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detection in a low-income country
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Diagnostics for COVID-19 detection are limited in many settings. Syndromic surveillance is

often the only means to identify cases but lacks specificity. Rapid antigen testing is inex-

pensive and easy-to-deploy but can lack sensitivity. We examine how combining these

approaches can improve surveillance for guiding interventions in low-income communities in

Dhaka, Bangladesh. Rapid-antigen-testing with PCR validation was performed on 1172

symptomatically-identified individuals in their homes. Statistical models were fitted to predict

PCR-status using rapid-antigen-test results, syndromic data, and their combination. Under

contrasting epidemiological scenarios, the models’ predictive and classification performance

was evaluated. Models combining rapid-antigen-testing and syndromic data yielded equal-to-

better performance to rapid-antigen-test-only models across all scenarios with their best

performance in the epidemic growth scenario. These results show that drawing on com-

plementary strengths across rapid diagnostics, improves COVID-19 detection, and reduces

false-positive and -negative diagnoses to match local requirements; improvements achievable

without additional expense, or changes for patients or practitioners.

https://doi.org/10.1038/s41467-022-30640-w OPEN

1 Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK. 2 COVID-19 in LMICs Research Group, University
of Glasgow, Glasgow, UK. 3 a2i, United Nations Development Program, ICT Ministry, Dhaka, Bangladesh. 4MRC Biostatistics Unit, University of Cambridge,
Cambridge, UK. 5 Food and Agriculture Organisation of the United Nations in support of the UN Interagency Support Team, Dhaka, Bangladesh. 6 School of
Mathematics and Statistics, University of Glasgow, Glasgow, UK. 7 Institute of Epidemiology, Disease Control and Research, Ministry of Health,
Dhaka, Bangladesh. 8 General Practice and Primary Care, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK. 9 Departments of Pathology
and Veterinary Medicine, University of Cambridge, Cambridge, UK. 10 Division of Developmental Neuroscience, Department of Psychiatry, Columbia
University, New York, NY, USA. ✉email: fergusjchadwick@gmail.com

NATURE COMMUNICATIONS |         (2022) 13:2877 | https://doi.org/10.1038/s41467-022-30640-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30640-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30640-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30640-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30640-w&domain=pdf
http://orcid.org/0000-0001-8650-1938
http://orcid.org/0000-0001-8650-1938
http://orcid.org/0000-0001-8650-1938
http://orcid.org/0000-0001-8650-1938
http://orcid.org/0000-0001-8650-1938
http://orcid.org/0000-0003-1692-899X
http://orcid.org/0000-0003-1692-899X
http://orcid.org/0000-0003-1692-899X
http://orcid.org/0000-0003-1692-899X
http://orcid.org/0000-0003-1692-899X
http://orcid.org/0000-0001-5153-9055
http://orcid.org/0000-0001-5153-9055
http://orcid.org/0000-0001-5153-9055
http://orcid.org/0000-0001-5153-9055
http://orcid.org/0000-0001-5153-9055
http://orcid.org/0000-0003-0660-9784
http://orcid.org/0000-0003-0660-9784
http://orcid.org/0000-0003-0660-9784
http://orcid.org/0000-0003-0660-9784
http://orcid.org/0000-0003-0660-9784
http://orcid.org/0000-0002-7543-0860
http://orcid.org/0000-0002-7543-0860
http://orcid.org/0000-0002-7543-0860
http://orcid.org/0000-0002-7543-0860
http://orcid.org/0000-0002-7543-0860
http://orcid.org/0000-0002-0982-9371
http://orcid.org/0000-0002-0982-9371
http://orcid.org/0000-0002-0982-9371
http://orcid.org/0000-0002-0982-9371
http://orcid.org/0000-0002-0982-9371
http://orcid.org/0000-0003-0805-0195
http://orcid.org/0000-0003-0805-0195
http://orcid.org/0000-0003-0805-0195
http://orcid.org/0000-0003-0805-0195
http://orcid.org/0000-0003-0805-0195
http://orcid.org/0000-0002-0244-7178
http://orcid.org/0000-0002-0244-7178
http://orcid.org/0000-0002-0244-7178
http://orcid.org/0000-0002-0244-7178
http://orcid.org/0000-0002-0244-7178
http://orcid.org/0000-0001-8577-8281
http://orcid.org/0000-0001-8577-8281
http://orcid.org/0000-0001-8577-8281
http://orcid.org/0000-0001-8577-8281
http://orcid.org/0000-0001-8577-8281
http://orcid.org/0000-0002-7962-0725
http://orcid.org/0000-0002-7962-0725
http://orcid.org/0000-0002-7962-0725
http://orcid.org/0000-0002-7962-0725
http://orcid.org/0000-0002-7962-0725
http://orcid.org/0000-0002-0227-2160
http://orcid.org/0000-0002-0227-2160
http://orcid.org/0000-0002-0227-2160
http://orcid.org/0000-0002-0227-2160
http://orcid.org/0000-0002-0227-2160
http://orcid.org/0000-0002-6130-2796
http://orcid.org/0000-0002-6130-2796
http://orcid.org/0000-0002-6130-2796
http://orcid.org/0000-0002-6130-2796
http://orcid.org/0000-0002-6130-2796
http://orcid.org/0000-0003-4000-2708
http://orcid.org/0000-0003-4000-2708
http://orcid.org/0000-0003-4000-2708
http://orcid.org/0000-0003-4000-2708
http://orcid.org/0000-0003-4000-2708
http://orcid.org/0000-0001-9085-6192
http://orcid.org/0000-0001-9085-6192
http://orcid.org/0000-0001-9085-6192
http://orcid.org/0000-0001-9085-6192
http://orcid.org/0000-0001-9085-6192
http://orcid.org/0000-0003-1673-7413
http://orcid.org/0000-0003-1673-7413
http://orcid.org/0000-0003-1673-7413
http://orcid.org/0000-0003-1673-7413
http://orcid.org/0000-0003-1673-7413
http://orcid.org/0000-0003-3639-8172
http://orcid.org/0000-0003-3639-8172
http://orcid.org/0000-0003-3639-8172
http://orcid.org/0000-0003-3639-8172
http://orcid.org/0000-0003-3639-8172
http://orcid.org/0000-0001-5392-6884
http://orcid.org/0000-0001-5392-6884
http://orcid.org/0000-0001-5392-6884
http://orcid.org/0000-0001-5392-6884
http://orcid.org/0000-0001-5392-6884
mailto:fergusjchadwick@gmail.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Identification and isolation of COVID-19 cases remains key to
the pandemic response. The faster and more accurately cases
can be identified, the more effectively clinical care can be

provided, and transmission reduced through targeted interven-
tions. Real-time PCR has rapidly become the gold-standard test
for SARS-CoV-2 detection (although Dramé et al. point out that,
with less than 100% sensitivity, PCR falls short of being a true
gold-standard)1 due to its high sensitivity and specificity2.
However, turnaround can be slow and access to laboratory
diagnostics is limited in many parts of the world. As such, syn-
dromic surveillance has often been the primary means of case
identification for guiding individual and population-wide miti-
gation measures3,4. Rapid antigen tests are an increasingly pop-
ular alternative to PCR as they have high specificity, and are less
expensive, easier to perform, and faster, returning results within
20 min. Hence, rapid antigen tests have potential to greatly
decrease the time and expense associated with case detection, but
concerns have been raised that their lower sensitivity leads to
unacceptably high false-negative diagnoses5–8. Improving
COVID-19 diagnosis is a priority and, therefore, requires us to
better harness imperfect but fast and inexpensive methods, par-
ticularly for individual diagnosis but also for population-level
surveillance9.

Syndromic surveillance has been used since the start of the
pandemic10. The COVID-19 case definition was based on early
data from clinical cases11, but, as the virus has evolved and
spread, the clinical picture of COVID-19 has changed. Updated
case definitions have improved, though are necessarily non-
specific and generate many false-positive diagnoses (and ignores
asymptomatic cases entirely)12,13. A natural extension is syn-
dromic modelling, whereby symptomatic and risk factor data are
used to fit a model to allow more accurate prediction of how
likely a patient is to have COVID-1914. However, disease syn-
dromes change between populations, when new variants emerge,
and as other diseases become more or less common12,15, which
can make syndromic models perform poorly in new settings
across space and time. This is a particular challenge for seasonal
respiratory pathogens, where symptoms often co-occur and are
non-specific 12.

A key limitation of both rapid tests and syndromic surveillance
is their low effectiveness at COVID-19 detection in asymptomatic
patients. Asymptomatic cases are known to play a role in driving
transmission16. Resource limitations mean that many health
agencies and governments have exclusively or temporarily tar-
geted interventions towards symptomatic individuals to reduce
transmission. Asymptomatic cases can still be identified through
contact tracing from symptomatic patients. Reliable diagnosis of
symptomatic cases of COVID-19, therefore, is a priority in many
settings and is the focus of this paper.

Even for symptomatic patients, neither rapid tests nor syn-
dromic surveillance can match PCR in terms of both sensitivity
and specificity. However, lower sensitivity and specificity may
be admissible depending on the scale and impact of
misclassification17. Indeed, there are costs to both individuals and
societies that must be considered when making policy decisions
to determine the most appropriate approach to testing. Low
specificity means more common COVID-19 misdiagnoses (false
positives), leading to unnecessary self-isolation, which is expen-
sive to individuals and society18. Low sensitivity means COVID-
19 cases will be missed (false negatives) and mitigation measures
not put in place leading to increased transmission and disease
burden19. These misclassifications are complementary for a given
diagnostic, meaning increasing specificity will lead to decreased
sensitivity, and vice versa.

The typical approach is to balance sensitivity and specificity to
maximise the number of correct classifications and assume that

both misclassification types are equally costly. The costs of false
positives and false negatives, however, vary enormously
depending on the intersection of perspective, economic and
epidemiological concerns. An individual may be motivated to
secure a false-negative diagnosis if there is insufficient support for
self-isolation. In contrast, at the government level, false positives
may be acceptable if the economic cost of supporting those
individuals is less than the cost of accelerating case rates. The
epidemiological context will also alter the impact of false positives
and false negatives. For example, if the disease is prevalent or
increasing the priority of both individuals and governments may
be to curb transmission and reduce impacts as quickly as possible.
In this instance, false negatives have an outsized and costly
impact by increasing the number of contact events occurring in
the population and delaying control measures by underestimating
epidemic size19. In contrast, under low prevalence, false negatives
will be correspondingly low so even a high false-negative rate (low
sensitivity) will have modest impact, but small decreases in spe-
cificity will lead to a large number of expensive false positives20.
In practice, the situation will be more nuanced and modulated by
testing capacity constraints, requiring a balance to be struck 17.

The best diagnostic approach for surveillance will therefore be
one where correct classifications have highest value and mis-
classifications have lowest cost. Here, we examine the use of rapid
antigen testing and syndromic surveillance of COVID-19 in
symptomatic patients from low-income communities in Dhaka,
Bangladesh, where a large volunteer workforce supports COVID-
19 diagnosis, care and prevention. In this context, community-
based workers used a mobile-phone-based application to record
patient symptoms and provide advice and support services, with a
diagnostic algorithm deployed on the app to inform their pro-
visioning. This algorithm could be updated in real time
depending upon the epidemiological context to allow appropriate
tailoring of service provision (although was not updated during
the study period).

Here, we demonstrate that by combining rapid antigen testing
and syndromic surveillance we can draw on their complementary
strengths, ameliorate their respective weaknesses and tune them
for different epidemiological scenarios. We compare their per-
formance alone and in combination for general prediction and as
diagnostics under three scenarios with different misclassification
requirements determined by government policy-makers. Overall,
we show that the optimised combined models achieve equal-to-
much-lower error rates than the rapid antigen test- or syndromic
surveillance-only in all metrics, and how integrating data from
multiple rapid testing methods can improve diagnostics, parti-
cularly when adapted to local situations.

Results
Population characteristics. Of 1241 participants enrolled by
community support teams (CSTs) across Dhaka, 1172 (94%) had
complete data available for analyses. The remainder were
removed due to duplicated sample identification codes that pre-
vented reliable matching of test results to symptom metadata.
These duplications occur at random, due to human error, and we
do not believe they could bias results. Patient summaries by age,
gender, case positivity and symptoms are presented in Table 1.
No participants had been vaccinated as the study pre-dated mass
vaccination in low-income communities in Dhaka and only
symptomatic patients were included in this study because they
were the local government priority for support. Case positivity
measured by PCR in Dhaka increased from 15.8% to 23.8% from
the first (19th–26th May 2021) to the last week (4th–11th July
2021) of the study, corresponding to prevalence rising from 1.4 to
13.8 confirmed cases per 100,000 people21.
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Model selection. Backwards model selection using strength of
posterior correlation with outcome (Methods: Statistical model-
ling: model selection) for both the multivariate probit syndromic
data only model and the thresholded multivariate probit syn-
dromic data with rapid antigen test result (hereafter the
Syndromic-only and Syndromic-RAT combined) models showed
a marked decline in predictive power at more than four symp-
toms. The final four symptoms retained in Syndromic-only were
loss of smell, ongoing fever, diarrhoea and loss of taste and in
Syndromic-RAT combined were ongoing fever, wet cough, loss of
smell and dry cough. The symptoms are listed in reverse order of
importance as determined by model selection (i.e., all four
symptoms were retained in the four symptom model, the first was
removed in the three symptom model, the second was also
removed in the two symptom model) and the median estimated
correlations can be seen in the Supplementary Results (Supple-
mentary Figures 1 and 2). The covariate gender was dropped for
both model classes while age was dropped in the Syndromic-RAT
combined class but retained in the Syndromic-only class.

Predictive performance. In the comparison of predictive per-
formance under out-of-sample temporal cross-validation
('Methods: Statistical modelling: model performance'), RAT-
only (rapid antigen test result) performed worst with a cross-
entropy of 3.18 (cross-entropy values further from zero corre-
spond to worse predictive performance). The median cross-
entropy values were between 2.71 and 2.78 for Syndromic-only
models. Syndromic-RAT combined models performed best with
cross-entropy values between 1.56 and 1.6 (Fig. 1).

Classification performance. Generic model classification per-
formance under out-of-sample temporal cross-validation
('Methods: Statistical modelling: model performance) for the
one and four symptom models in the Syndromic-only and
Syndromic-RAT Combined classes is shown by their ROC curves
(Fig. 2). The curves for the models of different complexities are
extremely similar (as are the two and three symptom model
curves, not shown), however, note that the four symptom model
has higher precision and granularity across both axes. The RAT-
only model is a binary test (rapid antigen test positive or negative)
and so the ROC is a single value, not a curve, with a false-positive
rate of 0.02 and a false-negative rate of 0.45.

Scenario-specific performance. Scenario-specific classification
performance under out-of-sample temporal cross-validation
('Methods: Statistical modelling: model performance') is shown
in Fig. 3. Across all scenarios (defined in Table 2), the best models
in Syndromic-RAT Combined that used both the rapid antigen
testing and syndromic data performed equally well or better than
the other two model classes. In Scenario 1 ('Agnostic', wherein the
correct classification is maximised, assuming equal costing of false
positives and false negatives, Table 2), models in RAT-only and
Syndromic-RAT Combined classes performed equally well
(overlapping posterior interquartile ranges) and distinctly better
(no overlap in posterior interquartile range) than models in the
Syndromic-only class. The median errors, as defined in Table 2,
were 0.43 for models in RAT-only and Syndromic-RAT Com-
bined and between 0.85 and 0.86 for Syndromic-only models
(Fig. 3). In Scenario 2 ('Epidemic Growth', wherein false-negative
rates must be below 20%, Table 2), the RAT-only models failed to
meet the scenario requirement. The median errors were between
0.74 and 0.75 for Syndromic-only models and 0.41 and 0.5 for
Syndromic-RAT Combined models (Fig. 3).

In Scenario 3 ('Declining Incidence', wherein false-positive rates
must be below 20%, Table 2), Syndromic-only again performedT
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worst, and Syndromic-RAT Combined achieved the lowest error,
with RAT-only falling between the two (closer to Syndromic-RAT
Combined than Syndromic-only). The error in RAT-only was 0.03
and the median errors ranged from 0.19 to 0.2 for Syndromic-only,
and 0.19 to 0.2 for Syndromic-RAT Combined (Fig. 3). The results

for each scenario-model combination can be translated into
numbers of misclassifications per 1000 tests if the test positivity
rate is known. We present this in Supplementary Results
(Supplementary Results Table 1) for low (5%), average (20%) and
high (35%) test positivity rates in Bangladesh.

Fig. 1 Model predictive performance. Predictive performance of candidate models was measured using out-of-sample cross-entropy. Combined posterior
median and interquartile ranges for n= 1172 biologically independent individuals predicted under temporally structured cross-validation. Cross-entropy
shows the most generalised-level of model predictive power, assessing performance in the probability scale without requiring classification threshold
decisions. A cross-entropy of zero indicates a model that predicts with certainty the correct result each time. A random classifier for the problem scored
11.54. Interquartile ranges are shown for the posterior cross-entropy of the best candidate models at each level of model complexity tested under temporal
cross-validation. The intermediate complexity models perform best at prediction, although performance is similar across all the models within each model
class. There was a marked decline in predictive power at more than four symptoms, leading us to choose this as the maximum complexity model in our
candidate models. Model classes are colour-coded, the rapid antigen test only (RAT-only) model is purple, Syndromic-only model is teal, and the
Syndromc-RAT Combined model is yellow.

Fig. 2 Generic model classification performance. Median (grey dots) and interquartile ranges for receiver operating characteristics (ROC) for rapid
antigen testing only approach (purple) and posterior median and interquartile range ROC for Syndromic-only (teal) and Syndromic-Rapid Antigen Test
(RAT) Combined (yellow) models for n= 1172 biologically independent individuals predicted under temporally structured cross-validation. In the RAT-only
model, the ROC is a single value (i.e., a dot rather than a line) as the binary test has a single sensitivity and specificity. In Syndromic-only and Syndromic-
RAT Combined classes, the ROC values demonstrate the performance of the model for any hypothetical scenario as defined by the axes (as opposed to
Fig. 5 which demonstrates model performance in specific epidemiological scenarios which are realisations of single points in this space). While ROC plots
are often plotted as curves, we do not have continuous probability values due to the binary nature of predictor symptoms. This is important as discontinuity
in the probabilities impacts the sensitivity of the model to classification thresholds, such as those used in the scenarios below.
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The candidate models are chosen as a result of a selection
process and performed much better than more complex models
(i.e., with 5 or more symptoms) or simpler models (with no
symptoms but an intercept and age and gender as covariates) in
terms of cross-entropy and ROC. For the models that used
syndromic data, across all scenarios, within the final four
candidate models the number of symptoms included made
relatively little difference in terms of median performance (with
respect to error, Fig. 3 scenario-plot and Table 2), although the
more complex models have higher precision.

Across all metrics, the rapid antigen test result is the most
informative data-type for potential COVID-19 patients. However,
incorporation of even one symptom and the use of a modelling
framework greatly improves our ability to predict and classify
cases, both generically and in specified scenarios. Including
additional symptoms and covariates provides further information
on the patient’s status and greater model flexibility, resulting in
higher precision in predictions and classifications.

Discussion
We have demonstrated that combining rapid antigen tests with
syndromic modelling yields better identification of COVID-19
cases than either diagnostic in isolation. These gains in perfor-
mance are mirrored across metrics of prediction, as well as

general and scenario-specific classifications. The biggest
improvement is seen under the scenario of 'Epidemic Growth'
(Table 2), such as might be expected following relaxation of
restrictions and with the emergence of new variants. In this
scenario, the combined data model has a false-negative rate of
18% (IQR: 21–15), 22 (IQR: 19–25) percentage points lower than
the rapid antigen test only model. Although the syndromic model
matches the combined model’s false-negative rate, its false-
positive rate is 41% (IQR: 47–37), 33 (IQR: 30–33) percentage
points higher. In real terms, at the end of our study, there was a
20% case positivity rate in Bangladesh. By applying our frame-
work under the 'Epidemic Growth' scenario, for every 100 rapid
antigen tests, our approach would capture an additional 7 cases.
In a country deploying millions of tests per week, this results in
catching tens of thousands of cases that would otherwise be
missed. Similarly, the combined model class performs equally
well or better than the other models for the other scenarios
explored (Fig. 3). These scenarios offer snapshots of performance,
while the model prediction and classification metrics provide an
indication of how the models perform more generically (Figs. 1
and 2, respectively). The more complex model classes achieve this
top performance across all scenarios and metrics measured here
thanks to their flexibility (allowing them to be readily adapted to
new situations) and their synergistic use of the higher specificity
rapid antigen testing and the more sensitive syndromic data.

The final symptoms and covariates chosen through model
selection should be interpreted cautiously. Firstly, the power of
the models to detect relationships will be partially determined by
sample size. Secondly, these models were developed for prediction
and classification in a unique sub-population: CST-identified,
symptomatic patients in low-income communities in Dhaka.
From the same symptom and risk factor set, different variables
were retained for different model classes, despite data being
collected over a short period from the same population. These
differences may point to mechanisms by which CST-identified
and rapid antigen test-positive individuals differ from other
groups. They also underline the importance of collecting a rela-
tively broad range of symptom data as the syndromic profile of
the disease shifts between populations. Of interest is whether
individuals identified by PCR but missed by rapid antigen tests

Fig. 3 Performance of models under three epidemiological scenarios. Combined posterior median and interquartile ranges of error rates for n= 1172
biologically independent individuals predicted under temporally structured cross-validation. In the Agnostic Scenario, the model is maximises the correct
classification rate with error measured as the sum of the false-positive and false-negative rates. In the Epidemic Growth Scenario, a maximum false-
negative rate of 20% is permitted, and the error is measured as the false-positive rate. In the Declining Incidence scenario, a maximum false-positive rate
of 20% is permitted, and the error is measured as the false-negative rate. These requirements were determined through discussion with colleagues at the
Institute of Epidemiology and Disease Control (IEDCR), Bangladesh. The plot shows the posterior median and interquartile range for scenario-specific
errors. Lower errors correspond to better model performance. There is no error rate defined for the rapid antigen testing only model (RAT-only) in the
Epidemic Growth Scenario as the model failed to meet the requirement for that scenario (indicated by grey bar). Model classes are colour-coded, the RAT-
only model is purple, the Syndromic-only model is teal, and the Syndromc-RAT Combined model is yellow.

Table 2 Requirements and performance criteria for each
epidemiological scenario.

Scenario name Requirement Performance
criterion (error)

1 Agnostic Maximise correct
classification rates

Sum of error rates

2 Epidemic growth <20% false-negative rate False-positive rate
3 Declining incidence <20% false-positive rate False-negative rate

The requirement refers to a base level of performance the model must achieve, allowing the
more flexible models to be adapted to meet that requirement as closely as possible (e.g., by
determining a classification threshold). These requirements were determined through
discussion with colleagues at the Institute of Epidemiology and Disease Control (IEDCR),
Bangladesh, using internal resource projections. The performance criterion is used to determine
which model performs the ’best’ given that the requirement has been met.
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are less infectious and more typical of asymptomatic cases (per-
haps due to different lengths of time since symptom onset). This
could be examined using viral load measured as threshold cycle
(Ct) values from PCR and further testing for other illnesses22.
Our use of PCR as a validation test should also be explored
further, as it does not have 100% sensitivity so additional vali-
dation tests may be informative. However, finding alternative
gold-standard tests that can be carried out in the community is
challenging 23.

The modelling frameworks allow for the potential inclusion of
additional covariates where they are collected reliably. These
covariates may define different sub-populations in which we
expect the relationships between symptoms and infectious status
to differ. For example, vaccinated patients would be expected to
exhibit fewer and milder symptoms than unvaccinated patients.
By including vaccination status alongside symptoms within the
model, the model can share information between the two groups
while allowing the relationships to differ where this improves
prediction. Similar approaches could be taken to incorporate
rapid antigen test manufacturer, recent disease prevalence or time
since symptom onset. Furthermore, using a modelling framework
allows explicit estimation and exploration of these differences,
rather than relying on post hoc analysis of misdiagnosis rates
(e.g., Babu et al.24). When a particular data source is found to
have good predictive power, it would be useful to identify whether
this could target further data collection. For example, the low
false-positive rate of rapid antigen tests means that, if affordable,
serial testing of the same individual could increase true positive
detections without a major impact on accuracy.

The boost in diagnostic performance we found was achieved by
harnessing data collected by community-based health workers
using a mobile-phone-based application to record patient
symptoms and test results. These data were already being col-
lected in Bangladesh and similar methods are being rolled out in
other low- and middle-income countries25,26. We ensured our
method is scalable by developing it using a large community-
based sample and with input from the CST programme orga-
nisers. As CST data are collected via a mobile phone application
the diagnostic model can be updated in real-time. The algorithm
of the app could therefore be modified to reflect local epide-
miological requirements, local case rates and the considered cost/
benefits of misdiagnosis, thereby facilitating adaptation to new
variants or even new diseases. Similarly, if a source of data
becomes unavailable then the underlying model can be changed
to reflect this. For example, if there are rapid antigen test supply
problems, the app could deploy Syndromic-only which uses the
same data as Syndromic-RAT Combined, without relying on the
rapid antigen test, and the combined model could be retrained on
tests from different manufacturers with different performance
characteristics.

One of the key innovations of this framework is the ability to
adapt the diagnostic to local populations and their needs. To
achieve this, we need good quality, local data collection and to
understand the costs of sensitivity and specificity. The costs of
false negatives and false positives vary greatly depending on
epidemic context, and balancing the treatment of individuals with
control of the health burden at a societal level27. Similarly, the
market price of interventions can fluctuate depending on
demand, aid funding and global trends28. In practice, the costs of
rapid antigen tests are likely to be up to an order of magnitude
lower than PCR when considering the additional infrastructure
and personnel. Access to testing (RAT or PCR) needs to be
considered as part of weighing up the costs and benefits of sur-
veillance approaches29. Understanding how to measure and bal-
ance these demands requires insights from economists,
epidemiologists, social scientists and policy-makers, and is an

area of active research30. Given the degree of complexity, it is
tempting to rely on methods that do not openly require a decision
to be made about the relative costs of the different mis-
classification types. However, rather than removing the complex
cost structures involved, such methods simply hide them. All
methods place a balance on false positives and negatives impli-
citly, our hope is that by requiring these decisions to be made
explicitly, they are more readily challenged, researched and
improved upon. Similarly, the need for local data collection
should not be seen as a weakness of the method, but rather a
welcome requirement that allows us to directly assess interven-
tion success and biases.

Pandemic management can only be done with testing at scale.
The combined syndromic and rapid antigen testing approach that
we report is promising for large-scale COVID-19 testing in low-
income communities. Moreover, our framework is adaptable,
including for many other infectious diseases where strict adher-
ence to gold-standard laboratory diagnostics greatly limits testing
capacity. Imperfect diagnostics are frequently imperfect in dif-
ferent ways, and these differences are ripe for statistical treatment.
These methods are often more agile than gold-standard diag-
nostics in changing situations as experienced during the pan-
demic, when fast responses are essential. Overall, our approach
shows that by understanding how to utilise the complementary
strengths of imperfect but rapid diagnostics (and deploying the
more limited gold-standard testing for validation), good quality
large-scale testing can be achieved even in low-income
communities.

Methods
Data collection. Recruitment took place across low-income communities in Dhaka
North Community Corporation between 19 May 2021 and 11 July 2021. Partici-
pants were identified for COVID-19 testing by CSTs. CSTs are community-based
volunteer health workers trained to identify individuals reporting symptoms sug-
gestive of COVID-19 through hotline calls or community-based reporting chan-
nels. Probable cases identified by CSTs are counselled to isolate for 14 days under
household quarantine, connected to telemedicine services for home-based COVID-
19 management, and provided with over-the-counter medication or medical
referrals if the case is severe. CSTs submit surveillance data to a centralised data-
base through a mobile-phone-based application (Supplementary Materials (Data
Collection)).

Participants were selected for testing if they were over 15 years old, had a fever
(>38 ∘C) at the point of assessment, and one or more of 14 symptoms listed in
Table 1. CSTs collected the enrolled individual’s age and gender, and took two
nasal swabs. One swab was used for rapid antigen testing (SD Biosensor
STANDARDTM Q COVID-19 Ag Test BioNote) at the household, and the other
returned under cold-storage to the Institute of Epidemiology, Disease Control and
Research (IEDCR) for PCR testing. The full questionnaire and testing protocols are
provided in Supplementary Methods.

Participants provided written informed consent to sample collection and for
their results to be analysed in the study. The study protocol was approved by the
Institutional Review Board at the IEDCR, Ministry of Health, Bangladesh, IEDCR/
IRB/04.

Statistical modelling
Structure. We developed three model classes using: (1) the rapid antigen test result;
(2) the syndromic data, and (3) the two data sources combined (Fig. 4). We
identified cases by PCR. As RAT-only used the rapid antigen test result, no sta-
tistical model is needed. For Syndromic-only, we used a Bayesian multivariate
probit model31, with multivariate referring to multiple response variables. The
multivariate probit structure allows the model to account for the binary and cor-
related nature of the symptoms, while conditioning on the risk factors of age and
gender, thereby improving over models which implicitly assume independence
between symptoms. By using a Bayesian formulation, we generate full posteriors
for our parameter estimates, allowing natural quantification of uncertainty. We
chose minimally informative priors, with standard normals for the covariates and
intercepts and a flat LKJ distribution for the correlation matrix (described in more
detail in Supplementary Materials: Statistical Methodology).

For Syndromic-RAT Combined, we use a hurdled multivariate probit. The
approach exploits the specificity of rapid antigen tests by treating rapid test-
positives as cases. While this sounds like a strong assumption, this simply translates
in practice to telling all rapid test-positive individuals to assume they have COVID-
19. Rapid antigen test-negative individuals are then modelled using the sensitive
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syndromic approach of Syndromic-only to capture PCR-positives missed by the
rapid antigen test. This approach leverages the potentially different syndromic
profiles of PCR-positive patients who are rapid antigen test positive and negative,
allowing the model to adapt solely to the latter. The models were fitted to the data
using Bayesian inference techniques based on Hamiltonian Monte Carlo in the
Stan programming language32. Further technical details and model equations are
presented in Supplementary Methods.

Model selection. For model selection and all measures of performance, we used out-
of-sample, temporal cross-validation (Fig. 5), where training and testing data are
separated based on time. We structured the cross-validation temporally to reflect
the real-world prediction problem: using recent testing data to predict new cases.
Due to the changing nature of the disease and its management over time, using
unstructured cross-validation would result in an overstatement of model
performance.

We conducted backwards model selection, starting with the most complex
biologically plausible model, to identify a subset of models with the highest
predictive power. Shrinking the number of possible models was necessary to lower
computational demand and reduce the risk of overfitting. The large number of
symptoms corresponds to many potential model configurations (>131,000 for
14 symptoms and 2 covariates) which might perform well on the test sets by chance
(even under temporal cross-validation) but lack transferability to novel situations.
The Bayesian multivariate probit structure common to these models directly
estimates the full posterior correlation matrix for the PCR status and other
symptoms. By first using the strength of the correlation with the PCR status (coarse
selection, Fig. 5) and general predictive power (fine selection, Fig. 5) to narrow
down the number of candidate models, and then testing those models under the
epidemiological scenarios, we are more likely to choose models that generalise well
to new data (Supplementary Materials: Statistical Methodology).

Measuring model performance. We assessed models using three sets of increasingly
policy-relevant criteria. First, we use predictive performance to measure model
performance in a decision-free context (i.e., comparing predicted probabilities of an
individual having COVID-19 to their true status). Second, we use receiver oper-
ating characteristic (ROC) curves to show generic model classification perfor-
mance. Finally, we measure classification performance under three epidemiological
scenarios (defined in Table 2).

We scored the models’ predictive power using cross-entropy (defined
in Supplementary Methods). Cross-entropy measures the accuracy of predicted
probabilities of binary outcomes, rather than making binary classifications, similar
in concept to a mean square error for normally distributed data, but adapted for
binary data33. A cross-entropy of zero indicates a model that predicts with certainty
the correct result each time. A random classifier for the problem scored 11.54

In practice, models are often evaluated on their performance as deterministic
classifiers rather than as stochastic prediction engines (i.e., their ability to classify

Fig. 4 Schematic description of identification of likely COVID-19 cases by community support teams (CSTs) and model definitions. CSTs collect
syndromic data (age, gender and presence/absence of 14 predetermined symptoms), and two sets of naso-pharyngeal swabs (for rapid antigen testing and
PCR). We used three model classes: rapid antigen test only in 1, syndromic data only in 2, and both rapid antigen test and syndromic data in 3. The PCR
result is used to train and test each model using temporal cross-validation.

Fig. 5 Model selection procedure. Rounds of model selection in the
multivariate probit component of the Syndromic-only and Syndromic-Rapid
Antigen Test (RAT) Combined models. With 14 symptoms (5 shown for
demonstration purposes) and 2 covariates there are over 131,000 possible
model combinations. To make exploring these models computationally
feasible and to reduce the risk of overfitting, we carried out two rounds of
model selection. A subset of symptoms are identified using the strength of
posterior correlation between each symptom and PCR status identified by
the corresponding model, with the weakest correlated symptoms removed
during each round of selection. From this subset of symptoms, a more
exhaustive search of potential models is then conducted to identify the best
symptom-covariate relationships, using temporal cross-validation to
measure model performance. The best model for each level of complexity
(i.e., number of symptoms) are then used as our candidate models. Only
these final models are used for classification. This reduces the set of
models tested as classifiers from >131,000 to just four per model class.
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an individual as a COVID-19 case or not, rather than the probability that the
individual is a case). Deterministic classification requires that a probability
threshold is chosen over which patients are classified as COVID-19 positive.
Classifier performance was compared generically (using ROC curves to look at the
error rates that can be achieved with each model without specifying a scenario).
Generic performance here is only used to show the flexibility of the model classes,
i.e., model performance without reference to a specific scenario. The best model for
a local situation can only be determined if the relative costs of false positives and
negatives are considered.

We compare model performance under three scenarios (using error terms
described in Table 2) developed for illustrative purposes through discussion with
colleagues at IEDCR. In Scenario 1, we do not consider epidemiological context but
minimise false-negative and false-positive rates equally by maximising the correct
classification rates individually and in total, as measured by the harmonic mean
(not the arithmetic mean which would maximise the rates in total, Supplementary
Methods). Scenario 2 corresponds to epidemic growth as experienced during the
spread of the Delta variant during the period of data collection. Under these
circumstances, false negatives are costly relative to false positives. In Scenario 3,
incidence is assumed to be low and relatively stable. In this situation, policy-makers
may prioritise keeping false-positive diagnoses low to prevent fatigue and to keep
the workforce active.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The anonymised patient data generated in this study and model outputs have been
deposited in the GitHub repository fergusjchadwick/COVID19_SyndromicRAT_
public34. The raw patient data are protected and are not available due to data
privacy laws.

Code availability
The statistical code used in this study are available in a GitHub repository at https://
github.com/fergusjchadwick/COVID19_SyndromicRAT_public.
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