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9.1 Introduction

Bioacoustics has emerged as a prominent,
non-invasive, and innovative approach to
obtaining scientific knowledge about animal
behavior and ecology. As a consequence,
bioacousticians play an important role in today’s
societies, often informing decision-makers in
governments, industries, and communities. As an
example, bioacousticians are often asked whether a
species, a population, a community, or individual
animals will sustain impacts from noise—or any
other impact, of course, but noise is particularly
relevant to the running theme of the book—
generated from particular human activities.

Sometimes, government regulators require “yes”
or “no” answers to these questions. A knowledge-
able bioacoustician, any scientist in fact, will know
that usually it is difficult to provide simple ‘yes’ or
‘no’ answers. This is because the magnitude of
impact that is biologically significant is usually
not known. For instance, imagine the question
relates to whether loud construction works will
result in a decline of a local population of animals.
The observed impact is that animals reduce the
time spent feeding. Therefore, the required reduc-
tion in time feeding that will lead to a population
decline must be known to be able to provide a
“yes” or “no” answer. Consequently, the
bioacoustician’s question is not whether there is
simply a statistically significant effect, which by
itself may be meaningless and even misleading
(e.g., Wasserstein et al. 2019), but whether the
magnitude of the effect is biologically important.
That is a much more difficult question to answer,
and hence why it is often ignored albeit inadver-
tently. By ensuring that research questions have
biological relevance, bioacousticians can design
studies that can draw meaningful conclusions
about animals and their populations.

Once the biologically relevant question has
been identified, the bioacoustician can determine
what study design is required and whether it is
possible to carry it out. All too commonly,
constraints occur in available budgets and time
allocated to undertake the research. This often
results in sub-optimal study designs and sample
sizes (e.g., reduced numbers of surveys, available
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acoustic instruments, and/or surveyed animals).
The reality is that for a bioacoustician to be able
to confidently answer research questions, budgets
must allow for robust experimental designs and
sufficient time to collect sample sizes representa-
tive of the study population. Even when budgets
and time allow for carefully designed
experiments, however, environmental conditions
and study animals often cannot be controlled,
particularly when studied in their natural environ-
ment. Moreover, many studies occur
opportunistically and are not the result of an
experimental design developed specifically for
the study aims. They are observational in nature
and can take advantage of large, long-term
existing datasets or unexpected opportunities to
collect field data. In fact, data collected
opportunistically are prevalent in bioacoustical
studies, as many researchers take recording
systems into the field during other work to use
when time permits.

The challenges described above, from ensur-
ing that the research questions have biological
relevance, to evaluating the achievability of a
study and reliability of its outcomes, are only a
few of many challenges faced by bioacousticians.
To overcome these challenges, bioacousticians
must have solid foundational knowledge about
the quantitative aspects of their research: from
how to formulate quantitative research questions,
to designing robust studies and undertaking suit-
able analyses. Only by having these skills can
reliable conclusions and scientific claims
be made.

Today, not only are there a wide range of
analytical tools available to select from, but this
ever-increasing number has been evolving
quickly over recent decades due to the dramatic
improvement in computer capacity. Moreover,
ongoing research in statistics continually updates
our knowledge on the suitability of commonly
used methods (Wilcox 2010). In some instances,
methods previously used over a wide range of
applications may now only be acceptably applied
to certain scenarios, with new methods
superseding old ones. Having said this, while a
new method may be considered the ‘Rolls Royce’
of analyses, sometimes an older, simpler

approach may still do the job well. Consequently,
not only is it important for researchers to have a
solid foundation in long-established analytical
approaches, but they must keep up to date with
new developments. In general, a researcher
should understand the fundamentals involving
randomness, variability, and statistical modeling
discussed in this chapter, and be able to adapt
them to their specific context—this understanding
is arguably more valuable than a book of recipes
that tells a researcher which method to use
and when.

A consequence of the many advancements
over recent years and the large range of analytical
approaches available today is that selecting the
right tool can be an overwhelming task. In fact,
the right tool might not exist for a specific setting.
In such cases, collaboration with an applied stat-
istician may be fundamental. This chapter aims to
give general guidance on considerations that
bioacousticians should make when tasked with
undertaking research resulting in what are often
complex and messy bioacoustical datasets. The
information presented in this chapter is by no
means meant to provide a menu of analytical
tools, their mathematical basis, or conditions of
use. There are a large number of widely available
textbooks that do just that, and many are
referenced here. Bioacousticians should consult
the relevant textbooks for in-depth knowledge of
approaches, their applications, limitations, and
assumptions about the characteristics of the data
that must be met. Rather, the focus of this chapter
is to provide practical guidance on: (1) the devel-
opment of meaningful research questions, (2) data
exploration and experimental design
considerations (also see Chap. 3), and (3) common
analytical approaches used today. The approach
taken in this chapter is to define basic terms and
concepts as they appear in the text, so that readers
new to the subject can also understand the more
complex concepts discussed, regardless of their
prior statistical knowledge.

Note that this chapter has been written from
the perspective of a biologist faced with the
challenges common to bioacoustical research. If,
from this chapter, the reader gains an appreciation
of limitations in their data, considerations they
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should make when selecting analytical
approaches, and the biological relevance of their
analytical outputs, then this chapter has achieved
its purpose. Entire books could be written about
how a bioacoustician, in fact, any ecologist, might
become more quantitative. A good example of
such a book is suitably named How to be a
quantitative ecologist (Matthiopoulos 2010),
which we wholeheartedly recommend as good
reading after this chapter.

9.2 Developing a Clear Research
Question

At the concept stage of any study, the purpose and
specific research aim must be clearly defined. The
research aim should be novel (i.e., not already
answered in previous research). Once the general
aim has been defined, the specific analytical
research question can be developed. While devel-
oping the question may seem to be a simple, self-
evident task, it requires careful consideration. The
structure of the question drives the experimental
design and selection of analytical tools, thus its
accurate development is essential. To frame a
question in clear, concise analytical terms, it is
useful to identify the type of study involved.
There are many types of studies conducted for a
wide range of purposes. Depending upon the
discipline, groupings that describe types of stud-
ies and their definitions vary. Here, we have
adopted five of the six groupings referred to by
Leek and Peng (2015) as common in bioacous-
tics. These study types include descriptive,
exploratory, inferential, explanatory (called
‘causal’ in Leek and Peng 2015), and predictive
studies. Definitions we give here have been
framed within the context of common
bioacoustical questions, and thus are adapted
from more broad definitions.

Of the study types, descriptive studies are the
simplest, aiming to summarize datasets collected.
Exploratory studies take a step beyond and
explore relationships, trends, and patterns in
datasets. Neither of these types of studies
attempts to infer beyond the dataset collected to
the wider population. These types of studies are

commonly used during preliminary data explora-
tion before undertaking inferential, explanatory,
or predictive studies (see Sect. 9.3.3). Indeed,
descriptive and exploratory surveys are often
used to develop the more complex inferential,
explanatory, and predictive study type questions.
Inferential studies build on descriptive and
exploratory studies by quantifying whether
findings are likely to be true for a broader popu-
lation and hence can be generalized. For example,
inferential studies are commonly used to make
decisions about whether there is sufficient evi-
dence regarding observed patterns or
relationships in sample data to believe that they
have not arisen from the population by pure
chance alone. Explanatory studies aim to identify
associated conditions (e.g., species, age, sex of an
animal, date, time of day, season, and environ-
mental factors such as temperature, noise, etc.)
influencing or explaining an outcome (e.g., the
rate at which animals produce their calls). These
studies seek to determine the magnitude and
direction of relationships (Leek and Peng 2015).
Predictive studies aim to predict future outcomes
in given conditions or scenarios (but may not
necessarily explain conditions leading to an
observed outcome). By identifying which of the
study types your research aim falls into, the gen-
eral structure of the analytical question can be
formed. Some examples of the different study
types and corresponding analytical questions are
given in Table 9.1.

9.3 Designing the Study
and Collecting Data

Once the analytical question has been formulated
based on the study type, novelty, and whether it
truly addresses the research question, the feasibil-
ity of collecting the required data will need to be
assessed. Practical considerations, for instance,
include identifying any hindrances to study site
accessibility or timely ethics approvals and ani-
mal experimentation permits. Below (Fig. 9.1) is
a checklist of some preliminary considerations
before committing to developing, designing, and
executing a study.
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9.3.1 Experimental Design

The ideal situation is to formulate the analytical
question before data are collected (i.e., a priori) so
that experiments can be designed to maximize the
chance that, based on the observations, they pro-
duce precise (i.e., close to one another) and accu-
rate (i.e., proximal to true values) estimates of the
parameters of interest, and so that there is a high
probability of detecting relevant effects (i.e., that
there is sufficient statistical power) when they are
present. In some cases, however, formulation of
the analytical questions occurs after data have
been collected (i.e., a posteriori). This may
occur as a result of poor planning or of new and
unforeseen research opportunities. A scenario in
which this often occurs is when data already

collected for another primary study are used to
answer a new research question. In these cases,
the methods and experiment are not necessarily
designed according to the analytical requirements
of the new research question. Bioacoustical stud-
ies using pre-existing opportunistic data often do
so because collecting new data can be
prohibitively expensive (e.g., if the field site is
remote or if specialized equipment is required).
Since the methods and experimental design may
be sub-optimal for the current study questions, the
data must be meticulously evaluated to check that
newly formulated analytical questions can indeed
be answered. Studies attempting to answer spe-
cific research questions using sub-optimal or
poor-quality data cannot always be salvaged,
even with sophisticated analyses. The prominent

Table 9.1 Examples of study types and their corresponding objectives and questions

Study type Purpose Example objective Example questions

Descriptive Studies conducted to describe
phenomena and conditions
measured during a study.

Describe the characteristics
of sound produced by sea
turtle hatchlings recorded
during a study.

• What is the frequency range of
sounds produced?
• What are the source levels of
sounds produced?
• What is the rate of sound
production by sea turtle hatchlings?

Exploratory Studies exploring relationships,
trends, and patterns in datasets
(not in a broader population).

Establish how observed
hatchling sea turtles’ sound
production varied during a
survey.

• How does observed hatchling sea
turtles’ sound production vary
during a given survey?

Inferential Studies aiming to estimate
population parameters or test
hypotheses about a broader
population.

Determine the average
expected sound production
rate of a population of
hatchling sea turtles.

• What is the average expected
sound production rate of a
population of hatchling sea turtles?

Explanatory Studies that aim to understand
the underlying cause(s) of a
behavior, state, or phenomenon.

Identify what influences
sound production in sea turtle
hatchlings.

• Are communications influenced
by the presence of other sea turtles,
environmental conditions, or
human/predator threats?

Predictive Studies that aim to predict an
outcome (such as animal
behaviors) in response to a
stimulus or condition.

Predict hatchling sea turtle
sound production rate when
threatened by humans.

• What will be the expected sound
production rate of hatchling sea
turtles when exposed to human
threats?

Has the ques�on been already answered in past research?

Does the analy�cal ques�on address the research aims?

Will there be any logis�cal / ethical constraints that will affect the execu�on of the study?

Fig. 9.1 Checklist of some considerations to be made before committing to a study
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twentieth century biostatistician, Sir Ronald
Fisher, illustrated this problem with the following
quote: “To call in the statistician after the experi-
ment is done may be no more than asking him to
perform a post-mortem examination: he may be
able to say what the experiment died of” (Fisher
1959). This message cannot be overstated. It is
critical, wherever possible, to consider the ques-
tion carefully a priori, so that the study is able to
answer the question (Cochran 1977). If you think
you might need to consult with a statistician, do
so before collecting the data.

For analyses to answer ecological research
questions, the experimental design must yield
sufficient information about the question of inter-
est. Often, ecological questions involve sets of
sampling units taken from a larger group (i.e.,
the statistical population, hereafter referred to as
a population unless otherwise stated). For a given
study species, or set of species, sampling units
could be defined as individuals, groups, cohorts,
communities, or local populations of the species
of interest—it depends on the research question.
Usually, due to logistical and time constraints, it
is not possible nor desirable to make
measurements over all objects or the whole pop-
ulation. In these cases, a sample is taken and data
collected from the sample are considered to be
representative of the population. It is key that the
process used to draw the sample is well under-
stood and is ideally random in design. The pro-
cess of drawing conclusions regarding a
population based on a sample from it is called
statistical inference.

To make meaningful inferences about the
properties of a population, the sampling protocol
must yield a sample size that is sufficiently large
to represent the population. In addition, the sam-
pling protocol should either eliminate or control
significant sources of error including random and
systematic error (Cochran 1977; Panzeri et al.
2008). Random error is caused by unknown and
unpredictable changes, such as in the environ-
ment, in instruments taking measurements, or as
a result of the inability of an observer to take the
exact same measurement in the same way. Statis-
tical methods typically quantify this error and, in
fact, build on it to draw inferences. In some sense,

if there was no error then there would be no need
for statistics. Of course, the performance of the
analytical methods is affected by the amount of
error in the data, in that the statistical power to
detect significant effects decreases with increas-
ing error, but if there was no error, by definition
there would be no questions left to answer and
statistics would have no role to play. Systematic
error (i.e., bias) is consistent error that is repeat-
able if the data are recorded again. It can arise
from many causes, such as a person consistently
making the same erroneous observation (i.e.,
biased observation; e.g., incorrectly recording
male birds as female birds) or an incorrectly
calibrated instrument. In behavioral studies,
biases in collected data can also be introduced
by the presence of the researchers themselves
(e.g., through human disturbance in a study on
supposedly undisturbed animal vocal behavior).
The introduction of bias can be further illustrated
in the example of a bioacoustician estimating
acoustic cue production rate (i.e., number of
cues, such as calls, produced per unit time) for a
population. In this example, the researcher
obtains samples of animals by locating the
animals producing acoustic cues. It is highly
likely, however, that the sample collected will
be only from animals that are in a sound-
producing state (as silent animals will go unde-
tected), hence acoustic cue rate might be inadver-
tently overestimated. Furthermore, animals may
respond to the presence of the researcher by alter-
ing their cue production rates, thereby introducing
further error to cue rate estimation. Such studies
should be designed to remove or control biases. If
controls cannot be integrated into the experimen-
tal design, then these may be able to be applied at
the analytical stage (statistical controls; see
Dytham 2011) and estimation of, and adjustments
for, unavoidable biases may be made during the
analysis. For topics on experimental design (e.g.,
systematic, stratified-random, and random-block)
that aim to reduce biases and increase inferential
power, the reader is referred to textbooks such as
Lawson (2014), Manly and Alberto (2014),
Cohen (2013), Underwood (1997), and Cochran
(1977), among many others. It is critical that
researchers carefully consider and identify the
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most suitable sampling design for their research
questions.

Despite all attempts to obtain reasonable sam-
ple sizes, minimize biases, and carefully select an
appropriate experimental design, data quality is
frequently sub-optimal due to logistical or practi-
cal constraints. Often unexpected restrictive
weather conditions and/or failure of instruments
limit data collection during fieldwork. Good
planning can mitigate unexpected data
limitations, thus wherever possible, there should
be contingency plans in place to deal with the
unexpected (e.g., budgeting for a reasonable
number of poor-weather days or redundancy in
instrumentation). Even with careful design and
contingencies implemented, data limitations can
still occur and may need to be dealt with at the
analysis stage. However, as noted before, sophis-
ticated analyses to deal with these are always a
second-best option over implementing data col-
lection methods and survey design that are robust
to potential limitations. Figure 9.2 gives a list of
some considerations to be made for assessing
whether research questions can be answered
before data are collected.

9.3.2 Instruments and Measurements

Instruments must be able to measure subject
behavior and conditions of interest in the study
such that estimates derived from the observations

have sufficient accuracy and precision to detect
the effect(s) of interest. The accuracy of an esti-
mate is its proximity to the true value, while
precision refers to the variability of successive
estimates of the same quantity. Naturally, to be
able to derive accurate and precise estimates,
measurements must also be accurate and precise.
Accuracy and precision of measurements are
evaluated through calibration and testing of the
instruments. Some instruments may simply not
have the capacity or range required for the
study. For example, a low-frequency acoustic
recorder will not have the capacity to measure
the acoustic behavior of bats, which produce
high-frequency echolocation signals. While care-
ful consideration must be made in selecting
instrumentation, considerable advances in their
capacities have been made over recent decades.
Instrumentation in bioacoustical studies is
discussed in detail in Chap. 2. Below is a check-
list for evaluating whether the selected instrumen-
tation will collect the required data for a project
(Fig. 9.3).

9.3.3 Preliminary Data Exploration

Data quality resulting from the experimental
design, selected instrumentation, and
measurements must be checked through data
exploration and visualization (e.g., graphics,
spectrograms) before embarking on planned

� Does the scope of the experimental design match those of the ques�ons?

� Is the sample size large enough given the effect size (see Sec�on 9.5.1.2 for discussion on
effect size) being inves�gated?

� Are the resources (e.g., �me, money, and trained personnel) available for the project
sufficient to carry out the study?

� Will data be reliable (i.e., accurate and precise) enough to answer the ques�ons?

� Will causes of biases in data collected be able to be iden�fied and removed or addressed
adequately?

Fig. 9.2 Checklist of some considerations to determine whether a research question can be answered
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analyses. It can be said that it is never early
enough to explore data, nor can there be too
many graphs involved in doing so. In fact, a
preliminary exploration of data should always
be conducted at the beginning of data collection
to allow the structure of the data to be
investigated, including the presence of anomalous
data points, missing values, and potential biases.
By identifying these early in the study, unfore-
seen design, sampling, or instrumentation issues
can be rectified. Preliminary exploration of data,
after data collection has been completed, will
allow for any remaining anomalies and biases to
be identified and planned analyses refined. Suspi-
cious observations can be introduced at different
stages of the research, for instance through:
(1) data entry error, (2) changes in the measure-
ment methods, (3) experimental error, or (4) some
unexpected, but real variation. For the first three
cases, the anomalous value(s) might be removed
before analysis. In the last case, there could be
some biologically important reason for the
observed unexpected values. Sometimes the
word “outlier” is used to refer to these suspicious
observations, but we prefer to avoid the term. An
outlier implies something that was unexpected,
but only after defining what would be expected
can we decide what the word “outlier” means.
Often “outliers” are very informative and can
even lead to new research questions. Conse-
quently, it is important to understand how
anomalies have occurred and to ascertain whether
they should be removed or not. A good and

honest approach, with little added cost, is to pres-
ent and discuss the results of an analysis with and
without those observations. This approach
provides useful information about the practical
consequences of the presence of anomalous
observations.

If sufficiently large gaps in information from
missing values occur, the data may not be repre-
sentative of the larger population, especially since
it might be hard to determine after the survey
whether the data were missing at random. Simi-
larly, if measurements were collected under cer-
tain conditions (e.g., poor weather or noise), the
data cannot typically be used to make inferences
outside this range of conditions (which would be
referred to as extrapolation). Finally, data of very
poor quality may not be salvageable, and—as
mentioned before—it is far preferable to get the
data right in the first place than to trust analytical
solutions to deal with problems introduced at the
data collection stage. Data exploration and visu-
alization are further discussed in Sects. 9.4
and 9.5.

9.4 Data Types and Statistical
Concepts

Regardless of the analytical approaches used,
there are some fundamental terms and concepts
that need to be understood before embarking on
analyses.

Do the instruments have the sensitivity (i.e., sufficiently low noise floor and thus sufficiently 
low amplitude that can be recorded), dynamic range (i.e., range of amplitudes that can be 
recorded), frequency range (for sound recorders), and field robustness required for the study?

Do the instruments obtain sufficiently accurate and precise measures? 

Is there a quality-control process to ensure that instrument accuracy and precision can be 
measured over time (e.g., systematic calibration and testing)?

Are the instruments reliable in that they will not result in significant sets of missing or biased 
data?

Fig. 9.3 Checklist of example considerations for selecting instrumentation for a bioacoustical study
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9.4.1 Variable Types and Their
Distributions

Measures of observations or conditions of interest
in a study can be called variables. For instance,
variables can be measurable properties of
animals, their behaviors, or their environment.
In a study of the acoustic characteristics of ele-
phant vocalizations recorded at different ranges
from the animal, relevant variables might include
the range between the microphone and the ele-
phant, the subject (i.e., which animal it is), the
sound type, the received sound level, the spectral
characteristics of the sound at the receiver
locations, and the acoustic characteristics of the
environment between the elephant and the
receiver. In general, a researcher will have a
good idea about the plausible values for the
variables of interest, and hence what range of
values to expect, but not know the exact values
before the observations are made. Variables of
known expected range but whose exact values
are unknown until observed are random variables
by definition. The notion of “outlier” is related to
this expectation, as “unexpected” values might be
considered suspicious. Within a regression con-
text (see Sect. 9.4.3 for more detail), the variables
that represent the outcome of interest are called
dependent variables or response variables. When
they represent the conditions that influence the
outcome, they are called independent variables
or explanatory variables, sometimes known as
predictors or covariates. Hereafter we use all
terms to discuss variables, choosing each time
the definition we feel will help to make the mean-
ing of a concept most intuitive.

Variables can be of two types: (1) categorical,
which can be further subdivided into nominal or
ordinal (if there is an order), and (2) numerical,
which could be discrete or continuous. Categori-
cal variables are often called factors and are qual-
itative. For example, if the variable was a sound
type produced by a bird categorized as either song
or chirp, then sound type would be a nominal
factor with two levels, also called a binary vari-
able. If the bird species was known to produce
three different sound types, then the

corresponding factor would have three levels.
Numerical variables are quantitative, and can be
discrete (e.g., integers such as counts) or continu-
ous (where, by definition, an infinite number of
values are possible between any two values).
Examples of continuous variables are the height
and weight of an individual or pressure and tem-
perature, while the number of sounds or the num-
ber of individuals are examples of discrete
variables. A summary of variable classification
and metrics is given in Table 9.2.

Properties of these variables, such as central
tendency measures like the mean, mode, and
median, or measures of spread like variance and
standard deviation, are statistics that can be used
to describe a sample of values. When these refer
to the values that these quantities have in the
population (as distinct from a sample of that pop-
ulation), these properties are called parameters.

Often, additional variables are collected that
are not necessarily of interest in explaining a
research question but could influence the
response variables. For example, while a bioac-
oustician might be interested in measuring the
rate of vocalization of chicks as a function of the
parents’ presence, the frequency of predator visi-
tation could also influence vocalization rates. In
this example, collecting information on the main
independent variable (parent presence) and the
variable not of direct interest (predator presence)
would be considered important to capture all
variables influencing vocalization rate. Some of
these variables might be of direct interest, but
some might just be included in a study because
they can affect the response, and if ignored,
would confound the results. For this reason, they
might sometimes be referred to as confounding
factors or confounding effects. Note that these
terms and their definitions vary with discipline
(e.g., there is some discussion about the exact
definition of a covariate; see Salkind 2010) and
analytical software, and sometimes are used inter-
changeably. Therefore, the reader should make
sure that, when reading a source or when
reporting their own results, the context provides
the required clarity for the wording chosen.

Not only are variables described according to
the properties they measure and whether they are
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independent or dependent variables, but in the
context of some analytical methods (e.g., linear
regression models and their extensions) they are
also described by whether they represent a specific
or random set of values. Generally, in statistics, a
variable with a value that is not known before it is
observed (e.g., peak frequency of a call or number
of animals in a group), but of which the range of
possible values is known (e.g., a positive continu-
ous number like the amplitude of a lion’s roar), is
known as a random variable, as described above.
Its range of possible values is referred to as the
domain of the random variable.

A random variable can be characterized by its
probability distribution, which describes the
probability of observing values in a given range
of the domain of the variable. An infinite number
of distributions exist, but some, given their useful
properties, are widely used. These distributions
are given names so that we can easily refer to
them. Arguably, the most widely used are the
Gaussian distribution (perhaps more often
known as the normal distribution, but since there
is nothing normal about it and it induces
practitioners to think there might be, we avoid
the term here), gamma distribution, and beta dis-
tribution, used to model continuous data; while
the Poisson distribution, negative binomial distri-
bution, and binomial distribution are useful when
modeling discrete values. The uniform distribu-
tion is one in which all values in the domain are
equally likely and can be either continuous or
discrete. These distributions are typically defined
by their parameters. As an example, the normal
distribution is defined by the mean and the

standard deviation, and for the case of the
Poisson, it is defined by the mean only. Given
the parameter values that define a random vari-
able, all the characteristics of the random variable
are unambiguously defined.

Values of a discrete variable are characterized
by a probability mass function (pmf). A pmf is a
function that gives the probability that a single
realization of the variable takes on a specific
discrete value. The number of vocalizing
individuals detected in an area might be
approximated by a Poisson random variable,
characterized by its mean (such as 3.7
individuals). The Poisson distribution is special
in that its variance is equal to its mean, a restric-
tion that means that often it does not fit biological
data well, where larger variance than the mean is
the norm.

In contrast, continuous variables can be
characterized by a probability density function
(pdf). In the instance of a variable such as the
change in duration of song, the pdf might be
represented by a Gaussian distribution—a bell-
shaped curve characterized by its mean and stan-
dard deviation. For example, the variable “change
in song duration” could have a true mean change
in duration of 240 s and a true standard deviation
of 12 s. These true values are generally unob-
served, but we would like to estimate them. A
single measurement of change in song duration
by a researcher could produce a value of 228 or
271 s. These single values are referred to as
realizations of the random variable. Pdf functions
provide information about how the values are
distributed before they are observed. Further

Table 9.2 Variable classification and metrics

Categorical Numerical

Nominal Ordinal Discrete Continuous

Description Non-ordered
categories

Ordered categories Variables in which the data can
take on only certain values (i.e.,
values that have
non-infinitesimal gaps between
them containing no values)

Variables in which the
data can take on real
values and all
infinitesimal real values
between them

Example Sound type
(e.g.,
downsweep,
upsweep,
constant tone)

Vocal activity on a
scale ranging from not
vocally active (0) to
highly vocally active
(5)

Acoustic cue counts Received sound exposure
level (in dB)
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examples of distributions are given in Fig. 9.4.
The reader is referred to Quinn and Keough
(2002) for a good introduction to useful probabil-
ity distributions in biostatistics.

9.4.2 Estimators and Their Variance

In this section, we introduce estimators and
related concepts because we will need them
later, but we note that we do so very briefly, just

so that the terms do not come as a surprise. The
reader is referred to Casella and Berger (2002) for
further details on statistical inference, estimators
and their variance.

As discussed previously, a parameter is a
quantity relating to the population of interest.
When performing statistical inference, we want
to estimate the parameters in the population (e.g.,
the mean cue production for a species of whale)
using samples (e.g., a sample of acoustic tags put
on whales). To estimate parameters, we use

Fig. 9.4 Examples of samples taken from different
distributions. The Gaussian, gamma (defined by its shape
parameter k and scale parameter θ) and beta (defined by
shape parameters α and β) are continuous distributions,
represented with histograms. The Poisson (defined by its
mean) and binomial (defined by n independent

experiments and outcome success probability p),
represented with barplots, are discrete distributions. Note
some distributions can be special cases of others. As an
example, the beta distribution, with shape parameters
α ¼ 1, β ¼ 1 is shown, illustrating the fact that it is
equivalent to a uniform distribution
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estimators. An estimator is a formula that we can
use to compute a parameter based on a sample. In
the case of estimating the population mean, the
estimator is, not surprisingly, the well-known for-
mula for the sample mean. Estimators are there-
fore based on random variables, in the sense that
each time we collect a sample we would get a new
observed value (i.e., a new estimate). Thus, an
estimator can also be thought of as a sample
statisitic that estimates the population parameter
such as the mean. If we collected infinite samples
and computed the estimator each time, we would
get the estimator sampling distribution, from
which we could evaluate the bias and the variance
of an estimator. However, collecting infinite
samples is not possible, but by understanding
the properties of the estimator and the design
used to collect the data, we can also quantify the
variability associated with an estimator, based on
a single sample. Variability is a key attribute of an
estimator, and the resulting estimate from the
single sample (known as the point estimate) is
not enough to provide a full representation of
it. For example, it is very different to say that
we estimate a cue production rate to be 7.2 sounds
per hour, than to provide the additional informa-
tion that it could vary from 7.1 to 7.2, or that it
could vary from 1.2 and 27.7. In the first example
we have a small variance, and the latter we have
such a large variance that the estimator itself is
borderline useless. To compute an estimator’s
variance, there are two main approaches. If the
estimator and the process by which we collect the
sample is simple enough, we have standard
formulae for the variance. That is the case for
the sample mean from a simple random sample.
However, often in practice, that is not the case,
say because the sampling procedure is convo-
luted, there is a hierarchy in the process, or the
estimator is composed of several random
components, possibly not independent among
themselves. A good example is an animal density
estimator from Passive Acoustic Monitoring
(PAM), where different random components like
encounter rate, detection probability, cue rate, and
false-positives might be at play (see Sect. 9.6.2
for a PAM density estimation example). In such
cases, resampling techniques like the bootstrap

might be considered. The rationale behind the
bootstrap is that one can resample with replace-
ment from the original sample, and the variability
of the estimates computed over the resamples is
an estimate of the estimator variability. The
reader is referred to Manly (2007) for further
details about these procedures. While variance is
commonly reported, when comparing variances
of quantities that have different means, the coeffi-
cient of variation (CV), which is the standard
deviation divided by the mean, can be useful.
The CV is typically reported as a percentage (%
CV ¼ standard deviation/mean �100).

9.4.3 Modeling

In its most simplistic form, a model is a mathe-
matical generalization of the relationship among
processes (Ford 2000). Models are by necessity a
simplification of reality. Extending a quote
popularized by George P. Box (1976), all models
are strictly wrong, in that they are always
oversimplifications of reality, but many models
are useful, in that they provide useful
explanations or predictions of reality. Models
can either be empirical or theoretic. A common
example of a theoretical model in acoustics is the
piston model used to represent the beam pattern in
a directional sound source like the dolphin
biosonar system (Zimmer et al. 2005). While
theoretical models are based on theory, empirical
models are based on observations. Here we will
focus discussion on empirical models as observed
data are commonly used to fit models to describe
bioacoustical processes. Models describing the
relationships between whale vocalization rates
and season or location (Warren et al. 2017) or
dolphin occupancy and pile driving noise (Paiva
et al. 2015) are examples of empirical models.
Another example is a mathematical equation that
describes the number of bird calls recorded within
a given period as a function of the number of
birds present. By identifying the mathematical
relationship between variables, past events can
be explained and future scenarios predicted.
However, finding such an association requires
careful interpretation, especially in observational
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studies. Finding an association between two or a
set of variables does not necessarily imply a cau-
sation. This could be either a spurious associa-
tion, or an observation induced by a variable that
was not recorded. It is a statistical capital sin to
confuse correlation with causation. For example,
on hot days, the consumption of ice creams
increases, and so does the number of fires. But
you can eat an ice cream guilt-free as you will not
cause a fire!

9.4.3.1 Introduction to Regression: The
Cornerstone of Statistical
Ecology

Arguably, the most common and most useful
class of statistical models are regression models.
The simplest regression model (i.e., the Gaussian
linear regression model) has three basic
components: (1) a dependent variable that is to
be modeled (i.e., described or explained), and
(2) independent variables that are thought to
influence the dependent variable. The third com-
ponent, the random error, distinguishes statistical
models from deterministic mathematical models.
The random error captures how the model differs
from the actual observations. In other words, it
measures how well, or badly, our model describes
reality. Written as a mathematical expression, the
simple regression model looks like this:

Y ¼ αþ Xβ þ ε, ð9:1Þ
where Y is the response variable, α is the intercept
(a constant), X is the fixed independent variable, β
is the regression coefficient for the fixed indepen-
dent variable that describes the rate of change of
the response variable as a function of the indepen-
dent variable, and ε is the random error. In gen-
eral, the parameters α and β are not known and
must be estimated based on data.

Most variables, particularly in ecology, are
influenced by many covariates, and hence models
can include multiple independent variables. For
instance, in a study on whether the vocalization
rate of sea lions differs with sex and age, vocali-
zation rate (i.e., number of vocalizations per unit
time) would be the response (dependent) variable
and sex and age the explanatory (independent)

variables. In addition to having these two explan-
atory variables of direct interest, other variables
may also be relevant to include in models,
because they might a priori be expected to also
influence the response variable. Variables that
may affect vocalization rate may include time,
season, social context, or location. Studies in
which multiple explanatory variables influence
the outcome might have interactions between
the explanatory variables that are important to
consider. For instance, vocalization rate may dif-
fer between male and female sea lions, but only
for sub-adults and adults and not for pups and
juveniles.

In a regression model, a distribution is typi-
cally assumed for the response variable. This will
induce a distribution for the random errors. His-
torically, regression models considered the errors
of the dependent variable to be Gaussian
distributed, and much of regression theory was
developed under this assumption. Note that a
model assuming a Gaussian error distribution in
the dependent variable is commonly simply
referred to as a linear model. Nowadays many
generalizations to linear models exist
(as described below and see Zuur et al. 2009 for
common examples in ecology; see Generalized
Linear Models in Sect. 9.5.3 below). Arguably,
as noted above for random variables, the more
commonly used distributions in regression
models are Gaussian and gamma for continuous
data, Poisson and negative binomial for counts,
binomial for binary data, and beta for proportions
(or probabilities), but many others exist. As for
linear models, generalizations assuming other
distributions associated with the response vari-
able and associated error structure are commonly
referred to by their distributions. For example, a
Poisson distributed response variable with
associated error structure of counts of animals is
commonly referred to simply as a Poisson model.
A gamma model might be used to model continu-
ous positive values resulting from measurements
of duration of a recorded song. Values
representing the probability of producing a
sound (between 0 and 1), however, might be
modeled assuming a beta distribution.
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Regardless of the error distribution of a model,
classical regression models assume that
observations are independent of each other (i.e.,
the value that one observation takes on is not
influenced by another). The easiest way to ensure
this happens is by design, and all efforts should be
made to enforce it. In the biological world, the
assumption is very often violated, and almost as
often ignored. This can lead to errors in inferences
made, the severity of which depends upon the
degree and type of non-independence between
observations. A few obvious sources of lack of
independence (i.e., dependency) are observations
collected within groups that share a characteristic
(e.g., a litter or a pod of animals), or observations
collected over space (where two observations are
more likely to be similar the closer they are in
space) and over time (where two successive
observations are more likely to be less indepen-
dent than two observations separated by a longer
period of time). Researchers often mistakenly
analyze data collected without proper consider-
ation of whether observations are independent.
By exploring and accounting for dependencies,
or even purposefully including them in an experi-
mental design, the power of an analysis may be
enhanced. As an example, in a repeated measures
study of bird vocalization rate as a function of
time of day, repeated measurements of the same
individuals during the day and night could be
undertaken by design (instead of randomly sam-
pling birds at each time period). Another example
is that of a chorusing group of insects, in which
sounds can be produced for hours. A researcher
may be interested in measuring whether the
insects chorus in a given 5-min period. At any
point of time within a chorusing bout, the proba-
bility that insects will be chorusing in a 5-min
time window will be expected to be high if they
were chorusing during the previous 5 min. This
leads to what are called autocorrelated
observations. In such cases, the autocorrelation
structure can be incorporated into the model. If
evaluating the effect of time was not of specific
interest in this study, an alternative and simpler
solution would be for the model to use
subsampled data to include only times at which
insect sound production can be considered

independent. However, by explicitly accounting
for the autocorrelation structure in the model,
more efficient inferences are bound to be obtained
as there is no loss of information. Model imple-
mentation does become a bit more complex, how-
ever. Studies that purposefully measure subjects
or populations repeatedly over time to create a
time series of data are called longitudinal studies.
Because time-series measurements, such as those
from longitudinal studies, usually cannot be con-
sidered independent from one another (e.g., an
animal’s current behavior is likely dependent on
its behavior during the previous sample time), a
wide range of models have been purposefully
developed to account for non-independence (see
Sect. 9.5.3). Researchers should carefully con-
sider and plan for potential sources of depen-
dency in the design of their studies and data
collection protocols.

A checklist of some considerations for describ-
ing and defining variables in your study, includ-
ing whether they are autocorrelated or not, is
illustrated in Fig. 9.5. These considerations
should be made as part of the experimental design
and analytical planning process prior to data col-
lection and will need to be reassessed post data
collection.

9.5 Tackling Analyses

In this section, common analytical approaches
used in descriptive and exploratory studies are
presented first, followed by those used in inferen-
tial, explanatory, and predictive studies. It is
important to note that analyses relevant to infer-
ential, explanatory, and predictive questions
require preliminary data exploration (see Sect.
9.3.3), thus requiring descriptive and exploratory
analyses first. In these cases, preliminary explora-
tion of data attributes may refine previously
planned analytical approaches. This is particu-
larly relevant since sufficient data quality and
specific distributions are required for empirical
model assumptions to be met and these features
can be assessed via initial data exploration.

Analytical approaches described in this section
are examples only of a wider range available. The
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purpose is, by way of examples, to provide a taste
of the explosion of tools developed over the past
few decades, the lively discussion that has arisen
from their varied and inherent limitations, and the
resulting developments in statistical approaches.
The reader is directed to the wide range of avail-
able statistical textbooks and scientific papers to
gain an in-depth understanding of the full range of
approaches, their underlying concepts, and their
correct use, limitations, and interpretation of
outputs.

9.5.1 Descriptive and Exploratory
Research Questions

Having defined the question (Sect. 9.2) and
identified the variable types and some of their
attributes (Sect. 9.4), tackling the analyses is the
natural next step. For descriptive and exploratory
questions and preliminary data exploration, sum-
mary statistics and graphical visualizations pro-
vide information about the attributes of variable
measures and patterns and relationships in data.
The information relates only to the properties of
the observed data. Analyses that aim to generalize
a sample to a population require inferential,
explanatory, and predictive type analyses
(discussed in Sects. 9.5.2 and 9.5.3).

9.5.1.1 Univariate Summary Statistics
and Graphical Visualization

Exploration and visualization in their simplest
forms are undertaken by evaluating each variable
on its own (Fig. 9.6). Analyses of single variables
are called univariate analyses and are used for
representing and summarizing the characteristics
of the variable in question. For example, univari-
ate exploratory statistics describe a variable’s

properties such as statistics for central tendency
including the mean (note that there are different
types of means; e.g., arithmetic, geometric, and
harmonic), median, or mode, and spread of data
including the range (maximum and minimum),
variance, standard deviation, skewness (degree
of asymmetry), kurtosis (i.e., how peaked a distri-
bution is), or interquartile range (see Table 9.3).
Data corresponding to a single variable can be
summarized and explored using a range of
graphing tools, such as histograms, box plots,
bar charts, or scatterplots. Additionally, geo-
graphical data can be explored on maps and
marine charts, and acoustic spectral
characteristics on spectrograms (representing sig-
nal strength over different frequencies over time).
As noted previously, it is (arguably) almost
impossible to produce too many graphs at an
exploratory stage—the more that you can learn
about your data, the better. The reader is referred
to standard statistical textbooks for information
on the large range of summary statistics and
graphical visualizations available (e.g., Zuur
et al. 2007; Zuur 2015; Rahlf 2019 for examples
in R).

9.5.1.2 Bivariate and Multivariate
Descriptive Statistics

The analyses of two variables together are called
bivariate analyses. For instance, exploration and
visualization of a given variable as a function of
another variable to investigate possible correla-
tion is a bivariate analysis (see Fig. 9.7). A prac-
tical example of a bivariate visualization is the use
of box plots to visualize the distribution of call
types (one variable) as a function of age class
(a second variable), or a scatterplot of a recorded
acoustic cue rate as a function of time of day.
Following this logic, multivariate analyses

Have the variables and variable types been identified?
If there are multiple independent variables, are there interactions of interest and/or are any of
variables highly correlated?
Are data for variables likely to be independent or autocorrelated?

Fig. 9.5 Checklist of some considerations for defining variables in your study
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naturally consist of the joint analysis of multiple
variables. Visualization tools and summary statis-
tics can also be applied to multivariate analyses.
For instance, two and three-dimensional
scatterplots, bar charts, stacked bar charts, and
multiple line graphs can display statistics and
spread of data as a function of multiple variables
on the same figure.

When bi- or multivariate analyses aim to
explore associations and patterns, the magnitude
of the association can sometimes be quantified.
For example, in a bivariate analysis, the magni-
tude of the linear relationship between two
variables can be quantified using a statistic called
Pearson’s correlation coefficient (r). The magni-
tude of an association such as this one is often

referred to as an effect size. For example,
Pearson’s correlation coefficient is a standardized
metric ranging from �1 to 1; with a perfect nega-
tive association yielding a value of �1, no asso-
ciation 0, and a perfect positive association a
value of 1. In some disciplines, conventional
criteria have been suggested to classify effects
as small, medium, and large (see Cohen 1988).
What may be in one study considered a large
effect (say, r ¼ >0.6), however, may not neces-
sarily be in another study (where say, r ¼ >0.8
might be considered large). Consequently,
evaluating what is a meaningful effect size that a
study aims to detect should always guide the
design of a study and interpretation of its
outcomes. It is a question that the researcher

Fig. 9.6 Example of univariate data visualizations of dolphin sounds detected: (left) scatterplot and (right) line chart.
Data source: WAMSI as part of Project 1.2.4 (Brown et al. 2017)

Table 9.3 Description of example univariate analytical and visualization tools

Measure Statistic Visualization tools Common purposes

Location
and central
tendency

Mean (arithmetic, geometric, harmonic),
median, mode

Point, line and bar charts,
histogram, boxplot

Describe the central
tendency of values in a
variable

Spread Range (maximum and minimum), variance,
standard deviation, skewness, kurtosis,
standard error, interquartile range

Scatter plots, box plots,
interquartile range, point, line
and bar charts with standard
error bars

Describe the spread of
measures in a variable
and identify patterns and
data gaps
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should answer based on their biological knowl-
edge and is not related to statistical
considerations.

When a study’s goal is to explore associations
and patterns among many variables, analyses
become more complex. Multivariate approaches
are commonly used to reduce many variables to a
few key ones. This is known as dimension reduc-
tion. Multivariate approaches are also used to
explore relationships and clustering, and to clas-
sify objects based on common multiple variable
attributes. A good source for additional details on
multivariate methods is Borcard et al. (2011).

One of the most common analyses used for
dimension reduction is principal components
analysis (PCA). The name of the method is
derived from the fact that new variables, known
as principal components, are obtained from the
set of original variables. For example, a
researcher may be interested in exploring whether
populations of a social insect, such as a species of
ant, can be determined based solely on acoustic
signals (e.g., stridulations) its individuals produce
for communication. In this case, a range of
variables might be measured, such as pulse dura-
tion, bandwidth, minimum and maximum fre-
quency, and intensity, to name a few. In
acoustics, a large number of variables might be
measured to capture the full range of

characteristics of acoustic signals. Consequently,
using a data reduction method to capture the most
variance explained by these variables by creating
just one or two new variables (called principal
components in PCA) makes the exploration of
patterns in sound characteristics easier. The first
principal component retains most of the original
variance, followed by the second component, and
so forth. These principal components are some-
times called factors. Factor 1 and 2 can be plotted
against each other, and distinct groupings of plot-
ted values for different populations would be
suggestive of differing characteristics in
stridulations among populations. To statistically
test differences, PCA might be used to generate
factor scores as inputs into inferential, explana-
tory, and predictive analyses (e.g., a regression
analysis). Note that there are many dimensionality
reduction approaches (see Van der Maaten et al.
2007), and researchers planning on using these
tools should acquaint themselves with the wide
range available today, their conditions of use, and
their limitations. While one approach may be suit-
able given the attributes of one dataset, another
may be required for a different dataset.

Clustering and classification analyses assign
objects into groups based on measured attributes
(variables). Cluster analyses form groups
(McGarigal et al. 2000; Zuur et al. 2009) using
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Fig. 9.7 Example of bivariate data visualizations of dol-
phin sounds detected during July 2014: (left) scatterplot,
(middle) box plot, and (right) bar chart with standard error

bars. Data source: WAMSI as part of Project 1.2.4 (Brown
et al. 2017)
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“unsupervised learning,” where you do not
“train” the procedure by labeling “training” data
with group membership as you might in other
methods. A range of cluster analysis algorithms
are available including common approaches such
as k-means and hierarchical clustering (see
Borcard et al. 2011). Clustering and classification
are used commonly for pattern recognition and
are described further in Chap. 8.

Many other multivariate analytical approaches
are available, ranging in their assumptions,
strengths, and limitations, and the variable
attributes for which they are most suitable. For
example, correspondence analysis (CA) is similar
to PCA, but can better cope with categorical data.
The reader is referred to the many textbooks on
the subject, such as Everitt and Hothorn (2011) on
some of the more commonly used multivariate
methods and their practical application in the
software R.

As in the univariate case, we reiterate that
associations identified in exploratory multivariate
analyses do not indicate causation. Researchers
interpreting exploratory analysis results should
take care to never conclude that the results are
evidence of causation. A brief checklist has been
provided below with examples of the types of
data considerations required for selecting
analyses suitable for descriptive or exploratory
questions (Fig. 9.8). The checklist is not exhaus-
tive, rather it is indicative of the kinds of
considerations required.

9.5.2 Inferential Studies

Statistical inference is used to infer properties of a
population (e.g., estimate parameters) or test
hypotheses. There are two widely used distinct
frameworks for making statistical inferences: the
frequentist and the Bayesian paradigms. Classical
frequentist inference has a long history and has
dominated past animal behavior and ecology
research, while Bayesian inference is becoming
increasingly popular. Both approaches can pro-
vide insightful information, however, they repre-
sent different interpretations of probability.

In frequentist probability, the probability of an
outcome occurring is based on the relative fre-
quency of occurrence based on a large number of
observations taken. For example, the probability
of bird vocalizations being recorded at a study site
might be based on many sample recordings taken
under the same conditions at the site. If
vocalizations occurred 48% of the time, the prob-
ability of the outcome of birds vocalizing would
be interpreted as 0.48. As the sample size
increases, the proportion of occurrences
approaches the true (unknown) proportion. If the
sample size is small, the calculated proportion
may not be a reliable representation of the true
probability.

In the Bayesian interpretation, the probability
is the degree of belief of the likelihood of the
outcome. For example, it may be that a researcher
believed that vocalization in nesting birds is
related to predator presence. The researcher had
visited the site and rarely heard birds vocalizing
when predators were absent but noticed them
vocalizing more often when predators were pres-
ent. Maybe the researcher had even made a few
recordings when predators were present and
absent and found that birds were vocalizing
5 out of the 10 times she recorded in the presence
of predators and 1 out of 10 times in their
absence. In this example, these observations
would constitute the prior belief. The research
then undertakes a study designed for the purpose
of collecting an unbiased set of observations to be
used in analyses (sampling in the presence and
absence of predators). Using Bayes’ Theorem, the
prior knowledge can be used to calculate the
probability of vocalization that accounts for
knowledge before and after collecting evidence
(sampling). If the number of samples is large, the
resulting probability estimate may not change
much from that obtained in a frequentist frame-
work. However, if the sample size is small, the
prior knowledge may significantly affect the esti-
mate of probability. Therefore, the lower the sam-
ple size (i.e., in general the lower amount of data
coming from the data), the more the prior
becomes important.

Many professional statisticians fall firmly in
the frequentist or Bayesian camp. This often
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follows directly from their training, or just by
convenience and actually not having thought
much about the philosophical ramifications of
their choice. Sometimes they are rather inflexible
in their beliefs (be it in one or the other camp). We
recommend a more pragmatic approach in prac-
tice. Depending upon the problem at hand, one or
the other framework might be more suited to the
question, easier to implement, or more sensible
for incorporating all available information
(Nuzzo 2014; Ortega and Navarrete 2017). Con-
sequently, we believe that the modern bioacousti-
cian should have a basic understanding of the
differences between frequentist and Bayesian
approaches, and suggest that rather than only
being frequentist or Bayesian, a pragmatic
approach be taken. Below, we provide a very
brief introduction to statistical inference applied
to parameter estimation and hypothesis testing.

9.5.2.1 Parameter Estimation
There are a range of approaches to estimate pop-
ulation parameters, such as the population mean
or variance, or a shape or scale parameter of a
distribution, from a sample. In the context of
ecological modeling, the frequentist approach to
estimating parameters typically uses maximum-
likelihood (Hilborn and Mangel 1997). In Maxi-
mum Likelihood Estimation (MLE), parameter

values of a distribution are estimated by
maximizing the likelihood function so that the
MLE estimates are the values of the parameters
that are most likely given the sample data. An
alternative method is Least-Squares Estimation
(LSE), where a solution that minimizes the sum
of the squares of the residuals (the difference
between the observed values and those obtained
using the fitted model) is obtained. For a
Gaussian-distributed response variable, and sev-
eral other simple examples, the LSE solution is
equivalent to the MLE. Nowadays LSE are
mostly introduced for teaching purposes, and
most implementations use maximum likelihood.

As indicated above, the Bayesian framework
combines information on the likelihood of an
outcome using observed data with prior informa-
tion on the distribution of the unknown parameter
being estimated. The prior distribution can be an
assumption based on the researcher’s understand-
ing and experience of the parameter before the
study began or it can be based on the results from
a pilot or previous study. Often the prior distribu-
tion simply reflects a lack of knowledge and may
be uniform over all the possible values the param-
eter of interest might take (i.e., the parameter
space). A posterior distribution (i.e., updated
understanding) is attained by multiplying the
prior distribution function with the likelihood

� Do I require descrip�on, explora�on, and visualiza�on of individual variables, either for
answering the main study ques�on or for checking the quality of the data and assump�ons of
analyses planned for inferen�al, explanatory, or predic�ve studies?

The answer to this is always YES. Data always need to be checked for quality
and a�ributes, and if the ques�on requires inference or empirical models, the 
validity of assump�ons needs to be checked (see Sec�on 9.3.3 and 9.4)!

� What types of variables do I have?
� Does the study ques�on involve single or mul�ple variables?

If mul�ple variables, 

� are there a large number of variables that I need to reduce, explore their associa�on, 
or inves�gate clustering or classifica�on of groups characterised by them?

Fig. 9.8 Checklist of some considerations for identifying approaches for descriptive and exploratory questions
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function and scaling the result to provide a prob-
ability distribution function. All the inferences are
then based on this posterior distribution. The pos-
terior distribution thus can be seen as a compro-
mise between the prior information and the
information contained in the data, expressed via
the likelihood function. There are various
resources available for further reading on the
Bayesian framework. Ellison (2004) provides an
excellent and gentle introduction to the use of
Bayesian methods in ecology, while McCarthy
(2007) provides a more thorough overview.
Stauffer (2007) gives an in-depth introduction to
Bayesian and frequentist statistical research
methods and Gelman et al. (2013) discuss Bayes-
ian data analysis. Statistical Rethinking by
McElreath (2020) is a comprehensive treatment
for a reader wanting to become fully versed in the
Bayesian philosophy, including R code to explore
all the key concepts.

When inferential methods, such as those
introduced above, are used to estimate parameters
from sample data, the inferences we draw from
them are uncertain. Confidence intervals (CIs; a
frequentist approach) and credible intervals (CrIs;
Bayesian counterparts) are tools for expressing our
uncertainty about parameter estimates. Confidence
intervals, although more widely used, are arguably
more difficult to interpret than credible intervals.
Confidence intervals give information based on
our sample estimate, and by definition, if we
repeated the procedure many times, 95% would
include the true parameter value. Note a 95% CI
does not mean that 95% of the observations lie
within the interval, nor that the probability of the
true value of the parameter being in the estimated
interval is 0.95. After you estimate the confidence
interval, the true parameter value either is, or is not,
in the interval, even if we do not know which it
is. In contrast, 95% CrIs would represent a range of
values for which there is a 0.95 probability that the
parameter falls in that range. Ironically, what this
means is that while most people use frequentist
confidence intervals, they often interpret them,
incorrectly, as credible intervals. Although credi-
ble intervals are intuitively easier to understand,
they can be more difficult to calculate than confi-
dence intervals.

9.5.2.2 Hypothesis Testing
While hypothesis testing has been traditionally
undertaken using a frequentist approach (called
null hypothesis significance testing, NHST),
equivalent Bayesian approaches are increasingly
applied. This section focuses on providing a brief
introduction to NHST as a foundation and
provides references for further reading on Bayes-
ian approaches. These basic concepts are
introduced here with examples of their applica-
tion to test statistics (i.e., statistics values used to
reject or support a null hypothesis), however, they
are also an integral part of modeling and model
selection in explanatory and predictive questions
(discussed in Sect. 9.5.3).

NHST constitutes a widespread paradigm
under which research has been conducted
(NHST, Fisher 1959), however, it is often not
used sensibly, and frequently blindly used and
abused. In some of these cases, pressure on
researchers to find statistically significant effects
has resulted in poor research practices (see Nuzzo
2014; Beninger et al. 2012 for detailed
discussions on the topic). Applying NHST to
reasonable hypotheses and qualifying results
according to the limitations and assumptions of
NHST, however, can produce important new
knowledge. To achieve this, an understanding of
how NHST works is required. Here we provide
insight into the framework by way of example.

Under the NHST framework, researchers put
forward a hypothesis (i.e., proposed explanation)
about the phenomena being studied based on a
study question. Let us say the researchers’ ques-
tion is “Do seal pup call rates differ between night
and day?” The null hypothesis (H0) is that call
rates do not differ between night and day, and the
corresponding alternative hypothesis (HA) is that
pup call rates do differ between night and day.
Note that this hypothesis implies a two-tailed test,
one for which the null hypothesis is rejected if a
positive or a negative effect (i.e., a large or small
value of the test statistic) is found. In contrast, a
one-tailed test would be used by a researcher
interested only in the difference between groups
in a specific direction (e.g., “Are call rates greater
during the day than at night?”).
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In this example, the researchers cannot mea-
sure the call rates of all animals in the population,
so they collect a random sample, say of
100 animals. Sampling at random is key to
collecting data that represent the broad popula-
tion, thereby avoiding biases in the parameter
estimates. In this example, on a given day, for
each animal, the researchers record the number of
calls produced during daylight hours and during
the night. Let us call the event, in which for a
given animal there are more calls during the day
than at night, a “success.” If we assume animals
operate independently, then the number of
successes in the 100 animals provides informa-
tion about the null hypothesis: the further from
the expected number if there were no differences
between night and day, the larger the evidence
against H0. We also assume that the probability of
a success is constant and independent across trials
and animals. Under H0 we assume the probability
of a success is p ¼ 0.5. Under H0, the number of
successes has a binomial distribution with
parameters n (the sample size) and p. The
corresponding probability mass function with
n ¼ 100 and p ¼ 0.5 is illustrated in Fig. 9.9.

To test the null hypothesis, the researchers use
the number of successes as a test statistic. The test
statistic has information about the null hypothe-
sis, and under the null hypothesis, we know the
distribution of the test statistic. If call rates are on
average the same during the night and day (i.e.,
H0 is true), then we would expect that animals
have a probability of 0.5 of producing more calls

during the day than at night, and on average
T (number of successes) would equal 50 (T¼ 50).

Now imagine that the researchers observe
T ¼ 46. From Fig. 9.9, T ¼ 46 is consistent with
the null hypothesis, which we would not reject for
the usual levels of statistical significance (see
below for a more in-depth discussion of signifi-
cance levels). On the contrary, consider the case
of T ¼ 11. This result would have been extremely
unlikely under the null hypothesis, and we would
be tempted to reject the null hypothesis, implying
that differences between night and day might
occur.

The example given here illustrates the ratio-
nale under NHST, the steps of which are:
(1) define the hypothesis, (2) collect the data,
(3) calculate a test statistic, with known distribu-
tion under H0, (4) evaluate how likely
(or unlikely) the data would be under the null
hypothesis, and (5) if very unlikely, then reject
the null hypothesis, but if not unlikely, do not
reject it. Consequently, the trick is to put forward
a null hypothesis under which the distribution of
the test statistic can be evaluated to assess how
likely the data are under the null hypothesis.
Given the sampling uncertainty (i.e., not observ-
ing the entire population), we can make mistakes
when making decisions about whether to reject
the null hypothesis or not. The confusion matrix
in Table 9.4 illustrates the possible outcomes of a
decision.

The two wrong decisions we can make are to
reject the null hypothesis when it is in fact true or

Fig. 9.9 Binomial
probability mass function
with parameters n ¼ 100
trials and p ¼ 0.5, with the
quantiles 2.5% and 97.5%
represented by vertical
dashed lines. Under H0 only
5% of the observations
would be more extreme
than those quantile values
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to not reject it when it is false. The former is
known as a Type I error (i.e., an incorrect rejec-
tion, sometimes referred to as a false-positive)
and the latter a Type II error (i.e., failing to find
a real effect, sometimes referred to as a false-
negative). In general, it is believed that Type I
error is what we should guard against, with the
logic illustrated here as analogous to the legal
system: It is better to have a guilty defendant
not convicted than to have an innocent defendant
sent to death. We note, however, that depending
on the problem at hand, a Type II error could have
a greater consequence than a Type I error. To
illustrate this, imagine that you are testing
whether the size of a population has decreased
below a critical threshold that requires an action
for it to not go extinct. If you do not reject the null
hypothesis (i.e., that the population size has not
changed) but it is false, you might miss the oppor-
tunity to take action and prevent the population’s
extinction. Alternatively, if you mistakenly take
action to protect the population while it is in fact
above the minimum threshold, you might waste
money but any risk of detrimental population
consequences is eliminated. So, while many
textbooks may allude to the importance of
safeguarding against Type I error, the error type
that should be of most concern is likely to be
study-specific. The usual advice applies: Do not
use cookbook recipes, rather think about your
study. The allowable Type I error can typically
be specified with a critical significance level value
(defined below). Estimation of Type II errors
typically requires another step, called a power
analysis (see Ellis 2010 for a textbook on power
analyses).

In practice, the amount of evidence against the
null hypothesis required in a study is given by
setting a threshold based on how unlikely the
observed data would have to be under the null

hypothesis before it is rejected. Alternatively, we
can compute the probability of, given the null
hypothesis is true, observing a value for the test
statistic that is as or even more extreme than the
observed value. This probability value is com-
monly referred to as the p-value. In the above
example, assuming a two-tailed test, the p-value
associated with T ¼ 46 or T ¼ 11 would be 0.484
and ~0, respectively. This would lead us not to
reject the null hypothesis in the first case, but to
reject it in the second case. Note that a common
error is to confuse the p-value with the probability
of the null hypothesis being true or the alternative
being false. Researchers should take care in their
interpretation of p-values to ensure they are
accurate.

The predefined probability threshold below
which we are willing to reject the null hypothesis
is called the significance level (typically
designated as α). A typical value for the signifi-
cance level is 5%, with tests having p-values
lower than 0.05 often being reported as statisti-
cally significant. This value has become widely
used; however, it should be noted explicitly that
there is nothing special about a 5% significance
level. While using this threshold has been
extremely useful in practice, there is arguably no
other concept in statistics that has received more
criticism. The abuse of the 5% significance level
by blindly using it is among the most common
criticisms of the p-value and hypothesis testing
(Nuzzo 2014; Yoccoz 1991; Beninger et al.
2012). Using common sense is fundamental in
selecting significance levels. It is intuitively sen-
sible that it cannot be sound science to blindly
claim a result to be significant if p¼ 0.049 but not
significant if p ¼ 0.051. Ultimately, researchers
need to think carefully about the cost of errors
they can incur and define suitable significance
levels accordingly. The focus should arguably

Table 9.4 Confusion matrix showing the possible
outcomes of a null hypothesis decision: correct decisions
and Type I and Type II errors. Statistical tests usually

require a significance level (i.e., Type I error rate), which
defines the probability of being wrong if the null hypothe-
sis is true

Decision on null hypothesis

Do not reject Reject
Reality H0 true Correct decision Type I error

H0 false Type II error Correct decision
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be on reporting confidence intervals and assessing
the biological importance of reported effects, not
on claims of statistical significance that are often
not more than statements about sample size.
Given a large enough sample size, even the
smallest difference will become statistically sig-
nificant. Therefore, it is perhaps not surprising
that a common pitfall for researchers, and equally
as or arguably more important than evaluating
statistical significance, is failure to consider a
result’s biological significance. Imagine two
populations of a whale species that produce the
same stereotyped calls. Let us say animals in
population A produced calls at a mean rate of
22.7 per hour and in population B at 22.6 calls
per hour, and that these are significantly different
statistically. Is this result meaningful biologi-
cally? In other words, is the effect size of a mag-
nitude that we care about? In most cases, almost
certainly not. Therefore, a researcher should have
a good understanding a priori of the magnitude of
the effect that is biologically relevant.
Researchers undertaking studies with large sam-
ple sizes having the power to detect very small
effect sizes can fall into the trap of reporting
results as important based on statistical signifi-
cance instead of on effect size and significance
together. Conversely, studies having a large prob-
ability of incurring Type II errors (also known as
low power, i.e., having a low probability of
correctly rejecting the null hypothesis when it is
false) due to a small sample size may only be able
to detect very large effect sizes and miss smaller
ones that are biologically important. The effect
size that is meaningful in a study, thus, needs to
inform the experimental design to ensure a suffi-
ciently large sample is collected before the study
commences.

While NHST and p-values can provide valu-
able tools to bioacousticians, it is not amiss for
researchers to be well aware of the lively discus-
sion on their misuse, drawbacks, and limitations.
Nuzzo (2014) provides an introduction to this
discussion, Yoccoz (1991) provides a classical
critical review regarding their use in biology and
ecology, and Beninger et al. (2012) frame the
problem in the wider context of statistics in

(marine) ecology. An entire Forum section in
the journal Ecology has been dedicated to the
topic in recent years, and Ellison et al. (2014)
show that while having been discussed and
revisited many times in recent years, the discus-
sion about their use is alive and kicking!

Having said this, a wide range of NHSTs have
been developed over many decades to accommo-
date a range of questions and data types. Tradi-
tionally, many of these have been described as
either “parametric tests” or “non-parametric
tests,” with parametric tests often assuming
samples arise from Gaussian distributions and
non-parametric tests are often used for categorical
or continuous data that do not fit assumptions of
parametric tests. While we urge the reader to be
cautious about blindly using such tests and be
aware of their limitations, we feel we must dis-
cuss them since this is how statistics is presented
in most undergraduate and postgraduate courses
aimed at the applied sciences, biology and ecol-
ogy included. As examples, tests commonly
referred to as parametric include the z-test (for
testing a sample mean), t-test (for comparing the
means of two groups), and analysis of variance or
ANOVA (used for comparing two or more
groups). Common non-parametric alternatives to
the t-test and the (one-way) ANOVA are the
Mann–Whitney U and Kruskal–Wallis tests,
respectively. The tests referred to here are only a
few of the vast range available, and readers will
not find it difficult to find a plethora of textbooks
describing them. Note that these tests have been
used widely in past decades and continue to be
used in current research. Today, however, with
improved knowledge of limitations of these tests,
they are losing their appeal (see e.g., Touchon and
McCoy 2016). In general, they are no longer the
standard go-to for particular types of problems as
they have been superseded by more robust
approaches. With advances in statistics, a wide
range of readily available modeling approaches
has been developed that more than accommodate
data that would have traditionally been analyzed
using non-parametric tests (see Sect. 9.5.3 for an
overview). Note that while many disciplines are
guided by traditional “parametric” and “non-
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parametric” classifications, where parametric
would often be associated exclusively with the
Gaussian distribution, modern approaches in sta-
tistical ecology using regression models are gen-
erally not said to be parametric or non-parametric;
rather, they tend to be referred to based on the
data distributions for which they are suited, such
as a Poisson or gamma regression (see below for
more on these).

9.5.3 Explanatory and Predictive
Research Questions

Explanatory and predictive studies have
questions requiring a response variable to be
described as a function of a set of independent
variables. Arguably, the majority of the models
used by ecologists to answer this type of question
are some kind of regression model. However,
these models come in many forms. This section
aims to introduce the reader to different types of
regression models. We note upfront that model
selection and validation, and inference from
selected models, are fundamental aspects of
these analyses and are only very briefly men-
tioned in Sect. 9.5.3.1. Relevant yet accessible
books with plenty of practical examples
addressing these steps include Zuur et al. (2007)
and Zuur et al. (2009).

Historically, linear regression models
(in which the errors are assumed to follow a
Gaussian distribution) were the only tools avail-
able to answer this type of question. When the
only tool you have is a hammer, all your problems
begin to look like nails. With a Gaussian error
distribution assumption, the only analytical
options are simple linear regression models of
the type given in Eq. (9.1) or linear regression
models with several predictors (i.e., multiple
regression). There are many special cases of
such linear normal regression models including
the independent sample t-test, ANOVA (i.e.,
analysis of variance for multiple sample mean
comparison), ANCOVA (i.e., analysis of covari-
ance for regressing a continuous response vari-
able on a factor and a continuous covariate), and
MANOVA or MANCOVA (i.e., multivariate

extensions of the former methods). Note that
these approaches have additional assumptions,
such as that of homogeneity of variances. Homo-
geneity of variance means that the variance for a
response variable is assumed to be constant
across values of the independent variable. Many
datasets have been forced through these methods
even when they were clearly not the right tool for
the job. This included, for example, transforming
the response variable (e.g., by applying a log
function to it) until Gaussian distributional
assumptions were met to a reasonable extent.
But even then, often a method’s assumptions
were not met. For instance, there is no transfor-
mation that will turn a discrete count into a con-
tinuous variable. For an interesting presentation
about why not to log-transform data, see O’Hara
and Kotze (2010). Nonetheless, sometimes pro-
cesses might have properties that make a
log-transformation of the data sensible and useful
(e.g., Kerkhoff and Enquist 2009). While
transforming data to fulfill methods’ assumptions
has been acceptable in the past given a lack of
accessible alternative methods, this is often no
longer the case, and successful ecologists need
to have a few additional tools in their toolbox.
The rule is one that practitioners do not enjoy:
There is not a single rule that fits all questions and
problems, we need to understand the problem to
know how to model it. Sometimes it is even said
that modeling is as much an art as it is a science.
But like any good artist, you must master the
techniques to use them correctly.

The next level of sophistication in regression
models came with the advent of Generalized Lin-
ear Models (GLMs). GLMs allow for different
types of response variable and some degree of
non-linearity in the relationship between the
response and explanatory variables. The relation-
ship will still be linear at some level, but it might
not be at the response level, it might only be linear
at the level of the link function. What is the link
function? It is a fundamental component of a
GLM and is what allows responses to be
constrained to a specific range of values. The
link function, as its name implies, links the linear
predictor and the response variable so that the
model equation looks like:
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g E Yð Þð Þ ¼ αþ Xβ, ð9:2Þ
where g is the link function, E(Y ) is the expected
value of the response variable, and as in simple
linear regression (see Eq. 9.1), α is the intercept
(a constant), X is the predictor variable, and β is
the regression coefficient. For a vector of
n observations, the equation is in matrix form,
where β is a vector of parameters and X is a matrix
of predictor observations. The presence of a link
function in Eq. (9.2) means that to obtain a pre-
diction from this model, we need to apply the
inverse of the link function to the linear
predictors. As an example, consider a model
with a log-link function. The inverse of the log
is the exponent. This means that we need to
exponentiate linear predictors to obtain the
predicted value of Y for the corresponding values.
But then, this also means that, irrespective of the
covariate values and the coefficients estimated,
the prediction will be positive (because the expo-
nent of any number is positive). Some link
functions allow values predicted for the response
variable to be constrained (limited) to between
0 and 1, further increasing the range of modeling
possibilities to include binary responses (e.g.,
presence/absence) or proportions. For instance,
binary response variables like presence/absence
are modeled using a binomial GLM, with logistic
regression being a special case of a binomial
GLM, where the link function is the logit func-
tion. Count data can be modeled using a Poisson
GLM. The Poisson distribution is quite inflexible,
however, because as noted above, it assumes that
the mean and the variance are the same. Quite
often, biological data are overdispersed, meaning
that the variance is greater than the mean. For
such count data, a quasi-Poisson or negative bino-
mial response is often a second natural choice as it
allows the variance to be greater than the mean.
Finally, we could also consider other less com-
monly used, but equally useful, GLMs: (1) multi-
nomial regression when the response can take one
of several categorical outcomes, (2) gamma
regression where the response is strictly positive,
and (3) beta regression when the response is a
probability or a proportion.

While GLMs allow added flexibility to stan-
dard linear regression as a result of the link func-
tion, if the relationship between the response and
the predictors is highly non-linear (i.e., cannot be
assumed linear even on the link function scale),
then a GLM will not be adequate. This is where
we need to bring non-linear functions into play,
and perhaps the most widely used non-linear
approach is the Generalized Additive Model
(GAM). GAMs also consider a link function to
allow different distributions for the response var-
iable (as in GLMs), but we now have the response
being a function of smooth functions of the
predictors. In a univariate case, the model equa-
tion looks like:

g E Yð Þð Þ ¼ αþ f xð Þ, ð9:3Þ
where g is the link function, E(Y ) is the

expected value of the response variable, α is the
intercept, x is the predictor variable, and f is a
function such as a polynomial or spline. The
polynomial or spline applies a smooth, curved-
type function to the variable.

All the models described so far, be it a simple
linear model (LM), a GLM, or a GAM, include
only independent variables that are considered to
be fixed effects. However, sometimes the inclu-
sion of random effects might be necessary. A
random effect is useful when we have observed
a (random) subset of a larger population of possi-
ble values for a covariate. For example, a study
may be interested in identifying responses of bats
from a certain population before, during, and after
exposure to high-frequency sound. The individ-
ual bats, whose responses were measured before,
during, and after exposure, are a random effect.
Random effects can be incorporated into a range
of linear regression type models. For instance,
Generalized Linear Mixed Models (GLMM) and
Generalized Additive Mixed Models (GAMM)
are GLMs and GAMs that incorporate both
fixed and random effects. The reader is referred
to Harrison et al. (2018) for an overview of mixed
models in ecology, Pedersen et al. (2019) for
non-linear models including mixed effects, and
Nakagawa and Schielzeth (2010) for a review of
the general issue of dealing with repeated
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measurements sharing a correlation structure in
biological studies.

Despite these advances, some data still do not
fit the distributional requirements of GLMs and
GAMs. Generalized Estimating Equations
(GEEs) have been introduced recently, and
hence they might still be considered in their
infancy, but they are showing promising results.
GEEs generalize GLMs and GAMs even further
by not requiring that the response variable come
from a particular family of distributions. GEEs
simply impose a relationship between the mean
and variance of the response. These models also
allow a wide range of correlation structures to be
imposed on the data, making them quite appeal-
ing when there are many observations clustered
inside a few individuals. GEEs are marginal
models in that the focus of inference is on the
population average, and we are not so interested
in the responses at the individual level. GEEs are
quite specialized, and the reader is referred to
Zuur et al. (2009, Chap. 12) for an introduction.

In addition to the somewhat “general” regres-
sion models above, there is a range of specialized
regression models that are worth considering in
certain biological questions. For instance, we
have mentioned the problem of overdispersion.
Often with biological data, we have very special
cases of overdispersion in which there is an
excess of zeroes. For example, consider you are
trying to model the number of echolocation clicks
a sperm whale produces per second as a function
of depth, time of day, and sex. There are (at least)
two reasons for there being zero clicks in a given
second. A whale is in a silent state when recorded
and many zeroes occur in successive seconds, or
the whale is in a click-producing state but does
not produce a click in the given second recorded.
The regression models discussed above will
likely fail to produce reasonable answers because
the excess zeroes from the silent periods (poten-
tially not explained by the covariates; i.e., not
dependent on sex, depth, or time of day) cannot
be accommodated. Under such a scenario, hurdle
models or zero-inflated models might come in
handy. While these are advanced methods and
more difficult to implement and evaluate, they
are worth knowing about. The reader is referred

to Martin et al. (2005) for a gentle introduction to
the topic with ecological examples.

Truncated regression is another special case of
regression under which some values of the
response variable cannot be observed. An exam-
ple is modeling animal group sizes as a function
of their acoustic footprint (e.g., the number of
sounds produced by a group that are detected
per minute). Now that you know about GLMs,
your first thought might be to consider a Poisson
or negative binomial GLM, with group size as the
response variable and numbers of sounds detected
as the predictor. However, in modeling this, you
soon face a problem: You fit your model and
make some predictions, one of which is a group
size of zero! What does this mean? Nothing
really, it is what we call an inadmissible estimate
and a clear sign that something is not adequate.
Under such a case, you might want to try a zero-
truncated regression, which is essentially a GLM
for which zeroes cannot be observed. Chapter 11
in Zuur et al. (2009) explores both zero-inflated
and zero-truncated models.

Survival models are regression techniques that
deal with a special type of response variable: the
time up to an event. While these types of models
were developed to model survival of animals,
plants, and people, they can be used in any sce-
nario where observations might be censored.
Censored data result when we do not know the
real value of the response variable but know it is
at least above or below some limit or within some
interval; say because we observe an animal is
dead at a given time, and/or we know it was
alive at a different time. For example in a
bioacoustic study, a researcher may wish to
model the time animals take to produce their
first acoustic cue, and animals are observed for
5 min each. However, we do not know when an
animal produced a cue before observations began
(i.e., left censoring). In addition, an animal might
not produce any cues during the 5 min, or the
animal might leave the study area before the
5 min elapse (i.e., right censoring). Finally, if
we recorded only which minute, but not the actual
second a sound was produced, we would only
know that the event occurred sometime within
the interval of that minute. These are interval
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censored data. While a somewhat contrived
example, this allows us to introduce the different
kinds of censoring that are common in survival
analysis.

Generalized Least Squares (GLS) is a regres-
sion approach that might be used when we want
to relax the usual assumption of homogeneous
residual variance by modeling the variance as a
function of covariates. Zuur et al. (2009, Chap. 4)
provide examples of the use of GLS and Reyier
et al. (2014) give an acoustics application of GLS.
Another perhaps more specialized use of such a
regression technique is when we want to consider
a general non-linear model with a specific form to
relate a response variable with covariates. Then
we might still want to find the parameters of the
model that best fit the data. A way to do so is, akin
to what might happen if one considers a straight
line, to find the parameter values that minimize
the sum of the squares of the residuals (i.e., the
difference between the observations and the
model). In a simple regression context, the
model produces the fitted line, while in a
generalized least squares context, the model is
any function in which we might be interested.
For example, if you want to determine the propa-
gation loss (PL) for a sound that has traveled from
the source to the receiver, and you expect it is
proportional to log(r), where r is the range, then
your model is PL ¼ K log (r). Based on
measurements of received levels of sounds with
known source level, you may apply a GLS regres-
sion to estimate the value of K that best fits your
data. If K is close to 10, then your environment
supports cylindrical spreading, if it is close to

20, then sound is predicted to spread spherically
(see Chaps. 5 and 6 on sound propagation in air
and under water, respectively).

All the models described so far do not consider
predictor variables that are in hierarchies.
Hierarchical data occur when variables are nested
within each other (i.e., organized into levels). For
example, individuals from different resident
populations can be said to be nested within
subpopulations. In turn, subpopulations can be
nested within populations. Hierarchical modeling
(also known as multilevel modeling) is used when
inferences need to be drawn for population means
at specified levels and is useful for fitting models
to data obtained from complex, multilevel survey
designs. For example, a study may evaluate vocal
complexity of elephants at the population,
sub-population, and resident population levels.
Here, we do not discuss these methods further.
Rather, we refer the reader to Cressie et al. (2009)
and Royle and Dorazio (2008) for descriptions of
these methods, including their strengths and
limitations.

Given the large range of models available
(a taste of which has been described above),
what should aspiring ecologists today have in
their statistical regression toolbox? We propose
that a bare minimum is an understanding of the
structure, implementation, outputs, and interpre-
tation of GLMs, GLMMs, GAMs, and GAMMs
(Table 9.5). Parameter estimates and significance
tests resulting in p-values are common outputs of
software capable of fitting GLMs, GLMMs,
GAMs, GAMMs, and GEEs. For a practical
guide to applying these in behavioral and

Table 9.5 Description of some commonly used models to test the association between multiple explanatory variables
and a response variable

Model type Use

Generalized Linear Modeling (GLM) Allows different distributions for the response variable and some degree of
non-linearity in the relationship between response and explanatory variables

Generalized Linear Mixed Effects
Modeling (GLMM)

An extension of GLM for use with random effects (e.g., repeated measures of
subjects)

Generalized Additive Modeling
(GAM)

Allows different distributions for the response variable (as in GLMs) modeled
as a function of smoothed predictors

Generalized Additive Mixed Effects
Modelling (GAMM)

An extension of GAM for use with random effects (e.g., repeated measures of
subjects)

Generalized Estimating Equations
(GEE)

Do not require the response variable to come from a particular family of
distributions, and allows correlation structures in the data to be accounted for
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ecological studies, see Zuur et al. (2009). O’Hara
(2009) and Bolker et al. (2009) provide good
introductions to GLMMs for ecologists, and the
books by Zuur et al. (2007, 2009) provide infor-
mation to implement and interpret GLMMs. For
GAMs, the book by Wood (2006) is a standard
reference, and Zuur et al. (2009) has worked-out
examples in the software R.

Most of the models described in this section
can be implemented in a frequentist framework,
for instance using maximum likelihood or
restricted maximum likelihood estimation. None-
theless, for more complex models such as those
including (often complex) spatial and temporal
covariates (i.e., spatio-temporal models), Bayes-
ian implementations are gaining ground. For
instance, GLMs and GLMMs are fitted via maxi-
mum likelihood, or Markov Chain Monte Carlo
(MCMC). MCMCs are Bayesian iterative
solutions and are described in Gamerman
(1997), Brémaud (1999), Draper (2000), and
Link (2002). With advances of widely available
implementations, users might even be using
Bayesian approaches without realizing it. An
example is the Integrated Nested Laplace
Approximation (INLA) implemented via
R-INLA (www.r-inla.org) and its derivatives
that allow fitting complex spatio-temporal models
without the Bayesian framework being obvious
(by not requiring priors to be explicitly defined).
The philosophical nuances of which framework
might be more adequate under given settings,
however, are beyond what we hope to discuss in
this chapter.

9.5.3.1 Model Validation, Selection,
and Averaging

Depending upon whether modeling is undertaken
for explanatory or predictive purposes,
approaches for model validation and selection
may differ (Shmueli 2010). Validation means
that the model has been demonstrated to have
satisfactory accuracy for its intended use (Rykiel
Jr 1996). Validation in explanatory modeling
commonly takes the form of goodness-of-fit and
residual diagnostics. Goodness-of-fit tests evalu-
ate how well-observed values agree with those
expected under the statistical model (Maydeu-

Olivares and Garcia-Forero 2010), while residual
diagnostics determine whether residuals fit the
assumption of being effectively random (see
Zuur et al. 2009 for common examples in ecol-
ogy). Checking for multi-collinearity (i.e., collin-
earity between two or more covariates) is also
standard for explanatory modeling, while it is
close to irrelevant for predictive modeling (see
Shmueli 2010 for detailed discussion). In contrast
to explanatory modeling, model validation in pre-
dictive modeling is focused on evaluating the
model’s ability to generalize and predict new
data. Validation commonly is undertaken using
approaches such as cross-validation. In cross-
validation, the model’s ability to accurately pre-
dict a new data set is assessed after calibrating it
with a training dataset (Shmueli 2010; Cawley
and Talbot 2010).

Once a set of models have been validated, the
best candidate model is selected (though model
validation and selection can often be an iterative
process). Approaches to model selection, again,
depend upon whether modeling has an explana-
tory or predictive goal. In explanatory modeling,
the explanatory power of nested candidate models
is commonly compared with a step-wise approach
using significance testing (e.g., using an F-test).
Here a nested model refers to one composed of
subsets of covariates of another candidate model.
Caution should be taken, however, as researchers
may be inclined to remove covariates that are not
significant, even when there is a strong theoretical
justification for retaining them since they are rel-
evant in the models, regardless of whether they
are significant or not (Shmueli 2010). For exam-
ple, a covariate representing the age class of a
sparrow in a study assessing the influence of
predator presence on sparrow vocal behavior
may be of theoretical importance in the model.
Model selection in predictive modeling com-
monly involves a priori specification of candidate
models and selecting the best model based on the
smallest possible number of parameters that ade-
quately represent the data (i.e., the principle of
parsimony). The simpler a model is, the more it
can be generalized, while more complex models
(containing more parameters) are more specific to
the data used to fit the model. Consequently,
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criteria for model selection have been developed
that essentially maximize the likelihood while
penalizing for the number of parameters included.
The Akaike’s Information Criterion (AIC; see
Akaike 1974) and Bayesian Information Criterion
(BIC) currently are the most commonly used,
among a range of others available. They are
widely used for comparing nested and
non-nested models (Burnham and Anderson
2002), although there is some discussion around
suitability for use in non-nested models (see
Ripley 2004). Resulting criteria such as AIC or
BIC values for candidate models are then com-
pared and the model yielding the lowest value is
generally deemed to be preferred. Note that there
is active research on the circumstances under
which AIC, BIC, and the many other criteria
available perform best, and whether they should
be used together to inform model selection (Kuha
2004). An important take-home message is that
model selection criteria such as AIC and BIC can
only suggest a preferred model from those com-
pared, even if they all perform poorly at the
validation stage. In other words, the preferred
model may still be a poorly fitting model, and
therefore, selection criteria are only relative
measures of model goodness-of-fit.

In predictive modeling, averaging over a range
of plausible models has become widely used to
reduce prediction error and improve model selec-
tion uncertainty. This is undertaken, for example,
by computing a measure that ranks the set of
plausible models according to their support by
the data (e.g., Akaike weights), applying the
weights to predictions from each model, and
then computing the average. This provides
weighted averaged predictions, with weights
dependent on how much each model is supported
by the data. There are many other methods for
undertaking model averaging. Model averaging
performance depends on each model’s predictive
bias and variance and covariance between
models, among other things (see McElroy 2016
for complete discussion). In recent work, model
averaging has been shown to be particularly use-
ful when predictive errors of contributing model
predictions are dominated by variance, and when

covariance between models is low (McElroy
2016).

While a highly simplified overview of some
tools available on the topic of model validation,
selection, and averaging has been provided here,
researchers should be familiar with them and
access the latest literature to identify the appropri-
ate approaches for their study.

9.5.4 The Future of Bioacoustical
Analytical Approaches

In this chapter, we have only provided a flavor of
common approaches used today and have not
delved into the wide range of new developments
being introduced into the discipline. Interdisci-
plinary research linking the fields of biology,
ecology, and statistics has a long tradition of
providing fertile ground for innovative statistical
methods, with many methods having been devel-
oped when existing methods were not adequate to
cope with new problems (Olivier et al. 2014). The
current revolution in data acquisition systems (see
Chap. 2), such as high-resolution sensors in
animal-borne tags and increasing numbers of
long-term passive acoustic deployments that
lead to big data, is also likely to influence the
next generation of statistical methods suited for
ecological and acoustical analysis. Analysis of
big data through increased computational capac-
ity has already provided a range of new powerful
tools to science.

As an example of such approaches, machine
learning is rapidly gaining in popularity as it
increasingly improves pattern recognition accu-
racy (Christin et al. 2019). Such methods can
improve processing capacity in large datasets
resulting from acoustic instrumentation. An
example of more sophisticated analytical
approaches is the growing use of hierarchical,
state-space, and hidden process methods (e.g.,
Auger-Méthé et al. 2020 for an introduction to
their application in ecology) that model underly-
ing processes while accounting for biases and
uncertainty. Advances in these approaches may
improve our ability to predict future scenarios and
implement intervention before a potentially
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undesirable future scenario unfolds (see Cressie
et al. 2009 for discussion).

We also suggest readers to be acquainted with
the growing work being conducted in the area of
statistical decision theory, which is concerned
with making decisions by accounting for
uncertainties involved in the decision process
using statistical knowledge resulting from data
collected. Rather than attempting to provide a
general review of the large field of decision the-
ory here, we refer the reader to an introduction in
its application to ecology by Williams and
Hooten (2016), which will introduce the reader
to a range of other resources on the topic.

Because the advancement of these and many
other methods are continually evolving,
researchers are encouraged to keep well-informed
of current developments appearing in methods-
based scientific journals, such as Methods in
Ecology and Evolution.

9.6 Examples in Bioacoustics

The wide range of quantitative approaches
introduced above can be used to analyze
bioacoustical data to answer research questions
ranging from understanding natural vocal behav-
ior to activity patterns, community and conserva-
tion ecology, habitat use, species diversity,
distribution, occupancy, density and abundance,
and anthropogenic impacts (among many others).
Faunal groups that have been the subject of bio-
acoustics research include invertebrates, anurans
(i.e., frogs and toads), fish, birds, bats, other ter-
restrial mammals, and marine mammals, but
many others could be considered. As long as
sound is produced, it could be used as a source
of information. A recent review documented
460 peer-reviewed published papers on passive
acoustic monitoring in terrestrial habitats alone,
with bats (50% of papers) and activity patterns
(24%) dominating (Moreria Sugai et al. 2018).
Marine mammals feature prominently in
bioacoustic research as water is a highly condu-
cive medium for sound to travel through, and
visual observations can prove comparatively
expensive for limited returns on detections.

Rather than reviewing analytical approaches
across the hundreds of existing bioacoustics stud-
ies, we have selected two recent studies as
examples, and discuss the rationale for the partic-
ular analytical approaches taken. The research
topics in the example studies are exploring tem-
poral changes in call frequency and using acous-
tic data for abundance and density estimation.

9.6.1 Temporal Changes in Call
Frequency

As indicated previously, due to ever-increasing
computing power and storage and technological
advances in acoustic equipment, acoustic studies
can provide extremely long-term datasets. These
datasets allow us to explore changes to calling
behavior on a scale that, until recently, would
have been very difficult. A recent example is
illustrated in Miksis-Olds et al. (2018) where the
frequency content of a type of blue whale song
recorded primarily in the Indian Ocean was
investigated. The song type is attributed to a
pygmy blue whale subspecies (Balaenoptera
musculus indica, Committee on Taxonomy
2021) that appears to be resident in the northern
Indian Ocean. The song type has three distinct
units, and this analysis focused on the ~60-Hz
component of Unit 2, a frequency-modulated
upsweep, and Unit 3, a ~100-Hz tonal
downsweep. A decade of data from the Indian
Ocean Comprehensive Nuclear-Test-Ban Treaty
International Monitoring Station (CTBTO IMS)
at Diego Garcia was analyzed (2002–2013).
Ambient noise was also analyzed, but we do not
focus on that part of the study here.

Power spectral densities (PSD) were computed
for 2-h sections of data, which could be used to
detect peaks in the frequency bands of interest
(approximately 56–63 Hz for the 60-Hz compo-
nent of Unit 2, and 107–100 Hz for Unit 3), using
a 3-dB signal-to-noise threshold. The paper
shows a figure of number of hours with vocal
presence detected each week, for each year
(Fig. 9.3 in Miksis-Olds et al. 2018), highlighting
the importance of producing exploratory plots; in
this case, the variability in the data is made clear.
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The average over each week, across years, was
used to identify weeks with peak average vocal
presence. Weeks 21 and 22 were those with peak
average vocal presence and data from these weeks
were investigated further. The frequency peaks
from the PSDs from these weeks across all years
were measured. A linear regression model was
fitted to the week 21 and 22 frequency peak
measurements from all years. The response vari-
able was frequency, and year and song unit were
explanatory variables. Song unit was included in
the model as a factor variable. An interaction was
also included between year and song unit, which
was used to investigate whether the rate of any
frequency change over time differed between the
two song units. Model assumptions (linearity,
constant error variance, error independence, and
normality) were all assessed using diagnostic
plots and relevant hypothesis tests, and all
model assumptions were met.

The linear model results are depicted in
Fig. 9.10. The figure shows all weekly data plot-
ted (blue dots) with the modeled 21–22 week data
highlighted in red for both song units. Again, the
utility of plotting data is clear here: the decline in
frequency is evident, with an apparent difference
in rate of decline between the two units. The
linear model results confirmed the frequency
decline; the frequency of the ~60-Hz Unit
2 decreased at a rate of 0.18 Hz/year, while the
frequency of Unit 3 decreased at 0.54 Hz/year.
The interaction term was selected during model
selection (using an F-test), which confirmed that
the rates of frequency decline were indeed differ-
ent between the two units.

This analysis shows that simple regression
analyses can be very effective in confirming
patterns observed in exploratory data plots. We
note here that the regression analysis in the paper
focused on data from weeks 21 and 22 to be
comparable with methods from a similar study
(Gavrilov et al. 2012). However, frequency
measurements were taken across all weeks of
each year (as shown in Fig. 9.10), which could
also be used in a regression model. In addition, it
is common for bioacoustical analyses to have
several natural extensions. In this case, relaxing
the Gaussian assumption could be considered via

a Generalized Linear Model, or non-linear
patterns in the frequency decline could be
explored using a Generalized Additive Model.

9.6.2 Abundance and Density
Estimation

The estimation of animal population size (abun-
dance) and the number of animals in a given area
(density) are metrics that are very informative for
management and conservation actions. There are
several abundance and density estimation
methods available (e.g., Borchers et al. 2002);
popular methods include mark-recapture and dis-
tance sampling. Such methods are known as
absolute abundance or density estimation
methods, as the methods estimate the total num-
ber of animals (in a defined area, for density
estimates), including animals missed by a survey.
Common reasons why animals are not detected
during a survey is that they may be too far away,
and/or detection is made difficult by environmen-
tal conditions (e.g., rough seas may prevent
marine mammal sightings at sea unless the
animals are very close, or windy conditions may
mask the sounds of singing birds in recordings).
The probability of detecting an animal is a key
parameter in absolute abundance and density esti-
mation methods, and accounts (in part) for unde-
tected animals during a survey.

Acoustic data are increasingly being used for
absolute abundance and density estimation, both
in terrestrial and marine environments (e.g.,
Marques et al. 2013; Stevenson et al. 2015).
Here we discuss a density estimation analysis
for Blainville’s beaked whales (Mesoplodon
densirostris) from seafloor-moored hydrophone
data recorded in the Bahamas (Marques et al.
2009). The analysis involved several of the
concepts we have discussed throughout the chap-
ter, which we highlight here.

The paper begins by introducing the density
estimation equation (i.e., the estimator; see Sect.
9.4.2). The equation contains several parameters
to be estimated, including the probability of
detecting a beaked whale echolocation click on
one of the seafloor-moored hydrophones. Survey
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design and variance estimation of the parameters
(including confidence intervals) are also
discussed. A summary of methods to estimate
the detection probability is given. Mark-recapture
and distance sampling methods are commonly
used approaches to estimate the detection proba-
bility, but Marques et al. (2009) needed an alter-
native method, given that the hydrophone
recordings were not suitable for either mark-
recapture, or distance sampling-based methods.
Therefore, a trial-based detection probability esti-
mation method was used. The specific trial-based
method used in this study relied on auxiliary data
from animals tagged with acoustic tags, which

swam near the moored hydrophones. Clicks pro-
duced by the animals and recorded on the tags
created “trials”; a successful trial was achieved if
the same clicks recorded on tags of the tagged
animal were detected on the moored
hydrophones. In addition, the tag data provided
the slant distance of each tagged animal from the
moored hydrophones, as well as the animal’s
orientation toward, or away from, a given moored
hydrophone. These data allowed detection proba-
bility to be modeled as a function of a whale’s
orientation and distance from the moored
hydrophones using regression modeling. Specifi-
cally, a Generalized Additive Model (GAM) was
used due to its flexibility in allowing non-linear
relationships between the response and explana-
tory variables. The response variable was defined
as the detection, or non-detection, of each click
produced by the tagged animal on the moored
hydrophones. The explanatory variables, or
covariates, were (a) the horizontal off-axis angle
(hoa) and (b) vertical off-axis angle (voa) of the
tagged whale, with respect to a given moored
hydrophone, and (c) the distance of the tagged
whale from the hydrophone. A binomial distribu-
tion was assumed for the response variable due to
the binary nature of the trial data (i.e., detected, or
not detected) and a logistic link function was used
in the GAM. Finally, to estimate the average
detection probability (i.e., a single parameter
value for the estimator), a Monte Carlo simulation
was implemented where the dive profiles from the
tags were randomly placed around virtual moored
hydrophones. In the simulation, the slant range
and orientation of the clicks from the dive profiles
from the moored hydrophones could be calcu-
lated, and then these values could be used along
with the GAM to predict the detection probability
for each click in the simulation. The average of
these predicted detection probabilities was used
in the estimator. Two other parameters required
for the estimator, the false-positive proportion
and cue production rate, are discussed in the
paper in detail, on which we do not focus here.

The results of the GAM are shown in
Fig. 9.11. The modeled relationships between
(a) detection probability and slant range,
(b) vertical and horizontal off-axis angle and

Fig. 9.10 Peak frequency of Sri Lankan whale
vocalizations determined from weekly PSD sound
averages. The blue circles are the weekly peaks measured
throughout the season when whales were vocally present.
The trend line is related to the red circles that are peak
frequency from weeks 21 and 22 of each year. The greyed
regions designate the 95% confidence intervals for the
trend. Reprinted with permission from Miksis-Olds et al.
(2018).# Acoustical Society of America, 2018. All rights
reserved
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detection probability, (c) horizontal off-axis angle
and slant range, and (d) vertical off-axis angle and
slant range are all depicted. The average detection
probability of a beaked whale click within 8 km
of a moored hydrophone was estimated to be 0.03
(i.e., if a beaked whale click was produced within
8 km of a moored hydrophone, the study
estimated that there was, on average, a 3% chance

of detecting that same click). The variance around
the average was estimated using the bootstrap and
presented as a coefficient of variation (CV,
defined in Sect. 9.4.2) and was estimated to be
0.16, or 16% when expressed as a percentage.
Finally, the estimator was used to estimate beaked
whale density in the study area of either 25.3 (CV:
19.5%) or 22.5 (19.6%) animals per 1000 km2,

Fig. 9.11 The estimated detection function. Plots (on the
response scale) of the fitted smooths for a binomial GAM
model with slant distance and a 2D smooth of hoa and voa.
For the top left plot, the off-axis angles are fixed at 0, 45,
and 90� (respectively the solid, dashed, and dotted lines).
Remaining plots are two-dimensional representations of

the smooths, where black and white represent respectively
an estimated probability of detection of 0 and 1. Distance
(top right panel) and angle not shown (bottom panels) are
fixed respectively at 0 m and 0�. Reprinted with permis-
sion from Marques et al. (2009). # Acoustic Society of
America, 2009. All rights reserved
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depending on the false-positive proportion used
(two estimates were produced using differing
methods).

9.7 Software for Analyses

There are many standard, relatively easy-to-use
software packages that require no (or very little)
coding skills to carry out statistical analyses,
including SPSS (IBM Corp., Armonk, NY,
USA), Statistica (TIBCO Software, CA, USA),
Stata (StataCorp, College Station, TX, USA),
Minitab (Minitab Inc., State College, PA, USA),
Xlstat (Addinsoft, Ile-de-France, France), and
SAS (SAS Institute, Cary, NC, USA), among
others. In the field of bioacoustics, it is common
for acoustic data to be processed in MATLAB
(The MathWorks Inc., Natick, MA, USA) due to
its powerful signal processing package. MATLAB
users may find that their workflow is streamlined
by undertaking statistical analyses in the same
software if all required tools are available.

For those planning, however, on undertaking
analyses that draw from the most recent up-to-
date developments in statistical ecology and
require a highly flexible environment to do so, a
free open-source software environment like R is
recommended (R Core Team 2020). R is primar-
ily used for statistical computing and production
of graphics (though R’s GIS, and even signal
processing capabilities, are expanding). The soft-
ware benefits from a large number of base and
contributed packages that can easily be
downloaded and an environment in which users
may develop their own algorithms and packages.
There are now many sources of instructional
manuals and books guiding users on how to cre-
ate high-quality data representations and run
analyses in R, including Crawley (2013), Kerns
(2010), Zuur et al. (2009), Bolker (2008), Lawson
(2014), among many others. The CRAN
Task View: Analysis of Ecological and Environ-
mental Data1 maintained by Gavin Simpson is an
excellent resource for locating suitable packages

for statistical analysis of biological data. R can be
accessed and downloaded through a web
browser2 and for most users, we recommend a
user-friendly GUI like RStudio (RStudio Team
20203). RStudio is an integrated development
environment for R that includes a console, an
editor for code development and execution, and
tools for plotting, debugging, tracking history,
and managing the workspace. An interesting fea-
ture of R integrated with RStudio is the ability to
adhere in a straightforward way to the concept of
reproducible research via dynamic reports in
RMarkdown. If the reader is new to the topic,
we recommend the book by Xie et al. (2020).4

9.8 Summary

A key outcome of bioacoustics research is the
production of new knowledge that informs con-
servation management. The knowledge produced
needs to be reliable and easily understood, which
is no trivial task given the complicated nature of
animal behavior. The reality is that the phenom-
ena from which we want to derive inferences are
multifaceted, with many interconnecting
attributes, and patterns and signals obscured by
statistical noise (i.e., variability not associated
with the conditions under investigation). Conse-
quently, underlying mechanisms that explain the
patterns we observe are not easily revealed.

Not only are animal behaviors occurring in a
highly complex environment, but many
challenges are presented in conducting the
research itself. For instance, as researchers we
are not easily able to avoid or reduce the statistical
noise in the environment by controlling field
conditions; and when we undertake experiments
of animals in captivity to reduce noise in a labo-
ratory, we cannot be sure that results are

1 CRAN Task View: https://CRAN.R-project.org/
view¼Environmetrics; accessed 9 November 2020.

2 R Core Team is accessible at https://www.r-project.org/;
accessed 1 January 2020.
3 RStudio is accessible at https://www.rstudio.com/
products/RStudio/; accessed 9 November 2020.
4 RMarkdown: The Definitive Guide by Xie Y, Allaire JJ,
Grolemund G: https://bookdown.org/yihui/rmarkdown/;
accessed 9 November 2020.
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transferable to the wild. In addition, we introduce
biases in our observations through our own sub-
jective, non-random filters. Only by understand-
ing these filters can we either eliminate or adjust
biases to make reliable inferences about nature.

Quantitative skills, including survey design
considerations, are therefore an essential part of
a bioacoustician’s toolkit and should be viewed
just as essential as field skills and signal
processing methods. These statistical methods
are tools that enable the researcher to ask difficult
but often important and exciting questions about
their research topic.

However, given the complexity in nature,
research design challenges, and the multi-
disciplinary nature of studying animal behavior
through acoustics, it is not realistic to expect
specialists in one field to become experts across
multiple fields (i.e., behavior, ecology, bioacous-
tics, and statistics). What behaviorists and
bioacousticians can aim for is to understand foun-
dational statistical concepts, have a broad knowl-
edge of the range of existing techniques available,
and be able to identify critical pitfalls in survey
design and data analyses. In addition,
practitioners should be able to conduct a range
of current standard analyses and know when to
seek support for more sophisticated approaches.

It is our hope that through the introduction of
basic statistical concepts in this chapter, readers
can more confidently avoid design and analysis
pitfalls and make the necessary considerations to
select the most suitable approaches to success-
fully answer their research questions. We would
like researchers to feel empowered to critically
evaluate the transferability of standard practices
across broader spectra of questions and identify
inadequacies where they occur. Finally, and fore-
most, we hope that at the conclusion of this chap-
ter, readers feel inspired to place greater focus on
the biological significance of research outputs,
using quantitative methods as a tool to support
their conclusions.

We close this chapter by providing you, the
reader, with our culinary rendition of the meaning
of statistics: It is the science that uses data as its
main ingredient, uncertainty as a key seasoning

driving the final flavor of a meal, and guides the
collection and mixing of the ingredients, through
sampling, experimentation, and analysis. Taken
together, hopefully, delicious scientific meals will
result, by drawing meaningful and reliable
inferences from data. Statistics is paramount for
science in general, and bioacoustics is in that
regard no exception.
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