.

• Stage: We apply Staging to calculate the number of par-
titions by grouping PEs that do not require shuffling data.
The number of processes assigned to each partition is
calculated by applying the default method: dividing the
number of processes between the number of partitions
previously calculated by the Staging technique.

• Dynamic: We apply Dynamic scheduling, enabling the
dynamic deployment of workflows. Since this technique
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Algorithm 5: Dynamic Scheduling
1: FUNCTION: get destination()
2: Require: Workflow graph (G), Process (proc)
3: Define: Destinations (dest list)
4: Return: Destination (dest)
5: Traverse G to find destinations (dest list) of proc
6: if dest list is empty then
7: Return NULL
8: else
9: for dest in dest list do

10: Return dest
11: end for
12: end if
13: EndFunction

14: FUNCTION: communicate()
15: Require: Workflow graph (G), Queue (Q), Process (proc),

Task consists of PE and data
16: Define: Processed task (output)
17: output = PE.process(data)
18: if the PE has connections with other PEs by calling

get destination then
19: put the output output back into the Q
20: end if
21: EndFunction

22: FUNCTION: process worker()
23: Require: Workflow graph (G), Queue (Q), Process (proc), Task

(task)
24: while TRUE do
25: if Q is not empty then
26: get task from Q
27: call communicate()
28: else
29: break
30: end if
31: end while
32: EndFunction

33: FUNCTION: process()
34: Require: Workflow graph (G), Input data (input), Number of

processes (size)
35: Define: Queue (Q), Process (proc), processed input

(processed input)
36: for proc = 0 to proc = size do
37: proc get a copy of workflow
38: end for
39: for PE in G do
40: get processed input by calling dispel4py built-in function
41: if processed input is not NONE then
42: put processed input into the Q
43: end if
44: end for
45: start the Multiprocessing to execute process worker() for each

process with its workflow
46: EndFunction

currently is not compatible with groupings (stateful op-
erations), we have not used it for the Window Join work-
flow.

Note that Default, Naive 1 and Naive 2 techniques require
to use a greater or equal number of processes as PEs.

5.1. Evaluation Platforms: Computing Infrastructures features

We have selected the following computing infrastructure:

• Cirrus: it is a state-of-the-art SGI ICE XA system with
280 compute nodes with Lustre as the file system and
CentOS Linux as the OS12. Cirrus standard computes nodes
contain two 2.1 GHz, 18-core Intel Xeon E5-2695 (Broad-
well) series processors. Each core supports two hard-
ware threads (Hyperthreads), which are enabled by de-
fault. The standard computes node on Cirrus has 256 GB
of memory shared between both processors. This means
that we can use up to 72 processes for our experiments in
Cirrus.

• HPC supported by Imperial College London: it is HPC
cluster with Intel E5-2680 v3 @ 2.50GHz running Cen-
tos 8. It provides multiple job classes for work with dif-
ferent workloads, which allows us to employ up to 72
computing nodes. Each node consists of 48 cores.

• Google Cloud Platform13: Offered by Google, it is a suite
of cloud computing services (such as computers and hard
disk drives, or virtual machines (VMs)) that run on the
same infrastructure that Google uses internally for its end-
user products. For this work, we have configured a De-
bian VM with 32 vCPUs and 128 GB memory.

• Laptop (Local): it uses macOS Catalina as the OS and
has a 2.3 GHz hyper-threading 8-Core i9 processor with
16 GB memory. Since each core supports two hardware
(Hyperthreads), we have used up to 16 processes for our
experiments.

5.2. Analysis Based on the Seismic Cross-correlation Workflow

Figure 12 shows the execution times (runtime) of the differ-
ent experiments conducted using the Seismic Cross-correlation
workflow in Cirrus (Figure 12.A and Figure 12.B), and in the
laptop ( Figure 12.C and Figure 12.D). In this experiment we
have varied the number of cores from 4 to 64 in Cirrus, and 4
to 16 in the Laptop. However, since the workflow has 10 PEs,
all experiments conducted with Default, Naive 1 and Naive 2
techniques start with 16 processes14.

First, we evaluated all static deployment techniques (De-
fault, Naive 1, Naive 2 and Stage) in both computing infrastruc-
tures. Subsequently, we selected the best static technique(s)
(which is the one that has lower execution time across different

12https://www.cirrus.ac.uk/about/
13https://cloud.google.com/
14The minimum number of processes required by this workflow is 10.

10



number of processes) and compared it/them with the Dynamic
technique.

For Cirrus, the best static technique is Stage. Whereas for
the laptop Naive 2 and Stage have found the same allocation,
being this one the best one according to the results.

The Dynamic technique has a very similar performance to
the selected static techniques for both infrastructures.

Figure 12: Evaluations of Seismic Cross-correlation with multi mapping. A:
Cirrus execution times employing all static techniques; B: Cirrus execution
times employing the dynamic technique and best static deployment(s). C: Lap-
top execution times employing all static techniques; D: Laptop execution times
using the dynamic technique and best static deployment(s).

Figure 13 shows the static deployment with MPI mapping
running on laptop and HPC resources respectively. In this ex-
periments, we used up to 256 processes in HPC at Imperial
(Figure 13 (A)) and up to 28 processes in laptop (Figure 13
(B)). Additionally, for the testing on HPC, we used 30X larger
dataset to test if the performance of different optimization meth-
ods is affected by large input data size. The result shows that
overall trends for MPI mapping is similar to multi mapping.
The performances of Naive 2 and Stage are very close, outper-
forming others for different platforms.

5.3. Analysis Based on Internal Extinction of Galaxies Work-
flow

Figure 14 shows the execution times (runtime) of the different
experiments conducted using the Internal Extinction of Galax-
ies workflow in Cirrus (Figure 14.A and Figure 14.B), and in
the laptop (Figure 14.C and Figure 14.D). In this experiment,
we have varied the number of cores from 4 to 64 in Cirrus and
4 to 16 in the Laptop. Note that this workflow has four PEs, so
all experiments across techniques start with four processes.

Once again, we evaluated all static techniques in both plat-
forms. For this workflow, Stage, Naive 1 and Naive 2 agreed

Figure 13: Evaluations of Seismic Cross-correlation with MPI mapping em-
ploying static deployments. A: HPC execution times with larger input dataset;
B: laptop execution times.

in the most suitable allocation of resources (number of parti-
tions and number of processes assigned to each of them). Fig-
ure 14.A and 14.C show that this allocation performs better
than the default allocation across platforms and number of pro-
cesses.

The Dynamic technique, however does not perform better
than the static techniques (Stage, Naive 1 and Naive 2), for both
platforms. Therefore, static optimization methods significantly
outperform the Dynamic technique.

Figure 14: Evaluations of Internal Extinction of Galaxies with multi mapping.
A: Cirrus execution times employing all static techniques; B: Cirrus execution
times employing the dynamic technique and best static deployment(s). C: Lap-
top execution times employing all static techniques; D: Laptop execution times
using the dynamic technique and best static deployment(s).

Figure 15 shows the overall trends of the performances of
Default and Stage & Naive 1 & Naive 2 with MPI mapping for
HPC and laptop. The number of processes used for the exper-
iment is from 4 to 64 in HPC, and 4 to 20 in laptop. And the
data size of HPC is 1000X of laptop. From those figures, we
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Figure 15: Evaluations with Internal Extinction of Galaxies with MPI map-
ping employing static deployments. A: HPC execution times with larger input
dataset; B: laptop execution times.

can find that Stage, Naive 1 and Naive 2 outperform Default.

5.4. Analysis Based on Window Join Workflow
Figure 16 shows the execution times (runtime) of the differ-
ent experiments conducted using the Window Join workflow in
Cirrus (Figure 14.A), and in the laptop (Figure 14.B a). In this
experiment, we have varied the number of cores from 4 to 64 in
Cirrus and 4 to 16 in the Laptop. However, since this workflow
has six PEs, all experiments conducted with Default, Naive 1
and Naive 2 techniques start with eight processes15.

This workflow has a grouping in the last PE. Therefore, we
have not run the Dynamic technique in this case since Dynamic
Scheduling does not support groupings.

Figure 16: Evaluations of Window Join with multi mapping. A: Cirrus execu-
tion times employing all static techniques; B: Laptop execution times employ-
ing all static techniques.

Figure 17 illustrates that the performance with MPI map-
ping on HPC and laptop shares the similar performance with
multi mapping, the same conclusion can be delivered: all static
optimization methods with both multi and MPI mapping can
apparently improve the default workflow, and the performance
of those methods with the same mapping is close.

We can also observe that this workflow does not scale very
efficiently. This is due to Read and Join PEs, which are not
parallelizable. So adding more processes implies adding over-
head in the execution of the workflow. Even so, our proposed

15The minimum number of processes required by this workflow is 6.

Figure 17: Evaluations with Window Join with MPI mapping employing static
deployments. A: HPC execution times with larger input dataset; B: laptop exe-
cution times.

techniques outperform the default allocation technique employed
by dispel4py for both computing infrastructures. Note that
the Stage and Naive 1 have made the same allocation of re-
sources for this workflow.

5.5. Workload Skewness

As we mentioned earlier, one of the main features of the
Dynamic Scheduling Technique is its availability to deal with
workload skewness. However, none of our previous use cases
has distribution fluctuations in their incoming data stream. There-
fore, for our next experiment, we modified the Internal Extinc-
tion of Galaxies introduced in Section 3.2 and introduced an im-
balance in the workload to show the effectiveness of Dynamic
Scheduling regarding unexpected workload deviations.

Figure 18: Evaluations of Internal Extinction of Galaxies with multi mapping
using an unbalanced workload. The table shows the runtime (in seconds), for
each technique and number of processes.

Google Cloud 16 was selected for this experiment using up
to 32 processes. Due to all of our static techniques (Naive 1,
Naive 2, and Stage) have calculated the same allocation (par-
titions and number of processes), as we can see in Figures 14.A
and 14.C, we selected Stage as our static technique for this
experiment. Furthermore, for Naive Assignment technique
to become effective, the workflow has to have exactly the same

16By the time we performed this experiment, we did not have access to the
previous HPC-Cluster platforms.
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conditions as its previous recorded execution, including the work-
load. Since this is not the case for this experiment (we simulate
workload skewness by modifying the workload distribution),
we discarded this technique.

In this experiment, we included Default as the runtime
baseline. Figure 18 illustrates the performance of the selected
techniques with MULTI mapping, since Dynamic has been only
implemented for this mapping. We can observe that Dynamic
outperforms Stage in this type of scenario when we have an
unbalanced workload since Stage only takes into account the
communication pattern (topology of the concrete workflow) and
not the incoming data stream to find the suitable partitions.

5.6. Observations

Figure 19: Evaluation summary across techniques, use cases and platforms
based on execution time and T-test. This summary does not include the results
obtained in Section 5.5 for the Internal Extinction of Galaxies, as we modi-
fied the original workflow to perform a particular experiment under workload
skewness.

A summary of the different evaluations across techniques, use
cases, and platforms can be seen in Figure 19. We have also
conducted statistical analysis17. In statistical analysis, we lever-
age a T-test based on the experimental data to find out whether
there is a significant difference between any two methods’ per-
formances. To employ the hypothesis testing, we assume two

17A statistical analysis can be found in Section 5 of this
document https://drive.google.com/drive/folders/

1GAUR8vhcWCk4Y5NtigTgK2z81V7Nk4Ls?usp=sharing

Figure 20: Reference table to select which optimization method to chose.

hypothesises: null hypothesis (no significant performance dif-
ference between both methods) and alternative hypothesis (sig-
nificant performance difference between both methods). The p-
value calculated by the T-test represents the probability that the
null hypothesis is true, which is compared with the significant
level α. We adopt 0.05 for α to control the level of precise-
ness. Figure 19 shows that if the P-value is smaller than 0.05,
then we will reject the null hypothesis and accept the alternative
hypothesis, meaning that one method’s performance is signifi-
cantly better or worse than another 18. Otherwise, we conclude
that there is no significant difference.

In conclusion, we combine the analysis and experimental
evaluation to bring users the convenience of choosing the adap-
tive optimization methods. There are nine aspects concerning
about the feasibility of those three optimization methods that
users need to consider when they plan to apply the optimiza-
tion methods for improving a new workflow: previous execu-
tion log, grouping, workload distribution of input data, memory
architecture of platform, overhead, automation, given number
of processes, number of PEs and performance. The reference
table in Figure 20 based on those aspects not only determines
the adaptive capacity of proposed optimization algorithms (for
example, Staging has the least yellow squares, which means

18https://en.wikipedia.org/wiki/One-_and_two-tailed_tests
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there is less limitation for this algorithm) but also supports users
to select a suitable algorithm for their workflows.

6. Applying static optimizations to DARE workflows

DARE [33]19 project focused on empowering domain experts
to invent and improve their methods and models by providing
a new platform and a working environment, in which analy-
sis tools and workflow systems are readily available. DARE
worked with two scientific communities: Seismology (EPOS20)
and Climate (IS-ENES21) Research Infrastructures. And sev-
eral dispel4py workflows were generated within the project.

In this work, we wanted to evaluate our optimization tech-
niques using one of the DARE workflows since they repre-
sent the type of applications that domain scientists are currently
working on, and we also wanted to test them making use of
a Cloud platform. Therefore, we selected the Rapid Ground
Motion Assessment (RA) (see Figure 21), a seismic application
developed by INGV 22.

Figure 21: Rapid Ground Motion Assessment application (RA).

RA aims to model the strong ground motion after large earth-
quakes in order to make a rapid assessment of the earthquake’s
impact, also in the context of emergency response. It has five
main phases: (1) to select an earthquake gathering the real ob-
served seismic wavefield, (2) to simulate synthetic seismic wave-
forms corresponding to the same earthquake using SPECFEM3D
[34], an MPI-based parallel software; (3) to pre-process both
synthetic and real data. This step is quite similar to the pre-
process step included in the Seismic Cross-correlation work-
flow; (4) to calculate the ground motion parameters of displace-
ment, velocity and acceleration for synthetic and real data; In
this step, two types of normalisation are applied (mean and
max), generating; as a result of two types of PGM outputs
(pgm mean and pgm max); (5) to compare them with each other
by creating shake maps.

Originally, these 5 steps were programmed as independent
dispel4py workflows, but in this work, we have aggregated
steps 3 to 5 in a single workflow (see Figure 22) to create a
more complex dispel4py workflow.

19http://project-dare.eu/
20https://www.epos-ip.org/
21https://is.enes.org/
22https://www.ingv.it/

Figure 22: RA steps 3 to 5 as a single dispel4py workflow.

We run three experiments using the new dispel4py RA
workflow with the following configuration: multiprocessing map-
ping, 30 processes, and the Google Cloud platform described
in Section 5.1. The first experiment consisted of running the
workflow without optimizations, whereas the others consisted
in applying the Naive Assignment and Staging techniques,
respectively. We did not use the Dynamic Scheduling be-
cause the workflow applies several groupings, and those are not
compatible with this technique.

All experiments were repeated 10 times, using 31 seismic
stations as input data (15MB of real and synthetic streams),
generating 5MB as output data. The average execution times
per experiment were: i) 4 seconds using the original dispel4py
ii) 3.66 seconds using the full Naive Assignment; and iii)
3.77 seconds using Staging. Once again, we get lower exe-
cution times using our optimization techniques since they are
able to perform a better allocation of processes to PEs than the
original dispel4py framework, having a direct impact on the
execution time of the workflow.

7. Conclusion and Future work

In this paper, we have presented three adaptive optimization
techniques for improving the performance and scalability of
stream-based dispel4py workflows. Two of them have been
proposed for the static deployment of dispel4py workflows:
Naive Assignment and Staging. Both techniques take into
account the communication patterns, but they apply a different
set of heuristics to group PEs together into partitions, and assign
later the suitable number of processes to each partition. While
Naive Assignment is an offline technique which relies on pre-
vious recorded measures of the same workflows, Staging is an
online technique, which analyses the dependencies (topology)
between PEs specified in the workflow. The Naive Assignment

static technique has been divided into two sub-techniques: Naive
1, in which we only apply the Algorithm 1; and Naive 2, in
which we apply both algorithms of this technique.

The third technique, Dynamic Scheduling, enables to run
dispel4py workflow with a dynamic deployment. Processes
in this technique are not locked to specific PEs, scheduling PE
instances on-the-fly and re-balancing automatically the graph
without stopping the workflow execution.

Our proposed techniques have been evaluated in four dif-
ferent computing infrastructures to test their effectiveness and
adaptivity across platforms with different features (number of
processes, hardware components, network, etc.). Furthermore,
we have selected four use cases, three from real domains and
one synthetic application, with different features (number of

14



PEs, connectivity, groupings, etc.). Given that all uses cases
selected for this work do not have distribution fluctuations in
their incoming data stream, we modified the Internal Extinc-
tion of Galaxies in Section 5.5 to introduce an imbalance in the
workload to show the effectiveness of Dynamic Scheduling

dealing with workload skewness.
As we outlined in the conclusions of our previous work [35],

we have taken this opportunity to test our optimizations in the
context of DARE, in which several domain scientists have de-
veloped their applications using dispel4py. In this work, we
run part of the Rapid Ground Motion Assessment application,
developed by the Seismology community, with and without static
optimizations using a Cloud environment. Results show that we
get a lower execution time when our optimizations are applied.

The evaluations shown in Sections 5 and 6, demonstrate
that all our proposed techniques outperform the default alloca-
tion of resources performed by dispel4py. Among the static
techniques, the Staging usually gives us the best allocation
parameters, allowing workflows to scale up better. This is be-
cause data shuffling incurs a huge communication cost, being
the major bottleneck in those uses cases. So, Staging suc-
cessfully minimizes the data shuffling reducing the overall ex-
ecution time. However, we have to take into account that our
original use cases do not have fluctuations in their incoming
data stream. When that is the case, as we demonstrated in
Section 5.5, the Dynamic Scheduling is the best strategy to
use since it is the only one capable of dealing with unexpected
workload fluctuation.

As future work, we plan to test our techniques using other
dispel4py mappings, such as MPI [8], and also compare them
with other state-of-the-art algorithms for workflow scheduling
in IaaS clouds [36]. Both static techniques are applicable across
mappings. Nevertheless, for the Dynamic Scheduling tech-
nique, we will need to modify it first to adapt it to distributed-
memory architectures. This change will require applying an-
other type of global queues, such as Apache Kafka, Redis or
ZeroMQ messaging frameworks. We plan to work in this tech-
nique, so workflows with groupings will be able to be enacted
dynamically.
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