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Abstract.  Recent developments in animal tracking technology have permitted the 25 

collection of detailed data on the movement paths of individuals from many species.  26 

However, analysis methods for these data have not developed at a similar pace, largely 27 

due to a lack of suitable candidate models, coupled with the technical difficulties of 28 

fitting such models to data.  To facilitate a general modeling framework, we propose 29 

that complex movement paths can be conceived as a series of movement strategies 30 

among which animals transition as they are affected by changes in their internal and 31 

external environment.  We synthesize previously existing and novel methodologies to 32 

develop a general suite of mechanistic models based on biased and correlated random 33 

walks that allow different behavioral states for directed (e.g., migration), exploratory 34 

(e.g., dispersal), area-restricted (e.g., foraging), and other types of movement.  Using 35 

this “tool-box” of nested model components, multi-state movement models may be 36 

custom-built for a wide variety of species and applications.  As a unified state-space 37 

modeling framework, it allows the simultaneous investigation of numerous hypotheses 38 

about animal movement from imperfectly observed data, including time allocations to 39 

different movement behavior states, transitions between states, the use of memory or 40 

navigation, and strengths of attraction (or repulsion) to specific locations.  The inclusion 41 

of covariate information permits further investigation of specific hypotheses related to 42 

factors driving different types of movement behavior.  Using reversible jump Markov 43 

chain Monte Carlo methods to facilitate Bayesian model selection and multi-model 44 

inference, we apply the proposed methodology to real data by adapting it to the natural 45 

history of the grey seal (Halichoerus grypus) in the North Sea.  Although previous grey 46 

seal studies tended to focus on correlated movements, we found overwhelming evidence 47 

that bias towards haul-out or foraging locations better explained seal movement than 48 

simple or correlated random walks.  Posterior model probabilities also provided 49 



3 
 

evidence that seals transition among directed, area-restricted, and exploratory 50 

movements associated with haul-out, foraging, and other behaviors.  With this intuitive 51 

framework for modeling and interpreting animal movement, we believe the 52 

development and application of bespoke movement models will become more 53 

accessible to ecologists and non-statisticians.     54 

 Key words: animal location data, biased correlated random walk, movement 55 

model, state-space model, switching behavior, telemetry. 56 

INTRODUCTION 57 

Our ability to track and monitor wildlife populations has greatly improved with recent 58 

technological advancements.  These include animal-borne devices that allow the 59 

collection of accurate time-series of individual location data (McConnell et al. 2010, 60 

Tomkiewicz et al. 2010), biotelemetry devices providing physiological information 61 

(Cooke et al. 2004, Payne et al. 2010), and remote sensing and geographic information 62 

system (GIS) technologies for the acquisition of detailed landscape data at multiple 63 

spatial scales (Gao 2002).  Along with these developments, new challenges have arisen 64 

in the collection, management, and analysis of geo-referenced animal location data 65 

(Cagnacci et al. 2010, Urbano et al. 2010). 66 

 Although Global Positioning System (GPS) and other relocation technologies 67 

have enabled the collection of large amounts of animal location data from diverse 68 

terrestrial and aquatic taxa (Tomkiewicz et al. 2010), model development for the 69 

analysis of these data has lagged behind.  This is beginning to change as new methods 70 

continue to appear in the ecological literature (Holyoak et al. 2008, Schick et al. 2008), 71 

but unlike many other areas of ecology, no general estimation framework has been 72 

developed for the analysis of movement trajectories that is widely accepted by the 73 

practitioners collecting the majority of these data sets.  For example, there are well-74 
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established inferential methods in population and community ecology for examining 75 

patterns of abundance (e.g., Otis et al. 1978, Buckland et al. 2001, Borchers et al. 2002), 76 

species occurrence (e.g., MacKenzie et al. 2006), and related vital rates that address 77 

uncertainties (e.g., imperfect detection) associated with the process by which the data 78 

were obtained (Williams et al. 2002, King et al. 2009).  There also exists readily 79 

accessible software for the analysis of these data by wildlife professionals (e.g., White 80 

and Burnham 1999, Thomas et al. 2010).  There remains a similar need (and desire) to 81 

develop accessible, inferential data analysis methods in movement ecology (Schwarz 82 

2009, Morales et al. 2010). 83 

 As animals respond to physiological and environmental stimuli, they often 84 

exhibit different movement behavior states (or modes).  Simple examples include 85 

“exploratory” and “encamped” states in elk (Morales et al. 2004) or, equivalently, 86 

“traveling” and “foraging” states in grey seals (Breed et al. 2009), where "exploratory" 87 

or "traveling" describe movement states associated with greater directional persistence 88 

and velocity relative to the "encamped" or "foraging" states.  Inferring patterns and 89 

dynamics of movement from time-series of animal location data often involves the 90 

estimation of movement parameters associated with different types of movement 91 

behavior states.  However, because these states often cannot be observed directly, they 92 

must be inferred based on trajectories alone in the absence of ancillary information (but 93 

see Discussion).  Estimation is complicated further by the fact that animal location data 94 

often contain considerable observation error in both time and space, as well as missing 95 

(or intermittent) observations.  Sophisticated statistical models of the underlying 96 

movement and observation process are therefore required to facilitate reliable inference 97 

(Jonsen et al. 2005, Patterson et al. 2008, Schick et al. 2008).  98 
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 A variety of approaches for analyzing animal location data have been proposed 99 

in recent years, and these primarily differ in the spatio-temporal conceptualization of the 100 

movement process.  These include discrete-time and discrete-space (Schwarz et al. 101 

1993, Brownie et al 1993, Dupuis 1995, King and Brooks 2002), discrete-time and 102 

continuous-space (Morales et al. 2004, Jonsen et al. 2005), continuous-time and 103 

discrete-space (Ovaskainen et al. 2008), or continuous-time and continuous-space 104 

(Blackwell 2003, Johnson et al. 2008) movement process models.  Similarly, latent 105 

behaviors associated with different types of movement can be treated as continuous 106 

(Forester et al. 2007) or discrete (Morales et al. 2004, Jonsen et al. 2005) states among 107 

which animals transition in response to changes in their internal and external 108 

environment.  The representation of movement also differs among these approaches, by 109 

specifying the movement process on the positions themselves (Blackwell 2003, Jonsen 110 

et al. 2006) or derived quantities, such as the differences between consecutive 111 

coordinates (Jonsen et al. 2005, Johnson et al. 2008), step lengths (Forester et al. 2007), 112 

or both step lengths and turning angles (Morales et al. 2004).  Although earlier methods 113 

ignored error in the timing and location of observations (Blackwell 2003, Morales et al. 114 

2004), most recent approaches simultaneously model both the movement process and 115 

observation process using state-space methods (Anderson-Sprecher and Ledolter 1991, 116 

Jonsen et al. 2005, Johnson et al. 2008, Patterson et al. 2008). 117 

 The myriad of proposed methodologies for analyzing movement data makes 118 

selection of any particular method (or model) a difficult task.  The most sophisticated 119 

continuous-time approaches, although appealing from a theoretical perspective, are 120 

prohibitively technical for many non-statisticians.  Further, continuous-time and 121 

continuous-behavior models are less appealing to practitioners because the parameters 122 

(e.g., instantaneous diffusion process parameters) can be difficult to interpret 123 
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biologically.  Discrete-space models often necessitate spatial resolutions requiring high-124 

dimensional matrices or integrals that can lead to computational difficulties.  Perhaps 125 

most inhibiting to general use by ecologists is the fact that the majority of movement 126 

models developed to date have focused on species-specific applications and relatively 127 

few behavioral states, with little scope for generalization.  Given these challenges, it is 128 

certainly not surprising that even less attention has been given to strategies for model 129 

selection and multi-model inference (Hoeting et al. 1999, Burnham and Anderson 2002, 130 

King et al. 2009) in the analysis of movement data (but see Morales et al. 2004, King 131 

and Brooks 2002; 2004). 132 

 We synthesize many of the appealing elements of previous approaches (e.g., 133 

Dunn and Gipson 1977, Blackwell 1997, King and Brooks 2002, Blackwell et al. 2003, 134 

Morales et al. 2004, Jonsen et al. 2005, Johnson et al. 2008) in combination with novel 135 

methodologies to formulate a general modeling strategy for individual animal 136 

movement in discrete-time and continuous-space that can be readily adapted to 137 

accommodate many different types of movement and behavioral states.  With an 138 

increased emphasis on ecological inference from animal location data, these states can 139 

be associated with directed (e.g., migratory or evasive), area-restricted (e.g., foraging or 140 

nesting), exploratory (e.g., dispersal or searching), and correlated movements as 141 

dictated by the species and application of interest.  Using Bayesian analysis methods, 142 

we also propose a model selection and multi-model inference procedure based on 143 

weights of evidence for these different types of movement behaviors.  We demonstrate 144 

the use of this mechanistic, inferential modeling framework by adapting it to the natural 145 

history of the grey seal (Halichoerus grypus) in the North Sea, an apex marine predator 146 

often demonstrating characteristically complex movement patterns among haul-out 147 

colonies and foraging patches. 148 
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METHODS 149 

A general model for individual movement in discrete time 150 

We first formulate a general model for animal movement as a mixture of discrete-time 151 

random walks.  An individual may switch among a set of discrete movement behavior 152 

states 1, ,z Z=  , where each state is characterized by distributions for the step length 153 

and direction (or bearing) of movement between consecutive positions ( )1 1,t tX Y− −  and 154 

( ),t tX Y for each time step 1, , .t T=    We assume the T time steps are of equal length 155 

(but see State-space formulation).  The set of Z movement behavior states can include 156 

directed movements towards particular locations or "exploratory" movements that are 157 

not associated with any particular location.  When these movement behavior states are 158 

not directly observable, this can be viewed as a hidden Markov model (Zucchini and 159 

MacDonald 2009, Langrock et al. 2012).   160 

For flexibility and mathematical convenience, we follow Morales et al. (2004) 161 

by selecting a Weibull distribution for the step length ( )ts  and a wrapped Cauchy 162 

distribution for the direction ( )tφ of movement, but other distributions for step length 163 

(e.g., gamma) or direction (e.g., von Mises) could also be used (Codling et al. 2010).  164 

The movement process model is therefore a discrete-time, continuous-space, multi-state 165 

random walk with step length [ ]| ~ Weibull( , )t t i is z i a b=  and direction 166 

[ ] ( )| ~ wCauchy ,t t i iz iφ µ ρ= .  Specifically, we have the probability density functions 167 

( ) ( )
1

| exp /
i

i

b
bi t

t t t i
i i

b sf s z i s a
a a

−
   = = −    

 168 

and 169 

( ) ( )
2

2

11|
2 1 2 cos

i
t t

i i t i

f z i ρφ
π ρ ρ φ µ

−
= =

+ − −
 170 
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for 0,za > 0,zb > 0 2 ,tφ π≤ < 0 2 ,zµ π≤ < 1 1,zρ− < <  and 1, , .z Z=    Assuming 171 

independence between step length and direction within each movement behavior state 172 

(see Discussion), the joint likelihood for ts  and tφ  (conditional on the latent state 173 

variable tz ) is: 174 

( ) ( ) ( )
1

, | |
T

t t t t
t

f f s z f zφ
=

=∏s  zφ . 175 

  For switches between movement behavior states, we assign a categorical 176 

distribution to the latent state variable .tz  The simplest approach assigns every time 177 

step to a movement behavior state independent of previous states or ancillary 178 

information: 179 

1~ Categorical( ,..., )t Zz ψ ψ , 180 

such that 181 

Pr( ),i tz iψ = =  182 

where iψ  is the (fixed) probability of being in state i at time t, and 
1

1.Z
ii

ψ
=

=∑   This 183 

assumption is generally unrealistic for animal movements. Alternatively (and more 184 

realistically), one could incorporate memory into the state transition probabilities using 185 

a jth-order Markov process.  Assuming movement behavior states were known, 186 

Blackwell (1997; 2003) used a first-order Markov transition matrix to characterize 187 

switches between states in continuous time.  For a first-order Markov process in discrete 188 

time, 189 

[ ]1 ,1 ,| ~ Categorical( ,..., )t t k k Zz z k ψ ψ− =  190 

and 191 

, 1Pr( | ),k i t tz i z kψ −= = =  192 
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for 1, ,k Z=   where ,k iψ  is the probability of switching from state k at time t – 1 to 193 

state i at time t,  and ,1
1.Z

k ii
ψ

=
=∑   We note that this Markovian structure is analogous 194 

to the state transition probabilities for multi-state capture-recapture models (e.g., 195 

Brownie et al. 1993, Schwarz et al. 1993). 196 

 The multi-state movement model is specified according to the particular species 197 

and ecological conditions of interest.  The various movement behavior states may be 198 

solely characterized by biased, correlated, or exploratory types of movement, but 199 

environmental covariates and alternative parameterizations may also be utilized to 200 

describe the movement process.  Below we present a suite of models for different 201 

movement characteristics that can be combined to form complex movement behavior 202 

states.  We emphasize that the proposed models fall under the same general modeling 203 

framework, with the more basic models remaining nested within the more complex 204 

models.  These, and other extensions (see Discussion), may therefore be thought of as 205 

contributions to a “tool-box”, from which a wide range of bespoke multi-state 206 

movement models in discrete time can be assembled.  By adding or removing 207 

components from the tool-box, one may compare the different models nested within the 208 

most general model (see Example: grey seal movement in the North Sea).  This allows 209 

simultaneous investigation of numerous hypotheses about animal movement, including 210 

those involving: 1) time allocations to different movement behavior states (i.e., “activity 211 

budgets”); 2) the use of navigation for directed movement towards specific locations; 3) 212 

the relative strength of bias towards (or away from) specific locations; 4) the existence 213 

of spatially-unassociated (but potentially correlated) exploratory movement states; and 214 

5) factors affecting transition probabilities between movement behavior states. 215 

Biased movements 216 
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Biased movement behavior states exhibiting attraction (or aversion) to particular 217 

locations can be incorporated within the proposed framework.   Suppose the set of Z 218 

movement behavior states is composed entirely of attractions to one of c different 219 

"centers of attraction" (i.e., Z = c).  Assuming movement at time t is biased towards 220 

center of attraction i ( )i.e., tz i= , we calculate the expected movement direction 221 

( ),i tµ as the direction between the individual's previous location ( )1 1,t tX Y− − and the 222 

location of the center of attraction ( )* *,i iX Y  at time t.  We note that the coordinates of 223 

each center of attraction ( )* *,z zX Y , 1, ,z c=  , are not necessarily assumed to be known 224 

(see Example: grey seal movement in the North Sea). 225 

 The strength of bias to each center of attraction is determined by the mean vector 226 

length of the wrapped Cauchy distribution ( )0 1zρ≤ < .  This strength of bias need not 227 

be constant.   For example, in some instances one may expect less directed movement 228 

once an individual has reached the vicinity of the current center of attraction, so that we 229 

may specify: 230 

( ), tanhz t z trρ δ=  231 

where tδ  is some metric of the distance (e.g., Euclidean) to the current center of 232 

attraction, and 0zr ≥  is a (state-dependent) scaling parameter (see Appendix A).  As an 233 

individual is located closer to the current center of attraction, , 0,z tρ →  and the 234 

movement direction is uniformly distributed on the unit circle.  This allows for unbiased 235 

area-restricted searches (e.g., “encamped” or “foraging” types of movement, sensu 236 

Morales et al. 2004 and Breed et al. 2009) once in the vicinity of the current center of 237 

attraction.  As an individual is located further from the current center of attraction, 238 
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, 1,z tρ → and tφ  is not allowed to deviate from ,z tµ (Figure 1a).  We note that this 239 

formulation also permits bias away from a “center of repulsion” when 1 0.zρ− < ≤  240 

More complicated structural forms may be utilized for .zρ   For example, when 241 

far away, an animal may have only a general sense of the location of a center of 242 

attraction, but the movement direction draws closer to ,z tµ  as the distance to the center 243 

of attraction decreases (i.e., the individual "hones in" on its target).  An additional 244 

quadratic term ( )zq allows this type of behavior to be included in the model: 245 

( )2
, tanhz t z t z tr qρ δ δ= + , 246 

where zr  and zq  are constrained such that , 0z tρ ≥  for all reasonable tδ  within the study 247 

area.  We note that alternative link functions, such as the logit link, may be utilized 248 

when specifying zρ as a function of covariates (see Example: grey seal movement in the 249 

North Sea). 250 

Biased, correlated movements 251 

Additional structure can describe biased movement behavior states that exhibit 252 

correlations between successive movement directions (Figure 1b): 253 

[ ] ( )1 ,| , ~ wCauchy ,t t t i t iz iφ φ λ ρ− =  254 

with expected movement direction 255 

( ), 1 ,1z t z t z z tλ η φ η µ−= + −  256 

where 0φ  is the (latent) movement direction prior to time step t = 1.  Now the expected 257 

movement direction ( ),z tλ is a weighted average of the strength of bias in the direction 258 

of the current center of attraction ( ),z tµ and the previous movement direction ( )1tφ −  for 259 

0 1.zη≤ ≤   If 0,zη =  then movement reverts to a standard biased random walk.  If 260 
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1zη = , then movement becomes an unbiased correlated random walk.  If 0,zρ = then 261 

movement is a simple (i.e., unbiased and uncorrelated) random walk.  If 1,zρ = then 262 

movement is biased and deterministic (Barton et al. 2009).  Because ,z tλ  is wrapped on 263 

the unit circle, we note that care must be taken in calculating ,z tλ whenever 264 

1 ,t z tφ µ π− − > . 265 

Exploratory movement states 266 

By specifying zρ as a function of distance, the model allows unbiased movements when 267 

an individual is in close proximity to a center of attraction.  However, “exploratory” 268 

states may include unbiased movements that are not associated with any center of 269 

attraction.  The set of Z movement behavior states can therefore be extended to include 270 

c center of attraction and h exploratory movement states, such that Z = c + h.  Such 271 

exploratory states can be easily added within the above framework: 272 

( ),

0                              if  is an exploratory state
tanh               otherwisez t

z t

z
r

ρ
δ

= 


 273 

Exploratory movements may be unbiased, but they can often exhibit directional 274 

persistence (i.e., autocorrelation in movement direction).  To include correlated 275 

exploratory states within the biased random walk model, 276 

[ ] ( )1 , ,| , ~ wCauchy ,t t t i t i tz iφ φ λ ρ− =  277 

1
,

,

                  if  is an exploratory state
                  otherwise

t
z t

z t

zφ
λ

µ
−

= 


 278 

( ),

                              if  is an exploratory state
tanh                  otherwise

z
z t

z t

z
r

υ
ρ

δ
= 


 279 

where 0 1zυ≤ < is the strength of directional persistence.   For a biased correlated 280 

random walk with correlated exploratory states (Figure 1c): 281 



13 
 

[ ] ( )1 , ,| , ~ wCauchy ,t t t i t i tz iφ φ λ ρ− =  282 

( )
1

,
1 ,

                                   if  is an exploratory state
1           otherwise

t
z t

z t z z t

zφ
λ

η φ η µ
−

−

=  + −
 283 

and 284 

( ),

                         if  is an exploratory state
tanh             otherwise

z
z t

z t

z
r

υ
ρ

δ
= 


 285 

Environmental covariates and alternative parameterizations 286 

Animal movement is often heavily influenced by environmental factors, such as 287 

landscape (e.g., slope or vegetation cover) or seascape (e.g., currents or temperature) 288 

conditions.  These factors may be incorporated within the parameters above using 289 

standard link functions.  For example, if a set of k covariates was identified as potential 290 

predictors for step length, then one could assume: 291 

[ ] ( ), ,| ~ Weibull ,t t i t i ts z i a b=  292 

, ,0 , ,
1

log( )
k

z t z z j t j
j

a α α ω
=

= +∑  293 

, ,0 , ,
1

log( )
k

z t z z j t j
j

b β β ω
=

= +∑  294 

where ,t jω  is the value for linear predictor j at time step t.  Similarly, covariates could 295 

also be incorporated into strengths of attraction ( ) and ,r q state transition probabilities 296 

( ) ,ψ or any other parameters in the model.  This includes the use of habitat-level 297 

covariates on ( ),t tX Y for predicting movements during missing or unobserved time 298 

steps (see Example: grey seal movement in the North Sea).  Such predicted coordinates 299 

allow the overall movement path to reflect specific spatial features (e.g., lakes or 300 

mountains) of relevance to the species of interest. 301 
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 Step length may also be a function of distance to the current center of attraction.  302 

One could envisage longer step lengths (e.g., due to increased velocity or strength of 303 

bias) when far away from the current center of attraction.  Such effects could be 304 

incorporated by specifying 305 

( ), tanh ,z t z z ta γ κ δ=  306 

where the scale parameter of the Weibull distribution ( ),z ta is now a function of tδ  and 307 

a (state-dependent) scaling parameter ( )zκ .  When the animal is near the center of 308 

attraction, ,z ta  is closer to zero, and the step lengths are shorter.  If the animal is far 309 

from the current center of attraction, ,z ta will approach the (state-dependent) scale 310 

parameter asymptote zγ .  Alternative approaches could include change-points on the 311 

step length parameters: 312 

)
)

)

,1 ,1

,2 ,1 ,2
,

, , 1 ,

     if 0,

     if ,

 

     if ,

z t z

z t z z
z t

z k t z k z k

a d

a d d
a

a d d

δ

δ

δ −

 ∈ 
 ∈ = 

 ∈ 



, 313 

where ,z ld  is the threshold distance for change-point l of center of attraction state z (see 314 

Example: grey seal movement in the North Sea) . 315 

 Much of the biological interest in multi-state movement models lies in the 316 

specification of behavioral state transition probabilities.  Depending on the biological 317 

questions of interest, it may often be advantageous to reparameterize the state transition 318 

probability matrix.  For example, with a migratory species it may be desirable to restrict 319 

state transitions until the individual is in the vicinity of the current center of attraction 320 

(i.e., so that "en-route" switches are avoided).  A simple reparameterization allows such 321 

behaviors to be more easily investigated:  322 
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( ) ( )
( ) ( )

( ) ( )

1 1 1,2 1 1,

2 2,1 2 2 2,

,1 ,2

1 1
1 1

1 1

c

c

c c c c c

α α β α β
α β α α β

α β α β α

− − 
 − − =
 
 

− −  



   



ψ  323 

where ( )1Pr | ,i t tz i z iα −= = = ( ), 1Pr | , ,k i t tz i z k k iβ −= = = ≠ and , 1c
k ii k

β
≠

=∑ for k = 324 

1,2,…,c.  Using logit-linear intercept ( )zζ and slope ( )zξ parameters, state transitions 325 

could incorporate the effects of distance: 326 

,logit( )z t z z tα ζ ξ δ= +  327 

whereby individuals could be more likely to remain in the current movement state until 328 

they are in close proximity to the associated center of attraction.  More complicated 329 

covariate structures (e.g., the amount of time in the current state) or other 330 

reparameterizations could be incorporated in a similar fashion.  331 

State-space formulation 332 

Even in well-designed studies, there will typically be some degree of measurement error 333 

in spatio-temporal animal location data.  Environmental conditions may affect the 334 

timing and location of fixes, as may animal behavior (e.g., diving or burrowing species).  335 

For reliable inference, these irregularities must be accounted for when applying the 336 

mechanistic movement models described above.  To account for spatial error and 337 

temporal irregularity, we propose a continuous-time observation model to accompany 338 

our discrete-time movement process model in a state-space formulation. 339 

In the movement process model, we assume switches between behavioral states 340 

can occur at regular time intervals of equal length.  The switching interval length must 341 

therefore be chosen at a temporal resolution of relevance to the species and conditions 342 

of interest.  Similar to Jonsen et al. (2005), we assume that individuals travel in a 343 

straight line between times 1t − and t.  The observed locations are labeled according to 344 
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the regular time interval into which they fall: we write ( ), ,,t i t ix y  for the ith observation 345 

between time 1t −  and t, for 1, , ti n=  .  These are related to the regular locations 346 

( ),t tX Y  via: 347 

( )
,, , 1 ,1

t it i t i t t i t xx j X j X ε−= − + +  348 

( )
,, , 1 ,1

t it i t i t t i t yy j Y j Y ε−= − + +  349 

with error terms 350 

2
, ~ (0, )x i xNε σ  351 

2
, ~ (0, )y i yNε σ  352 

where [ ), 0,1t ij ∈ is the proportion of the time interval between locations ( )1 1,t tX Y− −  and 353 

( ),t tX Y at which the ith observation between times 1t − and t was obtained.  Time 354 

intervals with no observations (i.e., 0tn = ) do not contribute to the observation model 355 

likelihood.  In some applications (e.g., radio-telemetry triangulation or Argos satellite 356 

locations), the measurement errors are known to have more frequent large outliers than 357 

would occur under a normal distribution; in this case, a heavier-tailed error distribution 358 

could be employed (e.g., t-distribution) that allows additional non-central or scale 359 

parameters (e.g., Jonsen et al. 2005). 360 

EXAMPLE: GREY SEAL MOVEMENT IN THE NORTH SEA 361 

Background 362 

We demonstrate the application of our model using hybrid-GPS transmitter data 363 

collected from grey seals (Halichoerus grypus) in the North Sea.  FastlocTM GPS 364 

transmitter (Wildtrack Telemetry Systems, Leeds, UK) tags were deployed in April 365 

2008 and attempted to obtain a location every 30 minutes until battery failure in August 366 

or September 2008.   Our multi-state random walk model was initially deemed 367 
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appropriate for grey seals because we suspected they could display oriented movements 368 

among haul-out colonies and foraging patches.  However, a combination of biological 369 

and technological issues necessitated use of the state-space model described above: 1) 370 

positions are only attainable when an individual surfaces, hence observations were 371 

obtained at irregular time intervals; and 2) following any “dry” period where a 372 

transmitter remained out of water for more than 10 minutes, no new fixes could be 373 

obtained until the transmitter returned to water continuously for 40 seconds.  In other 374 

words, there were frequent missing data due to an inability to obtain locations while an 375 

individual was either hauled out or underwater.   376 

 We fitted a multi-state random walk movement model to locations from a single 377 

grey seal (Figure 2).  The observed data consisted of 1045 locations irregularly spaced 378 

in time between 9 April and 13 August 2008.  Based on the scale of movements of grey 379 

seals (McConnell et al. 1999) and the frequency of observations, we specified 380 

1515T = regular switching intervals of 120min between times 1t − and time t  for 381 

1, , .t T=    Our selection of 120min intervals reflects a trade-off between 382 

computational efficiency, the temporal resolution of the data, and an acceptable 383 

temporal resolution for inference about grey seal movement behavior.  The first of these 384 

120min intervals began at deployment on 9 April, and the last interval ended 385 

immediately after the final observed location on 13 August. 386 

Movement model specification   387 

For demonstrative purposes, we specify a simplified model of grey seal movement by 388 

limiting the number of center of attraction (c = 3) and exploratory (h = 2) states .  Our 389 

most general first-order Markov movement process model therefore consisted of Z = 5 390 

potential states, including state-dependence on both movement direction and step length 391 

parameters: 392 
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[ ]1 ,1 ,5| ~ Categorical( ,..., )t t k kz z k ψ ψ− =  399 

where 1,2,3,4,5k = , zm is an intercept term on the logit scale, ,0 1,z tρ≤ < tδ  is the 400 

(scaled) Euclidean distance between the predicted location ( )1 1,t tX Y− −  and center of 401 

attraction ( )* *,z zX X at time t, and [ ) ( )0, z td δI  is an indicator function for [ )0, .t zdδ ∈   We 402 

chose to fit our state-space model using Bayesian analysis methods because of the 403 

general complexity of the model and the ease by which these methods can 404 

accommodate prior information, latent state variables, and missing data (Ellison 2004, 405 

King et al. 2009).  Posterior model probabilities also provide a straightforward means 406 

for addressing model selection uncertainty (see Model selection and multi-model 407 

inference).   408 

 For our Bayesian analysis, we specified uninformative prior distributions for 409 

most of the parameters (Table 1).  Based on previous studies of grey seal movements 410 

(McConnell et al.1999), we specified a (conservative) maximum sustainable speed of 2 411 
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meters per second (such that 14.4ts ≤ km).  For the UTM coordinates of the centers of 412 

attraction ( )* *, ,z zX Y we specified joint discrete uniform priors over the coordinates of 413 

the predicted locations ( ),t tX Y .  This prior specification therefore assumes the centers 414 

of attraction are located on the predicted movement path.  We constrained state 415 

assignments for time steps corresponding to ( )* *,z zX Y  for each center of attraction, such 416 

that tz k=  if ( ) ( )* *, ,k k t tX Y X Y=  for 1, , .k c=    For the coordinates of the initial 417 

location ( )0 0, ,X Y we specified a joint uniform prior over the region (A) defined by the 418 

North Sea and coastline of Great Britain.  We also constrained predicted locations 419 

( ),t tX Y to be within A for 1, ,t T=  (i.e., inland grey seal locations were prohibited a 420 

priori). 421 

Model selection and multi-model inference 422 

We used a reversible jump Markov chain Monte Carlo (RJMCMC) algorithm (Green 423 

1995) to fit the model and simultaneously investigate various (state-specific) 424 

parameterizations for the strength of bias towards any centers of attraction and the 425 

correlations between successive movements (see Appendix B).  These parameterizations 426 

included models with linear bias ( )1
, logitz t z z tm rρ δ− = +   and quadratic bias 427 

( )1 2
, logitz t z z t z tm r qρ δ δ− = + +   towards centers of attraction for z = 1,2,3.  We also 428 

investigated models with no correlation in movement direction between successive time 429 

steps when in a center of attraction state ( 0 for 1, 2,3z zη = = ) or an exploratory state 430 

( 0 for 4,5z zυ = = ).   431 

 These different parameterizations yielded 256 potential models for evaluation 432 

via posterior model probabilities.  For all models, we assumed equal prior model 433 

probabilities.  For all parameters without standard full conditional posterior 434 
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distributions, random walk Metropolis-Hastings updates were used (e.g., Brooks 1998, 435 

Givens and Hoeting 2005).  After initial pilot tuning and burn-in, we produced a single 436 

MCMC chain of five million iterations for calculating posterior summaries and model 437 

probabilities.  After thinning by 100 iterations to reduce memory requirements, Monte 438 

Carlo estimates (including model-averaged estimates) were obtained for each of the 439 

parameters from this single Markov chain.  The RJMCMC algorithm was written in the 440 

C programming language (Kernighan and Ritchie 1988), with pre- and post-processing 441 

performed in R via the .C Interface (R Development Core Team 2009). 442 

Example results and discussion 443 

Posterior model probabilities (Table 2) and model-averaged parameter summaries 444 

(Table 3) indicate biased movements towards all three centers of attraction.  The 445 

estimated coordinates of the centers of attraction correspond to the Farne Islands haul-446 

out site, the Abertay haul-out site, and the Dogger Bank foraging site (Figure 3, 447 

Appendix C), and the strengths of bias to these three sites differed as a function of 448 

distance (Figure 4).  The Abertay haul-out site maintained a strong and consistent bias 449 

up to 350km.  Both the Farne Islands haul-out and Dogger Bank foraging sites exhibited 450 

a decreasing strength of bias curve, but we found little evidence of a quadratic effect of 451 

distance (Tables 2, 3).  Biased movements continued at greater distances (> 350km) and 452 

declined less rapidly from the Dogger Bank foraging site than from the Farne Islands 453 

haul-out site.  These patterns of directed movement as a function of distance could be 454 

indicative of the seal “honing in” on these targets, but ocean currents are also likely to 455 

be influencing the timing and direction of these movements (see Gaspar et al. 2006).   456 

 Model-averaged posterior summaries indicated a strong tendency for the seal to 457 

remain in its current movement state (Table 3), with switches between center of 458 

attraction states rarely occurring until the seal had reached the vicinity of the current 459 
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center of attraction (Figure 3).  We found very little evidence of correlated movements 460 

when in a center of attraction state, with marginal posterior parameter probabilities of 461 

0.01, 0.00, and 0.00 for 1η , 2η , and 3η , respectively.  We found little evidence for 462 

directional persistence during the exploratory states not associated with any center of 463 

attraction (Table 3), with marginal posterior parameter probabilities of 0.16 for 4υ  and 464 

0.01 for 5υ .  As expected, uncertainty in the coordinates of predicted locations 465 

( ),t tX Y was greatest during time steps with missing data, most notably during extended 466 

“dry” haul-out periods and foraging at Dogger Bank (Figure 3b).  467 

 Based on posterior summaries for the step length and change-point parameters, 468 

we found strong evidence of shorter step lengths within 5km of the three centers of 469 

attraction (Table 3).  For the Farne Islands and Abertay sites, the predicted locations in 470 

close proximity to these centers of attraction suggest restricted movement in the vicinity 471 

of the haul-out colonies.  For the Dogger Bank site, the predicted locations in the 472 

vicinity suggest area-restricted searches during foraging (Figure 3).  These findings are 473 

consistent with expected haul-out and foraging movement behaviors of grey seals 474 

(McConnell et al. 1999).  Although neither of the exploratory states exhibited strong 475 

directional persistence, parameter estimates indicated relatively longer step lengths (i.e., 476 

higher speed) for one of these exploratory states (Table 3).  This suggests transitory or 477 

searching movements during the “high-speed” exploratory state (z = 4), but the “low-478 

speed” exploratory state (z = 5) could be indicative of foraging or resting at sea.   479 

 Based on posterior state assignments, the mean proportion of time (95% highest 480 

posterior density interval) between 9 April and 13 August 2008 that the seal spent in 481 

each state was 0.39 (0.37, 0.41) for the Dogger Bank foraging state, 0.27 (0.26, 0.29) 482 

for the Abertay haul-out state, 0.17 (0.16, 0.19) for the Farne Islands haul-out state, 0.12 483 

(0.10, 0.13) for the low-speed exploratory state, and 0.05 (0.03, 0.06) for the high-speed 484 
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exploratory state.  Due to tortuosity in the movement path, there was some uncertainty 485 

in state assignments for transitory movements among centers of attraction.  We suspect 486 

these indirect paths are related to environmental cues or ocean currents.  There was also 487 

some state assignment uncertainty for movements in the vicinity of the Abertay and 488 

Dogger Bank centers of attraction.  This could be attributable to a potential foraging 489 

area in the offshore sandbanks near the Abertay haul-out site, responses to prey 490 

movement in the Dogger Bank foraging area, and missing location data during “dry” or 491 

prolonged diving periods.  Further model structure, including additional movement 492 

behavior states or environmental covariates, may be required to better explain these 493 

movements. 494 

 Given the reliability of locations using hybrid-GPS transmitters, we were not 495 

particularly concerned about spatio-temporal measurement error for these data.  We 496 

were far more concerned about irregularly-observed and missing data because we were 497 

unable to obtain locations while the seal was hauled out or underwater.  Error terms (in 498 

meters) were relatively small, with posterior medians for ˆ 562xσ =  (95% HPDI: 511 - 499 

620) and for ˆ 255yσ =  (95% HPDI: 233 - 276).  Similar to Patterson et al. (2010), the 500 

larger value for xσ  reflects the prevalence of east-west movements between haul-out 501 

and foraging sites.  There were several instances where small, but non-negligible, 502 

differences were found between observed and predicted locations (Figure 3a), but we 503 

believe these instances are more likely attributable to some deficiencies in the model 504 

than to location measurement error.    505 

 Previous studies on individual seal movement (Jonsen et al. 2005, Johnson et al. 506 

2008, Breed et al. 2009, Patterson et al. 2010) limited models to simple and correlated 507 

random walks among haul-out and foraging areas.  Based on posterior estimates and 508 

probabilities for simple (0% of posterior model probabilities), correlated (0%), biased 509 
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(82%), and both biased and correlated (18%) random walk mixture models, we found 510 

overwhelming evidence that including bias (or drift) towards centers of attraction better 511 

explained seal movement than simple or correlated random walks.  This result strongly 512 

supports the recognized ability of grey seals to rely on navigational capabilities for 513 

directed (and not simply correlated) movement among haul-out colonies and foraging 514 

patches. 515 

 Correlations among parameters and the large number of latent variables made 516 

the development of a model fitting algorithm a computational challenge.  To help 517 

diagnose convergence, we examined a series of additional chains with overdispersed 518 

initial values.  With poor starting values for ( )* *,z zX Y and ( ),t tX Y , we found the 519 

algorithm could diverge or get caught in local maxima.  However, we achieved similar 520 

results for chains covering a range of reasonable starting values.  Even with reasonable 521 

starting values, it required about five million iterations before chains appeared to 522 

converge.  The centers of attraction do not necessarily need to be located on the 523 

predicted movement path, but we found mixing and performance were greatly improved 524 

by this prior specification for the coordinates of the centers of attraction ( )* *,z zX Y .  We 525 

also believe it is reasonable to assume that centers of attraction are visited (and hence 526 

located along the predicted path).   527 

 At the expense of some biological realism, we chose to keep this example 528 

relatively simple to demonstrate the application of this methodology to a general 529 

audience.  If our intended audience were limited to marine mammalogists, we would 530 

have incorporated additional model complexity and prior information to better reflect 531 

the biology of grey seals.  Similar to Johnson et al. (2008), we could have included an 532 

additional “dry” state for movement during periods when the seal was (presumably) out 533 

of water (e.g., smaller step lengths).  Alternatively, landscape covariates could have 534 
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been used for specifying "haul-out" movement states when the seal was located on land.  535 

We also could have constrained transition probabilities to make switches between states 536 

less likely until the seal reached the vicinity of the current center of attraction.  Not only 537 

would refinements such as these add biological realism, but they would likely improve 538 

mixing and convergence of the RJMCMC algorithm. 539 

DISCUSSION 540 

With the development of an intuitive framework for modeling animal movement, 541 

ecologists may better appreciate the applicability of mechanistic, inferential movement 542 

models to a wide variety of species and conditions.  We have proposed a discrete-time, 543 

continuous-space, and discrete-state conceptualization of the individual animal 544 

movement process to facilitate the biological interpretation of distinct movement 545 

behaviors and associated parameters.  We believe its mathematical simplicity and focus 546 

on ecology can make the application of bespoke movement models more 547 

straightforward for non-statisticians.  This “tool-box” of model components allows 548 

researchers to construct custom-built mechanistic movement models for the species of 549 

interest, while providing a means to compare weights of evidence in support of specific 550 

hypotheses about different movement behaviors.   551 

 Perhaps most appealing is the ease with which new components can be added 552 

to the nested model-building tool-box.  While more components can lead to a large 553 

number of potential models to choose from, the framework can accommodate the 554 

additional model selection uncertainty in a straightforward quantitative manner.  As 555 

demonstrated in our grey seal example, this approach enabled the simultaneous 556 

investigation of numerous hypotheses about seal movement, including the use of 557 

navigation and time allocations to different movement behavior states.  To our 558 
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knowledge, this is the first methodology utilizing model weights for selection and multi-559 

model inference in the mechanistic movement model literature.   560 

 Although our main goal has been to present this suite of model-building tools, 561 

a serious study of animal movement should include some additional assessments of 562 

goodness of fit.  Morales et al. (2004) and Dalziel et al. (2010) briefly explore this topic, 563 

including the use of posterior predictive checks and probes to test whether the fitted 564 

models are consistent with emergent properties of the movement process (e.g., 565 

autocorrelation patterns in displacements and habitat use).  However, an assessment of 566 

absolute goodness of fit remains a daunting task for mechanistic movement models.  In 567 

the absence of classical tests of goodness of fit, it is particularly important that the 568 

model set be selected with care utilizing the best biological information available for 569 

reliable inference.  Conditional on this candidate model set, model comparisons (e.g., 570 

based on posterior model probabilities or other model selection criteria) can provide 571 

some assessment of the relative goodness of fit. 572 

 There remain many potential extensions to the modeling framework beyond 573 

those already identified.  In the grey seal example, we included two exploratory 574 

movement states not associated with any center of attraction, but additional spatially-575 

unassociated states that differ in their movement properties (and associated state 576 

parameters) may be incorporated (sensu Morales et al. 2004, Jonsen et al. 2005, Breed 577 

et al. 2009).  These additional states could be used to further differentiate among 578 

exploratory movements (e.g., dispersal or search strategies) that have unique 579 

distributions for step length and the degree of correlation between successive 580 

movements.   581 

 We reiterate that centers of attraction do not necessarily refer to a single location 582 

in space.  Rather, they can refer to any entity to which animals move in response to.  583 
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This includes immobile entities such as habitat patches, but also mobile entities such as 584 

conspecifics or prey.  Any given entity (or group of entities) could therefore be used to 585 

define a different behavior state for movement towards, away from, or within each 586 

entity.  Potential centers of attraction can also be dynamically incorporated within an 587 

individual’s portfolio as its habitat is explored, thus allowing for explicit modeling of 588 

the effects of past experience on movement.  Instead of centers of attraction, centers of 589 

repulsion (where 1 0zρ− < ≤ ) may be particularly useful for demonstrating avoidance 590 

behaviors related to encounters with conspecifics, predators, or undesirable habitats.   591 

 From a behavioral ecology perspective, perhaps most promising is the potential 592 

for modeling movement state transition probabilities.  By incorporating physiological or 593 

environmental covariate information into the framework, one can investigate hypotheses 594 

about the timing and motivations behind various movement behaviors as individuals 595 

respond to changes in the internal and external environment (Morales et al. 2010).  596 

Biotelemetry data (e.g., metabolic rate) or time of year (e.g., breeding season) are 597 

among many factors that may help explain changes in movement behavior.  Instead of 598 

relying solely on trajectories, ancillary data may also be helpful in the assignment of 599 

movement states.  For example, additional landscape or seascape information may have 600 

better explained the indirect movements between the two haul-out colonies in our grey 601 

seal analysis.  Recent advances, such as animal-borne accelerometers (Wilson et al. 602 

2008, Holland et al. 2009, Payne et al. 2010), will likely provide additional ways to 603 

distinguish among different types of movement (e.g., predator hunting and feeding).  604 

There are also many ways by which memory can be incorporated into movements and 605 

state transitions.  Here we only explored two such mechanisms for memory, including 606 

Markov processes for state transitions and the existence of spatial locations that are 607 

committed to memory because they are (presumably) associated with specific goals.     608 
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 The locations of centers of attraction are typically assumed to be known based 609 

on prior knowledge or qualitative assessments of the data.  Indeed, one could relatively 610 

easily predict the coordinates of the three centers of attraction in our grey seal example 611 

using only the naked eye or previous studies.  However, we envision more complicated 612 

movement paths where it is very difficult to identify or differentiate between potential 613 

centers.  We believe a quantitative means for estimating the location of centers and their 614 

associated strengths of attraction (or repulsion), such as that proposed here, improves 615 

our ability to extract reliable information from novel or more complex movement paths.   616 

For simplicity, we chose to specify three centers of attraction in our grey seal 617 

example.  Although we found strong evidence of bias towards all three of these centers, 618 

if any center z receives little support for bias (e.g., , 0z tρ ≈ for all tδ ), alternative models 619 

removing such centers should be explored because state z essentially becomes an 620 

uncorrelated exploratory state.  This may have undesirable consequences, including 621 

confounded exploratory states and poor MCMC mixing.  Ideally, the model could be 622 

extended to accommodate an unknown number of centers and reduce any need for ad-623 

hoc assessments of the appropriate number of centers.  This would require an additional 624 

parameter for the number of centers and (state-specific) movement parameters for each 625 

potential center.  Similar to the multi-model inference procedure used here, a reversible 626 

jump MCMC algorithm could be utilized to estimate the number of centers of attraction.  627 

This potential extension constitutes the focus of current research. 628 

 Additional information or structural complexity could also be specified in the 629 

observation process of the state-space model.  For example, Jonsen et al. (2005) 630 

specified informative priors for measurement error parameters based on previously 631 

published records of location estimation error for Argos-tagged grey seals.  State-632 

dependent error or correlation terms (e.g., utilizing a multivariate normal error 633 
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distribution) could also be incorporated.  Although a great deal of previous effort in the 634 

analysis of animal location data has focused on the observation process, we expect 635 

greater emphasis on the movement process as the quality of location data continue to 636 

improve (e.g., with advances in GPS technology). 637 

 Although other approaches (e.g., Blackwell 2003, Jonsen et al. 2005, Johnson et 638 

al. 2008) could potentially be extended to include the various types of movement 639 

accommodated by our multi-state model, we chose to extend the basic methodology of 640 

Morales et al. (2004) because of its intuitive appeal to ecologists and wildlife 641 

professionals.  The discrete-time, continuous-space approach of Jonsen et al. (2005) can 642 

accommodate correlated and uncorrelated exploratory movements, but it does not 643 

include biased or area-restricted movements related to specific locations or habitats.  An 644 

additional limitation of the correlated random walk approach of Jonsen et al. (2005) is a 645 

lack of independence between direction and step length, resulting in higher-order auto-646 

correlations than found in standard correlated random walks.  Our approach assumes 647 

independence between direction and step length for each movement behavior state, but 648 

a joint distribution including correlations could potentially be incorporated if deemed 649 

appropriate (e.g., specifying shorter step lengths when movement is away from the 650 

current center of attraction). 651 

The continuous-time, continuous-space approaches of Blackwell (2003) and 652 

Johnson et al. (2008) do allow correlated movements and “drift” that can (potentially) 653 

be related to specific locations (sensu Kendall 1974, Dunn and Gipson 1977).  654 

However, Blackwell (2003) assumes movement behavior states are known and Johnson 655 

et al. (2008) only include a single state with known covariates, hence neither approach 656 

includes an estimation framework for both movement state and switching behavior.  657 

Although satisfying from a mathematical and theoretical perspective, we believe the 658 
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often difficult interpretation of continuous-time movement parameters (e.g., those 659 

related to Ornstein-Uhlenbeck and other diffusion processes) can in practice be 660 

discouraging to applied ecologists wishing to use or extend these methods.  This may 661 

change as ecologists become more familiar with the principles of mechanistic 662 

movement models and computer software makes these approaches more accessible.    663 

 Unlike continuous-time movement process models, the primary disadvantage of 664 

a discrete-time approach is that the time scale between state transitions must be chosen 665 

based on the biology of the species and the frequency of observations.  For any 666 

continuous- or discrete-time approach to be useful, the temporal resolution of the 667 

observed data must be relevant to the specific movement behaviors of interest.  The 668 

timing and frequency of observations must therefore be carefully considered when 669 

designing telemetry devices and data collection schemes. 670 

 To encourage the broader application of movement models in ecology, user-671 

friendly software for the analysis of animal location data is needed.  Ovaskainen et al 672 

(2008) and Johnson et al. (2008) provided important first steps in accessible software by 673 

creating DISPERSE and the R package CRAWL to perform the complicated 674 

computations the models respectively require.  Despite its relative mathematical 675 

simplicity, the large number of parameters and latent variables inherent to our modeling 676 

framework also makes implementation a computational challenge.  We therefore 677 

provide code for the full state-space formulation of our model (see Supplement) and are 678 

currently developing a software package for general use by practitioners (Milazzo et al. 679 

in prep.).   680 

 By making individual movement models more accessible and readily 681 

interpretable to ecologists, we ultimately hope progress can be made towards linking 682 

animal movement and population dynamics at the interface of behavioral, population, 683 
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and landscape ecology (Morales et al. 2010).  Although the mechanistic links between 684 

animal movement and population dynamics are theoretically understood, fitting 685 

population-level models to data from many individuals will pose considerable 686 

mathematical and computational challenges.  Scaling individual movement models up 687 

to population-level processes therefore remains a very promising avenue for future 688 

research. 689 
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Table 1.  Parameter definitions and (uninformative) prior specifications for a Bayesian 878 

analysis of grey seal location data using the multi-state random walk movement model. 879 

Parameter Description Prior distribution 

zm  Intercept term for the strength of bias as a function of 

distance to center of attraction z  = 1,2,3. 

( )2N 0,τ  

zr  Linear term for the strength of bias as a function of 

distance to center of attraction z = 1,2,3. 

( )2N 0,τ  

zq  Quadratic term for the strength of bias as a function of 

distance to center of attraction z  = 1,2,3. 

( )2N 0,τ  

2τ  Prior variance for ,zm  ,zr and zq . ( )1 3, 2−Γ  

zη  Movement direction correlation term for center of 

attraction z = 1,2,3. 

Unif (0,1)  

zυ  Movement direction correlation term for exploratory 

state z = 4,5. 

Unif (0,1)  

0φ  Direction (or bearing) of movement for initial time step 

t = 0. 

Unif (0,2 )π  

za  Scale parameter (m) of the Weibull distribution for step 

length of states z = 1,2,3,4,5. 

( )Unif 0,14400  

zb  Shape parameter of the Weibull distribution for step 

length of states z = 1,2,3,4,5. 

( )Unif 0,30  

zd  Change-point distance (m) for scale and shape 

parameters of the Weibull distribution for step length 

of center of attraction states z = 1,2,3. 

( )Unif 0,400000  

2
xσ  Measurement error variance for easting coordinates of ( )1 3 310 ,10− − −Γ  
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observed locations ( ), ,,t i t ix y . 

2
yσ  Measurement error variance for northing coordinates of 

observed locations ( ), ,,t i t ix y . 

( )1 3 310 ,10− − −Γ  

[ ],k ⋅ψ  The kth row vector of the state transition probability 

matrix, with each element ( ),k iψ  corresponding to the 

switching probability from state k at time t - 1 to state i 

= 1,2,3,4,5 at time t. 

Dirichlet(1,1,1,1,1)
 

 880 

881 
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Table 2.  Posterior model probabilities (PMP) for strength of attraction ( )zq and 882 

correlation ( ) and z zη υ parameters for a grey seal in the North Sea.  For each parameter, 883 

a ‘1’ indicates presence in the model.  The bottom row indicates the marginal posterior 884 

probabilities (MPP) for each parameter.  Centers of attraction correspond to the Farne 885 

Islands haul-out site ( )1z = , Abertay haul-out site ( )2z = , and Dogger Bank foraging 886 

site ( )3z = .  Other states correspond to high-speed ( )4z =  and low-speed ( )5z =  887 

exploratory states.  Results are for models with a PMP of at least 0.02. 888 

PMP Model 

 q1 q2 q3 η1 η2 η3 υ4 υ5 

0.17  1       

0.15  1 1      

0.13 1 1       

0.11 1 1 1      

0.07         

0.07   1      

0.06 1        

0.05 1  1      

0.03  1     1  

0.03  1 1    1  

0.02 1 1     1  

0.02 1 1 1    1  

         

MPP 0.43 0.68 0.48 0.01 0.00 0.00 0.16 0.01 
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Table 3.  Model-averaged posterior summaries for strength of attraction 889 

( ),  ,  ,  and z z zr q m τ , correlation ( )0, ,  and z zη υ φ , step length ( ), ,  and z z za b d , 890 

observation error ( ) and x yσ σ , and state transition probability ( ),k iψ parameters.  891 

Summaries include posterior medians and 95% highest posterior density intervals 892 

(HPDI), conditional on the parameter being present in the model.  Posterior means are 893 

reported for state transition probabilities.  Center of attraction states correspond to the 894 

Farne Islands haul-out site ( )1z = , Abertay haul-out site ( )2z = , and Dogger Bank 895 

foraging site ( )3z = .  The high-speed ( )4z = and low-speed ( )5z = exploratory states 896 

are not associated with a center of attraction. 897 

  95% HPDI 

Parameter Estimate Lower Upper 

Strength of attraction parameters 

1m  3.08 2.31 3.91 

2m  4.54 3.85 5.37 

3m  3.49 2.86 4.21 

1r  -5.47 -8.35 -2.40 

2r  -0.70 -9.84 4.47 

3r  -3.41 -7.10 -1.77 

1q  -0.53 -4.90 4.13 

2q  3.40 -2.27 14.94 

3q  1.63 -1.39 5.01 

τ  3.00 1.68 5.63 
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Correlation parameters 

1η  0.00 0.00 0.01 

2η  0.00 0.00 0.00 

3η  0.00 0.00 0.01 

4υ  0.16 0.00 0.63 

5υ  0.01 0.00 0.04 

0φ  0.06 3.47 3.13 

Step length parameters 

1,1a  10497.04 10026.35 10990.62 

2,1a  11052.65 10631.82 11524.23 

3,1a  10859.38 10503.77 11194.52 

4a  5188.94 4755.68 5644.98 

5a  1902.68 1601.28 2230.24 

1,1b  6.12 4.78 7.73 

2,1b  6.17 5.33 7.43 

3,1b  6.16 5.38 7.04 

4b  19.96 8.51 30.00 

5b  4.40 2.09 11.85 

1d  1576.19 1152.39 2077.87 

2d  5583.09 3694.29 6552.00 

3d  1425.98 1016.81 2722.62 

1,2a  1908.44 1369.26 2529.56 
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2,2a  2061.91 1760.39 2333.18 

3,2a  2480.05 1572.07 5811.18 

1,2b  4.93 1.26 18.97 

2,2b  24.70 16.45 30.00 

3,2b  2.77 1.04 5.83 

Observation error parameters 

xσ  562.32 510.92 619.68 

yσ  254.62 233.42 276.44 

State transition probability parameters 

11ψ  0.95 0.92 0.98 

12ψ  0.00 0.00 0.01 

13ψ  0.00 0.00 0.02 

14ψ  0.03 0.00 0.06 

15ψ  0.01 0.00 0.03 

21ψ  0.00 0.00 0.01 

22ψ  0.81 0.76 0.85 

23ψ  0.13 0.09 0.18 

24ψ  0.02 0.00 0.05 

25ψ  0.03 0.01 0.06 

31ψ  0.00 0.00 0.01 

32ψ  0.09 0.06 0.13 

33ψ  0.84 0.80 0.88 
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34ψ  0.02 0.00 0.04 

35ψ  0.04 0.02 0.06 

41ψ  0.10 0.02 0.23 

42ψ  0.16 0.01 0.33 

43ψ  0.09 0.01 0.21 

44ψ  0.41 0.20 0.62 

45ψ  0.19 0.04 0.36 

51ψ  0.01 0.00 0.03 

52ψ  0.05 0.00 0.12 

53ψ  0.15 0.07 0.24 

54ψ  0.09 0.01 0.17 

55ψ  0.69 0.59 0.78 

 898 
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Figure 1.  Simulated time-series of animal location data using three centers of attraction 910 

from multi-state (a) biased random walk; (b) biased correlated random walk; and (c) 911 

biased correlated random walk with an exploratory state.  The strength of bias towards 912 

the corresponding center of attraction at each time step t, tz = 1,2,3, is a function of the 913 

Euclidean distance between the current location and the center of attraction. 914 

 915 

Figure 2.   Observed locations for a grey seal as it traveled clockwise among a foraging 916 

area in the North Sea and haul-out sites on the eastern coast of Great Britain. 917 

 918 

Figure 3.  Predicted locations, movement behavior states, and coordinates of three 919 

centers of attraction for a grey seal in the North Sea and eastern coast of Great Britain.  920 

Estimated movement states for the predicted locations (solid colored circles) correspond 921 

to the Farne Islands haul-out site (red), Abertay haul-out site (green), Dogger Bank 922 

foraging site (blue), or spatially-unassociated high-speed (light blue) and low-speed 923 

(magenta) exploratory states.  Solid yellow circles indicate the estimated coordinates of 924 

the three centers of attraction, and solid black circles indicate observed locations in (a).  925 

Uncertainty in the estimated state (< 95% posterior probability) is indicated by smaller 926 

hollow circles within predicted locations in (a).  Uncertainty in estimated coordinates 927 

are indicated by symmetric 95% credible intervals for predicted locations in (b).  An 928 

animated version of this figure is available online (see Appendix C). 929 

 930 

Figure 4.  Model-averaged strength of bias ( )zρ  to three centers of attraction as a 931 

function of distance from a grey seal in the North Sea.  Center of attraction states 932 

correspond to the Farne Islands haul-out site (red), Abertay haul-out site (green), and 933 

Dogger Bank foraging site (blue).  Dashed lines indicate symmetric 95% credible 934 
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intervals.  Lines terminate at the maximum distance at which the seal was assigned to 935 

each respective center of attraction state. 936 
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