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Abstract A defining feature of cancer is the capability to spread locally into the
surrounding tissue, with cancer cells spreading beyond any normal boundaries.
Cancer invasion is a complex phenomenon involvingmany inter-connected processes
at different spatial and temporal scales. A key component of invasion is the ability
of cancer cells to alter and degrade the extracellular matrix through the secretion
of matrix-degrading enzymes. Combined with excessive cell proliferation and cell
migration (individual and collective), this facilitates the spread of cancer cells into
the local tissue. Along with tumour-induced angiogenesis, invasion is a critical
component of metastatic spread, ultimately leading to the formation of secondary
tumours in other parts of the host body. In this paper we present an overview of the
various mathematical models and different modelling techniques and approaches
that have been developed over the past 25 years or so and which focus on various
aspects of the invasive process.

1 Introduction

In their ground-breaking paper The Hallmarks of Cancer, Hanahan and Weinberg
[2000] identified six essential alterations in cell physiology that distinguish cancer
cells/tissue from normal cells/tissue. Tissue invasion and metastasis was one of
these key “hallmarks”. Although the first use of the term “metastasis” can be traced
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back to Jean Claude Recamier in his 1829 book “Recherches sur le traitement
du cancer sur la compression méthodique simple ou combinée et sur l’histoire
générale de la meme maladie” [Recamier, 1829], tissue invasion by cancer cells
goes back to classical antiquity, with the phenomenon recognised by Hippocrates
and Galen (among others). The word cancer itself derives from the Latin cancer,
-cri (m)meaning crab, in turn derived from the Greek καρκίνος [cf. carcinoma] also
meaning crab. The physicians of classical antiquity already recognised the distinctive
spreading pattern of an invasive cancer, with cellular projections into the surrounding
tissue like the arms of a crab.

An excellent historical overview of the biology of cancer metastasis can be found in
the article by Talmadge and Fidler [Talmadge and Fidler, 2010], while an overview
of the core aspects of invasion can be found in the articles of Hanahan and Weinberg
[Hanahan and Weinberg, 2000, 2011] and the review article of Friedl and Wolf
[Friedl and Wolf, 2003].

The mathematical modelling of cancer invasion, part of the broader topic of
mathematical oncology, may have a somewhat shorter history than its biologi-
cal/pathological counterpart, but nonetheless mathematical models of cancer cell
migration and invasion have the potential to shed light on this complex phenomenon
and can play a role in improving treatment protocols. The purpose of this review
paper is to give an overview of the key developments in the mathematical modelling
of cancer invasion starting in the mid-1990s. Before embarking on this task, we
first of all give a brief description of the main cellular processes involved in cancer
invasion.

2 Biological background

Cancer invasion is a complex process involving numerous interactions between the
cancer cells and the extracellular matrix (ECM) (cf. the tumour microenvironment)
facilitated by matrix degrading enzymes. Along with active cell migration (both in-
dividual and collective) and increased/excessive proliferation, these processes enable
the local spread of cancer cells into the surrounding tissue. Any encounter with blood
or lymphatic vessels (cf. tumour-induced angiogenesis, lymph-angiogenesis) in the
tumour microenvironment initiates the spread of the cancer to secondary locations
in the host, i.e., metastasis or metastatic spread.

Critical steps in the invasion-metastatic cascade include the following:

• metastatic cells arise within a population of neoplastic/tumourigenic cells as a
result of genomic instabilities;

• vascularization of the primary solid tumour through tumour-induced angiogene-
sis;
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• detachment of any metastatic-competent cells that have already evolved;

• migration of the metastatic cells;

• local invasion of cancer cells into the surrounding tissue, requiring adhesion to
and subsequent degradation of ECM components;

• transport of metastatic cells either travelling individually or as emboli composed
of tumour cells (homotypic) or of tumour cells and host cells (heterotypic);

• metastatic cells survive their journey in the circulation system;

• adhesion/arrest of the metastatic cells at the secondary site, cells or emboli arrest
either because of physical limitations (i.e. too large to traverse a lumen) or by
binding to specific molecules in particular organs or tissues;

• escape from the blood circulation (extravasation);

• proliferation of the metastatic tumour cells;

• growth of the secondary tumour in the new organ.

Further details of the invasion-metastasis process (and also extensive biologi-
cal/clinical references) can be found in the papers of Hanahan and Weinberg [2000,
2011], Friedl andWolf [2003], Valster et al. [2005], Nyström et al. [2005], Talmadge
and Fidler [2010].

In the next section we present a number of mathematical models which have been
developed since the mid-1990s, exploring a range of issues associated with cancer
invasion and using a range of different mathematical approaches and techniques.

3 Mathematical Models of Cancer Invasion

3.1 Early ODE and PDE models

We start with the seminal paper of Gatenby [1995] where he proposes a macroscopic
mathematical model in which the tumour is viewed as a dynamic community of
malignant cells, rather than a collection of individual cells, interacting and competing
for resources with the normal tissue. This allows for an analytical insight in the
mechanisms by which an initially small malignancy grows to replace a much larger
and stable population of normal cells. In particular the author proposes the following
model




dN1
dt
= r1N1

K1 − N1 − a12N2
K1

dN2
dt
= r2N2

K2 − N2 − a21N1
K2

(1)
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where N1, N2 represent the populations of cancer and normal cells respectively, r1,
r2 the intrinsic growth rates of each population, and K1, K2 the carrying capacities or
maximum numbers of cells from each population which can occupy the tissue and be
supported by the environment. Furthermore a12, a21 are the competition coefficients
that measure the effects on the population N2 (respectively N1) from the presence of
N1 (respectively N2).

Further to the fundamental formulations introduced in (1), Gatenby and Gawlinski
[1996] made the modelling assumption that tumour-induced alteration of microenvi-
ronmental pH provides a mechanism for cancer invasion. In particular they propose
the following reaction-diffusion system:




∂N1
∂t
= ∇ ·

(
DN1 [N2]∇N1

)
+ r1N1

(
1 −

N1
K1
− a12

N2
K2

)
− d1LN1

∂N2
∂t
= ∇ ·

(
DN2 [N1]∇N2

)
+ r2N2

(
1 −

N2
K2
− a21

N1
K1

)
∂L
∂t
= D3∇

2L + r3N2 − d3L

(2)

where N1, N2 represent the density of the normal and neoplastic tissue respectively,
and L the excess concentration of H+ ions. d1L is the death rate of the normal tissue
due to excess acid concentration.

Investigations of the structure and dynamics of the proposed model demonstrate a
transition from benign to malignant growth analogous to the adenoma-carcinoma
progression. Accordingly, the authors conclude that their model predicts crossover
behaviour that is consistent with clinical observations on the growth of in-situ tu-
mours before the development of an invasive phenotype. Their model moreover
predicts a variable interfacial structure, including a previously unrecognised hypocel-
lular interstitial gap in some malignancies, and show some evidence in support of
this prediction in both clinical observations and in vitro experiments.

In a follow-up paper, Gatenby et al. [2006] consider a direct simplification of the
model (2). Namely, they consider a healthy tissue that is well organised and regulated
in an organ and will therefore be immovable i.e. DN1 [N2] = 0; and the diffusivity
of the cancer cells DN2 [N1] = D2

(
1 − N1

K1

)
attains the value D2 in the absence of

healthy tissue and the value zero when the density of the healthy tissue N1 is at
carrying capacity K1.

This simpler model allows the authors to perform numerical simulations that provide
testable predictions concerning the morphology of cellular and extracellular dynam-
ics at the interface between tumour and host. On the other hand, in-vivo experiments
confirm the presence of peritumoral acid gradients as well as cellular toxicity and
ECM degradation in the normal tissue exposed to the acidic microenvironment.
They conclude that their acid-mediated invasion model (2) can provide a description
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mechanism to link altered glucose metabolism with the ability of cancer cells to
form invasive tumours.

Along similar lines of modelling, Perumpanani et al. [1996] proposed a cancer
invasion model that accounts for the competition between the invasive cancer cells,
the non-invasive cancer cells, the normal tissue, and the ECM. They moreover
account for the proteases responsible for the degradation of the ECM and the product
of proteolysis.

In particular, the model they propose reads as:




∂n
∂t
= k1n (k2 − n − m − u) +

∂

∂x

[
Θ(c)

(
Γn (u,m, n)

∂u
∂x

)]
∂m
∂t
= k4m (k5 − n − m − u) +

∂

∂x

[
Θ(c)

(
Γn (u,m, n)

∂m
∂x

)]
∂u
∂t
= k4u (k5 − n − m − u)

+
∂

∂x

[
Θ(c)

(
Γu (u,m, n)

∂u
∂x
− k17u

∂c
∂x
− k16u

∂s
∂x

)]
∂c
∂t
= − k8pc

+
∂

∂x
K

[
cΘ(c)

(
Γn

(
∂u
∂x
+
∂m
∂x

)
+ Γu

∂u
∂x
− k17u

∂c
∂x
− k16u

∂s
∂x

)]
∂s
∂t
= k21pc + Ds

∂2s
∂x2

∂p
∂t
= k1uc − k12p − k13pu − k14pc + Dp

∂2p
∂x2

(3)

where n represents the concentration of the normal cells, m the non-invasive cancer
cells, u the invasive cancer cells, c a generic ECM protein (e.g. collagen, vitronectin
or other), s the product of the ECM proteolysis, and p a generic protease. Moreover,
Θ is the ramp function

Θ(c) =




k26, 0 < c < k27
k28 − c

k28 − k27
, k27 < c < k28

0, k28 < c

(4)

and

Γn = k3
k18

k19 + k25 (k25n + k25m + k20u)
(5)

Γu = k6
k18

k19 + k20 (k25n + k25m + k20u)
(6)
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In a follow-up work, Perumpanani et al. [1998] investigate further the degradation of
the ECM. During the invasion, a gradient of ECM fragments is established counter
to the direction of the invasion. This results in anti-invasive chemotactic attraction
which opposes the haptotaxis migration of the cancer cell towards higher ECM
concentrations. They then conclude that the invasion potential of the cancer cells
depends on the action ofmatrix metalloproteinases (MMPs) in “a biphasic manner”;
excessive degradation of the ECM can lead to the opposite than the invasion effect.

For u, c, p, s representing the concentrations of HT1080 cells, intact fibronectin,
MMP-2, and the MMP-2-digested soluble fibronectin respectively, the model reads
as




∂u
∂t
= k1u(k2 − u) −

∂

∂x

(
k3ψ(s)u

∂s
∂x
− k4 χ(c)u

∂c
∂x

)
∂c
∂t
= −k5pc

∂s
∂t
= k5k6pc + h(p, s) + Ds

∂2s
∂x2

∂p
∂t
= k7uc − k8pu − k9p + Dp

∂2p
∂x2

(7)

where ki , s are positive constants and the functions ψ(s), and χ(c) represent the
extend of chemo- and haptotaxis respectively. The proteolysis of the fibronectin is
represented by −pc and h(p, s) the continued action of the proteases.

Furthermore, Perumpanani et al. [1999] develop and analyse a model for malignant
invasion, that combines proteolysis and haptotaxis; a common feature of these two
mechanisms is that they can be produced by contact with the ECM. Namely, the
model they study reads:




∂u
∂t
= f (u) − k3

∂

∂x

(
u
∂c
∂x

)
∂c
∂t
= −g(c, p)

∂p
∂t
= h(u, c) − K p

(8)

where u, c, and p represent the concentrations of the invasive cancer cells, the ECM,
and the matrix degrading proteases, and where

f (u) = k1 u(k2 − u), g(c, p) = k4 pc, h(u, c) = k5 uc,

with k1, . . . , k5, K ≥ 0.

Compared with the previous works of these authors, i.e. Perumpanani et al. [1996,
1998], special characteristic of the model (8) is the absence of cancer cell diffusion.
In the search for travelling wave solutions, the model (8) is reduced to a system of
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ordinary differential equations (ODEs) which the authors then study using phase
plane analysis. They are able to demonstrate that the model admits a family of trav-
elling waves with speeds depending on the ECM concentration, and hence identify
an expected qualitative property on behalf of cancer invasion.

Following the steps laid in Perumpanani et al. [1996], Marchant et al. [2000, 2001]
address a haptotaxis model that accounts for three variables: the concentration u
of the invasive cells, the connective tissue c, and of the proteases p. In the non-
dimensional form the model they study takes the form:




∂u
∂t
= u(1 − u) −

∂

∂x

(
u
∂c
∂x

)
∂c
∂t
= −pc

∂p
∂t
=

1
ε

(uc − p)

, (9)

where 0 < ε represents the relative timescale of the dynamics of the protease p
versus the cell growth dynamics. The time variable t is scaled so that u grows as
O(1) to the carrying capacity of unity; the space variable x is scaled so that the
rate of haptotaxis is of the same order, p is scaled so that c dissolves on the same
timescale and, c is scaled so that p and uc are of the same order in the p-equation.
This implies that the p timescale is relatively much faster, so that 0 < ε << 1 is
small. This allows the authors to re-model the proteases dynamics, i.e. p-equation in
(9), into

p = uc

and accordingly (9) recasts to:




∂u
∂t
= u(1 − u) −

∂

∂x

(
u
∂c
∂x

)
∂c
∂t
= −uc2

(10)

The authors were then able to identify a host of travellingwave solutions in the system
(10), among which (discontinuous) shock waves. The latter being of a particularly
high interest as, according to the authors, the sharpness of the invading profile better
approximates the sharp invasion front observed experimentally in cancer growth.

In a follow-up work Marchant et al. [2006] adopted the sequence of models (3), (7),
and (8) to obtain the following haptotaxis invasion model
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∂u
∂t
= ru(1 −

u
U0

) − kuc − χ
∂

∂x

(
u
∂c
∂x

)
∂c
∂t
= −αpc

∂p
∂t
= βuc − γp

(11)

where u represents the concentration of tumour cells; c the concentration of the
ECM, and p the concentration of a matrix-degrading protease.

With arguments similar as in the case of (9), the authors were able to reduce the
model (11) to a two-equation system similar to (10) that exhibits discontinuous
solutions, and is able to reproduce the biphasic behaviour first seen in (3).

In a different approach, still though within the general modelling of cancer invasion,
Swanson et al. [2000], develops further a mathematical model of glioma growth—
the most common type of brain tumour—previously proposed in a series of papers
by Cruywagen et al. [1995], Tracqui et al. [1995], and Woodward et al. [1996].

The proposed model describes the time evolution of of the glioma cell population
based solely on proliferation and diffusion. It is comprised of a single equation,
namely,

∂c
∂t
= ∇ · (D(x)∇c) + ρc (12)

where c(x, t) represents the density of the glioma cells, and where the Fickian
diffusivity depends on the local tissue

D(x) =



Dg, x ∈ grey matter
Dw, x ∈ white matter

, Dw > Dg .

The authors argue that, although the linear proliferation term ρc lacks a saturation
effect (like e.g. a logistic term) that would make it more accurate, still it is ade-
quate for the time scale of the experiment considered. The previously observed fit
of the model predictions with in-vivo computerised tomography (CT) scan measure-
ments, is further investigated under the availability of information regarding the local
composition of the brain in grey and white matter.

In a follow up work Swanson et al. [2003] introduce chemotherapy in the model (12),
administered in the form of a time dependent decay of the tumour cell population c.
Namely, the authors propose the model

∂c
∂t
= ∇ · (D(x)∇c) + ρc − G(t)c (13)

where the therapy schedule G is given by
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G(t) =



k, during administration periods
0, otherwise

Besides chemotherapy though, the authors consider the effect of surgical resection
in the treatment of high- and low-grade gliomas. The mathematical approach they
followed has allowed them to demonstrate that any local treatment of a diffusely in-
vading gliomawill fail, since the invasion is still more peripheral than any localizable
treatment can reach.

In a follow-up work, Swanson [2008] studied further the model (12) discussed in
Swanson et al. [2000, 2003], and compared its predictions against in vitro experi-
mental measurement data.

The authors then argue that the model sufficiently describes the key dynamics of
gliomas in-vitro and that these results provide a foundation for using this model for
more complicated scenarios in-vivo. In any case, they argue, that they have obtained
with their model a better understanding of glioma cell behaviour since the model
provides a means for quantification of experimental observations.

3.2 A hybrid continuum-discrete model

In the next milestone in the evolution towards hybrid invasion models, Anderson
et al. [2000] propose a blend of continuum deterministic modelling and discrete
stochastic modelling in 1- and 2- space dimensions.

The continuum model they study examines the migratory response of cancer cells
to self-generated haptotaxis gradients. Namely, the authors consider cancer cell me-
diated production and activation of matrix degrading enzymes (MDEs), the ensuing
degradation of the ECM, and the subsequent haptotaxis response of the cancer cells
to the induced gradient of the matrix. The model itself reads as follows




∂n
∂t
= Dn∇

2n − χ∇ · (n∇ f )

∂ f
∂t
= −δm f

∂m
∂t
= Dm∇

2m + µn − λm

(14)

where n, f , m, denote the densities of the cancer cells, the ECM, and the MDEs
respectively, and Dn, Dm and χ the diffusion and haptotaxis coefficients respectively.

They can verify with their model that the cancer cells are split in two groups: those
driven primarily by diffusion that form a propagating front and degrade the matrix,
and those driven by haptotaxis that follow the gradient formed in the ECM. The self-
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generated haptotaxis effect is still present when a heterogeneous ECM is considered,
although not clearly seen due to the pre-existing ECM gradients.

The authors formulate also a discrete model which tracks the positions of migratory
cancer cellswhile accounting for the extracellular stimuli (haptotaxis in this instance).
The model reads as follows:




nq+1
l,m
= P0nq

l,m
+ P1nq

l+1,m + P2nq
l−1,m + P3nq

l,m+1 + P4nq
l,m−1

P0 = 1 −
4kD
h2
−

kγ
h2

(
f q
l+1,m + f q

l−1,m − 4 f q
l,m
+ f q

l,m+1 + f q
l,m−1

)
,

P1 =
kD
h2
−

kγ
4h2

(
f q
l+1,m − f q

l−1,m

)
P2 =

kD
h2
+

kγ
4h2

(
f q
l+1,m − f q

l−1,m

)
P3 =

kD
h2
−

kγ
4h2

(
f q
l,m+1 − f q

l,m−1

)
P4 =

kD
h2
+

kγ
4h2

(
f q
l,m+1 − f q

l,m−1

)

(15)

where P0, · · · , P4 are termed directional transition rates. In the above k, h represent
the the time- and space-step of the discretisation method.

This discrete version allows the authors to track individual cells as they move in the
two-dimensional tissue. They can then make remarks on the migration of the cancer
cells which have important implications in metastasis.

The authors also combine the discrete and continuum versions of their models, acting
in different scales of the cancer invasion, and compare the model predictions with
clinical observations of cancer invasion in breast cancer.

3.3 A model of trophoblast invasion

Further in the macroscopic tissue invasion, although not cancerous, Byrne et al.
[2000] present a mathematical model that describes the initial stages of placental
development during which trophoblast cells begin to invade the uterine tissue as a
continuous mass of cells.

The proposed model accounts for the density of the trophoblast cells n(x, t),
trophoblast-derived proteases u(x, t), and uterine tissue ρ(x, t), and reads as
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∂n
∂t
= Dn

∂

∂x

(
n2
∂n
∂x

)
− χ

∂

∂x

(
n
∂v

∂x

)
+ k1n(1 − n − p)

∂u
∂t
= Du

∂2u
∂x2
+ k2un(1 − n) − k3uv

∂v

∂t
= Dv

∂2v

∂x2
+ k4uρ − k3uv

∂ρ

∂t
= k5ρ(1 − n − ρ) − k6uρ

(16)

where Dn, Du, Dv > 0, χ > 0 are the corresponding linear diffusion and haptotaxis
coefficients, k1, k2, k5 > 0 the logistic proliferation rates, and k3, k4, k6 > 0 are
kinetic rate parameters.

The mathematical analysis of a simpler submodel that the authors undertake, de-
scribes the final stages of normal embryo implantation and suggests that as the
timescale of interest increases, the dominant migratory mechanism of the tro-
phoblasts switches from chemotaxis to nonlinear random motion. More precisely,
the initial invasion of the system is dominated by the chemotactic response of the
trophoblast cells to the inhibitor w. In addition, when the protease is relaxing to a
uniform steady state, chemotaxis plays an important role in defining the depth of
penetration of the trophoblasts while the limiting profile adopted is determined by
nonlinear random motility.

3.4 An individual-based cellular Potts model

Switching back to cancer invasion, Turner and Sherratt [2002] develop a discrete
model of malignant invasion using a thermodynamic argument. They employ an
extension of the Potts model to simulate a population of malignant cells experiencing
interactions due to both homotypic and heterotypic adhesion while also secreting
proteolytic enzymes and experiencing a haptotactic gradient.

Specifically, the authors consider a square lattice and assign at every point (i, j)
a label σi j . Neighbouring lattice sites with the same value of σ are assumed to
lie within the same cell. The interaction between the cell surfaces follows from
the coupling constants Jτ (σi j ),τ (σi′ j′ ) , which account for the energy/strength of the
interaction between adjacent points with different values of σi j (i.e. of different
cells). This is described in the first term in the total energy H:

H =
∑
i j

∑
i′ j′

Jτ (σi j ),τ (σi′ j′ )
{
1 − δσi j ,σi′ j′

}
+

∑
σ

λ (uσ − VT )2 (17)

The second term describes the energy required for the growth and mechanical de-
formation of the cells where vσ is the volume of the cell σ, VT is the target volume,
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and λ the corresponding Lagrange-multiplier. Furthermore, the model accounts for
haptotaxis by attaching in every lattice point a parameter f i j that accounts for the
local density of the ECM protein concentration.

The overall energy change is then calculated as

∆Hi j = ∆H1, i j + ∆H2, i j + kH ( f i′ j′ − f i j ) (18)

where kH > 0 represents the strength of haptotaxis, and where ∆H1, i j , ∆H2, i j corre-
spond to the surface and mechanical energy changes between the two conformations
H1 and H2, given by the corresponding total energy formulas (17).

With this approach the authors demonstrate that the morphology of the invading
front is influenced by changes in the adhesiveness parameters, and detail how the
invasiveness of the tumour is related to adhesion. Their model suggests that cell-cell
adhesion has less of an influence on invasion compared to cell-matrix adhesion,
and that increases in both proteolytic enzyme secretion rate and the coefficient of
haptotaxis act in synergy to promote invasion. By including cell proliferation, they
extend their algorithm for cell division rates that depend on changes in the relative
magnitudes of homotypic and heterotypic cell-cell adhesiveness.

3.5 A model of the urokinase-plasminogen uPA system

Further on the macroscopic description, Chaplain and Lolas [2005] present a math-
ematical model of the invasion of the ECM by cancer cells through the secretion
of MDEs. The model focuses specifically on the role of the urokinase plasminogen
activation system and is more complex than other mathematical models of invasion,
in the sense that it accounts for more key biological components of tissue invasion.

Denoting the cancer cell density by c, the urokinase plasminogen activator (uPA)
concentration by u, the plasminogen activator inhibitor-1 (PAI-1) concentration by
p, the plasmin concentration by m and the ECM substrate (vitronectin in this case)
density by v, the model reads as:
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∂c
∂t
= Dc

∂2c
∂x2
−

∂

∂x

(
χcc

∂u
∂x
+ ζcc

∂p
∂x
+ ξcc

∂v

∂x

)
+ φ13cu + µ1c

(
1 −

c
c0

)
∂v

∂t
= −δvm + φ21up − φ22vp + µ2v

(
1 −

v

v0

)
∂u
∂t
= Du

∂2u
∂x2
− φ31pu − φ33cu + a31c

[0.2em]
∂p
∂t
= Dp

∂2p
∂x2
− φ41pu − φ42pv + a41m

∂m
∂t
= Dm

∂2m
∂x2

− φ51pu − φ52pv + a53uc

(19)

where Dc, Du, Dp, Dm ≥ 0 and χc, ζc, ξc > 0 are the diffusion and taxis coeffi-
cients, µ1, µ2 the cell proliferation and matrix reconstruction rates, and the rest of
the parameters are the kinetic rate parameters.

Themain achievement of this model is that fairly simple mathematical representation
of the binding interactions of the components of the plasminogen activation system
coupled with cell migration were able to capture the main characteristic effects of
the system in cancer progression and invasion. The results show a very rich dynamic
spatio-temporal behaviour which are in line with recent experimental results, that
show that when breast cells become malignant, plasmin is activated on their mem-
brane and their morphology is changed from sheet-like structures to multicellular
heterogeneous masses.

3.6 Modelling the role of acidity in invasion

With a series of papers, Smallbone et al. [2005, 2007, 2008] turn their attention to
the role of acidity in cancer invasion and connect with the previous works of Gatenby
et al. [2006]. Smallbone et al. [2005]. In particular, they develop a simple model of
three-dimensional tumour growth to examine the role of acidosis in the interaction
between normal and tumour cell populations. The tumours under investigation are
assumed to be at the first avascular and early vascular stages and in effect, expect the
formation of necrotic cores. The model they discuss reads




∂H
∂t
= DH∇

2H + FH

dR3
2

dt
= S

(
R3
2 − R3

1

)
− LR3

1

(20)

where H represents the concentration of the acid, DH > 0 represent the diffusion
coefficient and FH the combined rate of acid production and removal from the
system. The second equation stems after an assumption of rotational symmetry on
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the tumour—which is assumed to be of radius R2—and the formation of a (rotational
symmetric) necrotic core—with radius R1. The proliferation term S

(
R3
2 − R3

1

)
refers

solely to the living part of the tumour, the only part of the tumour where proliferation
takes place.

With this modelling setting, the authors are able to observe a number of different
behaviours. The analysis they perform predicts three regimes of tumour growth. If
the rate of acid removal from the tumour is insufficient, there is growth followed
by auto-toxicity, resulting in a benign tumour. This is found always to occur in an
avascular tumour. A vascular tumour displays sustained growth, and invades the
whole of the normal tissue space. If the tumour is sufficiently small, there is no
growth as the acid perturbations cannot to induce normal cell death.

3.7 Modelling the role of cell-cell adhesion using PDEs

Armstrong et al. [2006]move away from the interactions between the cancer cells and
the tumourmicroenvironment, and turn their attention to the interactions between the
cancer cells themselves. Accordingly, they develop a macroscopic model of cell-cell
adhesion by considering the movement of cells in response to the adhesive forces
generated through transcellular binding proteins.

Namely, for u(t, x), v(t, x), t ≥ 0 and x ∈ R denoting the population densities of two
cell types, the model reads:




∂

∂t
u =

∂2

∂x2
u −

∂

∂x
(
uKu (u, v)

)
∂

∂t
v =

∂2

∂x2
v −

∂

∂x
(
vKv (u, v)

) (21)

where the adhesion terms Ku, Kv encompass both self- and cross-population adhe-
sion for the u and v cell family respectively, and read:

Ku (u, v) =Su

∫ 1

−1
guu (u(x + x0), v(x + x0))ωuu (x0)dx0

+ C
∫ 1

−1
guv (u(x + x0), v(x + x0))ωuu (x0)dx0

Kv (u, v) =Sv

∫ 1

−1
gvv (u(x + x0), v(x + x0))ωvv (x0)dx0

+ C
∫ 1

−1
gvu (u(x + x0), v(x + x0))ωuv (x0)dx0
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Here Su, Sv and C represent the self-adhesive strength of the populations u and v,
and the cross-adhesive strength between the populations, respectively. Differences
in cell geometry can be modelled through the specific choices of Su, Sv and C as
well as of guu, guv, gvv and ωuu, ωuv, ωvv .

The authors employ both analytical and numerical techniques to demonstrate the that
(21) can predict the aggregation behaviour of a disassociated adhesive cell popula-
tions and can replicate the different types of cell sorting behaviour that is observed
experimentally. The authors argue that the resulting aggregation and pattern forma-
tion phenomena is a direct consequence of the relative strengths of self-population
and cross-population adhesive bonds in the model.

Further on the modelling of cell-cell and cell-matrix interactions, Gerisch and Chap-
lain [2008] explore the spatio-temporal evolution of cancer invasion by cell-cell
adhesion and haptotaxis by accounting for local and non-local contributions in the
cell-cell adhesion tensor.

For a single family of cancer cells, the model the authors propose reads as




∂c
∂t
= ∇ ·

(
D1∇c − cA

{
u(t, ·)

})
+ µ1c (1 − c − v)

∂v

∂t
= −γmv + µ2 (1 − c − v)

∂m
∂t
= ∇ · (D3∇m) + αc − λm

(22)

where the non-local cell-cell adhesion term A
{
u(t, ·)

}
is defined for x ∈ R, as:

A
{
u(t, ·)

}
(x) =

1
R

∫ R

0

1∑
k=0

η(k) · Ω(r)g(u(t, x + rη(k))))dr

where η(k) = (−1)k , k = 0, 1. In a two dimensional extension, x ∈ R2 the authors
define the non-local cell-cell adhesion term to be

A
{
u(t, ·)

}
(x) =

1
R

∫ R

0
r
∫ 2π

0
η(θ) · Ω(r)g(u(t, x + rη(θ))))dθdr

where η(θ) = (cos θ, sin θ)T is the unit outer normal vector corresponding to the
angle θ.

Furthermore Domschke et al. [2014] extend (22) to a two-cancer-cell species non-
local as follows:
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∂c1
∂t
= ∇ ·

(
D1,1∇c1 − c1A1

{
t, x, u(t, ·)

})
+ µ1,1c1 (1 − ρ(u)) + M1,1(t, u)c1

∂c2
∂t
= ∇ ·

(
D1,2∇c2 − c2A2

{
t, x, u(t, ·)

})
+ µ1,2c2 (1 − ρ(u)) + M2,1(t, u)c1

∂v

∂t
= −γmv + µ2 (1 − ρ(u))+

∂m
∂t
= ∇ · (D3∇m) + α1c1 + α2c2 − λm

(23)

Another extension that the model (23) introduces to (22) is the possibility for a
change of adhesion properties during the growth of the caner; this is achieved
through time-dependent cell-cell and cell-matrix adhesion functions.

Numerical experiments of both (22) and (23) demonstrate a range of heterogeneous
dynamics which are qualitatively similar to the invasive growth patterns observed
experimentally in a number of different types of cancer, such as tumour infiltrative
growth patterns (INF).

3.8 Multiscale moving boundary models of cancer invasion

Amalgamating the previous ideas of mutliscale interactions between the cancer cells
and their microenvironment, Trucu et al. [2013], Peng et al. [2017], Shuttleworth
and Trucu [2019a,b,c] formulate in a series of papers a moving boundary two-scale
model for cancer invasion of the tissue. Their approach combines the macroscopic
dynamics of the distributions of cancer cells and of the surrounding ECM, and
microscopic scale dynamics of the MDEs, produced by the individual cancer cells.
These microscopic scale dynamics are assumed to take place at the interface of the
cancer cells and the ECM and give rise to a moving boundary at the macroscopic
scale.

To be more specific, Peng et al. [2017] consider the macroscopic urokinase model
(19), which was earlier introduced by Chaplain and Lolas [2005]. In its original
derivation, the macroscopic equation for the urokinase u reads as

∂u
∂t
= Du

∂2u
∂x2
− φ31pu − φ33cu + a31c.

The approach of the authors amounts to reconsidering the u-equation in, what they
call “microscopic regime”, as follows:

∂u
∂τ
= Du

∂2u
∂x2
− φ31pu + (−φ33u + a31) f εY1 (y, τ)
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where the “source” f εY1 of the urokinase is given in terms of the cancer cell concen-
tration c by:

f εY1 (y, τ) =
1

λ (B(y, γ) ∩Ω(t0))

∫
B(y,γ)∩Ω(t0)

c(x, t0 + τ)dx

where λ is the usual Lebesgue measure and γ represents the maximal thickness of
the outer proliferating rim, and Ω(t0) the physical space occupied by the tumour.

The proposed modelling framework allows the authors to study the changes in the
macroscopic scale morphology of the tumour caused by the dynamical urokinase
processes occurring in the microscopic scale along the invasive edge of the tumour.

3.9 A framework for modelling the metastatic spread of cancer

Even more recently, the hybrid cancer and tissue modelling led Franssen et al.
[2019] to study the metastatic process, and to present a mathematical modelling
framework that captures the interconnected processes of invasion and metastatic
spread of individual cancer cells in a spatially explicit manner a multigrid, hy-
brid, individual-based approach. This framework accounts for the spatiotemporal
evolution of mesenchymal- and epithelial-like cancer cells, membrane-type-1 ma-
trix metalloproteinase (MT1-MMP) and the diffusible matrix metalloproteinase-2
(MMP-2), and for their interactions with the ECM.

The authors consider a modelling and computational representation of an organism
comprised of a number of compartments, each one representing a separate organ.
One of the organs is designated as the primary spatial domain—where the initial
tumour is located—and assign locations within it to function as entry points into the
vasculature. Similarly they impose a spatialmap of exit locations from the vasculature
to secondary locations organs. This allows cancer cells to use the vasculature and
travel from the primary tumour site to the metastatic sites.

Within every organ the authors consider the following dimensional cancer growth/invasion
invasion model:




∂cE
∂t
= dE∇

2cE − φE∇ · (cE∇w)

∂cM
∂t
= dM∇

2cM − φM∇ · (cM∇w)

∂m
∂t
= dm∇

2m + θcM − λm

∂w

∂t
= − (γ1cM + γ2m) w

(24)
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where cE (t, x, y), cm (t, x, y) represent the two-dimensional densities of the epithelial-
like and mesenchymal-like cancer cells respectively. The MMP-2 concentration is
represented by m(t, x, y), and the density of the ECM by m(t, x, y). The diffusion of
the epithelial-, mesenchymal-like cancer cells and the diffusible MMPs is assumed
ot be linear with diffusivities dE , dM and dm respectively. φE and φM are the hapto-
taxis sensitivities of the epithelial- and mesenchymal-like cancer cells respectively.
Finally θm , λm and γ1, γ2 are the production and decay rates of the MMPs, the
degradation rates of the ECM.

With a series of numerical experiments, the authors were able to reproduce a number
qualitative observations/phenomena and quantitative measurements made in in vivo
experimental settings in human oral squamous carcinoma cells invasion in myoma
tissue.

In a follow up work, Franssen and Chaplain [2020] propose an extension of (24),
where besides the multiorgan and metastatic conformation of the two phenotypic
states of epithelial- and mesenchymal-like cancer cells, they also consider a partial-
EMT phenotype. They allow for the switching between these phenotypic states
via EMT (locally) and MET (in the metastatic site) and account for the likelihood
of spread of cancer cells to the various secondary sites. They also consider the
maladaptation of metastasized cancer cells at the secondary sites and the effect
of the immune response by accounting for cancer cell dormancy and death. They
achieve this by considering a discrete-continuous approach along the lines proposed
by Anderson et al. [2000] and presented here in (14).

3.10 A novel hybrid continuum-discrete multiscale model of invasion

We close this review with most recent and genuinely hybrid modelling of cancer
invasion. Sfakianakis et al. [2020] propose a modelling framework to study the
combined invasion of the ECM by two types of cancer cells, the epithelial- and
the mesenchymal-like cancer cells. The proposed framework is a genuinely hybrid
multiscale model that treats the epithelial-like cancer cells in a macroscopic and
deterministic fashion and the mesenchymal-like cancer cells in an atomistic and
stochastic way.

This modelling framework is a coupled system of macroscopic deterministic PDEs
and Stochastic Differential Equations (SDEs) for the migration of the individual
mesenchymal-like cancer cells.

The macroscopic sub-model—for the time evolution of the macroscopic quantities,
such as the ECM, MMPs, and the densities of the epithelial-like cancer cells—reads
as follows:
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∂

∂t
cα (x, t) =Dα∆cα (x, t) − µEMT

α (x, t)cα (x, t) + µMET
β (x, t)cβ (x, t)

+ ραc cα (x, t)
(
1 − cα (x, t) − cβ (x, t) − v(x, t)

)
,

∂

∂t
m(x, t) =Dm∆m(x, t) + ραmcα (x, t) + ρβmcβ (x, t) − λmm(x, t)

∂

∂t
v(x, t) = −

(
λαv cα (x, t) + λβv cβ (x, t)

)
m(x, t)v(x, t),

(25)

where µEMT
α (x, t) = µαXE (t ) (x), µMET

β (x, t) = µβXM(t ) (x), with E (t),M (t) ⊂

Ω, and Dα, µα, µβ, ρ
α
c ≥ 0, and Dm, ρ

α
m, ρ

β
m, λm ≥ 0 constants. Alternative

approaches could also be considered, e.g. an ECM-density dependent production of
the MMPs by the cancer cells, and λαv , λ

β
v ≥ 0 constants. Possible extensions of

the model could include non-diffusible MMPs, MC-only matrix degradation, matrix
reconstruction, and other biologically relevant processes.

The stochastic submodel—responsible for themigration of the individualmesenchymal-
like cancer cells—reads:

dXp
t = µ

(
Xp

t , t
)

dt + σ
(
Xp

t , t
)

dWp
t , for p ∈ P, (26)

where Xp
t represents the position vector of the mesenchymal-cell with index p ∈

{1, . . . , N (t)}, Wp
t is a Wiener process with independent components, µ and σ2 are

the drift and diffusion coefficients that encode the modelling assumptions made on
the directed and random parts of the motion of the mesenchymal-cells.

The coupling between the macroscopic and stochastic submodels (25) and (26) is
happening via phase transition operators that connect the isolated cellular description
with the density formulation:

{
(xp (t),mp ), p = 1, . . . , N (t)

}
� c(x, t)

mp (t) =
∫
Mp

c(x, t)dx, xp (t) = the (bary-)centre of Mp

This approach allows them to reproduce, in a very natural way, fundamental qualita-
tive features, of the current biomedical understanding of cancer invasion, that are not
easily captured by classical modelling approaches, for example, the invasion of the
ECM by self-generated gradients and the formation of EC invasion islands outside
of the main body of the tumour.

With the atomistic stochastic sub-model, they reproduce a sustainable invasion of the
ECM bymeans of a self-induced haptotaxis gradient; this verifies the experimentally
invasion behaviour and at the same time it serves as verification of the propagating
invasion front seen in numerical simulations of macroscopic deterministic cancer
invasion models.
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With the full model, they reproduce the spread of the tumour and the invasion of the
ECM in the form of invasion “islands”. These are well known to appear inmany cases
of cancer, outside the main body of the tumour, and are quite difficult to reproduce
by either macroscopic or atomistic cancer invasion models. With this approach these
invasion “islands” are a naturally emerging property of modelling framework, which
has very recently been used to model oral squamous cell carcinoma cell migration
and invasion in an in vitro organotypic invasion assay experiment [Franssen et al.,
2021].

4 Discussion and Conclusion

In a prescient statement from 50 years ago, Judah Folkman (the “father” of tumour-
induced angiogenesis and angiogenesis research) stated that the interactions between
tumour cells and endothelial cells “...may constitute a highly integrated ecosystem.
In this ecosystem the mitotic index of the two cell populations may depend on each
other.” [Folkman, 1971]. This viewpoint was echoed in the 2011 paper of Hanahan
andWeinberg, where they note: “When viewed from this perspective, the biology of a
tumor can only be understood by studying the individual specialized cell types within
it as well as the “tumor microenvironment” that they construct during the course of
multistep tumorigenesis. This depiction contrasts starkly with the earlier, reductionist
view of a tumor as nothing more than a collection of relatively homogeneous cancer
cells, whose entire biology could be understood by elucidating the cell-autonomous
properties of these cells.” [Hanahan and Weinberg, 2011]

The first paper discussed in this review [Gatenby, 1995] considered the interactions
of cancer cells with the host tissue precisely from this “ecological” perspective. The
subsequent papers reviewed here also take a “holistic approach” to the problem,
focussing on the complex dynamic interactions between the (solid) tumour and
the tumour microenvironment (between the cancer cells and normal cells of the
host tissue). The results of these mathematical modelling efforts (both analytical
and computational) have helped to elucidate some of the details of the interplay
between cancer cells and normal tissue during invasion across a range of spatial
and temporal scales. Insight into how better treatment protocols could be developed
have arisen from the results of several models e.g. changing the level of acidity
within the tumour or interrupting the hypoxia-glycolysis-acidosis cycle [Smallbone
et al., 2005, 2007, 2008], estimating the amount of healthy tissue to resect during
breast cancer surgery [Anderson et al., 2000], estimating the depth of invasion and
its relation to cell adhesion [Turner and Sherratt, 2002], and estimating the depth of
spread of gliomas into brain tissue [Swanson et al., 2000, 2003, Swanson, 2008].
Moreover, the complexity of cancer invasion has necessitated the development of
new modelling approaches resulting in advances on the mathematical side over and
above the biological insight provided.
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While a lot of the insight from the modelling has been qualitative in nature, the
recent work of Franssen et al. [2021], focussing on modelling cell invasion in a 3D
organotypic assaywith a novel hybrid continuum-discretemodel, indicates a possible
way to combine and include real data from in vitro experiments, parameterise the
model accurately and robustly, calibrate the model and then use the model to make
further predictions on the in vitro system, while opening up possible avenues to make
use of this as a platform to simulate in vivo invasion in a predictive and quantitative
manner cf. Brady and Enderling [2019].
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