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Abstract: A common situation in experimental science involves comparing a number of 10 

treatment groups each to a single reference (control group). For example, we might compare 11 

diameters of fungal colonies subject to a range of inhibitory agents to those from a control group 12 

to which no agent was applied. In this situation the most commonly applied test is Dunnett’s 13 

test, which compares each treatment group separately to the reference whilst controlling the 14 

experiment-wise type I error rate. For analyses where all groups are treated equivalently 15 

statistical power is generally optimised by dividing subjects equally across groups. Researchers 16 

often still use balanced groups in the situation where a single reference group is compared to 17 

each of the others. In this case it is in fact optimal to spread subjects unequally: with the 18 

reference group getting a higher number of subjects (n0) than each of the k treatment groups (n 19 

in each case). It has been previously suggested that a simple rule of thumb, the so-called square-20 

root allocation rule n0 = √𝑘𝑘 𝑛𝑛  offers better power than a balanced design, without necessarily 21 

being optimal. Here we show that this simple-to-apply rule offers substantial power gains (over 22 

a balanced design) over a broad range of circumstances, and that the more-challenging-to-23 

calculate optimal design often only offers minimal extra gain. Thus, we urge researchers to 24 
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consider using the square-root allocation rule whenever one control group is compared with a 25 

number of treatments in the same experiment.  26 

Keywords: Dunnett’s test, power, sample size, square-root allocation rule, unbalanced samples 27 

 28 

Introduction 29 

When investigating a specified group, generally a control, and k other groups, called treatment 30 

groups hereafter, often the control group is compared with each of the other groups. In this 31 

many-to-one situation, Dunnett's test (Dunnett, 1955) is recommended for normally distributed 32 

data. Generalized Dunnett tests exist for other types of data, e.g. there are analogues for 33 

proportions and nonparametric approaches (Hothorn, 2016). However, here we focus on the 34 

original test proposed by Dunnett (1955). This test controls the experiment-wise type I error 35 

rate. 36 

Dunnett’s test is based on t test statistics. However, the pooled variance estimate is based on 37 

data from all groups and the correlation between the t statistics is considered (see e.g. Bretz et 38 

al, 2011, pp. 71-75). Thus, the method is more powerful than a Bonferroni adjustment made 39 

after multiple two-sample tests (Bretz et al, 2011, p. 74). 40 

When applying Dunnett’s test, appropriately chosen unbalanced sample sizes can give a more 41 

powerful test than a balanced design, even when there is no difference in variability between 42 

groups. Here, we seek to promote greater awareness of this. Groups of equal size are sometimes 43 

suggested very generally, see e.g. Curtis et al. (2018). Neuhäuser and Ruxton (2018) mentioned 44 

three situations where unequal sample sizes might be useful: (1) unequal variances between 45 

groups, (2) situations where one treatment involves more potential for suffering (or higher 46 

expense), and (3) the many-to-one situation considered here.  47 

For Dunnett’s test, Dunnett (1955) recommended the square-root sampling allocation rule. 48 

Hence, this rule is not new, it is mentioned in textbooks (e.g. Hochberg and Tamhane, 1987; 49 
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Brock and Mounho, 2014; Rosenberger and Lachin, 2015; Green et al., 2018; Kieser, 2020). 50 

Nevertheless, the rule is rarely used. We searched for Dunnett’s test in this journal Ethology. We 51 

found 14 papers since 2000, none of them applied or even mentioned the square-root allocation 52 

rule.   53 

In the scenario where the control group is compared to each of the treatment groups, the control 54 

group plays a special role making it plausible to enlarge its sample size compared to each of the 55 

other groups (Hochberg and Tamhane, 1987). The design of the square-root allocation involves 56 

the same sample size n for each of the k treatment groups, but a larger sample size for the 57 

control group, namely 𝑛𝑛0 = √𝑘𝑘𝑛𝑛. This design gives a test with higher power, or a test with the 58 

same power but a lower total sample size, than a design with equal group sizes N/(k + 1) for 59 

every group (Liu 1997), where N = n0 + kn denotes the total sample size.  60 

In order to illustrate the square-root allocation rule let’s consider an example with k = 4 61 

treatment groups, a control group and N = 60 observations in total. Here, √𝑘𝑘 = 2, thus the 62 

sample size of the control group is 𝑛𝑛0 = 2𝑛𝑛, twice the sample size of each treatment group. 63 

Hence, with N = 60 we have n = 10 observations per treatment group and 𝑛𝑛0 = 20 observations 64 

in the control group, instead of an equal group size of N/5 = 12 observations for all k + 1 groups. 65 

 66 

Methods   67 

Here, we demonstrate the benefit of square-root allocation (SRA) in comparison to equal size 68 

allocation (ESA) based on a simulation study performed in R (version 4.0.4).  69 

We do this on the basis of samples drawn from normal distributions. The standard deviation of 70 

these distributions is always one, but the mean value for the control group µ0 is set to zero while 71 

a non-zero positive value µi is used for all of the k treatment groups. However, this mean value 72 

is the same for all treatment groups in our simulation. We explore the ability of Dunnett’s test to 73 

detect this difference between the control and treatment groups as a function of total sample size 74 
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N.  The values used for the treatment group means are given in Table 1, we make the value of µi 75 

lower as total sample size increases (since total sample size and this effect size have opposite 76 

effects on statistical power). We estimate statistical power as the fraction of 10,000 replicate 77 

simulations where the Dunnett’s test detected the underlying difference in distributions, based 78 

on a nominal experiment-wise type I error rate of 0.05. The R code used for our simulations is 79 

available at www.hs-koblenz.de/profilepages/neuhaeuser/programme.   80 

As well as SRA and ESA, we also considered the optimal allocation (OA), that is, the allocation 81 

that maximizes the power without changing the total sample size. The above-mentioned 82 

simulations were also used to search for the OA. To be precise, we determined the power for all 83 

possible allocations with a specific total sample size N. The allocation with maximum power is 84 

the OA. A user could obtain the OA by simulation or by programming a search procedure such 85 

as the one presented by Kwong et al. (2010), see Liu (1997) for mathematical details. Thus, for 86 

a user it is much easier to apply the square-root allocation than search for the optimal allocation.  87 

There are several alternative ways in which statistical power could be measured in the case of 88 

multiple tests (Bretz et al., 2011). For our situation with µi > µ0 we report on two of these: 89 

• the probability of correctly rejecting all k false null hypotheses µi = µ0, called the 90 

conjunctive power, and 91 

• the probability of correctly rejecting at least one false null hypothesis µi = µ0, called the 92 

disjunctive power.  93 

That is, we report the fraction of replicate simulations where Dunnett’s test suggests (correctly) 94 

that all treatment groups are different from the control, and the larger fraction where the test 95 

suggests that at least one of the treatment groups is different from the control.  96 

In evaluating Dunnett’s test we assume that we are dealing with a situation where negative 97 

values of µi are considered implausible and so one-sided testing is adopted.   98 

 99 

  100 

http://www.hs-koblenz.de/profilepages/neuhaeuser/programme
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Results and examples 101 

The consistent pattern seen across the results shown in Table 2 and Figures 1 and 2 is that the 102 

square-root allocation rule consistently gives higher power values than equal sample sizes 103 

although the benefit is smaller for small numbers of treatment groups. Another consistent 104 

pattern is that the additional benefit due to the optimal allocation is very low in the scenarios we 105 

considered. 106 

Having considered the theoretical advantages of SRA in an idealised simulation, we now want 107 

to explore its practical application. First, we re-examine a recent publication that used Dunnett’s 108 

test (Adamo and McKee, 2017). In their figure 2, the number of eggs laid per day per cricket 109 

Gryllus texensis is shown for three groups with n = 40 per group; hence there are k = 2 treatment 110 

groups in their design. The maximum difference in means is around 6 eggs with a standard error 111 

of around 2. Thus, we can estimate a standard deviation of approximately 𝜎𝜎 = 2√40 ≈ 12.6. 112 

This standard deviation is approximately twice as large as the difference in means. If we take 113 

these values for the effect size and the standard deviation, we can estimate power in exactly the 114 

same way we did previously. We assume one-sided testing again, and a nominal experiment-115 

wise type I error rate of 0.05.  116 

For this scenario, with equal-size allocation (ESA) used by the original authors with 40 in each 117 

group the disjunctive power is 0.7682. With the square-root allocation (SRA), the sample sizes 118 

would be 35 for the two treatment groups and 50 for the control, and the disjunctive power is a 119 

little higher: 0.7916. The conjunctive power is 0.6102 for ESA and 0.6199 for SRA. From these 120 

calculations we see that adoption of SRA application would have offered these researchers more 121 

power, albeit only slightly more than with the ESA design that they used.  122 

 We can also use similar simulations to ask how much the sample size could be reduced by 123 

adopting SRA while still delivering the same power as adopting ESA. As mentioned above the 124 

disjunctive power is 0.7682 under ESA. If we require a power of at least 80% we would need 125 

126 rather than 120 animals when applying ESA (i.e. 42 rather than 40 in each group), then the 126 
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disjunctive power is 0.8040. With SRA 123 animals (51 in the control group and 36 in each 127 

treatment group) are sufficient for a power > 80%; with 51 in the control group and 36 in each 128 

of the other two groups, we predict disjunctive power of 0.8140. Thus, again we see in this 129 

example that with a low number of comparisons, since there are only two treatment groups – 130 

there is still a benefit to square-root allocation, but this benefit is small. 131 

However, this benefit can be much larger when we have just a few more groups. We consider 132 

the hypothetical situation where the original study had two more treatment groups (four instead 133 

of two). Now with ESA we need a total sample size of 195 for a power > 80% (the estimated 134 

disjunctive power is 0.8211). With SRA a total sample size of 156 is sufficient for a power of 135 

0.8020. If we require a power of 0.8211 (as for ESA), then 162 animals are sufficient (power = 136 

0.8238). Thus, in this situation, SRA allows a big decrease in sample size without loss of power. 137 

In order to illustrate how Dunnett’s test can be applied in R we consider another example 138 

situation (using data presented by Dunnett, 1955, p. 1099). In this data-set, a blood count 139 

(millions of cells per cubic millimetre) was measured on three groups of animals, a control 140 

group (here group 0) and two groups treated with different drugs (groups 1 and 2). Dunnett’s 141 

test is available with the function glht of the R package multcomp, and can be applied to this 142 

data as follows: 143 

count <- c(7.4,8.5,7.2,8.24,9.84,8.32,9.76,8.8,7.68,9.36,12.8,9.68,  144 

       12.16,9.2,10.55) 145 

group <- as.factor(c(rep(0,6), rep(1,4), rep(2,5))) 146 

anova.model <- aov(count ~ group) 147 

library(multcomp) 148 

summary(glht(anova.model, linfct = mcp(group = "Dunnett"), alternative =  149 

       "greater")) 150 

 151 

  152 
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This yields the following output:  153 

Simultaneous Tests for General Linear Hypotheses 154 

Multiple Comparisons of Means: Dunnett Contrasts 155 

 156 

Fit: aov(formula = count ~ group) 157 

 158 

Linear Hypotheses: 159 

           Estimate Std. Error t value  Pr(>t)    160 

1 - 0 <= 0   0.6500     0.7584   0.857 0.32498    161 

2 - 0 <= 0   2.6280     0.7115   3.694 0.00291 ** 162 

--- 163 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 164 

(Adjusted p values reported -- single-step method) 165 

 166 

From this, we can infer that group 2 is significantly different from the control group (p = 167 

0.0029), however, there is no significant difference between group 1 and the control (p = 168 

0.3250). Simultaneous confidence intervals are computed when summary is replaced by 169 

confint in the R code above. Two-sided tests and confidence intervals can be obtained using 170 

alternative = "two.sided". The use of the function glht is described in much more details 171 

by Bretz et al. (2011), including plots to display the results graphically. Bretz et al. (2011) also 172 

explain how Dunnett’s test can be combined with a closed testing procedure in order to increase 173 

power (see also Hayter and Tamhane, 1991).  174 

 175 

Discussion 176 

The square-root allocation, already proposed by Dunnett (1955), is rarely used. Instead equal 177 

group sizes dominate applications. However, the square-root allocation is convenient to 178 

implement, and increases power as shown above. It is also possible to obtain the same power 179 

with fewer experimental units, preferable due to ethical aspects for experiments with animals or 180 
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humans. Sample size calculations might be performed using the web application developed by 181 

Grayling and Wason (2020), or by simulation (Colegrave and Ruxton, 2021). 182 

Although the square-root allocation seldom yields exactly the optimal sampling allocation, it 183 

provides a reasonable approximation of the optimal allocation (Kwong et al., 2010). Kwong et 184 

al. (2010) presented a search procedure to obtain an optimal design, and they recommend its 185 

application if the cost of additional observations is relatively high. However, as shown here, the 186 

difference between the square-root allocation and the optimal allocation is often very small. 187 

Our simulations only considered the case where underlying assumptions of Dunnett’s test of 188 

normally distributed data and homogeneity of variance hold. However, the advantage of SRA 189 

over ESA even holds when variances increase in some treatment groups (Brock and Mounho, 190 

2014). It is true that problems of unreliability due to heterogeneity of variance can be amplified 191 

by unequal sample sizes (Hothorn, 2016), but even the well-studied ANOVA F-test is known 192 

not to be always robust to variance heterogeneity when sample sizes are equal (Rogan and 193 

Keselman, 1977).  194 

When a researcher has reason to question whether the homogeneity of variances is likely to hold 195 

in their system then switching to the robust procedure proposed by Herberich et al. (2010) seems 196 

useful. For this method no assumptions regarding distribution or variance homogeneity are 197 

necessary.  198 

In this article we focus on the many-to-one situation where several treatment groups were 199 

compared to a control. There are other options, for example so-called Helmert contrasts which 200 

compare each group to the mean of preceeding groups. This approach might be useful when 201 

several dose groups are investigated (Hothorn, 2016). Helmert contrasts are orthogonal (i.e. 202 

uncorrelated) which makes the underlying computations numerically less complex. However, 203 

the research question should dictate which statistical tests to apply. And with the above-204 

mentioned function glht of the R package multcomp, non-orthogonal contrasts can easily be 205 

handled. Nevertheless, we would like to note that the SRA also provides a reasonable 206 
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approximation to the OA for the orthogonal contrasts investigated by Hayter and Tamhane 207 

(1991). 208 

We recommend routine use of SRA in situations where several treatments are compared to a 209 

single reference group. This design requires trivial extra effort implement, and always offers 210 

some power benefit. Any benefit should be attractive, but the benefits can be substantial when 211 

the number of treatment groups is larger. The SRA may not be optimal, but our simulations 212 

suggest it may be recommended as “near optimal”. 213 

  214 
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Table 1: Mean differences between groups used in the simulation study depending on N 260 

Total sample size N Difference in means µi – µ0 

< 25 

26 to 50 

51 to 75 

76 to 100 

101 to 150 

151 to 200 

201 to 250 

251 to 300 

1.2 

0.95 

0.85 

0.75 

0.7 

0.675 

0.65 

0.625 

 261 

 262 

Table 2: Disjunctive and conjunctive power 1 – β of equal-size allocation (ESA) and square-root 263 

allocation (SRA) for different values of k and N  [see next page] 264 

 265 

 266 

Figure captions 267 

 268 

Fig. 1: Disjunctive and conjunctive power of equal-size allocation (ESA) and square-root 269 

allocation (SRA) for different values of k and N 270 

A: k = 2 treatment groups 271 

B: k = 3 treatment groups 272 

C: k = 4 treatment groups 273 

D: k = 5 treatment groups 274 

E: k = 6 treatment groups 275 



13 
 

Fig. 2: Comparison between disjunctive and conjunctive power for equal-size allocation (ESA), 276 

square-root allocation (SRA), and the optimal allocation (OA) for k = 5 and N = 102 277 

 278 
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