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ABSTRACT 
Augmented Reality (AR) can deliver engaging user experiences 
that seamlessly meld virtual content with the physical environ-
ment. However, building such experiences is challenging due to 
the developer’s inability to assess how uncontrolled deployment 
contexts may infuence the user experience. To address this issue, 
we demonstrate a method for rapidly conducting AR experiments 
and real-world data collection in the user’s own physical envi-
ronment using a privacy-conscious mobile web application. The 
approach leverages the large number of distinct user contexts acces-
sible through crowdsourcing to efciently source diverse context 
and perceptual preference data. The insights gathered through this 
method complement emerging design guidance and sample-limited 
lab-based studies. The utility of the method is illustrated by re-
examining the design challenge of adapting AR text content to the 
user’s environment. Finally, we demonstrate how gathered design 
insight can be operationalized to provide adaptive text content 
functionality in an AR headset. 

CCS CONCEPTS 
• Human-centered computing → HCI design and evaluation 
methods; Mixed / augmented reality. 
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1 INTRODUCTION 
The emergence of head-worn augmented reality (AR) represents 
an enormous opportunity for ubiquitous computing. Despite the 
popularity of early examples of AR games and experiences, such as 
Pokémon GO [25], nascent AR designers lack the guidance, solution 

principles, and analytical approaches required to create aesthetic 
and seamless user experiences. 

We can expect that design guidance and solution principles will 
coalesce over time both through developer trial-and-error and re-
search. However, the knowledge derived from developers can be 
difcult to generalize while the fndings of researchers may have 
poor applicability. In particular, lab-based studies typically intro-
duce high levels of control that ultimately detract from the external 
validity of the fndings. Such studies are also laborious and costly 
to execute. 

We propose a blended model through which design guidance for 
AR can be efciently gathered via crowdsourcing. This approach is 
particularly well suited to investigating AR design problems due 
to the key role that the user’s own environment plays in an AR 
setting. While crowdsourcing has been widely used before as a 
research tool, we specifcally seek to leverage the access it provides 
to a large number of distinct user contexts. This is to address a 
fundamental challenge encountered in AR design: unknowable de-
ployment contexts, that is, the inability for the developer to foresee 
the environment in which their application will be deployed. 

An example of the infuence of context on AR interface design 
is the presentation of virtual text in the physical environment. 
Depending on the use-case, the designer may wish this text to either 
subtly blend content with the physical environment or explicitly 
attract the attention of the user. Clearly an awareness of the user’s 
physical context is necessary to deliver this behavior. 

This paper demonstrates how crowdsourcing can be leveraged 
to obtain a greater understanding of AR context dependence. We 
develop and deploy a low-fdelity AR experience as a mobile web 
application to prompt crowdworkers to capture images of their local 
environment while also obtaining feedback on the visual qualities 
of virtual elements overlaid on that context. The ubiquity of mobile 
devices and the increasing capabilities of web-based frameworks 
allow simple AR experiences to be quickly prototyped and rapidly 
deployed to a large number of users. This approach therefore allows 
large-scale testing and diverse dataset collection not aforded by 
lab-based studies. The collection of data from anonymous crowd-
workers, particularly locations, images or video, does, however, 
expose potential privacy concerns. The method presented in this 
paper accommodates these concerns by limiting data collection and 
providing a user-driven obfuscation and acceptance protocol for 
sharing images. 

As a demonstration of the proposed method, we use it to investi-
gate how virtual text content might be dynamically styled in AR 
given the physical setting. In its current form, the method lever-
ages an AR experience delivered on a smartphone as a necessary 
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consequence of the currently limited scale of deployment of true 
head-mounted AR. Nevertheless, it is anticipated that many fndings 
are transferable between low and high fdelity implementations of 
AR. At the end of this paper, the collected data and fndings from 
the mobile-based investigation are transferred to a high-fdelity 
head-mounted AR prototype application to illustrate the efcacy 
of the approach. 

The two key novel contributions of the paper are: 
• A privacy-conscious method for conducting AR experiments 
in the end-user’s own context via crowdsourcing. 

• A demonstration of this method on the design challenge of 
providing contextually adaptive virtual text content. 

2 RELATED WORK 
The primary contribution or this paper is the research method 
for conducting AR design studies via crowdsourcing. This aspect 
of the paper draws upon the established body of work utilizing 
crowdsourcing as a research tool. A secondary focus of this paper 
is the exploration of contextually adaptive text content. In part, 
we choose this case study for focus given the available body of 
lab-based studies addressing the same topic. This literature serves 
as a reference against which we can compare and validate the 
comparable crowdsourced fndings. Due to this split foci, we divide 
our coverage of the related work into conducting research with the 
crowd and contextually-adaptive text content in AR. 

2.1 Conducting Research with the Crowd 
Crowdsourcing ofers a potential strategy for greatly expanding 
the range of contexts in which perceptual issues in AR can be 
explored. Prior research has also previously demonstrated that 
crowdsourcing studies can replicate in-the-lab human perception 
studies [1, 11] and professional assessments [21]. Crump et al. [1] 
replicate a range of cognitive behavioral experiments on Amazon 
Mechanical Turk (AMT) and fnd good agreement with laboratory 
results. Ma et al. [18] carefully curated a panel of AMT workers with 
access to a Virtual Reality (VR) device and conducted behavioral 
experiments involving three diferent VR illusions. There is also 
precedence in applying crowdsourcing to facilitate interface feature 
design in mobile-based AR. Previous work has demonstrated how 
crowdsourcing and probabilistic optimization strategies can be 
combined to efciently refne interactions [4]. 

Prior crowdsourcing work primarily exploits the fact that crowd-
sourcing provides access to a large number of individuals. Once 
recruited into a study such as the one by Ma et al. [18], however, the 
real context of the crowdworker plays no part in the experiment. 
The approach presented in this paper ofers an important extension 
in highlighting that crowdsourcing can be leveraged to not only 
reach a large number of participants but to also conduct experi-
ments within a large number and varied range of real contexts. 

The privacy considerations in crowdworking have been exam-
ined from various perspectives. Daniel et al. [2] provide a survey 
of quality related issues in crowdsourcing and potential mitigation 
strategies. As an outcome of this survey, Daniel et al. [2] defne 
a quality model for crowdsourcing tasks which notably includes 
privacy as a potential factor infuencing quality. Legion:AR [15] is a 
framework for augmenting activity recognition models by allowing 

crowdworkers to label uncertain cases while preserving privacy. 
The faces of people in the videos to be labeled by crowdworkers 
are obscured by auto-generated ‘veils’. Beyond merely individual 
privacy concerns, Lasecki et al. [15] suggest that reducing the res-
olution of video or image data is a reasonable strategy to avoid 
sharing sensitive information contained in the scene. The infuence 
of blurring on the accuracy of crowdworkers performing behavioral 
coding of people in videos has also been investigated by Lasecki et al. 
[14]. These approaches examine the preservation of privacy for peo-
ple who appear in crowdsourced tasks but do not provide insight 
on how to manage the privacy of the crowdworkers themselves. 
The objectives of McDuf et al. [22] and Tan et al. [28] are similar 
to this work in that they operate at the uncomfortable nexus of 
information capture and potential intrusions into privacy. McDuf 
et al. [22] solicited webcam footage of people watching commer-
cials to generate a dataset of facial responses. Privacy was managed 
using an opt in approach. Tan et al. [28] proposed a game suited 
to crowdsourcing for capturing user images in order to construct 
a diverse dataset of facial expressions. Its approach for handling 
privacy is to allow users to only send facial feature locations as 
opposed to raw images. 

The literature suggests, therefore, two guiding principles of: i) 
limiting information capture to strictly what is necessary; and ii) 
giving users ultimate control over what is shared. In this paper, we 
seek to apply these principles in developing a privacy-sensitive pro-
tocol that, we argue, has good generalizability beyond the specifc 
investigation of context-dependence of textual content. 

2.2 Contextually-Adaptive Text Content in AR 
Many applications of AR are likely to involve the display of tex-
tual content. Wither et al. [32] propose a detailed taxonomy of 
annotation in an AR setting and highlight that there are two key 
components of an AR annotation: the spatially dependent compo-
nent (i.e. the association between the physical and virtual world) 
and the spatially independent component (i.e. the attributes related 
to its appearance). 

As observed by Manghisi et al. [20], there are three distinct 
strategies for actively promoting text legibility in AR: i) adjust the 
text placement; ii) adjust the text appearance; and iii) place a panel 
behind the text. This frst strategy of dynamic text placement has 
been widely explored in the literature [23, 24, 29, 30]. Tanaka et al. 
[29, 30] introduce a simple strategy for scoring slots in the feld of 
view based on the scene background. They also seek to accommo-
date the importance of the virtual content and the degree to which 
movement should be limited to perform this assessment. Rather 
than adapting the content, they promote legibility by fnding re-
gions of dark, uniform texture on which to place text. Gabbard 
et al. [6, 7] examined three alternative schemes for actively modify-
ing text color in AR: complement, maximum HSV (hue, saturation, 
value) complement, and maximum brightness contrast. Their active 
schemes did not perform well, however, and a simple solution of 
blue text on an opaque white background panel (also referred to as 
a ‘billboard’) yielded the best performance. Gabbard and Swan II 
[5] subsequently found that maximizing the luminance contrast 
ratio aids readability on billboards. Debernardis et al. [3] evaluated 
diferent presentation styles and billboard colors and suggest that 
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Robin
The robin is a small
songbird. It has a 
distinctive red-orange 
breast.

CAPTURE

CAPTURE

Robin
The robin is a small 
songbird. It has a 
distinctive red-orange 
breast.

DONE

Robin
The robin is a small
songbird. It has a 
distinctive red-orange 
breast.

REJECT ACCEPT

a. b. c. d.

Figure 1: Storyboard illustrating the task procedure. (a.) The participant follows the hints to locate the bird. (b.) The participant 
holds the device steady with the view reticle centered on the bird until the capture button is enabled. The capture button is 
pressed to capture an image of the background. (c.) The participant adjusts the appearance of the textual content overlaid on 
the now static background image. (d.) The participant reviews the captured image (optionally applying pixelation) and chooses 
to accept or reject its transfer to the server. 

white text on blue billboards yields good legibility. This result is 
reinforced by Kruijf et al. [13], who also examined preferences 
associated with the presentation of text labels in AR and found that 
blue background panels were overwhelmingly preferred. 

The difculty of adapting content to background context is ex-
acerbated by several additional considerations, such as coherence, 
density, and imposition on the user’s cognitive load. Grasset et al. 
[9] introduced a label placement strategy based on visual saliency 
and edge analysis. In an evaluation of their approach, Grasset et al. 
[9] found that locally adapting the coloration of text and billboards 
can be problematic for users due to negative efects on the apparent 
coherence of presented information. Tatzgern et al. [31] explored 
the challenge of managing the display of dense information in AR 
via clustering. Madsen et al. [19] examined the infuence of tempo-
ral coherence and found that presenting labels in object space (as 
opposed to image space) is preferred. These various research eforts 
highlight the need for a structured approach to dynamic content 
adaptation. 

A common theme in the literature is the complexity of robustly 
accommodating diverse background textures and colors. Human 
perception capabilities and preferences are difcult to isolate in 
even the most tightly controlled psychological study. It is therefore 
unsurprising that small-sample HCI studies in this area uncover nu-
merous perplexing results. While perhaps benefcial as preliminary 
guidance, the fact that a particular design, for example, white text 
on a blue billboard, has good general performance provides limited 
real insight to designers. It also ignores many implementation con-
siderations, such as a desire to maintain a common aesthetic in an 
application. For the design guidance to solidify in this space, it is 
essential that research work fnds methods that enhance external 
validity. 

3 METHOD: CROWDSOURCING AR DESIGN 
GUIDANCE 

The crowdsourcing method is based on a low-fdelity AR experience 
delivered by a mobile web application. We pursue a web-based 
architecture for two key reasons. First, online tasks are more readily 
integrated into existing crowdsourcing platforms. Second, a web-
based implementation minimizes the imposition on crowdworkers 

(that is, there is no requirement to install software) and reduces 
friction in the steps between recruitment and completion. 

The user’s rear-facing camera stream is fed directly into the 
web page frame and virtual content is overlaid on this stream to 
deliver a through-the-screen AR experience. A web framework for 
building VR experiences provides the functionality to ensure device 
movements produce corresponding changes in the virtual elements. 
Crowdworkers can then be instructed to perform specifc activities 
or provide feedback on interface features in this setting. 

For the specifc use case of contextually-adaptive text content, 
we have four high-level design goals which we aim to satisfy in 
our crowdsourcing method. First, maximize the variety of back-
ground contexts in which feedback is captured. Second, maximize 
the quality of the background images captured. Third, maximize 
the richness of the feedback expressed by participants. And fourth, 
maximize the amount and quality of captured feedback. These de-
sign goals directly map into the formulation of the four stages 
involved in completing the data collection task: i) search; ii) image 
capture; iii) appearance refnement; and iv) image review. The overall 
procedure is illustrated in Figure 1 and the details of each stage are 
summarized below. 

3.1 Stage 1: AR Search Task 
To promote variety in the range of contextual information cap-
tured in the two experiments conducted, the application instructed 
participants to complete a series of target acquisition tasks. Partici-
pants located targets, styled as virtual birds, that were presented at 
semi-random locations within their local environment. The rear-
facing device camera stream provides the background of this virtual 
environment, producing a low-fdelity through-the-screen AR ex-
perience. 

The location of birds was quasi-randomized to promote spatial 
diversity in the context images captured from the participant’s 
environment. For each instance of the target acquisition task (a 
participant performs fve instances over the experiment), the new 
bird was located at between 60 and 100 degrees rotation from the 
current view azimuth. The sign of this ofset was randomized. The 
bird was placed between -10 and 30 degrees elevation from the 
horizontal plane. An icon would appear at fxed time intervals in 
the center of the participant’s view to indicate where they must look 
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to fnd the target. This strategy of subtly prompting view variation 
allows us to maximize the diversity of images captured in each 
environment. 

The virtual component of the AR scene was implemented using 
A-Frame1. This framework manages the scene camera adjustment 
based on device orientation changes. It is important to note, how-
ever, that no translation motion of the device was refected in the 
virtual scene: the position of the scene camera is fxed. For our 
purposes, allowing translation ofers limited change in the captured 
view but demands additional sensor capabilities and potentially 
limits the participant pool. The lack of registration between the 
physical and virtual scene also means that the AR experience is im-
perfect. Nevertheless, it remains sufciently convincing for simple 
experimental and data collection tasks. The decision to frame the 
target acquisition task as an exercise in locating and photographing 
‘birds’ mediates the disruptive efect associated with imprecision in 
the virtual-physical alignment. Participants may reasonably expect 
a bird to move around whereas this same behavior may be more 
disruptive if the target is a fxed inanimate object. When the target 
is found, the participant enters the image capture stage of the task. 

3.2 Stage 2: Image Capture 
Once the target is found, the participant must hold the reticle (mim-
icking the viewfnder of a camera) fxed on the bird. This serves two 
purposes: 1) stabilizing the virtual scene; and 2) ensuring captured 
images do not inherently sufer from motion blur. An animation of 
the reticle indicates when the bird is in focus. After the required 
focus period, the capture button is enabled. The participant then 
simply presses the capture button and the background image from 
the rear-facing camera is temporarily recorded in memory on the 
client’s device. The use of static images is established practice for 
AR design related research [6, 16]. Note that the image could be 
captured automatically after a timeout but it was considered prefer-
able to make all image collection require a deliberate action from 
the user. 

It is at this point, with the image now recorded on the client 
side, that potential privacy concerns emerge. These concerns, and 
our mitigating solution, are described later in subsection 3.4. Im-
mediately following image capture, however, the web application 
presents an interface to allow participants to alter the visual ap-
pearance of the virtual content as part of the appearance refnement 
stage. 

3.3 Stage 3: Appearance Refnement 
The appearance refnement stage is the point in the task when 
feedback is collected from participants. The specifc characteristics 
of the interface difer depending on the factor under investigation. 
The interface and interactions developed for the two experiments 
presented in this paper are described later in the context of the 
specifc tasks performed. The general procedure applied is to allow 
the user to customize the appearance according to their preference 
or as per specifed instructions. 

In this paper, two key sub-problems related to text panel presen-
tation in AR are investigated in two separate experiments: Experi-
ment 1 focuses on panel coloration; and Experiment 2 focuses on 

1https://aframe.io/ 

panel placement. For example, in Experiment 1 the participants are 
asked to modify the appearance of virtual text panels overlaid on 
the background image. Their instruction for the task performed 
in Experiment 1 was to adjust the appearance of the text panel to 
improve visibility and readability of the text. Presenting this stage 
of the task as a pseudo-design exercise represents an engaging form 
of feedback collection, compared with, for example, assigning a sub-
jective score. This choice stems from our specifed design objective 
of maximizing the expressiveness of user feedback cycles. 

3.4 Stage 4: Image Review 
After completing the image capture and appearance refnement 
stages of the task, the participant is presented with the image review 
interface. This section introduces a protocol for managing customiz-
able levels of user privacy for crowdsourced image capture tasks. 
This protocol was well-received by participants and exhibited a 
high acceptance rate in the data collection undertaken. 

As previously discussed, we chose an architecture that ensured 
image data remained on the client until it was approved in order 
to accommodate user privacy concerns. Only after approval would 
the image be sent to the server and saved in the database. Refecting 
the hypothesis that workers would be generally unwilling to share 
personal image data, efort was taken to forestall the situation 
in which the majority of images were rejected. To this end, we 
included an obfuscation layer in the review protocol. We elected to 
use pixelation (also known as mosaicing) for obfuscation. As part 
of the image review stage, the worker may increase or decrease the 
level of pixelation. To counter overuse of pixelation, the instruction 
given to users was: “Please share as much image detail as you 
are willing.” Pixelation was chosen for two key reasons: i) it is 
broadly familiar to a non-technical audience; and ii) it produces 
non-recoverable information loss. 

In the image review stage, the user may adjust the level of pix-
elation applied to the raw image by setting the sub-block size. 
Sub-blocks in the image are averaged and the average color is used 
to replace all the pixels in the sub-block. Increasing the size of the 
sub-block removes more information from the image. The default 
sub-block size upon presentation of the image review page was 
s = 1 (no pixelation). The pixelation control was presented as a 
range slider with sub-block sizes: 1, 2, 4, 6, 8, 10, 12, 16 and 20. 
This range of values was chosen as they are factors of the default 
image resolution setting (480×480 pixels). After setting the level of 
pixelation, the worker may then choose to either approve or reject 
sharing the image. Figure 2 illustrates the obfuscation achieved 
with a subset of the pixelation levels available. 

3.5 Deployment 
We consolidated the described components of the web application 
as a Human Intelligence Task (HIT) and deployed it on the Amazon 
Mechanical Turk service. Prior to full-scale deployment, the task 
was subjected to rigorous sandbox testing and small-scale pilot 
testing as a quality control measure. The web application was de-
ployed on our own server to ensure a high level of control over 
the experience and data collection. In order to commence the HIT, 
participants had to visit the Mechanical Turk listing using a mo-
bile device. Upon accepting the HIT, participants reviewed a short 

https://aframe.io/
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 s = 1  s = 4  s = 12  s = 20

Figure 2: Efect of sub-block size, s. No pixelation is s = 1 up to a maximum value of s = 20 (pixelation at 20 × 20 pixels). 

description of the task and its purpose. This included the fact that 
images of their environment may be captured but would only be 
recorded after explicit approval from them. Participants were then 
required to explicitly express consent in order to complete the task. 
More detailed instructions were then provided on the role of the 
device camera and the image review process. The frst bird capture 
activity was guided and then participants repeated the activity a 
further four times without explicit guidance. 

4 EXPERIMENT 1: PANEL COLORATION 
To make this investigation concrete, we selected a text panel design 
use-case where participants were asked to refne the appearance of 
a billboard-style virtual text panel appearing in the environment. 
When a bird was in focus (i.e. inside the view reticle), the bird name 
and a short description appeared below on a colored panel (see Fig-
ure 3). The coloration of the billboard was randomly initialized but 
was always shown at 50% opacity to approximate the appearance of 
AR content on an optical see-through head-mounted display (OST 
HMD). Once the image was captured, participants were instructed 
to refne the appearance of the text panel. 

To highlight the fexibility of this approach, participants were 
primed with the intentionally qualitative instruction: “Choose a 
color that you think is best given the background. Please try to 
maximize visibility and readability of the text.” This use case ex-
poses an interesting and subtle interplay between subjective user 

Figure 3: The appearance refnement interface (left) and the 
image review interface (right). 

impressions related to aesthetics and practical concerns relating 
to legibility. The interface for customizing the description panel 
appearance in Experiment 1 is illustrated in Figure 3 (left). The top 
slider adjusts the hue while the bottom slider adjusts the lightness. 
The hue slider was initialized with a random rotation applied to the 
standard hue circle and the initial midpoint value was used as the 
initial panel color. The lightness slider (where lightness is defned 
according to the hue, saturation, lightness (HSL) color model) was 
always initialized to the midpoint value. A toggle was available to 
change the text color between black and white. The toggle state 
was randomly initialized. The random initialization of hue and text 
color was done to prompt participants to make color changes when 
required. The image review interface is shown in Figure 3 (right). 
Here the user can choose to adjust the pixelation level and approve 
or reject transmitting the image to the server. 

4.1 Results 
A total of 200 participants (113 male, 84 female, 3 unspecifed, 32.4 
mean age) from 16 diferent countries were recruited through Ama-
zon Mechanical Turk for the study. Each received US$1 as compen-
sation for their time. The mean completion time for the task was 
8.5 minutes (including training and instructions). 

4.1.1 Approval Rate and Participant Behavior. With fve task in-
stances per participant and 200 participants there were a potential 
dataset of 1,000 images. The approval rate was very high with 
only fve images rejected in total by fve diferent participants (an 
approval rate of 99.5%). 

The degree of pixelation (sub-block size) was left unchanged in 
54.6% of approved images. Recall that the sub-block range slider 
had a default initial value of s = 1 (no pixelation). In an additional 
4% of images, participants raised the degree of pixelation before 
returning it to s = 1. The distribution of pixelation levels employed 
by participants is summarized in Table 1. Table 1 appears to show 
three distinct modes. The no pixelation default, s = 1, dominates 

Table 1: Participant usage (%) of pixelation sub-block sizes, s, 
in Experiments 1 and 2. Note that no pixelation, s = 1, is the 
default and also the most frequently used setting. The usage 
results show three distinct modes at s = 1, 6 and 20 across 
both experiments. 

Exp. 1 2 4 6 8 10 12 16 20 

1 58.5 3.1 4.2 6.8 6.5 5.5 5.1 3.4 6.7 
2 54.0 3.7 5.6 6.6 6.1 3.7 4.8 3.4 12.0 



CHI 2021, May 8–13, Yokohama, Japan Dudley, et al. 

 L* > 80  L* < 20 | a*b*| < 5 Red Yellow Green Cyan Blue Magenta

D
om

in
an

t P
at

ch
 C

ol
or

W K R Y G C B M W K R Y G C B M W K R Y G C B M W K R Y G C B M W K R Y G C B M W K R Y G C B M W K R Y G C B M W K R Y G C B M W K R Y G C B M

P
an

el
 C

ol
or

 C
ho

ic
e

Figure 4: The top plot shows the collected samples, binned based on hue, lightness (L ∗) and saturation (a ∗ b ∗). Each pixel shows 
the dominant color of the image patch (on which basis they are binned). The bottom plot shows the distribution of selected 
panel colors for each of the top groups, binned according to panel hue and lightness (W: L < 0.1, K: L > 0.9, R: red, Y: yellow, 
G: green, C: cyan, B: blue, M: magenta). A preference for blue and red panel coloration is observable, particularly in the Red 
and Yellow patch groups. 
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Figure 5: Most (A) and second most (C) frequently selected billboard color overlaid on the median color of the corresponding 
groups in Figure 4. Billboards at 50% opacity shown by (B) and (D). Note that the Magenta group only includes a single sample 
and so no secondary billboard color is shown. 

(58.5%) but there is a second peak at s = 6 (6.8%) and a third peak at 
the other extreme, s = 20 (6.7%). This result suggests some stratif-
cation in the behavior of participants. Additionally, a small number 
of the images appeared to be provided as extreme close-ups or with 
the camera lens covered, yet with no change to the pixelation level. 
This suggests that these users were further, conscientiously, trying 
to ensure their privacy. While this mechanism is entirely carried 
out on-device, these users may have been taking active steps to 
ensure images were not being surreptitiously captured without 
their consent. 

The proportion of approved images in which the panel and text 
color was altered provides a proxy measure for task engagement. 
The panel color was adjusted in 75.7% of images and the text color 
was adjusted in 47.6%. Note that a participant may choose not to 
change the panel color if they consider its initial value to be appro-
priate given the background. Nevertheless, we can conservatively 

estimate that at least three quarters of participants were actively 
engaged in the appearance refnement activity as instructed. 

4.1.2 Billboard Color Choice. This section describes the process 
of mining the collected context image and appearance refnement 
dataset for common patterns that inform the billboard color selec-
tion problem. It is reasonable to anticipate that the dataset sufers 
from various noise factors, such as individual user preferences, user 
apathy2, and interpretation diferences. These types of factors ap-
pear in lab studies but their efect is more extreme in crowdsourcing 
due to the fact that only limited and unsupervised training can be 
provided in a web-based task. Nevertheless, these efects can be mit-
igated by collecting large volumes of observations. To demonstrate 
the potential of a more complete dataset, this section shows that 
useful information, on par with similar lab studies, can be extracted 

2A small minority of crowdworkers are known to race through tasks providing non-
sensical data in order to minimize completion time [8]. 
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from our 200 participant dataset. In addition to the noise factors 
described above, there are also aspects of the signal that frustrate 
simple analysis techniques. For an identical background context 
there are likely to be multiple billboard color choices that yield 
similar legibility and aesthetics from the user’s perspective. 

Accepting that the dataset likely contains both of these noise and 
signal efects, we seek to uncover any summative patterns refected 
in the data. This analysis strategy involves i) identifying informa-
tive groupings of similar background contexts; and ii) identifying 
common panel colors selected for these groupings. To do this, we 
frst extract the sub-region or patch of the full image upon which 
the description panel was displayed. The dominant color of this 
patch is then extracted by taking the mode of the hue histogram 
and the mean of the S (saturation) and V (value) values in HSV 
space. We hypothesized that the patch hue is unlikely to infuence 
panel color selection at high (i.e. white) and low (i.e. black) lightness 
values and at low saturation (i.e. grey) values. To group on low satu-
ration we place a threshold on the vector a*b* (<5) of the dominant 
color in CIE 1976 L*a*b* color space. High and low lightness values 
are grouped by thresholds on L* (>80 and <20 respectively). The 
remaining ungrouped patches are then binned based on their hue 
value. Binning was performed according to standard 60◦ segments 
around the hue circle (with ‘red’ on the interval -30◦ to 30◦). The 
resultant groups are illustrated in the top of Figure 4. Each patch is 
represented by a pixel based on the patch’s dominant background 
color. 

The groupings shown in Figure 4 are highly illustrative of typical 
background contexts to be encountered in AR. A review of the 
collected images indicate that the vast majority (95%) of images 
were captured indoors (more detailed results are presented later in 
Section 4.1.5). White and of-white are common interior colorings. 
Similarly, the large groups for red and yellow correspond well with 
the large number of wood paneling and brick backgrounds captured. 
Far less common are background contexts with prominent green, 
cyan, blue and magenta coloring. The prevalence of black is largely 
due to images captured in low light. 

The billboard colors chosen by participants corresponding to 
each of these background contexts were then grouped. To support 
summative review, the selected hue value was binned into its cor-
responding segment on the hue circle (again 60◦ segments, with 
‘red’ on the interval -30◦ to 30◦). Billboard colors with extreme 
lightness, L, values (recall participants could modulate lightness 
using the slider) were separated into black (L < 0.1) and white 
(L > 0.9) bins. Figure 4 (bottom) shows the panel color selection 
based on this binning. An interpretation, therefore, of Figure 4 is 
that it shows the distribution of billboard color choice given the 
dominant background color. 

Figure 5 summarizes the results of the background groupings by 
overlaying billboards of the most (A) and second most (C) frequent 
color choices on the median color of the clustered backgrounds. 
Also shown are the billboards at 50% opacity (B and D respec-
tively). Clearly these groupings are sensitive to small datasets but 
the exploratory results are promising. Figure 5 shows a consistent 
preference for red and blue panels despite diverse background set-
tings. Figure 6 shows a plot similar to Figure 4, grouped solely based 
on lightness. The corresponding most and second most frequent 
billboard color choices are shown in Figure 7. These plots again 

highlight the general preference for blue panels, except when the 
background is very dark, in which case bright colors, such as red 
and green, are preferred. This result shows good alignment with 
the lab-based fndings of Debernardis et al. [3] and Kruijf et al. 
[13], which found a distinct preference for blue panels. In contrast 
to these studies, however, our data presents a much better picture 
of the sensitivity of this choice. 

4.1.3 Text Color Choice. The second critical aspect for text bill-
board design is the assignment of text color. In the deployed web 
application, participants were allowed to toggle between black and 
white text. Therefore, the scope of this analysis is constrained to 
choosing between these two options. 

Intuitively, black text is more legible on bright backgrounds 
while white text is more suitable on dark backgrounds. The World 
Wide Web Consortium (W3C) provides a simple recommended 
formula for calculating the perceived brightness of a color [26]. 
This yields a brightness value on the range 0 to 255. The W3C 
suggests a brightness diference of 125 promotes good visibility [26], 
essentially maximizing perceived contrast. Figure 8 (left) shows the 
boxplots of perceived billboard color brightness grouped according 
to the choice of black or white text in all samples. Figure 8 (right) 
shows the same boxplots, excluding samples in which the text color 
was unchanged. The median brightness for black text selection is 
signifcantly higher than that for white text selection, as expected. 
The spread of each group does, however, highlight the fact that 
there is no clear threshold indicating the point at which one is 
clearly perceived by our participants to be better than the other. 
Indeed there is limited evidence-based guidance on an appropriate 
choice of this threshold. From Figure 8 (right) it can be observed, 
however, that the interquartile range of white text selection does 
not overlap with the interquartile range of black text. Therefore, 
the range between white text q3 = 131.0 and black text q1 = 147.7 
may suggest a reasonable region of transition. 

4.1.4 Privacy Survey. The concerns of crowdworkers related to 
sharing images of their private settings was also investigated con-
currently as part of Experiment 1. After capturing the last image, 
participants completed a short survey examining their privacy con-
cerns. They were asked to respond to three questions on a fve-point 
Likert scale. These questions and the allocation of responses to each 
are summarized in Figure 9. 58.5% of participants indicated that 
they were either not at all concerned or somewhat unconcerned 
about sharing images via a Mechanical Turk HIT from a privacy 
point of view. This result is remarkably consistent with the usage 
proportion of the default pixelation value. However, 79% of partici-
pants thought it was either somewhat or very important to be able 
to review their images. As a method for mediating privacy concerns 
it appears that the pixelation functionality was considered either 
very or somewhat useful by 76% of participants. 

In summary, the fndings related to privacy highlight that Me-
chanical Turk workers are generally willing to provide images of 
their local context. The ability to obfuscate or reject sensitive images 
appears to successfully accommodate those with stronger reserva-
tions. To maximize data acquisition while addressing participant 
concerns, the image review protocol presented appears to be an 
efective strategy. 
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Figure 6: The top plot shows the collected samples, binned based on lightness (L ∗). Each pixel shows the dominant color of the 
image patch (on which basis they are binned). The bottom plot shows the distribution of selected panel colors for each of the 
top groups, binned according to panel hue and lightness (W: L < 0.1, K: L > 0.9, R: red, Y: yellow, G: green, C: cyan, B: blue, M: 
magenta). Again, a preference for blue and red panel coloration is observable, particularly in the 20 ≤ L ∗ < 40 and 40 ≤ L ∗ < 60 
groups. 
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Figure 7: Most (A) and second most (C) frequently selected billboard color overlaid on the median color of the corresponding 
groups in Figure 6. Billboards at 50% opacity shown by (B) and (D). 
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Figure 8: Boxplots of the perceived brightness of the chosen 
billboard color with grouping based on the user’s selection 
of black or white text. The left plot contains all samples 
while the right plot contains only samples where the font 
color was changed by the user. 
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5—very much. Q1. Do you have any privacy concerns about 
sharing images of your workspace via a Mechanical Turk 
HIT? Q2. Do you think it is important to be presented with 
your images for review before sharing? Q3. Did you fnd the 
blurring capability useful for removing private detail from 
captured images? 
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4.1.5 Range of Contexts Captured. The range of locations in which 
images were captured by crowdworkers yields an appreciation of 
how representative the data capture is of anticipated usage con-
texts of AR. Table 2 summarizes the variety of locations in which 
images were captured for both Experiment 1 and 2. These loca-
tions were categorized by the authors and were not self-reported 
by the participants. The assignment of images to these categories 
was based on the presence of objects or features clearly indicative 
of a particular location. Images not clearly falling into one of the 
indoor categories were assigned to ‘Other’. The variety of contexts 
captured highlights the value of our method over an equivalent lab-
based study. It is particularly interesting to note that approximately 
5% of images in Experiment 1 and approximately 8% in Experiment 
2 were collected outdoors. This analysis suggests that Mechanical 
Turk workers are less tied to their computer than typically assumed. 
Based on this fnding, future work may examine the feasibility of 
prompting crowdworkers to enter prescribed contexts. 

5 EXPERIMENT 2: PANEL PLACEMENT 
Experiment 2 investigated the placement of text panels within the 
environment. Specifcally, this experiment captured contextualized 
user feedback on the preferred placement of text panels, account-
ing for coloration, given the physical background. The process of 
capturing the initial image was identical to Experiment 1. Upon 
targeting the bird, however, rather than the full description panel 
shown in Experiment 1, only a label of the bird name was shown. 
This label was placed randomly around the bird but within the view 
frame and a leader line connected the bird model and the label. 
Once the image was captured, the participant was instructed to: 
“Place the label so as to maximize visibility and readability of the 
text.” The label could be moved by simply touching on the screen 
within the image frame and/or by modifying the apparent depth 
of the label in the scene using a slider. Note that label color was 
randomized and text color was randomly assigned to be either black 
or white. Participants were still given the opportunity to review, 
reject or pixelate their images as required, however, the survey 
examining privacy concerns was removed. 

5.1 Results 
As with Experiment 1, 200 participants (125 male, 74 female, 1 un-
specifed, 31.2 mean age) from 18 diferent countries were recruited 
through Amazon Mechanical Turk. Each received US$1 as compen-
sation for their time. Participants were only permitted to complete 

Table 2: Summary of participant image locations (as inter-
preted by the authors) in both experiments. 

Location Exp. 1 Exp. 2 

Indoors Home Ofce / Workplace 
Bedroom 
Kitchen 
Bathroom 
Other 

41 
2 
7 
11 
880 

39 
4 
6 
2 

863 

Outdoors Garden / Balcony 
Car 

54 66 
15 

the task once (participants from Experiment 1 were not prevented 
from completing Experiment 2). The mean completion time for the 
task was 7.2 minutes (including training and instructions). 

5.1.1 Approval Rate and Pixelation Behavior. With each participant 
again capturing fve images, there were a potential 1,000 total im-
ages from 200 participants. The approval rate was again very high 
with only fve images rejected in total by fve diferent participants 
(an approval rate of 99.5%). The distribution over the usage of dif-
ferent pixelation levels is also roughly consistent with Experiment 
1 (see Table 1). No pixelation, s = 1, again dominates (54.0%) but 
with secondary peaks at s = 6 (6.6%) and s = 20 (12.0%). 

5.1.2 Label Placement Behavior. Figure 10 illustrates the initial and 
fnal label placement centers. The target (virtual bird) is always 
centered in this window. Recall that the initial label location was 
randomized relative to the bird target. The left plot in Figure 10 
shows the initial randomized position of the label relative to the 
bird. The right plot in Figure 10 refects the distribution of the fnal 
placement locations across all samples. Notable in this plot is the 
frequency of label placements above and below the bird model 
while also avoiding overlap with the model itself. This behavior 
suggests a label placement preference that is, in part, independent 
of the background context. Note that this observed label placement 
behavior provides empirical grounding to the related strategy Lindl-
bauer et al. [17] use to assess image sub-regions for label placement. 
It is important to note, however, that the display orientation and 
label sizing clearly has an efect on constraining appropriate label 
placement locations and isolating this infuence for non-standard 
virtual objects may require specifc investigation. 

5.2 Infuence of Background Texture and Color 
on Placement 

The approaches taken in the literature of scoring label placement lo-
cations based on texture and coloration suggest exploring whether 
this behavior is observable in the dataset. First we test the hypoth-
esis that a highly colorful background region will be avoided when 
placing the label. Hasler and Suesstrunk [10] introduce a simple 
colorfulness metric that can be computed based on an image’s RGB 
color space. Hasler and Suesstrunk [10] defne the colorfulness met-
ric, M , to provide correspondence with human judged attributes 
of an image ranging from not colorful to extremely colorful. The 
colorfulness metric M frst requires collapsing the color channels

1into: rд = R −G and yb = 2 (R +G)− B. These are then transformed 
2 2into a representative mean, µrдyb = 

q 
µrд + µyb , and standard q

deviation, σrдyb = σr 
2 
д + σ y 

2 
b . Finally, M is computed using the 

formula: M = σrдyb + 0.3 · µrдyb . 
Figure 11 (left) shows boxplots of the change in colorfulness 

∆M between the initial label placement region and the fnal label 
placement region for three groups of initial region colorfulness. 
The change in colorfulness ∆M will be negative when the label is 
moved from a colorful region to a less colorful region. Figure 11 
suggests that when the initial region is not colorful (M < 15), users 
typically fnd a region that is similarly fat in color. When the initial 
region is slightly colorful (15 ≥ M < 33), there is some sign of a 
general preference for placement in regions yielding a negative ∆M . 
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Figure 10: Black dots denote the center of the initial (randomized) label placement location (left) and fnal label placement 
location (right) within the captured image window. Frequency of placement within image sub-regions (regular 40×40 pixel 
blocks) is represented by the coloration. 
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Figure 11: (left) Boxplots of change in colorfulness, ∆M be-
tween the initial and fnal label placement region, grouped 
based on initial region colorfulness (not colorful, slightly col-
orful and moderately colorful or more). (right) Boxplots of 
change in edgeness per unit area, ∆F , between the initial and 
fnal label placement region, grouped based on initial region 
edgeness. 

When the initial region is moderately colorful or more (M ≥ 33), 
there is a defnite bias towards a negative ∆M . This suggests that 
less colorful regions are preferred for label placement. 

Another informative point of analysis is the infuence of back-
ground clutter on label placement. Edgeness per unit area, F , is a 
simple metric for quantifying the degree of texturing or ‘busyness’ 
of an image [27]. F is computed for a region of N pixels by counting 
the number of pixels, p, for which the gradient magnitude, Mag(p), 

| {p |Mag(p)≥T } | exceeds threshold, T . More concisely: F = . TheN 
change in edgeness between the initial label patch and the fnal 
label patch, ∆F , provides an indication of the efect of background 
‘busyness’ on placement behavior. Figure 11 shows boxplots of ∆F 
over three groupings of initial patch edgeness (T = 100). Moving 
from a patch with high edgeness to a patch with less texture will 
yield a negative ∆F . Figure 11 (right) suggests that when the initial 
patch has low edgeness (<5%) the ∆F is likely to be close to zero. 

As the edgeness of the initial patch increases, however, participants 
increasingly relocate the label to less textured regions (yielding a 
negative ∆F ). 

In summary, Experiment 2 highlights several key determinants 
of label placement preference: ofset, colorfulness and edgeness. 
Recall that users were unable to set the panel color in Experiment 
2 and so placement related concerns are expected to dominate. 
The behaviors observed in participants are consistent with the 
algorithmic strategies for dynamic label placement proposed by 
Tanaka et al. [29], Orlosky et al. [23] and others. This agreement 
between the empirical evidence gathered via crowdsourcing and 
the design solutions evolved by others provides confdence in the 
crowdsourcing methodology and its value in delivering data-driven 
guidance. 

6 A PREFERENCE MODEL FOR DYNAMIC 
TEXT PANELS ON AN OPTICAL 
SEE-THROUGH HMD 

The purpose of this case study is to highlight the viability of the 
described crowdsourcing experimental method to inform head-
mounted AR interface design. To confrm the design guidance ob-
tained is useful and implementable, we demonstrate a high-fdelity 
AR application solution for contextually adaptive text panels. This 
application, designed for use with the Microsoft HoloLens OST 
HMD, provides dynamic placement and coloration of billboard 
style tooltips. We now present the design of the dynamic text panel 
procedure derived from the collected data. 

6.1 System Design 
Formalizing the color selection and placement problem for text 
panels in AR necessitates the consideration of three sub-problems: 
i) billboard color choice; ii) text color choice; and iii) billboard place-
ment. A simple strategy for dynamic text appearance adaptation 
can be derived from the collected data using a compounding proba-
bilistic approach. The approach converts the frequency responses 
observed for color choice and placement (in terms of ofset, col-
oration and edgeness) into probabilities. It then combines them to 
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Figure 12: Estimated probability distributions of the like-
lihood of sub-region selection given colorfulness, M , (left), 
and edgeness, F (right). Note that the binning of colorful-
ness, M , is based on the groupings defned by Hasler and 
Suesstrunk [10]. 
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Figure 13: Estimated probability distribution of the likeli-
hood of sub-region given normalized x ,y ofset (symmetric 
about the x and y axis). 

yield a mixture distribution estimating the preferred placement sub-
region, r , in an image and the preferred color, c , given that region. 
The estimated distributions for placement region given colorfulness 
and edgeness are presented in Figure 12. The estimated distribution 
for placement ofset (normalized based on the billboard width for 
x and height for y in image coordinates) is presented in Figure 13. 
This procedure requires transforming the tooltip anchor location 
(i.e. the point referred to by the tooltip) into the image coordinate 
system and the selected tooltip location in image coordinates back 
into the world frame. Accepting that designers typically wish to 
provide an interface with a consistent color palette, a fnal uniform 
distribution is applied over a set of predetermined colors. This dis-
tribution serves to bias the color selection towards selecting only 
from within the palette, but informed by the preference model. The 
entire procedure is summarized in Algorithm 1. 

The estimated likelihood of selecting region, r , given edgeness 
(line 5) for an example tooltip target location is illustrated in Fig-
ure 14. The combined mixture distribution for this same target lo-
cation (the summing log probabilities step at line 7 in Algorithm 1) 

is illustrated in Figure 15. The resulting tooltip placement and col-
oration for this target location is illustrated in Figure 16. 

Algorithm 1: Contextually Adaptive Tooltips 

1 Function AdaptTooltip(I, a) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Input : Background image, I , and tooltip anchor location, 
ax,y,z 

Output : Tooltip position, tx,y,z , billboard color, cb , and text 
color, ct 

Transform anchor position, ax,y,z , into its equivalent position 
in image coordinates, ax ′ ,y ′ 

foreach Sub-region, r , of the background image, I do 
Lookup P (r |M ), probability of selecting r given 
colorfulness, M 

Lookup P (r |F ), probability of selecting r given edgeness, 
F 

Lookup P (r |a), probability of selecting r given ofset from 
anchor position, ax ′ ,y ′ 

Combine P (r |M ), P (r |F ) and P (r |a) to yield mixture 
distribution, H (r )

end 

Choose sub-region, rmax , corresponding to the maximum of 
the mixture distribution, H (r )

Extract dominant patch color, cp , and patch lightness, lp , from 
image region rmax 

foreach Billboard color group, д, in billboard color groupings do 
Lookup P (д |cp ), probability of selecting д given patch 
color, cp 

Lookup P (д |lp ), probability of selecting д given of patch 
lightness, lp 

Lookup P (д |palette), probability of selecting д given 
defned color palette 

Combine P (д |cp ), P (д |cp ) and P (д |palette) to yield 
mixture distribution, G(д)

end 

Choose group, дmax , corresponding to the maximum of the 
mixture distribution, G(д)

Choose billboard color, cb , corresponding to дmax in palette 
Choose text color, ct , based on threshold of the perceived 
brightness of color cb 

Transform image coordinates of the centre of rmax to 
equivalent world position, tx,y, z 

21 end 

7 DISCUSSION 
This paper serves as a vehicle for demonstrating the value of crowd-
sourced AR evaluation datasets. In this investigation, context and 
physical-virtual dependence information was captured across het-
erogeneous settings. This information was readily operationalized 
to build a prototype application delivering contextually-adaptive 
text content on an early commercially available AR OST HMD. 
Below we discuss limitations of the investigation and promising 
future avenues. 

The dynamic text panel case study presented in Section 6 serves 
to illustrate how the crowdsourced design guidance can be trans-
lated into practical use. The derived preference model satisfes this 
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Region Assignment Log Probability, log(P(r|F))

-3.5 -3 -2.5 -2 -1.5 -1 -0.4

Figure 14: Tooltip placement probabilities given edgeness of 
sub-regions in the background image. Yellow regions indi-
cate high probability. Blue regions indicate low probability. 
The tooltip anchor center is indicated by the red circle. 

Region Assignment Log Probability, log(H(r))

<-15 -12.5 -10 -7.5 -5 -2.5

Figure 15: Resultant tooltip placement mixture probabilities 
of sub-regions in the background image. Yellow regions indi-
cate high probability. Blue regions indicate low probability. 
The tooltip anchor center is indicated by the red circle. 

Figure 16: Two example tooltips generated by the preference 
model as viewed in the Microsoft HoloLens. 

objective and demonstrates that the design guidance can be utilized. 
However, it does not strictly validate its efcacy in improving text 
panel legibility. Further work is required to probe the bounds of 
transferability and efcacy for data captured in this manner. 

A limitation of this work is the confned set of design controls 
given to users for changing the description panel appearance. Only 
billboard hue, luminance and text color could be varied in Exper-
iment 1, while only panel placement could be modifed in Exper-
iment 2. This constrained interaction space was designed to not 
overwhelm users and to avoid excessive ‘twiddling’ behavior. How-
ever, future work will explore how additional design control can 
be provided to users without these disruptive efects. Further, in 
terms of balancing task quality and engagement, it may also be 
feasible to leverage the model for text panel preferences derived 
in Section 6 to introduce quality assurance checks into the task. 
For example, crowdworkers can periodically be presented with a 
control task involving a standard background context for which 
there exists a clear set of acceptable design choices based on the 
preference model. 

The perception of color is sensitive to a great number of factors. 
In this investigation, we do not enforce any calibration or specifc 
display settings on the device. This means that color rendering 
diferences between devices may introduce noise into the user 
feedback. We made the experimental choice not to control for this 
factor since this is more realistic of an actual user’s experience 
with a simple application: it is useful to have a model for dynamic 
adaptation that works for most users in most cases. Nevertheless, 
there is an opportunity for a strict investigation of how device 
variation might infuence design choices and what experimental 
controls can be applied to address this factor. 

The task and its framing are likely to have infuenced participant 
attitudes towards privacy and consent. The image capture aspect 
of the task was intentionally embedded within the bird fnding 
activity. The plausible reason for capturing contexts was designed to 
positively bias participants towards the task, but was not specifcally 
investigated as a factor. Related to this is the task introduction, 
which made explicit mention of the university afliation and stated 
that data will be anonymized and images will not be published. 
Tasks requested by researchers may positively infuence trust. Such 
aspects of participant behavior have been previously explored [12] 
but are worthy of examination in this context. 

There is active work in streamlining mobile AR frameworks for 
use on the web. The WebXR Device API3 is a working draft for 
supporting VR and AR on the web. This standard outlines support 
for six degrees of freedom (DOF) pose tracking with mobile de-
vices. This presents a signifcant opportunity for enhancing the 
fdelity of the mobile AR experience presented to crowdworkers. 
With six DOF tracking, the experiments described in this paper 
could examine a wider range of additional factors infuencing AR 
content presentation. Furthermore, while the example experiments 
were limited to static image capture, the approach, where sufcient 
bandwidth is available, could be extended to real-time video capture 

3https://www.w3.org/TR/webxr/ 

https://www.w3.org/TR/webxr/
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and processing. This would enable the investigation of temporal 
and spatial coherence of virtual content. 

8 CONCLUSIONS 
This study demonstrates that crowdsourcing context information 
for adaptive AR is not only feasible but also efcient. Web-based 
AR ofers the ability to rapidly access a large corpus of users and 
environments, today. Even well-equipped labs, with a large num-
ber of AR devices, would struggle to capture the diverse range of 
environments recorded by the participants in this study in such a 
short time period. For only US$440 (including platform fees), two 
context-dependent AR user studies were conducted with 400 users 
spanning 22 countries to assemble a dataset of almost 2,000 im-
ages and user-defned billboard preference profles. Crowdworkers 
were willing to engage with a low-fdelity AR experience and share 
images of their local environment. 

We have demonstrated that the user preference data captured 
via this low-fdelity mobile AR experience can be readily trans-
ferred to deliver contextually-adaptive functionality on an OST 
HMD. Overall, this paper highlights new avenues for investigating 
and evaluating contextually-informed AR applications using crowd-
sourcing. Considering the inherent complexity in AR user interface 
design, crowdsourcing is a promising complementary method to 
assist evolving new data-driven designs that are difcult to achieve 
using traditional lab studies. The potential improvements in exter-
nal validity ofered by the AR crowdsourcing method for obtaining 
emerging design guidance is a crucial contribution at this early 
stage of AR user interface development. 
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