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Abstract

In this thesis we relax the locally tree-like assumption of configuration model
random networks to examine the properties of clustering, and the effects
thereof, on bond percolation. We introduce an algorithmic enumeration
method to evaluate the probability that a vertex remains unattached to the giant
connected component during percolation. The properties of the non-giant,
finite components of clustered networks are also examined, along with the
degree correlations between subgraphs. In a second avenue of research, we
investigate the role of clustering on 2-strain epidemic processes under various
disease interaction schedules. We then examine an N-generation epidemic by
performing repeated percolation events.
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1
CHAPTER ONE

NETWORKS AND THEIR
COMPLEXITY

A complex system is a system that is composed of many individual parts that display
collective, global behaviour that does not follow trivially from considering the microscopic.
A complex system is more than the sum of its parts. Due to this abstract definition,
complexity can be observed in almost all areas of natural and computational science; it
is a broad field transcending traditional boundaries, that encompasses a wide range of
analytical and experimental methods. Network science has an almost innumerable list
of applications including condensed matter systems, ecosystems, economies, markets,
biochemical networks, and certainly, human contact networks fall under the umbrella of
complexity.

Network science is the unification of topology and dynamics; whom interacts with
whom, as well as the nature of the interaction itself. The scaling and criticality (phase
behaviour) of the dynamics is dependent on the nature of the contact topology; however,
interestingly, this is often independent of the details of the system under study. For instance,
swarm behaviour observed in schools of marine life is semantically similar to the emergent
patterns that occur when birds group together during their mating season. The global
magnetisation that results from spin alignment within an individual ferromagnetic crystal
domain at the Curie temperature is also broadly similar to an avalanche that results from a
sudden collective behaviour of many snowflakes.

A mathematical model is a representation of reality. For instance, consider the timely
example of a disease spreading through a population. Epidemiological knowledge tells us
that there must be some vector of transmission from an infected person to a susceptible
person. A traditional modelling procedure is to assume, in the first instance, that the
population is well mixed; in other words, we ignore the role of contact structure and
concentrate on the dynamics. This first approximation might be well justified; however,
it may also be overlooking a fundamental aspect of the reality. Perhaps, the contact
structure plays a significant role in the outbreak pattern in the population. Indeed, the well
mixed model assumes that an airborne flu or common cold spreads in a similar fashion
to a sexually transmitted disease such as HIV. Network science allows us to model, and
therefore to understand, the role that contact structure plays in the dynamics. It enables
topology to be another variable in the mathematical model; and often, we see significant
variation in the dynamical properties as a result.

1



2 CHAPTER 1. NETWORKS AND COMPLEXITY

1.1 Network definitions

To discuss network structure, we must understand some metrics from graph theory. A
network is a collection of individuals, which we call vertices, that are connected together
by links, which we call edges. To a mathematician a network is a graph, and we use the
two terms indiscriminately. The number of edges that a particular vertex has is called
its degree. For instance, in a social network of human interactions, a person with lots
of contacts has a high degree, whilst a person with few contacts has a low degree. The
probability distribution of choosing a vertex from the network that has degree k is the
degree distribution, pk. The degree distribution is a fundamental descriptive object for a
network as many other properties can be calculated from it.

There are many different kinds of networks that are classified by some distinguishing
property. The property could be the colour of vertices or edges when arranged into layered
networks, or it might be the presence or absence of closed loops in clustered networks, or
it might be the analytical form of the degree distribution.

A random graph is a graph that has been created by randomly connecting a collection
of degree-labelled vertices together according to some stochastic algorithm. Many different
random graphs can be made by repeating the construction process and thus a given random
graph belongs to an ensemble of such networks. This is in contrast to an empirical network,
which is a particular realisation of a graph that has been collected from some observation in
a field of study. Any given graph can be mined for its properties such as degree distribution,
its number of closed loops, its average path length or diameter. It is often the case that
analytical methods are well equipped to describe the mean properties of the ensemble of
random graphs, but are not so equipped to single out a particular realisation. Therefore,
the properties of real-world empirical networks often become inferred from the mean field
description of random graph ensembles that can be analytically studied by a mathematical
model.

A model might start by assuming that all of the contacts are tree-like [7, 54], that is to
say, that there are no short cycles or loops among the vertices, see Fig 1.1. This removes
correlations (feedback circuits) between a vertex’s edges and makes the analytical model
quite straightforward. Models based on locally tree-like approximations have provided
much insight into the properties of random ensembles and empirical networks [37]. A
tree-like approximation might well be a valid representation of a given empirical network;
however, it is unlikely that a social network of human contacts would be tree-like. This
would suggest that an individual’s friends did not know one another, which is unrealistic.
It is natural to ask how might the induced correlations brought about by the presence of
short-range loops in the contact structure effect the structural properties of the network?
In turn, how do these structural changes effect dynamical processes that occur over the
network? For instance, does the clustering of social contacts allow an epidemic to spread
more easily through a population or does it make it more difficult?

To examine the effects of loops in random networks we must relax the locally tree-like
assumption. Such networks are known as clustered networks; and have received much
attention in the literature using a variety of different analytical approaches [39, 28, 52, 20,
22, 18, 47, 11, 5, 63, 62, 32, 19]. From this extensive work in the clustered-graph literature,
it has become apparent that not only does the presence of short-range loops bear significant
effect on the properties of networks, but also how those loops are structured with respect
to one another is important. Not all clustered networks are equivalent. Consequently, there
are many different ways to induce clustering into a random graph model.
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Tree Locally	tree-like Clustered

Figure 1.1: The presence of loops (red) among vertices causes correlation among the edges
of the network. When the network is locally tree-like, analytical methods based on trees
provide good approximations [37]. For clustered networks these approximations often fail
to describe the details of dynamical processes [47, 40, 52]. There is no strict definition of
when a locally tree-like network is a clustered network.

1.2 Structure of this thesis

In this thesis we will examine the properties of clustered networks. We use the configuration
model (see section 1.5) as a means to create ensembles of random graphs for simulation
purposes and the generating function formulation as an analytical toolkit to study their
properties theoretically. We are mostly concerned with the bond percolation process,
described in section 1.3, which also has strong links to the SIR dynamical process from
epidemiology, see section 1.4.

There are two themes in this research: i) the analytical treatment of clustered networks;
ii) the study of epidemic processes on clustered networks. Chapters 3, 4, 5 and 6 fall under
the first branch of this research, whilst chapters 7 and 8 examine the latter.

1.3 Bond percolation: the GCC and the RG

Bond percolation is a stochastic process developed by Broadbent and Hammersley in
1957 and is perhaps one of the simplest models that exhibits complexity. It examines the
consequences, to the global connectivity of a network, of adding or removing connections
between each possible pair of vertices. For a network comprising an unconnected set
of vertices, bond percolation attempts to connect adjacent vertex pairs with a fixed and
statistically independent probability T . In the special case that T = 0.0, no connections
are added to the network; conversely when T = 1.0, all possible connections are created.
Equivalently, bond percolation can also be conducted over the edges of a substrate network.
In this case, edges are occupied with probability T and unoccupied with probability 1�T .
Once all of the edges of the substrate network have been examined in this way, the process
has reached its absorbing state. This equilibrium is static in nature; since, there are no more
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dynamics to occur. As experiments are conducted at larger T values within the unit interval,
the absorbing state network becomes increasingly connected by occupied edges. At some
critical value, Tc, known as the percolation threshold, small clusters of occupied edges join
up and large clusters of connected vertices span the graph. The largest of these clusters is
known as the giant connected component (GCC). Vertices that do not belong to the GCC
belong instead to the residual graph (RG), see Fig 1.2. The percolation threshold marks
the value of T at which the GCC first appears and long range connectivity is established.

Residual graph

GCCSubstrate graph

Figure 1.2: (left to right) A substrate network has undergone bond percolation to create a
GCC of vertices connected by occupied edges (red) and a RG of vertices not contained
within the GCC (grey).

Bond percolation is concerned with the global connectivity of a network, which depends
on the sizes of the connected clusters. However, the presence of global connectivity also
depends on the size of the underlying network; a cluster of 200 connected vertices will
span a small network, yet is barely visible within a very large network. To address this
formally, we must replace the finite size of the network with an infinitely large system. The
central question of bond percolation now concerns the presence of an infinitely spanning
cluster. By Kolmogorov’s zero–one law, for any given T , the probability that an infinite
cluster exists is either zero or one. The zero-one law indicates that the properties of the
infinite system cannot be altered by finite perturbations. For instance, the presence of an
infinite cluster in an infinite network is undisturbed by the addition or removal of a finite
number of edges; which is not true for a finite sized network. For a given value of T , an
infinite cluster will exist with probability one or zero; when T < Tc the probability is zero,
whilst for T � Tc the probability is one.

It is Kolmogrov’s law that leads to the phase behaviour observed in infinite systems.
Below the percolation threshold, the probability that there is an infinite spanning cluster
is zero. We could be forgiven for thinking that as we infinitesimally increase T to T + e
where e is a very small constant, that the probability of finding an infinite cluster might
also increase in a gradual fashion. However, by the zero-one law, the infinite cluster is
either present or not. At and above the percolation threshold, we are guaranteed to find a
spanning cluster in an infinite system if we examine it close enough. This behaviour leads
to a phase transition in the global connectivity of the infinite system, see Fig 1.3.

The presence of the GCC follows the zero-one law; however, its size does increase
in a gradual fashion with increasing T . Finding the size of the GCC is a central topic
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Figure 1.3: The size of the GCC following bond percolation on Erdős-Renyi networks
with hki= 3 as a function of T 2 [0,1]. Below the critical point Tc = 1/3 the size of the
GCC is zero, whilst at and above Tc the GCC occupies a finite fraction of the network,
growing at different rates as a function of T .

for network science and this thesis; it is the order parameter of the percolation problem.
The location of the critical percolation probability and the rate of growth of the GCC are
extremely dependent on the topological properties of the substrate network. For instance,
the critical point of Erdős-Renyi networks occurs at Tc = 1/hki where hki is the average
degree of the network. If the vertices of the substrate network have a larger number of
edges on average, then the probability of forming a GCC increases and so the threshold
value of bond occupancy probability Tc drops. Conversely, the critical point in scale-free
networks occurs at Tc = 0 and hence, a GCC can always be found.

1.4 Epidemics on networks

The study of the spread of disease on networks has attracted considerable attention from the
statistical physics community [45]. This unusual fact is a consequence of the equivalence
between the properties of the susceptible-infected-removed model (SIR) and those of the
bond percolation process, which has an exact solution on networks. The SIR model is
an epidemiological model that considers the a population to be divided into three states:
susceptible (S), infected (I), and removed (R). Infected individuals can pass their infection
across an edge to a susceptible neighbour, which in turn becomes infected. The average
infection rate per unit time is b . At each moment, the infected vertex might recover with a
given recovery rate per unit time, g , and no longer play an active part in the dynamics of the
process. The equilibrium of the process is reached when all of the infected vertices have
recovered and it is a static absorbing state comprising of recovered vertices and susceptible
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vertices that did not become infected. This is the key part of the equivalence to bond
percolation: the binary nature of the equilibrium.

Consider a particular infected vertex i and its susceptible neighbour j. We assume that
the infectious period for all vertices is fixed to t units of time. The probability that the
edge fails to transmit the infection is 1�Ti j, which is

1�Ti j = 1� (1�bi j)
t (1.1)

where bi j is the probability per unit time that the edge transmits infection which is an
independent and identically distributed (iid) random variable. The average transmission
probability, T , is found by integrating over b [21, 45, 66, 61]

T = 1�
Z •

0
P(b )(1�b )tdb (1.2)

which takes values in the unit interval. Thus despite variation in the individual transmission
probabilities between different vertex pairs, the disease propagates as if all transmission
probabilities were equal to T . This is precisely the ordinary bond percolation model.
Therefore, the minimum transmissibility that a disease must have in order to create a
population-wide outbreak is given by the percolation threshold; similarly, the size of the
outbreak is equivalent to the size of the GCC.

We remark that the infectious period is assumed to be drawn from a single-valued
distribution for all vertices. If we relax this assumption, then the mapping between
percolation and SIR no longer holds; but, it can be recovered by considering percolation
on a semi-directed networks instead [38, 27].

1.5 The configuration model

The configuration model is a protocol to create random graphs from a given sequence
of vertex degrees. Upon each construction, a particular random graph is obtained from
an ensemble of degree-equivalent, uncorrelated random graphs. It might happen that the
realisation is not well represented by the ensemble average; therefore, simulations of
dynamical processes over these networks require repetitions to establish the mean field.

In the model, the vertices of the graph are assigned an integer, drawn at random from the
degree distribution, which indicates its degree. The degree sequence {k}= k1,k2, . . . ,kV ,
where Âi ki = 2E for a network of V 2 N vertices and E 2 N edges, is a sequence of the
degrees of the vertices and is typically displayed in descending order such that k1 � k2 �
· · · � kV . To construct configuration model networks from a degree sequence, vertex i
is inserted ki times into a set for all i 2 V . Pairs of vertices are then drawn at random
and connected together. In the limit of large and sparse networks, the probability that the
construction process chooses pairs that are either already connected through another edge
or belong to the same vertex is vanishingly small. These networks are said to be locally
tree-like, meaning that cycles have zero measure when V ! • and hence the networks
contain no short-range loops; they are also absent of degree-correlations.

It is often the case that a given degree sequence can be used to construct an ensemble
of different graphs. However, not all degree sequences are valid, or graphic, such that
some sequences of integers cannot be used to create a graph. The Erdős-Gallai theorem
(EGT) states that in addition to the handshaking lemma (HL), Âi ki = 2E, a sequence is
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graphic if and only if the Erdős-Gallai inequality (EGI)

l

Â
i=1

ki  l(l �1)+
V

Â
i=l+1

min(ki, l) (1.3)

holds for 1  l V . It is trivial to construct degree sequences that satisfy the HL (EGI)
but do not satisfy the EGI (HL) and are thus not graphic. For instance, with V = 3 and
{k}= {(1),(1),(1)} the inequality in Eq 1.3 is satisfied but the sum of degrees is not even;
whilst, {k}= {(2),(0),(0)} satisfies the lemma but not Eq 1.3.

1.6 The generalised configuration model

The generalised configuration model (GCM) is a protocol to create random graphs whose
vertices can be members of predefined subgraphs. Therefore, it allows us to construct
random graphs with tailored clustering that we can fine tune by allowing different subgraphs
to be part of the model, in different quantities. In the GCM, the degree distribution is
replaced by a joint degree distribution that describes a vertex’s involvement in motifs such
as ordinary edges (2-cliques), triangles (3-cliques), 4-cliques etc. For instance, consider a
GCM network with 2-cliques and 3-cliques, a vertex that is involved in n2 ordinary edges
and n3 triangles is specified by joint degree (n2,n3) and the usual degree is recovered
from k = n2 + 2n3. Similarly, allowing 4-cliques into the topology set, the joint degree
of a vertex that is a part of n2 ordinary edges, n3 triangles and n4 4-cliques is given by
(n2,n3,n4) and occurs with probability pn2,n3,n4 , its ordinary degree is recovered from
k = n2 +2n3 +3n4; which is a Diophantine condition [59]. In this introductory setting, we
assume that the permissible motifs are cliques of various sizes {2,3, . . . ,m}; however, it is
important to note that the GCM can be applied to any subgraph topology.

To construct a GCM network, each of the vertices is assigned a tuple of integers,
distributed according to the joint degree distribution, that describes their membership in
each clique. A set is created for each motif topology, and each vertex is inserted once for
each independent motif it is a member of. For instance, if a vertex belongs to 2 2-cliques,
1 3-clique and 0 4-cliques, it is inserted twice into the 2-clique set, once into the 3-clique
set and zero times into the 4-clique set. Each set is then used sequentially to construct the
network. For a given topology, members are randomly drawn from the set and connected
together in the required manner. Once all motifs have been created the process terminates
and a particular realisation of the joint degree sequence is obtained, see Fig 1.4. For
example, when constructing a 3-clique, three members are drawn at random from the set
of vertices involved in triangles, and are connected together in the correct manner.

In GCM networks, cycles are still independent of one another (edge-disjoint), in much
the same way that simple edges are in the original model. This means that the accidental
formation of a 4-clique during triangle construction through the choosing of two vertices
that are already involved in a triangle vanishes with large and sparse networks. Thus,
each motif in a GCM network regenerates the locally tree-like property of the ordinary
configuration model when considering connections to vertices outside the pre-defined
subgraphs. The probability of edge-sharing between independent motifs is dependent
on the number of vertices and triangles in the subgraphs for a given number of motifs,
however, so this result is valid only for V ! •.
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Joint	degree	sequence

Figure 1.4: In the generalised configuration model a joint degree sequence (left) of stub
edges (green) and stub triangles (red) is created by assigning joint degrees, drawn from
a joint degree distribution, to a set of vertices. The stubs of each topology are connected
together at random (right). The connective structure of each realisation can vary following
this procedure. Generating functions (section 2) describe the properties of the entire
ensemble of networks for a given joint distribution. Figure inspired by [20]

The degree sequence of a configuration model network is a sequence of tuples

(n2,1,n3,1, . . . ,nm,1), . . . ,(n2,V ,n3,V , . . . ,nm,V ), (1.4)

where nh ,i is the number of motifs of topology h that vertex i is a member of for some
set of clique motifs {2,3, . . . ,m}. As with ordinary edges, not all sequences lead to the
successful creation of networks and we now consider necessary conditions on a joint
degree sequence in order that it is graphic. The following analysis is taken from Mann et
al [36]. It is natural to separate the degree tuples and order the joint sequence along each
topology as n2,1 � n2,2 � · · ·� n2,N for the ordinary edges, n3,1 � n3,2 � · · ·� n3,V for the
triangles (and so on) such that

n2,1 � n2,2 � · · ·� n2,V

n3,1 � n3,2 � · · ·� n3,V (1.5)
...

nm,1 � nm,2 � · · ·� nm,V

(1.6)

It is clear that the EGT (the EGI and the HL) must still hold among the overall degrees
of the model for the joint degree sequence to be graphic. However, the EGT is no longer
sufficient to ensure the graphicality of joint degree sequences according to the GCM. For
example, consider the following ordered joint degree sequence for 3 vertices describing
ordinary edge and triangle membership, {(n2,n3)}= {(0,1),(1,0),(1,0)}. This sequence
is graphic according to the EGI, (Eq 1.3, and the HL applied to the overall edges), but is
not according to the GCM. In the GCM, we require the EGT to hold among the ordinary
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edges such that Âi n2,i = 2H where H 2 N is the number of ordinary edges and that

l

Â
i=1

n2,i  l(l �1)+
V

Â
i=l+1

min(n2,i, l) (1.7)

holds for 1  l V . For the triangle degree sequence to be graphical, we require that the
sum of the number of triangle edges is divisible by 3

2
V

Â
i=1

n3,i = 3T (1.8)

which is a modified handshaking lemma, as well as a modified inequality

2
l

Â
i=1

n3,i  l(l �1)+
V

Â
i=l+1

min(2n3,i, l) (1.9)

must hold for 1  l  V . The factor of 2 in Eq 1.9 is due to the each vertex consuming
two edges per triangle. Together these conditions extend the Erdős-Gallai theorem to the
tree-triangle model, ensuring that the joint degree sequence is graphic. This can now be
readily extended to other GCM networks. The necessary conditions for the graphicality of
joint degree sequences of configuration models comprising cliques can now be written by
exploiting the characteristic size of each clique. Whilst is is easy to convince ourselves
that these conditions are necessary conditions for graphicality, we do not, however, know
if these are sufficient conditions.

1.7 Computational considerations

In this section we will discuss aspects of the Monte Carlo simulation that has been used to
create the networks and run percolation experiments as well as other computational work.

1.7.1 Percolation

Random graph models were created using Networkx, a Python library for complex net-
works. Clustered networks were created according to the configuration model algorithm
discussed previously. In order to find close agreement between the analytical approach of
generating functions and simulation, it is necessary to create large networks, of the order
of 1e5 vertices, with sparse connections so that the locally tree-like property holds and we
do not create short range loops by accident. To run bond percolation over these networks,
one simply iterates the edges of the graph and tests if they are occupied or not, with a fixed
probability T , against a random number; removing those edges from the graph if they are
unoccupied. Networkx has methods to find the GCC, as well as other useful properties
of networks within its API. The complexity of this bond percolation procedure is O(E2)
where E is the number of edges in the network.

This style of percolation experiment is not the most optimal in terms of computing
time. In practice, the Newman-Ziff algorithm (NZA) offers superior experimental run
times to the conventional percolation algorithm, with an estimated complexity of O(E). In
the NZA, a single run conducts simulations for all values of T at once; in contrast to the
conventional method. As T is incrementally increased over the unit interval, connected
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components are joined together by the addition of bonds to the network. Rather than
throwing the occupied clusters away at each value of T , bonds are simply added to a given
realisation and the clusters are updated due to the possible merging of existing clusters.
The components are represented by trees, where the root of each tree labels it. When two
clusters are merged, the root of one is connected to a vertex belonging to the other tree,
such that only one root now remains. The size of the cluster is stored at the root calculating
the largest component is simply a lookup exercise. This is an example of a union-find
algorithm.

Extending the NZA to the case of multiple interacting epidemics, like those discussed in
this thesis, has not been performed (yet); in those cases, the standard percolation algorithm
was applied to the relevant sections of networks, such as the RG (for cross-immune
diseases) or the GCC (for coinfecting diseases), see chapter 7.

1.7.2 Motif finding algorithms

In a separate avenue of research, the problem of taking an empirical network and covering
it with edge-disjoint cliques arose, see chapter 6. For this purpose, we derived a novel
clique covering algorithm, which we called the motif preserving clique cover MPCC; as
well as implementing other covers from the literature [6].

1.7.3 Fixed-point equations

The generating function method yields either a single or, more generally, a system of
self-consistent non-linear coupled equations of the form f : Rn ! R such that

x = f (xxx) (1.10)

where x 2 xxx is an element of vector xxx. Such a system can be converted into a homogeneous
form, x� f (xxx) = 0 and solved using a non-linear optimiser. We remark that it is often that
case that simple fixed-point iteration is sufficient to find a solution for suitably initialised
x; we found x = 0.5 to work well since the solution is unique by Jensen’s inequality.

1.7.4 Derivatives

Often, we are required to evaluate the coefficients ak of an infinite series, f (x) = Âk akxk.
To achieve this, we can find derivatives of the infinite series and evaluate them at x = 0 to
recover ak as

ak =
1
k!

dk

dxk f (x)
����
x=0

(1.11)

If an analytical solution is not available in closed-form, the derivatives can be performed
numerically or symbolically; however, small errors can compound and lead to incorrect
results. Newman and Moore [43] indicate that performing a numerical contour integral
over the unit circle via the Cauchy formula is the appropriate method

1
k!

dk

dxk f (x)
����
x=0

=
1

2pi

I f (x )
x k+1 dx (1.12)
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1.8 Chapter summary

In this chapter we stated the purpose of this thesis: to study the properties of clustered
networks that undergo dynamical processes. We introduced complexity as a topic that
transcends traditional disciplines, both in application and method. We discussed random
graph ensembles and distinguished between trees, tree-like networks and clustered net-
works by the inclusion of short range loops that induce correlation among the vertices. We
outlined the configuration model as a means to create a particular random network with a
prescribed degree distribution. This was then extended to the generalised configuration
model that affords the creation of clustered networks. Finally, we introduced the bond
percolation process and discussed its criticality, as well as equating it to the final state of
the SIR epidemic model.





2
CHAPTER TWO

GENERATING
FUNCTIONS

In this section will discuss the use of generating functions to obtain the properties of a
network following bond percolation. The use of generating functions to find solutions
to the bond percolation problem originated (we believe) with Fisher and Essam in 1961
[13] where they derived an exact solution for site and bond percolation on Cayley trees.
Within the network science community, the next breakthrough was found by Callaway,
Newman, Strogatz and Watts in 2000 [7] which provided a solution for general degree
distributions. A series of key papers around this time had an enormous influence on the
style and direction of research in network science over the next decade [55, 46].

Most of this chapter is background material with the exception of section 2.3, which,
although has been derived independently during the PhD, is unlikely to be the first time
these functions have been considered. Similarly, the extension of the clustering coefficient
to GCM clique networks was developed independently but is likely to have been considered
previously.

13
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2.1 Generating the degree distribution

A generating function is a mathematical object that collects the terms of an infinite
sequence into the coefficients of a formal power series. The ordinary generating function
of a sequence an is given by

G(x) = a0 +a1x+a2x2 +a3x3 + . . . (2.1)

Generating functions provide a systematic way to count combinatorial objects. The
coefficients of the generating function can be recovered by differentiation

ak =
1
k!

dk

dxk G(x) (2.2)

Generating functions, and their manipulation, are commonplace analytical tools in network
science to obtain structural properties of graphs. Their utility in this area arises since
many of the problems faced in network science are enumerative; often the counting of
all possible combinations of a particular configuration or state is required. For instance,
suppose that the probability distribution for the fraction of vertices in a network with
non-negative integer degree k is pk, then, the generating function for the distribution of
degrees is

G0(x) =
•

Â
k=0

pkxk (2.3)

Since the coefficients of this generating function constitute a normalised probability
distribution, evaluating this function at x = 1 we have G0(1) = 1. Further, since it is
positive definite, G0(x) is absolutely convergent for all |x| 1.

Let us examine G0(x) in more detail. Consider a network of N vertices which each
have one of three degrees: k1,k2 or k3 with probabilities pk1 , pk2 and pk3 , respectively. Let
us imagine that there has been an epidemic among the population, and that the probability
that an edge transmits infection is g, which for now, we assume is a known quantity. Let us
pick a vertex at random from the network and examine the probability that it is an infected.
Assuming that the network is locally tree-like, the infection probabilities of a vertex’s
edges are independent of one another; there are no correlations. The probability if choosing
a vertex of degree k1 is pk1 , and the probability that all k1 of its contact fail to infect is
simply the power of single-edge probabilities, gk1; since, the edges are independent of one
another. Therefore, the probability that we choose an uninfected degree k1 vertex is

pk1gk1 (2.4)

Similarly, if we had chosen a vertex of degree k2 or k3, we can write the probability that
they also fail to be infected. The total probability that the vertex we had chosen from the
network at random failed to be infected is then the sum that all vertices we could choose
that were uninfected, which is

G0(g) = pk1gk1 + pk2gk2 + pk3gk3 (2.5)

Clearly, this is a very useful quantity. The generating function has allowed us to collect the
information on the topology of the network by knowledge of the degree distribution and
relate it to dynamical quantity g, in turn allowing us to calculate a global property that is
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a function of network structure and the dynamics of the process. This is a fundamental
method in generating functions: enumerate the properties of a single vertex before scaling
it to the global properties of the network.

As another example of the utility of the generating function method for the calculation
of network properties, consider the first derivative of G0(x)

d
dx

G0(x) =
•

Â
k=0

kpkxk�1 (2.6)

When evaluated at x = 1, this is simply the average degree of the network G0
0(1) = hki.

Higher moments can also be obtained and in general we have

hkmi= Â
k

kn pk (2.7)

which can readily be found by applying the operator
�
x d

dx
�m to G0(x) evaluated at unity.

Many other properties of a network, such as: the distribution of component sizes, the
average number of neighbours at distance l, graph diameter, average path length, clustering
coefficient, correlation structure and so on, can be extracted by conducting mathematical
operations on generating functions.

Ordinary generating functions can be generalised to coefficients with multiple indices;
for instance, a bivariate generating function is written as

G(x,y) =
•

Â
k=0

•

Â
l=0

aklxkyl (2.8)

Consider a network whose vertices are arranged into both ordinary edges and edge-disjoint
triangles. The joint probability distribution for the fraction of vertices in a network with n2
ordinary edges and n3 triangles is pn2,n3 . The generating function for this distribution is

G0(x,y) =
•

Â
n2=0

•

Â
n3=0

pn2,n3xn2yn3 (2.9)

The average number of ordinary edges the average vertex is connected to is given by

d
dx

G0(x,y)
����
x=1,y=1

=
•

Â
n2=0

•

Â
n3=0

n2 pn2,n3xn2�1yn3

����
x=1,y=1

(2.10)

whilst the average number of triangles the average vertex belongs to is

d
dy

G0(x,y)
����
x=1,y=1

=
•

Â
n2=0

•

Â
n3=0

n3 pn2,n3xn2yn3�1
����
x=1,y=1

(2.11)

The average overall degree, the number of edges that a vertex has when clique membership
is ignored, is then

hki= hn2i+2hn3i (2.12)

Similarly, the generating function for the joint probability distribution, pn2,n3··· ,nm of a
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network whose vertices belong to edge-disjoint cliques up to some size m is

G0(x2,x3, . . . ,xm) =
•

Â
n2=0

•

Â
n3=0

· · ·
•

Â
nm=0

pn2,n3··· ,nmxn2
2 xn3

3 · · ·xnm
m (2.13)

where nm is an index over the number of m-cliques per vertex. The average overall degree
is then

hki=
m

Â
h=2

(h �1)hkhi (2.14)

where h is an index over clique sizes h = 2,3, . . . ,m, h � 1 is the number of edges per
vertex that belong to an h-clique and hnhi is the number of independent h-cliques that a
vertex will belong to on average in the network. The network model does not need to be
limited to clique subgraphs; any edge-disjoint subgraph can be used as a basis for a set of
motif topologies, see section 5. However, as we will see later, cliques have a closed-form
expression for their percolation properties required for calculation. This is due to two
factors: i) the removal of one vertex and its edges from an m-clique generates a clique of
size (m�1); and ii) all possible edges between each vertex pair are present in a clique.
These properties are not held by any other type of motif, even k-regular subgraphs. (See
section 5 for a discussion of these points.)

2.2 Generating the excess degree distribution

The philosophy of the generating function approach for the elucidation of network prop-
erties is to determine the k-th term of a probability generating function, G0(x), in detail.
Once the k-th term is known, G0(x) can be constructed and the properties of the network
can be obtained using the machinery developed in section 2.1.

This analysis is performed by selecting a focal vertex, a vertex that is chosen at random
from the network and examining the properties of its neighbours. Often, in order to
determine some information (for now we leave the nature of this information quite abstract)
of a particular vertex, information from a neighbour is required. Under the locally tree-like
approximation, the properties of the neighbours of a particular focal vertex are independent
of one another; they are independent and identically distributed (iid). Therefore, once
information associated to one of the neighbours has been found, all k edges of a degree
k focal vertex can also be determined. This iid property of tree-like networks transforms
the determination of neighbour properties into the determination of the properties of a
vertex that is reached by randomly choosing an edge from the network and following it in
a randomly chosen direction.

The probability distribution of ordinary edges of a vertex that is obtained by traversing
a randomly selected edge in a random direction from the network is not equivalent, in
general, to the ordinary degree distribution. This is seen clearly by the zeroth term of the
degree distribution, p0, there is no manner to select a degree zero vertex by following an
edge; since, it has no edges to traverse.

For networks comprised of entirely ordinary edges, the excess degree distribution of
a vertex is defined as the distribution of edges that a vertex has minus 1 (discounting the
edge that was used traversed to reach it). Its generating function can be calculated from
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the following expression using the generating function of the ordinary degree distribution

G1(x) =


d
dx

G0(x)
��1

x=1

d
dx

G0(x) (2.15)

The expression can be simplified using G0
0(1) = hki to obtain

G1(x) =
1
hkiG0

1(x) (2.16)

The excess degree distribution can then be recovered by differentiating according to Eq
2.2. For networks that are comprised of edge-disjoint clique subgraphs, it follows that the
probability distribution of clique membership of vertices reached by random edge traversal
is dependent on the type of edge that is traversed, see Fig 2.1.

Figure 2.1: A network constructed from 2- and 3-cliques; higher-order structure (such as
the 5-cycle) is ignored. If the edge we select at random happened to be the blue 2-clique
edge, which was then followed to the blue vertex, we know the vertex must belong to at
least one 2-clique. If we had selected the red 3-clique edge instead, and followed it to the
red vertex, we know the vertex must belong to at least one 3-clique. The distribution of
2- and 3-cliques at a vertex obtained by selecting and traversing a randomly chosen edge
depends on the topology of the subgraph it belongs to.

For instance, the distribution of ordinary edges and triangles of a vertex selected by
edge traversal in a graph comprised of edge-disjoint ordinary edges and triangles depends
on whether the edge that was followed was an ordinary edge or belonged to a triangle.
The neighbour must belong to at least one of the cliques that was followed to reach it,
whilst there is no restriction on the membership to other cliques. Therefore, there is an
excess degree required for each permissible edge-type that is defined in the model. For
instance, for a random graph model that comprises edge disjoint 2- and 3-cliques, there are
two associated generating functions; one that generates the excess degree distribution for
vertices reached from an ordinary edge (the 2-clique) and the other for the excess degree
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distribution for vertices reached by traversing a triangle edge

G1,2 =


d

dx2
G0(x2,x3)

��1

x2=1,x3=1

d
dx2

G0(x2,x3) (2.17a)

G1,3 =


d

dx3
G0(x2,x3)

��1

x2=1,x3=1

d
dx3

G0(x2,x3) (2.17b)

where the h notation G1,h denotes the clique size h = 2,3.
In the general model with all clique sizes up to size m, there are m�1 excess degree

distributions G1,h : Rm�1 ! R and hence m�1 generating functions given by

G1,h =


d

dxh
G0(x2, . . . ,xh , . . . ,xm)

��1

x=1

d
dxh

G0(x2, . . . ,xh , . . . ,xm) (2.18)

with h = 2, . . . ,m and where the notation x = 1 in the derivative indicates it is evaluated at
(x2,x3, . . . ,xm) = (1,1, . . . ,1).

2.3 Specific examples of generating functions

In this short section we consider some specific examples of the generating functions and
methods that we frequently use throughout the thesis. Within this section, we consider
ttt = {2,3, . . . ,m} to be a set of clique sizes that are defined in the model. For instance, a
random graph that is composed of 2-, 3- and 4-cliques would have ttt = {2,3,4}.

2.3.1 Poisson degree distribution

The first example we will consider is the joint Poisson distribution [32]. In this case, the
number, nt , of independent t-cliques a vertex is a member of is drawn from a Poisson
distribution with average hnti. Since each nt is an independent variable this is simply a
product of independent Poisson distributions

pn2,n3,··· ,nm = ’
t2ttt

e�hnt i hntint

nt !
(2.19)

where the product extends over each clique topology. This is generated using Eq 2.13

G0(z2, . . . ,zm) = ’
t2ttt

ehnt i(zt�1) (2.20)

since
ezt hnt i =

•

Â
nt=0

(zt · hnti)nt

nt !
(2.21)

It is clear that in this case G1,t(z2, . . . ,zm) = G1(z2, . . . ,zm) 8t 2 ttt , which can be shown
by evaluating Eq 2.18 using Eq 2.20.
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2.3.2 Power-law degree distribution with exponential degree cutoff

Next, consider the case where each subgraph is distributed as a power-law distribution
with exponential cut-off [32] of the form

pn2,n3,··· ,nm =C ’
t2ttt

n�at
t e�nt/kt (2.22)

where C, at and kt are constants. The normalisation constant can be found from the
condition G0(1, . . . ,1) = 1 as

C�1 =
•

Â
n2=1

•

Â
n3=1

· · ·
•

Â
nm=1

e�n2/k2

na2

e�n3/k3

na3
· · · e�nm/km

nam
(2.23)

which is a multipolylogarithm or the form

Lis1,...,sk(z1, . . . ,zk) = Â
n1>···>nk>0

 
k

’
j=1

n�s j
j zn j

j

!
(2.24)

which is convergent on the disc |zt | < 1 8t . The G0 and G1,n generating functions can
then be computed as

G0(z2, . . . ,zm) =
Lia2,...,am(z2e�1/k2 , . . . ,zme�1/km)

Lia2,...,am(e�1/k2 , . . . ,e�1/km)
(2.25)

G1,n(z2, . . . ,zm) =
Lia2,...,an�1,...,am(z2e�1/k2 , . . . ,zme�1/km)

znLia2,...,an�1,...,am(e�1/k2 , . . . ,e�1/km)
(2.26)

and when kt ! • 8t 2 ttt we have purely power-law networks. In this case we have

G1,n(z2, . . . ,zm) =
Lia2,...,an�1,...,am(z2, . . . ,zm)

znz (a2, . . . ,an�1, . . . ,am)
(2.27)

where z (s1, . . . ,sk) are the multiple Riemann-zeta values

z (s1, . . . ,sk) = Â
n1>···>nk>0

 
k

’
j=1

n�s j
j

!
(2.28)

2.3.3 Degree partitioning

In the next example we examine a method of partitioning an (ordinary) degree distribution
into a joint distribution of cliques [22, 20, 31]. This method is distinct from the previous
examples as it attempts to cover an existing set of degrees with cliques rather than indepen-
dently distribute cliques. We believe this approach was first introduced by Gleeson and
Hackett for 3-cliques [22, 20]; however, the extension to all clique sizes is (we believe)
written here for the first time.

Consider an ordered set n ,t 2 ttt = {m, . . . ,3,2} of clique topologies arranged in
descending size for convenience. Let the number of t-cliques be nt and the probability that
an edge belongs to a t clique be xt such that Ât xt = 1. The overall degree distribution,
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p0k, is then partitioned as

pn2,n3,··· ,nm = p0k Â
n2=0

Â
n3=0

· · · Â
nm=0

✓
k

n2,n3, . . . ,nm

◆
xn2

2 xn3
3 · · ·xnm

m dk,D (2.29)

where di, j is the Kronecker delta which ensures that the number of edges in the partitioned
sequence is equal to the overall degree k; and, where D = n2 +2n3 + · · ·+(m�1)nm is a
linear Diophantine equation. We then have

pn2,n3,··· ,nm = p0k Â
D=k

✓
k

n2,2n3, . . . ,(m�1)nm

◆
’
t2ttt

x(t�1)nt
t (2.30)

The multinomial coefficient can be factored as products of binomial coefficients
✓

k
n2,2n3, . . . ,(m�1)nm

◆
= ’

t

✓
k�Ân<t(n �1)nn

(t �1)nt

◆
(2.31)

and we then have

pn2,n3,··· ,nm = p0k ’
t2ttt\{2}

b(k�Ân<t (n�1)nn )/(t�1)c

Â
nt=0

✓
k�Ân<t(n �1)nn

(t �1)nt

◆

⇥ x(t�1)nt
t

 
1� Â

f2ttt\{2}
xf

!k�Âf (f�1)nf

(2.32)

where bzc is the floor function, and 0  k�Ân<t(n �1)nn  k is the number of available
edges (those that do not belong to other cliques given the current decomposition of the
overall degree into subdegrees).

As an example, consider the edge-disjoint clique decomposition of an overall degree k
vertex into 4-clique, 3-clique and 2-clique subgraphs such that ttt = {4,3,2}. The degree
distribution pn = pn2,n3,n4 is given by

pn = p0k
bk/3c

Â
n4=0

✓
k

3n4

◆
x3n4

4

b(k�3n4)/2c

Â
nt=0

✓
k�3n4

2n3

◆
x2n3

3 (1� x4 � x3)
k�3n4�2n3 (2.33)

With this motif partitioning method, we can investigate the importance of how a networks
clustering is distributed to its percolation properties. For instance, consider a random
graph model composed of 2- and 3- cliques. We might wonder if a doubly Poisson degree
distribution in each motif

pn2,n3 = Pois(n2)Pois(n3) (2.34)

has different properties to a model where the overall degrees k are Poisson distributed, but
the clustering is then created through the partitioning method

pn2,n3 = Pois(k)
bk/2c

Â
n3=0

✓
k

2n3

◆
x2n3

3 (1� x3)
k�2n3 (2.35)

where a suitable constraint is placed on the sum n2 +2n3 for the doubly distributed case
such that the first moment of the overall degree distributions are equivalent.
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2.3.4 The degree-d model

While these networks have identical overall degrees, the degree assortativity can also be
tuned [22, 20, 31]. To examine the effect of assortativity on the distribution, we use the
degree-d model to allow control of the degree correlations among the subgraphs. For
instance, we can fix the clustering to the low degree sites by

pDEL
n =

8
><

>:

pndns,1dnt ,1dnc,0, k = 3,
pndns,1dnt ,0dnc,1, k = 4,
pndk,nsdnt ,0dnc,0, otherwise.

(2.36)

In other words, vertices in the network are not clustered unless their overall degree is k = 3
or k = 4, in which case, they are involved in exactly one 3-clique and one independent
edge or one 4-clique and one independent edge. This distribution forces the clustering
to be positively assorted towards the periphery of the network yet also connects the
clique components to the main graph. Of course, we could contain the clustering to the
high-degree vertices instead to obtain graphs with different properties.

2.4 Generating the clustering coefficient

One of the fundamental properties of complex networks is the tendency for edges to cluster
together. This property is the transitivity of the graph. In mathematics, a relation � on a set
{a,b,c} is transitive if the relations a�b and b� c also imply a� c. For instance, equality
is transitive, a = b, b = c and hence a = c. In networks, transitivity indicates that the
presence of an edge between vertices i and j and j and l also indicates an edge between
vertices i and l. Transitive relations in empirical networks, particularly social networks,
are defining features of the networks structure and lead to different percolation behaviour.

The clustering coefficient of a network is a measure of edge clustering for all vertices.
In this section we will show how the generating function formulation can be used to recover
the clustering coefficient of a random graph model that is composed of clique subgraphs,
as Newman performed for 2- and 3-clique graphs [52]. The global clustering coefficient C
of a network with V vertices is defined as

C =
3ND
N3

(2.37)

where ND is the number of triangles in the network and N3 is the number of connected triples.
Consider a random graph that is composed of clique motifs of sizes h 2 {2,3, . . . ,m}. The
number of triangles that a vertex that belongs to n2 2-cliques, n3 3-cliques and so on is

ND,n2,...,nm =V p(n2, . . . ,nm)(n2 + · · ·+µmnm) (2.38)

where µh is the number of triangles that a vertex belongs to as a member of a h-cycle

µh =

✓
h �1

2

◆
(2.39)

For instance, µ3 = 1 while a vertex in 4-clique belongs to 3 triangles. The total number of
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triangles in the network is found by summing over the joint degree

ND =
•

Â
n2=0

· · ·
•

Â
nm=0

ND,n2,...,nm (2.40)

The number of connected triples is given by [52]

N3 = V Â
k

✓
k
2

◆
pk (2.41)

=V
hk2i�hki

2
(2.42)

where k = Âh(h � 1)nh . For instance, when the model consists of 2- and 3-clique
subgraphs, we have k = n2 + 2n3 and the average number of triangles is simply hn3i
In this case, the clustering coefficient is given by

C =
2hn3i

hk2i�hki (2.43)

If the clique distribution is Poisson distributed according to Eq 2.20, then we have
G0(x,y) = ehn2i(x�1)ehn3i(y�1) and this expression reduces to

CPoisson =
2hn3i

2hn3i+ hki2 (2.44)

2.5 Generating the size of the GCC

Chief among the usefulness of generating functions is their ability to determine the size
of the GCC in a network that has undergone bond percolation. Initially, we restrict our
attention to networks comprised of ordinary edges (or 2-cliques). We recall from section 1
that the absorbing state of a bond percolation process is binary: vertices either belong to
the GCC (if one is present) or they do not; instead they belong to the RG. Applying the
philosophy of the generating function approach, in order to determine the macroscopic
properties of the network ensemble, the microscopic properties must be considered in
detail. In this case, the residence of the k neighbours of a degree k vertex, whether they
reside in the GCC or in the RG, is the information that enables the size of the GCC to be
calculated.

The calculation proceeds as follows. Let u2 be the probability that a neighbour at the
end of a 2-clique edge does not belong to the GCC. Consider an edge that connects the
focal vertex to one of its neighbours; let g2(u2,T ) be the probability that the edge fails
to connect the focal vertex to the GCC. We use the iid property of the neighbour states
to construct the probability that all of the edges of a degree k vertex fail to connect it to
the GCC by raising g2 to the power of k. The probability that an edge is selected and
traversed at random to reach a vertex of excess degree k is generated by G1(x). Therefore,
the probability that the vertex reached by traversing an edge does not belong to the GCC is
G1(g2). However, by the iid property of neighbour states, this is simply the probability
that a neighbour is in the RG of the percolation process. Hence, we can write

u2 = G1(g2) (2.45)
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This is a self-consistent expression that can by solved by fixed point iteration starting
from a suitable initial guess. When there is no GCC present in the network, the only root
is the trivial solution u2 = 1. This corresponds to the case when the probability that the
neighbour is not connected to the GCC is unity. At the critical point, a GCC forms in the
network and the solution bifurcates to yield an additional fixed point in the unit interval.
Once u2 has been calculated, the expectation value for the fraction of the network occupied
by the GCC, S, is given by

S = 1�G0(g2) (2.46)

Generalising this to the clique subgraph model, a probability uh is introduced for each
edge-type that could be traversed from a focal vertex to a neighbour that represents the
probability that the neighbour that is reached is not connected to the GCC. Due to the
presence of the interconnecting clique edges, the residence states of neighbours within a
given clique are no longer iid. For instance, if one of the vertices in a clique is attached to
the GCC, it is more likely that other vertices within the clique are also connected when
compared to degree equivalent vertices with ordinary edges, simply due to the additional
edges between the neighbours. The probability that a focal vertex is not connected to
the GCC despite its membership in a h-clique subgraph is gh�1

h = gh�1
h (uh ,T ); which is

the probability that all of the h �1 edges fail to connect it. By containing the neighbour
correlations induced by each clique into gh�1

h , the iid property between independent cliques
is recovered. Thus we have the following system of coupled equations

u2 = G1,2(g2,g2
3, . . . ,g

m�1
m ) (2.47a)

u3 = G1,3(g2,g2
3, . . . ,g

m�1
m ) (2.47b)

... (2.47c)

um = G1,m(g2,g2
3, . . . ,g

m�1
m ) (2.47d)

Similarly to the simple case, the system has a trivial root at the fixed point u2,u3, . . . ,um =
(1,1, . . . ,1) that bifurcates in each dimension as the GCC emerges. Performing a linear
stability analysis at this fixed point leads to the elucidation of the critical bond occupancy
probability.

The expectation value for the size of the GCC in the clique model is then given by

S = 1�G0(g2,g2
3, . . . ,g

m�1
m ) (2.48)

2.6 Equivalent expressions of g2

We now discuss the details of how g2 can be calculated. The probability, g2, that the edge
fails to connect the focal vertex to the GCC is given by the sum of all the probabilities that
allow it to fail to do so. However, as we see below, there is more than one way to enumerate
g2 and the interpretation of the enumeration procedure is a point of philosophical debate
which we would like to explore. The expressions in this section are all due to Newman
from various papers that span over a decade and whilst they are numerically equivalent, the
structure, the motivating logic as well as implicit assumptions regarding the residence state
of the focal vertex are not equivalent in all cases. We might ask is there a representation
with a particular benefit; or equivalently, does a particular interpretation yield insight that
the others do not?
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The exact closed-form expression for g2 was introduced by Newman [45] and is given
by

g2 = 1�T +u2T (2.49)

This formula includes the probability that the edge was unoccupied by the percolation
process, 1�T ; and, the probability that the edge was occupied, but the neighbour did not
belong to the GCC, u2T . It can be concluded from this expression that the focal vertex
must itself be unattached to the GCC; since, the neighbour can not be unattached and the
edge to the focal vertex occupied simultaneously. Thus, the expression enumerates the
possible ways for a focal vertex to reside in the RG.

Consider again that the focal vertex was unattached to the GCC. The neighbouring
vertex could be unattached, u2, or it might be attached but then failed to occupy the edge,
(1�u2)(1�T ), such that the focal vertex remains unattached to the GCC with probability

g2 = u2 +(1�u2)(1�T ) (2.50)

We infer that this expression apriori assumes that the focal vertex belongs to the RG
because the occupation state of the edge that connects to the unconnected neighbour (the
first term, u2). For instance, the edge could be occupied, T , or unoccupied, 1�T , which is
equivalent to multiplying the term by unity, u2(1�T +T ). This expression was used by
Newman to model two seasonal epidemics where the second disease spreads on the RG
created by the first [49]. In this case only the uninfected neighbours can be infected by the
second disease. This expression was used because it isolates this term directly.

Next, consider that the focal vertex itself is in the GCC. There are now three neighbour
types that surround this embedded vertex: unattached neighbours, attached neighbours (by
vertices other than the focal vertex) and attached neighbours (that the focal vertex directly
attached). These three possibilities sum respectively to yield the following expression for
g2

g2 = u2(1�T )+(1�u2)(1�T )+u2T (2.51)

This expression was considered by Newman and Ferrario [53] to model two seasonal
epidemics where the second disease spreads on the GCC created by the first. In this case,
the infected neighbours can be sources of the second disease. This expression isolates
these with particular focus on the infection pathways in the GCC.

Lastly, we consider another expression that was first introduced by Newman and
Ferrario [53]. The probability that an edge fails to connect the focal vertex to the GCC is
given by 1 minus the probability that the edge successfully connects it to the GCC. This,
in turn, is given by the probability that the neighbour was itself connected to the GCC and
that the edge was occupied (1�u2)T such that

g2 = 1� (1�u2)T (2.52)

This expression does not apriori indicate a residence state for the focal vertex; it can
belong to the GCC or the RG. It only indicates that the particular edge in question failed to
connect the focal vertex.

For a comparison of formulae for g3 in a similar manner to the analysis conducted for
g2, please see appendix A.
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2.7 Generating the critical point

From section 1.3, we understand that the expected size of the GCC undergoes a phase
transition from zero to non-zero as the bond occupancy probability is increased in the
unit interval. The specific value at which this occurs is the critical threshold Tc. In this
section we show how generating functions can be used to find Tc for tree-like networks
and examine the critical point of two random graph models.

Figure 2.2: A depiction of the graphical solution with the non-trivial root marked with
a scatter point where the generating function crosses the y = u dashed line, other than at
u = 1.

At T < Tc the probability that a neighbour does not belong to the GCC along an
ordinary edge, u2, is exactly unity; since, a GCC does not exist in the network. In other
words, u2 = 1 is always a trivial solution of

u2 = Â
k

kpk

hki gk�1
2 (u2) (2.53)

where g2(u2) is the probability that an edge fails to connect the vertex to the GCC. This
corresponds to the absence of a percolating cluster, S = 0, from

S = 1�Â
k

pkgk(u2) (2.54)

At the critical point another solution for u2 appears in the unit interval. This can be
determined graphically by plotting u2 = F(u2) where F(u2) = Âk kpkgk�1

2 /hki against
y = u2. When u2 = 0, we have F(0) = p1/hki; whilst, at u2 = 1 we have F(1) = 1.
The first and second derivatives are always positive for 0 < u2 < 1 which, by Jensen’s
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inequality [24], implies that F is monotonically increasing and convex with u2. The point
of intersection between the curve y = F(u2) and the line y = u2 exists only when the
derivative F 0(u2) at u2 = 1 is larger than the derivative of y = u2. This condition is written
as

d
du2

G1(g2)

����
u2=1

> 1 (2.55)

or, in full we have
d

du2

 

Â
k

kpk

hki gk�1
2 (u2)

!����
u2=1

> 1 (2.56)

At the point when the derivative equals unity, the GCC first forms in the network and the
solution for u2 bifurcates with the presence of a non-trivial root. Performing the derivative,
with g2(1) = 1, we arrive at the condition [8] for the presence of a finite sized GCC in the
network as

Tc =
hki

hk2i�hki (2.57)

Therefore, the critical bond probability is a function of the topology of the network itself
through the first and second moment of the degree distribution. When T = 1 we have

hk2i
hki > 2 (2.58)

This condition is known as the Molloy-Reed criterion [42] and is exact for infinitely sized,
uncorrelated tree-like networks. For Poisson networks, using hk2i= hki(hki+1) we have
a giant component if hki> 1. Therefore, the average degree has to be larger than 1 for a
GCC to exist. For scale-free networks with V vertices, the m-th moment of the power-law
degree distribution with exponent a is

hkmi= (a �1)ka�1
min

Z kmax

kmin

km�adk (2.59)

=
a �1

m�a +1
ka�1

min [km�a+1
max � km�a+1

min ] (2.60)

where kmin and kmax are the minimal and maximal degrees, respectively. For 2 < a < 3
we have

hk2i
hki =

a �2
3�a

ka�2
min k3�a

max (2.61)

In the infinite size limit, V ! •, the degree of the largest hub becomes infinite, kmax ! •
and hence the second moment diverges for finite hki. In this case, the Molloy-Reed criterion
is always satisfied and a GCC is always present in the network. For bond percolation, the
critical point occurs at Tc = 0 from Eq 2.57. However, there could be a non-zero threshold
when certain degree correlations are present [3, 4, 44], or if the network is low-dimensional
[60], or if transitivity has significant measure [12] .

For random graphs that do contain short range cycles, including networks with clique
subgraphs, the standard Molloy-Reed condition fails to predict the critical point. We will
examine the critical point of these networks in chapter 4.
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2.8 Chapter summary

In this chapter we have reviewed the use of generating functions to describe the structural
properties of locally tree-like complex networks as well as properties relating to bond
percolation. It was shown that the degree distribution is the fundamental descriptive object
required for the formulation along with a microscopic view of the local environment of a
randomly selected vertex and its immediate neighbours. We then discussed the generalisa-
tion of this model for the case of clustered networks that are constructed according to the
GCM algorithm. Due to their simplicity, it was assumed that the subgraphs permitted in the
model were cliques of a given size; however, we will broaden this later in Chapter 5. We
gave two example degree distributions for GCM networks: joint Poisson and power-law
with exponential degree cutoff as well as discussing the partitioning of overall degrees
into clique covers via the degree-d model due to Gleeson et al. We also gained a deeper
understanding of the critical point of the percolation process and how the generating
function formulation can be used to find the critical bond occupation probability or trans-
missibility. We also introduced a clustering coefficient for GCM graphs and commented
on the different representations of the quantity g2 and their various implications on the
component of the network that it belongs to.





3
CHAPTER THREE

CLIQUE RANDOM
NETWORKS

In this chapter we will discuss the enumeration gh�1
h for random graphs composed of edge-

disjoint clique subgraphs. In section 3.2 we examine a closed-form formula for all cliques,
using 3-cliques as a motivating example of the counting procedure involved. In section
3.3 we introduce an alternative expression for gh�1

h based on a semantic reformulation of
the problem that builds on the discussion in section 2.6. We will show in section 7.2 that
the expression described in section 3.2 is the correct approach for the study of subsequent
percolation events on the RG of a bond percolation process; whilst the new architecture
from section 3.3 is the correct description of gh�1

h required for the study of coinfecting
epidemics on networks.

29
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3.1 The effect of clique clustering on percolation

The role that clustering plays on the percolation properties, such as the location of the
critical point and the size of the GCC, have been the subject of much investigation in the
literature [39, 28, 52, 20, 22, 18, 47, 11, 5, 63, 62, 32, 19]. This is because there are a few
subtleties in the way in which clustered networks can be constructed; and, without explicit
control, they can lead to dichotomous conclusions regarding the effects of clustering. The
confusion is best summarised by Miller [39]

... a number of studies have investigated the impact of clustering on epidemics.
Some found that clustering reduces the sizes of epidemics and raises the epi-
demic threshold. That is, clustering reduces the size of giant components and
raises the percolation threshold. However, others have shown that clustering
appears to reduce the threshold. (Miller, 2009)

Miller shows [39] that the discrepancy occurs due to the associated assortativity among
clustered vertices. Vertices involved in triangles tend to have higher degrees than vertices
with only ordinary edges. During the construction process of the GCM, by connecting
triangles together, inevitably vertices with a high proportion of triangles are segregated
from those with a low proportion of triangles. If the overall degrees of vertices with lots
of triangles are different from the degrees of vertices with few triangles, then this effect
will cause correlation of among the degrees. By constructing clustered and unclustered
networks with the same degree distribution and nearest-neighbour degree correlations,
Miller found that clustered networks have smaller GCCs and higher critical thresholds
than unclustered networks.

When high degree vertices are preferentially connected together, (by either ordinary
edges or triangles) the critical threshold is always reduced. This is because it is easier for a
connected component of occupied edges to form from a well connected substrate during
percolation. Likewise, the finite components are likely to be preferentially composed of
low degree vertices. This explains the slower growth of the GCC compared to ordinary
configuration model networks with equal degree distributions for Tc < T < 1; since, as finite
components attach to the GCC, only a few vertices are added to the well connected core.
This point is independent of clustering. Gleeson et al [20] takes this further by examining
the correlation structure beyond the nearest neighbours in the coloured-edge model. Whilst
supporting Miller’s findings, Gleeson also showed that long range correlation structure
(beyond nearest neighbour correlations) also influence the properties of the percolation
process.

For clustered networks, the size of the GCC reduces with increasing clustering when
compared to networks with equivalent correlation structures such that

Sclustered  Sunclustered (3.1)

This happens because triangles contain redundant edges whose presence does not increase
the size of the GCC. One in three edges in a triangle are redundant in this way; since, its
removal does not isolate a vertex. Thus for a given average degree, and hence a given
total number of edges, fewer vertices can be connected together in a network of triangles
than in a network of ordinary edges [52]. According to Gleeson [20], the increase in the
percolation threshold for clustered networks is a simple consequence of this result
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... since the GCC size in the clustered network is smaller than or at most equal
to that in the unclustered network for all T , the transition point where the
clustered GCC size becomes nonzero must be larger than the transition point
for the unclustered network. (Gleeson, 2010)

Therefore, we conclude that clustering acts to increase the percolation threshold

T clustered
c � T unclustered

c (3.2)

To illustrate the role of larger clique sizes on the percolation threshold and the expected
size of the GCC, see Fig 3.1.

3.2 An exact closed-form expression for cliques

Until recently, there were two methods to obtain the gh�1
h polynomials for random graphs

composed of edge-disjoint cliques. These are: i) the exhaustive enumeration of all pos-
sible combinations of occupied and unoccupied edges resulting in an equation, which is
described as an exponentially slow procedure with increasing clique size; or, ii) numerical
evaluation by recursion, which is fast, but yields no equation. Newman had previously
found the polynomials for clique networks via a recursive method [47] to numerically
determine gh�1

h for a h-clique. Newman’s method depends on the probability, P(k | h),
that a particular vertex belongs to a connected cluster of k vertices in an h-clique, including
itself. This is given by Eq 7 in [47] as

P(k | h) =

✓
h �1
k�1

◆
(1�T )k(h�k)P(k | k) (3.3)

where we have relabeled Newman’s p ! T and q ! 1�T to be in-keeping with our nota-
tion. These conditional probabilities are evaluated via recursion from an initial condition
of P(1 | 1) and

P(k | k) = 1�
k�1

Â
l=0

P(l | k) (3.4)

For the purpose of comparison to our closed-form expression which we develop in this
chapter, we have the following equality

gh�1
h
��
uh=1 =

h

Â
k=1

P(k | h) (3.5)

Mann et al [36] recently introduced a closed-form expression for gh�1
h based on

enumerating the ways that a focal vertex can remain unattached to the GCC despite its
involvement in a h-clique. The expression results in a polynomial in increasing powers of
uh with coefficients equal to the total probability that the focal vertex fails to be connected
to the GCC, multiplied by the number of different ways that failure-mode can occur. For
the 2-clique, this method yields Eq 2.49 and hence, we refer to this closed-form expression
as the canonical approach. Each increasing power assumes that an additional neighbour in
the h-clique is itself unattached to the GCC. For example, the first term in the polynomial
for an h-clique is given by

u0
h(1�T )h�1 (3.6)
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Figure 3.1: The fraction of the network occupied by the GCC as a function of bond
occupancy for increasing clique sizes, t with inverted assortativities. Vertices are either
degree 4 or 6 with high (low) degree vertices tending to be clustered in the top (bottom)
experiment. From these experiments we observe that higher-order clustering increases
the percolation threshold and reduces the size of the GCC. However, the dominant effect
depends on the assortativity of the clustering. Scatter points are from Monte Carlo
simulation whilst plotted lines are theoretical results. Figure reproduced from [32].

which accounts for the unique mode in which all of the focal vertex’s neighbours in the
h-clique are attached to the GCC and so all of the edges to the focal vertex must not be
occupied in order that it resides in the RG. The next term accounts for the contribution of
those cases when there is one neighbour that is also in the RG with the focal vertex and so
is linearly dependent on uh . For this to occur, the edge connecting the focal vertex to this
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neighbour is occupied, but all of the remaining edges to the other vertices in the clique are
unoccupied. The first occurrence of this mode is for a 2-clique. The linear term occurs
with probability uT ; since all edges are exhausted, there is no dependence on (1�T ).
Next, consider this mode for the 3-clique, both of the other edges in the clique are required
to be unoccupied, (1�T )2, and there are two ways for this to occur due to the symmetry
of the triangle; hence, we obtain 2u3T (1�T )2. For larger cliques, the coefficients of the
u1

h term depends on the number of ways the focal vertex can connect to a single neighbour
and that they both fail to become connected to the GCC. Since there are only 2 neighbour
vertices in a 3-clique, the polynomial for a triangle terminates at quadratic dependence on
u3. Together, g2

3(u3,T ) is given by

g2
3(u3,T ) = (1�T )2 +2T (1�T )2u3 +(3T 2(1�T )+T 3)u2

3 (3.7)

The clusters for this expression are shown in figure 3.2.

Figure 3.2: A graphical representation of g2
3 from the closed-form expression in Eq 3.7.

Occupied edges are solid lines whilst unoccupied edges are dashed; in each case the focal
vertex is the bottom vertex.

The closed-form expression for the evaluation of gh�1
h now proceeds as follows. Con-

sider a 6-clique whose edges are all occupied and partition the edges into exterior (around
the outside) and interior (through the middle of the clique) sets, see Fig 3.3. For the graph
to be connected, and the focal vertex (bottom vertex in Fig 3.3) to be unattached to the
GCC, all vertices must themselves be unattached to the GCC; hence the expression for g5

6
that accounts for these graphs will be proportional to u5

6. For the fully connected case the
probability, P(0 | h ,0), that the focal vertex remains unattached to the GCC is

P(0 | h ,0) = uh�1T hT h(h�1�2)/2 (3.8)

where we have partitioned the edges into h exterior edges and h(h � 1� 2)/2 interior
edges. The notation P( j | h ,r) indicates a clique of size h with r vertices attached to the
GCC and j edges removed in addition to those that connect to the r removed vertices (see
below).

If one of the interior edges is unoccupied, we have

P(1 | h ,0) = qh ,h(h�1)/2�1uh�1T hT h(h�1�2)/2�1(1�T ) (3.9)

where qn,k is the number of connected graphs of n labeled vertices over k edges (see
appendix B).

It happens that all of the interior edges and one of the exterior edges can be removed
and the graph can remain connected, (Fig 3.3, right). The removal of another edge would
isolate a vertex, and so, the term would no longer require all vertices to be unattached; it
would be proportional to u4

6.
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Figure 3.3: All of the interior and one of the exterior edges can be removed from a clique
and still make a connected graph among all of the vertices.

The enumeration of the contribution of all graphs that can occur that require u5
6 can

now be written as

P(h ,0) =
h(h�1�2)/2+1

Â
j=0

P( j | h ,0) (3.10)

where

P(h ,0) =
h(h�1�2)/2+1

Â
j=0

qh ,h(h�1)/2� ju
h�1T hT h(h�1�2)/2� j(1�T ) j (3.11)

where h(h�1�2)/2+1 is the number of interior edges plus 1, j is an index of the number
of currently removed edges between 0 and all those possible that lead to a connected graph.
The notation P(h ,0) is the probability that an h-clique with 0 removed vertices fails to
attach the focal vertex to the GCC.

We now examine the case where a single neighbour vertex within the h-clique is
attached to the GCC, see Fig 3.4 (left). There are (h �1) vertices that could be attached
and all of the edges which connect to this removed vertex must be (1�T ), of which there
are (h �1). This occurs with probability

P(0 | h ,1) = (h �1)uh�2T h�2T h�1)(h�1�1�2)/2(1�T )h�1 (3.12)

Similarly to the previous case, we can remove edges from this graph and still retain
connectivity among the h �1 vertices that belong to the RG. Removal of a single edge
occurs with probability

P(1,h ,1) = (h �1)qh�1,Xh�1,1uh�2T h�2T (h�1)(h�1�1�2)/2(1�T )h�1+1 (3.13)

where Xh�r, j is the number of edges in the (h � r)-clique minus j

Xh�r, j = (h � r)(h � r�1)/2� j (3.14)

The removal of j 2 [0,E(h �1)] edges, where

E(N) =
N(N �1�2)

2
+1 (3.15)
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occurs with probability

P(h ,1) = (h �1)
E(h�1)

Â
j=0

qh�1,Xh�1, ju
h�2T h�2T (h�1)(h�4)/2� j(1�T )h�1+ j (3.16)

Removal of any further edges would isolate another vertex and so, we have enumerated
all possible graphs that can embed a focal vertex in the RG with uh�2

h vertices from the
h-clique also in the RG. When a second vertex belongs to the GCC in the clique, all

Figure 3.4: (left) A single vertex (red) belongs to the GCC and so there are h �1 occupied
edges to ensure the rest of the subgraph remains in the RG. (right) When two vertices
belong to the GCC we do not specify the state of the edges that connect them together.

of the edges that connect this vertex to those in the RG must be (1�T ). However, the
connections between these removed vertices does need not be unoccupied, see Fig 3.4
(right). Therefore, the total number of edges that are required to be (1�T ) is given by the
quantity

w(r) =
r

Â
i=1

(h � i)� r(r�1)
2

(3.17)

where Âr
i=1(h � i) is the total number of edges that connect to the removed vertices and

r(r�1)/2 is the number of vertices that connect removed vertices to each other; the ones
that aren’t required to be (1�T ).

The expression for a clique of size h with two removed vertices is given by

P(0 | h ,2) =
✓

h �1
2

◆
uh�3T h�3T (h�2)(h�2�1�2)/2(1�T )2(h�2) (3.18)

where w(2) = 2(h �2). All connected graphs among the h �2 vertices in the RG now
occur with total probability

P(h ,2) =
✓

h �1
2

◆E(h�2)

Â
j=0

qh�2,Xh�2, ju
h�3T h�3T (h�2)(h�2�1�2)/2� j

⇥ (1�T )2(h�2)+ j (3.19)

All logic required to extend this expression for all cliques has now been encountered. The
total probability that a focal vertex fails to be attached to the GCC in an h-clique is

gh�1
h =

h�1

Â
r=0

E(h�r)

Â
j=0

P( j | h ,r) (3.20)



36 CHAPTER 3. CLIQUE RANDOM NETWORKS

which is given by

gh�1
h =

h�1

Â
r=0

✓
h �1

r

◆E(h�r)

Â
j=0

qh�r,Xh�r, j(uhT )h�r�1T E(h�r)�1� j(1�T )w(r) (3.21)

Further information on the derivation of this expression, its computation and confirmation
of its exactness, can be found in [36]. To compare the polynomials from Eq 3.21 to those
derived by Newman [47], we set u = 1 in Eq 3.21. In section 3.3 we will consider an
alternative expression of this quantity.

3.3 An alternative closed-form expression of gh�1
h based

on inverse logic

In section 3.2 we reviewed the closed-form expression for gh�1
h introduced by Mann et al

(2021). In this section, we introduce an alternative exact, closed-form expression for gh�1
h

based on the semantic re-interpretation of uh , similar to the discussion in section 2.6.
Consider a 2-clique motif. Let z2 = 1�u2 be the probability that the vertex reached by

traversing a randomly selected edge does belong to the GCC. The probability, f2, that the
edge connects the focal vertex to the GCC is given by f2 = z2T . We observe the following
relation g2 = 1� f2, a manifestation of the property of mutual exclusivity of the binary
percolation equilibrium. It happens that z2 satisfies the following self-consistent expression

z2 = 1�G1(1� z2T ) (3.22)

and the size of the GCC can be calculated as a function of z2 rather than u2 as

S = 1�G0(1� z2T ) (3.23)

This expression of the percolation problem for random graphs appears in Newman and
Ferrario [53] and was discussed in section 2.52. In Fig 3.5, we see the graphical solution
for z2 exhibits a concave appearance, rather than the convex shape of the graphical solution
for u2.

Extending this logic, we next consider the 3-clique. Let z3 = 1�u3 be the probability
that a triangle the focal vertex is a member of is attached to the GCC. The probability that
the focal vertex is also attached to the GCC following bond percolation is

f 2
3 = 2T (1�T )2z3 +(3T 2(1�T )+T 3)z3(2� z3) (3.24)

where each term is shown graphically in Fig 3.6 and the final bracket is 1�u2
3 = z3(2� z3).

This expression is similar to g2
3, depicted in Fig 3.2. We notice that the mode that fails to

connect the focal vertex to the GCC, (1�T )2, in Eq 3.7 is absent from Eq 3.24, however.
The size of the GCC for a mixed 2- and 3-clique network can readily be obtained from
these expressions as

S = 1�G0(1� f2,1� f 2
3 ) (3.25)
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Figure 3.5: The graphical solution of Eq for z = 1�u2 at three values of T . The value of
z = 0 is always a fixed point of the system; at the phase transition an additional solution
appears. The root for each point is marked with a scatter point and corresponds to the case
when v = w and the self-consistent expression for z2 holds. Unlike the case for u2, the
curves are monotonically concave rather than convex. In this example, an Erdős-Renyi
network was used with hki= 3.

Figure 3.6: A graphical representation of f 2
3 from the closed-form expression in Eq 3.24.

Similar to Fig 3.2, occupied edges are solid lines whilst unoccupied edges are dashed; in
each case the focal vertex is the bottom vertex and neighbours in the GCC are depicted
with squares.

where

z2 = 1�G1,2(1� f2,1� f 2
3 ) (3.26a)

z3 = 1�G1,3(1� f2,1� f 2
3 ) (3.26b)

The expression for f h�1
h now follows by simple adaptation of Eq 3.21. Re-labelling

uh ! zh and truncating the expression to only remove up to h �2 vertices to the RG, such
that we always retain at least one connection between the focal vertex and the GCC in the
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clique, we have

f h�1
h =

h�2

Â
r=0

✓
h �1

r

◆E(h�r)

Â
j=0

qh�r,Xh�r, j(1� (1� zh)
h�r�1)

⇥T h�r�1T E(h�r)�1� j(1�T )w(r) (3.27)

The zh values are computed as

z2 = 1�G1,2(1� f2,1� f 2
3 , . . . ,1� f m�1

m ) (3.28a)

z3 = 1�G1,3(1� f2,1� f 2
3 , . . . ,1� f m�1

m ) (3.28b)
...

zm = 1�G1,m(1� f2,1� f 2
3 , . . . ,1� f m�1

m ) (3.28c)

Whilst it may seem a tautological change, the concept of inverting the logic from
connecting to the RG to connecting to the GCC is an important step for the following
section where we define a complement bond percolation problem.

3.4 The complement problem

In section 2.6 we discussed how to calculate the expected size of the GCC for networks
composed of 2-cliques. It was found that there is more than one way to derive the quantity
g2, which is the probability that an ordinary edge fails to connect the focal vertex to the
GCC. In this section we introduce an additional way to characterise the probability g2 as
well as the complement probability 1�g2.

Whilst the expressions for g2 in section 2.6 all have different motivating logic, each
relies on the property of mutual exclusivity of the binary-state percolation equilibrium to
find the size of the GCC. For example, the exact closed-form expression calculates the
probability that a single edge fails to connect the focal vertex; the probability that a degree
k vertex is not connected is then simply gk

2 (since the neighbour states are iid over each
edge) and hence, the total probability that the average vertex does not belong to to the
GCC is G0(g2). The probability that the average vertex does belong to the GCC is 1 minus
this quantity (see Eq 2.46).

In this section, we will consider an alternative method of calculating the size of the
GCC by enumerating all connecting pathways to the GCC. This problem is significantly
more difficult than the previous methods and constitutes the complement problem to the
typical method. It is naturally a harder task because there are many ways in which a degree
k vertex can be connected to the GCC; whilst there is only one unique way that it fails to
be connected. It might be that only 1  k of the edges is occupied or it could be that all k
edges are occupied. Both scenarios are sufficient to connect the vertex to the GCC and all
modes of connection must be accounted for.

Such a scenario is a manifestation of the Anna Karenina principle. The name of the
principle derives from Leo Tolstoy’s 1877 novel Anna Karenina, whose opening line
begins:

All happy families are alike; each unhappy family is unhappy in its own way.

The same principle was stated much earlier by Aristotle [1]
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Again, it is possible to fail in many ways (for evil belongs to the class of the
unlimited, as the Pythagoreans conjectured, and good to that of the limited),
while to succeed is possible only in one way (for which reason also one is
easy and the other difficult – to miss the mark easy, to hit it difficult); for these
reasons also, then, excess and defect are characteristic of vice, and the mean
of virtue; For men are good in but one way, but bad in many.

In this case, the success of the generating function method is based on the uniqueness of
the manner in which a vertex fails to be connected to the GCC, much like the happy family
in Tolstoy’s novel.

The complement expression for each degree k vertex will be in the form of a polynomial
in u and T . For each k we know that the polynomial must satisfy

f k
2 = 1�gk

2 (3.29)

which provides a useful condition to check the exactness of f k
2 once calculated. Consider

a vertex of degree k = 1 that is connected to the GCC. The probability that the edge is
occupied and that the neighbour is connected to the GCC is (1�u2)T . We notice that the
consistency condition 1�g2 = (1�u2)T holds. For a degree k = 2 vertex at least one of
the edges must lead to the GCC; however, both edges could connect the focal vertex. We
have

1�g2
2 = [(1�u2)T ]2 +2(1�u2)T (1�T +u2T ) (3.30)

which is the sum of the probability that both vertices connect to the GCC and the probability
that one edge connects and one edge fails, which can occur in two ways. For k = 3 we
have

f k
2 = [(1�u2)T ]3 +3[(1�u2)T ]2(1�T +u2T )

+3(1�u2)T (1�T +u2T )2 (3.31)

We leave it as an exercise for the reader to confirm this is equal to 1�g3
2 and we display

the first three polynomials graphically in Fig 3.7.

x2 x3 x3

Figure 3.7: A graphical representation of the first 3 polynomials that arise during the
inverse calculation procedure for networks composed of ordinary edges. Occupied edges
are solid lines whilst unoccupied edges are dashed; in each case the focal vertex is the
bottom vertex.

The recipe for a general formula for a degree k vertex is simple: all combinations of
connected and unconnected neighbours, subject to the condition that at least one of them is
occupied, must now be enumerated and multiplied by the number of ways they can occur.
We find the general case for a degree k vertex is given by

1�gk
2 =

k

Â
l=1

✓
k
l

◆
[(1�u2)T ]l[1�T +u2T ]k�l (3.32)
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Notice that the summation index starts at 1, which has the effect of removing the l = 0
term from the polynomial.

We can now calculate the u2 value as

u2 = 1� 1
hki

•

Â
k=0

(k+1)pk+1

k

Â
l=1

✓
k
l

◆
[(1�u2)T ]l[1�T +u2T ]k�l (3.33)

This expression contains all infection pathways to the GCC, and so its size can be calculated
directly rather than using the mutually exclusive trick as the other methods do

S =
1
hki

•

Â
k=0

(k+1)pk+1

k

Â
l=1

✓
k
l

◆
[(1�u2)T ]l[1�T +u2T ]k�l (3.34)

We apply this complement counting procedure to cliques in section 3.4.1.

3.4.1 The complement problem for 3-cliques

In section 3.4 we developed an expression for the expected size of a GCC in a random
graph composed of ordinary edges without using the mutually exclusive logic that the
expressions in section 2.6 rely upon. Here, we extend this approach to enumerate the
probability that a focal vertex involved in t edge-disjoint 3-cliques is connected to the
GCC. For brevity, we reproduce Eq 3.7 below, which is the probability that a vertex in a
triangle fails to be attached to the GCC despite its membership in the triangle

g2
3 = (1�T )2 +2T (1�T )2u3 +(3T 2(1�T )+T 3)u2

3

Consider a focal vertex that is connected to a single triangle. The complement poly-
nomial ( f 2

3 )
1 for the probability that the vertex belongs to the GCC is the sum of all

combinations of possible connection modes. The expression must be equal to 1 minus the
probability that the triangle failed to connect the vertex,

( f 2
3 )

1 = 1�g2
3 (3.35)

We find from section 3.3 that the expression is given by

( f 2
3 )

1 = 2T (1�T )2(1�u3)+(3T 2(1�T )+T 3)(1�u3)
2 (3.36)

The reader can assure themselves that this equality is true by inserting the expression for
g2

3 into Eq 3.35. The corresponding polynomial for a vertex that has membership in 2
edge-disjoint triangles is given by

( f 2
3 )

2 =[2T (1�T )2(1�u3)+(3T 2(1�T )+T 3)(1�u3)
2]2

+2[2T (1�T )2(1�u3)+(3T 2(1�T )+T 3)(1�u3)
2]

⇥ [(1�T )2 +2T (1�T )2u3 +(3T 2(1�T )+T 3)u2
3] (3.37)

The general expression for the probability that a focal vertex attaches to the GCC when it
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is a member of t triangles is given by

1� [g2
3]

t =
t

Â
l=1

✓
t
l

◆
[2T (1�T )2(1�u3)+(3T 2(1�T )+T 3)(1�u3)

2]l

⇥ [(1�T )2 +2T (1�T )2u3 +(3T 2(1�T )+T 3)u2
3]

t�l (3.38)

We can now calculate the u3 as

u3 = 1� 1
hti

t

Â
l=1

✓
t
l

◆
[2T (1�T )2(1�u3)+(3T 2(1�T )+T 3)(1�u3)

2]l

⇥ [(1�T )2 +2T (1�T )2u3 +(3T 2(1�T )+T 3)u2
3]

t�l (3.39)

The GCC is then given by

S =
1
hti

t

Â
l=1

✓
t
l

◆
[2T (1�T )2(1�u3)+(3T 2(1�T )+T 3)(1�u3)

2]l

⇥ [(1�T )2 +2T (1�T )2u3 +(3T 2(1�T )+T 3)u2
3]

t�l (3.40)

3.4.2 The complement problem for mixed clique networks

In sections 3.4 and 3.4.1 we developed an approach for calculating the properties of
networks that have undergone bond percolation that are composed of 2-cliques or 3-cliques.
In this section we continue to investigate the complement problem to account for vertices
that can be members of both single edges and triangles. This problem is harder still, as
connection to the GCC, if one exists, could occur through any of cliques, regardless of
their topology.

For a vertex that belongs to exactly 1 2-clique and 1 3-clique, (s, t) = (1,1), the
probability that it is connected to the GCC using the mutually exclusive logic can readily
be calculated as

P(1,1) = 1�g2g2
3 (3.41)

where the polynomial P(s, t) indicates membership of s 2-cliques and t 3-cliques. Perform-
ing the complement analysis, connection to the GCC could occur via both the 2-clique and
the 3-clique, or just one of them, see Fig 3.8. The probability of this is given by

P(1,1) = f2 f 2
3 +g2 f 2

3 + f2g2
3 (3.42)

where g2 = 1�T +u2T and g2
3 is given by Eq 3.7, both in the canonical form; whilst, f2

and f 2
3 use the alternative expression derived in section 3.3.

Figure 3.8: The possible modes of connection to the GCC for a focal vertex (bottom) with
joint degree (s, t) = (1,1).
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The problem can be formalised by introducing a variable Xh for each clique topology,
h = 2,3, that accounts for the number of connections that are made within each topology.
For example, for the (s, t) = (1,1) focal vertex in Fig 3.8, the variables associated to each
connection mode are (X2 = 1,X3 = 1),(X2 = 0,X3 = 1) and (X2 = 1,X3 = 0). We seek the
probability that at least one connection leads to the GCC, which is

P({X2 � 1}[{X3 � 1} | s, t) = P({X2 = 0}c [{X3 = 0}c | s, t) (3.43a)
= 1�P({X2 = 0}\{X3 = 0} | s, t) (3.43b)
= 1�P(X2 = 0 | s)P(X3 = 0 | t) (3.43c)

where {·}c indicates the complement set. In the final equality, we have recovered the
typical complement solution, that uses the mutually exclusive logic from section 2.6 which,
written in more familiar notation is simply

1�P(X2 = 0 | s)P(X3 = 0 | t) = 1�gs
2g2t

3 (3.44)

We have

1 =
s

Â
i=0

t

Â
j=0

✓
s
i

◆✓
t
j

◆
( f2)

i(g2)
s�i( f 2

3 )
j(g2

3)
t� j (3.45)

and therefore,

P({X2 � 1}[{X3 � 1} | s, t) =
s

Â
i=0

t

Â
j=0

✓
s
i

◆✓
t
j

◆
( f2)

i(g2)
s�i( f 2

3 )
j

⇥ (g2
3)

t� j �gs
2g2t

3 (3.46)

Unlike the expression for ordinary edges in Eq 3.32, we cannot simply start the summations
at 1 to remove the zeroth term and so we are forced to manually remove the i = j = 0 term
explicitly.

The expression for a mixed-clique topology network is then given by the multi-binomial
theorem (not to be confused with the multinomial theorem) which deals with products of
binomial expressions

P(X | s, . . . ,n) =
s

Â
i=0

· · ·
n

Â
j=0

✓
s
i

◆
f i
2gs�i

2 · · ·
✓

n
j

◆
f j
mg(m�1)(n� j)

m �
m

’
l=2

gl�1
l (3.47)

with

X =
m[

l=2
{Xl � 1} (3.48)

and where s is the number of 2-cliques, i is an index over s that counts the number of
occupied 2-cliques, n is the number of m-cliques with j indexing occupied m-cliques. The
final term accounts for the unique mode where all cliques that the focal vertex belongs to
are unoccupied and thus fail to connect it to the GCC.

The calculation of u2 now proceeds as

u2 = 1� 1
hsi

•

Â
s=0

· · ·
•

Â
n=0

sps,...,nP(X | s�1, . . . ,n) (3.49)
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and similarly for each h 2 [2,m]. The size of the GCC is given by

S =
•

Â
s=0

· · ·
•

Â
n=0

ps,...,nP(X | s, . . . ,n) (3.50)

Whilst this may seem a rather complicated way to calculate the GCC, we will see in the
coming chapters the benefit of this method for describing interacting epidemic processes
on networks using bond percolation.

3.5 Chapter summary

This chapter has concerned the ensemble properties of clique networks that are constructed
according to the GCM algorithm. We discussed how subtle differences in the construction
process of these networks can lead to networks with globally distinct percolation prop-
erties. In order to elucidate those properties, a quantity gh�1

h must be enumerated. Our
contribution to the literature was to find a closed-form exact analytical expression for this
quantity through a combinatorial enumeration method that counts the connected subgraphs
that can be induced on a clique. This expression was formulated around the paradigm of
counting the complete set of scenarios in which a randomly selected vertex that belongs
to a clique fails to be attached to the GCC. We then showed that this expression can be
semantically inverted to yield the probability that the vertex we chose was embedded in
the GCC. Utilising the dual description, we reformulated how the generating function
formulation can be used to describe the percolation properties of clique-clustered networks
by introducing the complement problem.





4
CHAPTER FOUR

COMPONENTS OF
CLIQUE RANDOM

NETWORKS

In chapter 2.7 we examined the Molloy-Reed condition which marks the critical point of
tree-like random networks. When the number of cycles in the network has finite measure,
the condition fails to locate the critical point of these networks. In this section we will
derive an expression for the critical point of random graphs that comprise of clique
subgraphs; extending the Molloy-Reed condition. To achieve this, we extend Newman’s
work on the critical point of tree and triangle model graphs [52]. Specifically, we provide
a derivation of the generating function h0(z) from first principle combinatorial arguments,
before using the expression to find the average component size, which in turn is used to
find the critical point of the percolation process. Whilst h0(z) cannot be evaluated directly,
the coefficients can be extracted by Lagrange inversion. We perform this procedure for
single topology networks and then extend these results to GCM graphs composed of an
arbitrary number of clique topologies. We confirm our formulas by comparing them with
Monte Carlo simulations of GCM graphs whose clique membership is Poissonian. We
do not draw conclusions on the effect of clustering on the size distribution of the finite
components due to the presence of as-yet uncontrolled degree assortativity in the Poisson
models; which we hope to investigate further at a future point.

45
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4.1 The distribution of component sizes

Consider a random graph model that is comprised of cliques with sizes h 2 2,3, . . . ,m
where h is an index over the clique sizes. Let h2(z) be the generating function for the
distribution of number of vertices accessible via the vertex at the end of a single edge;
similarly, let h3(z) be the number of vertices accessible via the vertex at a corner of a
triangle and so on for increasing clique sizes. Extrapolating Newman’s results for 2- and
3-cliques [52], these distributions are given by self-consistent expressions

h2(z) = zG1,2(h2(z),h2
3(z), . . . ,h

m�1
m (z)) (4.1a)

h3(z) = zG1,3(h2(z),h2
3(z), . . . ,h

m�1
m (z)) (4.1b)

=
... (4.1c)

hm(z) = zG1,m(h2(z),h2
3(z), . . . ,h

m�1
m (z)) (4.1d)

The probability that a vertex chosen at random belongs to a component of a given size is
generated by

h0(z) = zG0(h2(z),h2
3(z), . . . ,h

m�1
m (z)) (4.2)

It is the aim of this section to formally derive this expression from elementary arguments
in enumerative combinatorics.

Let the probability that a random vertex has n2,n3, . . . ,nm cliques be given by pn2,...,nm ;
and, let i = 1, . . . ,nh be an index over each particular clique of topology h 2 [2,m]. The
probability that a particular h clique leads to t accessible vertices is rt . By definition hh(z)
is given by

hh(z) =
•

Â
t=0

rt zt (4.3)

The probability P(s | n2,n3, . . . ,nm) that a vertex of joint clique membership n2,n3, . . . ,nm
belongs to a component of size s is the probability that the number of vertices reachable
along each of its edges sum to s�1. We construct this as follows. The probability that the
sum of the number of accessible vertices along all edge topologies is s0 is given by

P(s0) =
m

’
h=2

(h�1)nh

’
i=1

rthi
(4.4)

The sum of the accessible vertices along each edge of each topology is

s0 =
m

Â
h=2

(h�1)nh

Â
i=1

thi (4.5)

The limits on the summation and product are due to there being h �1 edges to be counted
per h-clique. To ensure that this sums to the correct value, s�1, we use a Kronecker delta

P(s) = d (s�1,
m

Â
h=2

(h�1)nh

Â
i=1

thi)
m

’
h=2

(h�1)nh

’
i=1

rthi
(4.6)

There are many different combinations that make a given component size; we account for
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each possible way to achieve a given configuration.

P(s | n2, . . . ,nm) =
m

Â
h=2

(h�1)nh

Â
i=0

•

Â
thi=1

d (s�1,
m

Â
h=2

(h�1)nh

Â
i=0

thi)
m

’
h=2

(h�1)nh

’
i=1

rthi
(4.7)

For instance, a vertex that belongs to n2 2-cliques and n3 3-cliques has

P(s | n2,n3) =
•

Â
t21=1

· · ·
•

Â
t2n2

=1
·

•

Â
t31=1

· · ·
•

Â
t3n3

=1
d (s�1,

n2

Â
i=1

thi +
n3

Â
j=1

th j)
n2

’
i=1

rt2i

n3

’
j=1

rt3i
(4.8)

The probability that a randomly chosen vertex belongs to a component of size s and that it
has joint clique degree n2, . . . ,nm is then

P(s,n2, . . . ,nm) = pn2,...,nmP(s | n2, . . . ,nm) (4.9)

We then average over all combinations of n2, . . . ,nm to give the total probability of belong-
ing to a component of size s as

ps =
•

Â
n2=0

· · ·
•

Â
n3=0

pn2,...,nmP(s | n2, . . . ,nm) (4.10)

Finally, we generate the distribution of component sizes as

h0(z) =
•

Â
s=1

pszs (4.11)

Inserting Eq 4.7 we find

h0(z) =
m

Â
h=2

•

Â
nh=0

pn2,...,nm

•

Â
s=1

zs
(h�1)nh

Â
i=0

•

Â
thi=1

d (s�1,
m

Â
h=2

(h�1)nh

Â
i=0

thi)
m

’
h=2

(h�1)nh

’
i=1

rthi

(4.12)

Next, we factor zs = z · zs�1 and evaluate the Kronecker delta

h0(z) = z
m

Â
h=2

•

Â
nh=0

pn2,...,nmz

m
Â

h=2

(h�1)nh
Â

i=0
thi

(h�1)nh

Â
i=0

•

Â
thi=1

m

’
h=2

(h�1)nh

’
i=1

rthi
(4.13)

In the configuration model, a vertex’s edges are independent of one another. This means that
if the distribution of a property of a neighbouring vertex is generated by a given generating
function, then the distribution of the total property summed over all independent edges is
generated by the power of that generating function [54]. More formally, this property is
n-ary multiplicative operation on a distribution f (k) known as an n-fold convolution power

f (k)⇤n = f (k)⇤(n�1)⇤ f (k) (4.14)

where f (k)⇤0 = 1. The convolution power can be expanded into a sum of products of the
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form
f (k)⇤n = Â

k1+···+kn=k

n

’
i=1

f (ki) (4.15)

where each ki > 0. If F(z) generates f (k) then f (k)⇤n is generated by F(x)n. For instance,
consider the component distribution of a vertex with two ordinary edges. We can expand
the power of the generating function as a double sum of products

[h1,2(z)]2 =Â
jk

r jrkz j+k (4.16)

= r0r0z0 +(r0r1 +r1r0)z1 +(r0r2 +r1r1 +r2r0)z2

+(r0r3 +r1r2 +r2r1 +r2r0)z3 + . . . (4.17)

where each power of z is the overall component size whilst the coefficients sum the different
ways in which the configuration can be constructed. The convolution power can be applied
to multivariate generating functions as

f (kkk)⇤n = f (kkk)⇤(n�1) ⇤ f (kkk) (4.18)

with f (kkk) = d (kkk) and
f (kkk)⇤g(kkk) = Â

jjj+kkk=nnn
f ( jjj)g(kkk) (4.19)

where the summation is over all partitions of vector n into two parts. We use this fact to
write the sum of products in Eq 4.13 as powers of h1,h(z) to obtain

h0(z) = z
•

Â
n2=0

. . .
•

Â
nm=0

pn2,...,nm

m

’
h=2

"
•

Â
th=1

rth zth

#(h�1)nh

(4.20)

= z
•

Â
n2=0

. . .
•

Â
nm=0

pn2,...,nm

m

’
h=2

h
hh�1

1,h (z)
inh

(4.21)

= zG0(h2(z),h2
3(z), . . . ,h

m�1
m (z)) (4.22)

which is the postulated expression. Similar arguments can be made for Eqs 4.1 and we
reproduce Newman’s expressions when restricted to 2-clique [51] and 2- and 3-clique
models [52].

4.2 The mean component size

The expectation value for the average component size in the network is found from the
expectation value of h0(z), which is obtained by taking the derivative with respect to z
evaluated at z = 1

hh0i= G0(h2(1), . . . ,hm�1
m (1))+ z

m

Â
n=2

(n �1)
∂G0

∂hn

∂hn
∂ z

����
z=1

(4.23)
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The derivatives ∂zhh(1) are given by

∂hn
∂ z

����
z=1

= G1,n(h2(1), . . . ,hm�1
m (1))+ z

m

Â
µ=2

(n �1)
∂G1,n
∂hµ

∂hµ
∂ z

����
z=1

(4.24)

Inserting the definition of G1,h from Eq 2.18 we obtain a Hessian condition

∂hn
∂ z

����
z=1

= G1,n(h2(1), . . . ,hm�1
m (1))

+ z
m

Â
µ=2

(µ �1)
∂

∂hµ


1

hnni
∂

∂hn
G0(h2(1), . . . ,hm�1

m (1))
�

∂hµ
∂ z

����
z=1

(4.25)

With hµ(1) = 1 from Eq 4.11 we have G1,n(1, . . . ,1) = 1, and so this result can be rewritten
as the following matrix equation

hhh = 111+aaa�1HHHbbb ·hhh (4.26)

where 111 = (1,1, . . .) and hhh = (h02, . . . ,h
0
m) are vectors, HHH is a Hessian of partial derivatives

of G0(h2, . . . ,hm�1
m ) with respect to hµ and hn such that

HHH =

0

BBB@

∂ 2
2,2 ∂ 2

2,3 . . . ∂ 2
2,m

∂ 2
3,2 ∂ 2

3,3 . . . ∂ 2
3,m

...
... . . . ...

∂ 2
m,2 ∂ 2

m,3 . . . ∂ 2
m,m

1

CCCA
(4.27)

while aaa is a diagonal matrix of expected values of the number of cliques of a given
topology and bbb is a diagonal matrix of the number of direct contacts the focal vertex has
per clique such that

aaa =

0

BBB@

hn2i 0 . . . 0
0 hn3i . . . 0
...

... . . . ...
0 0 . . . hnmi

1

CCCA
, bbb =

0

BBB@

1 0 . . . 0
0 2 . . . 0
...

... . . . ...
0 0 . . . m�1

1

CCCA
(4.28)

Rearranging this equation allows us to solve for the derivatives in Eq 4.23 to find the
average component size

(III �aaa�1HHHbbb ) ·HHH = 111 (4.29)

where III is the identity matrix and where diagonal elements are given by 1�∂ 2
n ,n/hnni and

off-diagonal elements are �∂ 2
µ,n/hnµi. For example, consider a random graph with 2- and

3-clique subgraphs. The average component size is given by

hh0i= 1+ hn2ih02(1)+2hn3ih03(1) (4.30)
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Figure 4.1: The average component size for GCM networks consisting of 2- and 3-cliques
whose membership is Poisson distributed with means hn2i and hn3i, respectively. The
average component size diverges at the critical point. This result shows that increasing
the number of triangles reduces the critical point; however, this is due to the degree
assortativity, rather than the effect of clustering.

The derivatives h02(1) and h03(1) are given by

h02(1) = 1+
1

hn2i
∂ 2G0(1,1)

∂h2∂h2
h02(1)+

2
hn2i

∂ 2G0(1,1)
∂h2∂h3

h03(1) (4.31a)

h03(1) = 1+
1

hn3i
∂ 2G0(1,1)

∂h3∂h2
h02(1)+

2
hn3i

∂ 2G0(1,1)
∂h3∂h3

h03(1) (4.31b)

The derivatives of G0 are readily calculated as ∂h2h2G0 = hn2
2i�hn2i, ∂h3h3G0 = hn2

3i�hn3i,
and ∂h2h3G0 = hn2n3i. Inserting these, multiplying Eq 4.31a by hn2i and Eq 4.31b by hn3i
we have

h02(1)(2hn2i�hn2
2i) = hn2i+2hn2n3ih03(1) (4.32a)

h03(1)(3hn3i�2hn2
3i) = hn3i+ hn2n3ih02(1) (4.32b)

Multiplying Eq 4.32a by (3hn3i� 2hn2
3i), inserting the right hand side of Eq 4.32b and

isolating h02(1), we find

h02(1) =
hn2i(3hn3i�2hn2

3i)+ hn2n3ihn3i
(3hn3i�2hn2

3i)(2hn2i�hn2
2i)�2hn2n3i2 (4.33)

A similar process can be applied to Eq 4.32b to obtain an expression for h03(1)

h03(1) =
hn3i(2hn2i�hn2

2i)+ hn2n3ihn2i
(3hn3i�2hn2

3i)(2hn2i�hn2
2i)�2hn2n3i2 (4.34)

These equations can now be used to solve for the average component size in Eq 4.30.
In the general case, when the determinant vanishes, det(III �aaa�1HHHbbb ) = 0, the average

component size diverges, signalling the onset of the giant component. The generalisation
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of the Molloy-Reed condition that indicates when a GCC can be found in the network is

det(III �aaa�1HHHbbb ) 0 (4.35)

For instance, when the network contains only tree-like edges, then the determinant in
Eq 4.35 yields the familiar Molloy-Reed criterion, hn2

2i/hn2i�2 = 0. When the network
consists of tree-like and triangular edges, Eq 4.35 reduces to

✓
hn2

2i�hn2i
hn2i

�1
◆✓

2
hn2

3i�hn3i
hn3i

�1
◆
 2

hn2n3i2

hn2ihn3i
(4.36)

a result obtained by [40, 52]. We can also obtain this result from the divergence of Eq 4.30
(i.e. when the denominator in Eqs 4.32a and 4.32b is zero). This result shows that a GCC
can be formed in three ways: over the entire set of edges, independent of their topology;
or, in either the triangles or the independent edges if the average number of independent
edges or triangles vanishes, respectively. Similar findings occur for random graphs that
have larger cliques [32]. For networks composed of a single clique-type of size n , the
Molloy-Reed criterion is given by

✓
(n �1)

hn2
ni

hnni
�n
◆
 0 (4.37)

4.3 Single topology networks

The generating function h0(z) contains a lot of valuable information regarding the structure
of the network. The coefficients, ps, are the probability that a vertex selected at random
belongs to a component of size s. Unfortunately, we cannot evaluate h0(z) directly;
however, the coefficients of the generating function can, in some cases, be found.

In this section we examine how to extract the coefficients of h0(z) for random graphs
that are constructed from a single clique topology and therefore, build the distribution of
finite component sizes. The GCM construction process gives rise to components that are
comprised of edge-disjoint cliques of a given size, see Fig 4.2. Due to the locally tree-like
property of these components, the accidental joining of two motifs has a vanishingly small
probability. The means that the size distribution of the finite components of GCM networks
composed of h-cliques larger than the 2-clique (ordinary edges) is only non-zero at values
of s given by

s = l(h �1)+1 (4.38)

where l is the number of h-cliques in the component. In this case, the system of equations
given by Eqs 4.1 is reduced to

h0(z) = zG0(h
h�1
h (z)), hh(z) = zG1,h(h

h�1
h (z)) (4.39)

The smallest component possible is an isolated h-clique and therefore the generating
function of the component sizes, h0(z), is of leading order of at least z. This means that
h0(z) contains an overall factor of z which can be divided out. Differentiating h0(z)/z, we
can write the probability of belonging to a cluster of size s by extracting the (s� 1)-th
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S	=	3 S =	5 S =	7 S =	9 S =	11

S =	4 S =	7 S =	10 S =	13 S =	16

.	.	.	

.	.	.	

Figure 4.2: The small components for GCM networks consisting entirely of 3-clique (top)
and 4-clique (bottom) motifs. Only values of s = l(h �1)+1, for integer l = 1,2,3, . . .
and clique size h are permissible under the locally tree-like GCM construction constraints.

coefficient of z in h0(z)/z. We find

ps =
1

(s�1)!


ds�1

dzs�1

✓
h0

z

◆�

z=0
(4.40)

=
1

(s�1)!


ds�2

dzs�2

✓
d
dz

G0(h
h�1
h )

◆�

z=0
(4.41)

The innermost derivative is evaluated as

d
dz

G0(h
h�1
h ) = (h �1)hnhiG1,h(h

h�1
h )hh�2

h
dhh
dz

(4.42)

and so, we obtain

ps =
(h �1)hnhi
(s�1)!


ds�2

dzs�2

✓
G1,h(h

h�1
h )hh�2

h
dhh
dz

◆�
(4.43)

To proceed with the derivative, we must find a way to eliminate the requirement to directly
evaluate hh . This can be achieved by applying the Cauchy formula to the derivatives. In
general, consider a holomorphic generating function F(z1, . . . ,zd) = Ârrr arrrZZZrrr in d variables,
with rrr being a d-tuple of integers and ZZZrrr = Zr1

1 · · ·Zrd
d 2 Cd . To recover the coefficients

{arrr} from F we employ the Cauchy integral formula

arrr =
rrr!

(2pi)d

Z

T
ZZZ�rrrF(zzz)

dZZZ
ZZZ

(4.44)

where T is the torus comprising closed disks about the origin of each coordinate, dZZZ/ZZZ is
(Z1 · · ·Zd)

�1 times the holomorphic volume form dz1 ^ · · ·^dzd and rrr! = r1! · · ·rd!.
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For our case, we have

ds�2

dzs�2

✓
G1,h(h

h�1
h )hh�2

h
dhh
dz

◆
=

(s�2)!
2pi

I 1
zs�2+1 G1,h(h

h�1
h )hh�2

h h0hdz (4.45)

=
(s�2)!

2pi

I [G1,h(h
h�1
h )]s

[hh ]s�1�h+2 dhh (4.46)

=
(s�2)!
(s�h)!

ds�h

dzs�h
⇥
G1,h(zh�1)

⇤s (4.47)

where we inverted Eq 4.39 to consider z as a function of hh and G1,h , before applying the
Cauchy formula once more. Therefore, the s-th coefficient of h0(z) is given by

ps =
(h �1)hnhi
(s�1)!

(s�2)!
(s�h)!

ds�h

dzs�h
⇥
G1,h(zh�1)

⇤s (4.48)

where the derivatives are to be evaluated at z = 0. Importantly, this expression removes the
need to evaluate hh in order to obtain ps. The only exception to this expression is when
s = 1, for which Eq 4.48 incorrectly yields yields p1 = 0/0. However, since the only way
to belong to a component of size 1 is to have no connections to any other vertices, the
probability p1 is trivially equal to the probability of having degree zero

p1 = p0 (4.49)

For ordinary edges, h = 2, and we obtain Newman’s result [51]

ps =
hki

(s�1)!
ds�2

dzs�2 [G1(z)]s (4.50)

where hki= hn2i is the average degree. For 3-cliques, h = 3 and we have

ps =
2hn3i
(s�1)!

(s�2)!
(s�3)!

ds�3

dzs�3

⇥
G1(z2)

⇤s (4.51)

As an example, consider the finite components of a graph that is composed of edge-disjoint
h-cliques. The distribution of the number of cliques a vertex belongs to, nh , is Poisson
distributed with mean hnhi. We have

[G0(zh�1)]s = eshnh izh�1
e�shnh i (4.52)

We will remove the constant e�shnh i for now and also set a = shnhi and h � 1 = m for
ease. Consider the Taylor series of z with a small parameter t ! 0.

ea(z+t)m
=

•

Â
n=0

lim
t!0

dn

dtn ea(z+t)m tn

n!
(4.53)

This is a common trick in combinatorics to find the n-th derivative: express a series
expansion as the exponential generating function before applying a wealth of tools to find
the n-th coefficient in closed-form. The n-th coefficient of this exponential generating
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function is the n-th derivative we seek. We have

ea(z+t)m
=

•

Â
k=0

(a(z+ t)m)k

k!
(4.54)

=
•

Â
k=0

ak

k!

mk

Â
j=0

✓
mk

j

◆
z jtmk� j (4.55)

=
•

Â
k=0

ak

k!
zmk

mk�1

Â
j=0

✓
mk�1

j

◆
z jtmk�1� j (4.56)

=
•

Â
k=0

ak

k!
zmk

mk�1

Â
j=0

j

Â
r=0

✓
mk
r

◆✓
�1
j� r

◆
z jtmk�1� j (4.57)

where in the last step we have used Vandermonde’s identity to expand the binomial
coefficient ✓

m+n
r

◆
=

r

Â
k=0

✓
m
k

◆✓
n

r� k

◆
(4.58)

Consider the terminal negative binomial coefficient in more detail. In general we can write
✓
�r
k

◆
=

1
k!

k�1

’
i=0

(�r� i) (4.59)

=
(�1)k

k!

k�1

’
i=0

(r+ i) (4.60)

=
(�1)k

k!
(r+ k�1)
(r�1)!

(4.61)

= (�1)k
✓

r+ k�1
k

◆
(4.62)

When r = 1 and k = j� r we have
✓

�1
j� r

◆
= (�1) j�r (4.63)

Inserting this back into the main expression we have

ea(z+t)m
=

•

Â
k=0

(azm)k

k!

mk�1

Â
j=0

j

Â
r=0

(mk)!
r!(mk� r)!

(�1) j�rz jtmk�1� j (4.64)

All that remains is to extract the n-th coefficient of this series, which we achieve by
re-indexing the summation and comparing to Eq 4.53 to arrive at

dn

dzn eazm
= eazm

z�n
n

Â
k=0

k

Â
j=0

(�1) j (azm)k (1� jm+ km�n)n

j!(k� j)!
(4.65)
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where (x)n is the Pochhammer symbol

(x)n =
n�1

’
k=0

(x� k) (4.66)

This is equivalent to an exponential Riordan array, Bm = [1,(1+x)m +1]. A Riordan array
is a lower triangular matrix whose elements satisfy a recurrence relation. An exponential
Riordan array is a matrix that is defined by a pair of generating functions f (x) and g(x)
such that the k-th column has exponential generating function g(x) f (x)k/k!, and satisfies
criteria to be defined as a member of a Riordan group. Numerically, all this means is that
we can use a recurrence relation to obtain the n-th derivative as a lower triangular matrix

dn

dxn eaxm
=

 

Â
k2Z

bn,k;m(ax)km�n

!
eaxm

(4.67)

It remains to insert these values into Eq 4.48 to obtain ps. For triangles the n-th derivative
of eaz2

yields a closed-form expression in terms of the Hermite polynomials; which, when
evaluated at z = 0 produces the Hermite numbers, Hn. The Hermite numbers are only
non-zero when s�3 is even; therefore, ps only takes non-zero values for odd s, as predicted
by Eq 4.38. We confirm the accuracy of our expressions by comparing the results against
Monte Carlo simulation in Fig 4.3.

We remark that the coefficients of h0(z) can be found by application of the Cauchy
formula as was performed in section 4.3. The Cauchy formula approach to extract the
coefficients of a generating function is a particular of the Lagrange inversion theorem
[15, 29]. The theorem is as follows. Given f(x) and r(x) are formal power series such
that f(x) = xr(f(x)), then for formal series f (x) the coefficient of f (f(x)) at xn is given

[xn] f (f(x)) = 1
n
[xn�1] f 0(x)rn(x)

where [xn] f (x) is shorthand notation for the coefficient of f (x) at xn. In the network science
literature we substitute f (z) = G0(z), f(z) = h1(z) and r(z) = G1(x) to obtain Newman’s
result [51] directly from the theorem.

4.4 Finite components of arbitrary GCM networks

In section 4.3 we examined GCM networks that are composed of a single clique topology.
In this section we generalise this expression to account for random graphs that are com-
posed of an arbitrary number of edge-disjoint cliques. The evaluation of ps proceeds in the
same manner as previously, until the derivative of G0 is calculated

ps =
1

(s�1)!


ds�2

dzs�2

✓
d
dz

G0(h2(z),h2
3(z), . . . ,h

m�1
m (z))

◆�

z=0
(4.68)

where the derivative is evaluated as

d
dz

G0(h2(z),h2
3(z), . . . ,h

m�1
m (z)) = Â

h
(h �1)hnhiG1,h(h

h�1
h )hh�2

h
dhh
dz

(4.69)
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Figure 4.3: The small components for GCM networks consisting entirely of edge-disjoint
m-cliques. Scatter points are the average of 250 repeats of Monte Carlo simulation on
networks with 2e5 vertices with clique membership Poisson distributed with fixed first
moment (m�1)hkmi= 1 across all experiments. The curves are the theoretical results of
Eq 4.48, evaluating the required derivatives of the Poisson generating function using the
Riordan array recurrence relation given in 4.67.

By the linearity of the derivative operator, the Cauchy formula now acts on each term in
the sum and so we find

ps = Â
h

(h �1)hnhi
(s�1)!


ds�2

dzs�2

✓
G1,h(h

h�1
h )hh�2

h
dhh
dz

◆�
(4.70)

Expanding this expression with the Cauchy formula, inverting hh(z) = zG1,h(h2, . . . ,hm�1
m )

for z and considering each hh(z) as an independent holomorphic variable (so we can undo
the Cauchy formula) we have

ps = Â
h

(h �1)hnhi
(s�1)!

(s�2)!
(s�h)!

ds�h

dzs�h
⇥
G1,h(zh�1)

⇤s (4.71)

This expression is simply the sum of the components along each edge topology in Eq 4.48.
We use this expression to investigate the effect of clustering on the finite components of
mixed 2- and 3-clique networks in Fig 4.4. We notice that clustering tends to increase ps
for a given s; however, we will not draw premature conclusions until further studies have
been conducted that also control the overall degree assortativity.

An interesting observation is that the distribution of ps can oscillate at small s before it
converges to its asymptote as s grows, see (n2,n3) = (0.25,0.625) in Fig 4.4. We believe
this is due to the mixing of the components that can be made from 2-cliques and those that
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Figure 4.4: The small components for GCM networks consisting of edge-disjoint 2- and
3-cliques. Scatter points are the average of 20 repeats of Monte Carlo simulation on
networks with 2e5 vertices with clique membership Poisson distributed with fixed first
moment hn2i+2hn3i= 1.5 across all experiments. The curves are the theoretical results
of Eq 4.71.

can be made from 3-cliques. For instance, triangles cannot contribute to components of
size s = 2; however, components of size s = 3 can be made either 2- or 3-clique motifs.
Therefore, the number of available vertices to contribute to each value of s is different.

4.5 Bond percolation threshold

We now turn our attention to the location of the critical point for the formation of a GCC
among networks comprised entirely of h-cliques during bond percolation. To obtain the
percolation properties of the network, we have to evaluate the derivative of gh�1

h with
respect to u. This derivative is found to be

∂gh�1
h

∂u
=

h�1

Â
r=0

✓
h �1

r

◆
(h � r�1)

E(h�r)

Â
j=0

qh�r,Xh�r, j

⇥ (uT )h�r�2T E(h�r)� j(1�T )w(r) (4.72)
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The percolation threshold is then obtained by evaluating the derivative at u = 1, and
following a similar analysis to the tree-like topology we obtain

∂gh�1
h

∂u

����
u=1

hn2
h �nhi
hnhi

= 1 (4.73)

where hnhi is the mean number of h-cliques a vertex belongs to. For example, the
derivative for 3-cliques is found to be

∂g2
3

∂u
= 2T (1�T )2 +6uT 2(1�T )+2uT 3 (4.74)

Evaluated at u = 1 and inserted into Eq 4.73 we have

2(T 2 +T �T 3)
hn2

3 �n3i
hn3i

�1 = 0 (4.75)

For networks in which a vertex’s membership in a given clique size is Poisson distributed,
we can reduce hn2

h � nhi/hnhi to simply hnhi. Further, factorising the pre-factor in T
we have 2T (1+T �T 2)hn3i� 1 = 0. Using the discriminant, this cubic expression is
reducible in T into the quadratic form whose roots yield the critical transmissibilities of
the model, and hence, the critical point occurs at

T ⇤
Poisson =�1+2

s

1+
1

hn3i
(4.76)

We repeat the calculation for the 4-clique to obtain the following polynomial

∂g3
4

∂u

����
u=1

= 3T (�2T 5 +7T 4 �7T 3 +2T +1) (4.77)

The Galois group of the quintic part is the symmetric group, S5, which means that a
root cannot be found. It is unlikely that percolation properties of larger cliques can
be resolved analytically due to the Abel-Ruffini theorem, which states that there is no
solution in radicals to general polynomial equations of degree five or higher with arbitrary
coefficients.

4.6 Chapter summary

In this chapter we have investigated the properties of the finite (non-giant) components of
clustered networks. We first derived an expression for h0(z) from first principles before
using this expression to find the mean component size for GCM networks. We showed
that the expression diverged at the critical point of the model when an infinite cluster
first appears. We then turned our attention to the analytical form of the distribution of
component sizes for random networks; restricting our focus to networks composed of
a single clique topology. We found that the component size distribution took non-zero
values only at specific sizes and supported this by a simple counting argument. We then
generalised this to GCM networks with multiple clique topologies. In all cases we found
excellent agreement between the analytical expressions and Monte Carlo simulation. The
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bond percolation threshold of clique networks was then derived and it was postulated that
the roots of the resulting polynomials could not be deduced, in this manner, for cliques
larger than h = 5.

Upon first inspection, for Poisson distributed motifs with fixed first moment, our results
show that larger clique sizes increase the component probability distribution ps. Further,
increased clustering coefficient for fixed clique size mixed-topology GCM networks also
increases ps. This is supported by the reduction in the percolation threshold, evidenced
from the divergence of the mean component size for these networks. However, it is
well-known that, for Poisson distributed GCM networks, clustering also increases the
degree assortativity; therefore, more experiments are required, using the degree-d model,
to understand the role of assortativity.





5
CHAPTER FIVE

FINDING gh FOR
ARBITRARY SUBGRAPHS

In the preceding chapters, we have examined methods to construct the GCC for random
graphs that are comprised of clique subgraphs. Cliques have perfect symmetry. As we
saw in section 3.2, a closed-form, exact expression for gh�1

h for all sizes of clique can be
written. In this chapter we discuss subgraphs that are not cliques and thus, in general, do
not have perfect symmetry. Of course, there are many other motifs that are symmetric; for
instance chordless cycles, or k-regular motifs, see Fig 5.1.

…

Figure 5.1: A series of chordless cycles (curled brackets) with increasing size; and, an
example of a k-regular subgraph on 6 vertices (right). The 3-clique also belongs to both of
these sets.

We will examine the gh expression for these special cases and discover a hidden
complexity with these motifs. We will show that the important property that cliques hold is
not symmetry, rather, it is the induction of a clique subgraph of size h � r when r vertices
are removed from an h-clique as well as the fact that all possible edges between each
vertex pairs are present. These properties motivate the recursion relation derived by
Gilbert [17] and later Newman [47]. We will formalise the exact enumeration of gh for
arbitrary motifs, which is NP-hard, before introducing a counting methodology based on
the closed-form expression for cliques, see chapter 3.2. In the final part of this chapter we
then consider a different approach, based on the SIR equivalence, that approximates gh by
enumerating the non-self-intersecting walks in a motif.

61
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5.1 Chordless cycles

Perhaps the simplest set of subgraphs to consider is the set of chordless cycles of increasing
vertex count. In the ordinary configuration model, chordless cycles of length O(logN) are
formed accidentally during the construction process [56]; therefore, the resulting graphs are
only guaranteed to be locally tree-like. In this section we expressly incorporate chordless
cycles into the GCM to investigate their properties under bond percolation. It happens, due
to their simplicity, that a closed-form expression for the probability that a focal vertex fails
to be connected to the GCC despite its membership in an h-cycle, g2

h , can be obtained [32].
The exponent of g2

h is always 2 because all vertices in a chordless h-cycle have degree 2.
To see this, consider a chordless h-cycle with all of its edges occupied, and hence, all of
its vertices in the unconnected state. A single edge can be unoccupied before a vertex is
removed and so the coefficient of uh�1 has two terms

P(h ,0) =
1

Â
j=0

✓
h
j

◆
(uT )h�1T 1� j(1�T ) j (5.1)

Subsequent removal of an edge will isolate a vertex, and so, all states belonging to the
term proportional to uh�1 have been exhausted.

We now examine the case that a single neighbour vertex within the cycle belongs to
the GCC. For the rest of the cycle to remain unattached to the GCC, both of the edges that
connect to this vertex must be unoccupied. There are h �1 vertices to choose from and so,
we have

P(h ,1) =
✓

h �1
1

◆
(uT )h�1�1(1�T )2 (5.2)

No edges can be removed from this motif without further isolation of a vertex, indicating
that the coefficient of uh�2 is complete. Considering the next term, uh�3, we find

P(h ,2) =
✓

h �2
1

◆
(uT )h�1�2(1�T )2 (5.3)

More generally for the removal of r vertices we have

h�1

Â
r=1

P(h ,r) =
h�1

Â
r=1

✓
h � r

1

◆
(uT )h�1�r(1�T )(r+1)�(r�1) (5.4)

where the power of (1�T ) is the number of edges that no longer have an occupied path
to the focal vertex, (r+ 1), minus the number within the removed component that we
cannot specify the state of (r�1); this evaluates to (r+1)� (r�1) = 2; since, only the
connections to the focal vertex are required to be unoccupied. The summation over r
extends to r = h �1, such that the power of u on the final term is u0, which corresponds
to an isolated focal vertex, with both of its edges unoccupied. The final expression for
the total probability that a focal vertex remains in the RG despite its membership in an h
cycle, g2

h , requires the combination of Eq 5.1 and Eq 5.4 into a single expression. The
most straightforward way to achieve this is simply to sum the independent terms

g2
h = P(h ,0)+

h�1

Â
r=1

P(h ,r) (5.5)
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where

P(h ,0)+
h�1

Â
r=1

P(h ,r) =
1

Â
j=0

✓
h
j

◆
(uT )h�1T 1� j(1�T ) j

+
h�1

Â
r=1

✓
h � r

1

◆
(uT )h�1�r(1�T )(r+1)�(r�1) (5.6)

With an exact closed-form expression for g2
h for chordless cycles Mann et al [32] showed

that cycles of increasing size behave increasingly similar to the 2-clique approximation,
see Fig 5.2. In other words, the correlations induced by the presence of a closed loop is
largest for triangles and becomes reduced as the path length of the loop grows. This is the
foundation for the success of the tree-like approximation: the properties induced by short
cycles disappear as the cycle length approaches logN ! •.

!

Figure 5.2: The size of the GCC for random graphs composed of chordless cycles where
each vertex has a fixed degree k = 4 and is therefore a member of two cycles. Intuitively,
larger cycles behave increasingly tree-like. Scatter points are from Monte Carlo simulation
whilst plotted lines are theoretical results. Figure reproduced from [32].

5.2 k-regular subgraphs

In this section we examine the possibility of a closed-form percolation expression for
subgraphs whose vertices are degree equivalent to one another (k-regular), but that are not
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either cliques or chordless cycles. We demonstrate that the expression for these subgraphs
is not readily obtained in closed-form for all sizes, unlike the expressions for chordless
cycles and cliques. Any formula that can be obtained for a class of subgraphs appears to
be distinct from the expressions for other, seemingly related, motifs. An exact expression
for these motifs therefore relies upon an exhaustive enumeration of states once more. For
this purpose, consider a subgraph comprising of h � 6 2 2N degree equivalent vertices
in which each vertex has degree 3, see Fig 5.1 (right). (Note the motif cannot be formed
for odd h .) Application of the enumeration scheme developed in section 3.2 to obtain the
probability that a particular focal vertex does not become attached to the GCC through its
role in this motif proceeds as follows. The subgraph can lose up to h/2+1 edges before a
vertex is isolated, the probability that j 2 [0,h/2+1] are removed is given by

P( j | h ,0) = q0h ,h+h/2� ju
h�1T hT h/2� j(1�T ) j (5.7)

where q0n,k is the number of conencted graphs that can be made with n vertices and k edges
that are also subgraphs of the original motif. Hence the total probability P(h ,0) that we
can still retain a connected graph despite the removal of edges is

P(h ,0) =
h/2+1

Â
j=0

P( j | h ,0) (5.8)

With any further edge removal, a vertex is pruned from the motif. The resulting cycle has
h �3 deg(3) and 3 deg(2) sites in the subgraph.

There are now h/2� 1 interior edges and h � 2 exterior edges remaining from the
original set of edges. It happens that we can remove all of the remaining interior edges and
proceed without vertex-isolation; however, we cannot remove any of the exterior edges.
Thus, the total probability P(h ,1) that describes the motif with one vertex removed is
given by

P(h ,1) = (h �1)
h/2�1

Â
j=0

q0h�1,h�2+h/2�1� ju
h�2

⇥T h�2T h/2�1� j(1�T ) j+3 (5.9)

At this point, the subgraph now contains mixed degree vertices. We must distinguish
upon whether the vertex we now remove has degree 2 or degree 3 as removing either
vertex will lead to different probabilities for successive counting. Further, considering
Fig 5.3 where h = 10, supposing we had removed a degree 3 vertex from the original
motif (left) to generate the middle motif, we must distinguish whether the neighbours of
the currently considered deg(3) vertex are themselves deg(2) and deg(3) (Fig 5.3 blue
vertex) or are both deg(3) (Fig 5.3 red vertex) as in each case, the resulting probabilities for
further counting are non-equivalent; they are history dependent. And, whilst it is certainly
theoretically possible to enumerate the combinations into a single expression, it seems
unlikely that such a formula would be readily derived, or that it would be transferable
to other related cycles that differ even by a single edge. Similar complexities arise for
other k-regular motifs and this is the basis of the complexity in enumerating percolation
formulas for arbitrary subgraphs [36].
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Figure 5.3: A k-regular cycle on 10 vertices where each vertex also has a chord (left). The
removal of a vertex (dashed edges) results in 3⇥deg(2) sites within the motif, in addition
to the original (h �3)⇥deg(3) sites. Further counting depends on the degree of the focal
vertex as well as the neighbours of the focal vertex. For instance, the blue and red vertices
have neighbours of different degree. Both of these factors lead to different probabilities
when enumerated, and so, complicate the counting procedure.

5.3 Arbitrary subgraphs

Across the preceding sections, all of the subgraphs that we have considered so far have
been symmetric prior to percolation. In this section we relax this condition to consider
subgraphs whose topology is arbitrary. A closed-form solution for subgraphs with arbitrary
topology would render the percolation problem on random graphs exactly solved for all
graphs. One could imagine considering the largest Hamiltonian cycle that could be formed
from the graph as a subgraph for the model. It is speculated that this might capture the
long range correlations between distant neighbours in networks with more accuracy than
an edge-disjoint clique cover perhaps could. Consider the specific examples of subgraphs

Figure 5.4: Subgraphs with arbitrary topology.

with arbitrary topology in 5.4. From left to right we have: a subgraph on 4 vertices with
one chord; a 5-vertex chorded subgraph with a single chord, a 2-chord 5-vertex subgraph
(where the choice of the two distinct options for placing the second chord are highlighted
in blue and red); and finally, two distinct single chord subgraphs on 6 vertices. It is clear
that as the cycles become larger, there are multiple locations to place a single additional
chord, and in the case of a 6-vertex cycle, even the location of the first chord is not unique.

Karrer and Newman [25] introduced a framework for the elucidation of the percolation
properties of graphs comprised of subgraphs with arbitrary topologies. Their model is
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similar to the system of equations in Eq 2.47; where each clique topology has its own
argument in the G0 generating function and its own excess degree distribution. Now, an
argument for each unique site within a subgraph must be created as well as an excess
degree distribution. For instance, consider a network composed of the 4-vertex chorded
cycle in Fig 5.4. There are two unique sites in the cycle: 2⇥deg(2) sites and 2⇥deg(3)
sites. A vertex that is a member of more than one 4-cycle could be the deg(2) site in one
of the cycles and the deg(3) site in the other, see Fig 5.5. Given this, the joint probability

Figure 5.5: A focal vertex (blue) that is a member of two chorded 4-cycles as both the
deg(2) site and the deg(3) site.

of choosing a vertex at random that is a member of i chorded 4-cycles as the deg(2) site
and j chorded 4-cycles as the deg(3) site is pi j; which is generated by

G0(x2,x3) = Â
i=0

Â
j=0

pi jxi
2x j

3 (5.10)

Each site has an excess degree distribution which are respectively generated as

G1,2(x2,x3) =
1
hii

∂G0(x2,x3)

∂x2
(5.11)

G1,3(x2,x3) =
1
h ji

∂G0(x2,x3)

∂x3
(5.12)

where hii is the number of deg(2) sites that the average vertex belongs to in the network
whilst h ji is the average number of deg(3) sites.

The probability that a deg(2)-site neighbour to a particular focal vertex does not belong
to the GCC is u2; with u3 similarly defined for the deg(3) site. The probability that a
focal vertex fails to be attached to the GCC despite its membership in a deg(3) site is
g2

2(u2,u3); whilst, the probability that a focal vertex in a deg(3) site fails to be attached is
g3

3(u2,u3). We notice that the gh
h expressions are now coupled in both u variables. Once

the gh
h expressions have been evaluated (which we will discuss in a moment), the uh values

can be calculated as
uh = G1,h(g2

2,g
3
3) (5.13)

and the size of the GCC is given by

S = 1�G0(g2
2,g

3
3) (5.14)

Extrapolating this logic, and with a slight notational change, we now arrive at Karrer
and Newman’s model as follows. The joint probability distribution for the probability of
randomly selecting a vertex that is a member of m topologically distinct cycles, each of
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which has mn different sites is
p11...1n...m1...mn (5.15)

which is generated as

G0(x11 , . . . ,xmn) =
•

Â
k11=0

· · ·
•

Â
kmn=0

p11...mnx
k11
11

· · ·xkmn
mn (5.16)

The excess degree distribution for each edge-topology is defined as

G1,i j =
1

hki ji
∂G0

∂xi j

(5.17)

The probability that a vertex in the i-th site of an h-cycle fails to belong to the GCC is uhi ;
which is generated as

uhi = G1,hi(g11 , . . . ,gmn) (5.18)

where we have dropped the exponent notation of ghi , the probability that a vertex in an hi
site fails to be attached to the GCC, for generality. The size of the GCC now follows from

S = 1�G0(g11 , . . . ,gmn) (5.19)

As with the other methods that are constructed in this way, the percolation threshold can
be found by performing a linear stability analysis around the fixed point uhi = 1, 8hi 2
[h1,hn], 8h 2 [1,m].

It remains now to calculate the ghi polynomial for each site of each subgraph that
is included in the model; a process which is described by Karrer and Newman to be
exponentially slow [25] and we recognise as NP-hard. Extending their work, we now
outline our own counting method to enumerate the required combinations to find an exact
expression for ghi for arbitrary motifs. Consider a motif h with hN vertices and hn distinct,
labelled sites. We consider sites to be equivalent if the motif has either rotational or
reflectional symmetry; otherwise if a symmetry operation cannot be performed, the sites
are distinct. For example, the number of sites for each motif in Fig 5.4 (left to right) is
given by: 2 for the 4 cycle, 3 for the single chorded 5-cycle, 3 for the red and 5 for the
blue 2-chorded cycles, 2 and 4 for the 1-chord 6-cycles.

Let the probability that a vertex in site hi fails to become attached to the GCC, despite
its membership in the motif, be given by ghi . The probability that a vertex in a h j-
site is unattached to the GCC is given by uh j . Consider the set, {uh}, that contains all
uh j ,8 j 2 [1,hn] where each element uh j is inserted as many times as it occurs in the motif.
For instance, for the chorded 4-cycle the set would be {u4} = {u42 ,u42 ,u43 ,u43}; since,
there are two deg(2) sites and two deg(3) sites.

The form of ghi is a polynomial in all combinations of the elements of {uh}, including
the empty set, excluding a single copy of uhi , which is currently being considered as the
focal vertex. For instance, g43 is a polynomial in all combinations of {u42 ,u42 ,u43} such
that

g43 = C{42,42,43}+C{42,42}u43 +2C{42,43}u42

+2C{42}u42u43 +C{43}(u42)
2 +C{Ø}(u42)

2u43 (5.20)

where Cl are the as yet undetermined coefficients; the subscript l = {· · ·} indicates the
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identities of vertices in the motif that belong to the GCC, which are subsets of {uh}. Each
coefficient is itself a polynomial of the form

Cl =
E

Â
r=0

q0n,k�rT
k�r(1�T )W (k)+r (5.21)

where n = N � card(l ) and k are the number of vertices and edges in the motif at the
current starting point, respectively. The number of edges, k is given by the maximum
number of edges that can be occupied without attaching vertices in the RG to the GCC.
The number of connected graphs that can be made from n vertices and k edges that are also
subgraphs of the original motif is given by q0n,k. Index r accounts for the number of edges,
up to a maximum of E, that can be removed whilst still being able to make a connected
graph of size equal to N � card(l ). Note, E is not simply n� 1; since, we impose that
the graphs be subgraphs of the original motif; it is determined by the topology of the
specific motif. Finally, W (k) is a function that accounts for the number of unoccupied
edges required to ensure that vertices in the RG do not have an occupied path to vertices in
the GCC. All of these quantities are dependent on the topology of the original motif as
well as the set of removed vertices, {l}.

Consider once more the calculation of g43; with reference to the polynomial in Eq 5.20
we now examine the coefficient C{Ø} that accounts for the case where all vertices belong
to the RG. The polynomial is given by

C{Ø}(u42)
2u43 = T 3�q04,5T 2 +q04,4T (1�T )+q04,3(1�T )2�(u42)

2u43 (5.22)

The number of connected graphs that are subgraphs of the original motif can be calculated
by enumerating the number of ways that the edges can be removed less those combinations
that isolate a vertex; we have

q04,5 =
✓

5
0

◆
, q04,4 =

✓
5
1

◆
, q04,3 =

✓
5
2

◆
�2, (5.23)

Subsequent edge removal would isolate a vertex, and so, we have enumerated all graphs.
Next, assuming that the 43 site belongs to the GCC we have

C{43}(u42)
2 = T 2(1�T )3(u42)

2 (5.24)

If one of the 42 sites belong to the GCC instead C{42} can be constructed as

2C{42}u42u43 = 2
✓

T 3(1�T )2 +

✓
3
1

◆
T 2(1�T )3

◆
u42u43 (5.25)

The counting process can be continued for each term in the polynomial expression for g43
where we find

2C{42,43}u42 = 2T (1�T )3u42 (5.26a)

C{42,42}u43 = T (1�T )4u43 (5.26b)

C{42,42,43} = (1�T )3 (5.26c)

Having derived an exact formula g43, one must now consider the 42 site as the focal vertex
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and derive the probability that it remains unattached to the GCC, which we do not perform
here. It is clear that the expressions that are obtained by this enumeration method are not
transferable to other motifs, even if they differ by the presence, or indeed the placing of a
single chord across the substrate motif.

We also observe that for cliques, the number of connected graphs qn,k is a known result
from graph theory; whilst, in general the number of connected subgraphs q0n,k depends on
the motif topology. When all connections between each vertex pair are possible in the
substrate motif, q0n,k = qn,k.

5.4 An approximate method based on non-self

intersecting walks

In section 5.3 we discussed Karrer and Newman’s formulation [25] for deriving the
probability, ghi , that a vertex in an hi site is attached to the RG for arbitrary subgraphs. 1

Mann et al developed a method that yields an approximate formula for the ghi probability
for arbitrary subgraphs based on enumerating the non-self intersecting walks within a
motif.

The approximation is based on Miller’s exact logic for triangles from [39] (see Eq A.3
from appendix A). In essence, for cliques, the enumeration of gh�1

h considers a vertex
as the focal vertex and then, for each neighbour in the clique, considers the probability
associated to each non-self-intersecting walk from the neighbour to the focal vertex as
a possible connection pathway. Other vertices that are in the connection pathway also
belong to the GCC; whilst vertices outside of the connection pathway belong to the RG. As
with the exact formula, edges that connect vertices in the RG to vertices in the GCC must
fail to be occupied. Thus, we must enumerate all walks back to the focal vertex starting
from each neighbour. We will spare the reader the derivation of the expression and instead
will consider a motivating example using the 4-clique. The key to understanding the
formulation is that walks of a given length in a clique have equal probability of occurring.
Therefore, we must count all walks of a given length through the clique from all potential
source vertices to the focal vertex and then enumerate the probability of this walk. We
find that the probability that a vertex involved in a 4-clique belonging to a finite-sized
component during bond percolation is given by

g3
4 =(1�T +u4T )3 �6(1�u4)u4T 2(1�T )(1�u4T 2)2(1� (1�u4)T )

�6(1�u4)u2
4T 3(1�T )3 (5.27)

The rationalisation of this expression is quite simple and can be read from left to right as
follows. Consider a 4-clique and choose a vertex to be the focal vertex. The first cubic
term relates to the failure of the three direct-contact vertices to connect the focal vertex
to the GCC. These are 0-hop walks as they concern the direct linkage to the focal vertex.
Labeling the vertices according to Fig 5.6 (left) we notice that if vertex 1 fails to connect
the focal vertex directly, it can still connect it through edges in the clique. There are two

1Retrospectively, it is clear that the counting scheme that we formalised in section 5.3 can readily be
converted to an algorithm that yields a symbolic expression for the polynomials we require. However, Mann
et al were not aware of Karrer and Newman’s paper [25] (and hence the generating function formulation for
arbitrary subgraphs) at the time of writing [33] and [32].
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Figure 5.6: The 4-clique (left) with labelled vertex sites and focal vertex chosen to be
vertex 0. Assuming that vertex 1 is attached to the GCC (diamond checked red vertex), then
there are two types of non-direct walks back to the focal vertex. The 1-hop walk (center)
requires that vertex 2 is not attached to the GCC (vertical green pattern). Bond occupation
(solid edges) must occur through the path [1,2,0], which we term the success path. The
state of vertex 3 is unspecified by the success path (grey checked pattern). However, all
other paths, from any starting vertex, that do not cause intersection with the success path,
must fail to attach vertex 0 to the GCC (red dashed edges). We term these the failure paths
for the given success path under consideration. For the center success path, the failure
paths are [1,3,0], [2,3,0] and [3,0]. The first two assume that vertex 3 is in state u4, while
the final path assumes vertex 3 was attached to the GCC prior to this.

distinct paths that can be made back to the focal vertex: 1-hop (center) and 2-hop (right)
walks.

The second term in Eq 5.27 concerns the 1-hop walks in the clique. Consider (for
instance) that vertex 1 is the source vertex. For this walk to occur vertex 1 must be
attached to the GCC with probability (1�u4), but it has failed to attach the focal vertex
directly with probability 1�T . vertex 2 (for instance) must become attached through
bond occupation from vertex 1 with probability u4T , which then goes on to connect to the
focal vertex through its direct edge with probability T . We then must ensure that all the
remaining pieces in the clique that have not been assigned a probability must be dealt with,
we cannot leave them unaccounted for. Both vertex 1 and vertex 2 must fail to exercise
their alternative 1-hop walks back to the focal vertex. The probability of each of these
walks failing is 1�u4T 2. However, it might happen that vertex 3 was also attached to the
GCC, in which case, it must fail directly with probability (1�u4)(1�T ). The factor of 6
accounts for the path multiplicity; each vertex has 2 1-hop walks back to the focal vertex.
For instance, we depicted the success path in Fig 5.6 as [1,2,0], however, another valid
1-hop walk from 1 is [1,3,0].

The final term is much easier to rationalise. Consider again that vertex 1 is attached to
the GCC, but that it has failed directly to connect to the focal vertex, Fig 5.6. The 2-hop
walk [0,2,3,0] back to the focal vertex around the clique must fix both vertices 2 and 3 to
be unattached and involve three bond occupation events. Further, both interior edges in the
clique must not short-circuit the 2-hop walk into a 1-hop walk, so they too, in addition to
vertex 1s direct edge, must be unoccupied. The other 2-hop walk starting from 1 is given
by [1,3,2,0].

The method is abstracted to all clique sizes [32] where the magnitude of the error of
the approximation is also discussed. A series of applications of this method were presented
[33]; including multilayer models, arbitrary motifs and semi-directed networks.

The probabilities of not becoming part of the GCC through the 4-cycle sites, g43 and
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g42 are given by

g43 = [u42 +(1�u42)(1�T )]2[u43 +(1�u43)(1�T )]

�2(1�u42)(1�T )2u42u43T 3

�2(1�u42)(1�T )u43T 2(1�u42T 2)(1� (1�u42)T )

�2(1�u43)(1�T )u42T 2(1�u42T 2)(1� (1�u42)T ) (5.28)

and

g42 = [u43 +(1�u43)(1�T )]2

�2(1�T )2(1�u43)u42u43T 3

�2(1�u42)(1�T )2u2
43

T 3

�2(1�u42)u43T 2(1�u43T 2)2(1� (1�u43)T )

�2(1�T )(1�u43)u43T 2(1�u42T 2)(1� (1�u42)T ) (5.29)

These equations are understood as follows; firstly, we pick a unique vertex-site in the cycle
as the focal vertex for the cycle under consideration. The first term in its gt equation is the
product of probabilities that each direct-contact edge fails to connect it to the GCC. The
leading term of g43 is cubic in [ut +(1�ut)(1�T )] while g42 is quadratic. The remaining
terms capture the probabilities that vertices use cycle-edges to connect the focal vertex to
the GCC. An interesting observation is that this method essentially enumerates connected
SIR trees of a given size in a clique motif. In reference to the percolation-SIR equivalence,
there must also be an equivalence between the probability of all connected trees and all
connected graphs on a clique; a relation we hope to investigate further.

5.5 Chapter summary

This chapter has discussed the application of the generating function formulation to
GCM networks that are composed of non-clique subgraphs. This composed of applying
Karrer and Newman’s [25] generalised system of equations and finding the appropriate
gh expression, which is an NP hard problem. To find gh , we applied the combinatorial
counting algorithm which previously afforded the closed-form clique expression in chapter
3. We successfully found the percolation formula for chordless cycles in closed-form. It
is unlikely, however, that a general closed-form expression could be found beyond the
expressions presented in this chapter simply due to the complexity and uniqueness of each
distinct motif. We believe there is more work to be done in characterising the effects of
subtle changes in topology or edge arrangement for a family of subgraphs, with a given
vertex count, that lie within the bounds of the chordless cycle and the clique. In the final
section, we reviewed an alternative method to find gh based on the SIR equivalence of
finding connected infection trees within a motif. Whilst not exact, this method has proven
to be very accurate for a range of networked phenomena including: semi-directed, modular,
multilayer and networks with arbitrary motifs [32, 33].





6
CHAPTER SIX

DEGREE CORRELATIONS
IN CLIQUE RANDOM

NETWORKS

Correlations among the degrees of vertices in random graphs often occur when clustering
is present. In this chapter we define a joint-degree correlation function for vertices in
the giant component of clustered configuration model networks which are comprised of
higher-order subgraphs. We use this model to investigate, in detail, the organisation among
nearest-neighbour subgraphs for random graphs as a function of subgraph topology as
well as clustering. We find an expression for the average joint degree of a neighbour in
the giant component at the critical point for these networks. Finally, we introduce a novel
edge-disjoint clique decomposition algorithm and investigate the correlations between the
subgraphs of empirical networks. We compare our clique cover to other methods in the
literature by examining the correlations between clique motifs of an empirical network.
We find our method performs best when large cliques are present in the network.

73
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6.1 Degree correlations in clique random networks

Consider an arbitrary set of edge topologies including ordinary edges, triangles, squares,
4-cliques, pentagons and so on, denoted by~ttt = {?,D,⇤, . . . ,g}, where g is the topology
of the final element. In the following, we reserve t and n as indices over elements of ttt . We
define the number of cycles that a vertex plays a role in for each topology t 2 ttt by vector
kkkttt,l = {k?,kD, . . . ,kg} with l = 0,1 representing the focal vertex and nearest-neighbour
joint sequences, respectively. We reserve kn ,l 2 kkkttt,l as an index for the number of cycles of
topology n around a given vertex in layer l; we drop the l label where obvious. The joint
probability distribution for choosing this vertex at random is then denoted as pkkkttt,l . The
number of edges that a given vertex has within each cycle is defined by mt ; for instance a
vertex contributes two edges to each triangle it connects to and hence mD = 2. We define
nt,n ,kn to be the number of vertices with kn cycles of topology n that we reach by following
an edge of topology t from the focal vertex to a nearest neighbour. There are dim(~t2) of
these expressions. Let a particular configuration of type n following t edges be nt,n such
that

nt,n = {nt,n ,1,nt,n ,2, . . .} (6.1)

Then, we define the set of all configurations of the neighbours following t edges to be
nt = {nt,?,nt,D, . . .}. Finally, the set of all configurations is denoted by n = {n?,nD, . . .}.
The number of vertices reached by following all of the t edges is

Nt = Â
kt=1

nt,t,kt = Â
kn=0

nt,n ,kn t 6= n (6.2)

The total number of vertices 1-layer out from the focal vertex is the sum of all vertices
reached by traversing each edge topology

N = Â
t2ttt

Nt (6.3)

Let P(n | N) be the probability that the nearest-neighbour configuration is given by set
n and that the total number of vertices in the first layer is N. This is given by

P(n | N) = ’
t

✓
’
n 6=t

’
kn=0

Nt
nt,n ,kn !

qnt,n ,kn
t,n ,kn

◆
’

kt=1

Nt
nt,t,kt !

qnt,t,kt
t,t,kt

(6.4)

where qt,n ,k is the probability of traversing an edge of topology t to a vertex with kn
independent cycles of topology n . We also have the understanding that each term of the
product over n 6= t has its own index kn starting from zero; we have pulled out t from this
expression since, by definition, there must be at least one t-edge present to follow it to a
nearest neighbour vertex and so the index starts at 1. The probability P(GC | n) that the
component is the GCC for a particular configuration n is given by

P(GC | n,N) = 1�’
t

✓
’
n 6=t

’
kn=0

⇥
umn kn

n
⇤nt,n ,kn

◆
’

kt=1
[umt (kt�1)

t ]nt,t,kt (6.5)

where we have introduced ut as the probability that a vertex at the end of a randomly
chosen edge of topology t fails to connect to the GC. The probability that the configuration
is n, that the component is the GCC given that there are N nearest-neighbours is found
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from Bayes’ theorem as

P(n,GC | N) = P(GC | n,N)P(n | N) (6.6)

Let P(N | kkkttt,0) be the probability of there being N vertices in the 1st layer given that the
joint degree of the focal vertex is kkkttt,0 and that the component is the GC. We can use this
to find the probability P(n,GC | kkkttt,0) that the nearest-neighbour configuration is n given
the joint degree of a vertex in the GCC is kkkttt,0 as

P(n,GC | kkkttt,0) = Â
N

P(N | kkkttt,0)P(n,GC | N) (6.7)

where the summation is over all combinations of Nt such that

Â
N
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· · · (6.8)

We find

P(n,GC | kkkttt,0) = Â
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for t,n ,h ,j 2 ttt . We now generate this probability by summing over all permissible
configurations of the nearest-neighbour joint degrees to obtain

F̃GC(XXX | kkkttt,0) = Â
n
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t
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where
Â
n
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· · · (6.11)

We simplify the expression by substituting Eq 6.9, swapping the order of the summations
and collecting terms in like powers to obtain

F̃GC(XXX | kkkttt,0) = Â
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to find

F̃GC(XXX | kkkttt,0) = Â
n

Â
N

P(N | kkkttt,0)’
t

 

’
n 6=t

’
kn=0

Nt
nt,n ,kn !

(qt,n ,kn Xt,n ,kn )
nt,n ,kn

!

⇥ ’
kt=1

Nt
nt,t,kt !

(qt,t,kt Xt,t,kt )
nt,t,kt

⇥
"

1�’
h

 

’
j 6=h

’
kn=0

h
umj kn

j

inh ,j,kn

!

’
kt=1

[umh (kt�1)
h ]nh ,h ,kt

#
(6.13)

The multinomial theorem can now be applied to each of the terms in the product to obtain

F̃GC(XXX | kkkttt,0) = Â
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(6.14)

The probability that an edge of topology t can be followed to reach a vertex with kn
cycles of topology n is given by qt,n ,kn . The probability that an edge of topology t can be
traversed to reach a vertex with kn cycles of topology n for all n 2 ttt is the joint excess
degree distribution, qt,kkkttt,l . This can be constructed from the separable distributions such
that

qt,kkkttt,l = ’
n

qt,n ,kn ,l (6.15)

With this we can write
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(6.16)

The probability that there are N nearest-neighbour vertices given the joint degree of the
focal vertex is kkkttt,0 is simply a particular term from the G0(ZZZ) generating function. Inserting
this definition into our expression we arrive at the generating function that describes the
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distribution of nearest-neighbours given a particular joint degree of the focal vertex as

F̂GC(XXX | kkkttt,0) = pkkkttt,0 ’
t

"

’
n 6=t

Â
kt=1

Â
kn=0

qt,kkkttt,1Xt,n ,kn Xt,t,kt

#mt kt,0

� pkkkttt,0 ’
t

"

’
n 6=t

Â
kt=1

Â
kn=0

qt,kkkttt ,1umn kn
n umt (kt�1)

t Xt,n ,kn Xt,t,kt

#mt kt,0

(6.17)

The expectation number of the number of nearest-neighbours with a given joint degree is
found from the expectation value of F̂GC(XXX = Z | kkkttt,0). We then find

F̂ 0
GC = Â

t2ttt
mt pkkkttt,0kt,0qt,kkkttt,1

✓
1�umt (kt,0+kt,1�1)�1

t ’
n2ttt\t

umn (kn ,0+kn ,1)
n

◆
(6.18)

where the derivative is evaluated at Zkkkt,1 = 1 (see appendix C for a complete derivation
using the tree-triangle model). The bracket is one minus the probability that the none of
the edges to the second layer lead to the GC; whilst the prefactor describes the probability
of following kt,0 t-cycles, each of which has mt edges to follow to reach a vertex whose
joint degree is given by qt,kkkt,1 .

In a similar way, we can find the generating function FGC(XXX) for the probability
distribution that a randomly chosen vertex has a nearest neighbour configuration given by
n and belongs to the GCC as

FGC(XXX) =Â
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F̂GC(XXX | kkkttt,0) (6.19)
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which is simply G0(ZZZ). The expectation number for the of nearest-neighbours from a
random focal vertex in the GCC is given by

F 0
GC = Â

t2ttt
mthkti[1�umt wt

t ] (6.21)

where wt represents the number of vertices in the cycle. We can use the quotient of these
expectation values to define a symmetric joint-probability distribution PGC(kkkttt,0,kkkttt,1) =
F̂ 0

GC/F 0
GC that two nearest-neighbours in the GCC have joint degrees kkkttt,0 and kkkttt,1 as
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where PGCC(kkkttt,0,kkkttt,1) = PGCC(k?,0, . . . ,kg,0,k?,1, . . . ,kg,1). This equation is a central
result and can be used to compute many interesting properties of the correlation structure
within configuration model networks. At any time, we can compress the information
contained within PGCC(kkkttt,0,kkkttt,1) to find PGCC(k0,k1) which is the probability that a focal
vertex with overall degree k0 attaches to a neighbour whose overall degree is k1.

Poverall
GCC (k0,k1) = Â

t
Â
kt

PGCC(kkkttt,0,kkkttt,1)dk0,koverall
0

dk1,koverall
0

(6.23)

where koverall
0 = Ât Âkt,0 mtkt,0 and koverall

1 = Ât Âkt,1 mtkt,1 are the overall degrees of the
focal and neighbour vertices. However, this degree lumping procedure overlooks the
fine structure among the correlations as many joint degrees can contribute to a given
overall degree. Indeed it is precisely this structure which acts as a fingerprint of a network
ensemble.

Let us introduce the conditional probability

PGC(k?,1, . . . ,kg,1 | k?,0, . . . ,kg,0) = PGC(kkkttt,1 | kkkttt,0) (6.24)

that the nearest neighbour has joint degree kkkttt,1 given that the focal vertex has joint degree
kkkttt,0 in the GC. Applying Bayes’ theorem to our discrete multivariate joint probability we
have

PGC(kkkttt,1 | kkkttt,0) =
PGC(k?,0, . . . ,kg,0 | k?,1, . . . ,kg,1)PGC(k?,1, . . . ,kg,1)

Â
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(6.25)

Which simplifies to
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Inserting Eq 6.22 we find
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(6.27)
We can use PGC(kkkttt,1 | kkkttt,0) to find multivariate conditional expectation values for a

given focal vertex joint degree, generalising [57] for the GCM. The expectation value for
vector XXX given vector YYY is a vector E[XXX | YYY ] = (E[X1 | Y ], . . . ,E[Xn | YYY ])T whose elements
are the expected values of each of the variables defined as

E[Xi | YYY = yyy] = Â
x1,...,xn

xiPGC(x1, . . . ,xn | YYY = yyy) (6.28)

For instance, the average joint degree of a neighbour to a focal vertex whose joint degree
is kkkt,0 is the vector (E[k?,1 | kkkt,0], . . . ,E[kg,1 | kkkt,0])T whose elements are

E[kt,1 | kkkttt,0] = Â
kkkttt,1

kt,1P(kkkttt,1 | kkkttt,0) (6.29)
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Figure 6.1: The probability P(kt,0,kt,1) for Erdős-Renyi random graphs comprising of a
single motif topology, 2-cliques (A), 3-cliques (B) and 4-cliques (C), respectively, as a
function of kt,0 for several kt,1. The overall mean degree is fixed at hki= 2.5 for networks
with N = 60000 vertices. Scatter points are the average of 100 repetitions of Monte Carlo
simulation while the lines are the theoretical predictions from Eq 6.30. The legend is the
same for each plot.

We examine this expression in Appendix C for the tree-triangle model.
In this chapter we have introduced a theoretical model, based on generating functions,

to investigate the NNDC in the GCC of random clustered graphs, constructed according
to the GCM, comprising of higher-order clusters. We now examine a series of pertinent
examples of this model.

6.1.1 Single topology

In the special case that the network consists of a single homogeneous subgraph (a homoge-
neous subgraph is one where all vertices are degree-regular), then PGC(kt,0,kt,1) from Eq
6.22 is given by

PGC(kt,0,kt,1) =
(1�umt (kt,0+kt,1�1)�1

t )

1�umt wt
t

qt,kt,0qt,kt,1 (6.30)

and similarly from Eq 6.27 we have the related conditional probability

PGC(kt,1 | kt,0) =
(1�umt (kt,0+kt,1�1)�1

t )

1�umt kt,0
t

qt,kt,1 (6.31)

which reproduces the results of [2, 65] for the nearest-neighbour distributions on the GCC
of tree-like networks when t =?. We examine the NNDCs for single-topology networks
with Poisson distribution participation in motifs with fixed mean degree hki = 2.5 in
Fig 6.1. The networks are composed of discrete clique topologies; specifically 2, 3 and
4-cliques in Fig 6.1 A, B and C, respectively. The markers are the averaged results of
Monte Carlo simulation while the lines are the theoretical predictions of Eq 6.30; both are
in excellent agreement. In each case, PGC(kt,0,kt,1) is plotted as a function of increasing
kt,0 for several kt,1 values. We note that for each clique size PGC(1,1) = 0; since, this
combination cannot exist in the GC. For networks comprised of a single topology, the
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Figure 6.2: The probability PGCC(s0, t0,s1, t1) for Poisson random graphs comprising of
mixed 2-clique and 3-clique topologies for three different clustering regimes. In each plot,
the joint degrees of the focal vertex up to overall degree k = 4 are plotted on the horizontal
axis for a given (s1, t1) neighbour. Scatter points are the average of 250 repetitions of
Monte Carlo simulation on networks with 2⇥105 vertices; whilst lines are the analytical
results of Eq 6.22. The legend is the same as tile (A) for all plots.

average degree of a neighbour can be found from Eq 6.29 as

E[kt,1 | kt,0] =

Â
kt,1

kt,1qt,kt,1(1�umt (kt,0+kt,1�1)�1
t )

1�umt kt,0
t

(6.32)

which is in agreement with [41] for tree-like topologies.

6.1.2 Tree-triangle model

We now examine how clustering influences the degree correlations in the GCC of the mixed
topology tree-triangle model. The theoretical details of this model are derived in Appendix
8.3. Fixing the first moment of the model to hki= 2.5 the limiting cases of hk?i= 0 and
hkDi= 0 are presented in Fig 6.1 and we now examine i) an even neighbour distribution by
setting hk?i= 1.25 and hkDi= 0.625; ii) a weakly clustered regime with hk?i= 1.5 and
hkDi= 0.5 and finally iii) a strong clustering regime with hk?i= 0.5 and hkDi= 1.0 in Fig
6.2. The joint degree of the horizontal axis is ordered by increasing overall degree. When a
given overall degree can be formed in multiple ways, such as k = 2 from (2,0) or (0,1), the
degenerate cases are ordered by increasing local clustering coefficient. Each tile in Fig 6.2
A-H plots a given neighbour joint degree (as a function of the focal vertex joint degree) for
the three clustering regimes. We observe some encouraging results from these plots: firstly,
as with the results of experiments with single-topology networks (Fig 6.1), the probabilities
PGCC(1,0,1,0) and PGCC(0,1,0,1) are both zero for the vertices in the GCC (see Fig 6.2
A). We also notice that PGCC(s0, t0,s1, t1) takes zero values for impossible combinations,
such as neighbours whose edges are of a single, yet opposite, topology to one another.
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Further, the probabilities are symmetric such that PGCC(kttt,0,kttt,1) = PGCC(kttt,1,kttt,0) which
is an expected result for undirected random graphs. Among the non-zero combinations
we observe that some peaks, particularly among focal vertices with non-zero degrees in
both topologies, are aligned across all series; for example PGCC(1,1,1,1) in E. Conversely,
other peaks such as PGCC(2,0,2,1) in G peak in the weak and even regimes, yet trough in
the strong clustered regime.

We also observe, across all tiles in Fig 6.2 that the correlations among the weak (blue
squares) and even-neighbour (orange circles) regimes are generally of higher magnitude
across all focal vertices than the strongly clustered regime (green triangles). In other words,
the networks with strong clustering exhibit NNDC that have smaller magnitudes with the
exception of tiles C and H, which consider neighbouring vertices that only have triangle
motifs.

In tile F we notice that vertices with a high tree-like degree do not tend to connect with
neighbours with triangles, especially in the strong clustering regime.

Collectively, these results give insight into how the network is held together at the
microscopic level and how the presence of clustering alters this structure. This could prove
useful for creating synthetic networks or for a better understanding of network resilience
under targeted attack.

6.1.3 The effect of clique size on NNDC

In this section, we examine the effect of increasing the clique size on the NNDC of
mixed topology GCM networks. To achieve this, we extend the calculations performed
in appendix 8.3 from the 2- and 3-clique model to a binary model composed of 2- and
m-cliques, whose topology we denote by s . For this model, the NNDC for a focal vertex
with s0 ordinary edges and c0 edge-disjoint m-cliques in the GCC of a GCM network can
be obtained from

PGCC(s0,c0,s0,c0) =
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(6.33)

The results of this expression are shown in Fig 6.3, where the overall neighbour degree
is plotted against the overall degree of the focal vertex for several increasing clique sizes.
The scatter points are the results of Monte Carlo simulation of networks with 100000
vertices, whilst the plotted lines are the theoretical results of the model; both show excellent
agreement with one another. The networks are constructed according to the GCM algorithm
before the GCC is selected from the possibly disconnected graph. The motifs counts at
each vertex are drawn from Poisson distributions with averages chosen such that the first
moment of the distribution of overall degrees is fixed at hki = 6 across all experiments
whilst the average 2-clique count is held fixed at hk?i = 1.25 and the average clique
count hks i is the solution of hki = hk?i+ms hks i. From Fig 6.3 we observe that the
average neighbour degree of networks with larger cliques increases. For cliques larger than
2-cliques, oscillations in the average neighbour degree appear at low focal vertex degree.
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Figure 6.3: The average overall degree of a neighbour for increasing focal vertex degree for
binary-topology networks comprising 2-cliques and higher-order cliques. Scatter points are
the average of 1000 repetitions of Monte Carlo simulation whilst the plotted lines are the
result Eq 6.33, collected by overall degree according to Eq 6.23. The networks are created
from the GCM algorithm with Poisson marginal distributions of each motif topology and
overall average degree fixed at hki= 6 with hk?i= 1.25 across all experiments.

The amplitude of the oscillations increases with clique size. In each case, the oscillations
dampen to a fixed value in the limit of large focal vertex degree.

6.1.4 Emergence of correlations

At criticality, as the GCC emerges, we have that ut ! 1; the probability of not belonging
to the GCC is near unity. In this case, the multivariate limit of Eq 6.22 does not exist.
However, in the case that the network is composed of cliques of various sizes which are
each independently Poisson distributed at each vertex such that

pkkkttt,l = qt,kkkttt,l = ’
t2ttt

e�hkt i hktikt,l

kt,l!
8t 2 ttt (6.34)

we have that ut = umt ,8t [25]. In this instance Eq 6.22 is a univariate distribution and we
can use L’Hôpital’s rule to determine the expected limit to be
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where
Lt = mt(kt,0 + kt,1 �1)�1+ Â

n 6=t
mn(kn ,0 + kn ,1) (6.36)

The critical point can be found by linearising ut = G1,t(uuumt
ttt ) in a small perturbation e

around ut = 1� et [32]. To leading order in the small parameter et we have eee = AAAeee
with eee = [e?,eD, . . . ]

T. The GCC forms at the point when the determinant det |A� I|
vanishes, where A = [∂G/∂ut ], G = [G1,t ,G1,D, . . . ,G1,g ] and identity matrix I. With
mixed topology networks a GCC can form in many different ways. For instance, the GCC
of a random graph model with two topologies can form by three distinct mechanisms: a
GCC can emerge solely in either of the topologies or global connectivity can occur through
a mixture of the binary topologies.

As we approach the critical point from below, we introduce a characteristic scale kt
[64] associated to the joint degrees of the focal vertex and a neighbour given by ut = e�1/kt .
Inserting this expression into Eq 6.22 for finite kt in each topology, the correlations fall
exponentially with increasing kt and hence PGCC(kt,0,kt,1) tends to the uncorrelated value
of

Â
t2ttt

mt pkkkttt,0kt,0qt,kkkttt,1/ Â
t2ttt

mthkti (6.37)

Therefore, when the joint degree exceeds the characteristic scale, the GCC is uncorrelated.
It is clear that as ut approaches unity the scale diverges kt ! • and hence, the GCC
always exhibits degree correlations. In addition, approaching the critical point, the average
joint degree (Eq 6.32) falls exponentially with increasing degree along each topology for
fixed kt .

E [kt,1 | kt,0] =

Â
kt,1

kt,1qt,kt,1(1� e�f )

1� e�mt kt,0/kt
(6.38)

where f = mt(kt,0 + kt,1 � 1)� 1/kt . Thus, the correlations which are present at the
critical point are negative in nature. It might happen, however, given the number of ways
that the GCC of a mixed motif random graph model can emerge, that the characteristic
scales of all topologies don’t diverge at the critical point. For instance, consider a doubly
Poisson distributed tree-triangle model with a critical average tree degree, but a sub-critical
average triangle degree. A GCC will form among the tree edges, but the probability of
those vertices involved only in triangles, (0, t) for t = 1,2,3, . . . , connecting to this GCC
is small; since, their connection requires them to connect to mixed-topology vertices,
which in turn connect to the GCC. Thus, we might find that the negative degree correlation
structure among the triangles has not yet formed despite there being a non-zero density of
triangles in the GCC.

6.1.5 Empirical networks

We now examine the correlation properties of the GCC of the ensemble representation
of empirical networks using our joint degree model. Random graphs are elements of
an ensemble G of graphs with V vertices and E edges; each member occurring with
probability P(G) [2]. The average value of a property of graph G, Z(G), (such as its degree
distribution or average degree) can be averaged over the entire ensemble

hZi= Â
G2G

Z(G)P(G) (6.39)
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The generating function formulation describes the properties of the ensemble. Empirical
networks G are particular realisations of members of G . The properties of a particular
realisation are given by

P(Z) = Â
G2G

d (Z �Z(G))P(G) (6.40)

If P(Z) is well represented by the ensemble average then the generating function formula-
tion can be used to describe the properties of G. To study the NNDC in the GCC of g using
generating functions, we must represent the largest component of an empirical network
by a joint degree sequence of subgraphs. Whilst the choice of subgraphs is arbitrary [33],
we only include cliques in the topology representation due to the vast literature on clique
finding algorithms and the simplicity of calculating their properties. The clique decompo-
sition of the GCC of g whose cliques have order less than or equal to w can be performed
in many different ways; and the resulting joint degree sequence can exhibit significantly
different properties in terms of the number of subgraphs present their clustering, and other
properties. Given that the method to create the joint degree distribution is not unique, and
that the ensemble properties of each particular decomposition are often dissimilar, we now
examine three clique decompositions and compare their properties.

The trivial decomposition is to simply cover g with 2-cliques; we refer to this as
the single-edge-decomposition (SED). The degree sequence can then be used to create
realisations using the ordinary configuration model. Another simple cover is the minimal
cover of maximal cliques. However, it is very likely that the edges of the cliques will not
be disjoint, i.e. a single edge will be a member of more than one clique. Whilst this could
be an accurate representation of a vertex’s local environment, the construction process for
random graphs using the GCM will not work. Thus, we must impose that the cover is
edge-disjoint.

One proposed method of clique decomposition is defined heuristically as follows [6]:
we obtain the set C of all maximal cliques from the network; each maximal n-clique
ci 2 C, n 2 {1, . . . ,w} is scored according to the fraction of edges it shares with other
members of C. The largest clique within the set of lowest score cliques are included in
the representation and C is recalculated. The process is repeated until the edges of the
substrate network are expended. Such a covering is known as a edge-disjoint edge clique
cover (EECC), see Fig 6.4 for details. We propose a novel clique cover as follows: the
set C of all cliques present in the network (including those induced from subgraphs of
larger cliques) is obtained from the empirical network. The set is ordered such that the
largest cliques have the highest precedence. The subset of cliques within C that have equal
size 8n 2 {1, . . . ,w} are then randomised; thus the cover is a Monte Carlo method. The
largest cliques are drawn from C and placed on the network if their edges do not overlap
other with cliques that have already been placed in the network. The list is iterated until
all edges belong to an independent clique. This method draws non-maximal joint degree
sequences; however, higher-order cliques are preferentially preserved, we describe it as an
edge disjoint motif preserving edge clique cover (MPCC), see Fig 6.5. In the particular
case that the set of maximal cliques are edge disjoint, the distribution obtained from both
the EECC and MPCC motif decomposition algorithms are in agreement with one another.
It should be mentioned that both covers are not unique when two cliques of a given size
can be chosen. Within the MPCC, we resolve these degeneracies by retaining the cliques
associated with higher degree vertices. In our implementation of the EECC, we choose
cliques from the set of degenerate cliques at random.

Once a suitable cover has been formed for the network, its joint-degree sequence can
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MOTIF	DECOMPOSITION

NON-MAXIMAL

MAXIMAL

SUBSTRATE

Figure 6.4: The clique decomposition of a substrate network (left) can be performed
in multiple ways. Two examples are shown (right). The shaded faces are higher-order
cliques whilst the green edges are 2-cliques. The clustering of the resulting joint degree
distributions (and their random graph ensembles) are significantly altered depending on
how the decomposition is performed. The maximal representation has 6 cliques in total
whilst the non-maximal representation has 8 cliques. When only maximal representations
are extracted the decomposition is a EECC.

SUBSTRATE
MPCC

EECC

Figure 6.5: The results of the two clique decomposition algorithms (MPCC) and (EECC)
for a particular substrate graph. The MPCC favours the formation of large cycles, leading
to 9 cliques (a single 4-clique and 8 2-cliques) whilst the EECC leads to 6 cliques (4
3-cliques and 2 2-cliques). The joint degree sequence obtained from the MPCC network
creates a non-maximal random ensemble of GCM networks.

be extracted. This sequence is then used to create an ensemble of GCM networks. As a
concrete example of this method we extract the joint degree sequences using the SED,
EECC and the MPCC of the GCC of the network science authorship network [50] in
Fig 6.6 and Fig 6.7. Plotted are the experimental results from the original network (red
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Figure 6.6: A member of the MPCC random graph ensemble of the GCC of the network
science authorship network with higher-order cliques (larger than 3-cliques) coloured for
clarity. Unlike random graphs constructed using the EECC method, larger cliques are
preferentially retained in the ensemble.

crosses), the SED (green squares), the EECC (pink triangles) and the results from the
MPCC algorithm (light blue) as well as their average (dark blue). The average neighbour
degree, k1 obtained from the SED shows poor accuracy when compared to the experimental
results. Instead of the detailed NNDC structure over the range of focal vertex degrees,
the neighbour degrees tend to fluctuate around k1 = 8. In contrast, the MPCC exhibits
a rich correlation structure whose average follows the trends of the experimental data.
Additionally, the average neighbour degree for the high-degree vertices is well represented;
however, this is at the expense of the lower degree information, where the representation is
less accurate. The EECC shows fair agreement across the range of focal vertex degrees,
outperforming the MPCC at low degrees. We notice from the variance of the MPCC that
the NNDC of the empirical network is dense within the set of ensemble representations.

6.1.6 Anticorrelated modular networks

As an example of the generating function method, consider a multiplex network with
anticorrelated clustering. Multiplex networks are a special class of multilayered networks
[30] in which a set of vertices is connected by M different sets of coloured edges. Each
layer contains a replicated set of vertices and connects them together with edges of a given
colour. In anticorrelated networks, if a vertex has an edge of a given colour, then it has a
vanishingly small probability of having edges of other colours. In this model, we extend
that property beyond ordinary edges to the anticorrelation of the subgraphs that each vertex
can belong to. The joint distribution for a maximally anticorrelated degree sequence, where
the set of motifs in the model is ttt = {1, . . . ,n}, is given by

p(k1, . . . ,kn) =
1
N Â

n2t
Nn p(kn) ’

w2ttt\{n}
dkw ,0 (6.41)
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Figure 6.7: The ensemble expectation value of the overall degree of a neighbour as a
function of focal vertex degree for clique covers of the network science authorship network.
Plotted are the experimental results (red crosses), the average EECC (pink triangles), the
average MPCC (dark blue circles) and its variance (light blue circles) for each realisation.
Each simulation was performed 1000 times. The SED (green squares) doesn’t capture
the correlation structure for this network. The MPCC accurately captures the correlation
structure of the high-degree vertices due to retaining the larger motifs that a vertex belongs
to; however, the low (mid) degree sites are generally under (over) predicted. Conversely,
the EECC performs well for the low and mid-degree vertices, but tends to the SED for the
high-degree sites.

where di, j is the Kronecker delta. For each n 2 ttt , kn is only non-zero when each kw for
w 2 ttt\{n} is zero. Note Nn is the number vertices in the network that are involved in
topology n .

When the marginal distribution in each n is Poisson distributed with mean degree ln ,
then we have

p(k1, . . . ,kn) =
1
N

n

Â
n=1

Nn
l kn

n e�ln

kn ! ’
w2ttt\{n}

dkw ,0 (6.42)

Thus, each module is a component comprised of a given subgraph topology where motif
membership is Poisson distributed about an average. The generating function for the
probability of choosing a vertex at random from the network with a given degree sequence



88 CHAPTER 6. DEGREE CORRELATIONS IN CLIQUE RANDOM GRAPHS
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Due to the condition of maximal anticorrelation the distribution is separable and so this
expression reduces to

G0(z1, . . . ,zn) =
1
N

n

Â
n=1

Nneln (zn�1) (6.44)

The model can be numerically solved by defining a variable, un for each n 2 ttt , that
describes the probability that site n remains unattached to the GCC. Each of these variables
satisfies a self consistent equation

un =
Nn
N

eln (gn�1) (6.45)

where gn is the probability that a vertex in site n fails to become attached to the GCC. Once
these variables are found, the percolation properties follow from S= 1�G0(u1, . . . ,un), see
Fig 6.8. Performing the linear stability analysis at uh = 1 for each module, the percolation
thresholds are given by ✓

(t �1)
hk2

ti
hkti

� t
◆
 0 (6.46)

where t is the length of the topological cycle and hkti is the average number of cycles a
vertex connects to.

In Fig 6.8, in order to highlight the individual contribution each module makes to the
overall GCC on the network, we have set the Poisson mean degree of each module to be
an order of magnitude apart. This means that the orange triangles, with mean l percolate
first, while the orange tree-like module, with mean degree 0.1l percolates next. The green
tree-like edges follow with mean degree 0.01l and finally, the fourth phase transition
occurs when the green triangles, with mean degree given by 0.001l , connect to the GCC.
We observe a stepped phase transition for the network as each module connects together.
Each colour splits into a double phase transition; with additional hyperfine splitting within
each layer associated with the anticorrelation between subgraph topologies.

6.2 Chapter summary

This chapter has opened a discussion on the nearest neighbour correlations between vertices
with a given joint subgraph degree. To investigate this, we derived a correlation function
that evaluated the probability of a vertex with a given joint degree having a neighbour with
another specified joint degree. We plotted this correlation function against Monte Carlo
simulation and found excellent agreement. We then investigated the correlations in detail
for tree-triangle networks as well as some limiting examples. In a second line of research
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Figure 6.8: An example of an anticorrelated modular network with Poisson distributed
subgraph membership in either 2- or 3-cliques coloured either orange or green and sparse
inter-module connections (left). The percolation properties of the ensemble of such graphs
(right). The average degree of orange triangles is given by l ; the average degrees of the
remaining topologies have been set such that their percolation transitions occur orders
of magnitude apart from one another. Specifically, the Poisson average of the number
of orange tree degrees a vertex belongs to is 0.1l , the green triangle average is 0.01l
whilst the green tree-like edges by 0.001l . Vertical dashed lines indicate the predicted
percolation threshold

we developed a novel stochastic clique covering algorithm which places edge-disjoint
cliques over an empirical network. Our algorithm works by preserving the cliques with
the largest size. If there are multiple cliques with a given size that overlap, then cliques
are chosen at random to be part of the model. This enabled us to obtain the joint degree
sequence for an empirical network and then, by constructing a joint degree distribution,
enabled us to construct an ensemble of GCM networks. We then compared the properties
of the ensemble, which we know that the theoretical correlation function supports, to the
properties of the single-realisation empirical network. We also performed this for other
clique covers in the literature. We displayed our results by compressing the joint degree
information into an overall degree, finding fair agreement with the empirical network’s
overall degree correlations.

We also studied the percolation properties of multilayer anticorrelated networks with
clustered topologies. We found that it was possible to isolate the phase behaviour of each
module.





7
CHAPTER SEVEN

TWO-STAGE EPIDEMICS
ON CLUSTERED

NETWORKS

In this chapter we utilise the percolation-SIR equivalence to consider three 2-strain
sequential epidemic processes on clustered networks using the generating function method.
This defines a new field of investigation and is thematically distinct from the preceding
chapters. In each of the models, the nature of the interaction between the diseases is
changed; the first two are extensions of the framework Newman introduced [49, 53] for
tree-like networks to the case of clustered networks. The third is a generalisation of
these models also for clustered networks. In the first instance, we consider a perfect
cross-immunity disease interaction; this assumes the second strain will only infect vertices
that did not belong to the GCC of strain 1. In the second model, we examine perfect
coinfection; which, constrains disease 2 to spread only on the GCC of the first disease
(if one exists). The third model relaxes these constraints and allows the second disease
to infect all vertices in the network regardless of their residence state within the GCC or
RG. Such a model is known as a partial immunity interaction, although our model also
encompasses partial coinfection. This generalisation adds more realism to the model and
accounts for a far wider spectrum of disease interactions between the limiting-case logic
of Newman’s models.

91
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7.1 Complete cross-immunity

In this section we extend Newman’s model of perfect cross-immunity on tree-like networks
[49, 26] to graphs with clustering. In the cross-immune model, a bond percolation process
is run over a substrate network to create a GCC and a RG. The vertices in the RG are then
percolated a second time by a second disease.

RG

GCCSubstrate graph

Cross-immunity

Figure 7.1: A conceptualisation of the cross-immunity model. A substrate network
undergoes bond percolation to create a GCC and an RG. In the cross-immunity model, the
RG is then percolated further by a second bond percolation process to create an embedded
GCC (green). Vertices that were not in the RG of the first process cannot be included in
the GCC of the second process.

By now, we are well aware of how to construct the probability that a randomly chosen
vertex does not belong to the GCC in clustered networks. Restricting our attention to a
mixed 2- and 3-clique GCM graph, the outbreak size of an epidemic is given by

S1[u2,u3;T ] = 1�G0(g2,g2
3) (7.1)

where
ut = G1,t(g2,g2

3) (7.2)

and with

g2(u2;T ) =u2 +(1�u2)(1�T ) (7.3)

g2
3(u3;T ) =

✓
n3

l

◆
[u2

3]
l
✓

h3 � l
m

◆
[((1�u3)(1�T ))2]m

⇥ [2u3(1�u3)(1�T )(1�T 2)]h3�l�m (7.4)

7.1.1 Strain-2

Once the first strain has passed through the network, a fraction, S1, of the vertices will have
contracted it and consequently a fraction, 1� S1, remained uninfected. In the case that
vertices infected by strain 1 have perfect cross immunity against further strains, then only
those vertices in the RG, 1�S1, can become infected by the second strain. The threshold
criterion for the emergence of the second strain on unclustered random graphs has been
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solved previously by Newman [49]. We now proceed to understand the role of clustering
on the second strain.

Setting the transmissibility of the second strain to T2, the probability that the second
strain fails to infect a vertex chosen at random is comprised of the probabilities that both
the tree-like edges and the triangle edges each fail to transmit the strain. In analogy to the
first disease, we define the probability h2 to be the probability that a tree-like edge remains
unoccupied following both strains and introduce v2 is the probability that a neighbouring
vertex at the end of a tree-like contact does not have disease 2. The probability that a vertex
with k tree-like contacts has precisely l  k susceptible neighbours following disease 1 of
which m  l also failed to contract disease 2 is given by

h2(u2,v2;T,T2) =

✓
k
l

◆✓
l
m

◆
[u2v2]

m[u2(1� v2)(1�T2)]
l�m[(1�u2)(1�T )]k�l (7.5)

Similarly, the probability, h2
3, that a focal vertex involved in a triangle fails to become

infected is given by the probability that each avenue of infection fails, as considered for the
first disease in Eq 7.4. Defining v3 to be the probability that a vertex involved in a triangle,
that is also in the RG of the first strain, remains uninfected during the second epidemic, we
now examine each bracket in Eq 7.4.

In the first case, both vertices are uninfected with strain-1 with probability u2
3. To

remain uninfected with strain-2, these vertices must fail to transmit to the focal vertex.
This can occur in three distinct ways: either both neighbours fail to contract strain-2,
v2

3, or they both have disease-2 but fail to transmit, ((1� v3)(1�T2))2, or finally, one
remains uninfected with strain-2 and the other fails directly to infect with probability
2v3(1� v3)(1�T2).

Next, in the case when the RG contains both an infected and an uninfected vertex, there
are only two ways that the focal vertex can remain uninfected by strain-2. These are the
probability that the neighbour remains uninfected, v3, or is infected but fails to transmit,
(1� v3)(1�T2). Together, these terms can be written as

h2
3(u3,v3;T,T2) =

✓
h
l

◆
[u2

3]
l
✓

l
j

◆
[v2

3]
j
✓

l � j
i

◆
[2v3(1� v3)(1�T2)(1�T 2

2 )]
i

⇥ [((1� v3)(1�T2))
2]l� j�i

✓
h � l

m
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[2u3(1�u3)(1�T )(1�T 2)]m
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✓

m
f

◆
[v3]

f [(1� v3)(1�T2)]
m� f [((1�u)(1�T ))2]h�l�m (7.6)

Upon application of the binomial theorem this expression becomes

h2
3(u3,v3;T,T2) = [u2

3[v
2
3 +2v3(1� v3)(1�T2)(1�T 2

2 )+ [(1� v3)(1�T2)]
2]

+ [2u3(1�u3)(1�T )(1�T 2)[v3 +(1� v3)(1�T2)]]

+ [((1�u3)(1�T ))2] (7.7)

Despite the length of this equation, the interpretation is simple, we spread strain-2 according
to the triangle formula of Eq 7.4 in the case that the residual motif is a complete triangle,
we spread according to the tree-like expression when the residual triangle has only one
neighbour in the RG; and finally, we do not spread strain-2 in the case that the motif is
completely part of the GCC of strain-1. We can generate vt by writing self-consistent
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expressions, this time however, dividing by the prior probability that the neighbour does
indeed belong to the RG, which is simply ut .

vt = G1,t(h2,h2
3)/ut (7.8)

The expectation value for the probability that a randomly chosen vertex fails to be infected
by either strain is

A =
G0(h2,h2

3)

1�S1
(7.9)

where we have divided by the prior probability of belonging to the RG of disease 1. The
fraction of the RG that belongs to the outbreak of the second strain, the giant residual
connected component (GRCC), is then given by

S2[ut ,vt ;T,T2] = (1�A)(1�S1) (7.10)

The complete prescription is as follows: we use Eq 7.2 to compute ut 8t 2 ttt , we can then
use Eq 7.1 to compute the epidemic outbreak size of the first strain. With these ingredients
we calculate vt 8t 2 ttt using Eq 7.8 before finalising the calculation of the second outbreak
fraction with Eq 7.10.

7.1.2 Numerical results

A numerical example of the both strains can be seen in plot (C) of Fig 7.2 for varying
clustering coefficients. The networks for the model are created according to the configura-
tion model [40, 52] where the stub-degrees of both tree-like (k2) and triangle (t = k3/2)
topologies of each vertex are Poisson distributed. The joint degree-distribution is given by
[52]

p(s, t) = e�µ µk2

k2!
e�n n t

t!
(7.11)

where µ is the average tree-like degree and n is the average number of triangles. The
clustering of each network is varied such that the mean degree is fixed at 2. From this
we find the means of each Poisson degree sequence as µ + 2n = 2. As the clustering
coefficient increases the epidemic threshold of the first strain decreases. Specifically, when
C = 0 we have n = 0 indicating the threshold is Tc = 1/2, while at C = 1/3 we have µ = 0
and hence find the critical threshold as the root of T 2 +2T �1 = 0 yielding Tc ⇡ 0.41.

The overall epidemic size at T = 1 is reduced as a function of increasing clustering
coefficient. Therefore, in this experiment, clustering is seen to have a dual effect on the
outbreak of strain-1 depending on T ; clustered networks can expect an epidemic at lower
T , but also expect fewer people to become infected. Setting T2 = 1, the total outbreak size
of the second strain decreases as a function of increased clustering.

In a second experiment we fix the degrees of each vertex according to the uniform-
degree model, defined by Miller [40], enabling the effects of degree-assortativity to be
understood. Bond percolation is run on three networks whose vertices have either degrees
2,4 and 6, but their clustering is distributed differently. The first has a joint degree
distribution of p(2,0) = 1/3, p(2,1) = 1/3 and p(0,3) = 1/3, increasing the clustering
of the high-degree sites. The second network has an even neighbour distribution with
p(2,0) = 1/6, p(0,1) = 1/6, p(2,1) = 1/3, p(4,1) = 1/6 and p(0,3) = 1/6. Finally, the
third network has clustering predominantly among the low-degree sites with p(6,0) =
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Figure 7.2: The percolation properties of the 2-strain model over clustered doubly-Poisson
networks with clustering coefficient, C, and fixed average degree µ +2n = 2 of tree-like
and triangles, respectively. (A) The epidemic threshold of strain-1 (solid) as a function
of C. The critical thresholds for a GC to exist solely among tree-like edges (small dash)
or triangle edges (long dash) from Eq 7.12 are plotted in (A). Similar analysis in plot (B)
shows the coexistence threshold, T ⇤, as a function of increasing clustering coefficient.
Also plotted in (B) is the difference T3 = Tc �T ⇤ between the epidemic and coexistence
thresholds. Plot (C) shows the expected epidemic size of each strain. Scatter points
indicate experimental results of bond percolation on a network of size N = 40000 with 70
repetitions. Solid lines represent the theoretical predictions of Eqs 7.1 and 7.10 for each
strain.
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Figure 7.3: The residual network of the three networks described in section 7.1.1. In this
model [40, 23], clustering can be shown to increase both the size of the GRCC and also the
coexistence threshold relative to the configuration model. We also observe dichotomous
results depending on the nature of the degree assortativity among the clustered edges.
When clustering is assortatively confined to low-degree vertices, the results of the Poisson
experiment are reproduced.

1/3, p(2,1) = 1/3 and p(0,1) = 1/3. The percolation properties of these networks are
presented in Fig 7.3, along with the prediction from the configuration model. In contrast
to the random Poisson networks, clustering is shown to increase both the GRCC and
the coexistence threshold relative to the configuration model. Assortativity among low-
degree clustered vertices leads to the emergent properties observed by the random Poisson
networks.

7.1.3 R0

The R0 value, also known as the case reproduction number of a disease, is a quantity used
in epidemiology to represent the number of infections that the average infected vertex
in the network will cause. When the disease has a low transmissibility T  Tc, we do
not expect that an epidemic will occur throughout the entire network, in other words, the
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infections fizzle out over time. In these cases the R0 value is less than unity. R0 = 1 marks
the threshold for which the epidemic infects a macroscopic fraction of the population
and at this value the transmissibility experiences a critical point, T = Tc. Under the bond
percolation isomorphism, a GC of occupied edges forms in the network at and after this
bond occupancy probability. The critical transmissibility of the first strain can be found
by applying the Molloy-Reed criterion to the configuration model [40]. Specifically,
linearising ut = G1,t(ggg(((uuuttt)))) in e around ut = 1� et [32]. To leading order in et we have
eee = AAAeee with eee = [e2,e3, . . . ]T. The GC forms at the point when the determinant det |A� I|
vanishes, where A = [∂G/∂ut ], G = [G1,2,G1,3] and I is the identity matrix. We thus
obtain the following condition

✓
dg2

du2

hk2
2 � k2i
hk2i

�R0

◆✓
2

dg3

du3

hk2
3 � k3i
hk3i

�R0

◆

= 2
dg2

du2

dg3

du3

hk2k3i2

hk2ihk3i
(7.12)

where hkti is the first moment of the degree distribution (and similarly for other quantities)
and each derivative is evaluated at the point ut = 1. Each bracket on the left hand side can
be used to investigate if a GC occurs among the edges of a given topology; or, the entire
expression can be used to determine of the entire network is connected, irrespective of the
edge-type, see plot (A) in Fig 7.2. It is clear from this plot that clustering increases the
interval T 2 [Tc,1] by the reduced epidemic threshold, allowing a finite-sized epidemic at
lower transmissibilities.

Newman [49] found that the RG also experiences a phase transition due to the avail-
ability of vertices that are not within the GC as a function of T . In the case of clustered
networks, we find the condition to be given by

✓
∂h2

∂v2

hk2
2 � k2i
hk2i

�R0

◆✓
2

∂h3

∂v3

hk2
3 � k3i
hk3i

�R0

◆

= 2
∂h2

∂v2

∂h3

∂v3

hk2k3i2

hk2ihk3i
(7.13)

The derivatives are evaluated at the point vt = 1; however we must find the point (T ⇤,u⇤t)
that satisfies this where the coexistence threshold, T ⇤, signifies the emergence of a GC
among the tree-like edges of the RG was derived previously by Newman [49].

As with the first strain, the presence of a GC of the second pathogen among only the
tree-like or the triangle edges can be found by examining each bracket on the left hand
side of Eq 7.13. The emergence of a GC among the entire RG is found using the entire
expression, according to plot (B) in Fig 7.2. Setting T2 = 1, we find

∂v2h2
��
v2=1 = u⇤2 (7.14)

and hence the coexistence threshold among tree-like components is

T ⇤ =
u⇤2 �1

G1,2(u⇤2)�1
(7.15)

The coexistence threshold for the emergence of a GC among the triangles is slightly harder
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to solve. Again, with T2 = 1, we find

∂v3h2
3
��
v3=1 = 2u2

3 +2u3(1�u3)(1�T )(1�T 2) (7.16)

For brevity, we use the notation k = hk2
3 �k3i/hk3i and hence we arrive at an equation just

in T

(T ⇤)3 � (T ⇤)2 �T ⇤+
2kG1,3(1,(g⇤3)

2))�1
2kG1,3(1,(g⇤3)2))(1�G1,3(1,(g⇤3)2))

= 0 (7.17)

where we have used Eq 7.2 to solve for u3 given T in the absence of tree-like edges.
From plot (B) in Fig 7.2, it is clear that the interval [0,T ⇤

1 ], which defines the transmis-
sibility range within which strain-2 can exist on the network, is reduced as T ⇤ decreases as
a function of increasing C. Comparison of plots (A) and (B) indicates that while both Tc
and T ⇤ fall with C, the interval [Tc,T ⇤], which defines the coexistence of each strain on
the network, also is reduced, since, T ⇤ falls faster than Tc. This indicates that clustering
reduces the total fraction of the population affected at any given T ; decreasing the range
of values of T at which strain-2 can coexist with strain-1 present; and finally, decreasing
the largest value of T at which strain-2 is found in the network, squeezing it to a smaller
region of the model’s phase space.

7.1.4 Cross-immune epidemics on multilayer networks

We will now apply the 2-strain model to clustered multilayer networks that exhibit modu-
larity [56, 33]. For simplicity, we consider a 2-layer system comprised of tree-like edges
in the first (orange) layer and triangle edges in the second (green) layer. In this example,
the two layers are sparsely connected via interlayer tree-like edges; however, this is not a
requirement, see Fig 7.4. Modular networks can be used to represent the different social
contact structures that individuals might experience. For instance, a given family might
have different contact topologies for schools, workplaces or social settings; each unique
setting being represented by a distinct layer.

The multilayer model is an extension of the previous model; strain-2 spreading over the
RG created by the GC of the bilayer networked system. Representing interlayer tree-like
edges that an orange (green) vertex has as ?og (?go), the vector of permissible topologies
is given by ttto = {?o,?og} for the orange layer and tttg = {Dg,?go} for the green layer,
respectively, where Dg represents a triangle in the green layer. Following [30, 33], each
layer has its own G0,l (zzz) equation, and each element of the topology vectors has its own
G1,l ,t(zzz) equation also, where l 2 {o,g} is a layer index.

As a numerical example consider the case where all edge topologies follow a Poisson
distribution such that the number of t edges is ht then

por(h?,h?,og) =
hh?ih?e�hh?i

h?!
hh?,ogih?,oge�hh?,ogi

h?,og!
(7.18)

and

pgr(hD,h?,og) =
hhDihDe�hhDi

hD!
hh?,goih?,goe�hh?,goi

h?,go!
(7.19)
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Figure 7.4: An example of the multilayer network used to in the numerical example. The
green layer consists solely of triangles while the orange layer is tree-like. Each layer is
connected via a few tree-like edges to allow the GC to span the network.

The expected outbreak size of the first epidemic on the orange layer is then

So = 1� eg?(hh?i�1)eg?,og(hh?,ogi�1) (7.20)

while the green layer has

Sg = 1� egD(hhDi�1)eg?,go(hh?,goi�1) (7.21)

The gt equations for each are given by Eqs 7.3 and 7.4 for the intralayer tree-like and
triangle edges, respectively. The interlayer tree-like connections have a subtle symmetry
breaking depending on which layer we consider the focal vertex to belong to. We define

g?,og(u?,go;T ) = u?,go +(1�u?,go)(1�T ) (7.22)

and
g?,g0(u?,og;T ) = u?,og +(1�u?,og)(1�T ) (7.23)

since, each focal vertex depends on the other end being uninfected. Each ut is then the
solution to a self-consistent equation according to Eq 7.2.

The outbreak of the second epidemic follows from section 7.1.1 and in the Poisson
case is

S2,o = 1� eh?(hh?i�1)eh?,og(hh?,ogi�1) (7.24)

while the green layer has

S2,g = 1� ehD(hhDi�1)eh?,go(hh?,goi�1) (7.25)
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Figure 7.5: The expected epidemic size of each strain on a Poisson distributed clustered
multilayer network with 2-layers (see Fig 7.4). In this experiment, the orange layer has a
clustering coefficient of C = 0 while the green layer is set to C = 1/3. Interlayer tree-like
edges have been added to allow the GC to span the entire network. Scatter points indicate
experimental results of bond percolation on a network of size N = 20000 with 25 repeats.
Solid lines represent the theoretical predictions of Eqs. Also plotted is the SLCC and the
SLRCC, peaks in which indicate a phase transition. From this plot we can see that peaks in
the SLCC and the SLRCC do not align with each other, their separation defines the region
of coexistence of both strains.
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We examine this system in Fig 7.5. The network is constructed such that the clustering
coefficient of the green layer is C = 1/3 with mean degree hkDi = 6 while the orange
layer is C = 0 with mean tree-like degree hk?i= 3.3; a small number of interlayer edges
were then added to connect the layers. In our experiment, the green-layer undergoes its
phase transition at a lower T than the orange layer due to its clustering. This causes the
outbreak fraction of the first strain to show a double 2nd-order transition [9, 33]. We
confirm the presence of a phase transition by plotting the experimental second largest
connected component (SLCC), peaks in which indicate a critical point.

Due to the different connectivity of each layer, the RG also experiences two critical
points. We confirm this by plotting the second largest residual connected component
(SLRCC), peaks in which indicate the presence of a phase transition in the residual
network. The difference between the first peak in the SLCC and the last peak in the
SLRCC defines the transmissibility range that allows coexistence of each strain in the
network.

7.1.5 A model of the SLCC

In this section, we investigate how the two-pathogen model can be used to indicate the
expected size of the second largest connected component (SLCC) for tree-like networks.
We make the assumption that the giant connected component of the residual graph of a
network that has undergone bond percolation (GRCC) is isomorphic to the SLCC. The
model is based on [49] which studies the competition between two pathogens and can be
adapted to the clustered model in this chapter by simply setting T2 = T1. In other words,
the SLCC from the first percolation is assumed to have an equivalent structure to the GCC
that can be formed from the RG (the GRCC), when the second strain percolates with
occupancy equal to the first strain.

Let the probability that a neighbour is not connected to the GCC be u. Now, let v be
the probability that the neighbour was not in the SLCC, given that it was not in the GCC.

We can generate a self-consistent expression for both u and v with the introduction of
two generating functions

G0(x) = Â
k

p(k)xk, G1(x) = Â
k

q(k)xk (7.26)

where p(k) and q(k) are the degree distribution and the excess degree distributions, respec-
tively. It is well-known that we can write u = G1(1�T + uT ), finding a fixed point in
u 2 [0,1]. The fraction of the network occupied by the GCC is then

GCC = 1�G0(1�T +uT ) (7.27)

Let us consider a vertex of degree k. The probability that: a fraction m, of the
neighbours are not in either the SLCC or the GCC is [uv]m; that l �m of the k vertices are
not in the GCC, but are in the SLCC, but that they fail to attach the focal vertex to the
SLCC is [u(1� v)(1�T )]l�m, and that there are k� l neighbours in the GCC is

P(SLCC | not in GCC) =
✓

k
l

◆✓
l
m

◆
[uv]m[u(1� v)(1�T ]l�m[(1�u)(1�T )]k�l (7.28)
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Figure 7.6: Theoretical curves of the GCC and the SLCC from Eqs 7.27 and 7.30, re-
spectively, as well as the critical point (dashed) for Poisson networks with hki = 2.25.

Now, u is the solution to u = G1(1�T +uT ), whilst v is the solution of

v =
G1(uv+u(1� v)(1�T )+(1�u)(1�T )

G1(1�T +uT )
(7.29)

The size of the SLCC is then given by

SLCC = G0(1�T +uT )�G0(uv+u(1� v)(1�T )+(1�u)(1�T ) (7.30)
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Figure 7.7: Plotted are the theoretical SLCC and the experimental SLCC fractions. The
network is a a 2-layer network consisting of independent and triangular clustered edges
according to the model in section 7.1.4. Percolation on this network was found to exhibit
two critical points, corresponding to the emergence of a GCC on each layer. We see that
the theoretical model correctly predicts two peaks in the SLCC. However, the theoretical
line is noisy and not aligned with experiment.

7.2 Perfect coinfection

In this section we extend the model by Newman and Ferrario [53] to the realm of clustered
networks. In a coinfection model, an epidemic occurs over a substrate graph. One
equilibrium has been attained, the GCC created by the first process (if one is present) is
then percolated a second time. In this paradigm, infection with the first strain is paramount
for infection by the second. We examine the effects of clustering on the critical points as
well as the outbreak sizes of coinfecting epidemics.

7.2.1 Strain-1

Once the dynamics of the first pathogen have run their course over the network, the vertices
have either been infected or remain uninfected; a binary state equilibrium. To study an
infected vertex in the GCC of strain-1, we must examine all the permissible final states
that could surround the vertex through each edge type and assign a probability to each
one. We can then sum the combinations of each state by creating a generating function
that encapsulates the total probability of finding a particular infected vertex with a given
final-state neighbour distribution. In this way, we use the local environment of the vertex
to average over all possible neighbour states, weighted by the degree distribution, and then
build a macroscopic description of the percolation properties of the entire network. To do
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RG

GCCSubstrate graph

Coinfection

Figure 7.8: A conceptualisation of the coinfection model. A substrate network undergoes
bond percolation to create a GCC and an RG. In the coinfection model, the GCC is then
percolated further by a second bond percolation process to create an embedded GCC (blue).
Vertices that were not in the GCC of the first process cannot be included in the GCC of the
second process.

Infected	focal	node

Infected	by	the	focal	node

Uninfected	

Infected	not	by	focal	node

&'		 &'	1 − &'	

1 − #(	 #1

Figure 7.9: The tree-like edge topologies found in the GCC following the first strain and
their probabilities with u? = u2.

this we must find the probability that the infected vertex transmitted or failed to transmit
its infection to a neighbour during the dynamics of strain-1 through each topological
edge-type. We do this first for tree-like edges as they are simpler than triangles and we
note that a similar formula was found by Newman et al [53].

Assuming that the focal vertex is infected, there are three kinds of tree-like neighbours
we can expect after strain-1: uninfected, infected (not by the focal vertex) and infected
(by the focal vertex directly) according to Fig 7.9. Defining u2 to be the probability that
the neighbour found by following a tree-like edge was uninfected, the probability that
it doesn’t then become infected by the focal vertex is 1�T1. The probability that the
neighbour was infected by vertices other than the focal vertex is simply 1�u2. Finally,
vertices that were uninfected by their other neighbours can be infected directly by the focal
vertex with probability u2T1.

Therefore, an infected vertex with s tree-like neighbours, of which l remain uninfected,
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m are infected by their neighbours (other than the focal vertex) and m0 = s� l �m are
infected directly by the focal vertex, occurs with the following probability

f2(u2;T1) =

✓
s
l

◆
[u2(1�T1)]

l]

✓
s� l

m

◆

⇥ [1�u2]
m[u2T1]

s�l�m

⇥ [1� (1�T1)
m] (7.31)

The terminal bracket accounts for the probability that one of the m neighbours must
have infected the focal vertex. This is expressed as one minus the probability that all m
neighbours fail to infect it, each failure occurring with probability 1�T1.

The corresponding equation for triangles, f 2
3 (u3;T1) is a more involved calculation

which we now examine. Defining u3 to be the probability that a vertex involved in a
triangle is uninfected, there are six basis triangles to consider following strain-1, see Fig
7.10.
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C D
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Figure 7.10: The 3-cycle edge-topologies found in the GCC following the first strain
and their probabilities with u? = u2 and uD = u3. vertex colours and patters are defined
according to Fig 7.9. Triangles D, E and F consist of inhomogeneous neighbour-states and
hence, due to the symmetry of the shape, their reflection about a vertical axis bisecting the
focal vertex can also occur with equal probability. The curved arrows in triangles D and F
indicate the additional pathway through the cycle that the infected neighbour could infect
the focal vertex.

We will now discuss each triangle in turn from Fig 7.10. Triangle A assumes that both
neighbours are uninfected, each with probability u3(1�T1). Triangle B assumes that each
neighbour is infected by means other than the focal vertex, each occur with probability
1�u3. Similarly to the tree-like edge-topology, the focal vertex infects a neighbour with
probability u3T1, this occurs twice in triangle C. The remaining triangles D,E and F can
also be formed by swapping each neighbour with equal probability of occurrence, hence,
these configurations contribute twice to the neighbour-state distribution.

With these considerations in mind, the probability that a focal vertex involved in t
triangles having precisely a of type A, b of type B (an so on) is
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f 2
3 (u3;T1) =

✓
t
a

◆
[u3(1�T1)]

2a
✓

t �a
b

◆
[1�u3]

2b
✓

t �a�b
c

◆
[u3T1]

2c
✓

t �a�b� c
d

◆

⇥ [2u3(1�u3)(1�T1)]
d
✓

t �a�b� c�d
e

◆
[2u2

3T1(1�T1)]
e

⇥ [2u3(1�u3)T1]
t�a�b�c�d�e[1� (1�T1)

2b+d+e(1�T 2
1 )

d+e] (7.32)

The terminal bracket accounts for the total probability that one of the infected neigh-
bours (other than those the focal vertex infected) actually managed to transmit the infection
to the focal vertex in the first place. This probability is constructed as one minus the
probability that all the previously infected vertices failed to transmit their infection. Trans-
mission can fail to occur in two ways in the 3-cycle: either directly with probability 1�T1,
or around the cycle in the special case that the adjoining neighbour was initially uninfected,
which occurs with probability 1�T 2

1 . Both methods are highlighted in red in Fig 7.10.
Cycle B has two direct edges and cycles D and E are free to transmit around the outer
skeleton of the triangle prior to the infection of the focal vertex.

Due to the terminal brackets in Eqs 7.31 and 7.32, the generating functions consist
of two terms, the first considers all of the infections that all infected vertices create and
amounts to unity, while the second subtracts those that were not part of the GCC or
analogously the major outbreak of the strain due to the failure of the indirectly infected
neighbours to infect the focal vertex.

To construct the generating functions we must insert both f2 and f 2
3 into G0(x,y) and

sum over each index

H0(~x) =
•

Â
s=0

•

Â
t=0

p(s, t) f2 f 2
3 xm

1 xs�l�m
2 xb

3xc
4xd

5xe
6xl�d�e

7 (7.33)

with l = t �a�b� c. Applying the binomial theorem we obtain

H0(~x) = G0(u2(1�T1)+(1�u2)x1 +u2T1x2,u2
3(1�T1)

2 +(1�u3)
2x3 +(u3T1)

2x4

+2u3(1�T1)(1�u3)x5 +2u3(1�T1)u3T1x6 +2(1�u3)u3T1x7)

�G0(u2(1�T1)+(1�u2)(1�T1)x1 +u2T1x2,u2
3(1�T1)

2

+((1�u3)(1�T1))
2x3 +(u3T1)

2x4 +2u3(1�T1)
2(1�u3)(1�T 2

1 )x5

+2u3(1�T1)u3T1x6 +2(1�u3)u3T1(1�T1)(1�T 2
1 )x7) (7.34)

We will also define H1,t as the tautological analogue of Eq 7.34; however, in this case the
G0 generating function is replaced by G1,t . Each ut value then satisfies a self-consistent
equation given by

ut = J1,t(~x), ~x = {1, . . . ,1} (7.35)

where

J1,t(~x) = G1,t(u2(1�T1)+(1�u2)(1�T1)x1 +u2T1x2,u2
3(1�T1)

2

+((1�u3)(1�T1))
2x3 +(u3T1)

2x4 +2u3(1�T1)
2(1�u3)(1�T 2

1 )x5

+2u3(1�T1)u3T1x6 +2(1�u3)u3T1(1�T1)(1�T 2
1 )x7) (7.36)

which is the argument of the second bracket of Eq 7.34. The outbreak size of the first
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pathogen, S1, can be generated by the following expression

S1[u2,u3;T1] = H0(~x), {x = 1, 8x 2~x} (7.37)

7.2.2 Strain-2

When the second pathogen emerges on the network, the immunological landscape it
experiences consists of vertices that became infected by the first disease and vertices that
remained uninfected. An additional consideration is the infection history of each infected
neighbour; they could have received the disease from the focal vertex itself or via other
vertices they are connected to. To retain this important epidemiological information, it
is necessary to define multiple probabilities, vt , of not becoming infected by the second
disease for each scenario present in the GCC following the first pathogen. In other words,
there is a vt value for each distinct vertex-site in Figs 7.9 and 7.10 that include disease-1
infected vertices. This is in analogy to the analysis in section 7.2.1 that defined a ut value
for each subgraph that the first strain is incident upon in the contact network. In more
detail, cycles B, C and F retain their triangle topology in the GCC of strain-1; cycles
D and E have become fractured by strain-1 and hence spread strain-2 as if they were in
fact trees; finally, the two neighbours in cycle A do not allow the proliferation of strain-2
under the limit of perfect coinfection because they both remain susceptible following the
first epidemic. Given the topologies above, we determine that there are eight distinct
vertex-sites and hence eight vt values required to define the second pathogen. These
include: two tree-like values vA

2 and vB
2 for the externally- and directly-infected neighbours

in Fig 7.9, respectively; along with vB
3 , vC

3 , vD
3 , vE

3 and vF1
3 and vF2

3 for each triangle in Fig
7.10 that has neighbours in the GCC of disease-1. Cycle F contains two infected vertices;
however, their infection histories are non-equivalent, each requiring a unique description.

The probability, S2, that the focal vertex does not contract disease-2, given that it had
contracted disease-1 is the found to be

S2 = H0(g(vA
2 ),g(v

B
2 ),h

2(vB
3 ),h

2(vC
3 ),

g(vD
3 ),g(v

E
3 ),h

2(vF1
3 ,vF2

3 ))/S1 (7.38)

where g(v) = v+(1� v)(1� T2) is the probability that a single edge fails to transmit
disease-2; and

h2(va,vb) = g(va)g(vb)

� (va + vb �2vavb)T 2
2 (1�T2) (7.39)

with the notation convention that h2(v,v) := h2(v), is the probability that infection fails
when a vertex belongs to a triangle. The interpretation of Eq 7.38 is that the first bracket
calculates the spreading of the second disease over the infected subgraph from which we
then subtract those contributions that were not part of the GCC, or the major outbreak, of
the network. It remains now to compute the 8 probabilities va

t defined above. The recipe
for these is quite straightforward: we compute the probability that each site fails to infect
the focal vertex with disease-2, given that the focal vertex did indeed have disease-1. The
H1,t(~x) generating function can then be used to derive some of the probabilities that a
neighbouring vertex belonging to a given site fails to infect the focal vertex. Within these
8 scenario probabilities, we must correctly normalise by the probability of obtaining a
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Figure 7.11: The outbreak fractions for the 2-strain coinfection model on doubly Poisson
random graphs with T2 = 0.6, N = 25000, for varying clustering coefficients and fixed
overall mean degree hsi+ 2hti = hki to be hki = 2. It is clear that clustering reduces
the epidemic thresholds of both diseases and reduces the outbreak size of the first strain;
however, it increases the coinfected fraction of the network. Scatter points are the average
of 500 repeats of Monte Carlo simulation while solid lines are the theoretical predictions
from Eqs 7.37 and 7.38.

particular site as well as multiplying by the probability that the focal vertex did or did not
infect it. We find that

vA
2 = H1,2(g(vA

2 ),g(v
B
2 ),h

2(vB
3 ),h

2(vC
3 ),

g(vD
3 ),g(v

E
3 ),h

2(vF1
3 ,vF2

3 ))/(1�u2) (7.40a)

vB
2 = J1,2(g(vA

2 ),g(v
B
2 ),h

2(vB
3 ),h

2(vC
3 ),

g(vD
3 ),g(v

E
3 ),h

2(vF1
3 ,vF2

3 ))/u2 (7.40b)

vB
3 = H1,3(g(vA

2 ),g(v
B
2 ),h

2(vB
3 ),h

2(vC
3 ),

g(vD
3 ),g(v

E
3 ),h

2(vF1
3 ,vF2

3 ))/(1�u3) (7.40c)
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vC
3 = J1,3(g(vA

2 ),g(v
B
2 ),h
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3 ),h
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3 ),

g(vD
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3 ),h

2(vF1
3 ,vF2

3 ))/u3 (7.40d)
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2 ),g(v
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2 ),h
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3 ),h
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2 ),h
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vF2
3 = J1,3(g(vA

2 ),g(v
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2 ),h
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3 ),h
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g(vD
3 ),g(v
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3 ))/u3 (7.40h)

The complete prescription for solving the system of equations then involves: solving for
the outbreak size of the disease-1 using Eqs 7.36 and 7.37 before solving the simultaneous
system of Eqs 7.40a to 7.40h to find the v-values and finally using Eq 7.38 to find S2. The
fraction of the network that then contracts both diseases is then given by S1(1�S2).

7.2.3 Numerical results

In this section we consider the coinfection model for two random graph ensembles. In
each scenario, the model is compared with Monte Carlo simulation. The details of the
simulation is as follows: a substrate network undergoes bond percolation at a given bond
occupation probability T1. The GCC is then percolated at a second occupation probability
T2 which represents the coinfected sub-population.

An example of the 2-strain model is shown in Fig 7.11 for networks with fixed mean
degree hki= hsi+2hti= 2. In the limit of large network sizes, the joint degree distribution
is given by the double Poisson distribution

p(s, t) = e�hsi hsis

s!
e�hti htit

t!
(7.41)

In this instance, the generating functions G0(x,y) = G1,?(x,y) = G1,D(x,y) := G(x,y) and
we can write

G(x,y) = ehsi(x�1)ehti(y�1) (7.42)

The clustering coefficient for these graphs is then found to be

C =
2hti

2hti+ hki2 (7.43)

We can use this expression to determine the tree degree and the average number of triangles
per vertex for a fixed average degree, hki, along with hki = hsi+ 2hti. We use this
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expression in Fig 7.12 to numerically investigate the epidemic thresholds of the two strains
as a function of increasing clustering coefficient. An outbreak is considered to be an
epidemic if the fraction of the network infected, S(T1), is larger than e = 1⇥10�3, and
hence, we can use Eqs 7.37 and 7.38 to approximate the epidemic threshold of each strain
to sufficient accuracy. It is clear that increased clustering coefficients lead to a broadening
of the region of the model’s parameter space which can sustain coinfection at the increasing
expense of the single strain equilibrium.

Figure 7.12: An analytical investigation of the critical transmissibilities of both strains
for increasing clustering coefficients for the doubly Poisson networks defined in Fig 7.11.
The curves are generated from Eqs 7.37 and 7.38 at the value of T in which the outbreak
fraction becomes large than e . The critical points reduce as C increases, indicating that
contact clustering helps to spread an emergent epidemic. The interval [T ⇤

1 ,T
⇤

2 ] is the
transmissibility window in which strain-1 exists as an epidemic on the network without
strain-2. We observe that increased clustering reduces the interval and thus increases the
extent of coinfection in this model, at the expense of the mono-infection equilibrium. We
note, however, that clustering can never reduce the coinfection critical point below the
single strain threshold due to the strict conditions of perfect coinfection in the premise of
the model.

The double Poisson model can display the properties of clustering as well as afford
an exact solution. However, it is known that the distributions of contacts in many social
networks are not well represented by the double Poisson distribution; instead, they often
follow a power law. Further, whilst the average degree of Poisson networks can be fixed,
the degree correlations are known to change with increasing C, which has been the subject
of much research [40, 23, 20]. In this section, we investigate another clustering model
that is more representative of real-world social networks as well as holding the degree
correlations steady as we vary the clustering coefficient.
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We propose a realistic model of human contact networks with tunable clustering based
on Newman [46] and Hackett et alia [22, 20]. Contact networks often follow a scale-
free (SF) distribution and of particular importance is the SF degree distribution, pSFC(k),
whose maximum degree is curtailed by an exponential degree cut-off (SFC) [10]. Such a
distribution is given by

pSFC(k) = ck�ae�k/k (7.44)

where 2  a  3 is the power law exponent, k 2 Z is the degree cut-off and c is a
normalisation constant. In order to extend this degree distribution to the tree-triangle
model, it is necessary to decompose the degree of a vertex, k, into tree-like and triangle
contributions. We achieve this by introducing q as the probability that a given vertex is a
member of precisely t triangles. Thus, the clustered human contact network (CHCN) has
tree-like and triangle degrees distributed according to

pCHCN(k) = pSFC(k)
bk/2c

Â
t=0

✓
bk/2c

t

◆
q t(1�q)bk/2c�t (7.45)

where b·c is the floor function. The normalisation constant can be found from the condition

•

Â
k=0

pCHCN(k) = 1 (7.46)

Configuration model networks generated using this distribution have an identical distribu-
tion of overall degrees; however, their tree-like and triangle decompositions are modulated
through q . For high q values, the heavy tail of the distribution is able to introduce a
significant amount of clustering into the network. We observe the percolation properties of
the model for increasing q in the top plot of Fig 7.13. We find that clustering reduces the
epidemic threshold of both strains and, in contrast to the double Poisson model, reduces
the amount of coinfection in the network. Whilst CHCN networks have identical overall
degrees, there is no control of the degree assortativity across the different experiments,
however. Further, when the degree cut-off is large, we expect minimal assortativity, es-
pecially among the numerous low-degree sites. To examine the effect of assortativity on
these results, we propose a use the degree-d model [40] to the distribution to allow control
of the degree correlations. The degree distribution is given by

pCHCN,d (k) =

(
pCHCN(k)dk,sdt,0 k 6= 3
pCHCN(k)ds,1dt,1 k = 3

(7.47)

In other words, vertices in the network are not clustered unless their overall degree is
k = 3, in which case, they are involved in exactly one triangle and one independent edge.
This distribution forces the clustering to remain among the low-degree vertices towards
the periphery of the network and thus, we expect clustering to be positively assorted. We
examine this degree distribution in the bottom plot of Fig 7.13 for a lower degree cut-off
and find, in agreement with [40, 20, 23], and in contrast to the results from Eq 7.45, that
clustering increases the epidemic threshold of both strains.
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Figure 7.13: (Top) The outbreak fractions of both strains for increasing triangle proba-
bilities within the CHCN degree distribution defined in Eq 7.45. Clustering reduces the
epidemic threshold, in agreement with Poisson graph experiments; however, coinfection
decreases with increasing q . (Bottom) The expected epidemic sizes of both strains for a
pCHCN(k) network with q = 0.0 and a degree-d CHCN distribution network defined by Eq
7.47. Clustering increases the epidemic threshold in this model. Markers are the average
of 100 repetitions of bond percolation on CHCN networks with N = 10,000 vertices and
T2 = 0.6.

7.3 Partial immunity

In the previous section we extended Newman’s work on temporally separated, two strain
epidemics that are constrained to spread on either the RG [49] or the GCC [53] created by
the preceding epidemic, on tree-like networks to the clustered network GCM paradigm
[31, 34]. We then investigated the role that clustering plays on the epidemic properties,
such as the critical points of the model and the size of the GCC. There are many avenues
that we could explore from this starting point including: the effect of the presence of
other subgraphs, such as cliques or chordless cycles; subsequent percolation events (which
we do in chapter 8) or perhaps the most important generalisation, the relaxation of the
strict conditions that the subsequent process is forced to spread under. In other words, a
model in which the proliferation of the second disease is only modulated in some manner
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(either competitively or cooperatively), but the infection state of a vertex is not a hard
constraint on catching the second disease or not. Such a model is a partial interaction
model; which we colloquially simplify to a partial immunity model despite this implying
only competition [34]. The model is conceptualised in Fig 7.14 and is the subject of this
chapter.

Substrate graph 1st percolation Partial immunity

Figure 7.14: A conceptualisation of the partial immunity model. A substrate network
undergoes bond percolation to create a GCC and an RG. In the partial immunity model,
the entire network is then percolated further by a second bond percolation process to
create its own GCC. All vertices in the network, despite their residence following the first
percolation process, can be included in the GCC of the second process. Vertices that were
in the GCC (RG) of the first process and are present in the GCC of the second process are
coloured blue (green).

The defining feature of the partial immunity model lies in the discussion from section
2.6 regarding the different interpretations of g2. Chapter 3.4, on the complement solution,
also hints at this by writing the probability of belonging to the GCC in full rather than
using the mutually exclusive “1 minus” approach.

Consider the neighbourhood of the two vertices that we might choose from the equi-
librium of the first disease in a clustered network. Across both focal vertices, we observe
14 different motifs that could surround a pair of vertices chosen at random. Among these,
there are 18 different neighbour states with unique infection histories comprised from three
basis states of neighbour vertex: uninfected (green), infected externally (grey) and infected
directly (blue). For example, consider the infected focal vertex (red) in Figure 7.15. There
are 9 different motifs [F-N] that could potentially surround the focal vertex. Counting each
tree-like neighbour and each vertex within a triangle (excluding the focal vertex itself) that
is not related by symmetry to its neighbour, there are 12 different neighbouring sites; each
site is occupied by one of three infection states: uninfected (green), externally infected
(grey) and directly infected (blue).

7.3.1 Uninfected vertex description

The local environment of a vertex in the RG created by the first strain is considered here
[35]. This accounts for all motifs that have the yellow focal vertex in Figure 7.15. The



114 CHAPTER 7. TWO-STAGE EPIDEMICS ON CLUSTERED NETWORKS

!∆ !∆ 1 − !∆ 1 − !∆	

!∆ !∆ !∆1 − !∆	

!∆1 − !∆	!∆!∆

I J

K L

M N

Infected	focal	node

Infected	by	the	focal	node

Uninfected	

Infected	not	by	focal	node

!(		 !(	1 − !(	

Uninfected	focal	node

1 − !∆ 1 − !∆	

!∆ !∆

1 − !∆	 !(		 1 − !(	

A

B

C

D E

F G H

!∆

Figure 7.15: The 14 motifs that surround both focal vertices in the percolation model.
In each case the lowest vertex in the motif is the focal vertex; of which there are two
considerations, uninfected (yellow) and infected (red). There are three states a neighbouring
vertex could be in: uninfected (green), infected externally (grey) and infected directly
(blue), although the latter only occurs when the focal vertex is infected. Motifs [A-C] are
the triangle motifs surrounding an uninfected focal vertex; D and E are the two types of
tree-like edges. Motifs [F-H] are the tree-like edges that could surround an infected focal
vertex and finally, motifs [I-N] are the triangles that an infected focal vertex can belong
to. Among these motifs, there are 18 unique vertex-sites in total. Symmetric triangles
(about a vertical axis bisecting the focal vertex) only contribute one site-type, whilst mixed
triangles contribute two site-types and tree-like edges contribute one site-type each. The
numbering convention for mixed triangles always proceed from left to right; for instance,
in the mixed state triangle B the uninfected neighbour is B1 whilst the infected neighbour
is B2. Also, we do not have to include the mirror image of mixed triangles, since, they
occur with equal probability.

generating function for the probability of choosing an uninfected focal vertex (yellow)
from the network, puninfected = F0(~x), is

F0(~x) =G0(u2x1 +(1�u2)(1�T1)x2,(u3x3)
2 +((1�u3)(1�T1)x4)

2

+2u3(1�u3)(1�T1)(1�T 2
1 )x5) (7.48)

where u3 is the probability that a neighbour vertex in a triangle is uninfected. The vector
~x = {x1, . . . ,x5} has 5 dimensions, one for each of the 5 motifs that could surround the
uninfected focal vertex. We define two additional generating functions F1,2(~x) and F1,3(~x)
by replacing G0(~x) in Eq (7.48) with G1,2(~x) and G1,3(~x), respectively. Eq (7.48) can be
used to generate the size of the GCC of strain 1 according to the following self-consistent
set of equations

u2 =F1,2(~1) (7.49)

u3 =F1,3(~1) (7.50)

followed by S1 = 1�F0(~1).
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7.3.2 Infected vertex description

The local environment of a vertex in the GCC created by the first strain is presented here
[31]. The generating function, pinfected = H0(~y), for picking an (externally) infected focal
vertex (red) from the network that is part of the GCC is given by

H0(~y) = G0(u2(1�T1)y1 +(1�u2)y2 +u2T1y3,(u3(1�T1))
2y4 +(1�u3)

2y5 +(u3T1)
2y6

+2u3(1�T1)(1�u3)y7 +2u3(1�T1)u3T1y8 +2(1�u3)u3T1y9)

�G0(u2(1�T1)y1 +(1�u2)(1�T1)y2 +u2T1y3,(u3(1�T1))
2y4

+((1�u3)(1�T1))
2y5 +(u3T1)

2y6

+2u3(1�T1)
2(1�u3)(1�T 2

1 )y7 +2u3(1�T1)u3T1y8

+2(1�u3)u3T1(1�T1)(1�T 2
1 )y9) (7.51)

We will also define H1,2(~y) and H1,3(~y) by replacing G0(~y) by G1,2(~y) and G1,3(~y), respec-
tively. Additionally, we generate a description of the directly infected neighbour state
(blue) as

J1,t(~y) = G1,t(u2(1�T1)y1 +(1�u2)(1�T1)y2 +u2T1y3,(u3(1�T1))
2y4

+((1�u3)(1�T1))
2y5 +(u3T1)

2y6 +2u3(1�T1)
2(1�u3)(1�T 2

1 )y7

+2u3(1�T1)u3T1y8 +2(1�u3)u3T1(1�T1)(1�T 2
1 )y9) (7.52)

The size of the GCC of strain 1 can be found by solving

u2 =J1,2(~1) (7.53a)

u3 =J1,3(~1) (7.53b)

and then S1 = H0(~1). In relation to the uninfected vertex description we have that F1,t(~1) =
J1,t(~1) and that H0(~1) = 1�F0(~1). Thus, the full description of the binary state equilibrium
following bond percolation is given by the relation

1 = F0(~1)+G0(~1) (7.54)

This expression constitutes a novel way, to our knowledge, of using the generating function
formulation and it is this key equation that allows us to create the partial immunity model.
This concept has been developed earlier in chapter 3.4, where the connections to the GCC
were written explicitly in that case.

7.3.3 Strain 2

We have seen above how the GCC of the first strain can be obtained from either description
of members of the percolation equilibrium: an uninfected vertex in the RG or an infected
vertex in the GCC. To calculate the outbreak size of strain 2, we proceed as follows. For
each of the 18 possible neighbouring vertex states, we must introduce a probability that
infection with strain 2 does not occur through this channel by some means. Therefore,
we introduce 18 distinct probabilities that a neighbour of a given state fails to infect a
given focal vertex with strain 2. Although arbitrary, we choose different symbols for these
probabilities depending on whether the neighbour state surrounds an uninfected vertex or
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an infected vertex. We will see in a moment that subsets of the 18 sites are generated by
the same expressions, and as such, the dimensionality of the model can be significantly
reduced. However, we proceed in full for the moment.

There are 6 unique states that surround an uninfected focal vertex and thus, we define
a set of 6 probabilities, {w}, that each hold the value of not becoming infected by strain
2 from one of these states. Specifically, there are 4 triangle neighbours and 2 tree-like
neighbours so

{w}= {wA
3 ,w

B1
3 ,wB2

3 ,wC
3 ,w

D
2 ,w

E
2 } (7.55)

Similarly, there are 12 states surrounding the vertex in the GCC and so we introduce a
set, {v}, that holds the values of the probabilities of not becoming infected with strain 2
from these states. Specifically, there are three states reached by tree-like edges and 9 states
within the triangle motifs. Hence,

{v}= {vF
2 ,v

G
2 ,v

H
2 ,v

I
3,v

J
3,v

K
3 ,v

L1
3 ,vL2

3 ,vM1
3 ,

vM2
3 ,vN1

3 ,vN2
3 } (7.56)

We next need to write self-consistent expressions for each of the values in {w} and {v}.
Before we do this, we define two functions that express the probability of transmission
failing through a tree-like edge, g(v,T ) = v+(1� v)(1�T ), and a triangle motif

h(vµ ,vn ,Tµ ,Tn) = g(vµ ,Tµ)g(vn ,Tn)

� vµ(1� vn)(1�Tn)TnTµ

� vn(1� vµ)(1�Tµ)TµTn (7.57)

with the convention that h(vµ ,vµ ,Tµ ,Tµ) = h(vµ ,Tµ). We will insert these functions into
the~x and~y vectors in the arguments of the generating functions; each insertion describing
the probability that strain 2 isn’t contracted from a particular motif. The probability of not
getting infected by strain 2 from the uninfected neighbour at the end of a tree-like edge is

wD
2 = F1,2/u2 (7.58a)

The probability of not contracting strain 2 from the infected neighbour at the end of a
tree-like edge is

wE
2 = H1,2/(1�u2) (7.58b)

We now turn to the triangle probabilities {wA
3 ,w

B1
3 ,wB2

3 ,wC
3}. The probability that the

uninfected focal vertex doesn’t get strain 2 from the symmetric susceptible site is

wA
3 = F1,3/u3 (7.58c)

The probability that the symmetric infected site doesn’t transmit to the uninfected focal
vertex is

wC
3 = H1,3/(1�u3) (7.58d)

The mixed triangle follows. For the uninfected focal vertex, we have the probability of not
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becoming infected with strain 2 from an uninfected neighbour as

wB1
3 = F1,3/u3 (7.58e)

Whilst for the infected site we have

wB2
3 = H1,3/(1�u3) (7.58f)

We now have all of the probabilities that we require to describe the local environment of
the uninfected vertex. We now turn to the description of the infected vertex in the GCC of
strain 1. The three tree-like sites, {vF

2 ,v
G
2 ,v

H
2 }, are generated as follows: the uninfected

neighbour

vF
2 = F1,2/u2 (7.58g)

the externally infected neighbour

vG
2 = H1,2/(1�u2) (7.58h)

and the directly infected neighbour

vH
2 = J1,2/u2 (7.58i)

We now require the 9 triangle values {vI
3,v

J
3,v

K
3 ,v

L1
3 ,vL2

3 ,vM1
3 ,vM2

3 ,vN1
3 ,vN2

3 }. The probabil-
ity that an uninfected neighbour fails to transmit strain 2 through a symmetric uninfected
triangle I is

vI
3 = F1,3/u3 (7.58j)

The probability that the infected focal vertex in triangles J and K does not contract strain 2
is

vJ
3 = H1,3/(1�u3) (7.58k)

and

vK
3 = J1,3/u3 (7.58l)

The mixed triangle L is given by

vL1
3 =H1,3/(1�u3) (7.58m)

and

vL2
3 = F1,3/u3 (7.58n)

Triangle M follows as

vM1
3 = F1,3/u3 (7.58o)



118 CHAPTER 7. TWO-STAGE EPIDEMICS ON CLUSTERED NETWORKS

and

vM2
3 = J1,3/u3 (7.58p)

Finally, triangle N is given by

vN1
3 =H1,3/(1�u3) (7.58q)

and

vN2
3 = J1,3/u3 (7.58r)

At this point, we have not yet written the arguments of each generating function,~x and~y.
It happens, that there are several equivalent expressions among the variables, allowing us
to reduce the dimension of the problem considerably. Specifically, we notice the following
redundancies among the relations: vM1

3 = vL2
3 = vI

3 = wB1
3 = wA

3 , wB2
3 = wC

3 = vL1
3 = vN1

3 =
vJ

3, wE
2 = vG

2 , wD
2 = vF

2 , and vK
3 = vN2

3 = vM2
3 . This over prescription affords a reduction in

the number of system variables to only 6 independent variables, one for each of the possible
neighbour vertices: uninfected, externally infected and directly infected for tree-like edges
and triangle motifs, respectively. Therefore, if we write the argument of each generating
function F1,2,H1,2,J1,2,F1,3,H1,3 and J1,3 once, it is known for all occurrences of that
function in the model. Further, we observe that the only difference between F1,t ,H1,t and
J1,t for t = 2,3 is the underlying G1,t function, not the argument. In other words, the
arguments of F1,2 and F1,3, for instance, are equivalent; we do not distinguish based on
their topology. A final simplification can be achieved by noting that the arguments of J1,t
and H1,t are also equivalent. Therefore, there are only two arguments to write: one for F1,t
and another for H1,t . These are given by~x = ~z and~y = ~x where

~z = {g(wD
2 ,T2),g(wE

2 ,T
0

2),h(w
A
3 ,T2),h(wC

3 ,T
0

2),h(w
B1
3 ,wB2

3 ,T2,T 0
2)} (7.59)

and

~x = {g(vF
2 ,T2),g(vG

2 ,T
0

2),g(v
H
?,T

0
2),h(v

I
3,T2),h(vJ

3,T
0

2),h(v
K
3 ,T

0
2),h(v

L1
3 ,vL2

3 ,T 0
2,T2),

⇥h(vM1
3 ,vM2

3 ,T2,T 0
2),h(v

N1
3 ,vN2

3 ,T 0
2,T

0
2)} (7.60)

which constitute vectors of probabilities that each neighbour site fails to transmit infection
to the focal vertex (or connect it to the GCC). With this in place, we now have an expression
for all of the required probabilities {w} and {v}. The size of the second outbreak over the
network is then found by solving

S2 =[F0(~1)+H0(~1)]� [F0(~z )+H0(~x )] (7.61)

where [F0(~1)+H0(~1)] = 1. Qualitatively, this expression is 1 minus the probability that a
vertex obtains strain 2 from either uninfected or infected neighbours.
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Figure 7.16: The outbreak fractions for several (T2,T 0
2) combinations of the model all in

the absence of clustering. From left to right: (A) complete cross-immunity (T2,T 0
2) = (1,0)

, (B) partial cross-immunity (T2,T 0
2) = (0.6,0.39) , (C) partial coinfection (T2,T 0

2) =
(0.4,0.7) and (D) perfect coinfection (T2,T 0

2) = (0,0.6) . Markers are the average of 50
repeats of bond percolation over CCM networks of size N = 65000, a = 2.0 and q = 0;
square markers are strain 1 whilst circles are strain 2. Solid lines are the theoretical results
of Eq (7.61) for strain 2.

7.3.4 Numerical results

The results of the model under 4 different strain interactions for tree-like networks in the
absence of clustering are shown in Figure 7.16 as T1 is varied. Across the simulations,
the networks are built according to the clustered contact model, (CCM) [31], which is an
example of a configuration model degree distribution with clustering. Power law contact
distributions are typical of those found in real-world social networks [48]. The underlying
degree distribution is given by a power law model with exponential degree cut-off (PLC)
defined as

pPLC(k) =
k�ae�k/k

Lia(e�1/k)
(7.62)

where k is the degree cut-off, a 2 [2,3] is a power law exponent and Lin(z) is the n-th
polylogarithm of z [46]. Each k is then decomposed into tree-degrees, s and triangle
degrees, t, according to Gleeson’s method of edge partitioning [18]

pCCM(k) = pPLC(k)
bk/2c

Â
t=0

✓
bk/2c

t

◆
q t(1�q)bk/2c�t (7.63)

where b·c is the floor function and q 2 [0,1] is the probability of a pair of edges belonging
to a triangle.

We simulate bond percolation for both strains numerically using Monte Carlo simu-
lations. Following strain 1, infected vertices are labelled and subsequent infection with
strain 2 occurs with probability T2 for vertices in the RG or T 0

2 for vertices in the GCC.
In Figure 7.16a we have T2 = 1 and T 0

2 = 0, a perfect cross-immunity model [49] in
which infection with strain 1 prevents infection with strain 2. In Figure 7.16b we relax
this hard limit, with T2 = 0.6 and T 0

2 = 0.39, to obtain a partially cross-immune interaction
whereby the transmission of strain 2 is reduced for strain 1 infected vertices. For T1 < T1,c
we observe the steady-state of strain 2 without competition from strain 1. At T1 = T1,c a
GCC in strain 1 emerges and the number of cases of strain 2 drops, but does not vanish;
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in the limit T1 = 1 strain 2 reaches its lowest incidence rate as competition is maximised.
In Figure 7.16c we observe a partial coinfection model, with T2 = 0.4 and T 0

2 = 0.7. In
this case, strain 2 is facilitated by the presence of strain 1 in the network; the symbiotic
interaction leading to an increase in the incidence of strain 2 infected vertices. Figure
7.16d shows the hard limit of a perfect coinfection model [53] with T2 = 0 and T 0

2 = 0.6,
strain 2 cannot survive without a GCC of strain 1 present in the network.

With an understanding of the model without clustering, we now examine the case where
q 6= 0 for both partial interaction models with k = 20, a = 2 and q = 0.5, see Figure 7.17.
The epidemic threshold of strain 1 is reduced with clustering, so too is the overall outbreak
size of strain 1 at large T1, compared to unclustered networks. The incidence of strain 2
exhibits dual behaviour over the range of T1. For the partial immunity scenario (Figure
7.17a), with T2 = 0.6 and T 0

2 = 0.4, clustering reduces the incidence of strain 2 at low T1;
however, it increases it as T1 ! 1. Conversely, for partial coinfection (Figure 7.17b), with
T2 = 0.4 and T 0

2 = 0.7, having lowered the epidemic threshold of strain 1, clustering causes
an increase in the incidence of strain 2 at lower T1 values compared to the unclustered
analogue.

In Figure 7.18 we perform a second experiment using the degree-d model [40, 20, 31].
We define a distribution in which the degree of vertices involved in triangles is fixed to k = 3
and thus (s, t) = (1,1), whilst all other degrees are given by Eq (7.63) for (s, t) = (k,0).
With the degree-correlations among triangles fixed, the epidemic threshold of the first
strain increases with clustering. The partial cross-immune coupling (Figure 7.18a), with
T2 = 0.8 and T 0

2 = 0.65, no longer exhibits a cross-over in expected size of strain 1 and
strain 2; clustering reduces the incidence of strain 2 for all values of T1. Similarly, the
partial coinfection model (Figure 7.18b), with T2 = 0.6 and T 0

2 = 0.75, exhibits a reduced
incidence of strain 2 compared to the unclustered analogue. As T1 ! 1, however, the
coinfection is reduced in the clustered graph compared to the unclustered.

7.4 Chapter summary

In this chapter we have introduced three models of 2-strain sequential epidemics on
clustered networks. The first two are generalisations of Newman’s prior work to the case of
networks with finite measure clustering. These include the case of perfect cross-immunity
and perfect coinfection, whereby, the second strain spreads solely on the RG or GCC,
respectively. In the third model, we framed these two scenarios as limiting cases of a
spectrum of infection criteria for a vertex to be infected with the second strain. Relaxing
the infection prerequisites for the second epidemic allowed it to spread more readily over
the network, with non-zero probabilities either side of the phase transition of the first strain.
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Figure 7.17: The outbreak fractions for both strains for clustered (Eq 7.63) and unclustered
networks as T1 is varied under two disease couplings: (A) partial cross-immunity (T2,T 0

2) =
(0.6,0.4) and (B) partial coinfection (T2,T 0

2) = (0.4,0.7) . Simulations are the average of
50 repeats of bond percolation on networks with N = 35000 and q = 0.0, a = 2.0 and 0.5
for the unclustered and clustered networks, respectively. Solid lines are the theoretical
results of Eqs 7.51 and 7.61. In general, clustering reduces the extent of plural infections
in the network; however, degree assortativity within the contact topology causes a reversal
of this at high (low) values of T1 in A (B).
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Figure 7.18: The outbreak fractions of the degree-d model with clustering constrained
to low degree assortativity for (A) partial immunity (T2,T 0

2) = (0.8,0.65) and (B) partial
coinfection (T2,T 0

2) = (0.6,0.75) disease interactions. Simulations are the average of 50
repeats of bond percolation on networks with N = 35000, a = 2.0; solid lines are the
theoretical results of Eqs 7.51 and 7.61. Clustering reduces the fraction of the network that
becomes infected by both strains for all values of T1.



8
CHAPTER EIGHT

EPIDEMICS WITH
N-STRAIN VARIANTS

In this chapter we formulate an extension of the epidemic models from the previous chapter
by allowing additional generations of the percolation process to occur on the network.
Specifically, we consider N generations of both the perfect cross-immunity model, which is
manifestly a competitive process, and the perfect coinfection model, which conversely is a
cooperative process. In the competitive process, subsequent percolation events occur on
the RG created by the preceding generations, see fig 8.1 (top). In the cooperative process,
future percolation events can only occur on the GCC created by the previous generations.
We acknowledge that these models can be used to investigate the behaviour of repeated
attacks on networks. For this purpose, we study the response of networks that have Poisson
and scale-free degree distributions by examining the degree distribution and the cumulative
degree distribution of the resulting graph structures. We find that scale-free networks are
more robust than Poisson networks to repeated percolation.

RG

GCCSubstrate graph

Coinfection

Cross-immunity

…

…

Figure 8.1: A conceptualisation of the both the cross-immunity (top) and coinfection
(bottom) models with N-strain logic.

Whilst both of these branching processes are destined to burn out due to the exhaustion
of available vertices, an N-strain partial interaction model would continue indefinitely as
all vertices are potential substrates for future infection. We do not treat this case in the

123



124 CHAPTER 8. EPIDEMICS WITH N-STRAIN VARIANTS

thesis; however. We also restrict our attention to tree-like networks, rather than graphs
with clustering.

8.1 N-strain cross-immunity

In this section, we define the i-th competitive branching process as successive bond
percolations occurring on the RG created by the i�1 previous processes for i = 1, . . . ,n.
This process has been studied previously using generating functions by Newman and
Karrer when n = 2 [49, 26]. The structure of the RG has also been studied for clustered
and modular networks [35]. From a network science perspective, this model allows us
to study the structure of the RG of sequential bond percolation processes. In particular,
we observe how those sequential processes fracture the RG into isolated components and
study the phase behaviour associated with the sudden inability of the RG to support a
GCC. Within the context of the SIR isomorphism, this model considers the behaviour of n
seasonal strains of a disease (or separate diseases) that confer complete cross immunity to
all subsequent pathogens. The model allows us to study the expected outbreak size of each
generation and the point of natural burn-out due due to the shrinking of the susceptible
sub-population.

8.1.1 Outbreak size

To the i-th process, i = 1, . . . ,n, we assign a bond occupation probability Ti and aim to
calculate the probability that a randomly chosen vertex does not belong to a percolated
component. From this, we can find the mutually exclusive probability that a vertex does
belong to the i-th GCC, Ai. To do this, we define the probability that a neighbour of our
randomly selected vertex is not part of the i-th GCC, ui, given that it does not belong
to any of the previous percolated components. Under the SIR isomorphism, Ti is the
transmissibility of the i-th strain and ui is the probability that a neighbour is not thus far
infected.

There are two ways in which an edge emanating from the focal vertex can fail to
connect it to the GCC: firstly, the neighbour could itself be unconnected, the probability of
which by definition is ui. Secondly, the neighbour could be connected, (1�ui), but the
bond is unoccupied (1�Ti). Therefore, the probability, ḡi, that an edge fails to connect the
focal vertex to the i-th GCC given that the neighbour does not belong to any other GCC is

ḡi(Ti,ui | RG) = ui +(1�ui)(1�Ti) (8.1)

The total probability that a neighbour belongs to the RG of the i-th percolation can
then be found through a set of recursive functions, gi that describe the probability that each
iterative percolation failed to occupy this edge as

gi(TTT ,uuu) = ui�1ḡi +(1�ui�1)(1�Ti�1) (8.2)

with u0 = 1. A hierarchy of self-consistent equations [45] can be written to sequentially
solve for each ui value

ui =
G1(gi)

’ j u j
, j = 1, . . . , i�1 (8.3)
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The size of the i-th GCC (epidemic) is then found by

Ai =
i�1

’
j=1

G0(g j)�G0(gi) (8.4)

The total infected fraction of the network is given by A = Âi Ai.

Figure 8.2: The outbreak fractions for five generations of the competitive branching process
as a function of T1. Solid lines are the theoretical results from Eq 8.4 whilst scatter points
are the average of 50 repetitions of bond percolation over a network with N = 35000
vertices. The inset shows the total number of infected vertices.

As an example of Eq 8.4, we can obtain the expected outbreak size of the first epidemic,
n = 1, from this system as A1 = 1 � G0(g1) where u1 = G1(g1) and g1 = u1 + (1 �
u1)(1� T1), [45]. In the case that n = 2 [49], we have A2 = G0(g1)�G0(g2), where
u2 = G1(g2)/u1 and

g2 =u1(u2 +(1�u2)(1�T2))

+(1�u1)(1�T1) (8.5)

Similarly, for n = 3 we have A3 = G0(g1)G0(g2)�G0(g3) with u3 = G1(g3)/(u1 ·u2) and

g3 =u1(u2(u3 +(1�u3)(1�T3))

+(1�u2)(1�T2))+(1�u1)(1�T1) (8.6)
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With these examples, it is hopefully clear how to write further generations of the competi-
tive percolation process.

8.1.2 R0

The R0 value is defined as the number of new infections caused by an average infected
individual. When R0 < 1, the epidemic fails to infect a significant portion of the network;
the GCC comprises O(1) vertices. When R0 = 1, the probability that an epidemic infects
a macroscopic fraction of the network, O(N), is non-zero. This point is also the critical
point in bond percolation that marks the smallest value of T that can form a GCC. Within
our model, there is an R0,i value and a critical transmissibility for each strain. This critical
point is a function of both the network topology and the transmissibilities of the previous
strains. If the transmissibility of a particular strain is below its critical threshold, it only
infects O(1) vertices before it burns out. Therefore, in the following analysis, we assume
that the transmissibility of each strain is greater than its minimum threshold.

The critical point for the i-th percolation can be found by applying linear stability
analysis around the fixed point ui = 1. This is the point at which the fixed point in ui
bifurcates into two solutions and Ai becomes non-zero. Performing this analysis, we find
the following condition

R0,i = ’
j

u j


∂G1(gi)

∂gi

∂gi

∂ui

��1

ui=1
(8.7)

where the derivatives are given by

∂gi

∂ui
= Ti

i�1

’
j=1

u j (8.8)

When evaluated at ui = 1, G0
1(gi) becomes G0

1(gi�1) from Eqs 8.1 and 8.2. The critical
transmissibility is found when R0,i = 1 to be

Ti,c =
1

G0
1(gi�1)

(8.9)

Thus, the minimum transmissibility required for each strain to create an epidemic is a
function of the network topology and the transmissibilities of the preceding strains. Given
that the coefficients of G0

1(x) are non-negative and therefore monotonically increasing
on the positive real line (within its radius of convergence), and that g j 2 [0,1] (since it
is a probability) and because Tj,u j  1, then it follows that G0

1(gi)  G0
1(gi�1) 8i. This

indicates (from Eq 8.7) that Ti,c � Ti�1,c. In other words, the epidemic threshold of each
strain increases with each generation. This is an intuitive result, since, as each strain passes
through the network, vertices with higher degree are preferentially embedded into the GCC
of that strain. Therefore, the RG is increasingly comprised of lower degree vertices as it
fractures with each iteration of the percolation.

Following [26] we can also prove a stronger condition on the minimum bond occupation
probability that a subsequent strain must have in order to exhibit an epidemic on the
network. It happens that each generation of the disease must have an increasingly higher
transmissibility than the last in order to infect O(N) vertices in the RG. To see this, we
note that gi(TTT ,uuu) is the probability that an edge fails to connect a vertex to the GCC of the
i-th epidemic and that this probability can only decrease or stay constant as Ti increases;
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Figure 8.3: (top) The cumulative degree distribution of vertices in the substrate network
and the GCCs of the RG following competitive bond percolation at T1 = 0.0. (bottom) The
outbreak sizes of the competitive branching process. The parameters are (T2,T3,T4,T5) =
(0.3,0.5,0.6,1.0) on a scale-free network with power-law exponent a = 2 and k = 20.
Scatter points are the average of 35 repeats of Monte Carlo simulations over N = 30000
vertex networks; whilst, solid lines are the theoretical results.
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Figure 8.4: (top) The degree distribution of the RG created once each strain from Fig
8.2 has spread over the network at T1 = 0.0; and, the corresponding cumulative degree
distribution (bottom). Scatter points are the average of 50 repetitions of N = 35000 Erdős-
Renyi networks with hki = 4. Curves are the theoretical results from the model. These
plots show how the RG becomes increasingly fractured with each percolation.

this implies that dTi/dgi  0. Inverting this quantity such that Ti = Ti(uuu,gi,TTT\{Ti}) where
the notation SSS\{s} excludes element s from set SSS, and performing the derivative we have
an expression that involves Ti and G0

1(gi�1). This can then be isolated and it can be shown
that Ti,c � Ti�1 8i 2 [1,n]. For example, the critical point of strain 2 is known [49, 26] to
be greater than the transmissibility of strain 1, T1. The critical point of strain 3 is given by
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T3,c = 1/G0
1(g2) from Eq 8.7 which, through the above prescription satisfies

T3,c �
g1 �g2

1�u2
= T2 (8.10)

This logic can be applied to all adjacent strains to create an ordered set of critical transmis-
sibilities {T1,c  T2,c, . . . ,Tn,c}. This indicates that transmissibility must evolve to increase
in order for a given strain to create an epidemic in the presence of others.

8.1.3 Coexistence threshold

The coexistence threshold Tx [49, 26] for two pathogens marks an additional phase transi-
tion in the model. It is the largest value of T1 that still allows the RG to retain sufficient
connectivity to support its own GCC for future strains. For instance, when T1 > Tx, the RG
fails to be globally connected and strain 2 fails to infect O(N) vertices even if T2 > T2,c.
For our purpose we extend the definition of the coexistence threshold, Ti,x, in the context
of n sequential strains to be the largest transmissibility of strain-i that allows the RG to
support a GCC for future generations, assuming that they are sufficiently transmissible.
Thus, Ti,x is a function of the bond occupancy probabilities of all previous percolations,
Ti,x = Ti,x(uuu,TTT\{Ti}). As for n = 2 [49, 26], Eq 8.7 implicitly defines the coexistence
threshold of the i-th strain and we find that Ti,x is the value of Ti for which G0

1(gi) = 1. For
instance, for an Erdős-Renyi degree distribution this condition becomes

1
hki ln

"
ui

i�1

’
j=1

u j

#
= gi �1 (8.11)

from which we can solve for Ti,c by inverting gi. For i = 1 we have

T1,x =
ln(u1)

hki
1

(u1 �1)
(8.12)

In Fig 8.2 we plot Ai for n = 5 against T1 2 [0,1] and T2 = 0.35, T3 = 0.5, T4 = 1.0 and
T5 = 1.0 for a Erdős-Renyi random graph with mean degree hki = 4 and N = 30000
vertices. We observe excellent agreement between experimental bond percolation (scatter
points) and the analytical results of Eq 8.4 (plotted lines). Below the epidemic threshold
of the first strain, T1 < T1,c, strain 1 does not exhibit a GCC. Hence, the RG is large
enough to enable the subsequent strains to form their own GCCs, each consuming more
of the available space. With T4 = 1, the last edges in the RG are occupied and, despite
a supercritical T5, we have A5 = 0. Strain-4 is bimodal, exhibiting two turning points
as a function of T1. This is because, at the first turning point, the transmissibility of the
previous strains is sufficient to form their own large GCCs in the RG; however, as T1
increases, strains 2 and 3 fall below their critical thresholds, allowing strain-4 to consume
the available sites into its own GCC. The outbreak size of strain-4 then falls to zero through
a final turning point as the transmissibility of strain-1 is increased beyond the coexistence
threshold. The inset figure shows the total fraction of the network that has become infected,
A versus T1. Against intuition, the largest fraction of the network that is occupied by (any)
disease, is not constant. To see this, we understand that the early generations of the disease
consume the high degree sites. As these become embedded within the GCC, those vertices
they connect to can become isolated and thus, cannot be incorporated in subsequent GCCs
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(see Fig 8.4). The effect of this is prominent at the onset of the GCC of strain 1 and leads
to a local minimum in the total infecteds. Therefore, a disease of low transmissibility early
on not only consumes vertices into its own GCC, but also reduces the accessible sites by
removing the infection pathways. As the transmissibility of the initial pathogen increases,
this effect is reduced and the total infected fraction of the network increases to A ⇡ 0.9.
The global minimum at T1 ⇡ 0.45 coincides with the coexistence threshold for strain 1;
we observe the inability of subsequent strains to create their own epidemic. At this point,
strain 1 is sufficiently transmissible to fracture the RG such that it can no longer support a
GCC for the other generations of the disease. Beyond this point the total infected fraction
follows the number of infected vertices of strain 1.

8.2 N-strain coinfection

In this section we define the i-th generation of a collaborative branching process as a bond
percolation process occurring on the GCC that is created by the i�1 previous processes
for i = 1, . . . ,n. We impose the strict requirement that only vertices in the GCC created by
all of the previous generations are included at the i-th generation. This process has been
studied previously by Newman and Ferrario when n = 2 [53] as well as for clustered and
modular networks [31]. Within the context of the SIR isomorphism, this model studies the
ability of the i-th disease to become an epidemic given that coinfection with all other i�1
strains is a prerequisite for infection with the current strain. The model is slightly more
complex than the competitive percolation and is best understood in terms of epidemiology,
so we will continue to use that setting for this section. If a vertex fails to become infected
with a particular strain, then it cannot become infected with further generations of the
disease; strains that have a low transmissibility significantly reduce the pool of available
vertices for future outbreaks.

To describe the model we index the generations i 2 [1,n] as before. We choose a vertex
at random from the GCC of the (i�1)-th percolation, prior to the i-th percolation. The
neighbours of the vertex are either attached to the GCC or they belong to the residual
graph with probability ui. Of those neighbours attached to the GCC, a fraction have been
directly attached by the particular chosen vertex, whilst the others have been attached by
one of their other neighbours. In the context of epidemiology, we emphasize the particular
subset of infected neighbours which the focal vertex directly infected from those that where
infected by one of their other neighbours. A rich and complex epidemiological lineage,
which we call the infection history, can be written for any neighbour given a particular
focal vertex and generation index. For instance, the focal vertex could transmit strain-1
to a particular neighbour, which in turn, might be the vertex that transmits strain-2 to the
focal vertex. It happens that the probability of passing each strain around is quite different
depending on the precise infection history of each neighbour; the direction of infection
transmission over a particular edge is important. Therefore, we must explicitly track all
possible neighbour states and define a probability, uih , that each possible edge fails to
connect the focal vertex to the i-th GCC for a given history ih. There are as many uih values
as there are independent maximally coinfected (states which have contracted all possible
strains) states in the i-th generation, which we now examine in detail.

As each percolation unfolds over the network, the number of states that neighbouring
vertices can occupy increases. Each generation branches the current number of maximally
coinfected states by a factor of two (accounting for directly and indirectly infected neigh-
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bours of the coinfected vertices in generation i�1). This means that the total number of
neighbour states, hi, in the i-th generation is

hi = 1+
i

Â
j=1

2 j (8.13)

comprising all of the states in the previous generation (which did not contract the i-th
strain) in addition to 2i�1 new states that are directly and indirectly infected, plus the
uninfected branch. Thus, the set of all infection histories for for a given generation i, {h}i,
has cardinality 2i�1; therefore, each generation requires 2i�1 new uih values, with ih 2 {h}i,
h = 1, . . . ,2i�1.

For instance, with reference to Fig 8.5, a vertex in the GCC of the first percolation has
three neighbour-types represented by the three triangles: susceptible (unfilled triangle),
directly (checked triangle) and indirectly (filled triangle) infected vertices. A vertex in the
GCC of the second percolation has seven neighbour-types: susceptible (unfilled triangle),
directly (checked triangle) and indirectly (filled triangle) infected with strain-1 but not
infected by strain-2; and finally, coinfected states (squares and pentagons) via direct
(checked) and indirect (filled) infection with strain 2 over both the direct (squares) and
indirect (pentagons) branches of strain-1. The third generation has 15 potential vertex
states comprising the seven states from the previous generation and twice the number of
coinfected states 2⇥4 and so on.

⋮ ⋮

Percolation	root

Figure 8.5: The possible neighbour vertex states surrounding a particular focal vertex for
the first two generations of the collaborative branching process. Each level of the tree
represents sequential generations of percolation, starting from an un-percolated root, to
which all vertices belong. Unfilled vertices represent states that do not belong to the GCC,
solid vertices represent states that are externally infected whilst checked vertices represent
states that have been directly infected by the focal vertex. For instance, the filled square
of the third generation has been externally infected with disease 1 and disease 2; whilst
the checked pentagon has been directly infected by the focal for both strains. All states
from the (i�1)-th percolation are brought forward into the i-th level, representing failed
infection by generation i.
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L

m

k-L-m

Figure 8.6: A graphical representation of a degree k focal vertex (center) with l uninfected,
m externally infected and k� l �m directly infected neighbours.

8.2.1 Outbreak size

The aim of this section is to define a prescription to obtain the outbreak size of the i-th
epidemic. Each generation requires 2i�1 unique uih values to be written; each accounting
for a particular infection history that a neighbouring vertex could have. Each uih value
will then be generated by a self-consistent expression in a similar way to those of the
competitive model as

uih =
G1(Pih)

Qih
(8.14)

where Pih is the probability of not obtaining strain i for infection history ih and Qih is the
prior probability that the neighbour has infection history ih. Note, Pih is analogous to gi
from the competitive model. Thus, it remains to calculate both the prior probabilities and
Pih . It happens, for a given generation i, that the probabilities Pih can be factored; thus,
each Pih expression comprises two parts: a multiplying common factor, Ci; and, the unique
part of the probability of each specific infection history, Hih such that

Pih =CiHih (8.15)

Firstly, we calculate Ci, which is simply all of the common terms belonging to each Pih ,
8ih 2 {h}i. Consider each branch point of the collaborative process from the perspective
of an infected vertex as we progress from generation j�1 to j. Neighbours either do not
contract strain- j; or they do, from either the focal vertex or one of their other neighbours;
there are always three branches from a given state (see Fig 8.6). Let f j(u jh ,v,w) be
a function that encapsulates the three possible neighbour scenarios and let u jh be the
probability that a neighbour is uninfected by any of its other neighbours by the j-th strain
at this branch point, given that its infection history is jh. We have

f j(u jh ,v,w) =
k

Â
l=0

✓
k
l

◆
[u jh(1�Tj)]

l
k�l

Â
m jh=0

✓
k� l
m jh

◆
[(1�u jh)v]

m jh [u jhTjw]k�l�m jh (8.16)

We have indexed the variable m with the infection history for later convenience. Despite
the complicated form of this expression it is straightforward to construct each term by
considering the probabilities associated with each neighbouring state. In detail: u jh(1�Tj)
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is the probability that a neighbour was uninfected by its other neighbours given history h
and that the focal vertex did not transmit strain j; 1�u jh is the probability that a neighbour
was already infected and u jhTj is the probability that a neighbour was directly infected by
the focal vertex. The arguments v and w are placeholders that allow the further subdivision
of the number of neighbours in a given infected state following the next generation.

We construct the common factor Ci by first constructing a related factor, C̄i, composing
this branch-point logic with itself i times and terminating the composition with v = w = 1
at the deepest levels (i.e. the leaves of the branching process) such that

C̄i = f1( f2(. . . fi()))) (8.17)

The function C̄i has 2i�1 arguments. The values of jh in u jh are given by the particular
elements of {h} j j = 1, . . . , i�1. The common factor for the percolation root (prior to any
diseases) is unity, C̄0 = 1; since all strains belong to the same state. Following strain-1 C̄1
is given by

C̄1(1,1) = f1(u11 ,1,1)
= u11(1�T1)+1�u11 +u11T1 (8.18)

for i = 2 we have

C̄2(1,1,1,1) = f1(u11 , f2(u21 ,1,1), f2(u22 ,1,1))
= u11(1�T1)+(1�u11)(u21(1�T2)+1�u21

+u21T2)+u11T1(u22(1�T2)+1�u22 +u22T2) (8.19)

similarly, for i = 3 we have

C̄3(111) = f1(u1, f2(u21 , f3(u31 ,1,1), f3(u32 ,1,1)), f2(u22 , f3(u33 ,1,1), f3(u34 ,1,1)))
(8.20)

and so on. An interesting observation is that this expression is always unity and that there
are always as many terminating 1s as there are unique infection histories required for the
next generation. We must define another related probability, f̄i, as

f̄ j(u j,v,w) =
k

Â
l=0

✓
k
l

◆
[u j(1�Tj)]

l
k�l

Â
m=0

✓
k� l

m

◆
[(1�u j)(1�Tj)v]m[u jTjw]k�l�m (8.21)

which is the probability that none of the externally infected neighbours transmitted their
infection to the focal vertex. Given these two functions, we can now build the common
terms in the probability that the focal vertex does not contract the i-th strain as

Ci = C̄i�1( f̄ff iii) (8.22)

Thus, Ci contains the common terms in the probability that describes the neighbouring
states prior to strain i, along with the probability that each of those states then fails to



134 CHAPTER 8. EPIDEMICS WITH N-STRAIN VARIANTS

transmit strain i itself. For example, the first few values of Ci are

C1 = f̄1(u1,1,1) (8.23a)
C2 = C̄1( f̄ (u21 ,1,1), f̄ (u22 ,1,1)) (8.23b)
C3 = C̄2( f̄3(u31 ,1,1), f̄3(u32 ,1,1), f̄3(u33 ,1,1), f̄3(u34 ,1,1)) (8.23c)

With a clear prescription to derive Ci for each generation, we must now calculate the

Figure 8.7: Four generations of the cooperative branching process with (T2,T3,T4) =
(0.6,0.5,0.45) and on an Erdős-Renyi network with mean degree hki= 4. Scatter points
are the average of 35 repeats of Monte Carlo simulations over N = 30000 vertex networks;
whilst, solid lines are the theoretical results. Subplot (a) shows the outbreak sizes; (b)
shows the degree distribution at T1 = 1; (c) is the cumulative probability that a vertex has
degree larger than k at T1 = 1.

probability associated with each infection history Hih in order to finalise the expressions
for Pih , which in turn we require in order to write self-consistent expressions for each uih
value in Eq 8.14. To do this, we consider each pathway from the percolation root to the
leaves of the tree created by the collaborative branching process (see Fig 8.5). If, at a
particular branching point, we progress via direct infection, we require that the focal vertex
was the vertex that transmitted infection to the neighbour. For this to occur we require
that the other neighbours other than the focal vertex failed to transmit their infection. This
occurs with probability (1�Tj)mr , with reference to Eq 8.16. Similarly, the probability
that the neighbour was infected by a vertex other than the focal vertex is 1� (1�Tj)mr .
We now see the utility of subscripting m in Eq 8.16 as it allows us to track each particular
set of externally infected neighbours over the arguments of Ci. For instance, there are
two infection histories at the start of the second process, strain-1 infected vertices have
either been externally infected, 21, or directly infected by the focal vertex, 22, such that
{h}2 = {21,22}. The number of externally 1-infected neighbours is given by m11 and so
we have

H21 = [1� (1�T1)
m11 ] (8.24)

H22 = (1�T1)
m11 (8.25)

Similarly, a vertex can obtain strain-3 from one of four different neighbour states: externally-
1 and externally-2 infected (31); externally-1 and directly-2 infected (32); directly-1 and
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externally-2 infected (33), or finally, directly-1 and directly-2 infected (34). Thus, there are
four infection histories to generate with {h}4 = {31,32,33,34}. We then write

H31 = H21 [1� (1�T2)
m21+m22 ] (8.26a)

H32 = H21(1�T2)
m21+m22 (8.26b)

H33 = H22 [1� (1�T2)
m21+m22 ] (8.26c)

H34 = H22(1�T2)
m21+m22 (8.26d)

Each history is constructed from the necessary probabilities to create each scenario. For
the next generation, each of these unique infection histories are branched into two to give
eight potential sources of strain-4.

With these examples, we now have a prescription to write Pih for each potential infection
neighbouring state. The last component we require in order to calculate the associated uih
values in Eq 8.14 is the prior probabilities that the neighbour was indeed in that particular
state following all of the previous strains, but prior to the i-th strain itself. It happens that
this probability follows a recipe that is simple to compute for each term. We define the
following rule: if a neighbour is externally infected at the j-th strain, we multiply the prior
probability by (1�u jh); otherwise, for direct infection, we multiply by u jh instead. The
logic behind this rule is simple: to be directly infected by the focal vertex, a neighbour
must not be infected by their other neighbours; the focal vertex must be the successful
infection pathway. Therefore, for the first branch point, the prior probabilities that the
neighbour was externally and directly infected, respectively, are given by

Q21 = (1�u11) (8.27)
Q22 = u11 (8.28)

Similarly following the second strain the prior probabilities for the four infection histories
are

Q31 = (1�u11)(1�u21) (8.29a)
Q32 = (1�u11)u21 (8.29b)
Q33 = u11(1�u22) (8.29c)
Q34 = u11u22 (8.29d)

(8.29e)

With this last component we can now construct the self-consistent expressions required to
compute the uih values in Eq 8.14. At this point, a useful check to ensure that the derived
components (priors, histories and base term) are correct is to set f̄ff i = 111. When evaluated
at unity, the uih values should be equal to one.

Next, we require the outbreak size of the i-th strain, Ai. It happens that this expression
is very simple to construct once we have performed the above work; we simply have to take
the expression for ui,h for the maximally indirect, maximally coinfected infection history
i1 (i.e. the expression for the history where every vertex-state was externally infected),
remove the prior denominator and replace the G1(z) generating function with a G0(z)
generating function. We then subtract this value from the previous outbreak size such that

Ai = Ai�1 �G0(Pi1) (8.30)
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Since G0(Pi1) can never be negative, we observe that the outbreak size of each generation
can never exceed the size of the previous one. We detail the expressions for the first few
generations in section 8.3 and show the percolation results for the first four generations
spreading over an Erdős-Renyi network in Fig 8.7. In Fig 8.7 (a) we plot the outbreak sizes
of each strain; each exhibits a smaller size and a larger percolation threshold with increasing
strain index. In Fig 8.7 (b) the degree distribution of each of the GCC substructures is
plotted. The average degree is reduced and the height and variance of each distribution is
increasingly reduced and shifted to the left. In Fig 8.7 (c) the cumulative probability that
the degree of a vertex is larger than k is shown for each strain. These results indicate that
eventually the spreading of cooperative processes on Erdős-Renyi graphs will be limited
by the fractured topology of the substrate network available to each strain in addition to
the transmissibility of the disease.

The complete prescription for solving for the outbreak size of the n-th generation of
the cooperative branching process is to hierarchically solve the coupled linear system of
equations for each ui j given by

ui j = ui j(u11 ,u21 , . . . ,ui2i�1 ;T1, . . . ,Ti) (8.31)

for infection histories j = 1, . . . ,2i�1, and generations i = 1, . . . ,n and functional form
given by Eq 8.14. More detail on the structure of these expressions in terms of a perfect
binary tree is treated in section 8.3 as well as an examination of their solutions.

Figure 8.8: Four generations of the cooperative branching process with (T2,T3,T4) =
(0.6,0.5,0.45) and on a scale-free network with power-law exponent a = 2 and k = 20.
Scatter points are the average of 35 repeats of Monte Carlo simulations over N = 30000
vertex networks; whilst, solid lines are the theoretical results. Subplot (a) shows the
outbreak sizes, (b) shows the degree distribution at T1 = 1; whilst, (c) is the cumulative
probability that a vertex has degree larger than k in each GCC at T1 = 1; the inset shows
the same data on a logarithmic scale.

8.3 Outbreak sizes for collaborative branching processes

In this section we describe how to use the prescription to obtain the outbreak sizes of the
first few generations of the collaborative branching process. We also examine the graphical
solution for the resulting non-linear system of equations for each strain. This allows us to



8.3. OUTBREAK SIZES 137

examine the relative contribution of each infection mode to the overall outbreak size of the
epidemic.

8.3.1 Strain 2

For strain 2 there are two possible infection histories that a neighbour might have: either
the focal vertex infected it directly or it was externally infected. The probability that
the focal vertex doesn’t get strain 2 from each of these neighbour states is u21 and u22,
respectively. The common factor is given by

C2 = C̄1( f̄ (u21 ,1,1), f̄ (u22 ,1,1)) (8.32)

which is simply

C2 =
k

Â
l=0

✓
k
l

◆
[u11(1�T1)]

l
k�l

Â
m11=0

✓
k� l
m11

◆
[(1�u11) f̄ (u21)]

m11 [u11T1 f̄ (u22)]
k�l�m11

(8.33)
where we have dropped the 1s in the function arguments of the f̄ functions. Following
the prescription, the history of u21 is H21 = [1� (1�T1)

m11 ] whilst the history of u22 is
H22 = (1�T1)

m11 . Since the u21 history branches from the 1�u11 compartment, the prior
probability is simply Q21 = 1�u11; whilst Q22 = u11. Thus, we have

u21 =
1

Q21

•

Â
k=0

qkC2H21 (8.34)

u22 =
1

Q22

•

Â
k=0

qkC2H22 (8.35)

We exhibit the graphical solution for these coupled equations in Fig 8.9.
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Figure 8.9: The graphical solution of the generating functions for strain 2 at three different
T1 values with T2 = 0.6. Plotted are y = u2i for i = 1,2 against u2i as well as the value
of the generating functions z1 = G1(C2H21)/(1�u11) and z2 = G1(C2H22)/u11. Each zi
varies u2i whilst the other value is held fixed at the correct root. The intersection of y = u2i

and zi corresponds to the root, which is also marked with a scatter point. We notice that
the trivial root of u21 = u22 = 1 is no longer shown as the system moves away from the
critical point when the GCC first forms. This is also graphical motivation for finding the
critical point from a Taylor series around the trivial root. We also notice the increase (loss)
of convexity in u21 (u22) as we increase T1. This indicates the increasing (decreasing)
importance of the u21 (u22) branch to the formation of the GCC at larger transmissibilities.

8.3.2 Strain 4

We have

C4 = f1(u1, f2(u21 , f3(u31 , f̄4(u41), f̄4(u42)), f3(u32 , f̄4(u43), f̄4(u44))),

⇥ f2(u22 , f3(u33 , f̄4(u45), f̄4(u46)), f3(u34 , f̄4(u47), f̄4(u48)))) (8.36)
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Figure 8.10: A visualisation of the perfect binary tree of coinfected neighbours which a
focal vertex could be surrounded by and the equations that generate the base probability
C̄3(111). In this notation, the left child always represents external infection whilst the right
child represents direct infection. Thus, the leaves of the tree represent all possible infection
histories for the 4th strain.



8.3. OUTBREAK SIZES 139

u41 =
1

(1�u11)(1�u21)(1�u31)

•

Â
k=0

qkC4H31 [1� (1�T3)
m31+m32+m33+m34 ] (8.37a)

u42 =
1

(1�u11)(1�u21)u31

•

Â
k=0

qkC4H31(1�T3)
m31+m32+m33+m34 (8.37b)

u43 =
1

(1�u11)u21(1�u32)

•

Â
k=0

qkC4H32 [1� (1�T3)
m31+m32+m33+m34 ] (8.37c)

u44 =
1

(1�u11)u21u32

•

Â
k=0

qkC4H32(1�T3)
m31+m32+m33+m34 (8.37d)

u45 =
1

u11(1�u22)(1�u33)

•

Â
k=0

qkC4H33 [1� (1�T3)
m31+m32+m33+m34 ] (8.37e)

u46 =
1

u11(1�u22)u33

•

Â
k=0

qkC4H33(1�T3)
m31+m32+m33+m34 (8.37f)

u47 =
1

u11u22(1�u34)

•

Â
k=0

qkC4H34 [1� (1�T3)
m31+m32+m33+m34 ] (8.37g)

u48 =
1

u11u22u34

•

Â
k=0

qkC4H34(1�T3)
m31+m32+m33+m34 (8.37h)

(8.37i)

We show the solution to these expressions graphically in Fig 8.11 around the critical point
and for large T values. The outbreak size is then given by

A4 = A3 �
•

Â
k=0

pkC4H31 [1� (1�T3)
m31+m32+m33+m34 ] (8.38)
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Figure 8.11: The graphical solution of the generating functions for strain 4 around the
critical point of strain 1 (left) with T1 = 0.325,T2 = 0.6,T3 = 0.5,T4 = 0.45 and away
from the critical point at T1 = T2 = 0.6,T3 = 0.5,T4 = 0.45 (right). Plotted are y = u4i for
i = 1, . . . ,8 against u4i as well as the value of the generating functions zi = G1(C2H4i)/Q4i .
Each zi varies u4i whilst the other value held fixed at the correct root. The intersection of
y = u4i and zi corresponds to the root, which is also marked with a scatter point from a
non-linear solve. We notice that u41 varies convexly over almost the entire unit interval
whilst the gradient of the other generating functions is increasingly flat in this region of
the parameter space. This indicates that the contribution of these values is less important
than that u41. Thus, we can expect that this infection history is the dominant term in the
non-linear system that describes strain 4.

8.3.3 Strain 5

Following the recipe, the outbreak size of strain 5 is calculated as follows.

C5 = f1(u1, f2(u21 , f3(u31 , f4(u41 , f̄5(u51), f̄5(u52)), f4(u42 , f̄5(u53), f̄5(u54))),

⇥ f3(u32 , f4(u43 , f̄5(u55), f̄5(u56)), f4(u44 , f̄5(u57), f̄5(u58)))),

⇥ f2(u22 , f3(u33 , f4(u45 , f̄5(u59), f̄5(u510)), f4(u46 , f̄5(u511), f̄5(u512))),

⇥ f3(u34 , f4(u47 , f̄5(u513), f̄5(u514)), f4(u48 , f̄5(u515), f̄5(u516))))) (8.39)
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u51 =
1

(1�u11)(1�u21)(1�u31)(1�u41)

•

Â
k=0

qkC5H41 [1� (1�T4)
M] (8.40a)

u52 =
1

(1�u11)(1�u21)(1�u31)u41

•

Â
k=0

qkC5H41(1�T4)
M (8.40b)

u53 =
1

(1�u11)(1�u21)u31(1�u42)

•

Â
k=0

qkC5H42 [1� (1�T4)
M] (8.40c)

u54 =
1

(1�u11)(1�u21)u31u42

•

Â
k=0

qkC5H42(1�T4)
M (8.40d)

u55 =
1

(1�u11)u21(1�u32)(1�u43)

•

Â
k=0

qkC5H43 [1� (1�T4)
M] (8.40e)

u56 =
1

(1�u11)u21(1�u32)u43

•

Â
k=0

qkC5H43(1�T4)
M (8.40f)

u57 =
1

(1�u11)u21u32(1�u44)

•

Â
k=0

qkC5H44 [1� (1�T4)
M] (8.40g)

u58 =
1

(1�u11)u21u32u44

•

Â
k=0

qkC5H44(1�T4)
M (8.40h)

u59 =
1

u11(1�u22)(1�u33)(1�u45)

•

Â
k=0

qkC5H45 [1� (1�T4)
M] (8.40i)

u510 =
1

u11(1�u22)(1�u33)u45

•

Â
k=0

qkC5H45(1�T4)
M (8.40j)

u511 =
1

u11(1�u22)u33(1�u46)

•

Â
k=0

qkC5H46 [1� (1�T4)
M] (8.40k)

u512 =
1

u11(1�u22)u33u46

•

Â
k=0

qkC5H46(1�T4)
M (8.40l)

u513 =
1

u11u22(1�u34)(1�u47)

•

Â
k=0

qkC5H47 [1� (1�T4)
M] (8.40m)

u514 =
1

u11u22(1�u34)u47

•

Â
k=0

qkC5H47(1�T4)
M (8.40n)

u515 =
1

u11u22u34(1�u48)

•

Â
k=0

qkC5H48 [1� (1�T4)
M] (8.40o)

u516 =
1

u11u22u34u48

•

Â
k=0

qkC5H48(1�T4)
M (8.40p)

(8.40q)

with M =
8
Â
j=1

m4 j . The outbreak size is then given by

A5 = A4 �
•

Â
k=0

pkC5H41 [1� (1�T4)
M] (8.41)
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8.3.4 R0

In this section we examine the critical points of the cooperative model, generalising the
result of [53] for n > 2. As with the competitive percolation, there is an R0,i value for
each generation or strain. If at any point the outbreak size of a generation is subcritical,
then there can be no subsequent outbreaks as coinfection is a strong condition on the
proliferation of future strains. However, assuming that the previous i�1 strains did indeed
cause an O(N) outbreak, then there is some point Ti,c at which the i-th strain can also lead
to a finite sized propagation if its transmissibility exceeds this value.

The critical point for the i-th percolation can be found by applying linear stability
analysis around the fixed point {uh

i }= 1, which is the trivial root of the system of equations
for each generation (see section 8.3). The critical point of the first strain is identical to the
results from the competitive branching process; however, it is prudent to review this result.
Given that u11 = 1 at the critical point, we perform a Taylor expansion about e11 = 1�u11
using Eq 8.14 and truncate it to 1st order to obtain

e11 ⇡ 1�G1( f1)
��
u11=1 +G0

1( f1) f 01
��
u11=1e11 (8.42)

Rearranging this result, with G1(1) = 1 and f 01 = T1, we obtain T1,c = 1/G0
1(1) in accor-

dance with Eq 8.9 at i = 1. For the second strain, we now have two variables to consider
depending on the unique infection history of the neighbouring vertex. The critical point
occurs when both u21 and u22 are unity (see section 8.3 for a graphical motivation of this)
and we again perform a 1st order Taylor expansion about small parameter e2 j = 1�u2 j to
obtain the following coupled system

e21 ⇡ e21

∂F21

∂u21

+ e22

∂F21

∂u22

e22 ⇡ e21

∂F22

∂u21

+ e22

∂F22

∂u22

(8.43)

where we have set the functional form of ui j in Eq 8.14 to ui j = Fi j and evaluate the
derivatives at the fixed point u21 = u22 = 1. The derivatives are

∂F21

∂u21

= T2 �G0
1(1�T1 +u11T1)(1�T1)T2 (8.44)

∂F21

∂u22

=
u11T1

1�u11

⇥
1�G0

1(1�T1 +u11T1)
⇤

T2 (8.45)

and

∂F22

∂u21

=
G0

1(1�T1 +u11T1)(1�u11)(1�T1)

u11

T2 (8.46)

∂F22

∂u22

= G0
1(1�T1 +u11T1)T1T2 (8.47)

Thus, we have the following linear system

JJJ
✓

u21
u22

◆
=

1
T2,c

✓
u21
u22

◆
(8.48)
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where JJJ is a Jacobian matrix with eigenvalue 1/T2,c. Following [53] the system has two
eigenvalues and by examining the T1 ! 1 limit, the correct eigenvalue is

T2,c =
2

t +
p

t2 �4D
(8.49)

where t is the trace of JJJ and D is the determinant.
In the general case we have the following linear system

ei j ⇡
2i�1

Â
k=1

∂Fi j

∂uik
eik (8.50)

with i 2 [1,n] and j 2 [1,2i�1]. The derivatives are given by

∂Fi j

∂uik
=

G0
1(Pi j)

Q(i j)

∂C̄i�1Hi j

∂ f̄i

∂ f̄i

∂uik

����
uik=1

(8.51)

The derivative of the final f̄i term is always ∂ f̄i = Ti meaning that we have a leading factor
of Ti multiplying all terms. Thus, we can create the following linear system by simple
re-arrangement

JJJ~u =
1

Ti,c
~u (8.52)

where ~u = {u11 ,u21 , . . . ,ui2i�1}T and JJJ is a Jacobian matrix with elements ∂ikFi j/Ti eval-
uated at the fixed point uuu = {1,1, . . . ,1}. We then find the eigenvalues by solving
det(JJJ� 1

T I) = 0 where I is the identity matrix. The characteristic polynomial of an n⇥n
matrix can be expressed in terms of powers of the trace; however, roots of polynomials of
degree five or more are unlikely to yield a closed-form solution in general.

8.4 Chapter summary

In this chapter we have considered the repeated percolation of random tree-like graphs
extending the 2-strain epidemic models of Newman [49, 53]. We have discussed the
outbreak size and the critical behaviour of the models. These experiments are similar to
a repeated attack on a partially damaged network and so we have also plotted the degree
distribution for each outbreak, for each topology and its cumulative value. We found that,
for a coinfecting disease that spreads on the GCC of the preceding outbreaks, Poisson
networks fracture more readily than scale-free networks; whilst the converse is true for
cross-immune diseases that spread on the RG.
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CHAPTER NINE

CONCLUSION

In this thesis, we have endeavoured to rationalise the properties of clustered configuration
model networks using the analytically exact method generating functions. This topic is
important because of the widespread usefulness of complex networks across multiple
disciplines to describe networked interactions and the effect on the governing dynamics of
the topology of those interactions. Analytical models tend to assume that the network is
locally tree-like. Clustering could be defined as the failure to be tree-like; it is the tendency
of contacts to aggregate into closed loops, inducing correlations into the locally tree-like
assumption. There has been much research in the literature on the role that clustering plays
on dynamical processes; in particular, bond percolation. It is often the case that changing
the extent of clustering within the network also changes other properties, particularly
within the configuration model, such as the degree assortativity, which is the tendency of
high-degree contacts to preferentially connect together or not. Degree assortativity also
plays a significant role on the percolation properties of a random graph; and so, clustering
and assortativity are often studied together.

To inject clustering into a tree-like network, the generalised configuration model
assumes that a vertex can belong to a number of predetermined motifs, such as cliques or
other small cycles. The joint distribution of the vertices motif membership is then used to
create random graphs with potentially tight clustering, upon which Monte Carlo simulation
of percolation can be performed.

Analytically, the joint distribution can be used within the generating function method to
provide an exact theoretical model (in the limit of infinitely sized networks) to complement
the simulation.

In chapter 3, we have provided an exact closed-form expression for the percolation
properties of cliques and chordless cycles via arguments from enumerative combinatorics.
The expression is based on the probability that a vertex fails to be attached to the giant
connected component despite its membership in a clique or chordless cycle. It was shown
that this expression can be inverted to describe the probability that a vertex does belong to
the giant component. This dual description was then exploited to introduce the complement
problem, where the entire network was described, rather than either the giant component or
the residual graph. It was then stated that this full description is the fundamental reasoning
behind the utility of the partial immunity model we later discussed in chapter 7.

In chapter 4, we derived the distribution of finite components in random configuration
model graphs that are composed of cliques. The finite components of single-topology
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networks were studied and supported analytically, before being generalised to mixed-
clique networks. There is more work to be done to understand the role of clustering on the
distribution of components, their average size as a function of bond occupancy probability
and the effect of assortativity on these results.

In chapter 5 we formalised the counting procedure for other motifs, which do not exhibit
regular structure of cliques or chordless cycles and discussed the difficulties in finding
an all-encompassing closed-form expression for their percolation properties. We then
reviewed our approximate method, based on counting SIR trees rather than enumerating
induced subgraphs.

In chapter 6, we derived the probability that motifs of different topologies are connected
together and supported our expressions with Monte Carlo simulation. We then introduced
a novel clique cover algorithm and showed that the ensemble of random graphs that can
be created from our clique cover accurately describes the correlation properties of an
empirical network, particularly the high-degree sites.

Chapter 7 defined a new avenue of research for the thesis to discuss epidemics on
networks. In this chapter, we extended two important 2-stage epidemic models from the
literature to the realm of networks with 3-cliques. We then generalised this interaction
mechanism, based on the description of the giant and residual components from chapter 3
to a partial interaction model.

In chapter 8, in a break from all previous endeavours, we examined the repeated
percolation of tree-like networks under the interaction conditions of cross-immunity and
coinfection. We used this to probe the robustness of scale-free and Erdős-Renyi networks.

9.1 Future work

There many unfinished avenues of research from this work. These include the proper
investigation of the properties of the finite components of random networks composed of
cliques, chordless cycles or arbitrary motifs under percolation and controlled assortativity
conditions.

I am intrigued to re-derive the approximate percolation model based on counting
connected trees within motifs versus counting connected subgraphs. It would be interesting
to see if I simply counted it incorrectly, and that it could be made exact. This would also
hint at a deeper connection between the probabilities associated to percolation of trees and
graphs.

I believe that the complement problem, where the entire network following percolation
is fully described, will allow the analytical description of a Potts model, which could be
likened to a contemporaneous multi-strain epidemic model. This would proceed via the
principle of inclusion-exclusion, which is a counting technique in combinatorics to find
the union of finite sets.

The correlation properties of networks should be investigated further. I think the current
portrayal of zig-zag patterns is unintentionally misleading, and is mostly due to choice
of neighbour on the x-axis (see Fig 6.2 for instance). It would be better to continue the
analytical development of the model and introduce an overall degree-correlation function
or similar. It would also be interesting to study this for bond percolation over a substrate
network, or extend it to the repeated percolation epidemic model from chapter 8.

I think the properties of 2-strain epidemic on random graphs with cliques and chordless-
cycles should be investigated. Most likely in the form of the partial immunity model.



9.1. FUTURE WORK 147

Similarly, the N-strain epidemic model should be generalised to the case of clustered
networks as well as the partial immunity interaction.

I would be very interested to see if an endemic equilibrium could be described in terms
of N-strains of a partial immunity SIR model with fixed transmissibility.

Other studies should also be performed: such as addition-deletion processes (whereby
motifs are added or deleted from random graphs); the effect of heterogeneous susceptibility
and transmissibilities (percolation on semi-directed clustered networks); or the study of
multilayer networks with multiple interaction pathogens, should be investigated also. I find
the addition-deletion process very interesting, as this is essentially a birth-death process
and it could potentially be coupled with an epidemic process also.
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APPENDIX A

EQUIVALENT
EXPRESSIONS FOR g2

3

In this section we will examine some of the different expressions for g2
3 that are currently in

the literature, in a similar manner to the analysis of g2 performed in section 2.6. Perhaps the
earliest expression for g3 in the network science literature is due to Newman in 2003 [47];
although earlier work in 1959 by Gilbert contained the same terms [17]. The expression is
obtained from application of the recursive method for cliques, detailed in 3.2; however, it
was not written out in full by either Gilbert or Newman. The polynomial that is obtained is
also the one used by Karrer and Newman in 2010 [25]; Hasegawa et al [23] and is also
given by Mann’s Eq 3.21 and Eq 5.6 [36, 32]. It is written as

g2
3 = (1�T )2 +2T (1�T )2u3 +3T 2(1�T )u2 +T 3u2 (A.1)

The logic behind each term of this polynomial is graphically displayed in Fig 3.2 and is
based on enumerating the ways that a focal vertex can remain attached to the RG.

In 2009 Newman extended the configuration model to account for random graphs with
2- and 3-clique subgraphs [52]. The expression that he used for g2

3 is based on the inverse
logic of section 3.3 and is given by

g2
3 = 1�2T (1�T )2z3 �3T 2(1�T )(1� (1� z3)

2)�T 3(1� (1� z3)
2) (A.2)

where z3 = 1�u3 and therefore 1�u2
3 = (1� (1� z3)2). This expression is constructed

as unity minus the number of ways that a vertex can be attached to the GCC, g2
3 = 1� f 2

3 .
This is similar to the logic behind Eq A.1; however, the semantics of which graph (GCC or
RG) we connect to are inverted.

Also in 2009, Miller contemporaneously extended the configuration model in the same
manner as Newman [39]. Miller’s logic is distinct from the first two counting methods

g2
3 = (1�T +u3T )2 �2u3(1�u3)T 2(1�T ) (A.3)

This expression first counts the probability that both edges connected to the focal vertex
fail to connect it to the GCC as if they were independent of one another, which is simply
(g2)2; minus the probability that the third edge is used to connect the focal vertex. For this
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to occur, one of the neighbours must be attached to the GCC and fail to occupy its edge to
the focal vertex; the other must initially be in the RG such that the first neighbour has a
path around the cycle to reach the focal vertex. Miller’s equation is the motivation behind
Mann’s approximate method to enumerate gh for arbitrary cycles [32, 33].

The next expression for g2
3 is due to Mann in 2021 [35]. In this case we assume that

the focal vertex is a member of the RG and enumerates the ways in which its neighbours
fail to attach it to the GCC as

g2
3 = u2

3 +[(1�u3)(1�T )]2 +2u3(1�u3)(1�T )(1�T 2) (A.4)

Specifically, from left to right, both neighbours can themselves belong to the GCC, both
can be in the GCC but have unoccupied edges to the focal vertex or one can belong to the
GCC (with the other in the RG) and both the 1-hop and 2-hop paths fail to be occupied.

The final expression we consider is also due to Mann in 2021 [31] and is based on the
premise that the focal vertex is connected to the GCC. In the assumption, the embedded
focal vertex has 3 types of neighbours: vertices in the RG whose full set of neighbours
failed to occupy edges to connected it; vertices in the GCC that were attached by their
neighbours other than the focal vertex; and finally, vertices in the RG whose neighbours
have failed to connect it, but then the focal vertex did connect it to the GCC. Each pairwise
combination of neighbour must then be enumerated and the resultant expression is given
by

g2
3 = u2

3(1�T1)
2 +((1�u3)(1�T1))

2 +(u3T1)
2

+2u3(1�T1)
2(1�u3)(1�T 2

1 )+2u3(1�T1)u3T1

+2(1�u3)u3T1(1�T1)(1�T 2
1 )) (A.5)
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APPENDIX B

qn,k

The number of connected graphs of n labelled vertices over k edges is given by qn,k. This
quantity has a well known recursion formula as well as a closed-form analytical solution
[16, 67, 58, 47]. Given the importance of this quantity to the contents of this thesis, we
will review this derivation now.

Let Q be the combinatorial class of connected graphs and G the combinatorial class
of all labelled graphs [14]. The relation between these two classes is the set-of relation:
a graph is a set of connected components. This indicates that the mixed exponential
generating function G(z,y) of G can be generated from Q(z,y) according to the following
relationship

G(z,y) = expQ(z,y) (B.1)

For m vertices, there are a total of
�m

2
�
= m(m� 1)/2 potential edges not allowing self-

loops or multi-edges between the vertices. This set has 2(
m
2) possible partitions. Therefore,

counting vertices (with z) and edges (with y) we have that

G(z,y) = Â
m

Â
l

1
m!

✓�m
2
�

l

◆
zmyl (B.2)

From the binomial theorem we find

G(z,y) = Â
m

zm

m!
(1+ y)(

m
2) (B.3)

or

G(z,y) = 1+ Â
m�1

(1+ y)m(m�1)/2 zm

m!
(B.4)

This yields an expression for the entire series of connected labelled graphs, Q(z,y); since,
Q(z,y) = logG(z,y) such that we obtain

Q(z,y) = log

 
1+ Â

m�1
(1+ y)m(m�1)/2 zm

m!

!
(B.5)
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We can then perform a series expansion of the logarithm using

log(1+ x) =
•

Â
k=0

(�1)k+1

k
xk

to obtain

Q(z,y) = Â
l�1

(�1)l+1 1
l

 

Â
m�1

(1+ y)m(m�1)/2 zm

m!

!l

(B.6)

We now examine the case of n vertices and k edges where k � n� 1 by extracting the
coefficient qn,k of [zn][yk]. Note that the term in the parenthesis has minimum degree l in z,
allowing us to disregard the series beyond l > n. This yields the formula for the number of
connected labelled graphs with n vertices and k edges as

qn,k = n![zn][yk]
n

Â
l=1

(�1)l+1 1
l

⇥
 

n

Â
m=1

(1+ y)m(m�1)/2 zm

m!

!l

(B.7)

The coefficient of zn is given by the integer partitions l ` n of length l, multiplied by their
multiplicity (number of compositions)

1
n!

✓
n
l

◆✓
l
f

◆
(B.8)

where for partition l we have l = 1 f12 f23 f3 · · · and so on, such that we have

qn,k = Â
l`n

(�1)l+1

l

✓
n
l

◆✓
l
f

◆
(1+ y)Âli (

li
2) (B.9)

for li 2 l . The coefficient of yk is found from the binomial theorem to yield a final
expression for qn,k as

qn,k = Â
l`n

(�1)l+1

l

✓
n
l

◆✓
l
f

◆✓
Âli li(li �1)/2

k

◆
(B.10)
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APPENDIX C

DEGREE CORRELATIONS
WITHIN THE

TREE-TRIANGLE MODEL

In this section we derive the expectation values for the tree-triangle model. For this model
the generating function for the number of nearest-neighbours given the joint degree of the
focal vertex is kttt,0 = (s0, t0) is given by unpacking Eq 6.17 for ttt = {?,D}. We obtain

F̂GCC(xxx,yyy,s0, t0) = ps0,t0 f s0
? f 2t0

D � ps0,t0gs0
?g2t0

D (C.1)

where ft = Âs Ât qt,(s,t)zst , g? = Âs Ât q?,(s,t)us�1
? u2t

D xsyt and Âs Ât qD,(s,t)us
?u2(t�1)

D xsyt .
The evaluation of the expectation values for the nearest-neighbours to a vertex of joint
degree (s0, t0) in the tree-triangle model is given by the following derivative

F̂ 0
GCC =

dF̂GCC

dzs0t 0

����
zs0t0=1

(C.2)

We evaluate this as follows

dF̂GCC

dzs0t 0

����
zs0t0=1

=
d

dzs0t 0

����
zs0t0=1

ps0t0 f s0
? f 2t0

D � d
dzs0t 0

����
zs0t0=1

ps0t0gs0
?g2t0

D (C.3)

= ps0t0

✓
s0 f s0�1

?
d f?
dzs0t 0

f 2t0
D +2t0 f s0

? f 2(t0�1)
D fD

d fD
dzs0t 0

◆

� ps0t0

✓
s0gs0�1

?
dg?
dzs0t 0

g2t0
D +2t0gs0

?g2(t0�1)
D gD

dgD
dzs0t 0

◆
(C.4)

At zs0t 0 = 1 we have ft(1) = 1, gt(1) = G1,t(u?,u2
D) and also

d ft
dzs0t 0

����
zs0t0=1

=
d

dzs0t 0
Â
s

Â
t

qt,(s,t)zst (C.5)

= qt,(s0,t 0) (C.6)
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and

dg?
dzs0t 0

����
zs0t0=1

=
d

dzs0t 0
Â
s

Â
t

q?,(s,t)u
s�1
? u2t

D zst (C.7)

= q?,(s0,t 0)u
s0�1
? u2t 0

D (C.8)

dgD
dzs0t 0

����
zs0t0=1

=
d

dzs0t 0
Â
s

Â
t

qD,(s,t)u
s
?u2(t�1)

D zst (C.9)

= qD,(s0,t 0)u
s0
?u2(t 0�1)

D (C.10)

Thus, we find

dF̂GCC

dzs0t 0

����
zs0t0=1

= ps0t0

✓
s0q?,(s0,t 0) +2t0qD,(s0,t 0)

◆
� ps0t0

✓
s0us0�1

? q?,(s0,t 0)u
s0�1
? u2t 0

D u2t0
D

+2t0us0
?u2(t0�1)

D uDqD,(s0,t 0)u
s0
?u2(t 0�1)

D

◆
(C.11)

The evaluation of the expectation values for the nearest-neighbours to the average vertex
in the tree-triangle model is given by the following derivative

F 0
GCC = Â

s0
Â
t 0

dFGCC

dzs0t 0

����
zs0t0=1

(C.12)

where FGCC is given by unpacking Eq 6.20 for ttt = {?,D} to find

FGCC(xxx,yyy) = Â
s

Â
t

ps,t f s
? f 2t

D �Â
s

Â
t

ps,tgs
?g2t

D (C.13)

To evaluate this consider the following derivative

dFGCC

dzs0t 0

����
zs0t0=1

=
d

dzs0t 0

����
zs0t0=1

G0( f?, fD)�
d

dzs0t 0

����
zs0t0=1

G0(g?,gD) (C.14)

=
d

dzs0t 0

����
zs0t0=1

Â
s

Â
t

pst f s
? f 2t

D � d
dzs0t 0

����
zs0t0=1

Â
s

Â
t

pstgs
?g2t

D (C.15)

= Â
s

Â
t

pst

⇢
s f s�1

?
d f?
dzs0t 0

f 2t
D +2t f s

? f 2(t�1)
D fD

d fD
dzs0t 0

�

�Â
s

Â
t

pst

⇢
sgs�1

?
dg?
dzs0t 0

g2t
D +2tgs

?g2(t�1)
D gD

dgD
dzs0t 0

�
(C.16)

When evaluated at z(s0,t 0) = 1 we have that ft(1) = 1 and so the first bracket simplifies
significantly. The second bracket is more involved; however, using the self-consistent
expressions for u? = G1,?(u?,u2

D) and uD = G1,D(u?,u2
D) we can write g?(1) = u? and
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gD(1) = uD to obtain

dFGCC

dzs0t 0

����
zs0t0=1

=Â
s

Â
t

pst

⇢
sq?,(s0,t 0) +2tqD,(s0,t 0)

�
�Â

s
Â
t

pst
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sus�1

? q?,(s0,t 0)u
s0�1
? u2t 0

D u2t
D

+2tus
?u2(t�1)

D uDqD,(s0,t 0)u
s0
?u2(t 0�1)

D

�
(C.17)

We now sum over (s0, t 0) to obtain

Â
s0

Â
t 0

dFGCC

dzs0t 0

����
zs0t0=1

=Â
s

Â
t
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sÂ
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�

�Â
s

Â
t

pst

⇢
sus�1

? u2t
D Â

s0
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t 0
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s0�1
? u2t 0

D

+2tus
?u2(t�1)

D uD Â
s0

Â
t 0

qD,(s0,t 0)u
s0
?u2(t 0�1)

D

�
(C.18)

The probability distributions are normalised and hence have the following property
Âs Ât qt,(s,t) = 1, so the first bracket reduces trivially to the sum of the average degrees
of each edge topology. The second bracket also reduces; dealing first with the double
summation over dashed variables we find

Â
s0

Â
t 0

dFGCC

dzs0t 0

����
zs0t0=1

=Â
s

Â
t

pst (s+2t)�Â
s

Â
t
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? u2t
D u?+2tus

?u2(t�1)
D u2

D

�

(C.19)

before observing that

Â
s

Â
t

pstsxs�1yt = hsiG1,?(x,y) (C.20)

Â
s

Â
t

psttxsyt�1 = htiG1,D(x,y) (C.21)

to arrive at

Â
s0

Â
t 0

dFGCC

dzs0t 0

����
zs0t0=1

= hsi+2hti�hsiG1,?(u?,u2
D)u?�2htiG1,D(u?,u2

D)u
2
D (C.22)

Substituting the self-consistent relationships for u? and uD we finalise the expression as

Â
s0

Â
t 0

dFGCC

dzs0t 0

����
zs0t0=1

= hsi
�
1�u2

?
�
+2hti

�
1�u3

D
�

(C.23)

In the case that there are no triangles present in the model, then uD = 1 and hti= 0; the
expression reduces to

Â
s0

dFGCC

dzs0

����
zs0=1

= hsi
�
1�u2

?
�

(C.24)
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which is the result of [41] in the case that l = 1. In the opposite case, when there are no
ordinary edges, we find

Â
t 0

dFGCC

dzt 0

����
zt0=1

= 2hti
�
1�u3

D
�

(C.25)

The probability P(kt,0,kt,1) = P((s0, t0),(s0, t 0)) is given by the quotient of Eqs C.11 and
C.23 where we find

P((s0, t0),(s0, t 0)) =
dF̂GCC

dzs0t 0

����
zs0t0=1

�
Â
s0

Â
t 0
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����
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?u2(t 0�1)

D
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�
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D
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(C.26)

The conditional probability that a neighbour has joint degree (s0, t 0) given a focal vertex of
joint degree (s0, t0) is

P(s0, t 0 | s0, t0)=
ps0t0s0q?,(s0,t 0)[1�us0+s0�2

? u2(t0+t 0)
D ]+2ps0t0t0qD,(s0,t 0)[1�us0+s0

? u2(t0+t 0�2)+1
D ]

ps0t0(s0 +2t0)[1�us0
?u2t0

D ]
(C.27)

Using Eq 6.29 we find the average joint degree of a neighbour to a (s0, t0) vertex as

E [kkkttt,1 | kkkttt,0] =

 

Â
s0,t 0

s0P(s0, t 0 | s0, t0),Â
s0,t 0

t 0P(s0, t 0 | s0, t0)

!T

(C.28)
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! = 0

! = 1

! = 2

Figure C.1: An example of the degree correlation model in the tree-triangle model; 3-
cliques are shaded orange whilst 2-cliques are coloured green. The joint degree of the
focal vertex in layer l = 0 is kttt,0 = (2,2). We can follow edges of topology ? or D to the
first neighbours. The distribution of the joint degrees of vertices in layer l = 2 depends on
the topology of the path that we choose to reach it. Note, we do not traverse edges between
triangles that lead to vertices in the same layer.
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