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Abstract

In this thesis we consider base size and properties of the generating graph for finite

groups.

Let ⌦ = {1, . . . , n}, let Sn = Sym({1, . . . , n}) and let G  Sn. A base for G is a

sequence ⇤ = (!1, . . . ,!k) of points in ⌦ such that the pointwise stabilizer, G!1,...,!k
, is

the identity. The base size of G, denoted by b(G,⌦) or b(G), is the length of the shortest

base. We say that ⇤ is an irredundant base if

G > G!1 > G!1,!2 > · · · > G!1,!2,...,!k
= 1.

If no irredundant base is longer than ⇤, then we say that ⇤ is a maximal irredundant base

for G and denote its length by I(G). A group is called large base if it is either a product

action or almost simple group, and its socle is one or more copies of the alternating group

Ar acting on k-sets.

Let G be a primitive subgroup of Sn that is not large base. We prove that any irre-

dundant base for G has size at most 5 log2 n. This bound is best possible up to a small

multiplicative constant and is the first logarithmic bound on the size of an irredundant

base for such groups. We show that for any constant c, there are infinitely many prim-

itive groups with maximal irredundant base size at least c times the minimal base size.

As a corollary of the first result, the relational complexity of G, denoted RC(G) (see

Definition 2.2.10), is at most 5 log2 n+1. In addition the maximal size of a minimal base

and the height, denoted B(G) and H(G) (see Definitions 2.2.1 and 2.2.5), are both at

most 5 log2 n. Furthermore, we deduce that a base for G of size at most 5 log2 n can be

computed in polynomial time.

The generating graph �(G) of a finite group G has vertex set the non-identity elements

of G, with two elements connected exactly when they generate G. A coclique in a graph

is an empty induced subgraph, so a coclique in �(G) is a subset of G such that no pair

of elements generate G. A coclique is maximal if it is contained in no larger coclique. It

is easy to see that the non-identity elements of a maximal subgroup of G form a coclique

v



in �(G), but this coclique need not be maximal.

Let G = Sn or An. We first determine when the intransitive maximal subgroups of

G are maximal cocliques in �(G), and when they are not we find the unique maximal

coclique in which they are contained. We then show that for su�ciently large n, the

imprimitive maximal subgroups of G are all maximal cocliques in �(G).

In addition, using the result on intransitive maximal subgroups we prove that a conjec-

ture of Cameron, Lucchini, and Roney-Dougal holds for G under certain restrictions on n.

Namely we prove that two elements of G have identical sets of neighbours in �(G) if and

only if they belong to exactly the same maximal subgroups. Finally under another set

of restrictions on n we then determine precisely which maximal subgroups are maximal

cocliques in �(G).
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Notation

Group theoretic notation

Let ⌦ be a finite set, let H  G  Sym(⌦) and let K be a finite group. Let g 2 G, let ⇤

be a sequence of distinct points of ⌦, let � ✓ ⌦ and let �1, . . . ,�i 2 ⌦.

Dih(2n) Dihedral group of order 2n

Cn Cyclic group of order n

Aut(G) Automorphism group of G

soc(G) Socle of G

NG(H) Normalizer of H in G

CG(H) Centraliser of H in G

Z(G) Centre of G

GwrK Wreath product of G and K

Syl
p
(G) The set of Sylow p-subgroups of G for p a prime dividing the order of G

�(G) Frattini subgroup of G

m(G) Minimal index of proper subgroup of G

GoK Semidirect product of G and K

[G : H] Index of H in G

�(G) Generating graph of G

1 or id The identity element

Supp(g) Support of g

Fix(g) Fixed points of g

⇤\{�} The subsequence of ⇤ given by omitting �i

StabG(�) Stabilizer of � in G

�G The orbit of � under G

G⇤ The elements of G which fix the points of ⇤ pointwise

G� The elements of G which fix � setwise

G(�) The elements of G which fix � pointwise

G�1,...,�i The elements of G which fix {�1, . . . ,�i} pointwise

x



Vector Spaces and Matrices

Let F be a field, let V = Fd a vector space of dimension d over F, let U and W be

subspaces of V .

GF(q) Galois field of size q

F⇤ The non-zero elements of F
PGm(V ) Set of all m-dimensional subspaces of V

dim(U) Dimension of U over F
U �W Direct sum of U and W

⌦�

m
, ⌦<

m
Definition 2.7.7

Supp
x
W The set of vectors of W with non-zero entry in the xth position

Mn,m(F) The set of n⇥m matrices over a field F
I The identity of Md,d(F)
Ex,y The element of Md,d(F) with 1 in the (x, y)th entry and 0 elsewhere

T (x, y) The matrix I + Ex,y

◆ Inverse transpose map

AGL1(p) 1-dimensional a�ne group over GF(q)

Classical Groups

Let q be a prime power and let d � 2.

n.d. Non-degenerate

n.s. Non-singular

t.i. Totally isotropic

t.s. Totally singular

PSO✏

n
(q) Projective special orthogonal group of dimension n over GF(q) of type ✏

P⌦✏

d
Simple subgroup of index 2 in PSO✏

n
(q)

PSLd(q) Projective special linear group of dimension d over GF(q)

PSp
d
(q) Projective symplectic group of dimension d over GF(q)

PSUd(q) Projective special unitary group of dimension d over GF(q)2

Numerical invariants

Let ⌦ be a finite set and let G  Sym(⌦).

b(G,⌦) Base size for G with respect to its action on ⌦

B(G,⌦) Maximal size of a minimal base for G

H(G,⌦) Height of G

I(G,⌦) Maximal size of an irredundant base for G

RC(G,⌦) Relational complexity of G

`(G) Maximum length of a chain of subgroups in G

µ(G) The minimal degree of G

xi



Symmetric groups

Let n 2 N, let H,M  Sym({1, . . . , n}) with H transitive and M imprimitive maximal,

and let y 2 Sym({1, . . . , n}) with disjoint cycle decomposition c1 · · · ct.

An Alt(n) acting on {1, . . . , n}

Sn Sym(n) acting on {1, . . . , n}

l(ci) Length of the cycle ci

⇥i The support of the cycle ci

C(y) Cycle type of y, l(c1) · l(c2) · · · · · l(ct)

CM(y) Notation 5.2.6

Jt The set of elements of Sn which are a product of two transpositions

Jc The set of cycles of Sn

Js The set of elements of Sn with support size at most 2(
p
n� 1)

Jw The set of Wielandt elements of Sn, Definition 4.3.2

J Jt [ Jc [ Js [ Jw ✓ Sn

H A block system for H

M The maximal system of imprimitivity for M

yH The induced action of y on the blocks of H

M̂ Definition 6.2.2

⌦i Notation 4.1.3

Number Theory

Let N be the set of positive integers, let n, k 2 N, let g be a function from N to N

bkc Floor of k

dke Ceiling of k

pk A Bertrand prime, any prime with k

2 < pk < k � 1

⇡(k) The Prime-Counting Function, the number of primes less than or equal to k

�ij Kronecker-Delta

log k Logarithm base 2 of k

ln k Logarithm base e of k, the natural log

gcd(n, k) Greatest common divisor of n and k

O(g) “Big O notation” describing the limiting behaviour of g
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Chapter 1

Introduction

The first half of this thesis is devoted to the study of numerical invariants of permutation

groups, sometimes called group statistics. One of the most studied numerical invariants

is base size. For G  Sym(⌦), a base is a sequence (!1, . . . ,!k) of points of ⌦ such that

G!1,...,!k
= 1. The base size for G, denoted b(G,⌦) or b(G), is the length of a shortest

base. It is easily seen that two elements of G are equal exactly when they have the same

action on the base points. Hence elements of G can be stored in terms of their action on

points of the base, rather than on all of ⌦. When b(G,⌦) is significantly smaller than

|⌦| this results in a computational saving.

In [38], Liebeck proved that with the exception of one family of groups, if G is a prim-

itive subgroup of Sn := Sym({1, . . . , n}), then b(G) < 9 log n. This exceptional family of

groups are called large-base groups. Here and throughout all logs are of base 2. Following

in the steps of Liebeck, one area of interest is to prove similar results for other numerical

invariants. For G a primitive subgroup of Sn which is not large base, we show that the

size of a maximal irredundant base, denoted by I(G), is at most 5 log n. This is the first

logarithmic bound for this family of groups and is best possible up to a multiplicative

constant. We also prove that for any constant c, there are infinitely many examples of

primitive groups with I(G) > cb(G). It will follow as a corollary of our upper bound

on I(G) that we can improve the current known bounds on relational complexity, height

and maximal size of a minimal base, denoted by RC(G), H(G) and B(G) respectively. In

addition, we prove that a base for G of size at most 5 log n can be computed in polynomial

time.

In the second half of this thesis we investigate the generating graphs of permutation

groups. For a 2-generated group G, the generating graph �(G) has vertex set given

by the non-identity elements of G where two elements are adjacent if and only if they

generate G. Generating graphs were first introduced by Liebeck and Shalev in [42], this

1



reinterpretation of a generation problem in terms of the generating graph enabled the use

of graph theoretic results. This has prompted interest in studying various properties of

the generating graphs, such as Hamiltonian cycles in [4]. One topic which has been widely

studied are cliques, which are complete induced subgraphs of �(G). Indeed, generating

graphs were first used in [42] to show that for all c < 1, if G is a su�ciently large simple

group, then �(G) contains a clique of size at least c times the minimum index of a proper

subgroup of G. Here we investigate the relatively less well-studied cocliques, which are

empty induced subgraphs in �(G).

Let G be a group with maximal subgroup M . Subgroups generated by elements of M

must be contained in M , and so the non-identity elements of M form a coclique in �(G).

However it is not clear if the non-identity elements of M will form a maximal coclique.

We shall see examples of both possibilities. For ease we say that M is or is not a maximal

coclique rather than referring to the non-identity elements.

Let G be An := Alt({1, . . . , n}) or Sn := Sym({1, . . . , n}), and let M be either a max-

imal intransitive or a maximal imprimitive subgroup of G. We determine when M is a

maximal coclique in �(G). Showing that M is a maximal coclique is equivalent to show-

ing that for each x 2 G\M there exists y 2 M such that such that H := hx, yi is equal

to G. We make considerable use of Jordan elements, which are elements g 2 Sn with the

property that all primitive subgroups of Sn which contain g also contain An. For each

x 2 G\M we construct an element y 2 M of suitable parity such that H is primitive and

contains a Jordan element. Although the majority of the volume of this work is taken up

by proving primitivity, the most challenging aspect is the construction of y.

Numerical invariants bridge the two halves of the thesis. In the first half we bound

numerical invariants of primitive permutation groups. In the second we construct prim-

itive permutation groups and use Jordan elements, some of are derived from numerical

invariants, to show that these groups must be the whole of An or Sn. For example, for G

a transitive subgroup of Sn, the minimal degree µ(G) is the smallest number of points in

the support any non-identity element of G. In [40], Liebeck and Saxl prove that if G is a

primitive group which does not contain An, then µ(G) > 2(
p
n�1). Hence, in particular,

if g 2 Sn is a non-identity element and |Supp(g)|  2(
p
n�1), then x is a Jordan element.

In Chapter 2 we introduce the definitions, notation and preliminary lemmas used in

Chapter 3. We begin by briefly covering some abstract group theory. We then define

the numerical invariants that will be the focus of the first half of the thesis and prove

some preliminary lemmas about these invariants. Next we give an informal summary

of computational complexity. The rest of this chapter is devoted to the groups used in

2



Chapter 3. We cover two families of the O’Nan Scott Theorem: the almost simple and

product action groups. Finally we consider some actions of these groups.

In Chapter 3 we first let F = GF(q), let G = PGLd(q), let M be the set of all d ⇥ d

matrices over F, and let ⌦ be the set of all m-dimensional subspaces of a Fd. We begin by

considering the action of M on ⌦, and use this find an upper bound on I(G,⌦) as a func-

tion of m and d. By bounding |⌦| we use the previous result to find an upper bound on

I(G,⌦) as a function of |⌦|. We construct an irredundant and a minimal base for G, from

which we obtain lower bounds on I(G,⌦) and B(G,⌦) as functions of m and d. Next we

prove that if G is an almost simple primitive subgroup of Sn which is not large base, then

I(G) < 5 log n�1. Using this result we bound I(G) for G a product action group. By com-

bining this work with existing results of Gill, Lodá and Spiga [28], we show that if G  Sn

is a primitive group which is not large base, then I(G) < 5 log n. Finally we show that

for each positive constant c there are infinitely many primitive groups with I(G) > cb(G).

In the second half of the thesis we change focus from numerical invariants to generating

graphs. In Chapter 4 we introduce the preliminary material for Chapters 5 and 6. We

first define the intransitive and imprimitive maximal subgroups of Sn and An and prove

some results for these maximal groups. We then prove combinatorial lemmas on block

systems and cycle structures. Next we give some examples of Jordan elements and prove

that subgroups of Sn which satisfy certain conditions must contain a Jordan element.

Then we prove some technical results on the existence of primes with particular proper-

ties. In the penultimate section we introduce generating graphs and give some examples

of maximal cocliques. Finally prove results on subgroups of Sn and 1-dimensional a�ne

groups.

In Chapter 5 we let n

2 < k < n, G = Sn or An and

M =
⇣
Sym({1, . . . , k})⇥ Sym({k + 1, . . . , n})

⌘
\G = (Sk ⇥ Sn�k) \G.

Then M is an intransitive maximal subgroup of G. For n  11 we determine when

M is a maximal coclique in �(G) computationally. For n � 12 we show that M is a

maximal coclique in �(G) unless G = Sn and gcd(n, k) > 1. In addition, for G = Sn and

gcd(n, k) > 1 we show that the maximal coclique containing M is M [ (1, k+1)M .

In addition, we prove a conjecture of Cameron, Lucchini, and Roney-Dougal [14] when

G = An or Sn, and n is a prime such that n 6= q
d
�1

q�1 for all prime powers q and all d � 2.

Namely, we show that two elements of G have identical sets of neighbours in �(G) if and

only if they belong to exactly the same maximal subgroups.

3



In Chapter 6 we continue our study of maximal cocliques in generating graphs. We

let n = mk, let G = Sn or An and let M = (Sk wr Sm) \ G be an imprimitive maximal

subgroup of G. Here we show if k � 28 or m � 27, then M is a maximal coclique in

the generating graph of G. For x 2 G\M , finding an element y 2 M such that hx, yi

is primitive and contains a Jordan element seems to be significantly harder than in the

intransitive case. The cycle types of elements in M are more restricted than those in an

intransitive group. In particular elements of M are guaranteed to preserve at least one

block system and often preserve many more, and elements with large support are less often

Jordan elements. Because of this we introduce more cases, more number theory, more

types of Jordan elements. We also use a di↵erent method of proving primitivity.

Combining the above with the work in Chapter 5 we prove the following result. Let

n = 2p where p is a prime greater than 29 such that p 6= 2a + 1 for all a 2 N, let G = Sn

or An and M is a maximal subgroup in G. Then either M is a maximal coclique in �(G)

or (G,M) = (Sn, Sk ⇥ Sn�k) for k even.

In Chapter 8, the appendix, we include some technical proofs on elements of primitive

subgroups of Sn for small n, and some small cases for Chapter 5.
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Chapter 2

Group actions and numerical invariants

Here we introduce the background material and preliminary results needed in Chapter 3.

The first two sections define groups which we will study further. In the third and fourth

sections we classify some of the possible actions of these groups. Finally in the fifth and

sixth we define some numerical invariants and prove various preliminary lemmas on these

invariants.

2.1 Abstract group theory

We begin with some abstract group theory which we will use to define various groups in

later sections. Throughout, let n be a natural number and let Sn = Sym({1, . . . , n}).

2.1.1 Semidirect and wreath products

First we describe semidirect products which we then use to define wreath products.

Let H and K be two finite groups and let � : K ! Aut(H) be a homomorphism. For

h 2 H and k 2 K, let hk denote the image of h under �(k). Then for each k 2 K the

map �(k) : h 7! hk for h 2 H is an automorphism of H. Let G be the set

�
(h, k)

�� h 2 H, k 2 K
 
,

and for (h1, k1), (h2, k2) 2 G, let multiplication of G be defined by

(h1, k1)(h2, k2) = (h1h
k
�1
1

2 , k1k2).

With this multiplication, we call G the semidirect product of H and K which we denote

by G = H o� K. When the action of � is clear we just write G = H oK.

It is easily verified that 1G = (1H , 1K) and (h, k)�1 =
�
(hk)�1, k�1

�
. If �(k) = 1 for all

k 2 K, then H o� K is the direct product H ⇥K.
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Example 2.1.1. Let H = S4, let K = S3  H and let � : K 7! Aut(H) where

�(k) : h 7! k�1hk for k 2 K and h 2 H. Let G = H oK and let

g1 =
�
(1, 2)(3, 4), (1, 2, 3)

�
, g2 =

�
(1, 3, 4), (2, 3)

�
2 G.

Then

g1g2 =
⇣
(1, 2)(3, 4) · (1, 3, 4)(1,2,3)

�1
, (1, 2, 3)(2, 3)

⌘

=
⇣
(1, 2)(3, 4)(1, 2, 3)(1, 3, 4)(1, 3, 2), (1, 2, 3)(2, 3)

⌘

=
⇣
(1, 4, 2), (1, 3)

⌘
. 4

Using the semidirect product we can define the holomorph of a group.

Definition 2.1.2. Let H be a finite group and let Aut(H) be the automorphism group

of H. The holomorph of H is

Hol(H) = H o Aut(H).

Example 2.1.3. Let C4 be the cyclic group of order 4 defined by

C4 = {id, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}  S4.

Then C4 = h(1, 2, 3, 4)i = h(1, 4, 3, 2)i. Since automorphisms of a group map generators

to generators it follows that Aut(C4) = {1, �} where 1 fixes all elements of C4 and � fixes

id and (1, 3)(2, 4) and interchanges (1, 2, 3, 4) and (1, 4, 3, 2). Then � has order 2, and so

Aut(C4) = C2. Hence

Hol(G) = C4 o C2. 4

We now define the wreath product construction and a possible action, which will be

used in Section 2.5. We introduce a further action in Chapter 4.

Let H and K be finite groups acting on finite sets � and � = {1, . . . , n} respectively.

For � 2 � and � 2 �, let �h and �k denote the images of � and � under h 2 H and k 2 K

respectively. Then we can construct a homomorphism � : K ! Aut(Hn) where

�(k) : (h1, h2, . . . , hn) 7! (h1k�1 , h2k�1 , . . . , h
nk�1 ).

Then the semidirect product G = Hn o� K is the wreath product of H by K, which we

denote by H oK or H wrK.
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Then G = H wrK acts on ⌦ = �n via the product action defined as follows. Let

! = (�1, . . . , �n) 2 ⌦ and let g =
�
(h1, h2, . . . , hn), k

�
2 G. Then the image of ! under g

is ⇣
�
h
1k

�1

1k�1 , . . . , �
h
nk�1

nk�1

⌘
.

Example 2.1.4. Let � = {1, 2, 3, 4}, let � = {1, 2, 3}, and let ⌦ = {1, 2, 3}4. Let

K = Sym(�) ⇠= S4, let H = Sym(�) ⇠= S3 and let G = H wrK ⇠= S3 wr S4 act on ⌦ via

the product action. For example let ! = (!1,!2,!3,!4) = (3, 1, 2, 3) 2 ⌦ and let

g =

 ⇣
(1, 2), (1, 2, 3), (2, 3), (3, 2, 1)

⌘
, (1, 4)(2, 3)

!
2 G.

Then the image of ! under g is

(3(3,2,1), 2(2,3), 1(1,2,3), 3(1,2)) = (2, 3, 2, 3). 4

2.1.2 Insoluble subgroups of Chevalley groups

In this subsection we define soluble and insoluble groups, give a brief description of some

of the Chevalley groups, and finally show that certain subgroups of these Chevalley groups

are insoluble.

Let G be a finite group. A subnormal series for G is a series of subgroups

G = G0 .G1 . · · · .Gk = 1.

If G has a subnormal series as above, such that Gi�1/Gi is abelian for 1  i  k, then

we call G soluble. If there exists no such series, then we call G insoluble.

Let G and H be finite groups. Then H is involved in G if there exist groups N and K

such that N E K  G and K/N ⇠= H.

Example 2.1.5. Let G = h(1, 2, 3, 4, 5, 6), (2, 6)(3, 5)i  S6. Then G ⇠= Dih(12) and

G . h(1, 2, 3, 4, 5, 6)i . 1.

Now G/h(1, 2, 3, 4, 5, 6)i and h(1, 2, 3, 4, 5, 6)i/1 are isomorphic to C2 and C6 respectively,

and so both are abelian. Hence G is soluble and C2 is involved in G. 4

We now cover two results on soluble and insoluble groups. One which we use the show

that certain groups are insoluble, and one which we use later in Section 2.3.
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Theorem 2.1.6 (Burnside’s Theorem). Let G be a finite group. If |G| = paqb, where p

and q are primes and a and b non-negative integers, then G is soluble.

Lemma 2.1.7. Let H be a non-abelian simple group. If H is involved in a group G, then

G is insoluble.

Proof. If G is soluble, then all subgroups and quotients of G are soluble, see for example

[24, Theorem 10.2(a)]. Hence if G has a subgroup or quotient that is insoluble, then it

follows that G is insoluble.

Since H is simple, it follows that the only subnormal series is H . 1. Now H/1 = H is

non-abelian, and so H is insoluble. Since H is involved in G there exist groups N and

K satisfying N E K  G and K/N ⇠= H. Hence K is insoluble since it contains H as a

quotient group, and in turn G is insoluble since it contains K as a subgroup.

We now take a brief foray into Dynkin diagrams and Chevalley groups. Here we only

cover the information which is needed in Chapter 3, in particular we show that certain

parabolic subgroups of particular Chevalley groups are insoluble. For a more comprehen-

sive exposition see [20].

The following graphs (omitting the labelling of vertices) are the D5, E6 and E7 Dynkin

diagrams. These correspond to the Chevalley groups D5(q) ⇠= P⌦+
10(q), E6(q) and E7(q),

where q is a prime power and these groups are defined over the field F = GF(q).

1 2 3

4

5 1

2

3 4 5 6 1

2

3 4 5 6 7

D5 E6 E7

The labelling of the vertices (here we use the notational convention of [2]) is used to label

subgroups as follows.

Let G be the Dynkin diagram D5, E6 or E7, and let G be the corresponding Chevalley

group D5(q), E6(q) or E7(q). Let vi be the vertex of G labelled by i, and let Gi be the

subgraph of G given by removing vi and all edges incident with vi. Then Gi corresponds

to a subgroup Pi, called a parabolic subgroup of G. Each connected component of Gi

will be another Dynkin diagram (for a complete list of Dynkin diagrams see [20]). If Gi

is connected, then Pi involves the Chevalley group corresponding to Gi.

For example, if G = E6, then G1 and G6 are both D5. Hence the parabolic subgroups

P1 and P6 of E6(q) both involve D5(q).
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Lemma 2.1.8. Let G be a Chevalley group and let H be a parabolic subgroup of G. If

(G,H) 2
�
(E6(q), P1), (E6(q), P6), (E7(q), P7)

 
,

then H is insoluble.

Proof. If G = E6, then G1 = G6 = D5, and so P1, P6  E6(q) involve D5(q). If G = E7,

then G7 = E6 and so P7  E7(q) involves E6(q).

Both D5(q) and E6(q) are non-abelian simple groups, and so in all cases H is insoluble

by Lemma 2.1.7.

2.1.3 Primitive and large-base groups

Here we briefly define blocks, primitive groups and large-base groups. For more detail

and examples of blocks see Section 4.2.

Definition 2.1.9. Let ⌦ be a finite set and let G be a transitive subgroup of Sym(⌦).

A set � ✓ ⌦ is a block for G if for all g 2 G, either �g = � or �g
\� = ;. If |�| = 1

or � = ⌦, then � is a trivial block, otherwise � is non-trivial.

If G has no non-trivial blocks, then G is primitive, otherwise G is imprimitive.

Example 2.1.10. Let ⌦ = {1, 2, . . . , 8}, let � = {1, 5}, let g = (1, 2, 3, 4, 5, 6, 7, 8) and

h = (2, 8)(3, 7)(4, 6) be elements of Sym(⌦), and let G = hg, hi. It is clear that G is

transitive. If f 2 G, then

�f
2 {�,�g,�g

2
,�g

3
} =

�
{1, 5}, {2, 6}, {3, 7}, {4, 8}

 
.

Hence � is a block for G and so G is imprimitive.

Now let n � 5, let ⌦ = {1, . . . , n}, and let G = An = Alt(⌦). Suppose that

� ✓ {1, 2, . . . , n} is a non-trivial block, and so there exist distinct points ↵, � 2 �

and � /2 �. Since G is 2-transitive, it follows that there exists g 2 G such that ↵g = ↵

and �g = �. Hence ↵ 2 � \ �g and � 2 �g
\�, a contradiction. Hence G has no

non-trivial blocks, and so is primitive. 4

The following definition was prompted by a result of Liebeck which we cover later in

Section 2.2.

Definition 2.1.11. Let G be a primitive subgroup of degree n. Then G is large base if G

is a subgroup of St wr Sr containing (At)r, where the action of St is on k-element subsets

of {1, . . . , t} and the wreath product has the product action of degree n =
�
t

k

�r
.
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2.2 Numerical invariants

In this section we introduce various numerical invariants which we bound for certain

groups in Chapter 3. We also cover some examples, motivational and contextual history

of numerical invariants.

Throughout this section let ⌦ be a finite set and let G  Sym(⌦). For a sequence

⇤ = (�1, . . . ,�k) 2 ⌦k, let G⇤ be the pointwise stabiliser of ⇤ in G. For a set � ✓ ⌦, let

G� and G(�) be the setwise and pointwise stabiliser of � in G. For H  G, let [G : H]

be the index of H in G. Let log be to the base 2.

Definition 2.2.1. A base for G is a sequence ⇤ = (�1, . . . ,�k) 2 ⌦k such that, G⇤ = 1.

The minimal base size, denoted b(G,⌦) or just b(G) if the meaning is clear, is the

minimum length of a base for G. A base for G is minimal if no proper subsequence is a

base, that is G� 6= 1 for all subsequences � of ⇤. The maximal size of a minimal base for

G is denoted by B(G,⌦) or B(G).

Example 2.2.2. Let n � 5 and let ⌦ = {1, 2, . . . , n}.

First let G = Sn, let k  n � 2 and let ⇤ 2 ⌦k. Then there exist distinct points

↵, � 2 ⌦ which are not terms of ⇤. Hence (↵, �) 2 G⇤, and so b(G) > n � 2. Since the

only element of G fixing n� 1 points of ⌦ is the identity, it follows that b(G) = n� 1.

Now let G = An, let k  n � 3 and let ⇤ 2 ⌦k. Then there exist distinct points

↵, �, � 2 ⌦ which are not in ⇤, and so (↵, �, �) 2 G⇤. Let ⇤ 2 ⌦n�2 be a sequence of

distinct points. Then there are exactly two distinct points ↵, � 2 ⌦ which are not in ⇤.

Then (Sn)⇤ = h(a, b)i, and so G⇤ = 1. Hence b(G) = n� 2.

Finally let n = 2m > 4 and let

G =
⌦
(2, n)(3, 2m� 1) · · · (m,m+ 2), (1, 2, . . . , 2m)

↵
.

Then G ⇠= Dih(2n). The only non-identity element of G1 is the reflection through the

vertices 1 and m+ 1. Hence

G1 =
⌦
(2, n)(3, n� 1) · · · (m,m+ 2)

↵
= G(1,m+1),

and so neither (1) nor (1,m+ 1) is a base. However G(1,2) = 1 = G(1,m+1,2), and so (1, 2)

is a minimal base, and (1,m+ 1, 2) is a base but not a minimal base. 4

We now discuss some motivation for the study of bases. Let g, h 2 G and let

⇤ = (�1, . . . ,�k) 2 ⌦k be a base for G. If �g
i
= �h

i
for 1  i  k, then gh�1

2 G⇤ = 1,

and so g = h. Hence each element of G can be defined and stored by its action on |⇤|,

rather than |⌦|, points. If |⇤| is significantly smaller than |⌦|, as for Dih(2n) but not for
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Sn or An, then this results in a computational saving. As a result base size has important

applications in computational group theory, see for example [51] for the importance of a

base and strong generating set.

In [38] Liebeck proves the following landmark result.

Theorem 2.2.3. Let G be a primitive subgroup of Sn. Then one of the following holds.

(i) G is large base,

(ii) b(G) < 9 log n.

Very recently in [47] Moscatiello and Roney-Dougal improved Liebeck’s bound by show-

ing that if G is a primitive subgroup of Sn which is not large base, then either G = M24

in its 5-transitive action of degree 24, or b(G)  dlog ne+ 1.

We now cover a definition and result which link the two halves of this thesis. For G a

subgroup of Sn, the minimal degree µ(G) is the smallest number of points in the support

any non-identity element of G.

For example µ(Sn) = 2, µ(An) = 3 and µ(h(1, 2, . . . , p)i) = p.

Theorem 2.2.4 ([40, Theorem 2]). Let G be a primitive subgroup of Sn which is not

large base. Then µ(G) � 1
3n.

In the same paper as the previous theorem, Liebeck and Shalev also prove the following

corollary. If G is a primitive subgroup of Sn and µ(G)  2(
p
n� 1), then G contains An.

We rephrase this result in Theorem 4.3.4(iii) for use in Chapters 5 and 6 where we study

generation in Sn and An.

Theorems 2.2.3 and 2.2.4 are of the same form; for a primitive subgroup of Sn which is

not large base, they bound a numerical invariant as a function of n. One area of interest

is to prove similar results for other numerical invariants. This is the focus of Chapter 3,

where we study the following numerical invariants.

Definition 2.2.5. Let ⌦ be a set of size n, let G be a subgroup of Sym(⌦) and let � ✓ ⌦.

Then � is independent if G(⌃) 6= G(�) for each ⌃ ( �. The height of G, denoted H(G,⌦)

or H(G), is the maximum size of an independent set.

Definition 2.2.6. Let ⇤ = (�1, . . . ,�k) 2 ⌦k be a base for G. Then ⇤ is irredundant if

G > G�1 > G�1,�2 > · · · > G�1,�2,...,�k
= 1.

If no other irredundant base is longer than ⇤, then ⇤ is a maximal irredundant base and

we denote its length by I(G,⌦) or I(G).
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Observe that if ⇤ is an irredundant base, all points of ⇤ are distinct. Hence the following

notation is well defined.

Notation 2.2.7. For ⇤ an irredundant base containing �, let ⇤\{�} be the subsequence

of ⇤ given by omitting �.

The maximum length of a chain of subgroups of G is denoted by `(G). It is easily seen

that I(G)  `(G).

Theorem 2.2.8 ([16, Theorem 1]). `(Sn) 
3n
2 .

The following shows how various numerical invariants are related.

Lemma 2.2.9 ([28, Equation 1.1]). Let G be a transitive subgroup of Sn. Then

b(G)  B(G)  H(G)  I(G)  b(G) log n.

Proof. Clearly b(G)  B(G). Let k = B(G) with corresponding base ⇤ = (�1, . . . ,�k).

Let � = {�1, . . . ,�k}. Since ⇤ is a minimal base it follows that ⇤ contains no repetitions

and so � has size k, and that no subsequence of ⇤ is a base and so G(�) 6= G(�) for all

� ( �. Therefore � is an independent set of size k, and so B(G) = k  H(G).

Now let � = {�1, . . . ,�l} be an independent set of maximal size. Then l = H(G) and

we have the following chain of subgroups

G � G�1 � G�1,�2 � · · · � G�1,...,�l
.

Since G is transitive, it follows that G > G�1 . If there exists 2  i  l such that

G�1,...,�i�1 = G�1,...,�i�1,�i , then G(�) = G(�\{�i}), a contradiction since� is an independent

set for G. Hence

G > G�1 > · · · > G�1,...,�l
.

For i � 1 if G�1,...,�l+i�1
6= 1, then let �l+i be a point in the largest orbit of G�1,...,�l+i�1

.

Hence there exists t � 0 such that

G > G�1 > G�1,�2 > · · · > G�1,...,�l+t
= 1.

Thus (�1, . . . ,�l+t) is an irredundant base for G, and so H(G) = l  l + t  I(G).

Finally let m = I(G) and b = b(G), and let ⇤ = (�1, . . . ,�m) and (�1, . . . , �b) be

corresponding bases. Then

G > G�1 > G�1,�2 > · · · > G�1,...,�m = 1 and

G > G�1 > G�1,�2 > · · · > G�1,...,�b
= 1.
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Hence [G : G�1 ] � 2 and [G�1,...,�i�1 : G�1,...,�i ] � 2 for 2  i  m. Therefore

|G| = [G : G�1 ][G�1 : G�1,�2 ] · · · [G�1,...,�m�1 : G�1,...,�m ] � 2m = 2I(G).

Since G  Sn, it follows that [G : G�1 ]  n and [G�1,...,�i : G�1,...,�i+1 ]  n for 1  i  b� 1.

Hence

|G| = [G : G�1 ][G�1 : G�1,�2 ] · · · [G�1,...,�b�1
: G�1,...,�b

]  nb = nb(G).

Therefore 2I(G)
 |G|  nb(G), and so the result then follows by taking logarithms base 2

on both sides.

We now define one final numerical invariant, relational complexity. Informally, this is

a measure of when local properties of an object imply global properties. This has been

studied extensively in model theory, see for example [37]. A rephrasing of the definition,

to make it easier to work with permutation groups, was introduced more recently in

[19].

Definition 2.2.10. Let k, l 2 N with k  l and let � = (�1, . . . , �l),⇤ = (�1, . . . ,�l) 2 ⌦l.

Then � and ⇤ are k-subtuple complete or k-equivalent with respect to G  Sym(⌦),

denoted � ⇠k ⇤, if for every subset of k indices {i1, . . . , ik} ✓ {1, 2, . . . , l} there exists

g 2 G such that

(�g
i1
, . . . , �g

ik
) = (�i1 , . . . ,�ik).

The relational complexity of G, denoted RC(G), is the smallest k such that for all l � k

and all �,⇤ 2 ⌦l, if � ⇠k ⇤ then ⇤ 2 �G.

Here � ⇠k ⇤ is the local property, and ⇤ 2 �G is the global property.

Example 2.2.11. Let ⌦ = {1, 2, 3, 4, 5, 6}, let G = S6 or A6, and let

� = (�1, . . . , �5) = (1, 2, 3, 4, 5),⇤ = (�1, . . . ,�5) = (1, 2, 3, 4, 6) 2 ⌦5.

Since both S6 and A6 are 3-transitive, it follows that � ⇠3 ⇤. For example let i1 = 1,

i2 = 2 and i3 = 5. Then the corresponding subsequences are �0 = (�1, �2, �5) = (1, 2, 5)

and ⇤0 = (�1,�2,�5) = (1, 2, 6), and the elements (5, 6) 2 S6 and (4, 5, 6) 2 A6 map �0 to

⇤0.

We claim that if G = S6, then ⇤ 2 �G, and if G = A6, then ⇤ /2 �G. If �g = ⇤ then, g

fixes 1, 2, 3 and 4, and maps 5 to 6. Hence g = (5, 6) is the only element of S6 satisfying

�g = ⇤. Since g 2 S6\A6 the claim follows.

Hence if G = A6, then RC(G) > 3 since � ⇠3 ⇤ and ⇤ /2 �G. 4

The following gives the range of possible values of relational complexity.
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Lemma 2.2.12. Let n � 3 and let G be a non-trivial subgroup of Sn. Then

2  RC(G)  n� 1.

Proof. Let ⌦ = {1, 2, . . . , n} and let k = RC(G). Then for all l 2 N and all

� = (�1, . . . , �l),⇤ = (�1, . . . ,�l) 2 ⌦l, if � ⇠k ⇤ then ⇤ 2 �G.

Since G is non-trivial there exist distinct points ↵, � 2 ⌦ and g 2 G such that ↵g = �.

Hence (↵,↵) ⇠1 (↵, �). However (↵, �) /2 (↵,↵)G, and so RC(G) 6= 1 and the lower

bound holds. In addition, it follows that if k � 2 and � ⇠k ⇤, then �i = �j if and only

if �i = �j. Hence �g
i
= �i if and only if �g

j
= �j, and so we may assume without loss of

generality that � and ⇤ are repetition free. Therefore � and ⇤ have length at most n.

Let � = (�1, . . . , �n),⇤ = (�1, . . . ,�n) 2 ⌦n be repetition free. If � ⇠n�1 ⇤, then

in particular there exists g 2 G with (�g1 , . . . , �
g

n�1) = (�1, . . . ,�n�1). Since G  Sn,

it follows that �g
n
= �n and so �g = ⇤. Hence if � ⇠n�1 ⇤, then ⇤ 2 �G, and so

RC(G)  n� 1.

Now we consider examples of groups which show that the bounds in the above lemma

are tight. Note that as part of the proof above we showed that if � = (�1, . . . , �l),

⇤ = (�1, . . . ,�l) 2 ⌦l and � ⇠2 ⇤, then �i = �j implies that �i = �j.

Example 2.2.13. Let p be a prime, let ⌦ = {1, . . . , p}, and let G = h(1, . . . , p)i  Sp.

Hence G ⇠= Cp. Let � = (�1, . . . , �l),⇤ = (�1, . . . ,�l) 2 ⌦l with � ⇠2 ⇤. From � ⇠2 ⇤ it

follows that for 2  k  l there exists gk 2 G such that �gk1 = �1 and �gk
k

= �k. Since

there is a unique element g 2 G with �g1 = �1, it follows that g = gk for 2  k  l. Hence

�g = ⇤ and so RC(G) = 2. 4

Example 2.2.14. Let n � 5 and let ⌦ = {1, . . . , n}.

First let G = Sn, and let �,⇤ 2 ⌦l with � ⇠2 ⇤. Since G is n-transitive it follows that

there exists g 2 G satisfying �g = ⇤. Hence ⇤ 2 �G and so RC(G) = 2.

Now let G = An. Let � = (1, 2, . . . , n� 2, n� 1, n),⇤ = (1, 2, . . . , n� 2, n, n� 1) 2 ⌦n.

Since G is (n � 2)-transitive it follows that ⇤ ⇠n�2 �. The only element of Sn mapping

� to ⇤ is (n� 1, n). Since (n� 1, n) /2 G it follows that ⇤ /2 �G and so RC(G) > n� 2.

Now RC(G)  n� 1 by Lemma 2.2.12, and RC(G) = n� 1. 4

Hence both Sn and Cp have relational complexity 2. In [18] Cherlin gives examples of

primitive groups with relational complexity 2, called binary groups, and conjectures that

this list is complete. In a dramatic breakthrough Gill, Liebeck and Spiga proved this

conjecture [26].
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We now compare relational complexity to some of the other numerical invariants.

Let n � 5. Then b(Sn) = b(An) + 1 by Example 2.2.2, whereas RC(Sn) = 2 and

RC(An) = n� 1 by Example 2.2.14.

Let H  G  Sn and let ⇤ be a minimal base for G. Then G⇤ = 1, and so H⇤ = 1.

Hence ⇤ is a base (although not necessarily minimal) for H, and so b(H)  b(G). There

is no such general rule that relates RC(H) to RC(G). With the action of Sn on k-subsets

being an exception - see [27], the current results on height and relational complexity

would seem to imply that RC(G) is either equal or close to H(G) + 1. This observation

prompts the following lemma.

Lemma 2.2.15 ([28, Lemma 2.1]). Let G be a primitive subgroup of Sn. Then

RC(G)  H(G) + 1.

2.3 Lemmas on irredundant bases

We now collect results about bases and the relation between maximal irredundant bases

and other group statistics.

Throughout this section let ⌦ be a finite set. For G  Sym(⌦) and a fixed sequence

(!1, . . . ,!l) 2 ⌦l, let G(0) = G and G(i) = G!1,...,!i for 1  i  l.

Lemma 2.3.1. Let G be a subgroup of Sn.

(i) If G is insoluble, then I(G) < log |G|� 1.

(ii) If G is transitive and n � 5, then I(G) < log |G|� 1.

(iii) If G is transitive and b = b(G), then I(G)  (b� 1) log n+ 1.

Proof. If ⇤ = (�1, . . . ,�t) is either a minimal base, or a maximal irredundant base, for

G, then

|G| = [G(0) : G(1)] · · · [G(t�1) : G(t)] and 2  [G(i) : G(i+1)]  n for 0  i  t. (2.1)

In addition, if G is transitive then by the Orbit-Stabilizer Theorem

[G(0) : G(1)] = n. (2.2)

(i) Let l = I(G), let p1, p2, . . . , pr be distinct increasing primes and let a1, a2, . . . , ar

be positive integers such that |G| = pa11 pa22 · · · par
r
. Then a = a1 + a2 + · · · + ar is

the number of prime divisors of |G| including multiplicity. By setting ⇤ to be a

maximal irredundant base in (2.1), it follows that a � l.
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Since G is insoluble, Theorem 2.1.6 implies that r � 3 and so pr � 5 > 22. Hence

pai
i
� 2ai for 1  i  r � 1, and par

r
> 2ar+1. Therefore

|G| > 2a1 · 2a2 · · · · · 2ar+1 = 2a+1,

and so log |G| > a+ 1 � l + 1. Thus I(G) = l < log |G|� 1.

(ii) Let l = I(G). Then by setting ⇤ to be a maximal irredundant base in (2.1) and

(2.2), it follows that

|G| = n · [G(1) : G(2)] · · · [G(1) : G(2)] � n · 2l�1. (2.3)

Hence if n � 5 then |G| � 5 · 2l�1 > 2l+1. Therefore log |G| > l + 1, and so

I(G) = l < log |G|� 1.

(iii) Let b = b(G). Then by setting ⇤ to be a minimal base in (2.1) and 2.2 it follows

that

|G| = n · [G(1) : G(2)] · · · [G(1) : G(2)]  n · nb�1 = nb.

Combining the above with (2.3) gives n · 2l�1
 |G|  nb. Hence 2l�1

 nb�1, and

so I(G) = l  (b� 1) log n+ 1.

Lemma 2.3.2. Let G be a subgroup of Sym(⌦), let l � 1 and let ⇤ = (�1, . . . ,�l) 2 ⌦l.

Then there exists a subsequence ⌃ of ⇤ such that ⌃ can be extended to an irredundant

base and G⌃ = G⇤.

Proof. The sequence ⇤ cannot be extended to an irredundant base if and only if there

exists a subsequence �i, . . . ,�i+j of ⇤ such that j � 1 and

G(i) = G(i+1) = · · · = G(i+j).

Let ⌃ be the subsequence of ⇤ given by deleting all such �i+1, . . . ,�i+j. Since G(i) = G(i+j)

it follows that G⇤ = G⌃.

Lemma 2.3.3. Let H  G  Sym(⌦) and let � ✓ ⌦ be a H-orbit. Then

I(H,�)  I(G,⌦).

Proof. Let k = I(H,�) with corresponding base ⇤ = (�1, . . . ,�k) 2 �k. Then

G > G�1 > · · · > G�1,...,�k
.

LetK = G�1,...,�k
. IfK = id then ⇤ is an irredundant base for G and so I(G,⌦) � I(H,�).

If K 6= id then I(K,⌦) = l � 1 with corresponding base (µ1, . . . , µl). In which case
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(�1, . . . ,�k, µ1, . . . , µl) is an irredundant base for G and so

I(G,⌦) � k + l > k = I(H,�).

The following two lemmas recently appeared in [28], for the second we include our own

independent proof.

Lemma 2.3.4. [28, Lemma 2.6] Let H1 and H2 be non-identity permutation groups on

⌦1 and ⌦2, then

I(H1 ⇥H2,⌦1 ⇥ ⌦2) = I(H1,⌦1) + I(H2,⌦2)� 1.

Lemma 2.3.5. [28, Lemma 2.8] Let N E G  Sn. Then

I(G)  I(N) + `(G/N).

Proof. Let I(G) = l with a corresponding base ⇤ = (!1, . . . ,!l). Then

G = G(0) > G(1) > G(2) > · · · > G(l) = 1,

and so

GN = G(0)N � G(1)N � G(2)N � · · · � G(l)N = N.

Let I = {1  i  l | G(i�1)N = G(i)N} and J = {1  j  l | G(j�1)N > G(j)N}.

If i 2 I, then by the Second Isomorphism Theorem

G(i�1)/(G(i�1)
\N) ⇠= G(i�1)N/N = G(i)N/N ⇠= G(i)/(G(i)

\N).

Since G(i)
\N = N (i) this implies that |G

(i�1)
|

|N(i�1)|
= |G

(i)
|

|N(i)|
, and so |G

(i�1)
|

|G(i)|
= |N

(i�1)
|

|N(i)|
. Therefore

G(i�1) > G(i) if and only if N (i�1) > N (i). Hence by letting I = {i1, . . . , ik}, it follows

that

N > N (i1) > N (i2) > · · · > N (ik) = 1

and so I(N,⌦) � k.

If j 2 J , then G(j�1)N > G(j)N, and so G(j�1)N/N > G(j)N/N . Since

I[̇J = {1, 2, . . . , l}, we can let J = {j1, . . . , jl�k}. Recall that G(ji) = G!1,!2,...,!ji
.

Hence

GN/N > G(j1)N/N > G(j2)N/N > · · · > G(jl�k)N/N,

and so `(G/N) � l � k.

17



Corollary 2.3.6. Let N E G  Sn such that [G : N ] = p for some prime p. Then

I(N)  I(G)  I(N) + 1.

Proof. The lower bound holds by Lemma 2.3.3. If N E G and [G : N ] = p, then

G/N ⇠= Cp. Since the only proper subgroup of Cp is 1 it follows that `(Cp) = 1. Hence

the upper bound follows from Lemma 2.3.5.

2.4 Computational Complexity

Let G be a primitive subgroup of Sn which is not large base. In Chapter 3 we bound

some of the numerical invariants discussed in the previous section as a function on n. As

a corollary, we prove a result on the computational complexity of calculating a base of a

certain size for G.

We now give a very brief and informal summary of computational complexity theory.

A decision problem is a problem for which the answer is yes or no. An instance of the

problem is one specific case of the problem. We give some of the hierarchy of di�culty

for decision problems. To determine the hierarchy of a problem we use Turing machines,

which are mathematical models of computers. It is universally believed that for any

algorithm there exists a Turing machine that carries out the algorithm. Here we are

particularly interested in deterministic Turing machines, where for any input at most

one action is performed. A non-deterministic Turing machine is one where an input can

result in multiple actions being carried out in parallel. Unless otherwise stated, assume

that we are using a deterministic Turing machine.

We use the following “big O notation” to categorise functions.

Definition 2.4.1. Let f, g : R ! R. If there exists c, n0 2 R such that |f(n)|  cg(n)

for all n � n0, then we say f(n) = O(g(n)).

We now define the hierarchy. Suppose that we have a decision problem where an

instance input has size n. If there exists k 2 N, independent of n, such that any instance

can be solved by a Turing machine in O(nk) steps, then this problem is in P. If there

exists l 2 N such that a possible solution can be checked to be correct in O(nl) steps,

then the problem is in NP. Problems in NP can be solved in polynomial time by a non-

deterministic Turing machine. Since constructing a solution automatically checks its

correctness, it follows that NP contains P. It is not currently known if P=NP, although

it is widely believed that NP is a wider class of problems than P. Problems are said to be

NP-hard if they are at least as hard as those in NP. Finally, a problem is NP-complete if

it lies in both NP and NP-hard.
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Example 2.4.2. Let t 2 N and X ⇢ N. Determining if there exists x 2 X such that

x > t is a problem in P. Indeed for each x 2 X we need only test whether or not x > t.

Hence this problem can be solved in a number of steps which is polynomial in the input

size. An instance of this problem would be t = 7 and X = {1, 9, 6}.

Suppose instead that we wish to determine if there exists {x1, . . . , xs} ✓ X such that

x1 + . . . + xs = t. This is a problem in NP which is thought not to be in P. A naive

approach would be to consider all sums of subsets of X. There are 2n subsets of X, and

so this approach would require at least O(2n) steps. This gives some indication as to why

this problem is computationally harder than the last. However, given a potential solution

{x1, . . . , xr} ✓ X, it takes polynomially many steps to calculate x1 + · · · + xs and then

compare this to t. Hence checking a candidate solution takes polynomial time. 4

A greedy algorithm is an algorithm where at each stage we make a locally optimal

choice. Let ⌦ be a finite set and let G = G(0)
 Sym(⌦). The following is a greedy

algorithm for constructing a base for G.

Step 1 Let �1 be a point from a largest orbit of G(0), and let G(1) = G(0)
�
.

Step i � 2 We have a sequence of points (�1, . . . ,�i�1) and G(i�1) = G�1,...,�i�1 .

If G(i�1) has orbits of size at least 2, then let �i be a point in a largest

orbit of G(i�1).

If all orbits of G(i�1) have size 1, then stop.

Suppose that the algorithm terminates at step t. Then G > G(1), and G(i) > G(i+1)

for 1  i  t � 1, and G(t) = 1. Hence (�1, . . . ,�t) an irredundant base, and so

b(G)  t  I(G). Observe that |G(i+1)
| = |G

(i)
|

ri
for 0  i  t � 1, where ri is the size of

the orbit of G(i) containing �i+1. Therefore at each stage �i+1 is chosen to ensure that

G(i+1) is as small as possible.

Let G be a primitive group which is not large base. In [1] Blaha proved that computing

a minimal base for a permutation group is NP-hard. Deciding if there exists a base of size

at most t is NP-complete. Blaha also showed that using the greedy algorithm above, we

can compute a base of size O(b(G) log log n) in polynomial time. Hence using Theorem

2.2.3 it follows that if G is a primitive subgroup of Sn which is not large base, then we

can construct a base of size O(log n log log n) in polynomial time. We improve this bound

in Chapter 3.

2.5 Linear algebra and linear groups

In this section we define various classical groups which will be used in the next section.

For more detail see [3], [36] and [55]. We begin by introducing some matrix notation and
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matrix groups.

Throughout this section let p be a prime, let f 2 N and let q = pf . Let F be the field

GF(q), and let F⇤ be the non-zero elements of F. Then the characteristic of F, char(F),
is p.

Let V be a d-dimensional vector space over F. Let e1, . . . , ed be the standard basis for

V , so that ei has 1 in the ith position and 0 elsewhere. For U a vector space over F let

dim(U) be the dimension of U over F.

Let Mm,d(F) be the set of all m ⇥ d matrices over F. For A 2 Mm,d(F) we write

A = (aij)1im

1jd

to mean that we denote the entry of A in the ith row and jth column by

aij. When the dimensions of A are clear we write A = (aij). It is easily verified that

Mm,d(F) is a vector space over F, and dim(Mm,d(F)) = md.

We shall identify V with the set of d-dimensional row vectors over F, let M = Md,d(F),
and let I be the d ⇥ d identity matrix. Then M acts on V by right multiplication. For

example, let v = (v1, . . . , vd) 2 V and let A = (aij) 2 M . Then

vA =

 
dX

i=1

ai1vi,
dX

i=1

ai2vi, . . . ,
dX

i=1

aidvi

!
2 V.

2.5.1 Linear and semilinear groups

We call groups introduced in this section and the next classical groups. We begin with

linear and semilinear groups.

A map g : V ! V is a linear transformation from V to V if for all u, v 2 V and all

c 2 F
(u+ v)g = ug + vg and (cv)g = c(vg).

The general linear group, denoted by GL(V ), is the set of all invertible linear transfor-

mations from V to V . If we fix a basis of V , then we may realise GL(V ) as GLd(q), the

group of d ⇥ d invertible matrices with entries in F. Then GLd(q) acts on V by right

multiplication. We can then define SLd(q), the special linear group on V , to be the group

of matrices in GLd(q) with determinant 1.

An element g 2 GLd(q) is a scalar transformation if there exists c 2 F⇤ such that

vg = cv for all v 2 V . Let Z be the set of all scalar transformations of V . Then it can

easily be shown that Z is the centre of GLd(q), which we denote Z(GLd(q)), and that

Z = F⇤I. The projective linear group on V is

PGLd(q) = GLd(q)/Z.
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The projective special linear group on V is

PSLd(q) = SLd(q)Z/Z.

We now move from linear maps to semilinear maps. A map g : V ! V is a semilinear

transformation if there exists ↵ 2 Aut(F), such that for all u, v 2 V and all c 2 F

(u+ v)g = ug + vg and (cv)g = c↵(vg).

We call ↵ the associated automorphism of g. If ↵ is the identity, then g is a linear trans-

formation. Then general semilinear group �Ld(q) is the group of all invertible semilinear

transformations of V . The projective semilinear group is

P�Ld(q) = �Ld(q)/Z.

Let � : x 7! xp be the Frobenius automorphism of F. Then � has order f and

Aut(F) = h�i. Hence if we let Cf be the cyclic group of order f , then Aut(F) ⇠= Cf

and

P�Ld(q) = PGLd(q)o Cf . (2.4)

For A 2 GLd(q) denote the inverse transpose of A by A�T . Then the map

◆ : GLd(q) ! GLd(q), where ◆ : A 7! A�T for A 2 GLd(q), is an automorphism of

GLd(q) called the inverse-transpose automorphism. It is easily seen that ◆(Z) = Z and

◆(SLd(q)) = SLd(q). Let g 2 PSLd(q), then g = AZ for some A 2 GLd(q). Hence

◆(g) = ◆(AZ) = A�TZ 2 PSLd(q), and so ◆ 2 Aut(PSLd(q)). In addition, � and ◆

commute. By [36, (2.1.14)]

Aut(PSLd(q)) =

8
<

:
P�L2(q) if d = 2,

P�Ld(q)o h◆i if d � 3.
(2.5)

Let m  d and let ⌘ be a map from the set of m-dimensional spaces to the set of

(d�m)-dimensional spaces which acts as follows on U an m-dimensional space

⌘(U) = {v 2 V | uvT = 0 for all u 2 U}. (2.6)

2.5.2 Classical forms

In this section we introduce classical forms, which will be used to define more classical

groups.

Let ↵ be an automorphism of F. Then a map B : V ⇥V ! F is an ↵-sesquilinear form
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on V if for all c1, c2 2 F and u1, u2, v1, v2 2 V

B(c1u1 + c2u2, v1) = c1B(u1, v1) + c2B(u2, v1) and

B(u1, c1v1 + c2v2) = c↵1B(u1, v1) + c↵2B(u1, v2).

We now define special types of ↵-sesquilinear forms.

– If ↵ is the identity, then B is a bilinear form.

– For all u, v 2 V , if B(u, v) = 0 implies that B(v, u) = 0, then B is reflexive.

– If B(u, v)↵ = B(v, u) for all u, v 2 V and ↵ has order 2, then B is ↵-Hermitian.

– Let B be bilinear. If B(u, v) = B(v, u) for all u, v 2 V , then B is symmetric. If

B(u, v) = �B(v, u) for all u, v 2 V , then B is skew-symmetric. If B(u, u) = 0 for

all u 2 V , then B is alternating.

– If B(u, v) = 0 for all u 2 V implies that v = 0, then B is non-degenerate (or

equivalently if B(u, v) = 0 for all v 2 V implies that u = 0).

Let U be a subspace of V and let B be a non-degenerate ↵-sesquilinear form on V . A

vector v 2 V is isotropic if B(v, v) = 0. If B restricted to U is the zero map, then U is

totally isotropic (or t.i.). If B restricted to U is non-degenerate, then U is non-degenerate

(or n.d.). If there exist linearly independent vectors u, v 2 U such that U = hu, vi,

B(u, u) = 0 = B(v, v) and B(u, v) = 1, then we say that U is a hyperbolic line with

hyperbolic pair (u, v).

Let B be an ↵-sesquilinear form. We use B to define elements of GLd(q) and �Ld(q)

with specific properties. We later show that for some types of B, the sets of all such

elements form subgroups of GLd(q) and �Ld(q). First let g 2 GLd(q). We say that g is

an isometry of B, or that g preserves B, if B(ug, vg) = B(u, v) for all u, v 2 V . If there

exists c 2 F⇤ such that B(ug, vg) = cB(u, v) for all u, v 2 V , then g is a similarity of

B. Now let h 2 �Ld(q) with associated automorphism �. If there exists c 2 F⇤ such that

B(uh, vh) = cB(u, v)� for all u, v 2 V , then h is a semisimilarity of B.

We now introduce one further type of map which we will use to define classical groups.

A map Q : V ! F is a quadratic form on V , if Q(cv) = c2Q(v) for all v 2 V and c 2 F
and the function B : V ⇥ V ! F defined by

B(u, v) = Q(u+ v)�Q(u)�Q(v)

is a bilinear form. We call B the polarisation of Q.
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If char(F) 6= 2, then from

B(u, u) = Q(2u)� 2Q(u) = 22Q(u)� 2Q(u) = 2Q(u)

it follows that Q(v) = 1
2B(v, v). Hence Q can be recovered from B. If char(F) = 2, then

each bilinear form is the polarisation of many quadratic forms. Let Q be a quadratic

form with polarisation B. If B(u, v) = 0 for all v 2 V implies that u = 0, then we say

that Q is non-degenerate.

Let v 2 V , let U be a subspace of V , let Q be a non-degenerate form on V . If Q(v) = 0,

then v is totally singular. If each element of U is totally singular, then U is totally singular

(or t.s.).

Let Q be a quadratic form. As for bilinear forms, we define certain subsets of GLd(q)

and �Ld(q). First let g 2 GLd(q). If Q(ug) = Q(u) for all u 2 V , then we say that g is an

isometry of Q, or that g preserves Q. If there exists c 2 F⇤ such that Q(ug) = cQ(u) for

all u 2 V , then g is a similarity of Q. Now let h 2 �Ld(q) with associated automorphism

↵. If there exists c 2 F⇤ such thatQ(uh) = cQ(u)↵ for all u 2 V , then h is a semisimilarity

of Q.

In this paragraph only, let V be a vector space over F = GF(q2). Then the map

� : x 7! x2 for x 2 F is an automorphism of F. By [36, Prop 2.3.1 and 2.3.2]

the isometry groups of any pair of non-degenerate �-hermitian forms are conjugate

in GLd(q2). Hence if we fix a non-degenerate �-hermitian form B, then the follow-

ing unitary groups are unique up to conjugation. The group of all isometries of B

is the isometry group of B, denoted GUd(q). The special isometry group of B is

SUd(q) = GUd(q) \ SLd(q2). The group of all semisimilarities of B is the semisimilarity

group of B, denoted �Ud(q). Let Z = Z(GLd(q2)). We then have the corresponding three

projective groups PGUd(q) = GUd(q)/(Z \ GUd(q)), PSUd(q) = SUd(q)/(Z \ SUd(q))

and P�Ud(q) = �Ud(q)/Z.

We return to V being a vector space with underlying field F = GF(q). Here we define

the sympletic groups. Let B be a non-degenerate alternating form on V . Then set of

all similarities ; of all isometries ; and of all semisimilarities of B, are GSp
d
(q), Sp

d
(q), and

�Sp
d
(q). We then have the corresponding three projective groups

PGSp
d
(q) = GSp

d
(q)/Z, PSp

d
(q) = Sp

d
(q)/(Z\Sp

d
(q)) and P�Sp

d
(q) = �Sp

d
(q)/Z.

Let Q be a non-degenerate quadratic form of V with associated bilinear form B. We

define the following subsets of V . Let �ij be the Kronecker-Delta function and recall that

dim(V ) = d.

(i) A hyperbolic subset is {v1, . . . , vr, u1, . . . , ur} ✓ V with d = 2r such that for i, j 2
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{1, 2, . . . r}

Q(vi) = Q(ui) = 0 and B(vi, uj) = �ij.

(ii) A parabolic subset is {v1, . . . , vr, u1, . . . , ur, w} ✓ V with d = 2r + 1, such that

both hv1, . . . , vri and hu1, . . . , uri are totally singular, w is non-singular and for all

i, j 2 {1, 2, . . . r}

Q(vi) = Q(ui) = 0, B(vi, uj) = �ij and B(vi, w) = B(ui, w) = 0.

(iii) An elliptic subset is {v1, . . . , vr, u1, . . . , ur, w, z} ✓ V with d = 2r + 2 such that

Q(z) = ⌘ where x2 + x+ ⌘ is irreducible in F[x], both hv1, . . . , vri and hu1, . . . , uri

are totally singular, and for all i, j 2 {1, 2, . . . r}

Q(vi) = Q(ui) = 0,

B(vi, uj) = �ij, B(vi, w) = B(vi, z) = B(ui, w) = B(ui, z) = 0 and B(w, z) = 1.

Lemma 2.5.1. (Prop 2.5.3 [36]) Let Q be a non-degenerate quadratic form over V with

associated bilinear form B. Then V has either a hyperbolic, a parabolic or an elliptic

basis.

Let

✏ =

8
>>><

>>>:

+ if d is even and the basis of V is hyperbolic,

blank if d is odd and the basis of V is parabolic,

� if d is even and the basis of V is elliptic.

Let Q be a fixed non-degenerate quadratic form. Denote the similarity group of Q by

GO✏

d
(q); the isometry group of Q by O✏

d
(q); the special isometry group of Q by SO✏

d
(q);

the semisimilarity group of Q by �O✏

d
(q); and ⌦✏

d
(q) to be an index 2 subgroup of SO✏

d
(q)

(this is uniquely defined for (d, q, ✏) 6= (4, 2,+)).

For X 2 {GO✏

d
(q),O✏

d
(q), SO✏

d
(q),�O✏

d
(q),⌦✏

d
(q)} we define the corresponding projective

groups

PX = X/(X \ Z).

The following theorem classifies when some of the classical groups that we have defined

are simple. Some restrictions on d are to omit duplications due to isomorphism - see

[36, Proposition 2.9.1].

Theorem 2.5.2 ([55, See for example Theorems 4.5, 8.8, 10.20, 11.48]). fillerfiller

(i) If G = PSLd(q), then G is simple if and only if (d, q) 6= (2, 2), (2, 3).
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(ii) If G = PSp
d
(q), then G is simple if and only if (d, q) 6= (2, 2), (2, 3), (4, 2).

(iii) If G = PSUd(q), then G is simple if and only if (d, q) 6= (2, 2), (2, 3), (3, 2).

(iv) If G = P⌦✏

d
(q), then G is simple for all d � 7.

2.6 Almost simple and product action groups

In this section we cover two families of the O’Nan-Scott Theorem. This result, which was

independently proved by Michael O’Nan and Leonard Scott in 1979, divides the primitive

groups into eight types. We begin with some preliminary material.

Definition 2.6.1. Let G be a group. Then H is a minimal normal subgroup of G, if

1 6= H E G and the only normal subgroups of G contained in H are 1 and H.

The socle of G, denoted soc(G), is the subgroup generated by all minimal normal

subgroups of G.

A group G acting transitively on a set ⌦ acts regularly if G! = 1 for each ! 2 ⌦.

Example 2.6.2. Let n 2 N and let ⌦ = {1, . . . , n}.

First let Cn be the cyclic group of order n generated by (1, 2, . . . , n). Then Cn is clearly

transitive and (Cn)! = 1 for all ! 2 ⌦. Hence Cn acts regularly on ⌦.

Now let n = 2m+ 1 be odd, and let

G =
⌦
(1, 2, . . . , 2m+ 1), (2, 2m+ 1)(3, 2m) . . . (m,m+ 1)

↵
.

Then G ⇠= Dih(2n), G is transitive and G1 = h(2, 2m + 1)(3, 2m) . . . (m,m + 1)i. Hence

G does not act regularly on ⌦. 4

Let G be a finite group acting on a set ⌦. Then G acts faithfully if the only element of

G fixing ⌦ pointwise is the identity. Equivalently, we can identify G with a subgroup of

Sym(⌦).

Let ⌦ be a finite set of size n and let G be a primitive subgroup of Sym(⌦). Then

S := soc(G) ⇠= Tm for a simple group T . The following gives two of the families of the

O’Nan-Scott Theorem.

Definition 2.6.3. Let G be a primitive subgroup of Sym(⌦) with minimal normal but

not regular socle S ⇠= Tm.

(i) G is type AS if m = 1, so that

T E G  Aut(T ).
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(ii) G is type PA if m > 1 and there exists a finite set � and a primitive AS group

U  Sym(�) with socle T such that

Tm E G  U wr Sym(m)

and ⌦ = �m.

For the full statement of the theorem and more in-depth analysis see [23].

The following gives an example of groups of type AS and PA. Let Sn = Sym({1, . . . , n})

and An = Alt({1, . . . , n}).

Example 2.6.4. Let n � 7 and let T = An. Then T is simple and Aut(T ) = Sn.

Therefore T E Sn  Aut(T ), and so Sn is an example of a group of type AS.

Now let T = PSLd(q) for (d, q) 6= (2, 2), (2, 3), and so by Theorem 2.5.2 T is simple.

By (2.5)

T / PGLd(q)  Aut(PSLd(q)),

and so PGLd(q) is also of type AS.

Let G = S5 wr S4 act with product action on ⌦ = {1, 2, 3, 4, 5}4. Then G is an example

of a group of type PA. 4

Recall that G is of type AS if T E G  Aut(T ) where T is simple and not regular. Since

T is not regular, it follows by Example 2.6.2 that T is not cyclic and so is a non-abelian

simple group. Now S1, . . . , S4 are soluble, and so by Lemma 2.1.7 involve no non-abelian

simple groups. Hence we have the following result.

Lemma 2.6.5. Let G  Sym(⌦). If G is of type AS, then |⌦| � 5.

The next lemma follows immediately from the definition of large-base groups

Lemma 2.6.6. Let G and U be as in Definition 2.6.3(ii). If U is large base then so is

G.

2.7 Classical groups and subspace actions

Let G be an almost simple classical group with socle G0. Hence G0 is as in Theorem

2.5.2. In this section we classify certain actions of G for use in Chapter 3.

Throughout, let q = pf be a prime power, let m, d 2 N with 1  m 
d

2 , and let V be

a d-dimensional vector space over F = GF(q).

Definition 2.7.1. Let PGm(V ) be the set of all m-dimensional subspaces of V .

An elementary counting argument can be used to prove the following.
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Lemma 2.7.2. Let 1  m 
d

2 and let n(d,m, q) = |PGm(Fd)| = |PGm(V )|. Then

n(d,m, q) =

Q
d

i=d�m+1(q
i
� 1)

Q
m

i=1(q
i � 1)

.

Let G  PGLd(q). Then G acts on PGm(V ) via Ux = {ux
| u 2 U} for U 2 PGm(V )

and x 2 G. We now prove some lemmas about the action of groups on PGm(V ), we begin

with a definition.

Definition 2.7.3. Let G be a group acting on two sets ⌦ and �. These actions are

equivalent if there exists a bijection � : ⌦ ! � such that

�(↵x) = (�(↵))x for all ↵ 2 ⌦ and x 2 G.

Lemma 2.7.4. Let G  P�Ld(q). Then the action of G on PGm(V ) is equivalent to the

action of G on PGd�m(V ).

Proof. Let U 2 PGm(V ), let x 2 P�Ld(q), and let ⌘ : PGm(V ) ! PGd�m(V ) be the map

described in (2.6). Then

(⌘(U))x = {vx 2 V | uvT = 0 for all u 2 U}

= {v 2 V | u(vx
�1
)T = 0 for all u 2 U}

= {v 2 V | uxvT = 0 for all u 2 U}

= ⌘(Ux).

Lemma 2.7.5. Let G be an almost simple group with socle PSLd(q) such that

G 6 P�Ld(q). If m = 1 or if m < d

2 , then G does not act on PGm(V ).

Proof. If d = 2 then Aut(PSLd(q)) = P�Ld(q) by (2.5), and so all almost simple groups

with socle PSLd(q) are contained in P�Ld(q). Hence assume that m < d

2 , and so d � 3.

Therefore G  P�Ld(q) o h◆i by (2.5). Since G 6 P�Ld(q) it follows that there exists

h 2 P�Ld(q) such that h◆ 2 G. Suppose for a contradiction that G acts on PGm(V ), let

U 2 PGm(V ) and let H be the stabilizer of U in G. Then for all g 2 G we have that Hg

is the stabilizer of U g
2 PGm(V ). However Hh◆ is the stabilizer of Uh◆

2 PGd�m(V ), a

contradiction.

The following definition will be used to define another set on which classical groups can

act.

Definition 2.7.6. Let U and W be subspaces of the vector space V . Then V is the

direct sum of U and W , if U \W = 0 and V = {u + w | u 2 U and w 2 W}. We write

27



V = U �W .

Definition 2.7.7. We introduce two subsets of PGm(V )⇥ PGd�m(V ):

⌦�

m
=
n
{U,W}

��� U,W  V, dimU = m, dimW = d�m with m <
d

2
and U �W = V

o
, and

⌦<

m
=
n
{U,W}

��� U,W  V, dimU = m, dimW = d�m with m <
d

2
and U  W

o
.

Lemma 2.7.8 ([7, Table 4.1.2]). Let ⌦�

m
and ⌦<

m
be as defined above. Then

|⌦�

m
| =

qm(d�m)
Q

d

i=d�m+1(q
i
� 1)

Q
m

i=1(q
i � 1)

and |⌦<

m
| =

Q
d

i=d�2m+1(q
i
� 1)

Q
m

i=1(q
i � 1)2

.

Lemma 2.7.9. Let ⌦ = ⌦�

m
or ⌦<

m
. Then |⌦| > 2|PGm(V )|.

Proof. Combining Lemmas 2.7.2 and 2.7.8 gives

|⌦�

m
| = qm(d�m)

|PGm(V )| and |⌦<

m
| =

Q
d�m

i=d�2m+1(q
i
� 1)

Q
m

i=1(q
i � 1)

|PGm(V )|.

Since d

2 > m, it follows that d > 2m and so d� 2m+ i � i+ 1 for 1  i  m. Hence the

result follows since

qm(d�m)
� qm(m+1) > 2

and

Q
d�m

i=d�2m+1(q
i
� 1)

Q
m

i=1(q
i � 1)

=
(qd�m

� 1)

(q � 1)
·

m�1Y

i=1

(qd�2m+i
� 1)

(qi+1 � 1)

�
(qd�m

� 1)

(q � 1)

= qd�m�1 + · · ·+ q + 1

> 2.

For a classical group, the natural module is the module which the group is defined over.

For example, if G = GLd(q), then V = Fd is its natural module. Primitive actions of

almost simple groups can be divided into two types, standard and non-standard, which

are as follows.

Definition 2.7.10. Let G  Sym(⌦) be a primitive almost simple group with socle G0

and point stabilizer H. The action of G on ⌦ is standard if, up to equivalence of actions,

one of the following holds, and is non-standard otherwise.

(i) G0 = Alt(l) and ⌦ is an orbit of subsets or partitions of {1, . . . , l}.
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(ii) G0 and ⌦ are as in Table 2.1.

(iii) G0 = PSp
d
(2f ) and H \G0 = O±

d
(2f ).

In the following table we introduce certain actions which we will use later in Lemma

2.7.14.

Case G0 ⌦ Conditions

1 PSLd(q) all m-subspaces m 
d

2

2 PSLd(q) ⌦�

m
d � 3

3 PSLd(q) ⌦<

m
d � 3

4 PSUd(q) t.i. m-subspaces m 
d

2

5 PSUd(q) n.d. m-subspaces m < d

2

6 PSp
d
(q) t.i. m-subspaces m 

d

2

7 PSp
d
(q) n.d. m-subspaces m < d

2 , m even

8 P⌦+
d
(q) t.s. m-subspaces m 

d

2

9 P⌦�

d
(q) t.s. m-subspaces m < d

2

10 P⌦d(q) t.s. m-subspaces d, q odd, m < d

2

11 P⌦✏

d
(q) n.s. 1-subspaces d, q even

12 P⌦+
d
(q) n.d. hyperbolic m-subspaces m < d

2 , m even

13 P⌦+
d
(q) n.d. elliptic m-subspaces m < d

2 , m even

14 P⌦+
d
(q) n.d. parabolic m-subspaces m < d

2 , mq odd

15 P⌦�

d
(q) n.d. elliptic m-subspaces m even

16 P⌦�

d
(q) n.d. parabolic m-subspaces m < d

2 , mq odd

17 P⌦d(q) n.d. hyperbolic m-subspaces m even, dq odd

18 P⌦d(q) n.d. elliptic m-subspaces m even, dq odd

Table 2.1: Classical groups acting on subspaces

We now cover some lemmas which we will use to categorise the primitive almost simple

groups. In [13, Theorem 2] Burness et al. proved a significant result on base size for

certain families of groups. Combining this result with Definition 2.7.10 and [43, Table

3.4.1] gives the following theorem.

Theorem 2.7.11. Let G be an almost simple group with socle G0 acting primitively on

a finite set ⌦. Then one of the following holds.

(i) b(G,⌦)  6 or G = M24 in its natural action on {1, . . . , 24}.

(ii) G is standard.

Lemma 2.7.12. Let d � 2, let G0 = PSUd(q), PSp
d
(q) or P⌦✏

d
(q), and let G be a

primitive almost simple group with socle G0 acting on a G-orbit of totally isotropic, totally
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singular, or non-degenerate m-spaces. Then either G0 = P⌦+
8 (q), or G  P�Ld(q).

Proof. By [36, Theorem 2.1.4] either G  P�Ld(q), G0 = P⌦+
8 (q) or G0 = PSp4(q) with

q even. By [3, Table 8.14], if G0 = PSp4(q) and ⌦ ✓ PGm(V ), then G does not induce a

graph isomorphism, and so G  P�Ld(q).

The following lemma is given in [28] and proved in [43, Appendix A].

Lemma 2.7.13 ([28, Lemma 7.14]). Let G be a primitive almost simple classical group

with socle G0 = PSUd(q), PSpd
(q) or P⌦✏

d
(q). If G acts on an orbit ⌦ of m-spaces as in

Table 2.1, then either G0 = P⌦+
d
(q) and m = d

2 ; or |⌦| > q
1
2m(d�m).

We now give a categorisation of primitive almost simple groups which we use in Chapter

3.

Lemma 2.7.14. Let G be a primitive almost simple group acting on a set ⌦ with socle

G0. Then up to equivalence of actions one of the following holds:

(I) b(G,⌦)  6 or G = M24 in its natural action on {1, . . . , 24};

(II) G0 = Alt(l) and ⌦ is an orbit of subsets or partitions of {1, . . . , l};

(III) G0 = PSLd(q) and ⌦ = PGm(V ) with m 
d

2 ;

(IV) G0 = PSLd(q) and ⌦ = ⌦�

m
;

(V) G0 = PSLd(q) and ⌦ = ⌦<

m
;

(VI) G0 = PSp
d
(2f ) and ⌦ is the set of cosets of NG(O

±

d
(2f )) in G;

(VII) G0 = P⌦+
8 (q);

(VIII) G0 = P⌦+
d
(q) with d � 10 and ⌦ ✓ PG d

2
(V ); or

(IX) G  P�Ld(q) and ⌦ ✓ PGm(V ) such that d � 3, m 
d

2 and |⌦| > q
1
2m(d�m).

Proof. By Theorem 2.7.11 either G is as in Case (I) , (II) or (VI), or G0 and ⌦ are as in

Table 2.1.

If G is as in Case 1, 2 or 3 of Table 2.1, then G is as in Case (III), (IV) or (V)

respectively.

Let G be as in Cases 4 to 7 of Table 2.1. If d = 2, then m = 1, and so G is as in Case 4

or 6. By [3, Tables 2.2 & 2.3] this action is equivalent to the action of SL2(q) on PG1(V ),

and so G is as in Case (III). Hence assume that d � 3. By Lemmas 2.7.12 and 2.7.13 it

follows that G  P�Ld(q) and |⌦| > q
1
2m(d�m), and so G is as in Case (IX).
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Hence we may assume that G is as in Case 8 to 18 of Table 2.1. We begin by considering

G0 = P⌦+
d
(q) for certain values of d. If d  6, then by [43, p118-119] the action of G is

equivalent to another case. If d = 8 then G is as in Case (VII). If d = 2m � 10 then G

is as in Case (VIII).

Therefore if G0 = P⌦+
d
(q) then we may assume that d � 10 and d 6= 2m. Hence by

Lemmas 2.7.12 and 2.7.13 G  P�Ld(q) and |⌦| > q
1
2m(d�m). Since G is almost simple,

it follows that d � 3 and so G is as in Case (IX).
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Chapter 3

Numerical Invariants of Primitive

Permutation Groups

The work in this section first appeared in [35]. Let G be a primitive non-large-base

subgroup of Sn = Sym({1, . . . , n}). Emulating Liebeck’s work on base size, in [28] Gill,

Lodá and Spiga prove the following two theorems.

Theorem 3.0.1 ([28, Theorem 1.3 and Corollaries 1.4 and 1.5]). Let G be a primitive

subgroup of Sn. If G is not large base, then

H(G) < 9 log n, B(G) < 9 log n and RC(G) < 9 log n+ 1.

Theorem 3.0.2 ([28, Theorem 1.6]). Let G be a finite primitive group of degree n. Then

one of the following holds:

(i) There exists an almost simple group A, with socle S, such that G is a subgroup of

A o Sym(r) containing Sr, the action of A is one of the following:

(a) the action of Sym(m) on k-subsets of {1, ...,m};

(b) the action of a classical group on a set of subspaces of the natural module, or

on a set of pairs of subspaces;

and the action of the wreath product has the product action of degree n = sr, where

s is the degree of the action of A.

(ii) I(G) < 7 log n.

In Section 3.4, we include bounds on I(G) for certain families of groups which Gill, Lodá

and Spiga proved as part of the proof of the above Theorem. The authors also conjecture

that there exists a constant C > 0 such that if G is a primitive group of degree n that is

not large base, then I(G) < C log n.
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Our main result of the chapter establishes this conjecture.

Theorem 3.0.3. Let G be a primitive subgroup of Sn. If G is not large base, then

I(G) < 5 log n.

Let q be a prime power, let 1  m 
d

2 and let ⌦ be the set of m-spaces of GF(q)d. In

addition to the above, in Theorems 3.1.2 and 3.2.1, we find lower bounds on I(G,⌦) and

B(G,⌦) in terms of d and m.

By Lemma 2.3.1(iii) and Theorem 2.2.3, I(G)  (b(G)�1) log n+1 and b(G)  9 log n.

Hence it follows that I(G) = O(log2 n). Therefore Theorem 3.0.3 is not the first bound

on I(G), but it is the first logarithmic bound.

The following shows that for any positive constant c, there are infinitely many examples

of primitive groups with I(G) > cb(G).

Theorem 3.0.4. There are infinitely many n for which there exists a primitive group

G  Sn such that

I(G) >
8

63
b(G) log n.

It follows immediately from Theorem 3.0.3 and Lemma 2.2.15 that we can tighten the

current bounds for the height, maximal size of a minimal base, and relational complex-

ity.

Corollary 3.0.5. Let G be a primitive subgroup of Sn. If G is not large base, then

RC(G) < 5 log n+ 1, B(G) < 5 log n, and H(G) < 5 log n.

Combining Blaha’s greedy base algorithm described in Section 2.4 with Theorem 3.0.3

gives the following corollary.

Corollary 3.0.6. Let G be a primitive subgroup of Sn which is not large base. Then a

greedy algorithm produces a base of size at most 5 log n in polynomial time.

The chapter is structured as follows. In Section 3.1 we calculate upper and lower bounds

on I(PGLd(q),⌦) in terms of m and d which di↵er by only a small amount, and then an

upper bound on I(P�Ld(q),⌦) as a function of |⌦|. In the next section we calculate a

lower bound on B(PGLd(q),⌦) as a function of m and d. In Section 3.3 we prove a

slight strengthening of Theorem 3.0.3 for almost simple groups. Finally, in Section 3.4

we complete the proof of Theorems 3.0.3 and 3.0.4.
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3.1 Bounds on I(P�Ld(q))

Throughout this section we use the following notation.

Notation 3.1.1. Let p be prime, let f � 1, let q = pf and let 1  m 
d

2 . Let F = GF(q),

let V = Fd, let F⇤ be the non-zero elements of F and let I be the d ⇥ d identity matrix.

Let ⌦ = PGm(V ) be the set of all m-dimensional subspaces of V and let n = |⌦|.

We begin by proving the following, which in the case m = 1 recovers the lower bounds

found by Lodá in [43].

Theorem 3.1.2. Let PGLd(q) act on ⌦. Then

I(PGLd(q))  (m+ 1)d� 2m+ 1,

and

I(PGLd(q)) �

8
<

:
md�m2 + 1 if q = 2,

(m+ 1)d�m2 if q 6= 2.

By finding lower bounds on |⌦| we then prove the following proposition.

Proposition 3.1.3. Let G = P�Ld(q) and assume that m 
d

2 . Then

I(G,⌦) 

8
>>>>>><

>>>>>>:

2(d� 1) + 1  2 log n+ 1 if m = 1 and q = 2,

4
3(d� 1) log q + 1 + log f 

4
3 log n+ 1 + log f if m = 1 and q � 3,

d
2

2 + 1  2 log n if m = d

2 � 2 and q = 2,

2m(d�m) log q + log f  2 log n+ log f otherwise.

We divide into three subsections. The first and second subsections are devoted to the

upper and lower bounds of Theorem 3.1.2 respectively. In the third we prove Proposition

3.1.3.

3.1.1 Upper bounds as a function of m and d

To prove the upper bound of Theorem 3.1.2 we let M = M(V ) be the algebra of all linear

maps on V , and consider the action of M on ⌦. We begin by introducing subsets of M

and then showing that they are subspaces.

Notation 3.1.4. Let l > 1 be an integer, let ⇤ = (!1, . . . ,!l) 2 ⌦l and let !0 = h0i. For

0  k  l let

Mk = {g 2 M | !ig  !i for 0  i  k}, so that M0 = M.
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Lemma 3.1.5. Let 0  k  l � 1. Then Mk+1  Mk.

Proof. Let 0  i  k+1, let g, h 2 Mk+1, let v 2 !i and let � 2 F. Then vg, vh 2 !i, and

since !i is closed under addition and scalar multiplication it follows that

v(�g) = �(vg) 2 !i and v(g + h) = vg + vh 2 !i. Hence �g, g + h 2 Mk+1, and so

Mk+1 is a subspace of M . Since Mk+1 ✓ Mk, it follows that Mk+1 is a subspace of

Mk.

For the remainder of this section we make the following assumption.

Assumption 3.1.6. Let ⇤ be such that

M0 > M1 > · · · > Ml = FI

with l as large as possible.

We will show that under this assumption l is an upper bound for I(PGLd(q),⌦), and

then by bounding l we prove the upper bound in Theorem 3.1.2.

Lemma 3.1.7. Let u = dim(!1 \ !2). Then there exists a basis {e1, . . . , ed} for V , and

for 1  k  l there exist integers ak such that

m = a1  · · ·  al = d, he1, . . . , eaki = h!1, . . . ,!ki and !1 \ !2 = he1, . . . eui.

Proof. Let W = h!1, . . . ,!li and let r = dim(W ). Fix a basis e1, . . . , er for W which

first goes through !1 \!2, then extends to a basis of !1, and then for each k � 2 extends

successively to a basis of h!1, . . . ,!ki.

For 1  k  l let ak = dim(h!1, . . . ,!ki). Hence, by choice of basis, it follows that

h!1, . . . ,!ki = he1, . . . , eaki. Since h!1, . . . ,!k�1i  h!1, . . . ,!k�1,!ki, it follows that

ak�1  ak and so a1  a2  · · ·  al.

It follows immediately from the fact that !1 is an m-space that a1 = m. If r < d

then T := I +Ed,d fixes W pointwise and so T 2 Ml\FI, contradicting assumption 3.1.6.

Hence al = r = d.

Since !0 = h0i, we may let a0 = 0. From now on we identify M with the set of d ⇥ d

matrices, and GLd(q) with the set of invertible d⇥d matrices, over F with respect to this

basis.

In the following Lemma we prove that l is an upper bound on I(PGLd(q),⌦). In addi-

tion, for use in later sections, we compare the action of PGLd(q) and GLd(q) on sequences

of points in ⌦. As in Section 2.3, for G a group acting on ⌦ and

(!1, . . . ,!k) 2 ⌦k, we let G(i) = G!1,...,!i for 0  i  k, and so G(0) = G.
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Lemma 3.1.8. Let P = PGLd(q) and G = GLd(q) act on ⌦, and let Z = Z(G) = F⇤I.

Then the following hold.

(i) ⇤ is a minimal base for P if and only if G⇤ = Z and G⇤\{�} 6= Z for all � 2 ⇤.

(ii) ⇤ 2 ⌦k is an irredundant base for P if and only if

G(0) > G(1) > G(2) > · · · > G(k) = Z.

(iii) I(P,⌦)  l.

Proof. (i) This case follows since P⇤ = G⇤/Z and P⇤\{�} = G⇤\{�}/Z for � 2 ⇤.

(ii) By (i) G(k) = Z if and only if P (k) = 1. If P (i) > P (i+1), then G(i) > G(i+1). Also,

if G(i) > G(i+1) > Z, then it follows that P (i) > P (i+1).

(iii) Let I(P,⌦) = k with corresponding base (!1, . . . ,!k) 2 ⌦k. Then by (ii)

G > G!1 > G!1,!2 > · · · > G!1,...,!k
= Z.

Since, as sets G ✓ M , it follows that

M > M1 > M2 > · · · > Mk � FI.

Now since l is chosen to be maximal, we deduce that l � k.

By the previous lemma, if we can prove that l  (m + 1)d � 2m + 1, then the upper

bound in Theorem 3.1.2 will follow. We now introduce some definitions and lemmas

which we shall use to prove this bound.

Definition 3.1.9. For 0  k  l � 1, let

bk = ak+1 � ak and fk = dim(Mk)� dim(Mk+1).

We first bound the values of bk.

Lemma 3.1.10. (i) 0  bk  m for all k.

(ii) b0 = m and b1 6= 0.

(iii) For all k there exist v1, . . . vm�bk
2 h!1 . . . ,!ki = he1, . . . , eaki such that

!k+1 = hv1, . . . vm�bk
, eak+1, . . . , eak+bk

i.

Proof. (i) Since ak  ak+1 by Lemma 3.1.7, it follows that 0  ak+1 � ak. In addition

ak+1 = dim(h!1, . . . ,!k,!k+1i)  dim(h!1, . . . ,!ki) + dim(h!k+1i) = ak +m,

36



and so ak+1 � ak  m. Hence 0  bk  m.

(ii) From a0 = 0 and a1 = m, it follows that b0 = m.

Assume, by way of a contradiction, that b1 = 0. Then b1 = a2 � a1 = 0, and so

a2 = a1 = m and h!1,!2i = he1, . . . , ea2i = he1, . . . , emi. Since !1 and !2 are both

m-spaces it follows that !1 = !2 and so M1 = M2, contradicting Assumption 3.1.6.

(iii) This is an immediate consequence of the choice of basis.

We now introduce lemmas which bound fk in terms of bk.

Lemma 3.1.11. (i) The dimension of M1 is d2 �m(d �m), and so f0 = m(d �m);

and

(ii) f1 = b1(d� b1).

Proof. (i) It follows from !1 = he1, . . . , emi, that g = (gij) 2 M1 if and only if eig 2 !1

for 1  i  m. Equivalently, gij = 0 for 1  i  m, m + 1  j  d. Hence

dim(M1) = d2 �m(d�m), and the final claim follows since dim(M0) = d2.

(ii) By Lemma 3.1.7, !1 \ !2 = he1, . . . , em�b1i. Hence the subspace M2 contains all

matrices of shape 0

BBBB@

x1 0 0 0

x2 x3 0 0

x4 0 x5 0

y1 y2 y3 y4

1

CCCCA

where x1, x3 and x5 are square with m� b1, b1 and b1 rows respectively. Hence

dim(M2) =
5X

i=1

dim(xi) +
4X

i=1

dim(yi)

= dim(x1) + 2 dim(x2) + 2 dim(x3) + d(d�m� b1)

= (m� b1)
2 + 2b1(m� b1) + 2b21 + d(d�m� b1)

= d2 �m(d�m)� b1(d� b1),

and the result follows from Part (i).

To bound fk for the remaining values of k we introduce the following definition and

two lemmas.

Definition 3.1.12. For 0  k  l we define two subspaces of Mk, namely

Xk = {g 2 Mk | eig = 0 for ak + 1  i  d} and

Yk = {g 2 M | eig = 0 for 1  i  ak}.
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Lemma 3.1.13. For 0  k  l

Mk = Xk � Yk and dim(Yk) = d(d� ak).

Proof. Let g = (gij) 2 M . If g 2 Xk \ Yk, then eig = 0 for 1  i  d, and so

Xk \ Yk = {0M}.

Let g, h 2 Xk, let ak + 1  i  d and let � 2 F then

ei(g + h) = eig + eih = 0 + 0 = 0 and ei(�g) = �eig = �0 = 0.

Hence g + h,�g 2 Xk and so Xk  M . Similarly Y  M . We now show that !jYk  !j

for 1  j  k, from which it will follow that Yk  Mk. Let 1  j  k, let u 2 !j and let

y 2 Yk. From h!1, . . . ,!ji = he1, . . . , eaji, it follows that ui = 0 for aj +1  i  d. Hence

(uy)t =
dX

i=1

uiyit

=
dX

i=1

uieiye
T

t

=

ajX

i=1

uieiye
T

t
+

dX

i=aj+1

uieiye
T

t

=

ajX

i=1

ui0e
T

t
+

dX

i=aj+1

0eiye
T

t

= 0

Therefore uy = 0 2 !i, and so !iy  !i. Thus Yk  Mk, and so Xk � Yk  Mk.

We now show that Mk  Xk�Yk. If g 2 Mk, then there exists x = (xij), y = (yij) 2 M

satisfying the following.

xij =

8
<

:
gij if i  ak

0 if i � ak + 1
yij =

8
<

:
0 if i  ak

gij if i � ak + 1

Then g = x+ y and x 2 Xk, y 2 Yk. Hence Mk  Xk � Yk and so Mk = Xk � Yk.

Since g 2 Yk if and only if gij = 0 for i  ak, it follows that dim(Yk) = d(d� ak).

Lemma 3.1.14. dim(Xk+1)� dim(Xk)  bkm.

Proof. By Lemma 3.1.13, we can rephrase Xk as in Definition 3.1.12 as follows.

Xk =

(
g 2 M

����� gij =
(

hij 1  i  ak,

0 otherwise,
for some h 2 Mk

)
.
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Thus Mk+1  Mk and ak+1 = ak + bk imply the following

Xk+1 =

(
g 2 M

����� gij =
(

hij 1  i  ak + bk,

0 otherwise,
for some h 2 Mk+1

)



8
><

>:
g 2 M

����� gij =

8
><

>:

fij 1  i  ak,

hij ak + 1  i  ak + bk,

0 otherwise,

for some f 2 Mk, h 2 Mk+1

9
>=

>;

:= Xk+1.

Therefore Xk  Xk+1, and by identifying Xk with 0 in Xk+1/Xk it follows that

Xk+1/Xk
⇠=

(
g 2 M

����� gij =
(

hij ak + 1  i  ak + bk,

0 otherwise,
for some h 2 Mk+1

)

=

(
g 2 M

����� eig =

(
eih ak + 1  i  ak + bk,

0 otherwise,
for some h 2 Mk+1

)



(
g 2 M

����� eig =

(
eihi ak + 1  i  ak + bk,

0 otherwise,
for some hak+1, . . . , hak+bk

2 Mk+1

)
.

The final space above is isomorphic to the external direct sum
L

ak+bk
i=ak+1heiMk+1i. Now

!k+1 = hv1, . . . , vm�bk
, eak+1, . . . , eak+bk

i for some v1, . . . , vm�bk
2 h!1, . . . ,!ki by Lemma

3.1.10(iii). Hence eiMk+1  !k+1 for ak + 1  i  ak + bk and so

ak+bkM

i=ak+1

heiMk+1i 

ak+bkM

i=ak+1

!k+1.

Therefore

dim(Xk+1)� dim(Xk)  dim(Xk+1)� dim(Xk)

= dim(Xk+1/Xk)

 dim

 
ak+bkM

i=ak+1

!k+1

!

=
ak+bkX

i=ak+1

dim(!k+1)

= bkm.

Lemma 3.1.15. Let k 6= 1. Then fk � max{1, bk(d�m)}.

Proof. If k = 0, then b0 = m and f0 = m(d � m) by Lemmas 3.1.10(ii) and 3.1.11(i).

Hence the result holds for k = 0.
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Next assume that k � 2. Our assumption that Mk > Mk+1 implies that fk � 1, so we

may assume that bk � 1. Then

fk = dim(Mk)� dim(Mk+1)

=
�
dim(Xk) + dim(Yk)

�
�
�
dim(Xk+1) + dim(Yk+1)

�
by Lemma 3.1.13

= dim(Xk)� dim(Xk+1) + d(d� ak)� d(d� ak+1) by Lemma 3.1.13

= dim(Xk)� dim(Xk+1) + d(ak+1 � ak)

= dim(Xk)� dim(Xk+1) + bkd

� �bkm+ bkd by Lemma 3.1.14

= bk(d�m).

Using the bounds on fk in Lemmas 3.1.11 and 3.1.15, we can now prove the upper

bound of Theorem 3.1.2.

Proof of upper bound of Theorem 3.1.2. We shall show that l  (m+1)d� 2m+1, hence

by Lemma 3.1.8(iii) the result will follow. We begin by introducing and bounding some

variables which encapsulate the restrictions on l.

For 0  b  m, let

Cb =
�
k 2 {0, . . . , l � 1}

�� bk = b
 

and let cb = |Cb|. Then

l =
mX

b=0

cb. (3.1)

Since al = d and a0 = 0 it follows that

d = al � a0 =
l�1X

k=0

(ak+1 � ak) =
l�1X

k=0

bk =
mX

b=0

X

k2Cb

b =
mX

b=0

bcb =
mX

b=1

bcb. (3.2)

By Lemma 3.1.10(ii) b0 = m and b1 � 1. Hence 0 2 Cm and 1 2 Cb1 6= C0. There-

fore

cb1 � 1 and cm � 1 + �mb1 . (3.3)

Recall by Lemmas 3.1.11 and 3.1.15 that

f1 = b1(d� b1) and fk � max{1, bk(d�m)} for k 6= 1.

Hence

f1 = b1(m� b1) + b1(d�m) and fk �

8
<

:
1 if k 2 C0,

bk(d�m) otherwise.
(3.4)
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Therefore

d2 � 1 = dim(M0)� dim(Ml) by Assumption 3.1.6

=
l�1X

k=0

⇣
dim(Mk)� dim(Mk+1)

⌘

=
l�1X

k=0

fk

=
X

k2C0

fk +
X

k2Cb1

fk +
X

k/2C0[Cb1

fk

=
X

k2C0

fk + f1 +
X

k2Cb1
\{1}

fk +
X

k/2C0[Cb1

fk

�

X

k2C0

1 + b1(m� b1) + b1(d�m) +
X

k2Cb1
\{1}

b1(d�m) +
X

k/2C0[Cb1

bk(d�m) by (3.4)

= c0 + b1(m� b1) +
X

k2Cb1

b1(d�m) +
X

k/2C0[Cb1

bk(d�m)

= c0 + b1(m� b1) +
X

k/2C0

bk(d�m)

= c0 + b1(m� b1) + (d�m)
X

k/2C0

bk

= c0 + b1(m� b1) + (d�m)
mX

b=1

bcb

= c0 + b1(m� b1) + (d�m)d by (3.2).

By rearranging we find that

c0  md� b1(m� b1)� 1. (3.5)

We bound I(G) by maximizing l =
P

m

b=0 cb subject only to Equations (3.2), (3.3) and

(3.5). By (3.2) an upper bound on
P

m

b=0 cb is given by maximizing c0, maximizing cb for

b small and minimizing cb for b large. Hence we substitute c0 = md� b1(m� b1)� 1 and

cb = 0 for b /2 {0, 1, b1,m}; and we maximise c1 and minimise cm subject to (3.3).

We now show that |C1 [ Cb1 [ Cm| = 2 + d �m � b1, for all possible values of m and

b1. First let m = 1. Then it follows by Lemma 3.1.10(ii) that b1 = m. Hence c1 = d by

(3.2) and so

|C1 [ Cb1 [ Cm| = |C1| = d = 2 + d� 1� 1 = 2 + d�m� b1.

Now let m � 2. Then there are three possibilities for b1. If b1 = m, then to minimise cm

41



subject to (3.3) let cm = 2. Therefore (3.2) yields c1 = d� 2m, and so

|C1 [ Cb1 [ Cm| = |C1 [ Cm| = d� 2m+ 2 = 2 + d�m�m = 2 + d�m� b1.

If b1 = 1, then let cm = 1, and so (3.2) yields c1 = d�m. Hence

|C1 [ Cb1 [ Cm| = |C1 [ Cm| = d�m+ 1 = 2 + d�m� 1 = 2 + d�m� b1.

Otherwise 1 < b1 < m are distinct, and so to minimise cm and cb1 subject to (3.3), we

substitute cm = cb1 = 1. Hence (3.2) yields c1 = d�m� b1, and so

|C1 [ Cb1 [ Cm| = d�m� b1 + 1 + 1 = 2 + d�m� b1.

Hence

mX

b=0

cb = c0 + |C1 [ Cb1 [ Cm|

= md� b1(m� b1)� 1 + 2 + d�m� b1

= (m+ 1)d�m+ 1� b1(m� b1 + 1).

Hence
P

m

b=0 cb is maximal when f(b1) := b1(m�b1+1) is minimal subject to 1  b1  m.

Since f(b1) is a negative quadratic with roots b1 = 0 and b1 = m+ 1, the minimal value

of f(b1) over 1  b1  m is f(1) = f(m) = m. Therefore

mX

b=0

cb  (m+ 1)d� 2m+ 1,

and result now follows from (3.1).

3.1.2 Lower bounds as a function of m and d

In this subsection we prove the lower bounds in Theorem 3.1.2. We begin with some

notation.

Notation 3.1.16. Let g(i) be a d ⇥ d matrix with entries in {0, ⇤,�, µ,� ± µ}. Then

we say that g(i) is a representative matrix for the group G(i) defined to be the group of

matrices h 2 GLd(q) satisfying the following properties.

(i) If g(i)
jk

= 0, then hjk = 0.

(ii) If g(i)
jk

= � = g(i)
lm

or g(i)
jk

= µ = g(i)
lm
, then hjk = hlm.

(iii) If g(i)
jk

= �, g(i)
lm

= µ and g(i)no = �± µ, then hno = hjk ± hlm.
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For example, let

g(1) =

0

B@
⇤ ⇤ ⇤

0 ⇤ ⇤

0 0 ⇤

1

CA , g(2) =

0

B@
� 0 0

0 � 0

0 0 �

1

CA and g(3) =

0

B@
� 0 0

µ �+ µ 0

⇤ ⇤ ⇤

1

CA .

Then G(1) the group of 3⇥ 3 upper triangular matrices, and G(2) is F⇤I = Z(GL3(q)) and

G(3) is the pointwise stabilizer in GLd(q) of he1i and he1 + e2i.

To prove the lower bound of Theorem 3.1.2 we construct ⇤ a sequence of m-spaces,

and show that ⇤ is an irredundant base for PGLd(q). In the following example we give ⇤

as described above for PGL5(q) acting on 2-spaces. This will illustrate the notation and

methods used in the proof of the lower bound.

Recall that for G  Sym(⌦) and for ⇤ = (!1, . . . ,!l) 2 ⌦l, we let G(i) = G!1,...,!i for

1  i  l.

Example 3.1.17. Let F = GF(q), and let G = GL5(q) act on ⌦ = PG2(F5). We

construct ⇤ = (!1, . . . ,!11) 2 ⌦11 and show that if q = 2 then

G(0) > G(1) > · · · > G(7) = F⇤I,

and if q > 2 then

G(0) > G(1) > · · · > G(11) = F⇤I.

Hence by Lemma 3.1.8(ii), I(PGL5(2),⌦) is bounded below by 7; and I(PGL5(q),⌦) is

bounded below by 11 for q > 2.

Let 1  k  11, and let

rk =
jk � 2

2

k
+ 3, sk = 2� (k � 2 mod 2), and tk = k � 6.

Hence

(r4, s4) = (4, 2), (r5, s5) = (4, 1), (r6, s6) = (5, 2) and (r7, s7) = (5, 1)

and

t8 = 2, t9 = 3, t10 = 4 and t11 = 5.
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For 1  k  11 let

Wk =

8
>>>>>><

>>>>>>:

�
ei | i 2 {1, 2, 3}\{4� k}

 
for 1  k  3,

�
ei | i 2 {1, 2, rk}\{sk}

 
wowowowowo for 4  k  7wowowowowowowwow

�
e1 + etk , ei | i 2 {2, 3}\{tk}

 
for 8  k  9,

�
e1 + etk , ei | i 2 {2}

 
for 10  k  11,

and so each Wk is as follows

W1 = {e1, e2.e3}\{e3} = {e1, e2} W2 = {e1, e2, e3}\{e2} = {e1, e3}

W3 = {e1, e2, e3}\{e1} = {e2, e3} W4 = {e1, e2, e4}\{e2} = {e1, e4}

W5 = {e1, e2, e4}\{e1} = {e2, e4} W6 = {e1, e2, e5}\{e2} = {e1, e5}

W7 = {e1, e2, e5}\{e1} = {e2, e5} W8 = {e1 + e2, e2, e3}\{e2} = {e1 + e2, e3}

W9 = {e1 + e3, e2, e3}\{e3} = {e1 + e3, e2} W10 = {e1 + e4, e2}

W11 = {e1 + e5, e2}.

For 1  k  11, let !k = hWki 2 ⌦, let ⇤ = (!1, . . . ,!11) and let g(k) be a representative

element of G(k). Hence we have the following.

g(0) =

0

BBBBBB@

⇤ ⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤ ⇤

1

CCCCCCA
g(1) =

0

BBBBBB@

⇤ ⇤ 0 0 0

⇤ ⇤ 0 0 0

⇤ ⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤ ⇤

1

CCCCCCA
g(2) =

0

BBBBBB@

⇤ 0 0 0 0

⇤ ⇤ 0 0 0

⇤ 0 ⇤ 0 0

⇤ ⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤ ⇤

1

CCCCCCA

g(3) =

0

BBBBBB@

⇤ 0 0 0 0

0 ⇤ 0 0 0

0 0 ⇤ 0 0

⇤ ⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤ ⇤

1

CCCCCCA
g(4) =

0

BBBBBB@

⇤ 0 0 0 0

0 ⇤ 0 0 0

0 0 ⇤ 0 0

⇤ 0 0 ⇤ 0

⇤ ⇤ ⇤ ⇤ ⇤

1

CCCCCCA
g(5) =

0

BBBBBB@

⇤ 0 0 0 0

0 ⇤ 0 0 0

0 0 ⇤ 0 0

0 0 0 ⇤ 0

⇤ ⇤ ⇤ ⇤ ⇤

1

CCCCCCA

g(6) =

0

BBBBBB@

⇤ 0 0 0 0

0 ⇤ 0 0 0

0 0 ⇤ 0 0

0 0 0 ⇤ 0

⇤ 0 0 0 ⇤

1

CCCCCCA
g(7) =

0

BBBBBB@

⇤ 0 0 0 0

0 ⇤ 0 0 0

0 0 ⇤ 0 0

0 0 0 ⇤ 0

0 0 0 0 ⇤

1

CCCCCCA

Hence for 1  k  7, we see by the above that G(k�1) > G(k). In addition, if q = 2, then

G(7) = F⇤I and so I(PGL5(2)) � 7.

Next assume that q > 2. Then we have the following.
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g(8) =

0

BBBBBB@

� 0 0 0 0

0 � 0 0 0

0 0 ⇤ 0 0

0 0 0 ⇤ 0

0 0 0 0 ⇤

1

CCCCCCA
g(9) =

0

BBBBBB@

� 0 0 0 0

0 � 0 0 0

0 0 � 0 0

0 0 0 ⇤ 0

0 0 0 0 ⇤

1

CCCCCCA
g(10) =

0

BBBBBB@

� 0 0 0 0

0 � 0 0 0

0 0 � 0 0

0 0 0 � 0

0 0 0 0 ⇤

1

CCCCCCA

g(11) =

0

BBBBBB@

� 0 0 0 0

0 � 0 0 0

0 0 � 0 0

0 0 0 � 0

0 0 0 0 �

1

CCCCCCA

Therefore G(k�1) > G(k) for 1  k  11 and G(11) = F⇤I, and so I(PGL5(q)) � 11. 4

Proof of lower bound of Theorem 3.1.2. Recall that we let q = pf be a prime power, let

F = GF(q), let d � 2, let V = Fd, and let G = GLd(q) act on ⌦ = PGm(V ). Here we

construct ⇤ = (!1, . . . ,!l) 2 ⌦l with

G(0) > G(1) > · · · > G(l) = F⇤I.

From which it will follow by Lemma 3.1.8(ii) that ⇤ is an irredundant base for the action

of PGLd(q) on ⌦, and so I(PGLd(q),⌦) � l.

Let 1  k  md�m2 + d, and let

rk =
jk � 2

m

k
+m+ 1, sk = m�

�
(k � 2) mod m

�
, and tk = k �md+m2.

Hence if m+ 2  k  md�m2 + 1, then

m+ 2  rk  d and 1  sk  m. (3.6)

Whilst tk  d for all k, and

2  tk  m+ 1 if and only if md�m2 + 2  k  md�m2 +m+ 1.

Hence the following are well defined sets of m linearly independent vectors of V .

Wk =

8
>>>>>><

>>>>>>:

�
ei | i 2 {1, . . . ,m+ 1}\{m+ 2� k}

 
for 1  k  m+ 1,

�
ei | i 2 {1, . . . ,m, rk}\{sk}

 
for m+ 2  k  md�m2 + 1,

�
e1 + etk , ei | i 2 {2, . . . ,m+ 1}\{tk}

 
for md�m2 + 2  k  md�m2 +m+ 1,

�
e1 + etk , ei | i 2 {2, . . . ,m}

 
for md�m2 +m+ 2  k  md�m2 + d.
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For 1  k  md�m2+d, let !k = hWki 2 ⌦ and let G(k) = G!1,...,!k
. For 1  x, y  d,

let T (x, y) be the matrix I + Ex,y, and let Supp
x
(Wk) be the set of vectors in Wk which

are non-zero in position x. Then T (x, y) 2 G unless q = 2 and x = y. Recall that

eiT (x, y) =

8
<

:
ex + ey if i = x,

ei otherwise.

Hence if a vector v is zero in position x, then vT (x, y) = v. Therefore

!kT (x, y) = !k if and only if Supp
x
(Wk)T (x, y) ✓ !k. In particular, if Supp

x
(Wk) = ;,

then

!kT (x, y) = !k.

Since G is irreducible it follows that G > G(1). Let k 2 {2, . . . ,md � m2 + 1} and

let j  k. We shall show that there exist 1  x, y  d such that T (x, y) 2 G satisfies

!jT (x, y) = !j for all j < k, and !kT (x, y) 6= !k. Hence T (x, y) 2 G(k�1)
\G(k), and so

G(k�1) > G(k).

First let k 2 {2, . . . ,m+1}, and let T = T (m+1,m+2�k). Then Supp
m+1(W1) = ;,

and for 2  j  k

Supp
m+1(Wj)T = {em+1}T = {em+1 + em+2�k}.

Hence Supp
m+1(Wj)T ✓ !j if and only if j < k. Therefore !jT = !j for j < k, and

!kT 6= !k.

Next consider k 2 {m + 2, . . . ,md � m2 + 1}. Hence (3.6) holds, and so we may let

T = T (rk, sk). If j  m + 1 or if rj 6= rk, then Supp
rk
(Wj) = ; and so !jT = !j.

Therefore assume that j � m+ 2 and rj = rk. Then

Supp
rk
(Wj)T = {erk}T = {erk + esk}.

Since (rj, sj) = (rk, sk) if and only if j = k, it follows that Supp
rk
(Wj)T ✓ !j if and

only if j < k. Therefore !jT = !j for j < k, and !kT 6= !k. Hence G(k�1) > G(k) for

1  k  md�m2 + 1, and so if q = 2 then the result follows.

Hence it remains to consider q > 2 and md � m2 + 2  k. Let T = T (tk, tk) and let
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u 2 {ei, e1 + ei | 1  i  d}. Then

uT =

8
>>><

>>>:

e1 + 2etk if u = e1 + etk ,

2u if u = etk ,

u otherwise.

(3.7)

If 1  j  md � m2 + 1 then Wj ✓ {e1, . . . , ed}, and if md � m2 + 1 < j < k then

Wj ✓ {e1 + etj , . . . , ed} with tj < tk. Hence if j < k, then Supp
tk
(Wj)T ✓ !j by (3.7),

and so !jT = !j. Since e1 + etk 2 !k and e1 + 2etk /2 !k it follows that !kT (tk, tk) 6= !k.

Hence G(k�1) > G(k) for 1  k  md�m2 + d, and so the result follows.

3.1.3 Upper bounds as a function of |⌦|

In this subsection we prove Proposition 3.1.3, which bounds I(P�Ld(q),⌦) as a function

of n = |⌦|. We begin by bounding the size of ⌦ = PGm(Fd).

Lemma 3.1.18. Let n(d,m, q) = |PGm(Fd)|. Then

log |⌦| = log
�
n(d,m, q)

�
>

8
<

:

d
2

4 + 1
2 if q = 2 and m = d

2 � 2,

m(d�m) log q for all m and q.

Proof. The second bound holds by [43, Lemma 4.2.8], so let q = 2 and m � 2. The

statement of the result is then equivalent to n(2m,m, 2) > 2m
2+ 1

2 .

We now induct on m. By Lemma 2.7.2

n(4, 2, 2) =
(24 � 1)(23 � 1)

(22 � 1)(2� 1)
= 35 > 22

2+ 1
2 ,

and so the result holds for m = 2. Again by Lemma 2.7.2

n(2m,m, 2) =
(22m � 1)(22m�1

� 1)(22m�2
� 1) · · · (2m+1

� 1)

(2m � 1)(2m�1 � 1)(2m�2 � 1) · · · (2� 1)

=
(22m � 1)(22m�1

� 1)

(2m � 1)2
·
(22m�2

� 1) · · · (2m+1
� 1)(2m � 1)

(2m�1 � 1)(2m�2 � 1) · · · (2� 1)

=
(22m � 1)(22m�1

� 1)

(2m � 1)2
· n(2m� 2,m� 1, 2)

�
(22m � 1)(22m�1

� 1)

(2m � 1)2
· 2(m�1)2+ 1

2 , by induction.

We now bound (22m � 1)(22m�1
� 1). Let f(x) = x2

� x � 1. Then f(x) is a positive

quadratic with

f(�1) = 1 f(0) = �1 f(2) = 1,

and so f(x) > 0 for x � 2. Therefore 1
2x

2
� x� 1 > �

1
2x

2 for x � 2, and so substituting
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x = 2m obtains 22m�1
� 2m � 1 > �22m�1. Thus

(2m + 1)(22m�1
� 1) = 23m�1 + 22m�1

� 2m � 1 > 23m�1
� 22m�1 = 22m�1(2m � 1),

and so

(22m � 1)(22m�1
� 1)

(2m � 1)2
2(m�1)2 =

(2m � 1)(2m + 1)(22m�1
� 1)

(2m � 1)2
2(m�1)2

=
(2m + 1)(22m�1

� 1)

(2m � 1)
2(m�1)2

>
22m�1(2m � 1)

(2m � 1)
2(m�1)2

= 22m�1
· 2(m�1)2

= 2m
2
.

Therefore it follows that

n(2m,m, 2) >
(22m � 1)(22m�1

� 1)

(2m � 1)2
2(m�1)2+ 1

2 > 2m
2+ 1

2 .

Proof of Proposition 3.1.3. Let G = P�Ld(q) act on ⌦. Then G = PGLd(q) o Cf by

(2.4). Hence Lemma 2.3.5 and Theorem 3.1.2 imply that

I(G) = I(PGLd(q)) + `(Cf )  (m+ 1)d� 2m+ 1 + log f. (3.8)

First let m = 1, so that I(G)  2(d� 1) + 1 + log f by (3.8) and (d� 1) log q < log n by

Lemma 3.1.18. If q = 2, then log q = 1 and log f = 0, and so

I(G)  2(d� 1) + 1 + log f = 2(d� 1) log q + 1 < 2 log n+ 1.

If q > 2, then 3
2 < log q, and so

I(G)  2(d� 1) + 1 + log f <
4

3
(d� 1) log q + 1 + log f <

4

3
log n+ 1 + log f.

Now let m = d

2 � 2, so that I(G)  d
2

2 +1+ log f by (3.8). If q = 2, then d
2

4 + 1
2 < log n

by Lemma 3.1.18, and so

I(G) 
d2

2
+ 1 < 2 log n.

Let q > 2. Then 3
2 < log q and 1 

d
2

4 , and so

d2

2
+ 1 

3d2

4
<

d2

2
log q = 2m(d�m) log q.
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Combining the above with Lemma 3.1.18 gives

I(G)  2m(d�m) log q + log f < 2 log n+ log f.

Finally let 1 < m < d

2 . Then 2  m and 1  d� 2m, and so

d� 2m+ 1  2(d� 2m)  m(d� 2m).

Hence by (3.8)

I(G)� log f  md+ d� 2m+ 1  md+m(d� 2m) = 2m(d�m)  2m(d�m) log q.

Therefore, I(G)  2m(d�m) log q + log f  2 log n+ log f by Lemma 3.1.18.

3.2 Lower bounds on B(PGLd(q)) as a function of m and d

We now temporarily turn our attention from maximal irredundant bases to minimal bases

of maximal size. Let q be a prime power, let F = GF(q), let 1  m  d, let V = Fd and

let ⌦ = PGm(V ). In this section we prove the following result.

Theorem 3.2.1. Let PGLd(q) act on ⌦. Then

B(PGLd(q)) �

8
<

:
(d�m)m if q = 2,

(d�m)(m+ 1) otherwise.

Let G = GLd(q), let l = (d �m)m if q = 2 and let l = (d �m)(m + 1) if q > 2. We

construct ⇤ = (!1, . . . ,!l) 2 ⌦l, and then show that G⇤ = F⇤I and that for 1  i  l

there exists Ti 2 G⇤\{!i}\F⇤I. Hence it will follow that ⇤ is a minimal base for PGLd(q)

by Lemma 3.1.8(i), and so Theorem 3.2.1 holds. Although we redefine ⇤ here, in each

case ⇤ is a subsequence of the irredundant base constructed in the proof of the lower

bound of Theorem 3.1.2.

As in the previous section, for 1  x, y  d and W ✓ V let T (x, y) be the matrix

I + Ex,y and let Supp
x
(W ) be the set of vectors in W which are non-zero in position x.

We begin with the case of q = 2.

Lemma 3.2.2. Let PGLd(2) act on ⌦. Then

B(PGLd(2)) � (d�m)m.

Proof. Let G = GLd(2). Since q = 2 it follows that F⇤I = I.

First let (m, d) = (1, 2) and let ⇤ = (he1i, he2i). Then G⇤ = I, T (1, 2) 2 G⇤\he1i and
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T (2, 1) 2 G⇤\he2i. Hence ⇤ is a minimal base of length 2 = (d�m)m+ 1.

Therefore if m = 1, then we may assume that d � 3 = m+ 2. If m � 2, then it follows

immediately that d � 2m � m+2. Hence for the remainder of the proof we assume that

d � m+ 2.

Let 1  s  d�m and 1  r  m, let

W(s�1)m+r =
�
em+s, ei

�� i 2 {1, 2, . . . ,m}\{r}
 
,

let !(s�1)m+r = hW(s�1)m+ri 2 ⌦, and let ⇤ = (!1, . . . ,!(d�m)m).

Since d � m + 2 there exist 1  s, s0  d �m with s 6= s0. Hence elements of G⇤ fix

the following.
 

m\

j=1
j 6=r

!(s�1)m+j

!
\

 
m\

j=1
j 6=r

!(s0�1)m+j

!
= hem+s, eri \ hem+s0 , eri = heri

m\

r=1

!(s�1)m+r = hem+si

Therefore G⇤ fixes heri for 1  r  m and fixes hem+si for 1  s  d�m, and so G⇤ = I.

Let T := T (m + s, r) and let !(s0�1)m+r0 2 ⇤\{!(s�1)m+r}. If s 6= s0, then

Supp
m+s

(W(s0�1)m+r0) = ;. If s = s0, then r 6= r0 and so

Supp
m+s

(W(s�1)m+r0)T = {em+s}T = {em+s + er} ✓ !(s�1)m+r0 .

Therefore T 2 G⇤\{!(s�1)m+r}
\I, and so the result follows.

For q > 2 we begin by considering a few small cases. In each case we choose ⇤ to be

consistent with the general case. Recall that for ⇤ = (!1, . . . ,!l) 2 ⌦l and for 1  i  l,

we let G(i) = G�1,...,�i and let g(i) be a representative element of G(i).

Lemma 3.2.3. Let (m, d) 2
�
(1, 2), (1, 3), (2, 4)

 
, let q > 2 and let G = PGLd(q) act on

⌦. Then

B(PGLd(q)) � (d�m)(m+ 1).

Proof. Let G = GLd(q). First let (m, d) = (1, 2) and let

⇤ = (!1,!2,!3) = (he1i, he2i, he1 + e2i).
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Then ⇤ has length 3 > 2 = (d�m)(m+ 1). Now

g(1) =

 
⇤ 0

⇤ ⇤

!
, g(2) =

 
⇤ 0

0 ⇤

!
and g(3) =

 
� 0

0 �

!
,

and so G⇤ = F⇤I. In addition
 
2 1

0 1

!
2 G⇤\{!1},

 
1 0

1 2

!
2 G⇤\{!2}, and

 
2 0

0 1

!
2 G⇤\{!3}.

Now let (m, d) = (1, 3) and let

⇤ = (!1,!2,!3,!4) = (he2i, he3i, he1 + e2i, he1 + e3i).

Then ⇤ has length 4 = (d�m)(m+ 1). In addition

g(1) =

0

B@
⇤ ⇤ ⇤

0 ⇤ 0

⇤ ⇤ ⇤

1

CA g(2) =

0

B@
⇤ ⇤ ⇤

0 ⇤ 0

0 0 ⇤

1

CA g(3) =

0

B@
� µ 0

0 �� µ 0

0 0 ⇤

1

CA g(4) =

0

B@
� 0 0

0 � 0

0 0 �

1

CA ,

and so G⇤ = F⇤I.

Let T1 = I + E2,1 + E2,2. Then T1 fixes !2 and !4 pointwise, and sends v 2 !3 to 2v,

thus T1 2 G�\{!1}\F⇤I. Similarly T2 = I + E3,1 + E3,3 fixes !1 and !3 pointwise, and

sends v 2 !4 to 2v, hence T2 2 G�\{!2}\F⇤I. Now T3 = T (2, 2) fixes !2 and !4 pointwise,

and sends v 2 !1 to 2v, and so T3 2 G�\{!3}\F⇤I. Finally T4 = I + E1,1 + E1,2 fixes !1

and !2 pointwise, and sends v 2 !3 to 2v, and so T4 2 G�\{!4}\F⇤I.

Finally let (m, d) = (2, 4), let

(W1, . . . ,W6) = ({e1, e4}, {e2, e4}, {e1 + e2, e3}, {e1 + e3, e2}, {e1 + e4, e2}, {e2, e3}),

and for 1  k  6 let !k = hWki and g(k) 2 G(k). Then ⇤ = (!1, . . . ,!6) 2 ⌦6 has length

(d�m)(m+ 1) and the following hold.
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g(1) =

0

BBBB@

⇤ 0 0 ⇤

⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤

⇤ 0 0 ⇤

1

CCCCA
g(2) =

0

BBBB@

⇤ 0 0 ⇤

0 ⇤ 0 ⇤

⇤ ⇤ ⇤ ⇤

0 0 0 ⇤

1

CCCCA
g(3) =

0

BBBB@

� 0 0 0

0 � 0 0

µ µ ⇤ 0

0 0 0 ⇤

1

CCCCA

g(4) =

0

BBBB@

� 0 0 0

0 � 0 0

µ µ �+ µ 0

0 0 0 ⇤

1

CCCCA
g(5) =

0

BBBB@

� 0 0 0

0 � 0 0

µ µ �+ µ 0

0 0 0 �

1

CCCCA
g(6) =

0

BBBB@

� 0 0 0

0 � 0 0

0 0 � 0

0 0 0 �

1

CCCCA

Therefore G⇤ = F⇤I.

Let T1 = T (4, 2). Then Supp4(W3) = Supp4(W4) = Supp4(W6) = ;,

Supp4(W2)T1 = {e4}T1 = {e2 + e4} ✓ !2, and

Supp4(W5)T1 = {e1 + e4}T1 = {e1 + e2 + e4} ✓ !5.

Hence T1 2 G⇤\{!1}\F⇤I. Now let T2 = 2I � E4,1 � E4,4. Then T2 sends vectors

v 2 !3 [ !4 [ !6 to 2v,

!1T2 = he1, e4iT2 = h2e1,�e1 + e4i = !1 and

!5T2 = he1 + e4, e2iT2 = he1 + e4, 2e2i = !5.

Hence T2 2 G⇤\{!2}\F⇤I. Let T3 = T (2, 2). Then Supp2(!1) = ;, and if k 6= 1, 3 then

Supp2(Wk)T3 = {e2}T3 = {2e2} ✓ !k.

Hence T3 2 G⇤\{!3}\F⇤I. Let T4 = T (3, 3). Then Supp3(!1), Supp3(!2) and Supp3(!5)

are empty, and if k 2 {3, 6} then

Supp3(Wk)T4 = {e3}T4 = {2e3} ✓ !k.

Hence T4 2 G⇤\{!4}\F⇤I. Let T5 = T (4, 4). Then Supp4(!3), Supp4(!4) and Supp4(!6)

are empty, and for k 2 {1, 2} then

Supp4(Wk)T5 = {e4}T5 = {2e4} ✓ !k.

Hence T5 2 G⇤\{!5}\F⇤I. Finally, let T6 = 2I �E3,1 �E3,2 �E3,3. Then T2 sends vectors

v 2 !1 [ !2 [ !5 to 2v,

!3T6 = he1 + e2, e3iT6 = h2e1 + 2e2,�e1 � e2 + e3i = !3 and

!4T6 = he1 + e3, e2iT6 = he1 � e2 + e3, 2e2i = !4.
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Hence T6 2 G⇤\{!6}\F⇤I, and the result follows.

We now complete Theorem 3.2.1.

Proof of Theorem 3.2.1. If q = 2 then the result holds by Lemma 3.2.2, and so assume

that q > 2. If (m, d) 2
�
(1, 2), (1, 3), (2, 4)

 
, then the result holds by Lemma 3.2.3. Hence

if m = 1, then d � 4 = m+3; if m = 2, then d � 5 = m+3; and if m � 3, then it follows

immediately that d � 2m � m+ 3. Hence in all cases d � m+ 3.

Let G = GLd(q). Consider the following sets of m linearly independent vectors.

W(s�2)m+r =
�
em+s, ei

�� i 2 {1, 2, . . . ,m}\{r}
 

2  s  d�m, 1  r  m

W(d�m�1)m+t =
�
e1 + et+1, ei

�� i 2 {2, . . . ,m,m+ 1}\{t+ 1}
 

1  t  m

W(d�m)m+u =
�
e1 + em+1+u, ei

�� i 2 {2, . . . ,m}
 

1  u  d�m� 1

W(d�m)(m+1) =
�
e2, . . . , em+1

 

Let 1  k  (d � m)(m + 1), let !k = hWki and let ⇤ = (!1, . . . ,!(d�m)(m+1)) be in

⌦(d�m)(m+1).

We show in three stages that G⇤ = F⇤I. We begin by showing that G⇤ fixes heii for

1  i  d. Since d � m + 3, there exists 2  s, s0  d �m with s 6= s0. Let 1  r  m,

1  t  m, and 1  u  d�m� 1. Elements of G⇤ fix the following.
 

m\

j=1
j 6=r

!(s�2)m+j

!
\

 
m\

j=1
j 6=r

!(s0�2)m+j

!
= hem+s, eri \ hem+s0 , eri = heri

 
m�1\

t=1

!(d�m�1)m+t

!
\ !(d�m)(m+1) = he1 + e2 + · · ·+ em, em+1i \ he2, . . . , em, em+1i

= hem+1i

m\

r=1

!(s�2)m+r = hem+si

Therefore G⇤ fixes heri for 1  r  m, fixes hem+1i, and fixes hem+si for 2  s  d�m.

Thus G⇤ fixes heii for 1  i  d. Hence if g 2 G⇤ then gij = 0 for i 6= j.

We now show that G⇤ fixes he1 + eii for i 6= m+1. Let 2  s  d�m and 2  r  m.
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Then G⇤ fixes the following.
 

m\

j=2
j 6=r

!(s�2)m+j

!
\ !(d�m�1)m+(r�1) = hem+s, e1, eri \

⌦
e1 + er, ei

�� i 2 {2, . . . ,m+ 1}\{r}
↵

= he1 + eri
 

m\

r=2
blah

!(s�2)m+r

!
\ !(d�m)m+(s�1) = he1, em+si \ he1 + em+s, ei

�� i 2 {2, . . . ,m}
↵

= he1 + em+si

Therefore G⇤ fixes he1 + eri for 2  r  m, and he1 + em+si for 2  s  m � d. Thus

G⇤ fixes he1 + eii for i 6= m+ 1. Let g 2 G⇤. We have previously shown that gij = 0 for

i 6= j, and now it follows that gii = g11 for i 6= m+ 1.

Finally G⇤ fixes
m\

t=1

!(d�m�1)m+t = he1 + e2 + · · ·+ em+1i.

Let g 2 G⇤. Then gij = 0 for i 6= j, and gii = g11 for i 6= m+1 by the previous argument,

and now it follows that g11 = g22 = · · · = gm+1,m+1. Hence g = g11I, and so G⇤ = F⇤I.

It remains to find Ti 2 G⇤\{!i}\F
⇤I for 1  i  (d � m)(m + 1). First let r = 1, let

2  s  d�m and let

T = T(s�2)m+1 = 2I � Em+s,m+s � Em+s,1.

Let k 6= (s � 2)m + 1 and let v 2 !k. If Supp
m+s

({v}) = ;, then vT = 2v. Therefore if

Supp
m+s

(Wk)T ✓ !k, then it follows that !kT = !k. Thus for 2  r0  m

Supp
m+s

(Wk)T =

8
>>><

>>>:

{em+s}T = {�e1 + em+s} ✓ !k if k = (s� 2)m+ r0,

{e1 + em+s}T = {e1 + em+s} ✓ !k if k = (d�m)m+ (s� 1),

; otherwise,

and so T 2 G⇤\{!(s�2)m+1}
\F⇤I. Now let r � 2, let 2  s  d�m and let

T = T(s�2)m+r = T (m+ s, r).

Let 1  r0  m with r0 6= r and let k 6= (s� 2)m+ r then

Supp
m+s

(Wk)T =

8
>>><

>>>:

{em+s}T = {er + em+s} ✓ !k if k = (s� 2)m+ r0,

{e1 + em+s}T = {e1 + em+s + er} ✓ !k if k = (d�m)m+ (s� 1),

; otherwise.
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Hence T 2 G⇤\{!(s�2)m+r}
\F⇤I.

Let 1  t  m and let T = T(d�m�1)m+t = T (t + 1, t + 1). If t = m, then let

k 6= (d�m� 1)m+m and let 1  t0  m� 1. Then

Supp
m+1(Wk) =

8
<

:
{em+1}T = {2em+1} ✓ !k if k = (d�m� 1)m+ t0 or (d�m)(m+ 1),

; otherwise.

Hence T 2 G⇤\{!(d�m�1)m+m}\F⇤I. Now let t  m � 1, let k 6= (d �m � 1)m + t and let

2  s  d�m. Then

Supp
t+1(Wk) =

8
<

:
; if k = (s� 2)m+ (t+ 1),

{et+1}T = {2et+1} ✓ !k otherwise.

Hence T 2 G⇤\{!(d�m�1)m+t}
\F⇤I.

Let 1  u  d�m�1, let T = T(d�m)m+u = T (m+1+u,m+1+u), let k 6= (d�m)m+u

and let 1  r  m. Then

Supp
m+1+u

(Wk)T =

8
<

:
{em+1+u}T = {2em+1+u} ✓ !k if k = (u� 1)m+ r,

; otherwise.

Hence T 2 G⇤\{!(d�m)m+u}
\F⇤I.

Finally, let T = T(d�m)(m+1) = I +
P

m+1
i=1 Em+1,i, so that

eiT =

8
<

:

P
m

i=1 ei + 2em+1 if i = m+ 1,

ei otherwise.

Hence by the above, !kT = !k if and only if Supp
m+1(Wk)T ✓ !k. Let k 6= (d�m)(m+1)

and let 1  t  m� 1. Then

Supp
m+1(Wk)T

=

8
>>><

>>>:

{em+1}T = {
P

m

i=1 ei + 2em+1} ✓ !(d�m�1)m+t if k = (d�m� 1)m+ t,

{e1 + em+1}T = {2(e1 + em+1) +
P

m

i=2 ei} ✓ !(d�m�1)m+t if k = (d�m� 1)m+m,

; otherwise.

Hence T 2 G⇤\{!(d�m)(m+1)}
\F⇤I.
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3.3 Almost simple groups

In this section we prove Theorem 3.0.3 for almost simple groups. More precisely we prove

the following result.

Theorem 3.3.1. Let G be an almost simple primitive subgroup of Sym(⌦). If G is not

large base, then

I(G,⌦) < 5 log |⌦|� 1.

By Lemma 2.7.14 the proof of Theorem 3.3.1 can be divided into proving the result for

the following possibilities of G, G0 and ⌦:

(I) b(G,⌦)  6 or G = M24 in its natural action on {1, . . . , 24};

(II) G0 = Alt(l) and ⌦ is an orbit of subsets or partitions of {1, . . . , l};

(III) G0 = PSLd(q) and ⌦ = PGm(V ) with m 
n

2 ;

(IV) G0 = PSLd(q) and ⌦ = ⌦�

m
;

(V) G0 = PSLd(q) and ⌦ = ⌦<

m
;

(VI) G0 = PSp
d
(2f ) and ⌦ is the set of cosets of NG(O

±

d
(2f )) in G;

(VII) G0 = P⌦+
8 (q);

(VIII) G0 = P⌦+
d
(q) with d � 10 and ⌦ ✓ PG d

2
(V ); or

(IX) G  P�Ld(q) with d � 3 and ⌦ ✓ PGm(V ) such that m 
d

2 and |⌦| > q
1
2m(d�m).

This section is split into three subsections. In the first we consider Case (I), and in the

second we consider Case (III), (IV) and (V). In the third we consider Cases (VII), (VIII)

and (IX), and then by quoting results from [28] for Cases (II) and (VI) we complete the

proof of Theorem 3.3.1.

3.3.1 Case (I)

In this subsection we prove the lemma below. From which Theorem 3.3.1 holds for Case

(I) since n � 5 by Lemma 2.6.5, and so 1  log n� 1.

Lemma 3.3.2. Let G  Sym(⌦) be as in Case (I) and let n = |⌦|. Then

I(G,⌦)  4 log n+ 1.

Throughout, let ⌦ be a finite set of size n, and let G be a primitive subgroup of Sym(⌦).

We begin with a some preliminary cases and lemmas. We denote the minimal index of a

proper subgroup of G by m(G). Hence for H � G, it follows that m(G)  [G : H].
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Lemma 3.3.3. Let G be a transitive subgroup of Sn with point stabilizer H. If H is

insoluble and either |G|  m(G)5 or |H|  [G : H]4, then

I(G)  4 log n.

Proof. We first show that |G|  m(G)5 implies that |H|  [G : H]4. Since

m(G)  [G : H], it follows that

|H| =
|G|

[G : H]


m(G)5

[G : H]
 [G : H]4.

Hence we may assume that |H|  [G : H]4.

Since H is insoluble it follows that I(H) + 1  log |H| by Lemma 2.3.1(i). Since G is

transitive and H is a point stabilizer, we deduce that I(G) = I(H) + 1 and [G : H] = n.

Therefore

I(G) = I(H) + 1  log |H|  log[G : H]4 = 4 log n.

Lemma 3.3.4. Let G be a subgroup of Sym(⌦) with socle G0 and point stabilizer H, let

n = |⌦| and let q = pf be a prime power. If

(G0, H) 2
n�

E6(q), P1

�
,
�
E6(q), P6

�
,
�
E7(q), P7

�o
,

then I(G) < 4 log n.

Proof. In each case H is insoluble by Lemma 2.1.8. We now show that |G| < m(G)5, and

so the result will follow by Lemma 3.3.3.

First let G0 = E6(q). By [20, Table 5 and 6]

|E6(q)| =
q36(q12 � 1)(q9 � 1)(q8 � 1)(q6 � 1)(q5 � 1)(q2 � 1)

(3, q � 1)

and |Out(E6(q))|  2f(3, q � 1) < q(3, q � 1). Hence

|G|  q37(q12 � 1)(q9 � 1)(q8 � 1)(q6 � 1)(q5 � 1)(q2 � 1) < q37+12+9+8+6+5+2 = q79.

By [57, p2]

m(G) � m(G0) �
(q9 � 1)(q8 + q4 + 1)

q � 1
= (q8+ q7+ · · ·+ q+1)(q8+ q4+1) > q8+8 = q16.

Hence |G| < q79 < q80 < m(G)5.
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Now let G0 = E7(q). By [20, Table 5 and 6]

|E7(q)| =
q63(q18 � 1)(q14 � 1)(q12 � 1)(q10 � 1)(q8 � 1)(q6 � 1)(q2 � 1)

(2, q � 1)

and |Out(E7(q))| = f(2, q � 1) < q(2, q � 1). Hence

|G|  q64(q18�1)(q14�1)(q12�1)(q10�1)(q8�1)(q6�1)(q2�1) < q64+18+14+12+10+8+6+2 = q134.

By [57, p5]

m(G) =
(q14 � 1)(q9 + 1)(q5 + 1)

q � 1
= (q13+q12+· · ·+q+1)(q9+1)(q5+1) > q13+9+5 = q27.

Hence |G| < q134 < q135 < m(G)5.

We can now prove Lemma 3.3.2.

Proof of Lemma 3.3.2. Let G  Sym(⌦) be as in Case (I), so that either b(G,⌦)  6 or

(G,⌦) = (M24, {1, . . . , 24}). If b(G,⌦)  5, then the result holds by Lemma 2.3.1(iii),

and by [28, p10]

I(M24, {1, . . . , 24}) = 7 < 2 log 24.

Hence we may assume that b(G,⌦) = 6.

Let G have point stabilizer H. By a result of Burness [6] it follows that either

(G,H) 2
n�

M23,M22

�
,
�
Co3,McL.2

�
,
�
Co2,U6(2).2

�
,
�
Fi22.2, 2.U6(2).2

�o
or (3.9)

�
soc(G), H

�
2

n�
E6(q), P1

�
,
�
E6(q), P6

�
,
�
E7(q), P7

�o
. (3.10)

If G is as in (3.10), then the result holds by Lemma 3.3.4. Hence assume that G satisfies

(3.9).

First let (G,H) = (M23,M22). Then G is the point stabilizer of M24 in its action on 24

points, and so

I(G) = I(M24)� 1 = 6 < 2 log 23.

For the remaining cases we proceed using [20, p100,115,134,156]. Since McL and U6(2)

are non-abelian simple, it follows that H is insoluble by Lemma 2.1.7. We now show that

|H| < [G : H]4, and so the result will follow by Lemma 3.3.3. If (G,H) = (Co3,McL.2),

then

|H| = 28 · 36 · 53 · 7 · 11 < 2764 = [G : H]4.

If (G,H) = (Co2,U6(2).2), then

|H| = 216 · 36 · 5 · 7 · 11 < 23004 = [G : H]4.
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Finally, if (G,H) = (Fi22.2, 2.U6(2).2), then

|H| = 216 · 36 · 5 · 7 · 11 < 35104 = [G : H]4.

Hence the result follows.

3.3.2 Cases (III), (IV) and (V)

Let q = pf be a prime power, let F = GF(q), let 1  m 
d

2 , let V = Fd, let G

be almost simple with socle PSLd(q) in a subspace action on ⌦ = PGm(V ). Hence

(d, q) 6= (2, 2), (2, 3) by Theorem 2.5.2. We use the results in Section 3.1 to prove that

Theorem 3.3.1 holds for Cases (III), (IV) and (V).

We begin with a preliminary lemma.

Lemma 3.3.5. Let q, p, f, m and d be as above. Then

m(d�m) log q �

8
<

:
log f + 1 if m = 1,

3 log f + 4 if m � 2.

Proof. We first claim that f � log f+1. Let y := y(f) = f�log f�1. Then dy

df
= 1� 1

f ln 2 ,

and so dy

df
= 0 if and only if f = 1

ln 2 < 2. Since dy

df
(2) > 0 and y(2) = y(1) = 0 it follows

that y � 0 for f 2 N. Therefore the claim follows.

If m = 1, then

m(d�m) log q = (d� 1) log q = (d� 1)f log p � f � log f + 1.

Now let m � 2. Then m(d�m) � m(2m�m) = m2
� 4, and so

m(d�m) log q � 4 log q � 3 log q+1 = 3f log p+1 � 3f+1 � 3(log f+1)+1 = 3 log f+4

The following proves Theorem 3.3.1 for Case (III).

Proposition 3.3.6. Let G be almost simple with socle PSLd(q) acting on ⌦ = PGm(V ),

and let n = |⌦|. Then

I(G) < 3 log n.

Proof. If m = 1, then G  P�Ld(q) by Lemma 2.7.5, and so I(G)  I(P�Ld(q)) by

Lemma 2.3.3. If m > 1 then G\P�Ld(q) has index at most two in G, so by Lemma 2.3.3

and Corollary 2.3.6

I(G)  I(G \ P�Ld(q)) + 1  I(P�Ld(q)) + 1.
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Therefore we can bound I(G) by I(P�Ld(q)) when m = 1, and by I(P�Ld(q)) + 1 when

m > 1. Thus I(G)  2 log n+ log f + 1 by Proposition 3.1.3. Combining Lemmas 3.1.18

and 3.3.5 gives log f + 1  m(d�m) log q < log n, hence the result follows.

We now consider the action of G on ⌦�

m
and ⌦<

m
as in Definition 2.7.7. Recall that

d

2 > m � 1 in both cases, and so d � 3.

Lemma 3.3.7. Let G be a primitive almost simple group with socle PSLd(q), let

H = G \ P�Ld(q) and let ⌦ be either ⌦�

m
or ⌦<

m
. Then

I(G,⌦)  2I(H,PGm(V )) + 1.

Proof. We first show that I(H,⌦)  I(H,PGm(V )) + I(H,PGd�m(V )).

Let l = I(H,⌦) and let ⇤ =
�
{U1,W1}, . . . , {Ul,Wl}

�
be a corresponding base with

dim(Ui) = m for all 1  i  l. Then ⇧ := (U1, . . . , Ul) 2 PGm(V )l and

⌃ := (W1, . . . ,Wl) 2 PGd�m(V )l. By Lemma 2.3.2 there exist a subsequence of ⇧ and

of ⌃ which can be extended to an irredundant base for the action of H on PGm(V ) and

PGd�m(V ) respectively.

Let ⇧0 be the subsequence of ⇧ which contains U1, and for i � 2 contains Ui if and

only if HU1,...,Ui�1 > HU1,...,Ui�1,Ui . Then ⇧0 can be extended to an irredundant base for

the action of H on PGm(V ). Let k be the length of ⇧0, so that k  I(H,PGm(V )).

Let ⌃0 = (Wj1 , . . . ,Wj(l�k)
) be the subsequence of ⌃ which contains Wi if and only if

HU1,...,Ui�1 = HU1,...,Ui�1,Ui . Assume, for a contradiction, that ⌃0 cannot be extended to an

irredundant base for the action of H on PGd�m(V ). Since H is irreducible, H > HWj1
,

and so there exists s � 2 such that

HWj1 ,...,Wj(s�1)
= HWj1 ,...,Wj(s�1)

,Wjs
.

Let i = js. Then intersecting both sides of the above expression with HW1,...,Wi�1 gives

HW1,...,Wi�1 = HW1,...,Wi�1,Wi . (3.11)

Since Wi 2 ⌃0 it follows that

HU1,...,Ui�1 = HU1,...,Ui�1,Ui . (3.12)

Elements of H = G \ P�Ld(q) cannot map Ui to Wi. Therefore (3.11) and (3.12) imply

that

H{U1,W1},...,{Ui�1,Wi�1} = H{U1,W1},...,{Ui�1,Wi�1},{Ui,Wi},
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a contradiction since ⇤ is irredundant. Hence l � k  I(H,PGn�m(V )), and so

I(H,⌦) = l = k + (l � k)  I(H,PGm(V )) + I(H,PGd�m(V )). (3.13)

Now Lemma 2.7.4 implies that I(H,PGm(V )) = I(H,PGn�m(V )), and so

I(H,⌦)  2I(H,PGm(V )) by (3.13). Since H has index at most 2 in G, the result

follows by Corollary 2.3.6.

We now prove Theorem 3.3.1 for Cases (IV) and (V).

Lemma 3.3.8. Let ⌦ be either ⌦�

m
or ⌦<

m
, let n = |⌦|, and let G be an almost simple

subgroup of Sym(⌦) with socle PSLd(q). Then

I(G) < 5(log n� 1).

Proof. Let H = G \ P�Ld(q), then by Proposition 3.1.3 and Lemma 3.3.7

I(G)  2I(H,PGm) + 1 

8
>>><

>>>:

4(d� 1) + 3 if m = 1 and q = 2,

8
3(d� 1) log q + 2 log f + 3 if m = 1 and q � 3,

4m(d�m) log q + 2 log f + 1 otherwise.

(3.14)

By Lemma 2.7.9 n � 2|PGm(V )|, and so Lemma 3.1.18 gives

log n� 1 = log
n

2
� log |PGm(V )| >

8
<

:

d
2

4 + 1
2 if q = 2 and m = d

2 � 2,

m(d�m) log q otherwise.
(3.15)

First let m = 1. If (d, q) = (3, 2), then by Lemma 2.7.8

|⌦�

m
| =

22(23 � 1)

(2� 1)
= 28 and |⌦<

m
| =

(22 � 1)(23 � 1)

(2� 1)2
= 21.

By (3.14) it follows that I(G)  11. Hence

I(G)  11 < 5(log(21)� 1)  5(log n� 1),

and so the result holds for (m, d, q) = (1, 3, 2). Therefore if m = 1 and q = 2, then we

may assume that d � 4, and so

I(G)  4(d� 1) + 3 by (3.14),

 5(d� 1) since d� 1 � 3,

< 5(log n� 1) by (3.15).
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Therefore let m = 1 and let q � 3. Then

I(G) 
8
3(d� 1) log q + 2 log f + 3 by (3.14),


8
3(d� 1) log q + 2(d� 1) log q + 1 by Lemma 3.3.5,

< 5(d� 1) log q since 1 < 1
3(d� 1) log q,

< 5(log n� 1) by (3.15).

Finally, let m � 2. Then

I(G)  4m(d�m) log q + 2 log f + 1 by (3.14)

 5m(d�m) log q by Lemma 3.3.5

< 5(log n� 1) by (3.15).

3.3.3 Proof of Theorem 3.3.1

Here we prove Theorem 3.3.1. We begin by considering Cases (VII), (VIII) and (IX).

Let q = pf be a prime power, let F = GF(q), let 1  m 
d

2 , let V = Fd and let

⌦ = PGm(V ).

The following lemma will be used for Case (VII).

Lemma 3.3.9. If q � 3, then q2 > 6f .

Proof. Fix q, let f � 1 and let

y = y(f) = q2 � 6f = p2f � 6f.

Then
dy

df
= 2 ln(p)p2f � 6 > p2f � 6 = q2 � 6 � 9� 6 > 0.

Since y(1) � 3 we deduce that y > 0, and so q2 > 6f .

Now we consider the Case (VII).

Lemma 3.3.10. Let ⌦ be a set of size n and let G  Sym(⌦) be a primitive almost

simple group with socle G0 = P⌦+
8 (q). Then

I(G) < 5 log n� 1.

Proof. If q = 2, then |G|  6|G0| < q30 by [20, p85]. If q � 3, then |G| < 6fq28 by

[28, (6.19)] and so |G| < q30 by Lemma 3.3.9.

By Lemmas 2.3.1(ii) and 2.6.5

I(G)  log |G|� 1 < log q30 � 1 = 5 log q6 � 1.
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Since q6 < n by [28, (6.20)], the result then follows.

We now consider Case (VIII).

Lemma 3.3.11. Let d = 2m � 10, let G be a primitive almost simple group with socle

G0 = P⌦+
d
(q), let ⌦ be a G-orbit of PGm(V ), and let n = |⌦|. Then

I(G,⌦) < 5 log n� 1.

Proof. We begin by showing that

d2

8
�

d

4
>

d2

10
�

d

10
+

1

5
. (3.16)

Let y(d) = d2�6d�8 = (d�(3+
p
17))(d�(3�

p
17)). Since 3+

p
17, 3�

p
17 < 8, it follows

that y(d) > 0 for d � 10. Therefore 2d2�12d�16 > 0 and so 10d2�20d > 8d2�8d+16.

Hence (3.16) follows by dividing both sides of the previous expression by 80.

Combining (3.16) with [7, Table 4.12] gives

n =

d
2�1Y

i=1

(qi + 1) >

d
2�1Y

i=1

qi = q
1
2

�
d
2�1
�

d
2 = q

d2

8 �
d
4 > q

d2

10�
d
10+

1
5 . (3.17)

Hence
I(G) < log |G|� 1 by Lemmas 2.3.1(ii) and 2.6.5,

 log
⇣
q

d2

2 �
d
2+1
⌘
� 1 by [28, p25],

= 5 log
⇣
q

d2

10�
d
10+

1
5

⌘
� 1

< 5 log n� 1 by (3.17).

Finally, we consider Case (IX).

Proposition 3.3.12. Let d � 3, let G  P�Ld(q) be primitive almost simple, and let

⌦ ✓ PGm(V ) with n = |⌦| > q
1
2m(d�m). Then

I(G,⌦) < 5 log n� 1.

Proof. Lemma 2.3.3 implies that

I(G)  I
�
P�Ld(q),PGm(V )

�
,

and so in particular the bounds from Proposition 3.1.3 apply. From n = |⌦| > q
1
2m(d�m)

it follows that
1

2
m(d�m) log q < log n. (3.18)
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We begin with m = 1. If q = 2, then by Theorem 2.5.2 it follows that d � 4. First let

d = 4. Then by Lemma 2.6.5 and Proposition 3.1.3,

I(G)  2(4� 1) + 1 = 7 < 5 log 5� 1  5 log n� 1.

Now let d � 5. Then

I(G)  2(d� 1) + 1 by Proposition 3.1.3,

 2(d� 1) + 1
2(d� 1)� 1 since d � 5,

= 5
2(d� 1)� 1

< 5 log n� 1 by (3.18).

To complete the case of m = 1, let q � 3. We first show that

log f + 1 <
7

6
(d� 1) log q � 1. (3.19)

Let y(f) = 14f � 6 log f � 12. Then dy

df
= 14 �

6
f ln 2 , and so dy

df
= 0 if and only if

f = 6
14 ln(2) < 1. Since dy

df
(1) > 0 it follows that dy

df
> 0 for all f � 1. Therefore from

y(1) = 2 > 0 it follows that 6 log f + 12 < 14f for f � 1. Therefore (3.19) holds since

log f + 2 <
7f

6
· 2 

7f

6
(d� 1) 

7f

6
(d� 1) log p =

7

6
(d� 1) log q.

Therefore

I(G) 
4
3(d� 1) log q + log f + 1 by Proposition 3.1.3,

< 4
3(d� 1) log q + 7

6(d� 1) log q � 1 by (3.19),

= 5
�
1
2(d� 1) log q

�
� 1,

< 5 log n� 1 by (3.18).

Now let m = d

2 and q = 2. Then

I(G) 
d
2

2 + 1 by Proposition 3.1.3,

= 4
�
1
2m(d�m)

�
+ 1 since m = d

2 ,

< 4 log n+ 1 by (3.18),

< 4 log n+ log n� 1 since n � 5 by Lemma 2.6.5,

= 5 log n� 1.
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Finally, we assume that m > 1, and that if m = d

2 , then q > 2. Therefore

I(G)  2m(d�m) log q + log f by Proposition 3.1.3,

 2m(d�m) log q + 1
3m(d�m) log q � 4

3 by Lemma 3.3.5,

= 7
3m(d�m) log q � 4

3

< 14
3 log n�

4
3 by (3.18),

< 5 log n� 1.

We finish this section by proving Theorem 3.3.1.

Proof of Theorem 3.3.1. We proceed through the Cases (I)-(IX) of Lemma 2.7.14. If G

is as in Case (I) in the result holds by Lemma 3.3.2. Let G be as in Case (II). Since G

is not large base it follows that ⌦ is a set of partitions, and so I(G,⌦) < 2 log |⌦| by

[28, Lemma 6.6]. If G is as in Case (III), then the result holds by Proposition 3.3.6. If G

is as in Case (IV) or (V), then the result holds by Lemma 3.3.8. If G is as in Case (VI),

then I(G,⌦) < 11
3 log |⌦| by [28, Lemma 6.7]. If G is as in Case (VII), then the result

holds by Lemma 3.3.10. If G is as in Case (VIII), then the result holds by Lemma 3.3.11.

If G is as in Case (IX), then the result holds by Proposition 3.3.12

3.4 Proof of Theorems 3.0.3 and 3.0.4

To prove Theorem 3.0.3 we divide into the eight cases of the O’Nan Scott Theorem - HA,

TW, HS, HC, AS, SD, CD and PA. Using the following result of Gill, Loda and Spiga, it

remains to consider type PA.

Theorem 3.4.1. [28, Propositions 3.1, 4.1 and 5.1] Let G be a permutation group on a

finite set ⌦ of size n.

(i) If G contains a regular normal subgroup, and so in particular if G is of type HA,

TW, HS or HC, then I(G)  log n+ 1.

(ii) If G is a primitive group of type SD, then I(G)  log n.

(iii) If G is a primitive group of type CD, then I(G) < 2 log n.

We now consider groups of type PA.

Lemma 3.4.2. Let G be a primitive subgroup of Sn of type PA that is not large base.

Then

I(G) < 5 log n.

Proof. Since G is of type PA there exists an integer r � 2, a finite set � and an almost

simple subgroup H of Sym(�) such that G  H wr Sr. By Lemma 2.6.6, H is not large
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base. Let s = |�|. Then n = sr, and s � 5 by Lemma 2.6.5. Therefore

I(G,⌦)  I(Hr,�r) + `(Sr) by Lemmas 2.3.3 and 2.3.5,

 I(Hr,�r) + 3
2r by Theorem 2.2.8,

 r(I(H,�)� 1) + 1 + 3
2r by Lemma 2.3.4,

< r(5 log s� 2) + 1 + 3
2r by Theorem 3.3.1,

< 5 log sr � 1
2r + 1

 5 log n since r � 2.

We can now prove Theorem 3.0.3.

Proof of Theorem 3.0.3. Let G be a primitive group which is not large base. If G is

almost simple, then the result holds by Theorem 3.3.1. If G is of type PA, then the result

holds by Lemma 3.4.2. For the remaining cases of the O’Nan-Scott Theorem, the result

holds by Theorem 3.4.1.

Finally, we prove Theorem 3.0.4.

Proof of Theorem 3.0.4. Let F = GF(2), let m � 3, let d = 2m + 2, let V = Fd, let

G = PGLd(2) = PSLd(2) = GLd(2) act on ⌦ = PGm(V ), and let n = |⌦|. We show

that

I(G) >
8

63
b(G) log n,

from which the result will follow.

We begin by finding an upper bound on log n. By Lemma 2.7.2

n =
(22m+2

� 1)(22m+1
� 1) · · · (2m+3

� 1)

(2m � 1)(2m�1 � 1) · · · (2� 1)

<
2(2m+2)+(2m+1)+···+(m+3)

2(m�1)+(m�2)+···+1+0
.

Hence

log n <
1

2
(2m+ 2)(2m+ 3)�

1

2
(m+ 2)(m+ 3)�

1

2
(m� 1)m

=
1

2
(4m2 + 10m+ 6�m2

� 5m� 6�m2 +m)

=
1

2
(2m2 + 6m)

= m2 + 3m.

Therefore by Theorem 3.1.2

I(G) � m2 + 2m+ 1 >
m2 + 2m+ 1

m2 + 3m
log n =

⇣
1�

m� 1

m2 + 3m

⌘
log n.

66



Let f(m) = m�1
m2+3m . Then f tends to zero as m tends to infinity. We now find the

maximum value of f(m) over m � 3. From

df

dm
=

1(m2 + 3m)� (m� 1)(2m+ 3)

(m2 + 3m)2
=

�m2 + 2m+ 3

(m2 + 3m)2
=

�(m+ 1)(m� 3)

(m2 + 3m)2
,

it follows that df

dm
= 0 if and only if (m+ 1)(m� 3) = 0. Hence f has two critical points

at m = �1 and m = 3. Now f(3) = 1
9 > 3

28 = f(4), and so it follows that f(m)  1
9 for

m � 3. Therefore

I(G) >
⇣
1�

1

9

⌘
log n =

8

9
log n.

By [30, p7]

b(G) 
d

m
+ 5 =

2m+ 2

m
+ 5 = 7 +

2

m
< 8,

and so b(G)  7. Hence

I(G) >
1

7
b(G) ·

8

9
log n =

8

63
b(G) log n.
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Chapter 4

Maximal subgroups and maximal

cocliques

4.1 Intransitive and imprimitive groups

In this section we introduce two families of maximal subgroups of Sn := Sym({1, . . . , n})

and An := Alt({1, . . . , n}), these groups will be our main focus in Chapters 5 and 6. We

begin by defining the imprimitive action of a wreath product.

Recall the definition of a wreath product given in Section 2.1.1 (here we use R in

place of K). Let H and R be finite groups acting on finite sets � = {1, . . . , k} and

� = {1, . . . ,m} respectively. For � 2 � and � 2 � let �h and �r denote the images of �

and � under h 2 H and r 2 R respectively. Let � : R ! Aut(Hm) where

�(r) : (h1, . . . , hm) 7! (h1r�1 , . . . , h
mr�1 ),

and let G = H wrR = H o� R.

The imprimitive action of G on ⌦ = � ⇥ � is as follows. Let (�, �) 2 ⌦, let

g =
⇣
(h1, . . . , hm), r

⌘
2 G, and let h� be the �th coordinate of (h1, . . . , hm). Then

the image of (�, �) under g is

(�h� , �r).

Example 4.1.1. Let � = {1, 2, 3} and � = {1, 2, 3, 4}, let H = Sym(�) ⇠= S3 and

R = Sym(�) ⇠= S4, and let G = H wrR. Then G acts on ⌦ = �⇥ � via the imprimitive

action. For example let

g =
�
(h1, h2, h3, h4), r

�
=

 ⇣
(1, 2), (1, 2, 3), (2, 3), (1, 3, 2)

⌘
, (1, 4)(2, 3)

!
2 G.

Then g acts on the points of ⌦ as follows.
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(1, 1)g = (1h1 , 1r) = (2, 4) (2, 1)g = (2h1 , 1r) = (1, 4) (3, 1)g = (3h1 , 1r) = (3, 4)

(1, 2)g = (1h2 , 2r) = (2, 3) (2, 2)g = (2h2 , 2r) = (3, 3) (3, 2)g = (3h2 , 2r) = (1, 3)

(1, 3)g = (1h3 , 3r) = (1, 2) (2, 3)g = (2h3 , 3r) = (3, 2) (3, 3)g = (3h3 , 3r) = (2, 2)

(1, 4)g = (1h4 , 4r) = (3, 1) (2, 4)g = (2h4 , 4r) = (1, 1) (3, 4)g = (3h4 , 4r) = (2, 1) 4

Let � = {1, . . . , k}, let � = {1, . . . ,m}, let H  Sk, let R  Sm, and let

G = H wrR  Sk wr Sm. Then G acts on {1, . . . , k} ⇥ {1, . . . ,m} with imprimitive

action.

Let f : {1, . . . , k} ⇥ {1, . . . ,m} ! {1, . . . ,mk} with (i, j) 7! i + k(j � 1). It is easily

seen that f is a bijection and that using f the action of G on {1, . . . , k}⇥ {1, . . . ,m} is

equivalent to the action of G on {1, . . . ,mk}.

Example 4.1.2. Let G and g be as in Example 4.1.1. Let

f : {1, . . . , 3}⇥ {1, . . . , 4} ! {1, . . . , 12} with (i, j) 7! i+ 3(j � 1).

The element of Sym({1, . . . , 3}⇥ {1, . . . , 4}) induced by g is

⇣
(1, 1), (2, 4)

⌘⇣
(2, 1), (1, 4), (3, 1), (3, 4)

⌘⇣
(1, 2), (2, 3), (3, 2), (1, 3)

⌘⇣
(2, 2), (3, 3)

⌘
,

and the element of Sym({1, . . . , 12}) induced by g is

(1, 11)(2, 10, 3, 12)(4, 8, 6, 7)(5, 9). 4

For the remainder of this section we use the following notation. Since we never use (i)

and (ii) simultaneously and the context is always made clear, there will be no confusion

between the di↵erent set ups.

Notation 4.1.3. Let ⌦ = {1, . . . , n} and let Sn = Sym(⌦) and let H  Sn.

(i) If H is intransitive, then there exist non-empty sets ⌦1,⌦2 ✓ ⌦ such that

⌦ = ⌦1[̇⌦2 and H  Sym(⌦1) ⇥ Sym(⌦2). Up to conjugation in Sn we may

let ⌦1 = {1, . . . , k} and ⌦2 = {k + 1, . . . , n} with n

2  k  n� 1. Then

H  Sym({1, . . . , k})⇥ Sym({k + 1, . . . , n}) ⇠= Sk ⇥ Sn�k.

(ii) IfH is imprimitive, thenH preserves some non-trivial block system, say {⌦1, . . . ,⌦m}

with block size k. Then m, k � 2. Up to conjugation in Sn we may let

⌦1 = {1, 2, . . . , k}, ⌦2 = {k + 1, . . . , 2k}, . . . , ⌦m = {(m� 1)k + 1, . . . ,mk}.

Then H  Sk wr Sm.
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Lemma 4.1.4. [39, Theorem 1] Let G = Sn or An.

(i) Let M = (Sk ⇥ Sn�k) \G. Then M is maximal in G when k 6= n� k.

(ii) Let M = (Sk wr Sm) \ G with n = mk and m, k � 2. Then M is maximal in G

unless (G, k) = (A8, 2).

In the following let g 2 Sn act on ⌦k coordinate-wise.

Definition 4.1.5. (i) Let G  Sk ⇥ Sn�k with the natural intransitive action on

⌦ = ⌦1[̇⌦2. Then G is (t1, t2)-transitive on ⌦1[̇⌦2 if for all sequences of distinct

points U, V 2 ⌦t1
1 ⇥ ⌦t2

2 there exists g 2 G with U g = V .

(ii) Let G  Sk wr Sm with the natural imprimitive action on ⌦ = ⌦1[̇ · · · [̇⌦m.

Then G is {t1, t2, . . . , tm}-transitive on ⌦1[̇⌦2[̇ · · · [̇⌦m if for all tuples of dis-

tinct points (U1, . . . , Um) 2 (⌦t1
a1
, . . . ,⌦tm

am
) and (V1, . . . , Vm) 2 (⌦t1

b1
, . . . ,⌦tm

bm
) such

that {a1, . . . , am} = {1, . . . ,m} = {b1, . . . , bm}, there exists g 2 G such that

(U1, . . . , Um)g = (V1, . . . , Vm).

In the following example we illustrate the notation given above.

Example 4.1.6. (i) Let G = S5 ⇥ S3 with natural intransitive action on

⌦1 [ ⌦2 = {1, 2, 3, 4, 5} [ {6, 7, 8}, and let

U =
�
(1, 2, 3, 4, 5), (6, 8)

�
, V =

�
(3, 5, 4, 1, 2), (7, 8)

�
2 ⌦5

1 ⇥ ⌦2
2.

Then g = (1, 3, 4)(2, 5)(6, 7) 2 G with U g = V .

(ii) Let G = S3 wr S3 with natural imprimitive action on

⌦ = ⌦1[̇⌦2[̇⌦3 = {1, 2, 3}[̇{4, 5, 6}[̇{7, 8, 9}.

Let

(U1, U2, U3) =
�
(1, 2), (4, 5, 6), (9)

�
2 (⌦2

1,⌦
3
2,⌦

1
3)

and let

(V1, V2, V3) =
�
(4, 6), (9, 7, 8), (2)

�
2 (⌦2

2,⌦
3
3,⌦

1
1).

Then g = (1, 4, 9, 2, 6, 8, 3, 5, 7) 2 G with (U1, U2, U3)g = (V1, V2, V3). 4

We now prove a crucial lemma about (t1, t2)-transitive intransitive groups.

Lemma 4.1.7. Let n � 5, let n

2 < k < n, let ⌦ = ⌦1[̇⌦2 = {1, . . . , k} [ {k + 1, . . . , n},

let G = Sn or An, and let M = (Sk ⇥ Sn�k) \G.

(i) If G = Sn, then M is (k, n� k)-transitive on ⌦1[̇⌦2.

(ii) If G = An, then:
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(a) M is (k � 2, n� k)-transitive on ⌦1[̇⌦2,

(b) if n� k � 3, then M is (k, n� k � 2)-transitive on ⌦1[̇⌦2.

Proof. Part (i) is immediate since St is t-transitive.

For Part (ii)(a) let U, V 2 ⌦k�2
1 ⇥ ⌦n�k

2 be tuples of distinct points. Then there exist

↵, � 2 ⌦1 such that ↵, � are distinct and not entries of U . By (i) there exists h 2 Sk⇥Sn�k

such that h(ui) = vi for 1  i  n� 2. Then G contains either h or (↵, �)h.

Part (ii)(b) follows by symmetry.

We now prove an important lemma about transitivity of imprimitive groups.

Lemma 4.1.8. Let m, k � 2, let n = mk, let ⌦i = {(i� 1)k + 1, . . . , ik} for 1  i  m,

let G = Sn or An, and let M = (Sk wr Sm) \G.

(i) If G = Sn, then M is {k, k, . . . , k}-transitive on ⌦1[̇⌦2[̇ · · · [̇⌦m.

(ii) If G = An, then M is {k, . . . , k, k � 2}-transitive on ⌦1[̇⌦2[̇ · · · [̇⌦m.

Proof. Let (U1, . . . , Um) 2 (⌦k

a1
, . . . ,⌦k

am
) and (V1, . . . , Vm) 2 (⌦k

b1
, . . . ,⌦k

bm
) be tuples of

distinct points such that {a1, . . . , am} = {1, . . . ,m} = {b1, . . . , bm}.

Since Sn is n-transitive there exists g 2 Sn such that (U1, . . . , Um)g = (V1, . . . , Vm).

From U g

i
= Vi it follows that ⌦g

ai
= ⌦bi for 1  i  m, and so g 2 M . Hence Part (i)

follows.

For Part (ii) let Ui 2 ⌦k

ai
, Vi 2 ⌦k

bi
for 1  i  m � 1 and Um 2 ⌦k�2

am
, Vm 2 ⌦k�2

bm
be

tuples of distinct points such that {a1, . . . , am} = {1, . . . ,m} = {b1, . . . , bm}.

Let ↵, � be the two points of ⌦am not contained in Um. By Part (i) there exists

h 2 Sym(k) wr Sym(m) such that Uh

i
= Vi for 1  i  m. Then G contains either h or

(↵, �)h.

4.2 Block systems and cycle structures

In this section we first cover some notation and lemmas on the cycle structure of elements

of Sn. We then reintroduce block systems (which we defined in Section 2.1.3) and give

some more notation. We then consider the interaction between cycle structures and block

systems. We prove various results which limit the possible block systems for groups with

certain properties. This will be used in Chapters 5 and 6 when proving that the groups

we generate are primitive.
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4.2.1 Cycle Structures

We begin with cycle structures.

Lemma 4.2.1. Let y 2 Sn and let t be the number of cycles in the disjoint cycle decom-

position of y (including trivial cycles). Then y is even if and only if t and n have the

same parity.

Proof. Let y have t1 cycles of odd length and t2 cycles of even length, so that t1 + t2 = t.

Then n ⌘ t1 mod 2, and so

t� n ⌘ t� t1 = t2 mod 2.

Hence t and n have the same parity if and only if t2 is even, that is if and only if y is

even.

For an element of Sn we use the following notation for cycle type and support.

Notation 4.2.2. Let y 2 Sn with disjoint cycle decomposition c1, . . . , ct (including trivial

cycles). For 1  i  t, let ⇥i = Supp(ci) and let l(ci) be the length of ci. We denote the

cycle type of y by C(y) = l(c1) · l(c2) · · · · · l(ct). The “·” notation is omitted when it is

clear without, and we sometimes gather together common cycle orders and use the usual

exponent notation.

For example if y = (1, 2, 3)(4, 5)(6, 7), then we may let c1 = (1, 2, 3), c2 = (4, 5) and

c3 = (6, 7). Thus ⇥1 = {1, 2, 3}, ⇥2 = {4, 5} and ⇥3 = {6, 7}, and we may choose to

write C(y) = 3 · 2 · 2 or C(y) = 3 · 22.

The next lemma guarantees the existence of certain sets of distinct points in the support

of an element of Sn. We make use of this result for a small number of cases in Chapter 5

when constructing transitive groups.

Lemma 4.2.3. Let k, n 2 N with n

2 < k < n, and let x 2 Sn be such that 1x = k + 1.

(i) If |Supp(x)| � 8 and x does not have cycle type 1(n�8)
·2 ·32, 1(n�8)

·3 ·5 or 1(n�9)
·33,

then there exist distinct points ↵,↵x, �, �x, �, �x 2 Supp(x)\{1, k + 1}.

(ii) If |Supp(x)| � 8 and x does not have cycle type 1(n�8)
· 24, then there exist distinct

points ↵,↵x, �, �x, �, ✏ 2 Supp(x)\{1, k + 1} such that (�, ✏) is not a cycle of x.

Proof. Let T = Supp(x)\1hxi. We split into cases based on |1hxi|.

(i) If |1hxi| � 8, then we may let ↵ = 1x
2
, � = 1x

4
and � = 1x

6
. If 6  |1hxi|  7, then

|T | � 2, and so we may ↵ = 1x
2
, � = 1x

4
and let � 2 T .
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If 4  |1hxi|  5, then |T | � 4 because x does not have cycle type 1(n�8)
· 3 · 5. Then

hxi has either at least two orbits on T of size at least 2; or at least one orbit of size

at least 4. Therefore, we may let ↵ = 1x
2
and �, � 2 T .

If |1hxi|  3, then |T | � 6 because the cycle type of x is neither 1(n�8)
· 3 · 5 nor

1(n�8)
· 2 · 32. If hxi has one orbit on T , then the orbit has size at least 6. If hxi has

two orbits on T , then since x does not have cycle type 1(n�9)
· 2 · 32 or 1(n�9)

· 33,

it follows that these have sizes at least 3 and 4. Otherwise hxi has at least three

orbits on T of size at least 2. Therefore, we may let ↵, �, � 2 T .

(ii) If |1hxi| � 8, then let � = 1x
2
, ✏ = 1x

3
, ↵ = 1x

4
and � = 1x

6
. If 6  |1hxi|  7, then

|T | � 2, and so let � = 1x
2
, ✏ = 1x

3
, ↵ = 1x

4
and let � 2 T . If |1hxi| = 5, then

|T | � 3, so let ↵,↵x, � 2 |1hxi| and �, �x, ✏ 2 T . If |1hxi| = 4, then |T | � 4, so let

�, ✏ 2 |1hxi| and ↵,↵x, �, �x
2 T . If |1hxi| = 3, then |T | � 5 and we may let � 2 1hxi

and �, �x,↵,↵x, ✏ 2 T . Finally suppose that |1hxi| = 2, and so |T | � 6. Since the

cycle type of x is not 1(n�8)
· 24, we may let ↵,↵x, �, �x, �, ✏ 2 T .

4.2.2 Block Systems

We now turn our attention to block systems. We begin by repeating Definition 2.1.9

below.

Definition 4.2.4. Let G be a transitive subgroup of Sym(⌦). A set � ✓ ⌦ is a block for

G if for all g 2 G, either �g = � or �g
\� = ;.

Let � be a block. If |�| = 1 or � = ⌦, then � is a trivial block; otherwise � is

non-trivial.

Definition 4.2.5. Let G be a transitive group with a block �. Then

⌃ = {�g
| g 2 G}

is a block system for G. If � is trivial, then ⌃ is a trivial block system; otherwise ⌃ is a

non-trivial block system.

Lemma 4.2.6. Let G be a transitive subgroup of Sym(⌦) with block �. Then |�| divides

|⌦|.

Proof. It follows from the definition of a block and transitivity that a block system forms

a partition of ⌦. Since |�| = |�g
| for g 2 G, the result follows.

Definition 4.2.7. Let � be a non-trivial block. If � is contained in no larger non-trivial

block, then � is a maximal block. If � contains no smaller non-trivial block, then � is

a minimal block.
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Recall by Definition 2.1.9 that a transitive group G is primitive if it has no non-trivial

blocks, and otherwise is imprimitive.

4.2.3 Interactions between Cycle Structures and Block Systems

We now consider the interaction between cycle structures and block systems. For the

rest of this section, and in Chapters 5 and 6, we use the following notation for two block

systems preserved by di↵erent groups acting on the same set.

Notation 4.2.8. Let ⌦ = {1, . . . , n}, let G = Sym(⌦) = Sn, let M be a maximal

imprimitive subgroup of G with unique non-trivial block system M, and let H be a

transitive subgroup of G with (possibly trivial) block system H.

If the blocks of H have size at least 2, then we say that H is a non-singelton block

system. We call elements of H and M the H-blocks and M-blocks respectively. For

↵ 2 ⌦, let ⌦(↵) and �(↵) denote the M and H-block containing ↵.

Let h 2 H and let hi be a cycle of h. Then hH

i
denotes the permutation that h induces

on the set of blocks in H which contain points of Supp(hi). Similarly, for g 2 M with

cycle gi we let gM
i

denote the permutation that g induces on the blocks of M which

contain points of Supp(gi). Let gM be the permutation that g induces on the blocks of

M.

In the following example we use the same notation as in Examples 4.1.1 and 4.1.2.

Example 4.2.9. Let G = S12 and let M = S3 wr S4. Then

M = {⌦1,⌦2,⌦3,⌦4} =
�
{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}

 

and ⌦(3) = ⌦1. Let

g = g1g2g3g4 = (1, 11)(2, 10, 3, 12)(4, 8, 6, 7)(5, 9) 2 M.

Then gM1 = gM2 = (⌦1,⌦4) and gM3 = gM4 = (⌦2,⌦3).

Observe that gM = (⌦1,⌦4)(⌦2,⌦3), which corresponds to r in Example 4.1.1. 4

Lemma 4.2.10. Let H be a transitive group with block system H and let h 2 H with hi

a cycle of h. Then hH

i
is a cycle whose length divides the length of hi.

Proof. Since hi is transitive on the points of Supp(hi), it follows that hH

i
is a cycle. Let �

be a block containing m > 0 points of Supp(hi). By taking hi translates of �, we deduce

that each block of H contains exactly m or 0 points of Supp(hi). Hence |hi| = m|hH

i
|.
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The next two lemmas will be used in Chapters 5 and 6. The following considers the

interaction between block systems and induced cycles.

Lemma 4.2.11. Let H be a transitive group with block system H, let � 2 H, let h 2 H,

and let h1 and h2 be (possibly trivial) cycles of h.

(i) If � 2 Supp(hH

1 ) \ Supp(hH

2 ), then hH

1 = hH

2 .

(ii) If h1 has prime length p, then the points of Supp(h1) are either all in the same block

or all in di↵erent blocks.

(iii) Suppose that h1 and h2 have coprime lengths. If � 2 Supp(hH

1 ) \ Supp(hH

2 ), then

Supp(h1) [ Supp(h2) ✓ �.

(iv) If l(hH

1 ) - l(h2) and � 2 Supp(hH

1 ), then � \ Supp(h2) = ;.

Proof. (i) If � 2 Supp(hH

1 ) \ Supp(hH

2 ), then there exist ↵, � 2 � such that

↵ 2 Supp(h1) and � 2 Supp(h2). Let i 2 N. Then since ↵, � 2 �, it follows

that ↵h
i
and �h

i
lie in the same block �h

i
. From ↵h

i
= ↵h

i
1 and �h

i
= �h

i
2 , it

follows that �h
i
1 = �h

i
= �h

i
2 , and so hH

1 = hH

2 .

(ii) By Lemma 4.2.10, hH

1 is either a p-cycle or a 1-cycle.

(iii) By Part (i), if � 2 Supp(hH

1 ) \ Supp(hH

2 ), then hH

1 = hH

2 . Since h1 and h2 have

coprime lengths, it follows from Lemma 4.2.10 that hH

1 is trivial.

(iv) If �\Supp(h2) 6= ;, then hH

1 = hH

2 by Part (i). Hence in particular, l(hH

1 ) = l(hH

2 ).

By Lemma 4.2.10 it follows that l(hH

2 ) | l(h2) and so l(hH

1 ) | l(h2), a contradiction.

Lemma 4.2.12. Let H be a non-singleton block system for H and let h 2 H with disjoint

cycle decomposition h1 · · ·ht. If l(hi) is prime and gcd
�
l(hi), l(hj)

�
= 1 for j 6= i, then

there exists a block � 2 H such that Supp(hi) ✓ �. In particular, �h = �.

Proof. Let � be a block containing ↵ 2 Supp(hi), and let � 2 �\{↵}. If � /2 Supp(h),

then �h = �, and so �h = �. Hence ↵hhi = Supp(hi) ✓ �. Therefore assume that � 2

Supp(h). If � 2 Supp(hi), then the result follows by Lemma 4.2.11(ii). If � /2 Supp(hi),

then Supp(hi) ✓ � by Lemma 4.2.11(iii).

The remainder of this section covers results we will use repeatedly in Chapter 6. The fol-

lowing shows how the support of a cycle can be split across H-blocks and M -blocks.

Lemma 4.2.13. Let t 2 N, let G = Sn or An, let M , H, M and H be as in Notation

4.2.8, let ⌦1, . . . ,⌦t 2 M, let � 2 H, let y 2 M \H and let c be a cycle of y such that

cM = (⌦1, . . . ,⌦t) and � 2 � \ ⌦1 \ Supp(c).
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(i) If l(cH) = t, then � \ Supp(c) = ⌦1 \ Supp(c).

(ii) If l(cH) divides t, then ⌦1 \ Supp(c) ✓ � \ Supp(c).

(iii) If l(cH) is a multiple of t, then � \ Supp(c) ✓ ⌦1 \ Supp(c).

(iv) If l(cH) = l(c)/t and gcd
�
t, l(c)

t

�
= 1, then |� \ Supp(c) \ ⌦i| = 1 for 1  i  t.

(v) If l(cH) divides l(c)/t and gcd
�
t, l(c)

t

�
= 1, then |�\Supp(c)\⌦i| � 1 for 1  i  t.

(vi) If l(cH) is a multiple of l(c)/t and gcd
�
t, l(c)

t

�
= 1, then |� \ Supp(c) \⌦i|  1 for

1  i  t.

Proof. Let u, v 2 N, then
�hy

uv
i
✓ �hy

u
i. (4.1)

Observe that �hy
l(cH)

i = � \ Supp(c) and �hy
t
i = ⌦1 \ Supp(c). Hence Part (i) follows,

and so Parts (ii) and (iii) follow by (4.1).

Let s := l(c)/t. Assume that l(cH) = s and that there exist (not necessarily distinct)

�, � 2 ⌦ and 1  i  t such that �, � 2 � \⌦i \ Supp(c). From �, � 2 ⌦i it follows that

there exists an integer 1  a  s such that �c
at
= �. From �, � 2 � it follows that there

exists an integer 1  b  t such that �c
bs
= �. Therefore �c

at
= �c

bs
and 1  at, bs  ts.

Hence at = bs, and from gcd(t, s) = 1, we deduce that a = s and b = t. Thus � = �, and

since |�\Supp(c)| = t, Part (iv) follows. Hence Parts (v) and (vi) follow from (4.1).

The following shows that if H = hx, yi with x /2 M and y 2 M , then there are

restrictions on H. Recall that for y = c1c2 · · · ct 2 Sn written as a product of disjoint

cycles, we let ⇥i = Supp(ci) for 1  i  t.

Lemma 4.2.14. Let k,m � 2, let n = mk, let G = Sn or An, let M = (Sk wr Sm) \ G

with unique non-trivial M = {⌦1, . . . ,⌦m}, let x 2 G\M and let y 2 M with disjoint

cycle decomposition c1 . . . ct. If H = hx, yi is transitive and imprimitive with non-trivial

block system H, then for 1  i, j  t the following hold.

(i) If ⇥i \⇥x

i
6= ;, then l(cH

i
) 6= 1. In particular if l(ci) >

n

2 , then l(cH
i
) 6= 1.

(ii) If l(ci) does not divide l(cj) for all j 6= i, then l(cH
i
) 6= l(ci).

(iii) Let ↵ 2 ⇥i and ↵x
2 ⇥j. If there exist � 2 H such that �,�x

2 Supp(cH
i
) and

↵ 2 �, then l(cH
i
) divides l(cj).

(iv) If there exists {r1, . . . , rs} ( {1, . . . ,m} such that ⌦r1 [ · · · [ ⌦rs = Supp(ci), then

M\{⌦r1 , · · · ,⌦rs} 6✓ H.
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(v) If there exist 1  i, j  t and � 2 H such that l(ci) > l(cj) and � ✓ ⇥i [⇥j, then

|� \⇥i| 6= 1. In particular, if |�| = 2, then either � ✓ ⇥i or � ✓ ⇥j.

Proof. (i) If l(cH
i
) = 1 then there exists � 2 H with ⇥i ✓ �. Hence �y = �. If

⇥x

i
\ ⇥i 6= ;, then �x = �, and so �hx,yi = �. Since H = hx, yi is transitive, it

follows that � = ⌦, a contradiction.

(ii) Suppose, by way of a contradiction, that l(cH
i
) = l(ci) and let � 2 Supp(cH

i
).

Then |� \ ⇥i| = 1 and |⇥i| > 1. Since H is non-trivial, it follows that there

exists ↵ 2 �\⇥i. If ↵ /2 Supp(y) then ↵y = ↵ and so �y = �. Hence ⇥i ✓ �,

a contradiction since |� \ ⇥i| = 1 and |⇥i| > 1. Therefore ↵ 2 ⇥j for some

j 6= i, and so � 2 Supp(cH
j
). Hence cH

j
= cH

i
by Lemma 4.2.11(i), and in particular

l(cH
j
) = l(cH

i
) = l(ci). Therefore l(ci) divides l(cj) by Lemma 4.2.10, a contradiction.

(iii) From ↵ 2 �, we deduce that ↵x
2 �x. Therefore ↵x

2 �x
\ ⇥j, and so

�x
2 Supp(cH

i
)\Supp(cH

j
). Hence cH

i
= cH

j
by Lemma 4.2.11(i), and so in particular

l(cH
i
) = l(cH

j
). Therefore l(cH

i
) | l(cj) by Lemma 4.2.10.

(iv) Suppose that M\{⌦r1 , . . . ,⌦rs} ✓ H. Then the H-block size is k, and so |H| = m.

Let �1, . . . ,�s be the remaining H-blocks. Then

⌦r1 [ · · · [ ⌦rs = Supp(ci) = �1 [ · · · [�s and so l(cH
i
) = s = l(cM

i
).

Hence exists 1  j  s and � 2 ⌦ such that � 2 ⌦r1 \ �j. Therefore by Lemma

4.2.13(i)

�j = �j \ Supp(ci) = ⌦r1 \ Supp(ci) = ⌦r1 .

By taking translates of �j under y it follows that {�1, . . . ,�s} = {⌦r1 , . . . ,⌦rs},

and so H = M. A contradiction since x 2 H\M .

(v) If |� \⇥i| = 0 then the result holds. Hence assume that |� \⇥i| � 1. If � ✓ ⇥i,

then the result holds since H is non-trivial. If � 6✓ ⇥i, then there exist ↵ 2 �\⇥i

and � 2 � \ ⇥j. Since �y
l(cj)

= � it follows that �y
l(cj)

= � and so ↵y
l(cj)

2 �.

Now l(ci) > l(cj) implies that ↵y
l(cj)

6= ↵, and the result follows.

We now give some conditions on cycle type and support which are su�cient to show

that a group is primitive.

Lemma 4.2.15. Let x, y 2 Sn, let y = c1c2 · · · ct be the disjoint cycle decomposition of y,

and let |⇥1| = q1q2 for distinct primes q1 and q2. Then H = hx, yi is primitive if all the

following hold.

(i) There exist 2  i, j  t (not necessarily distinct) such that q1 - |⇥i| and q2 - |⇥j|,

and q1q2 - |⇥l| for 2  l  t.
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(ii) There exist �,� 2 ⇥1 such that �x 2 ⇥i and �x
2 ⇥j.

(iii) One of the following holds.

(a) There exist  ,! 2 ⇥1 (not necessarily distinct) such that  2 �hy
q1 i, ! 2 �hy

q2 i

and { ,!}x ✓ ⇥1.

(b) For � and � as in (ii), �y = � and �hy
q1 i

✓ {�} [ Fix(x).

Proof. We begin by showing that Parts (i), (ii) and (iii)(b) implies Part (iii)(a). Let

 2 �hy
q1 i
\{�} ✓ Fix(x) so that  =  x

2 ⇥1 and  2 �y
hq1i . Since gcd(q1, q2) = 1 there

exists a1, a2 2 Z such that a1q1 + a2q2 = 1 and q2 - a1. Hence

! := �y
a1q1 = �y

1�a2q2 = �y
�a2q2

2 �hy
q2 i.

Since q2 - a1 it follows that �y
a1q1

6= �, and so ! 2 �hy
q1 i
\{�} ✓ Fix(x). Therefore

!,!x
2 ⇥1 and so Part (iii)(a) holds.

We now show that if Parts (i), (ii) and (iii)(a) hold, then H is primitive. Assume,

by way of a contradiction, that H has a non-trivial block system H. We proceed by

considering the possibilities for l(cH1 ). By Part (i) and Lemma 4.2.14(ii), it follows that

l(cH1 ) 6= q1q2. Since  , x
2 ⇥1 by Part (iii)(a), Lemma 4.2.14(i) implies that l(cH1 ) 6= 1.

If l(cH1 ) = q1, then by Part (iii)(a) there exists � 2 Supp(cH1 ) which contains � and  ,

and so �x, x
2 �x. Since  x

2 ⇥1 it follows that �x
2 Supp(cH1 ). Hence from �x 2 ⇥i

and q1 - |⇥i| we reach a contradiction by Lemma 4.2.14(iii).

If l(cH1 ) = q2, then by Part (iii)(a) there exists � 2 Supp(cH1 ) which contains !,� 2 �,

and so !x,�x
2 �x. Since !x

2 ⇥1 it follows that �x
2 Supp(cH1 ). Since �x

2 ⇥j and

q2 - |⇥j| we reach a contradiction by Lemma 4.2.14(iii). Hence l(cH1 ) 6= 1, q1, q2, q1q2,

giving a contradiction by Lemma 4.2.10.

4.3 Jordan elements

Let G be a primitive subgroup of Sn. In 1873 Jordan [32] proved that if G contains a

cycle of prime order fixing at least 3 points, then G is either An or Sn. Jordan also made

the following claim, that was later proved by Manning [46]. Let q < 6, and let p > q be

a prime. If n > pq + q + 1 and G  Sn is primitive and contains an element of order p

and support size pq, then An  G.

More recently Jones [31] showed, using the classification of finite simple groups, that

if n � 12 and G  Sn is primitive and contains a cycle fixing at least 3 points, then

An  G.

78



In this section we introduce other su�cient conditions for a primitive subgroup of Sn

to contain An.

Definition 4.3.1. An element g 2 Sn is a Jordan element if all primitive subgroups of

Sn which contain g also contain An.

Definition 4.3.2. Let g 2 Sn be an element of prime order p and support size pq. We

call g a Wielandt element if

q = 1 2 3 4 4 5 6 7 � 8,

p � 2 5 5 7 5 7 11 11 2q � 1,

n� pq > 2 2 3 4 5 6 6 8 4q � 4.

In particular, by the final column, if q � 8, p � 2q � 1 and n > (p + 4)q � 4, then an

element of Sn with order p and support size pq is a Wielandt element.

We now give some examples of Jordan elements.

Definition 4.3.3. Let n � 12. Define the following subsets of Sn\{1}.

(i) Jt is the set of elements which are a product of two transpositions.

(ii) Jc is the set of cycles which fix at least three points.

(iii) Js is the set of elements with support size at most 2(
p
n� 1).

(iv) Jw is the set of Wielandt elements.

Theorem 4.3.4. Let n � 12, let Jt,Jc,Js,Jw be as in Definition 4.3.3 and let

J = Jt [ Jc [ Js [ Jw. If x 2 Sn and there exists t 2 N for which xt
2 J , then x

is a Jordan element.

Proof. If H is a group containing x, then H contains xt for all t 2 N. Hence if xt is a

Jordan element then x is also. Therefore if all elements in J are Jordan elements then

the result follows. For Jt,Jc,Js and Jw see [58, p43], [31, Corollary 1.3], [40, Corollary

3] and [58, Theorem 13.10] respectively.

The following is immediate.

Lemma 4.3.5. Let n � 12 and let x 2 J . Then Fix(x) 6= ;.

The next theorem is another result of Jones from [31] which we use to prove a result

similar to Jordan elements.

Theorem 4.3.6. [31, 1.3] Let G  Sn be a primitive permutation group which does not

contain An. If G contains an n-cycle then one of the following holds.

(i) Cp  G  AGL1(p) with n = p;
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(ii) PGLd(q)  G  P�Ld(q) with n = (qd�1)
(q�1) and d � 2 for some prime power q; or

(iii) G = L2(11),M11,M23 with n = 11, 11 or 23 respectively.

Using the above we prove the following.

Theorem 4.3.7. Let ⌦ = {1, . . . , n}, let Sn = Sym({1, . . . , n}), let x 2 Sn\{1} such that

|Supp(x)| < n

2 , and let y 2 Sn be an n-cycle. If H  Sn is primitive and x, y 2 H, then

An  H.

Proof. By Theorem [31, 1.3] each primitive subgroup of Sn containing an n-cycle either

contains An, or is as in Theorem 4.3.6(i)-(iii). As we shall see in Lemma 4.6.8(ii), non-

identity elements of AGL1(p) fix at most one point. Proposition [29, 3.1(ii)] shows that a

non-identity element of P�Ld(q) fixes at most n

2 points of ⌦. If (G, n) = (L11, 11), (M11, 11)

or (M23, 23), then a quick calculation in Magma shows that non-identity elements of G

fix at most 3, 3 or 7 points respectively. Hence from x 2 H the result follows.

4.4 Number theory

In Chapters 5 and 6 we generate subgroups H of Sn which are primitive and contain

Jordan elements, soH is either An or Sn. To prove primitivity we use the results in Section

4.2, many of which rely on H containing elements whose disjoint cycle decomposition

contains a prime cycle or cycle with length coprime to the other cycles. To prove the

existence of a Jordan element we need to show that H contains an element of “small”

support size, a single cycle, or a product of prime cycles satisfying certain properties.

In this section we prove the existence of primes within various integer ranges satisfying

specific conditions.

For some small cases we quote results from Chapter 8 - in which we verify the result

computationally or directly. Throughout this subsection, ln is the natural logarithm.

Unless otherwise referenced the following results do not appear to be in the literature.

We begin with Bertrand’s Postulate.

Theorem 4.4.1 (Bertrand’s Postulate. See for example [17, §1]). Let j, k 2 N. If j � 4,

then there exists at least one prime p such that j < p < 2j � 2. Thus if k � 7, then there

exists a prime pk with k

2 < pk < k � 1.

Notation 4.4.2. Let k 2 N with k � 7. We use pk to denote any prime in the range

(k2 , k � 1), and call such any such prime a Bertrand prime.

For example if k = 13 then 7 and 11 are both Bertrand primes and pk could denote

either 7 or 11.
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We now prove an elementary lemma relating n� k to pk.

Lemma 4.4.3. Let n > k > n

2 � 3 and let pk be a Bertrand prime. If pk | (n � k) then

pk = n� k, and if pk | (n� k � 1) then pk = n� k � 1.

Proof. From n

2 < k and k

2 < pk we deduce that n� k � 1 < n� k < k < 2pk. Hence the

result follows.

For x 2 N, the prime-counting function ⇡(x) is the number of primes less than or equal

to x. Using this function Theorem 4.4.1 can be rephrased as ⇡(k � 2)� ⇡(k2 ) � 1.

Theorem 4.4.4 ([49, Corollary 1 & 3]). Let x 2 N and let ⇡(x) be as above.

(i) If x � 17, then ⇡(x) > x

ln(x) .

(ii) If x � 21, then 3x
5 ln(x) < ⇡(2x)� ⇡(x).

We now prove some technical results using Theorems 4.4.1 and 4.4.4 which ensure the

existence of useful primes. The following two lemmas will be used only in Chapter 5.

Lemma 4.4.5. Let n > k > n

2 and k � 10. Then there exists an odd prime p(1)  k � 5

such that p(1) - (n� k).

Proof. Let Q = {2  q  k � 5 : q prime }. The product of the set of prime divisors of

n� k is at most n� k. Hence if

2(n� k) <
Y

q2Q

q, (4.2)

then (n� k) <
Q

q2Q\{2} q, and so there exists q 2 Q\{2} such that q - (n� k). Therefore

the result holds with p(1) = q. Hence we show that (4.2) holds.

First assume that 10  k  15. Then {2, 3, 5} ✓ Q and so

2(n� k)  2(k � 1)  2 · 14 < 30 = 2 · 3 · 5 

Y

q2Q

q.

Hence (4.2) holds.

Assume that k > 15, and let m := k � 5 > 10. Hence by Theorem 4.4.1 there exists a

prime pm satisfying 5 < m

2 < pm < m � 1. Hence 2, 3, 5 and pm are distinct elements in

Q. From n

2 < k, it follows that n < 2k, and so n� k  k � 1 = m+ 4. Clearly 8 < 13m,

and so 2(m+ 4) < 15m. Hence

2(n� k)  2(m+ 4) < 15m < 3 · 5 · (2pm) 
Y

q2Q

q,

as required.
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Lemma 4.4.6. Let n > k > n

2 and n� k > 10. Then either

(i) there exists a prime p(2) such that 2 < p(2) < n� k � 3 and p(2) - k; or

(ii) n� k + 1 < 2(
p
n� 1).

Proof. First let 10 < n� k < 26 and let P = {2 < q < n � k � 3 | q prime}. If Part (i)

does not hold, then all primes q 2 P divide k, and so
Q

q2P
q  k < n. For each n � k

satisfying 10 < n� k < 26 it can be checked via [33, Code 18] in Magma that

(n� k + 3)2

4
<
Y

q2P

q.

Hence if (i) does not hold then (n � k + 3)2/4 < n and so n � k + 3 <
p
4n. Therefore

n� k + 1 < 2(
p
n� 1), satisfying Part (ii).

Now let n� k � 26, and let m = n� k � 3, so that m � 23. We first prove that

2
⇣
⇡(m� 1)� 4

⌘
> ln

 
2
⇣m
2
+ 3
⌘2
!
. (4.3)

To do so let y := y(m) be the following function of m

y = (m� 1)� ln
⇣m
2
+ 3
⌘
ln(m� 1)�

1

2

⇣
ln(2) + 8

⌘
ln(m� 1).

Then

dy

dm
= 1�

ln
⇣

m

2 + 3
⌘

m� 1
�

ln(m� 1)
m

2 + 3
·
1

2
�

1
2(ln(2) + 8)

m� 1

= 1�
ln
⇣

m

2 + 3
⌘

m� 1
�

ln(m� 1)

m+ 6
�

ln(2) + 8

2(m� 1)
.

The functions
ln(m2 +3)

m�1 and ln(2)+8
2(m�1) are monotonically decreasing for m � 2, the function

ln(m�1)
m+6 is monotonically decreasing for m � 9. Hence dy

dm
is monotonically increasing for

m � 9. Since dy

dm
is positive at m = 9, it follows that dy

dm
is positive for m � 9. From

y(23) > 0, we deduce that y is positive for m � 23. Thus for m � 23

(m� 1)� 4 ln(m� 1) > ln
⇣m
2
+ 3
⌘
ln(m� 1) +

1

2
ln(2) ln(m� 1),

and so

2
⇣ m� 1

ln(m� 1)
� 4
⌘
> 2 ln

⇣m
2
+ 3
⌘
+ ln(2) = ln

 
2
⇣m
2
+ 3
⌘2
!
. (4.4)

By Theorem 4.4.4(i), ⇡(m� 1) > m�1
ln(m�1) , and so (4.4) implies (4.3).
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Let Q = {2  q < m | q prime} and Q0 = {q 2 Q : q > 7}. Then Q0 = Q\{2, 3, 5, 7},

and so |Q0| = ⇡(m�1)�4. We use (4.3) to show that either there exists q 2 Q satisfying

(i), or that (ii) holds. Observe that if q 2 Q0, then ln(q) > 2. Then by (4.3),

ln

 
Y

q2Q

q

!
=
X

q2Q

ln(q) >
X

q2Q0

ln(q) >
X

q2Q0

2 = 2
⇣
⇡(m� 1)� 4

⌘
> ln

 
2
⇣m
2
+ 3
⌘2
!
.

Thus Y

q2Q

q > 2
⇣m
2
+ 3
⌘2
.

If (i) does not hold, then q | k for all odd primes q 2 Q. Hence k is greater than or equal

to the product of all such primes, so

2n > 2k �

Y

q2Q

q > 2
⇣m
2
+ 3
⌘2
.

Hence
p
n > m

2 + 3 and so

2(
p
n� 1) > m+ 4 = (n� k � 3) + 4 = n� k + 1,

which gives Part (ii). Hence the lemma holds.

The remainder of the results in this section are only used in Chapter 6. Let m, k � 2

and n = mk. Recall that pk denotes any prime which satisfies k

2 < pk < k � 1, similarly

let pm denotes any prime satisfying m

2 < pm < m� 1. Let Jw is the set of elements of Sn

satisfying Definition 4.3.2.

Lemma 4.4.7. Let k � 26. Then there exists pk such that pk � 23.

Proof. If 26  k  37, then k

2  18.5 < pk < 25  k � 1, and so we may let pk = 23. If

k � 38, then k

2 � 19. Hence pk > 19, and so pk � 23.

Lemma 4.4.8. Let 23  k  m < 4k � 2. Then there exists a prime q such that q - m,

and for all possible pk every element in Sn with cycle type 1n�pkq · pkq is in Jw.

Proof. First assume that k  66 and m 6= 210. If x 2 N is divisible by 2, 3, 5 and 7, then

either x = 2 · 3 · 5 · 7 = 210, or x � 22 · 3 · 5 · 7 = 420. Thus from m < 4k � 2  262 and

m 6= 210, it follows that there exists q 2 {2, 3, 5, 7} such that q - m. From pk >
k

2 > 11 it

follows that

n = mk � k2 > kpk = (k � 1)pk + pk > qpk + 11.
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Hence for q = 2, 3, 5 and 7 the result follows by consulting the third, fourth, seventh and

ninth respective columns of Definition 4.3.2.

Let m = 210, let k  66 and let q = 11. Then q - m. By assumption m < 4k � 2, and

so 54  k  66. Therefore pk >
k

2 � 27 > 2q � 1 and

n = 210k = 11k + 199k > qpk + 4q,

and so the final column of Definition 4.3.2 is satisfied.

Hence we may assume that k � 67. We first show if q is prime and 11  q  k+2
4 , then

an element of Sn with cycle type 1n�pkq · pkq is in Jw. In particular, we verify the three

conditions in the final column on Definition 4.3.2 - pk � 2q � 1 and n > (pk + 4)q � 4.

From q  k+2
4 it follows that 4q�2  k < 2pk, hence pk > 2q�1 and the first condition is

satisfied. We now show that n > (pk+4)q�4. Since 3k2
�5k+10 is a positive quadratic

with no real roots it follows that 3k2
� 5k+10 > 0, and so 4k2 > k2+5k� 10. Therefore

k2 >
k2 + 5k + 6� 16

4

=
(k2 + k � 2) + (4k + 8)

4
� 4

=
(k � 1)(k + 2) + 4(k + 2)

4
� 4.

Hence since n = mk � k2, it follows that

n > (k � 1)
(k + 2)

4
+ 4

(k + 2)

4
� 4. (4.5)

By assumption q  k+2
4 , and by Theorem 4.4.1, pk  k � 1. Hence (4.5) implies that

n > pkq + 4q � 4.

Thus if there exists a prime q such that 11  q 
k+2
4 and q - m, then the result holds.

We now show the existence of such a prime.

First let 66  k  105. Then if q 2 {11, 13, 17} it follows that

11  q  17 =
66 + 2

8


k + 2

4
and m < 4k � 2  4(105)� 2 = 418 < 11 · 13 · 17.

Hence there exists q 2 {11, 13, 17} such that 8  q  k+2
4 and q - m. Therefore the result

holds for k  105.
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Now let k � 106 and let t =
⌅
k+2
4

⇧
. Then

13.5 =
1

2

j106 + 2

4

k


1

2

jk + 2

4

k
=

t

2
< pt < t� 1 <

k + 2

4
.

Therefore 11, 13 and pt are distinct increasing primes bounded above by k+2
4 . In addition,

m < 4k � 2 < 11 · 13 ·
1

2

jk + 2

4

k
< 11 · 13 · pt.

and so there exists q 2 {11, 13, pt} such that q - m. Hence the result follows.

Lemma 4.4.9. Let m � 19. Then there exists a prime q such that q < m

4 and q - m.

Proof. For 19  m  43 it follows by [33, Code 13] in Magma that there exists

q 2 {2, 3, 5, 7} as required. Hence we may assume that m � 44. Let t = b
m

4 c, so that
m�3
4  t  m

4 . Then t > 10, and so by Theorem 4.4.1 there exists a prime pt such that

5 <
t

2
< pt < t� 1 <

m

4
.

Hence 2, 3, 5 and pt are distinct and less than m

4 . Since m�3
4  t, it follows that

m  4t+ 3 < 15t, and so

m < 15t < 3 · 5 · 2pt.

Therefore there exists q 2 {2, 3, 5, pt} satisfying the lemma.

We now use Theorem 4.4.4(ii) to find a lower bound on the number of Bertrand primes

as in Theorem 4.4.1.

Proposition 4.4.10. For 19  k  39 let t = 3, for 40  k  72 let t = 4, and for

k � 73 and let

t =

$
3k

10 ln(k+1
2 )

� 2

%
.

Then there exist primes pk(1), pk(2), . . . , pk(t) such that

k

2
< pk

(1)
 pk

(2)
� 2  pk

(3)
� 4  · · ·  pk

(t)
� 2(t� 1) < k � 2(t� 1)� 1.

Proof. We begin by verifying a few cases directly. Let P = (pk(1), . . . , pk(t)). If

19  k  21, then let P = (11, 13, 17); if 22  k  25, then let P = (13, 17, 19); if

26  k  33, then let P = (17, 19, 23); and if 34  k  39, then let P = (23, 29, 31).

Hence the result holds for 19  k  39. If 40  k  45, then let P = (23, 29, 31, 37); if

46  k  61, then let P = (31, 37, 41, 43); and if 61  k  72, then let

P = (37, 41, 43, 47). Hence the result holds for 40  k  72.
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Now let k � 73. Let x =
⌃
k

2

⌥
, so that k

2  x 
k+1
2 . Let

Q = {x+ 1  q  2x : q prime} and R =
n
q prime :

k

2
< q  k + 1

o
,

so that |Q| = ⇡(2x) � ⇡(x) and Q ✓ R. Hence by Theorem 4.4.4(ii), the size of Q, and

so the size of R also, is at least

3x

5 ln(x)
�

3k

2

5 ln(k+1
2 )

=
3k

10 ln(k+1
2 )

.

Therefore |R| � t+2. If q 2 R\{k� 1, k, k+1}, then k

2 < q < k� 1. Since k

2 > 20, every

element of R is odd. Hence R contains at most two of {k � 1, k, k + 1} thus |R\{k �

1, k, k + 1}| � |R|� 2 � t. Hence R\{k � 1, k, k + 1} contains distinct increasing primes

pk(1), pk(2), pk(3), . . . , pk(t). Then in particular, k

2 < pk(1) and pk(t) < k�1. Therefore since

all elements of R are odd it follows that

k

2
< pk

(1)
 pk

(2)
� 2  pk

(3)
� 4  · · ·  pk

(t)
� 2(t� 1) < k � 2(t� 1)� 1.

For the remainder of this section we use Proposition 4.4.10 to show the existence of

primes with certain properties.

Lemma 4.4.11. Let k � 26, let m � 19 and let n = mk. Then at least one of the

following holds.

(i) There exists a prime pk such that k

2 < pk < k � 1 and pk - (m� 1).

(ii) There exist primes q and pk such that pk < q, q - mk, kq < 2(
p
n � 1) and

k < (m� q).

Proof. First let 26  k  39. Then the result follows by [33, Code 14], which we

summarise here. Let W =
�

k

2 < w < k � 1 : w prime
 
. Then it can be directly verified

that |W | � 2 for each k. Suppose that (i) does not hold. Then each w 2 W divides

m� 1, and so

r :=
Y

w2W

w  m� 1 < m. (4.6)

Let pk := min(W ) and q := min(W\{pk}), then pk < q automatically. Since q | (m� 1)

and k

2 < q < k � 1 it follows that q - mk. For each 26  k  39, we find that k < (r� q)

and kq < 2
�p

kr � 1
�
. Hence pk and q satisfy (ii) by (4.6).

Now let k � 40 and let pk(1), pk(2), pk(3), pk(4) be as in Proposition 4.4.10. Assume that
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(i) does not hold. Then pk(i) | (m� 1) for i = 1, 2, 3, 4. Hence

 
k

2

!4

< pk
(1)

· pk
(2)

· pk
(3)

· pk
(4)

 m� 1 < m. (4.7)

We show that pk := pk(1) and q := pk(2) satisfy (ii). Clearly, pk < q. Since q | (m � 1)

and k

2 < q < k � 1 it follows that q - mk. Since k � 40, it follows that 2k2 + 4 <
p
kk2,

and so k2 < k
2
p

k

2 � 2. Hence

kq < k2 <
k2
p
k

2
� 2 = 2

 r⇣k
2

⌘4p
k � 1

!
.

Combining the above with (4.7) implies that kq < 2(
p
m
p
k � 1) = 2(

p
n� 1). Since

k(k2
� 16) � 40(402 � 16) > 16,

it follows that 1
16k(k

3
� 16k) > k. Hence (4.7) and q < k imply that

m� q >
⇣k
2

⌘4
� k =

1

16
k(k3

� 16k) > k.

Lemma 4.4.12. For k � 19 there exist primes pk and pk 0 such that k

2+2 < pk, pk 0 < k�1.

Proof. By Proposition 4.4.10 implies that there exist primes

k

2
< pk

(1)
 pk

(2)
� 2  pk

(3)
� 4 < k � 5.

Thus the lemma holds with pk := pk(2) and pk 0 := pk(3).

Lemma 4.4.13. If k � 8, then there exists a prime pk such that k

2 < pk < k � 2.

Proof. If k = 8 or 9, then let pk = 5; if 10  k  13, then let pk = 7; if 14  k  18

then let pk = 11, and if k � 19 then by Proposition 4.4.10 there are at least 3 Bertrand

primes, and so pk := pk(1) < k � 5.

Lemma 4.4.14. Let either k � 33 and m � 19; or let 28  k  32, 19  m  41 and

m 6= 30. There exists primes pk and q such that pk, 2pk 6= m� q, q < m

4 and q - m

k + 9

2
 pk  k � 4.

Proof. If 28  k  32, 19  m  41 and m 6= 30 then the holds holds by direct

calculation in Magma using [33, Code 2].
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Hence assume that k � 33 and m � 19. Therefore Lemma 4.4.9 holds, and so there

exists a prime q with q < m

4 and q - m. For 33  k < 106, using [33, Code 16] it can be

checked directly that there exist at least 2 primes pk(1) and pk(2) in the range
⇥
k+9
2 , k�4

⇤
.

If m� q is even, then m� q 6= pk(1), pk(2); and if m� q is odd, then m� q 6= 2pk(1), 2pk(2).

Hence at least one of pk(1) and pk(2) satisfies the lemma.

Now let k � 106. By Proposition 4.4.10 there exist primes

k

2
< pk

(1)
 pk

(2)
� 2  pk

(3)
� 4  pk

(4)
� 6  pk

(5)
� 8 < k � 9.

Therefore k

2 + 4 < pk(3), pk(4) < k � 3, and so k+9
2  pk(3), pk(4)  k � 4. By considering

the parity of m � q as above, it follows that at least one of pk(3) and pk(4) satisfies the

lemma.

Lemma 4.4.15. Let m, k � 19. Then there exist distinct primes pk, pk 0 and pm such

that pm  m� 4.

Proof. By Proposition 4.4.10 there exist primes

m

2
< p(1)

m
 p(2)

m
� 2 < m� 3 and

k

2
< pk

(1)
 pk

(2)
� 2  pk

(3)
� 4 < k � 5.

Hence pm := p(1)m  m� 4. At least two primes in {pk(1), pk(2), pk(3)}, which we denote pk

and pk 0, are not equal to pm.

Lemma 4.4.16. Let 23  k  m < 4k � 2, let pk and pk 0 be as in Lemma 4.4.15, and

let q be as in Lemma 4.4.8, so that in particular q - m. Then either pk or pk 0 does not

divide (m� q).

Proof. If pk, pk 0 | (m�q), then pkpk 0  (m�q). Since k � 23, it follows that k2 > 16k�8.

Hence
�
k

2

�2
> 4k � 2, and so

4k � 2 <
⇣k
2

⌘2
< pkpk

0
 m� q < m,

contradicting the assumption that m < 4k � 2.

Lemma 4.4.17. Let m � 14. Then there exists a prime pm such that

max{10, m2 } < pm  m� 3.

Proof. If m = 14 or 15, then let pm = 11; if 16  m  25, then let pm = 13; and if

26  m  42, then let pm = 23.
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For m > 42, Proposition 4.4.10 implies that there exist primes

21 <
m

2
< p(1)

m
 p(2)

m
� 2 < m� 3.

Hence p(1)m satisfies the lemma.

Lemma 4.4.18. Let m, k � 18. Then there exist distinct primes pk and pm satisfying
m+5
2  pm  m � 5 and pk  k � 5; and if k  m  4k � 2, then we may assume that

pk - (m� 2).

Proof. We begin by introducing various primes. If 18  m  88 and 18  k  88, then

by [33, Code 17] there exist distinct primes

pk
(a)

 k � 5 and
m+ 5

2
 p(a)

m
 m� 5.

Let l = m or k. If l � 89, then by Proposition 4.4.10 there exist primes

l

2
< p(1)

l
 p(2)

l
� 2  p(3)

l
� 4  p(4)

l
� 6  p(5)

l
� 8 < l � 9.

Hence p(1)
l
, p(2)

l
, p(3)

l
 l � 5 and l+5

2  p(2)
l
, p(3)

l
 l � 5.

First assume that k  88. If k  m  4k � 2 then the result holds by [33, Code

17], otherwise let pk = pk(a). If m  88 then let pm := p(a)m , and if m � 89 then let

pm 2 {p(2)m , p(3)m }.

Next assume that k � 89. If m  88 then let pm = p(a)m , and if m � 89 then let pm :=

p(3)m . We now show that one of pk(1) and pk(2) satisfies the lemma. If k  m  4k�2 is not

satisfied, either of pk(1) and pk(2) satisfy the lemma. Hence assume that k  m  4k� 2.

It is clear that k2 > 16k � 16 and so
⇣

k

2

⌘2
> 4k � 4. Hence

m� 2  4k � 4 <
⇣k
2

⌘2
< pk

(1)
· pk

(2),

and so at most one of pk(1) and pk(2) divides m � 2. Thus there exists

pk 2 {pk(1), pk(2)} which satisfies the lemma.

Lemma 4.4.19. Let 18  m < k. Then there exist distinct primes pm and pk such that

pk 6= m� 3, pk  k � 6 and pm  m� 6.

Proof. Let l = m or k. If l � 89 then there exist primes

l

2
< p(1)

l
 p(2)

l
� 2  p(3)

l
� 4  p(4)

l
� 6  p(5)

l
� 8 < l � 9. (4.8)

First let 18  m < k  89. Then the result holds by [33, Code 18].
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Now let k � 89 and m  88. By [33, Code 18] there exists pm  m � 6 and by (4.8)

there exist p(1)
k
, p(2)

k
, p(3)

k
 k � 6. Hence we may let pk 2 {p(1)

k
, p(2)

k
, p(3)

k
}\{pm,m� 3}.

Finally if k,m � 89, then by (4.8) there exist p(1)m , p(2)m  m� 6 and pk(1), pk(2)  k� 6.

Therefore there exists pk 2 {pk(1), pk(2)}\{m�3} and pm 2 {p(1)m , p(2)m }\{pk}, which satisfy

the lemma.

4.5 Generating graphs and cocliques

We begin by giving some history of the study of generation, generating graphs, cliques

and cocliques - see Definitions 4.5.1 and 4.5.5.

A group G is 2-generated if there exist x, y 2 G such that hx, yi = G. In 1962 Steinberg

[52] proved that all the finite simple groups known by 1962 were 2-generated. In addition,

Steinberg speculated that it may be possible to insist that one generator has order 2 or

that one generator is chosen to be an arbitrary non-identity element. This second property

is called 3
2-generation, and means that for all x 2 G\{1} there exists y 2 G such that

hx, yi = G. In 2000 Guralnick and Kantor [29] proved that all finite simple groups are
3
2 -generated. Guralnick and Kantor also showed the following stronger result - for all

finite simple groups G, there exists a conjugacy class C such that for all x 2 G\{1} there

exists y 2 C such that G = hx, yi. More recently, Burness and Harper [9, 10] investigated

the size of the smallest set S ✓ C such that for all x 2 G\{1} there exists y 2 S such

that G = hx, yi. Such a set S is called a uniform dominating set.

One way to view such generation problems is via the generating graph. This enables

the use of graph theoretic results to gain a deeper understanding of generation. See for

example [42], in which Liebeck and Shalev first defined generating graphs and also used

Turán’s Theorem [56]. The authors prove that there exists a constant c > 0 such that

for every finite simple group G, the generating graph �(G) contains a clique of size at

least c times the minimal index of a proper subgroup of G. There has been extensive

investigation into clique size of these generating graphs, see for example [21], [44], [45] and

[53]. However cocliques have been much less studied. In [50] Saunders proves that for each

odd prime p, a maximal coclique in the generating graph of PSL2(p) is either a maximal

subgroup, or the conjugacy class of all involutions, or has size at most 129
2 (p� 1) + 2. In

Chapters 5 and 6 we investigate when the intransitive and imprimitive maximal subgroups

of the symmetric and alternating groups are maximal cocliques.

We begin with the definition of cliques and cocliques in arbitrary graphs.

Definition 4.5.1. Let G be a graph with vertex set V and edge set E, and let U ✓ V .
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The induced subgraph is the subgraph GU of G with vertex set U and edge set

EU =
�
{u, v} 2 E | u, v 2 U

 
.

A vertex u 2 V is isolated if it is adjacent to no other vertex. Equivalently u is isolated

if E{u,v} = ; for all v 2 V .

We call U a coclique of G if GU is an empty induced subgraph, meaning that all vertices

in GU are isolated and so EU = ;. We call U a clique if GU is a complete subgraph, that

is {u, v} 2 EU for all distinct u, v 2 U .

A coclique is maximal if it is contained in no larger coclique, and similarly for cliques.

Example 4.5.2. The following graph G = (V,E) is the Petersen graph.

1

2

3 4

5
6

7

8 9

10

Let S = {1, 2, 3, 4, 5}, T = {6, 7, 8, 9, 10}, U = {1, 3, 9, 10} ✓ V . Then the induced

graphs, GS, GT and GU , are as follows.

1

2

3 4

5

GS

1

2

3 4

5
6

7

8 9

10

GT

1

2

3 4

5
6

7

8 9

10

GU

Then S and T are neither cliques nor cocliques, and U is a coclique. Since G is triangle-

free, it follows that cliques have size at most 2. We show that U is a maximal coclique

using two di↵erent methods: one checks directly; and one which illustrates some inter-

esting theoretical results.
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First we use a direct method. From U = {1, 3, 9, 10} it follows that V \U = {2, 4, 5, 6, 7, 8}.

Then U [ {2} is not a coclique since 1 2 U and {1, 2} 2 E. Similarly U [ {a} is not a

coclique for all a 2 V \U since

{4, 3}, {5, 10}, {6, 1}, {7, 9}, {8, 10} 2 E.

Hence U is contained in no larger coclique, and so U is a maximal coclique. 4

We now show that the size of any coclique is at most four, and so U can be contained

in no larger coclique. We begin with some theory.

For a graph G = (V,E), the adjacency matrix A = (aij) is the |V | ⇥ |V | matrix with

aij = 1 if {i, j} 2 E, and aij = 0 otherwise. The inertia of a matrix A is (a+, a�, a0)

where a+, a� and a0 are the number of positive, negative and zero eigenvalues of A

respectively.

Theorem 4.5.3 (Inertia Theorem [22]). Let G = (V,E) be a graph, let n = |V |, and let

(a+, a�, a0) be the inertia of the adjacency matrix of G. Then the size of any coclique in

G is at most

min{n� a+, n� a�}.

Example 4.5.4. Let the Petersen graph be labelled as in Example 4.5.2. The adjacency

matrix corresponding to this labelling is as follows

A =

0

BBBBBBBBBBBBBBBBBBB@

0 1 0 0 1 1 0 0 0 0

1 0 1 0 0 0 1 0 0 0

0 1 0 1 0 0 0 1 0 0

0 0 1 0 1 0 0 0 1 0

1 0 0 1 0 0 0 0 0 1

1 0 0 0 0 0 0 1 1 0

0 1 0 0 0 0 0 0 1 1

0 0 1 0 0 1 0 0 0 1

0 0 0 1 0 1 1 0 0 0

0 0 0 0 1 0 1 1 0 0

1

CCCCCCCCCCCCCCCCCCCA

.

It can be verified that A has eigenvalues 1 with multiplicity five, 3 with multiplicity one,

and -2 with multiplicity four. Thus the inertia of A is (6, 4, 0), and so by Theorem 4.5.3

any coclique of G has size at most 4. Hence U is a maximal coclique. 4

We now give the definition of a generating graph, first defined by Liebeck and Shalev

in [42].

Definition 4.5.5. Let G be a 2-generated group. The generating graph of G, denoted
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�(G), has vertex set G\{1}, and edge set
�
{x, y} | hx, yi = G

 
.

Some sources take all elements of G as the vertex set of �(G), and so the identity is an

isolated vertex, however we do not do this here.

Let G be a finite group with proper subgroup H and generating graph �(G). Then for

all x, y 2 H it follows that hx, yi  H. Hence the elements of H\{1} form a coclique in

�(G). In a slight abuse of language (since we do not consider the identity element to be

a vertex), we say that H is a coclique in �(G). Therefore each maximal subgroup of G

is a coclique in �(G), but it may not be a maximal coclique. This observation prompts

our investigations in Chapters 5 and 6.

We now consider some of generating graphs with maximal and non-maximal examples

of cliques and cocliques.

Example 4.5.6. Let G = S3 so that �(G) = (V,E) is as follows.

Then
�
(1, 3, 2), (1, 2, 3)

 
/2 E, since

⌦
(1, 3, 2), (1, 2, 3)

↵
is a proper subgroup of G. Hence

U = {(1, 3, 2), (1, 2, 3)} is a coclique in �(G). Since both (1, 3, 2) and (1, 2, 3) are con-

nected to every vertex of V \U, it follows that U is a maximal coclique.

Let R = {(1, 2), (2, 3), (1, 3), (1, 2, 3)} and S = {(1, 2), (2, 3), (1, 3), (1, 3, 2)}. Then

�(G)R and �(G)S are both complete graphs on 4 points. Hence R and S are cliques.

Because
�
(1, 3, 2), (1, 2, 3)

 
/2 E, it follows that R [ {(1, 3, 2)} and S [ {(1, 2, 3)} are not

cliques. Therefore R and S are maximal cliques. 4

Example 4.5.7. Let G = S4, and let �(G) = (V,E) be the generating graph of G. Then

h(2, 3, 4), (2, 3)i ⇠= S3 and h(1, 2, 3, 4), (1, 2)(3, 4)i ⇠= Dih(8) are maximal subgroups of G,

and so U1 = S3\{1} and U2 = Dih(8)\{1} are cocliques in �(G).

We introduce the following notation which will help to visualise whether or not U1 and

U2 are maximal cocliques in �(G). For i = 1 or 2, let

Ei =
�
{x, y} 2 E | x 2 Ui, y /2 Ui

 
,

and let Gi = (V,Ei). The following figures show G1 and G2 with U1 and U2 highlighted.
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Figure 4.1: G1

Figure 4.2: G2
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In Figure 4.1, (1, 3)(2, 4) 2 V \U1 is not connected to any element in U1, and so

{U1, (1, 3)(2, 4)} is a coclique in �(G) containing U1. Hence U1 is not a maximal co-

clique. Each element of V \U2 is connected to some element in U2. Therefore U2 is a

maximal coclique. 4

Since the examples above are small, it was easy to verify them directly. We now show

one possible way that theoretical arguments can be used to identify maximal cocliques

in generating graphs. We begin with some background material.

Definition 4.5.8. Let G be a finite group. The Frattini subgroup of G, �(G), is the

intersection of all maximal subgroups of G.

The following lemma illustrates why the Frattini subgroup is sometimes called the

non-generating subgroup.

Lemma 4.5.9. Let G be a group and let X ✓ G. If hX,�(G)i = G, then hXi = G.

Proof. Let X ✓ G such that hX,�(G)i = G and hXi 6= G. Then hXi is a proper

subgroup of G, and so is contained in some maximal subgroup M of G. Therefore,

hX,�(G)i  M < G, contradicting the initial assumption.

Let p be a prime. An elementary abelian p-group is an abelian group in which every

non-trivial element has order p.

Theorem 4.5.10 (Burnside’s Basis Theorem [54, Theorem 1.16]). Let p be a prime and

let G be a d-generated p-group. Then G/�(G) is an elementary abelian p-group of order

pd.

Theorem 4.5.11. Let p be a prime and let G be a 2-generated p-group. Then the maximal

subgroups of G are maximal cocliques in �(G).

Proof. Let M be a maximal subgroup of G and let x 2 G\M . Since x /2 M it follows

that x lies in a maximal subgroup N 6= M , and so �(G)  M \ N < M . Hence there

exists y 2 M\�(G). We now show that hx, yi = G, and so the result holds.

Let Q := G/�(G) and let [x] = x�(G), [y] = y�(G) 2 Q. Then [x], [y] 6= [1], since

y 2 M\�(G) and x /2 M > �(G). Hence by Theorem 4.5.10, [x] and [y] have order p.

Suppose for a contradiction that [x] 2 h[y]i. Then there exists a 2 N such that [x] = [y]a.

Therefore [1] = [xy�a], and so xy�a
2 �(G)  M . A contradiction since y 2 M and

x /2 M .

Since [y] has order p and Q has order p2, it follows that h[y]i is a maximal subgroup of

Q. Therefore h[x], [y]i = Q, and so G = hx, yi�(G) = hx, y,�(G)i. By Lemma 4.5.9, it
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follows that G = hx, y,�(G)i = hx, yi.

In [14] Cameron, Lucchini and Roney-Dougal defined the following equivalence relation.

We prove a related result in Chapter 5.

Definition 4.5.12. Let G be a finite group and let x, y 2 G. Then x ⌘m y if and only

if x and y can be substituted for one another in all generating sets for G, and x ⌘
(r)
m y

exactly when x and y can be substituted for one another in any generating set of size r.

Finally, let  (G) be the minimal value of r at which ⌘
(r)
m and ⌘m are the same equivalence

relation.

Example 4.5.13. Let G = S3. As can be seen in the generating graph given in Ex-

ample 4.5.6 the elements (1, 2, 3) and (1, 3, 2) have the same set of neighbours, and so

(1, 2, 3) ⌘(2)
m (1, 3, 2) 4

4.6 General results on Sn and a�ne groups

In Chapter 5 we show the following. Let p � 5 be a prime such that p 6= q
d
�1

q�1 for all

prime powers q and d � 2. We shall prove that all maximal subgroups of Sp are maximal

cocliques in �(Sp); and for p > 5 all maximal subgroups of Ap are maximal cocliques in

�(Ap). As part of the proof we show that the one-dimensional a�ne groups (see Definition

4.6.5) are maximal cocliques in Sp. Here we introduce the a�ne groups and prove some

lemmas which we use in Chapter 5. We begin with a definition and lemma for arbitrary

groups, and then two lemmas concerning Sn.

Definition 4.6.1. Let G be a group with subgroup H. Then H is self-normalizing in G

if NG(H) = H.

Lemma 4.6.2. Let G be a finite group, let H be a self-normalizing subgroup of G and

let x 2 G. Then the number of cosets of H in G which are stabilized by x in right coset

action is equal to the number of conjugates of H in G which contain x.

Proof. Let g1, g2 2 G. Then

Hg1 = Hg2 () Hg1g
�1
2 = H () g1g

�1
2 2 NG(H) = H () Hg1 = Hg2.

Hence there exists a set {g1, . . . , gr} ✓ G of representative elements for both the cosets

of H and the G-conjugates of H. Then for 1  i  r

Hgix = Hgi () Hgixg
�1
i

= H () gixg
�1
i

2 H () x 2 g�1
i
Hgi = Hgi .
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Lemma 4.6.3. Let G = Sn and let g, h 2 G be two n-cycles. Then there are exactly n

elements of G conjugating g to h.

Proof. Let g = (a0, a1, . . . , an�1), let h = (b0, b1, . . . , bn�1) and let k 2 Sn. Then

k�1gk =
⇣
ak0, a

k

1, . . . , a
k

n�1

⌘
.

Since ⌦ = {a0, . . . , an�1} = {b0, . . . , bn�1} there exists 0  i  n � 1 such that ak0 = bi.

Hence if k�1gk = h, then ak
j
= bi+j for 0  j  n with subscripts taken modulo n. Hence

for fixed i, there is exactly one k 2 Sn such that gk = h and ak0 = bi. Since there are n

possibilities for ak0 the result follows.

Lemma 4.6.4. Let p � 5, let G = Sp, let M = Ap. For all x 2 G\M , there exists a

p-cycle y 2 M such that y is not normalized by x.

Proof. Let y be a p-cycle and let ↵ 2 ⌦ = {1, 2, . . . , p}. If z 2 hyi and ↵z = ↵y
i
for some

i 2 Z, then z = yi.

If |Fix(x)| � 2, then there exists ↵, � 2 Fix(x). Let � 2 Supp(x). Let y be a p-cycle

with ↵y = � and ↵y
2
= �. Then

↵x
�1

yx = ↵yx = �x = � = ↵y and ↵(x�1
yx)2 = �x

�1
yx = �yx = �x 6= � = ↵y

2
.

Hence ↵y
x
= ↵y and ↵(yx)2

6= ↵y
2
. Therefore yx /2 hyi, and so x does not normalise y.

Hence we may assume that |Fix(x)|  1. Since p � 5 it follows that |Supp(x)| � 4, and

so the disjoint cycle decomposition of x contains either a product of two transpositions,

a 3-cycle, or an r-cycle for r � 4.

First assume that x contains a product of two transpositions, which we label (↵, �)(�, �).

Let ✏ 2 {1, . . . , p}\{↵, �, �, �} and let y be a p-cycle with ↵y = �, �y = � and ↵y
�1

= ✏.

Then

�x
�1

yx = ↵yx = �x = ↵ = �y
�1

and ↵x
�1

yx = �yx = �x = � 6= ✏ = ↵y
�1
.

Hence yx /2 hyi, and so x does not normalise y.

Next assume that x contains a 3-cycle which we label (↵, �, �). Let y be a p-cycle with

↵y = � and �y = �. Then ↵y
2
= �, and since p � 5 it follows that �y 6= ↵. Then

�x
�1

yx = ↵yx = �x = � = �y and �x
�1

yx = �yx = �x = ↵ 6= �y.

Hence yx /2 hyi, and so x does not normalise y.
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Finally suppose that x contains an r-cycle with r � 4. Hence there exist

↵, �, �, � 2 Supp(x) with ↵x = �, �x = � and �x = �. Let ✏ 2 {1, . . . , p}\{↵, �, �, �}, and

let y be a p-cycle with ↵y = �, �y = � and �y = ✏. Then

�x
�1

yx = ↵yx = �x = � = �y and �x
�1

yx = �yx = �x = � 6= ✏ = �y.

Hence yx /2 hyi, and so x does not normalise y.

We now introduce the a�ne groups. For the remainder of this section let p be a prime,

let F = GF(p) and F⇤ = F\{0}, and let ↵ 2 F⇤ and � 2 F. Then we can define a map

t↵,� : F ! F by

t↵,� : ⇠ 7! ↵⇠ + � for ⇠ 2 F.

We call such a function a 1-dimensional a�ne transformation. We show that the col-

lection of all 1-dimensional a�ne transformations forms a group under composition of

maps.

Let ↵,↵0
2 F⇤ and let �, �0, ⇠ 2 F. Then ↵↵0

2 F⇤ and

t↵,�t↵0,�0(⇠) = t↵,�(↵
0⇠ + �0)

= ↵(↵0⇠ + �0) + � (4.9)

= ↵↵0⇠ + ↵�0 + �.

Hence t↵,�t↵0,�0 = t↵↵0,↵�0+� is a 1-dimensional a�ne transformation. From t1,0(⇠) = 1⇠+0

for all ⇠ 2 F, it follows that t1,0 acts as the identity map on F. Since ↵ 2 F⇤ it follows that

↵�1
2 F⇤. Hence t↵�1,�↵�1� is a 1-dimensional a�ne transformation and t�1

↵,�
= t↵�1,�↵�1�

by (4.9). Since composition of maps is associative, it follows that we may define the

following subgroup of Sym(F).

Definition 4.6.5. The 1-dimensional a�ne group is

AGL1(F) = {t↵,� | ↵ 2 F⇤ and � 2 F}.

Up to isomorphism GF(p) is the only field of order p. Hence we may write

AGL1(p)  Sym(GF(p)) ⇠= Sp in place of AGL1(F)  Sym(F).

Let ↵,↵0
2 F⇤ and �, �0

2 F. If � 6= �0, then

t↵,�(0) = � 6= �0 = t↵0,�0(0).

If � = �0 and ↵ 6= ↵0, then

t↵,�(1) = ↵ + � 6= ↵0 + �0 = t↵0,�0(1).
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Hence t↵,� = t↵0,�0 if and only if (↵, �) = (↵0, �0). Therefore |AGL1(p)| = (p� 1)p.

We now introduce two subgroups of AGL1(p) and prove some results about these sub-

groups. Let G = AGL1(p), let T = {t1,� | � 2 F} and let R = {t↵,0 | ↵ 2 F⇤
}.

Lemma 4.6.6. Let G and T be as above. Then T is a regular normal subgroup of G.

Proof. Let t1,�, t1,�0 2 T . Then t1,�t1,�0 = t1,��0 2 T and t�1
1,� = t1,�� 2 T , and so T  G.

Since t1,� = t�1,1 it follows that T = ht1,1i ⇠= Cp. Let t↵,� 2 G and t1,� 2 T . Then for ⇠ 2 F

t�1
↵,�

t1,�t↵,�(⇠) = t↵�1,�↵�1�t1,�t↵,�(⇠)

= t↵�1,�↵�1�t1,�(↵⇠ + �)

= t↵�1,�↵�1�(↵⇠ + � + �)

= ↵�1(↵⇠ + � + �)� ↵�1�

= ⇠ + ↵�1�

= t1,↵�1�(⇠).

Now t1,↵�1� 2 T, and so T E G.

Lemma 4.6.7. Let G, T and R be as above. Then G = T oR.

Proof. Let t↵,0, t↵0,0 2 R. Then t↵,0t↵0,0 = t↵↵0,0 2 R and t�1
↵,0 = t↵�1,0 2 R, and so R  G.

Clearly T \R = {t1,0} = {id}. Let t↵,� 2 G. Then

t↵,�(⇠) = ↵⇠ + � = t1,�(↵⇠) = t1,�t↵,0(⇠),

with t1,� 2 T and t↵,0 2 R. Hence G = TR.

We now collect some results about AGL1(p) which will be used in Chapter 5.

Lemma 4.6.8. Let S = Sym(F), let G = AGL1(p)  S and let T = ht11i E G. Then the

following hold.

(i) The group G is sharply 2-transitive.

(ii) Each element of G is either a p-cycle or a power of a (p� 1)-cycle.

(iii) For all ⇠ 2 F, there exists a (p� 1)-cycle z 2 G fixing ⇠.

(iv) The group of translates, T = ht11i, is the unique Sylow p-subgroup of G and

G = NS(T ).

(v) If y1, y2 2 G are (p� 1)-cycles and hy1i 6= hy2i, then G = hy1, y2i.
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Proof. (i) To show that G is sharply 2-transitive we show that for all �, � 2 F⇤ there

exists a unique t 2 G such that t(0) = 0 and t(�) = �.

Let t := t↵,� 2 G. Then t(0) = 0 + �, and so t(0) = 0 if and only if � = 0. Now let

t := t↵,0. Then t(�) = ↵�, and so t(�) = � if and only if ↵ = ���1. Therefore the

result follows.

(ii)-(iii) We begin by finding a (p � 1)-cycle in G. Let ! be a primitive element of F⇤, let

� 2 F and let r := t!,� 2 G. Then for i 2 N and ⇠ 2 F

ri(⇠) = !i⇠ + �(!i�1 + !i�2 + · · ·+ ! + 1)

= !i⇠ + �(!i
� 1)(! � 1)�1 (4.10)

= t!i,�(!i�1)(!�1)�1(⇠).

Since ! has order p� 1, it follows that ri 6= t1,0 for i < p� 1 and that rp�1 = t1,0.

Hence r has order p� 1.

If ri(⇠) = ⇠, then ⇠(1� !i) = �(!i
� 1)(! � 1)�1 by (4.10), and so ⇠ = �(1� !)�1.

Therefore, for 1  i  p � 1, the only fixed point of ri is �(1 � !)�1. Hence from

G  S, it follows that r is a (p� 1)-cycle. Thus for ✏ 2 F it follows that t!,✏(1�!) is

a (p� 1)-cycle fixing ✏, and so (iii) follows.

By The Orbit-Stabilizer Theorem |G0| = p � 1, and by the above t!,0 is a

(p � 1)-cycle. Hence G0 = ht!,0i. Since G is transitive it follows that all point

stabilizers are conjugate. Hence if t 2 G has a fixed point, then t is a power of a

(p� 1)-cycle.

If t 2 G\T then t = t↵,� for ↵ 6= 0, 1. Hence t 6= id fixes �(1 � ↵)�1 and so is a

power of a (p� 1)-cycle. If T 2 T\{1} ⇠= Cp\{1} then t is a p-cycle.

(iv) Since |G| = p(p� 1) and |T | = p it follows that T is a Sylow p-subgroup for G. By

Sylow’s Theorem all Sylow p-subgroups are conjugate, hence T is the unique Sylow

p-subgroup by Lemma 4.6.6.

If an element of S normalizes T , then it maps t1,1 to one of p�1 non-trivial elements

of T , namely t1,1, t21,1, . . . , t
(p�1)
1,1 . By Lemma 4.6.3, for fixed 1  i  p� 1, there are

exactly p elements of S which conjugate t1,1 to ti1,1. Therefore |NS(T )| = p(p�1) =

|G|. Since T E G it follows that G  NS(T ), and so G = NS(T ).

(v) Let y1, y2 2 G be (p� 1)-cycles such that hy1i 6= hy2i. Hence [G : hy1i] = p, and so

hy1i is a maximal subgroup of G. Since y2 /2 hy1i it follows that hy1, y2i = G.
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Chapter 5

Intransitive subgroups as cocliques

Let G be Sn := Sym({1, . . . , n}) or An := Alt({1, . . . , n}), let M be an intransitive

maximal subgroup of G and let �(G) be the generating graph of G. Recall that for ease

we say that M is a maximal coclique if M\{1} is a maximal coclique in �(G).

As discussed in Section 4.5, M is a coclique in �(G), but not necessarily a maximal

coclique. Here we determine when M is a maximal coclique on �(G), and when M is not

we find the unique maximal coclique containing M .

In addition, we prove a conjecture of Cameron, Lucchini and Roney-Dougal [14] holds

for G under certain conditions on n. The results of this chapter are stated in full in the

following section.

The material in this chapter is from [34], with more detail given here.

5.1 Introduction

Our first main theorem determines when M is a maximal coclique.

Theorem 5.1.1. Let n � 4, let G = Sn or An, let n > k > n

2 and let M = (Sk⇥Sn�k)\G

be an intransitive maximal subgroup of G.

(i) If G = Sn, then M is a maximal coclique in �(G) if and only if gcd(n, k) = 1 and

(n, k) 6= (4, 3).

(ii) If G = An, then M is a maximal coclique in �(G) if and only if (n, k) /2 {(5, 3), (6, 4)}.

The following concerns the exceptional cases of Theorem 5.1.1.

Theorem 5.1.2. (i) Let n � 4, let G = Sn, let n > k > n

2 and let M = Sk ⇥ Sn�k be

the intransitive maximal subgroup of G stabilizing {1, . . . , k} setwise.
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(a) If gcd(n, k) > 1, then the unique maximal coclique of �(G) containing M is

M [ (1, k + 1)M\{1}.

(b) If (n, k) = (4, 3), then the unique maximal coclique of �(G) containing M is

M [ (1, 4)(2, 3)M\{1}.

(ii) Let (n, k) 2 {(5, 3), (6, 4)}, let G = An and let M = (Sk ⇥ Sn�k) \ G be the

intransitive maximal subgroup of G stabilizing {1, . . . , k} setwise.

(a) If (n, k) = (5, 3), then the unique maximal coclique of �(G) containing M is

M [ (1, 4)(2, 3)M\{1}.

(b) If (n, k) = (6, 4), then the unique maximal coclique of �(G) containing M is

M [ (1, 5)(2, 6)M\{1}.

Recall by Definition 4.5.1, that a vertex of a graph is isolated if it has no neighbours.

Settling a long-standing conjecture, Burness, Guralnick and Harper show in [8] that if G

is a finite group of order greater than two and all proper quotients of G are cyclic, then

no vertex of �(G) is isolated. The result for G = An and Sn goes back much further, see

[48].

Let G be a finite group, let x, y 2 G, and let ⌘
(r)
m , ⌘m and  be as in Definition

4.5.12. Hence  (G)  2, if x ⌘
(2)
m y implies that x ⌘m y. In [14], Cameron Lucchini and

Roney-Dougal make the following conjecture.

Conjecture 5.1.3 ([14, Conjecture 4.7]). Let G be a finite group such that no vertex of

�(G) is isolated. Then  (G)  2.

The authors observe on p14 that as a consequence their Lemma 2.17 in the same

paper, that to prove Conjecture 5.1.3, it su�ces to show that each maximal subgroup is

a maximal coclique in �(G). This motivates the following theorem.

Theorem 5.1.4. Let p � 5 be a prime such that p 6= q
d
�1

q�1 for all prime powers q and all

d � 2, and let G = Sp or Ap.

(i) If G = Sp, then each maximal subgroup of G is a maximal coclique in �(G).

(ii) If G = Ap, then each maximal subgroup M of G is a maximal coclique in �(G)

except when p = 5 and M = (S3 ⇥ S2) \G.

The restrictions on p, when combined with Theorem 5.4.1, enable us to fully describe

the transitive subgroups of Sp. For more discussion see Chapter 7.

Theorem 2.26 of [14] states that  (A5) = 2. Hence, using the authors’ observation the

following is immediate and verifies Conjecture 5.1.3 for Sp and Ap when p 6= q
d
�1

q�1 .
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Corollary 5.1.5. Let G and p be as in Theorem 5.1.4. Then  (G) = 2. That is, two

elements of G belong to exactly the same maximal subgroups of G if and only if they can

be substituted for each other in all generating pairs for G.

This chapter is structured as follows. In Section 5.2 we prove some preliminary lemmas

and show that Theorems 5.1.1 and 5.1.2 hold for n  11. In Section 5.3 we complete

the proof of Theorems 5.1.1 and 5.1.2. Finally, in Section 5.4 we prove Theorem 5.1.4.

Some small cases, which are proved primarily using Magma, are covered in the appendix,

Chapter 8.

5.2 Preliminary results

We begin by introducing some notation and preliminary lemmas which we use for the

remainder of the chapter. We then show that Theorems 5.1.1 and 5.1.2(i) hold when

n  11, and prove Theorem 5.1.2(ii). Finally we divide the task of proving Theorems

5.1.1 and 5.1.2(i) into subcases.

Throughout this and the next section we use the following notation.

Notation 5.2.1. Let n > k > n

2 � 2 and let ⌦ = ⌦1 [ ⌦2 = {1, . . . , k} [ {k + 1, . . . , n}.

Let G = Sn or An acting on ⌦, let

M = StabG(⌦1) = StabG(⌦2) ⇠=
⇣
Sk ⇥ Sn�k

⌘
\G,

and let x 2 G\M . Let Jt,Jc and Js be as in Definition 4.3.3, and let J be as in Theorem

4.3.4.

Recall that M is a maximal coclique in �(G) if and only if for all x 2 G\M there exists

y 2 M such that hx, yi = G. In the following we show that it su�ces to consider x up to

conjugation by M .

Lemma 5.2.2. Let G and M be as in Notation 5.2.1. Let X be the set of elements of

G\M up to conjugation by M . Then M is a maximal coclique in �(G) if and only if for

each x 2 X there exists y 2 M such that hx, yi = G.

Proof. If M is a maximal coclique then for all x 2 G\M , and so in particular for all

x 2 X ✓ G\M , there exists y 2 M such that hx, yi = G. Hence the forward direction

holds.

Now assume that M is not a maximal coclique of �(G). Then there exists x1 2 G\M

such that hx1, yi 6= G for all y 2 M . Let m 2 M and let x := xm

1 . Then for all y 2 M we

deduce that

hx, ymi = hxm

1 , y
m
i 6= Gm = G.
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We now prove Theorem 5.1.1 for some small values of n and n� k.

Lemma 5.2.3. Let n  11. Then Theorems 5.1.1 and 5.1.2 hold.

Proof. Let X be a list of all possibilities for x 2 G\M up to M -conjugacy. For x 2 X,

let Lx be a list of elements of M up to conjugation by CM(x) (the centralizer of x in M).

If there exists x 2 X such that hx, yi 6= G for all y 2 M , then hx, yi 6= G for all y 2 Lx.

If there exists x 2 X such that hx, yi 6= G for all y 2 Lx, then hx, yci = hxc, yci 6= Gc = G

for all c 2 CM(x). Since LCM (x)
x = M , Lemma 5.2.2 implies that M is a maximal coclique

if and only if for all x 2 X there exists y 2 Lx such that hx, yi = G.

We proceed using [33, Code 1] in Magma, which we summarise here. For each n and

each n > k > k

2 we construct X, and for each x 2 X we calculate the corresponding

Lx. If there exists y 2 Lx such that hx, yi = G then remove x from X. Hence after this

routine, M is a maximal coclique in �(G) if and only if X = ;.

There are a small number of cases of n, k and G for which X 6= ;. We list them here

along with x 2 X.

(i) G = Sn, x = (1, k + 1) and (n, k) = (6, 4), (8, 6), (9, 6), (10, 6) or (10, 8); or

(ii) (G, k, x) = (S4, 3, (1, 4)(2, 3)), (A5, 3, (1, 4)(2, 3)), or (A6, 4, (1, 5)(2, 6)).

Hence hz, yi 6= G for all z 2 xM and y 2 M . Any two elements of xM are involutions and

so generated a dihedral group. Therefore in these cases the maximal coclique in �(G)

containing M is M [ xM
\{1}.

We now use Lemma 5.2.2 to prove an assumption that we can make on x.

Proposition 5.2.4. Let n � 12 and let G and M be as in Notation 5.2.1. Then M is a

maximal coclique of �(G) if and only if for all x 2 G\M such that 1x = k+1 there exists

y 2 M such that hx, yi = G.

Proof. Since x /2 M there exists ↵ 2 ⌦1 and � 2 ⌦2 such that ↵x = �. If n� k = 1, then

� = k+ 1 and by Lemma 4.1.7 there exists m 2 M such that ↵m = 1. If n� k � 2, then

by Lemma 4.1.7 there exists m 2 M such that ↵m = 1 and �m = k+1. By Lemma 5.2.2

it su�ces to consider x up to conjugation by M , and so the result follows.

We now define two distinct hypotheses which between them cover all possibilities in

the case where x 2 G\M is not a transposition and n � 12.

Hypothesis 5.2.5. Let n � 12 so that k � 7.

(A) Let G = An if n is odd and G = Sn if n is even.
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(B) Let G = An if n is even and G = Sn if n is odd.

In both cases, assume that 1x = k + 1 and that x 6= (1, k + 1).

For the remainder of the chapter we introduce the following notation, which makes it

immediately clear how the cycles of an element of M split across ⌦1 and ⌦2.

Notation 5.2.6. For y 2 M define

CM(y) := C1(y) | C2(y),

where Ci(y) := C(y |⌦i) for i = 1, 2.

Recall by Notation 4.2.2, that for y 2 Sn with disjoint cycle decomposition c1 · · · ct, we

let ⇥i = Supp(ci) for 1  i  t.

5.3 Proof of Theorems 5.1.1 and 5.1.2

In this section we complete the proofs of Theorems 5.1.1 and 5.1.2. Let G, M , n and

x be as in Hypothesis 5.2.5(A) or (B). Using the results of Sections 4.2, 4.3 and 4.4, we

construct y 2 M such that H := hx, yi is primitive and contains a Jordan element. Hence

An  H, and by the parity of y it will follows that H = G.

5.3.1 Hypothesis 5.2.5(A)

We begin by putting restrictions on x.

Lemma 5.3.1. Let n,G,M and x be as in Hypothesis 5.2.5(A). If |⌦1 \ Supp(x)| = 1

and x is a Jordan element, then there exists y 2 M such that hx, yi = G.

Proof. By Hypothesis 5.2.5 |Supp(x)| > 2, and so there exists a point

↵ 2 Supp(x)\{1, k + 1}. Our assumption that |⌦1 \ Supp(x)| = 1 implies that ↵ 2 ⌦2.

By Lemma 4.2.1, elements of Sn composed of three cycles lie in An if and only if G = An.

Therefore there exists y = c1c2c3 2 M such that

CM(y) = k | (n� k � 1) · 1,

and ⇥3 = {↵}. Let H = hx, yi and let Y = hyi. Since 1 2 ⇥1 and k + 1 2 ⇥2, it follows

that ⇥1 [⇥2 = ⌦\{↵} ✓ 1H . Since ↵ 2 Supp(x), the group H is transitive.

We show that H is primitive. Let � be a non-singleton block for H containing ↵. Let

� 2 �\{↵}. Since ↵ is fixed by y, it follows that �y = �. Hence �Y
[ {↵} ✓ �. If

� 2 ⇥1, then �Y
[ {↵} = ⇥1 [ ↵ ✓ �. Hence |�| � k + 1 > n

2 and so � = ⌦ by Lemma

4.2.6. If � 2 ⇥2, then ⇥2[{↵} ✓ �. Since Supp(x)\⇥1 = {1} and (k+1)x
�1

= 1 6= ↵x
�1
,
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it follows that ↵x
�1

2 ⇥2 ✓ �. Hence �x
�1

= �, and so �H = �. By the transitivity of

H, it follows that � = ⌦.

Hence H = hx, yi is primitive, and contains the Jordan element x. Thus An  H, by

Theorem 4.3.4, and so H = G by the parity of y.

We now show that if |⌦1 \ Supp(x)| = 1, then there exists y 2 M such that

hx, yi = G.

Lemma 5.3.2. Let n,G,M and x be as in Hypothesis 5.2.5(A). If |⌦1 \ Supp(x)| = 1,

then there exists y 2 M such that hx, yi = G.

Proof. We begin by showing that we can make assumptions on x. By Lemma 5.3.1

the result holds if x is a Jordan element, and so by Lemma 8.2.3 the result holds if

n� k  10. Hence assume otherwise. Therefore x /2 Js, and so 2(
p
n� 1) < |Supp(x)|.

Since |⌦1 \ Supp(x)| = 1 it follows that |Supp(x)|  n � k + 1. Thus n � k > 10 and

2(
p
n � 1) < n � k + 1, and so by Lemma 4.4.6 there exists a prime p(2) such that

2 < p(2) < n � k � 3 and p(2) - k. In addition, by Lemma 8.2.2 the result holds if

|Supp(x)| < 8 or if C(x) = 1(n�8)
· 24, so we may assume otherwise. Therefore by Lemma

4.2.3(ii) there exist ↵,↵x, �, �x, �, ✏ 2 Supp(x)\{1, k+1} such that (�, ✏) is not a cycle of x.

The proof splits into two cases. For each we give an element y 2 M such thatH = hx, yi

is transitive and contains an element of Jc. We then prove simultaneously that in both

casesH is primitive. First suppose that p(2) | (n�k). By Lemma 4.2.1, elements composed

of five cycles lie in An if and only if G = An. Hence there exists y = c1c2c3c4c5 2 M such

that

CM(y) = k | p(2) · (n� k � p(2) � 2) · 1 · 1,

with ↵, �, �x
2 ⇥2, k+1,↵x

2 ⇥3, ⇥4 = {�} and ⇥5 = {✏}. Let H = hx, yi. Since 1 2 ⇥1

and k + 1 2 ⇥3, it follows that ⇥1,⇥3 ✓ 1H . Then because ↵ 2 ⇥2 and ↵x
2 ⇥3, it

follows that ⇥2 ✓ 1H . Since (�, ✏) is not a cycle of x and ⌦\{�, ✏} ✓ 1H , the group H is

transitive. Since p(2) > 2 and p(2) | (n� k), it follows that p(2) - |⇥3|. Hence yk(n�k�p
(2)

�2)

is a p(2)-cycle, and so yk(n�k�p
(2)

�2)
2 Jc.

Next suppose that p(2) - (n � k). By Lemma 4.2.1, elements composed of three cycles

lie in An if and only if G = An. Hence there exists y = c1c2c3 2 M such that

CM(y) = k | p(2) · (n� k � p(2)),

with ↵, �, �x
2 ⇥2 and k + 1,↵x

2 ⇥3. Let H = hx, yi. Since 1 2 ⇥1 and k + 1 2 ⇥3

it follows that ⇥1,⇥3 2 1H . Finally, from ↵ 2 ⇥2 and ↵x
2 ⇥3, it follows that H is
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transitive. Since p(2) - (n� k) it follows that p(2) - |⇥3|. Hence yk(n�k�p
(2)) is a p(2)-cycle,

and so yk(n�k�p
(2))

2 Jc.

Let H be as in either case above and let H be a non-singleton block system for H. From

p(2) - |⇥i| for i 6= 2, Lemma 4.2.12 implies that there exists a block � 2 H such that

⇥2 ✓ �. Therefore �y = �. Furthermore, from �, �x
2 ⇥2 we deduce that �H = �.

Hence � = ⌦ by the transitivity of H. Thus H is primitive and contains an element of Jc.

Therefore An  H by Theorem 4.3.4, and by the parity of y it follows that H = G.

We now complete the proof that under Hypothesis 5.2.5(A) there exists y 2 M such

that hx, yi = G.

Lemma 5.3.3. Let n,G,M and x be as in Hypothesis 5.2.5(A). Then there exists y 2 M

such that hx, yi = G.

Proof. If |⌦1 \ Supp(x)| = 1, then the result holds by Lemma 5.3.2. Therefore we may

assume that |⌦1 \ Supp(x)| � 2, and so there exists ↵ 2
�
⌦1 \ Supp(x)

�
\{1}. Since

k � 7, there exists a prime pk such that 5  pk  k � 2, by Theorem 4.4.1.

First assume that k = pk + 2 and n � k = pk. Hence n = 2pk + 2. Thus n is even,

and so by Hypothesis 5.2.5(A) it follows that G = Sn. By Lemma 4.2.1, elements of Sn

composed of three cycles are in Sn\An. Let y = c1c2c3 2 M such that

CM(y) = 3 · (pk � 1) | pk,

with 1 2 ⇥1, ↵ 2 ⇥2 and ↵x /2 ⇥2. Let H = hx, yi. Since 1x = k + 1, it follows that

⇥1,⇥3 ✓ 1H . Then ↵ 2 ⇥2 and ↵x
2 ⇥1 [⇥3, so H is transitive.

Let H be a non-singleton block system for H. Since pk - |⇥1|, |⇥2|, Lemma 4.2.12

implies that there exists a block � 2 H such that ⇥3 ✓ �. Hence �y = �, and so � is

a union of the orbits of y and contains ⇥3. Hence |�| = pk, pk + 3, 2pk � 1 or 2pk + 2.

Since |�| divides n = 2pk + 2, it follows that |�| = 2pk + 2. Hence H is primitive and

contains y3(pk�1)
2 Jc. Therefore H = G by Theorem 4.3.4.

Hence for the remainder of the proof we may assume that either k 6= pk+2 or n�k 6= pk.

Since k � 2 � pk, it follows that we can assume either

k � pk > 2 or n� k 6= pk. (5.1)

By Lemma 4.2.1 elements of Sn composed of three cycles are in An if and only if G = An.
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Hence let Y be the set of elements y = c1c2c3 2 M such that

CM(y) = (k � pk) · pk | (n� k),

with 1 2 ⇥1, ↵ 2 ⇥2 and ↵x /2 ⇥2. By Lemma 4.2.1, Y 6= ;, and consists of elements of

An if and only if G = Sn. For all y 2 Y , let H = H(y) = hx, yi and let Y = hyi. The

proof of transitivity is identical to the previous case. We assume, by way of contradiction,

that H(y) is imprimitive for all y 2 Y , and let H be a non-trivial block system for H.

First suppose, for a contradiction, that there exists �1 2 H such that ⇥2 ✓ �1. We

begin by showing that if ⇥2 ✓ �1, then �1 = ⇥2. Suppose otherwise, and let � 2 �1\⇥2.

From ⇥2 ✓ �1 we see that �
y

1 = �1. If � 2 ⇥1, then ⇥1[⇥2 ✓ �1 and so |�1| � k > n

2 ,

a contradiction. Hence � 2 ⇥3, so ⇥2 [⇥3 ✓ �1, yielding the contradiction

|�1| � |⇥2|+ |⇥3| = pk + n� k >
k

2
+ n� k = n�

k

2
>

n

2
.

Hence if ⇥2 ✓ �1 then �1 = ⇥2. Therefore |�1| = pk and so pk | n. Since n

2 < k < 2pk,

it follows that n < 4pk, and consequently either n = 2pk or n = 3pk.

If n = 2pk, then H consists of two blocks �1 = ⇥2 and �2 = ⌦\�1 = ⇥1 [⇥3. Hence

{1, k + 1} = {1, 1x} ✓ �2, and so both x and y leave �2 invariant, contradicting the

transitivity of H.

If n = 3pk, then there exist blocks �2 and �3 such that H = {�1,�2,�3}. Hence

�2 [ �3 = ⇥1 [ ⇥3. Since pk 6= k � pk it follows that ⇥1 is not a block. Therefore �2

and �3 contain points of ⇥1 and ⇥3. Hence yH = (�2,�3). If there exists � 2 �1 such

that �x
2 �1, then �x

1 = �1 = �y

1, a contradiction. Therefore �x

1 ✓ ⇥1 [⇥3, and since

|�1| = pk � 5, there exist distinct points �, � 2 �1 such that �x, �x are either both

contained in ⇥1 or in ⇥3. Let

Y1 = {y 2 Y | (�x)y = �},

and notice that Y1 6= ;. Hence for all y 2 Y1, the block �2 contains exactly one of

{�x, �x}. Thus �x

1 \�2 6= ; and �x

1 6= �2, a contradiction.

Therefore if n is even and y 2 Y or if n is odd and y 2 Y1, then there is no block �1 2 H

satisfying ⇥2 ✓ �1. Hence it follows from Lemma 4.2.11(ii) that cH2 is a pk-cycle. Let

� 2 Supp(cH2 ). From pk > k� pk it follows that �\⇥1 = ; by Lemma 4.2.11(iv). Since

� is non-trivial it follows that � \ ⇥3 6= ;. From |�| > 1 we deduce that � \ ⇥3 6= ;.

Hence cH2 = cH3 by Lemma 4.2.11(i), and so pk | (n � k) by Lemma 4.2.10. Therefore

pk = n � k by Lemma 4.4.3, and so |�| = 2. If n is odd then we reach a contradiction,

and so if y 2 Y1, then H = hx, yi is primitive. Therefore assume that n is even.
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From � \ ⇥1 = ;, it follows that cH1 and cH2 = cH3 act on disjoint sets of blocks. From

pk = n � k it follows by (5.1) that |⇥1| = k � pk > 2. Thus ⇥1 is a union of blocks at

least two, |⇥1| � 4 and cH1 is a cycle of length k�pk

2 . Hence there exists � 2 ⇥1\{1,↵x
�1
},

and the set

Y� =
n
y 2 Y : 1y

k�pk
2 = �

o

is non-empty. Hence for all y 2 Y�, it follows that � = {1, �} is a block for H(y).

Consider �x = {k+1, �x
}. If �x

2 ⌦2, then �x
✓ ⌦2 = ⇥3, contradicting the fact that cH3

is a pk-cycle and so acts regularly on blocks. Hence �x
2 ⌦1. Since � 6= ↵x

�1
, it follows

that �x
6= ↵. Since |⇥1| � 4, there exists y 2 Y� such that �x

2 ⇥1. Thus k+1 2 �x
\⇥3

and �x
2 �x

\⇥1, contradicting the fact that c1 and c3 act on disjoint sets of blocks.

Hence when n is odd there exists y 2 Y1, and when n is even there exists y 2 Y�

such that H = hx, yi is primitive. If n � k 6= pk, then y(k�pk)(n�k) is a pk-cycle; and if

n� k = pk, then ypk is a (k � pk)-cycle. Thus in both cases H contains an element of Jc

and so H = G by Theorem 4.3.4.

5.3.2 Hypothesis 5.2.5(B)

In this section we show that for n,G,M and x as in Hypothesis 5.2.5(B) there exists

y 2 M such that hx, yi = G. This parity proves to be more di�cult than the previous

and so will require more cases.

We begin with the case |⌦1 \ Supp(x)| = 2 = |⌦2 \ Supp(x)|.

Lemma 5.3.4. Let G,M, n and x be as in Hypothesis 5.2.5(B). If |⌦1 \ Supp(x)| = 2

and |Supp(x) \ ⌦2| = 2, then there exists y 2 M such that hx, yi = G.

Proof. Let ⌦1 \ Supp(x) = {1,↵} and ⌦2 \ Supp(x) = {k + 1, �}. Then there are three

possibilities for x, namely (1, k + 1,↵, �), (1, k + 1, �,↵) or (1, k + 1)(↵, �).

By Lemma 4.2.1, elements of Sn composed of two cycles lie in An if and only if G = An.

Hence there exists y = c1c2 2 M such that

CM(y) = k | (n� k),

with 1y
2
= ↵ and (k + 1)y = �. Since 1x = k + 1, it follows that H = hx, yi is transitive.

We prove that H is primitive. Let � be a non-singleton block for H containing 1. We

shall show that there exists � 2 (�\⇥1)\{1}. Let � 2 �\{1}. If � 2 ⇥1, then let � := �.

If � 2 ⇥2, then let � := 1y
(n�k)

. Since k > n� k, it follows that � 6= 1. From �y
(n�k)

= �

we deduce that �y
(n�k)

= �, hence � 2 � \⇥1.

We claim that �x = � and so k + 1 2 �. If � 2 Fix(x), then this is immediate. If
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� /2 Fix(x), then by looking at Supp(x) we deduce that � = ↵ = 1y
2
. Hence �y

2
= � and

so 1y
4
2 �. Since k � 7, it follows that 1y

4
6= 1,↵. Hence 1y

4
2 Fix(x) and so �x = �.

The block �y contains � = (k + 1)y 2 Supp(x) and ✏ := 1y 2 Fix(x). Therefore

(�y)x = �y, and so �x
2 �y. By consulting the possibilities for x it is immediate that

either �x = ↵ = ✏y or �x = 1 = ✏y
�1
. Hence either {✏, ✏y} or {✏, ✏y

�1
} ✓ �y. Thus

(�y)y = �y, and so �y = �. Hence �x = � = �y, and so � = ⌦.

Therefore H = hx, yi is primitive. Since |Supp(x)| = 4  2(
p
n � 1) it follows that

x 2 Js. Therefore An  H by Theorem 4.3.4, and the parity of y implies that H = G.

We now generalise to the case where both |⌦1 \ Supp(x)| and |⌦2 \ Supp(x)| are at

least 2.

Lemma 5.3.5. Let n,G,M and x be as in Hypothesis 5.2.5(B). If |⌦1 \ Supp(x)| � 2

and |⌦2 \ Supp(x)| � 2, then there exists y 2 M such that hx, yi = G.

Proof. By Lemma 5.3.4, the result holds when |Supp(x)| = 4, and so we may assume

that |Supp(x)| > 4. Hence there exist points ↵ 2 ⌦1\{1} and � 2 ⌦2\{k + 1} such that

↵x
6= �.

We define Y , a set of elements of M composed of four cycles (with unspecified lengths).

We show that for all y 2 Y that H = hx, yi is transitive. We then define subsets of Y

based on the lengths of the cycles, and in each case show that H is primitive and contains

a Jordan element.

Let Y be the set of y = c1c2c3c4 2 M such that ⇥1 [ ⇥2 = ⌦1, ⇥3 [ ⇥4 = ⌦2,

1 2 ⇥1,↵ 2 ⇥2, ↵x /2 ⇥2, k + 1 2 ⇥3 and ⇥4 = {�}. By Lemma 4.2.1, elements of Sn

composed of four cycles lie in An if and only if G = An, so Y 6= ;. For all y 2 Y , let

H = H(y) = hx, yi and let Y = hyi.

From 1x = k + 1 we deduce that ⇥1,⇥3 ✓ 1H . Since ↵x
6= � and ↵x /2 ⇥2, it follows

that ↵ 2 ⇥1 [⇥3. Hence ⌦\{�} = ⇥1 [⇥2 [⇥3 ✓ 1H , and since � 2 Supp(x), it follows

that H is transitive. Assume, by way of contradiction, that H is imprimitive, and let H

be a non-trivial block system for H.

Let pk be as in Theorem 4.4.1 so that k

2 < pk < k � 1. We split into two cases. First

assume that pk = n� k � 1 and pk = k � pk + 1. Then

n = pk + k + 1 = pk + 2pk = 3pk,
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and so it follows from Hypothesis 5.2.5(B) that G = Sn. Let

Y1 =
n
y 2 Y : CM(y) = (pk + 1) · (pk � 2) | pk · 1

o
.

Then Y1 6= ; and pk - |⇥1|, |⇥2|, |⇥4|. Hence Lemma 4.2.12 implies that there exists a

block � 2 H such that ⇥3 ✓ �, and so |�| � pk. Since n = 3pk and |�| | n, it follows

that |�| = pk and � = ⇥3. Let � be the block containing �. Then �y = �, and so �

is a union of some of the ⇥i. Since |�| = pk we reach a contradiction. Therefore for all

y 2 Y1, the group H = hx, yi is primitive. Furthermore, y(pk+1)(pk�2)
2 Jc and so H = G

by Theorem 4.3.4.

We may now assume that either

pk 6= k � pk + 1 or pk 6= n� k � 1. (5.2)

Let

Y2 =
n
y 2 Y : CM(y) = (k � pk) · pk | (n� k � 1) · 1

o
.

Then Y2 6= ;.

We first claim that there exists � 2 H such that ⇥2 ✓ �. If pk 6= n � k � 1, then

pk - (n � k � 1) by Lemma 4.4.3. In which case pk - |⇥1|, |⇥3|, |⇥4| and so the claim

holds by Lemma 4.2.12. Suppose instead that pk = n � k � 1. If the claim does not

hold, then l(cH2 ) = pk by Lemma 4.2.11(ii). Hence cH1 and cH2 act on distinct sets of

blocks by Lemma 4.2.11(iv). Since H is non-trivial it follows that cH2 = cH3 , and so block

size is two. Let � 2 H be the block which contains �. Then �y = � since � is fixed

by y. Hence � /2 Supp(cH2 ) = Supp(cH3 ), and so � \ ⇥1 6= ;. Therefore ⇥1 ✓ � and

|�| � k � pk + 1 > k � (k � 1) + 1 = 2, a contradiction. Hence the claim holds.

We show next that cH1 = cH3 . From ⇥2 ✓ � it follows that |�| � pk > k

2 > n

4 , and

so |H| = 2 or 3. First suppose that |H| = 2, for which we derive a contradiction. Let

� = ⌦\�. Since �y = �, it follows that �y = �. If ⇥1 ✓ �, then

|�| � (k � pk) + pk = k >
n

2
,

a contradiction.We now show that ⇥3 6✓ �. Recall that pk >
k

2 , and so pk � k > �
k

2 ; also

by assumption

n� k = |⌦2| � 2 and so �1 � �
n�k

2 . Hence if ⇥3 ✓ � then

|�| � pk + n� k � 1 = n+ (pk � k)� 1 > n�
k

2
�

n� k

2
=

n

2
,

a contradiction. Therefore ⇥1,⇥3 6✓ � and so ⇥1,⇥3 ✓ �. Thus 1, k+1 2 � and so �H =
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�, a contradiction. Hence |H| 6= 2, and we conclude that |H| = 3. Recall that ⇥2 ✓ �,

and so if � \ ⇥1 6= ; then ⇥1 [ ⇥2 ✓ �. In which case |�| > n

2 , a contradiction. Hence

there exists a block � 2 H\{�} containing a point of ⇥1. If �\⇥3 6= ;, then cH1 = cH3 by

Lemma 4.2.11(i), as required. Hence assume for a contradiction that � \⇥3 = ;, and so

⇥2 ✓ � and � ✓ ⇥1 [⇥4. Since |⇥1| < |⇥2|  |�|, it follows that ⇥4 = {�} ✓ �. Hence

�y = � and � = ⇥1[{�}. Therefore the third block of H, say ⌃, must contain a point of

⇥3. Since �y = � and �y = � it follows that ⌃y = ⌃. Thus � = ⇥2, � = ⇥1 [ {�} and

⌃ = ⇥3. Hence |�| = |�| = |⌃| implies that pk = k � pk + 1 = n � k � 1, contradicting

(5.2).

Therefore we have shown that ⇥2 ✓ � and so �y = �, and that cH1 = cH3 . If there

exists � 2 � such that �x 2 �, then �H = �, a contradiction. Hence ⇥x

2 ✓ ⇥1[⇥3[{�}.

By Theorem 4.4.1 |⇥2| = pk > 5, and so there exist ✏, ⇣ 2 ⇥2 such that either ✏x, ⇣x are

both in ⇥1 or both in ⇥3. There exists y 2 Y2 such that (✏x)y = ⇣x. Hence (�x)y = �x,

and so cH1 = cH3 implies that ⇥1 [⇥3 ✓ �x. In particular, �x contains 1 and k + 1, and

so (�x)x = �x. Hence (�x)H = �, a contradiction.

Therefore for this y the group H = hx, yi is primitive. If pk 6= n � k � 1, then

y(k�pk)(n�k�1) is a pk-cycle. If pk = n � k � 1, then ypk is a (k � pk)-cycle. Hence H

contains an element of Jc. Thus An  H by Theorem 4.3.4, and so H = G by the parity

of y.

We have reduced to the case of either |⌦1 \ Supp(x)| = 1 or |⌦2 \ Supp(x)| = 1. We

first consider the case where |⌦1 \ Supp(x)| = 1.

Lemma 5.3.6. Let n,G,M and x be as in Hypothesis 5.2.5(B). If |⌦1 \ Supp(x)| = 1,

then there exists y 2 M such that hx, yi = G.

Proof. First assume that x is a Jordan element. It is immediate from Hypothesis 5.2.5

that there exists ↵ 2 Supp(x)\{1, k + 1}, and so ↵ 2 ⌦2. Let � := ↵x
�1
. Observe in the

following that we only define k+1, (k+1)y, (k+1)y
2
to be distinct when |⌦2\Supp(x)| � 3.

By Lemma 4.2.1, elements of Sn composed of two cycles lie in An if and only if G = An,

so there exists y = c1c2 2 M such that

CM(y) = k | (n� k),

with (k + 1)y = ↵, and if � 6= k + 1, then ↵y = (k + 1)y
2
= �. Hence if � = k + 1, then

�y = ↵; and otherwise ↵y = �. Let H = hx, yi. Since 1 2 ⇥1 and k + 1 2 ⇥2, it follows

that H is transitive.

Let H be a non-singleton block system for H, and let � 2 H with 1 2 �. We show

that there exists � 2 (�\⇥1)\{1} (as in Lemma 5.3.4). Since � is a non-singleton block
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there exists � 2 �\{1}. If � 2 ⇥1, then let � := �. If � 2 ⇥2, then �y
n�k

= �, and so

�y
n�k

= �. Since k > n� k it follows that 1y
n�k

6= 1, hence � := 1y
n�k

2 (� \⇥1)\{1}.

From ⇥1 \ Supp(x) = {1} it is immediate that � 2 Fix(x). Hence �x = �, and so

k+ 1 = 1x 2 �. Therefore �y contains 1y and (k+ 1)y = ↵. We show that (�y)H = �y.

Since 1y 2 ⇥1\{1} ✓ Fix(x), it follows that�y is left invariant by x. Hence (�y)x
�1

= �y,

and so � = ↵x
�1
,↵ 2 �y. Either ↵y = � or �y = ↵ and so (�y)y = �y and (�y)H = ⌦.

Therefore H is primitive. Furthermore, H contains the Jordan element x, so H = G.

Hence we may assume that x is not a Jordan element. Therefore in particular x /2 Js,

and so |Supp(x)| > 2(
p
n�1). By Lemma 8.2.3, the result holds when n�k  10, and so

we may assume that n�k > 10. Combining these two observations together with Lemma

4.4.6 implies that there exists a prime p(2) such that 2 < p(2) < n � k � 3 and p(2) - k.
Furthermore, since the result holds when x is a Jordan element, by Lemma 8.2.2 we may

assume that |Supp(x)| � 8 and C(x) 6= 1(n�8)
· 2 · 32, 1(n�8)

· 3 · 5 or 1(n�9)
· 33. Hence by

Lemma 4.2.3(i) there exist distinct points ↵,↵x, �, �x, �, �x 2 Supp(x)\{1, k + 1}. From

|⌦1 \ Supp(x)| = 1 it follows that ↵,↵x, �, �x, �, �x 2 ⌦2.

If p(2) - (n� k � 1) then let i = 1, otherwise let i = 2 so that p(2) - (n� k � p(2) � i)i.

We now make some observations which will ensure that the placement of points in the

elements below are well define. From p(2)  n � k � 4 we see that n � k � p(2) � i � 2.

In addition, since n � k � 11, it follows that n � k � i � 9. Hence if p(2) = 3, then

n� k� p(2) � i � 6. By Lemma 4.2.1, elements of Sn composed of four cycles lie in An if

and only if G = An, so there exists y = c1c2c3c4 2 M such that

CM(y) = k | p(2) · (n� k � p(2) � i) · i,

with ↵, �, �x 2 ⇥2, k + 1,↵x
2 ⇥3, �x

2 ⇥4, and if p(2) � 5 then � 2 ⇥2, otherwise

� 2 ⇥3. Let H = hx, yi. It is easy to see that H is transitive.

Let H be a non-singleton block system for H. From p(2) - |⇥1|, |⇥3|, |⇥4|, Lemma 4.2.12

implies that, there exists � 2 H with ⇥2 ✓ �. Hence �y = � and �, �x 2 �, and so

�H = � = ⌦. Thus H is a primitive group containing the p(2)-cycle yk(n�k�p
(2)

�i)i
2 Jc.

Therefore An  H by Theorem 4.3.4, and so H = G by the parity of y.

It remains to consider |⌦2 \ Supp(x)| = 1. We first suppose that x is a Jordan ele-

ment.

Lemma 5.3.7. Let G,M, n and x be as in Hypothesis 5.2.5(B). If |⌦2 \ Supp(x)| = 1

and x is a Jordan element, then there exists y 2 M such that hx, yi = G.

Proof. It is immediate from Hypothesis 5.2.5 that there exists ↵ 2 Supp(x)\{1, k + 1}.
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Our assumptions that |⌦2 \ Supp(x)| = 1 and 1x = k + 1 imply that ↵,↵x
2 ⌦1.

By Lemma 4.2.1, elements of Sn composed of two cycles lie in An if and only if G = An.

Hence there exists y = c1c2 2 M such that

CM(y) = k | (n� k),

with 1y = ↵ and if ↵x
6= 1, then ↵y = ↵x. Hence ⇥1 = ⌦1 and ⇥2 = ⌦2. It is clear that

H = hx, yi is transitive.

We assume, by way of contradiction, that H is imprimitive and let H be a non-singleton

block system for H. Let � 2 H be the block containing k + 1 and some � 2 �\{k + 1}.

If n � k = 1, then �y = � and � 2 ⇥1. Hence �hyi
[ {k + 1} = ⌦ = �, and so H is

primitive. Therefore assume that n� k � 2.

We claim that 1 2 �. To see this, let � 2 H be the block containing 1. If �\Fix(x) 6= ;,

then �x = � and so k + 1 = 1x 2 �. Hence � = � and the claim holds. Similarly, if

� \ Fix(x) 6= ;, then � = �. Hence we may assume that �,� ✓ Supp(x). From

|⇥2 \ Supp(x)| = 1, it follows that � and � both contain points of ⇥1. Since � contains

a point of ⇥2, we deduce that cH1 = cH2 by Lemma 4.2.11(i). Hence � \ ⇥2 6= ;. Since

� ✓ Supp(x) and ⇥2 \ Supp(x) = {1} it follows that 1 2 � and so � = �. Therefore

1, k + 1 2 �.

The block �y contains 1y = ↵ and (k + 1)y 2 Fix(x). Hence (�y)x = �y, and so

in particular {↵,↵x
} ✓ �y. If ↵x = 1, then {↵,↵x

} = {1y, 1}; and if ↵x
6= 1, then

{↵,↵x
} = {↵,↵y

}. Hence �y = (�y)H = ⌦. Therefore H is primitive and contains the

Jordan element x, and so H = G by Theorem 4.3.4.

Finally, we generalise to the case |⌦2 \ Supp(x)| = 1.

Lemma 5.3.8. Let n,G,M and x be as in Hypothesis 5.2.5(B). If |⌦2 \ Supp(x)| = 1,

then there exists y 2 M such that hx, yi = G.

Proof. If x is a Jordan element, then the result holds by Lemma 5.3.7. If k  9 then

the result holds by Lemma 8.2.4. Hence we may assume that k � 10. Then by Lemma

4.4.5 there exists a prime p(1) such that 2 < p(1)  k � 5 and p(1) - (n � k). By

Lemma 8.2.2 the result holds if |Supp(x)| < 8 or C(x) = 1(n�8)
· 2 · 32, 1(n�8)

· 3 · 5

or 1(n�9)
· 33. Thus assume otherwise, and so by Lemma 4.2.3(i) there exist distinct

points ↵,↵x, �, �x, �, �x 2 Supp(x)\{1, k + 1}. Since |⌦2 \ Supp(x)| = 1 it follows that

↵,↵x, �, �x, �, �x 2 ⌦1.

If p(1) - (k � 1), then let i = 1, otherwise let i = 2. Hence p(1) - (k � i � p(1))i. We

now make an observation on k � i� pk which will show that the placement of points in
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the element below are well defined. Since pk  k � 5 it follows that k � pk � 5 and so

k � pk � i � 3. By Lemma 4.2.1, elements of Sn composed of four cycles lie in An if and

only if G = An, so there exists y = c1c2c3c4 2 M such that

CM(y) = (k � i� p(1)) · p(1) · i | (n� k),

with 1,↵, � 2 ⇥1, ↵x, �, �x 2 ⇥2 and �x
2 ⇥3. Let H = hx, yi. Then it is easy to check

that H is transitive.

Let H be a non-singleton block system for H. Since p(1) - |⇥1||⇥2||⇥4|, Lemma 4.2.12

implies that there exists � 2 H such that ⇥2 ✓ �. Hence �y = � and �, �x 2 �.

Therefore � = �H = ⌦, and so H is primitive. Furthermore, H contains the p(1)-cycle

y(k�i�p
(1))i(n�k)

2 Jc and so H = G by Theorem 4.3.4.

Lemma 5.3.9. Let n,G,M and x be as in Hypothesis 5.2.5(B). Then there exists y 2 M

such that hx, yi = G.

Proof. If |⌦i \ Supp(x)| � 2 for i 2 {1, 2}, then result holds by Lemma 5.3.5. If

|⌦1 \ Supp(x)| = 1 then the result holds by Lemma 5.3.6, and if |⌦2 \ Supp(x)| = 1 then

the result holds by Lemma 5.3.8.

5.3.3 Completing the proof of Theorems 5.1.1 and 5.1.2

If n � 12 and x 2 G\M is not a transposition, then by Lemmas 5.3.3 and 5.3.9 there

exists y 2 M such that hx, yi = G. Here we consider the case of x 2 G\M a transposition.

We then prove Theorems 5.1.1 and 5.1.2.

Theorem 5.3.10. Let n, k,G = Sn and M be as in Notation 5.2.1, and let x 2 G\M be a

transposition. Then there exists y 2 M such that hx, yi = G if and only if gcd(n, k) = 1.

Proof. By Proposition 5.2.4, it su�ces to consider x = (1, k + 1).

First assume that gcd(n, k) = 1. Let y = c1c2 2 M such that CM(y) = k | (n � k),

and let H = hx, yi. Then 1 2 ⇥1 and k + 1 2 ⇥2, and so H is transitive. Let � be a

non-singleton block for H containing 1, and let ↵ 2 �\{1}. If ↵ 2 ⌦1, then ↵x = ↵ and

so �x = �. Hence k + 1 = 1x 2 �. Therefore, without loss of generality, ↵ 2 ⌦2. Thus

↵y
(n�k)

= ↵, and so �y
(n�k)

= �. Hence 1hy
(n�k)

i
✓ �. It follows from gcd(n, k) = 1 that

1hy
(n�k)

i = ⌦1. Thus |�| � k + 1 > n

2 , so � = ⌦ and H is primitive. Since x 2 Jc it

follows that An  H by Theorem 4.3.4, and so H = Sn since x 2 Sn\An.

Next assume that gcd(n, k) = t > 1. Let y 2 M be such that hx, yi is transitive. Then

the only possible cycle structure of y is CM(y) = k | (n � k). We claim that the set
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of translates of � = 1hy
t
i
[ (k + 1)hy

t
i form a proper non-trivial block system for hx, yi.

From which it will follow that hx, yi is imprimitive, and so is not equal to Sn. To see this,

notice that

|�| = |1hy
t
i
|+ |(k + 1)hy

t
i
| =

k

t
+

n� k

t
=

n

t
> 1.

Also, note that
Ṡt�1

i=0�
y
i
= ⌦ and x fixes �y

i
setwise for 0  i  t� 1.

By combining the results covered so far we now prove Theorem 5.1.1, which determines

when M is a maximal subgroup in �(G).

Proof of Theorem 5.1.1. let n � 4, let n

2 < k < n, let G = Sn or An, and let

M = (Sk ⇥ Sn�k) \ G. Recall that M is a maximal coclique in �(G) if and only if

for all x 2 G\M there exists y 2 M such that hx, yi = G. By Proposition 5.2.4 we may

assume without loss of generality that 1x = k + 1.

If n  11, then the result holds by Lemma 5.2.3, so assume that n � 12. First let

G = Sn and gcd(n, k) = 1, or let G = An. Then Lemmas 5.3.3 and 5.3.9 and Theorem

5.3.10 imply that for all x 2 G\M there exists y 2 M such that hx, yi = G. Now let

G = Sn and gcd(n, k) > 1. Then by Theorem 5.3.10 h(1, k+1), yi 6= G for all y 2 M .

We now prove Theorem 5.1.2, in which determines the maximal cocliques for the ex-

ceptional cases in Theorem 5.1.1.

Proof of Theorem 5.1.2. Let 2 
n

2 < k < n, let G = Sn or An and let

M = (Sk ⇥ Sn�k) \G.

In Parts (i)(b), (ii)(a) and (ii)(b) follow immediately from Lemma 5.2.3.

It remains to prove (i)(a). Hence let G = Sn, let gcd(n, k) > 1, and let C be a

maximal coclique of �(G) which contains M\{1}. Then C 6= M\{1} by Theorem 5.1.1.

If x 2 G\M is not a transposition, then by Lemmas 5.3.3 and 5.3.9 there exists y 2 M

such that hx, yi = G. Hence

M\{1} ( C ✓ (M\{1}) [ (1, k + 1)M .

Let z1, z2 2 (M\{1}) [ (1, k + 1)M . If z1, z2 2 M then hz1, z2i  M � G. If z1 2 M and

z2 2 (1, k+1)M then hz1, z2i 6= G by Theorem 5.3.10. If z1, z2 2 (1, k+1)M then hz1, z2i is

a dihedral group, and since n � 3 it follows that hz1, z2i 6= G. Hence (M\{1})[(1, k+1)M

is a coclique and so C = (M\{1}) [ (1, k + 1)M .

116



5.4 Proof of Theorem 5.1.4

Let p � 5 be a prime such that p 6= q
d
�1

q�1 for all prime powers q and d � 2, and let G = Sp

or Ap. In this section we prove Theorem 5.1.4, namely we determine which maximal

subgroups of G are maximal cocliques in �(G).

The methods here are di↵erent to those in Section 3, because we can use the following

theorem to classify the maximal subgroups of Sp and Ap.

Theorem 5.4.1 ([23, p.99]). A transitive group of prime degree p is one of the following:

(i) the symmetric group Sp or the alternating group Ap;

(ii) a subgroup of AGL1(p);

(iii) a permutation representation of PSL2(11) of degree 11;

(iv) one of the Mathieu groups M11 or M23 of degree 11 or 23, respectively; or

(v) a group G with PSLd(q)  G  P�Ld(q) of degree p = q
d
�1

q�1 .

We consider M23 and AGL1(p) separately, and then prove Theorem 5.1.4. We begin

with a preliminary lemma which we use in the case of M23  A23.

For a finite group G and a prime p let Syl
p
(G) be the set of all Sylow p-subgroups of

G.

Lemma 5.4.2. Let G = A23 and let M = M23. Then the following hold.

(i) There are two conjugacy classes of subgroups isomorphic to M in G, which we label

U and V.

(ii) If K is a proper transitive subgroup of G, then there exists W 2 U [ V such that

K  W .

(iii) The Sylow 23-subgroups of M are cyclic and transitive.

(iv) If x 2 G\M has order at least 4, then x lies in at most 4608 groups of U and at

most 4608 groups of V.

(v) If Z 2 Syl23(G), then Z lies in exactly one group of U and exactly one group of V.

(vi) If U 2 U and V 2 V then U and V share at most one Sylow 23-subgroup.

Proof. We prove each part using [33, Code 10] in Magma, we summarise the methods

here.

(i) Let G be the largest maximal subgroups of S23, so that G = A23. Then G has

thirteen conjugacy classes of maximal subgroups, only two of which are conjugate
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to M23 in S23. Label these two conjugacy classes U and V .

(ii) The only conjugacy classes of maximal subgroups which are transitive are U and

V . Hence the result follows.

Since U and V are conjugate in S23 and G E S23 we may let M 2 U and prove (iii)-(v)

for U . The result will then follow for V .

(iii) Since 23 | |M | and 232 - |G| it follows that Sylow 23-subgroups of G and M have

order 23. Since A23 and M23 contain a 23-cycles, as an immediate consequence the

Sylow 23-subgroups are cyclic and transitive.

(iv) Let C := ConjugacyClasses(G) and let P := PermutationCharacter(G,M). Then

C is the sequence of conjugacy class representatives of elements of G listed in

ascending order, and P [i] is the number of cosets of M in G that are stabilized by

C[i]. We verify that M is self-normalising in G, and so by Lemma 4.6.2, P [i] is the

number of conjugates of M in G containing C[i].

Let o(C[i]) denote the order of the element C[i] in G. From o(C[13]) = 3 and

o(C[14]) = 4 it follows that o(C[i]) � 4 exactly when i � 14. In addition P [i]  4608

for i � 14. Hence if g 2 G has order at least four, then g lies in at most 4068 groups

of U .

(v) Using the notation as above o(C[i]) = 23 if and only if i = 276 or 277. Hence G has

two conjugacy classes of element of order 23. Since P [266] = P [277] = 1 it follows

that elements of order 23 lie in exactly one group of U .

(vi) Let Z 2 Syl23(G). Then by Part (v) there exists exactly one U 2 U and V 2 V such

that Z  U \ V . Since NU(Z) = NG(Z) it follows that NU(Z) = NV (Z). Hence

the result follows since NG(Z) is a maximal subgroup of U .

Lemma 5.4.3. Let G = A23 and M = M23. Then M is a maximal coclique in �(G).

Proof. Let G = A23. By Lemma 5.4.2(i), there are two conjugacy classes of M23 in G

which we call U and V . Since U and V are conjugate in S23 and G E S23, it su�ces to

show that M 2 U is a maximal coclique in �(G). Let x 2 G\M . We show that there

exists y 2 M such that hx, yi = G. In certain places we use [33, Code 11] in Magma.

First assume that x has order at least four. Let Z1 2 Syl23(M) ✓ Syl23(G). Then

[M : NM(Z1)] = 40320, and so |Syl23(M)|. By Lemma 5.4.2(v) each Z 2 Syl23(M) is

contained in exactly one group of V . By Lemma 5.4.2(iv) x lies in at most 4608 groups of

V . Hence by Lemma 5.4.2(vi), there are 40320� 4608 = 35712 choices of Z 2 Syl23(M)

for which H := hx, Zi is contained in no group of V . Again by Lemma 5.4.2(v), the only
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group of U containing Z is M . Since x /2 M it follows that H is contained in no group of

U . By Lemma 5.4.2(iii) Z is transitive and there exists y 2 Z such that Z = hyi. Hence

H is transitive and H = hx, yi. Since H is contained in no group of U or V , it follows

that H = G by Lemma 5.4.2(ii).

Now let x have order two or three, and let Z 2 Syl23(M). Then Z is transitive and

there exists y 2 Z such that Z = hyi by Lemma 5.4.2(iii). By Lemma 5.4.2(v) the only

group of U containing Z is M , and there is exactly one group of V containing Z, which

we call N . If x /2 N , then from x /2 M it follows that H := hx, yi is contained in no

group of U [ V . Since H is transitive we deduce by Lemma 5.4.2(ii) that H = G.

Therefore assume that x 2 N and proceed via Magma. To set up this situation, fix

M 2 U , Z 2 Syl23(M), N0 2 V and Z0 2 Syl23(N0). By Sylow’s Theorem there exists

g 2 G such that Zg

0 = Z. Then N g

0 2 V and Z  N g

0 , and so N g

0 = N by Lemma 5.4.2(v).

Then it can be seen that there are 60467 possibilities for x 2 N\M which have order two

or three. For each such possible x it can be verified in Magma that there exists y 2 M

such that hx, yi = G.

We now consider AGL1(p) as a maximal subgroup of Ap.

Lemma 5.4.4. Let p be a prime such that p 6= q
d
�1

q�1 , for any prime power q and d � 2.

Let G = Sp, or let p 6= 11, 23 and G = Ap. Then M = AGL1(p)\G is a maximal coclique

in �(G).

Proof. By Theorem 5.4.1 the only transitive subgroups of Sn are An and AGL1(p), and

the only transitive subgroups of An are AGL1(p)\An. Let x 2 G\M , we show that there

exists y 2 M such that hx, yi = G.

First assume either that G = Sp and x 2 G\M is an odd permutation; or that

G = Ap. Let y 2 M be a p-cycle. Then H := hx, yi is transitive. By Lemma 4.6.8(iv),

M = NG(hyi), and so y is contained in no other conjugate of M . Since x /2 M it follows

that H is contained in no conjugate of M . Hence An  H by Theorem 5.4.1. If G = Ap

then H = G automatically, and if G = Sp then x 2 Sp\Ap and so H = G.

Therefore for the remainder of the proof we may assume thatG = Sp and x 2 G\M is an

even permutation. First let x be a p-cycle. By Lemma 4.6.8(iii), there exist (p�1)-cycles

y1, y2 2 M with di↵erent fixed points. Therefore y1, y2 2 G\Ap and hy1i 6= hy2i. Hence

H1 = hx, y1i and H2 = hx, y2i are transitive subgroups of G which are not contained in

Ap. Theorem 5.4.1 implies that H1 and H2 are either conjugate to M , or equal to G.

In the latter case the result follows, and so assume for a contradiction that H1 and H2
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are both conjugate to M . By Lemma 4.6.8(iv) the unique conjugate of M containing

x is NG(hxi). Hence H1 = NG(hxi) = H2, and so hy1, y2i  H1. By Lemma 4.6.8(v)

M = hy1, y2i and so M = H1, a contradiction since x /2 M .

Assume next that x lies in no conjugate of M and let ↵ 2 Supp(x). By Lemma 4.6.8(iii)

there exists a (p� 1)-cycle y 2 M fixing ↵. Then hx, yi is transitive and contained in no

conjugate of M . Since y /2 An it follows by Theorem 5.4.1 that hx, yi = G.

Finally assume that x is an even permutation, not a p-cycle and lies in some conjugate

of M . Since x is even it follows that x is not a (p� 1)-cycle, and so by Lemma 4.6.8(ii)

is a proper power of a (p � 1)-cycle. We claim there exists a (p � 1)-cycle y in M and

z 2 hyi, such that H = hx, yi is transitive and 1 < |Fix(xz�1)| < p. By Lemma 4.6.8(ii)

each non-identity element of M has at most one fixed point and so it will follow that H

lies in no conjugate of M . Hence An  H by Theorem 5.4.1, and since y 2 Sp\Ap the

result will hold.

It remains to prove the claim. Since x is a proper power of a (p � 1)-cycle, x has one

fixed point which we shall call �. Let M� denote the point stabilizer of � in M . By

Lemma 4.6.8(iv) there exist a unique cyclic p-subgroup of M , which we label P .

Since p � 5, there exist distinct points �, � 2 Supp(x). By Lemma 4.6.8(i) M is

2-transitive, and so there exists z1 in M such that �z1 = �x and �z1 = �x. First assume

that z1 /2 M� [P . Then z1 /2 P implies that z1 is neither a p-cycle nor the identity. Thus

by Lemma 4.6.8(ii) there exists a (p � 1)-cycle y such that z1 2 hyi. From z1 /2 M� we

deduce that � 2 Supp(z1) ✓ Supp(y). Hence H = hx, yi is transitive, �, � 2 Fix(xz�1
1 )

and � /2 Fix(xz�1
1 ), so the claim follows.

Suppose instead that z1 2 M� [ P . Since z1 6= x there exists ✏ 2 Supp(x)\{�, �} such

that ✏z1 6= ✏x. By Lemma 4.6.8(i), there exists z2 2 M such that �z2 = �x and ✏z2 = ✏x.

If z2 /2 M� [P , then the result follows as for z1 with �, ✏ 2 Fix(xz�1
2 ) and � /2 Fix(xz�1

2 ).

Therefore suppose that z1, z2 2 M� [P . It follows from ✏z1 6= ✏x = ✏z2 that z1 6= z2. By

Lemma 4.6.8(i), M is sharply 2-transitive, and so z1 is the unique element of M mapping

� to �x and � to �x. Hence �z1 = �x = �z2 and z1 6= z2, imply that �z2 6= �x = �z1 .

Since M is sharply 2-transitive on ⌦, it follows that M� is sharply transitive on ⌦\{�}.

Since P is cyclic is follows that P is sharply transitive on ⌦. Let Z1 and Z2 be the maximal

cyclic subgroups of M containing z1 and z2. Then z1 is the unique element of Z1 sending

� to �x, and z2 is the unique element of Z2 sending ✏ to ✏x. Since �z1 = �x = �z2 it follows

from the sharp transitivity of M� and P that {Z1, Z2} = {M�, P}.

By Lemma 4.6.8(i), there exists z3 2 M such that �z3 = �x and ✏z3 = ✏x. From ✏z1 6= ✏x

and �z2 6= �x we deduce that z3 6= z1, z2. From �z1 = �z3 and ✏z2 = ✏z3 , the sharp
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transitivity of M� and P imply that z3 /2 Z1 [ Z2 = M� [ P . Therefore there exists

a (p � 1)-cycle y 2 M and t 2 N such that yt = z3. Then y satisfies the claim with

�, ✏ 2 Fix(xy�t) = Fix(xz�1
3 ) and � /2 Fix(xz�1

3 ). Therefore the claim and the theorem

follow.

We can now complete the proof of Theorem 5.1.4.

Proof of Theorem 5.1.4. Let p � 5 be a prime with p 6= q
d
�1

q�1 for all prime powers q and

d � 2. Let G = Sp or Ap and let M be a maximal subgroup of G. If M is intransitive then

M = (Sk ⇥ Sp�k) \G for some p

2 < k < p. Since p is prime it follows that gcd(p, k) = 1,

and so the result holds by Theorem 5.1.1. Hence we may assume that M is transitive,

and so M is one of the groups in Theorem 5.4.1.

First let p = {11, 23} and G = Ap. Since PSL2(11),AGL1(11) \ G  M11 and

AGL1(23) \ G  M23, we need only consider the Mathieu groups. If p = 11, then

[33, Code 12] in Magma, which is similar to the code described in the proof of Lemma

5.2.3, shows that M11 is a maximal coclique in �(A11). By Lemma 5.4.3 M23 is a maximal

coclique in �(A23). Hence if G = Ap, then we may assume that p 6= 11, 23.

If G = Sn or An and M = AGL1(p)\G, then the result follows by Lemma 5.4.4.

It remains to consider G = Sp, andM = Ap. Let x 2 G\M , by Lemma 4.6.4 there exists

a p-cycle y 2 M such that y is not normalized by x. Then H := hx, yi is a transitive,

and by Lemma 4.6.8(iv) is contained in no conjugate of AGL1(p) \ G. Since x /2 M it

follows that H = G.
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Chapter 6

Imprimitive subgroups as cocliques

Let G be Sn := Sym({1, . . . , n}) or An := Alt({1, . . . , n}) and let M be an imprimitive

maximal subgroup of G. Our main result shows that, when n is suitably large, M is a

maximal coclique in the generating graph �(G) of G. Then under certain restrictions on

n, we consider all maximal subgroups of G and determine which are maximal cocliques

in �(G).

Although the results in this section are similar to those in Chapter 5, they seem to

require more lengthy and complex proofs. We split into many more cases, use a di↵erent

approach for proving primitivity and rely more heavily on number theory.

6.1 Introduction

Our main theorem is as follows.

Theorem 6.1.1. Let m, k 2 N such that m, k � 2, let n = mk, let G = Sn or An, and

let M =
�
Sk wr Sm

�
\ G be an imprimitive maximal subgroup of G. If either m � 27 or

k � 28, then M is a maximal coclique in �(G).

We plan in future to resolve this question for all n � 4.

Using Theorem 6.1.1 and the results in Chapter 5, we then prove the following.

Theorem 6.1.2. Let n � 27 · 28 = 756, let G = Sn or An, and let M be a maximal

subgroup of G. If the only proper primitive subgroup of Sn is An, then M either is a

maximal coclique in �(G) or (G,M) = (Sn, Sk ⇥ Sn�k) with gcd(n, k) > 1.

As context for the density of integers for which the above theorem applies, Cameron,

Neumann and Teague prove in [15] that for almost all integers n, the only primitive groups

of degree n are the symmetric and alternating groups. The following is an example of

such n. If p 6= 11 is a prime which is not equal to q+1
2 for any prime power q, then by [25,

Lemma 1] the only proper primitive subgroup of S2p is A2p.
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This chapter is structured as follows. In Section 6.2 we define the notation for the rest

of the chapter. In Section 6.3 we prove Theorem 6.1.1 provided the existence of a Jordan

element. We then divide the possibilities for m and k into six regions as illustrated in

the following diagram.

Figure 6.1: Patchwork Proof - Division of m and k into regions.

1. 2  k  6 and m � 23

2. 7  k  27 and m � 4k � 1

3. 7  k  27 and 27  m  4k � 2

4. k � 28 and m � 19

5. 7  m  18 and 26  k  4m� 2

6. 2  m  18 and k � max{4m� 1, 28}

In Sections 6.4 and 6.5 we consider consider Region four. In Section 6.6 we consider

Regions one, two, and six. Then in Section 6.7 we consider Regions three and five.

Finally in Section 6.8 we prove Theorems 6.1.1 and 6.1.2.

The majority of proofs in this chapter have the following form. Let G and M be as

in Theorem 6.1.1. For x 2 G\M we construct y = c1 . . . ct 2 M such that the following

hold.

(i) If G = Sn then y has odd parity, and if G = An then y has even parity.
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(ii) H := hx, yi is transitive.

(iii) There exists 1  i  t such that l(cH
i
) has relatively few prime divisors (often a

product of two primes).

(iv) There exists r 2 N such that yr is a Jordan element.

We assume that H is imprimitive with non-trivial block system H. We then show that

for each divisor d of l(cH
i
), setting l(cH

i
) = d yields a contradiction. Hence by Lemma

4.2.10 it follows that H is primitive. Since H contains a Jordan element by Part (iv), it

follows that An  H, and so H = G by Part (i).

6.2 General notation and preliminaries

We begin by defining the notation for the remainder of this chapter.

Notation 6.2.1. Let m, k � 2 and n = mk � 12, let G = Sn or An act on

⌦ = {1, 2, . . . , n}. For 1  i  m let

⌦i = {(i� 1)k + 1, . . . , ik},

let M = {⌦1, . . . ,⌦m}, and let M = StabG(M) ⇠= (Sk wr Sm) \ G. Then M is unique

non-trivial block system for M . Let x 2 G\M .

Let Jt,Jc,Js and Jw be as in Definition 4.3.3, and let J ✓ Sn be as in Theorem 4.3.4.

For m, k � 7, let pm and pk as in Theorem 4.4.1. Hence pm and pk are primes satisfying
m

2 < pm < m� 1 and k

2 < pk < k � 1.

We use the following group to help divide the possibilities for x 2 G\M into cases.

Definition 6.2.2. Let

M̂ =
⇣
Sym(⌦1 [ ⌦2)⇥ Sym(⌦3)⇥ · · ·⇥ Sym(⌦m)

⌘
\G.

We now prove a useful property of elements in M̂\M .

Lemma 6.2.3. Let x 2 M̂\M . Then for 1  i  m there exist (not necessarily distinct)

�i,�xi 2 ⌦i.

Proof. Since x 2 M̂ it follows that (⌦1 [ ⌦2)x = ⌦1 [ ⌦2 and ⌦x

i
= ⌦i for 3  i  m.

If ⌦x

1 = ⌦2 then ⌦x

2 = ⌦1 and so x 2 M , a contradiction. Hence ⌦x

1 \ ⌦1 6= ; and so

⌦x

2 \ ⌦2 6= ;. Thus there exists �1,�x1 2 ⌦1 and �2,�x2 2 ⌦2. Since x 2 M̂ every �i 2 ⌦i

satisfies �x
i
2 ⌦i for 3  i  m.
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Recall that M is a maximal coclique in �(G) exactly when for all x 2 G\M there exists

y 2 M such that hx, yi = G. We now prove results which enable us to consider fewer

possibilities for x 2 G\M .

In the remaining results of this section we use the following notation.

Notation 6.2.4. For z 2 G\M , let S(z) = Supp(z), let Si(z) = ⌦i \ S(z) for 1  i  m

and let S(z) = {1  i  m | ⌦z

i
6= ⌦i}.

Proposition 6.2.5. Let G,M and M be as in Notation 6.2.1, let x 2 G\M , and let X1

and X2 be as defined below. Then either x or x�1 is M-conjugate to an element of X1

and to an element of X2.

(i) X1 is the set of elements z 2 G\M such that 1z = k + 1, ⌦z

1 /2 M and

|S1(z)| � |S2(z)|.

(ii) X2 is the set of elements z 2 G\M such that 1z = k + 1 and if i 2 S(z) then

|S1(z)| � |Si(z)|.

Proof. (i) Since x /2 M there exist distinct i and j such that ⌦x

i
\⌦j 6= ; and ⌦x

i
6= ⌦j.

Hence there exists ↵ 2 ⌦i such that ↵x
2 ⌦j. Equivalently ⌦x

�1

j
\⌦i 6= ;, ⌦x

�1

j
6= ⌦i,

↵x
2 ⌦j and (↵x)x

�1
2 ⌦i. Hence, by interchanging x,↵,⌦i with x�1,↵�1,⌦j if

necessary, we can assume that |Si(x)| � |Sj(x)|.

By Lemma 4.1.8 there exists g 2 M such that ↵g = 1 and (↵x)g = k + 1. Hence

⌦g

i
= ⌦1 and ⌦g

j
= ⌦2, and so xg

2 X1.

(ii) Since x /2 M it follows that S(x) 6= ;. Let i 2 S(x) be such that |Si(x)| � |Sl(x)|

for all l 2 S(x). Since ⌦x

i
6= ⌦i there exists j 6= i and ↵ 2 ⌦i such that ↵x

2 ⌦j.

By Lemma 4.1.8 there exists g 2 M such that ↵g = 1 and (↵x)g = k + 1. Hence

⌦g

i
= ⌦1 and ⌦g

j
= ⌦2, and so xg

2 X2.

Proposition 6.2.6. Let G,M and M be as in Notation 6.2.1, let M̂ be as in Definition

6.2.2, let X1 and X2 be as in Proposition 6.2.5, and let Zi and Z 0

i
for 1  i  5 be as

defined below. If x 2 Zi then x is M-conjugate to an element of Z 0

i
.

(i) If m � 3, then Z1 = X1\M̂ and Z 0

1 = {z 2 X1 | 3 2 S(z)}.

(ii) If m � 4 then

Z2 = {z 2 X1 | S(z) ✓ ⌦1 [ ⌦2 [ ⌦i [ ⌦j for some 3  i, j  m} and

Z 0

2 = {z 2 X1 | S(z) ✓ ⌦1 [ ⌦2 [ ⌦3 [ ⌦4 and |S3(z)| � |S4(z)|}.

(iii) If m � 5 then Z3 = X1\Z2 and Z 0

3 is the set of elements z 2 X1 for which there

125



exists s � 5 such that

0 < |Si(z)|  |Si+1(z)| for 3  i  s� 1, and |Si(z)| = 0 for i > s.

(iv) If m � 5 then Z4 = {z 2 X1 | z /2 M̂ and |S1(z)| = 1} and Z 0

4 is the set of elements

z 2 X1 such that there exists ↵ 2 ⌦3 such that ↵z
2 ⌦1 [ ⌦4,

|Si(z)| � |Si+1(z)| for 5  i  m� 1,

and if m � 7 and |S7(z)| � 1 then there exists � 2 S5(z) and � 2 S6(z) such that

�z
6= �.

(v) If m � 3 then Z5 = X2\M̂ and Z 0

5 = {z 2 X2 | 3 2 S(z)}.

Proof. Observe that if g 2 M fixes ⌦1 and ⌦2 pointwise then Xg

1 = X1 and Xg

2 = X2.

(i)&(v) Let l = 1 or 5 and let x 2 Zl. If (⌦1 [ ⌦2)x = ⌦1 [ ⌦2, then x /2 M̂ implies that

there exists 3  i  m such that i 2 S(x). If (⌦1[⌦2)x 6= ⌦1[⌦2 then there exists

3  i  m such that (⌦1 [ ⌦2)x \ ⌦i 6= ;, and so i 2 S(x). By Lemma 4.1.8 there

exists g 2 M which fixes ⌦1 and ⌦2 pointwise and sends ⌦i to ⌦3. Hence xg
2 Z 0

l
.

(ii) Let x 2 Z2. Then there exist 3  i, j  m such that Supp(x) ✓ ⌦1 [ ⌦2 [ ⌦i [ ⌦j.

By Lemma 4.1.8 there exist g, h 2 M which fix ⌦1 and ⌦2 pointwise and satisfy

⌦g

i
= ⌦3 = ⌦h

j
and ⌦g

j
= ⌦4 = ⌦h

i
. Hence either xg or xh is in Z 0

2.

(iii) Let x 2 Z3 and let I = (i1, . . . , ia, ia+1, . . . , im�2) be an ordering of {3, . . . ,m} such

that

0 < |Sij(x)|  |Sij+1(x)| for 1  j  a� 1, and |Sij(x)| = 0 for j > a.

Since x 2 Z3 it follows that a � 3. By Lemma 4.1.8 there exists g 2 M fixing ⌦1

and ⌦2 pointwise and mapping ⌦ij to ⌦j+2 for 1  j  a, and so xg
2 Z3.

(iv) Let x 2 Z4. Then by the definition of X1, |S2(x)| = 1. Since x /2 M̂ , the argument

in (i) proves that there exists an 3  i  m such that i 2 S(x). Thus there exists

j 6= i and ↵ 2 ⌦i such that ↵x
2 ⌦j. Since ↵ 2 ⌦i 6= ⌦1 it follows that ↵ 6= 1, and

so ↵x
6= k+1. Therefore from |S2(x)| = 1, we deduce that ↵x /2 ⌦2, and so j 6= 2, i.

Let T = {1, . . . ,m}\{1, 2, i, j} and let t = |T |. Let (l1, . . . , lt) be an ordering of the

points in T such that

|Sls(x)| � |Sls+1(x)| for 1  s  t� 1. (6.1)

Now suppose that |Sl2(x)|, |Sl3(x)| � 1. If |Sl1(x)| � 2 then let � 2 Sl2(x) and
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let � 2 Sl1(x)\{�
x
�1
}. If |Sl1(x)| = 1 then |Sl2(x)| = |Sl3(x)| = 1 by (6.1). Let

� 2 Sl1(x). Then either �x /2 ⌦l2 or �x /2 ⌦l3 . Hence, by exchanging l2 and l3 if

necessary, (6.1) is still satisfied, �x /2 ⌦l2 and there exists � 2 Sl2(x).

If j = 1 then {1, 2, i, j} = {1, 2, j}, and so t = m� 3. By Lemma 4.1.8 there exists

g 2 M such that g fixes ⌦1 and ⌦2 pointwise, ⌦
g

i
= ⌦3, ⌦

g

ls
= ⌦4+s for 1  s  t�1

and ⌦g

lt
= ⌦4. Otherwise 1, 2, i and j are distinct and so t = m � 4. By Lemma

4.1.8 there exists g 2 M such that g fixes ⌦1 and ⌦2 pointwise, ⌦g

i
= ⌦3, ⌦

g

j
= ⌦4

and ⌦g

ls
= ⌦4+s for 1  s  t. In either case, relabel ↵g, �g and �g as ↵, � and �.

Hence xg
2 Z4.

We now define two distinct hypothesis which between them cover all possibilities.

Hypothesis 6.2.7. Let n � 12

(A) Let G = An if n is odd and G = Sn if n is even.

(B) Let G = An if n is even and G = Sn if n is odd.

In both cases, let M be as in Notation 6.2.1.

Proposition 6.2.8. Let G, M , k, m and J be as in Notation 6.2.1, let X1 and X2 be

as in Proposition 6.2.5, let Z1, . . . , Z5 be as in Proposition 6.2.6, let Z = [
5
i=1Zi and let

Z
0 = [

5
i=1Z

0

i
.

(i) If k and m are as in Regions three or five of Figure 6.1 then let

X =
�
x 2 X2

�� x 2 Z
0 or x /2 Z

 
,

(ii) if 2  k  7, m � 13 and x 2 J then

X =
�
x 2 X1

�� x 2 Z
0 or x /2 Z

 
,

(iii) otherwise let

X =
�
x 2 (X2 \ J ) [ (X1\J )

�� x 2 Z
0 or x /2 Z

 
.

Then M is a maximal coclique in �(G) if and only if for all x 2 X there exists y 2 M

such that hx, yi = G.

Proof. Recall that M is a maximal coclique in �(G) if and only if for all x 2 G\M there

exists y 2 M such that hx, yi = G.

In each case X ✓ G\M , and so the forward direction is clear. So assume that M is not

a maximal coclique in �(G). Therefore there exists x 2 G\M such that hx, yi 6= G for
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all y 2 M . Hence hxg, ygi 6= Gg = G for all g 2 G. Therefore if there exists g 2 M such

that xg
2 X then the result follows.

Since x 2 J if and only if the cycle type or size of support of x satisfy certain properties,

it follows that x 2 J if and only if xg
2 J for all g 2 M . Consider Case (iii), the other

two cases are almost identical. First consider x 2 J . By Proposition 6.2.5 there exists

g 2 M such that xg
2 X2. If xg /2 Z then xg

2 X, and if xg
2 Z then by Proposition 6.2.6

there exists h 2 M such that xgh
2 Z

0, and so xgh
2 X. Now consider x /2 J . Then by

Proposition 6.2.5 there exists g 2 M such that xg
2 X1. If xg /2 Z then xg

2 X, if xg
2 Z

then by Proposition 6.2.6 there exists h 2 M such that xgh
2 Z

0 and so xgh
2 X.

6.3 x 2 J

In this section, we prove the following theorem.

Theorem 6.3.1. Let n, G and M be as in Hypothesis 6.2.7. If either k � 8 or m � 13,

and if x 2 (G \ J )\M , then there exists y 2 M such that hx, yi = G.

We first prove that Theorem 6.3.1 holds under Hypothesis 6.2.7(A).

6.3.1 Hypothesis 6.2.7(A)

Recall that X2 is the set of elements x 2 G\M such that 1x = k + 1, and for 1  i  m

if ⌦x

i
6= ⌦i, then |⌦1 \ Supp(x)| � |⌦i \ Supp(x)|.

First assume that |⌦1 \ Supp(x)| � 2.

Lemma 6.3.2. Let n, G and M be as in Hypothesis 6.2.7(A). If x 2 X2 \ J and

|⌦1 \ Supp(x)| � 2, then there exists y 2 M such that hx, yi = G.

Proof. Since |⌦1 \ Supp(x)| � 2 there exists ↵ 2 ⌦1 \ Supp(x)\{1}. By Lemma 4.2.1, an

element of Sn composed of three cycles is in An if and only if G = An. Hence we may let

y = c1c2c3 2 M such that

C(y) = 1 · (k � 1)| {z }
⇥1[⇥2=⌦1

· (m� 1)k| {z }
l(cM3 )=m�1

and {↵} = ⇥1. Let H = hx, yi and let Y = hyi. Then ↵ 2 ⇥1, 1 2 ⇥2, k + 1 2 ⇥3 and

↵x
2 ⇥2 [⇥3, and so H is transitive. Assume for a contradiction that � is a non-trivial

block for H and ↵ 2 �.

Since � is non-trivial, there exists � 2 �\{↵}. From ↵y = ↵, it follows that �y = �,

and so �Y
✓ �. If � 2 ⇥3, then ⇥3 ✓ � and so |�| � (m� 1)k+1 > n

2 , a contradiction.

Hence assume that � \ ⇥3 = ;, and so � 2 ⇥2 and � = ⇥1 [ ⇥2 = ⌦1. We reach a
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contradiction by Lemma 4.2.14(iv) since ⇥3 = ⌦2 [ · · · [ ⌦m and M\{⌦2, . . . ,⌦m} =

{⌦1} ✓ H.

Thus H is a primitive group containing x 2 J , and so An  H by Theorem 4.3.4. By

the parity of y it follows that H = G.

The next lemma shows the existence of an element of Sn satisfying certain properties,

we then give an example of such an element. Recall that for ↵ 2 ⌦, we write ⌦(↵) to

denote the block in M which contains ↵.

Lemma 6.3.3. Let n, G and M be as in Hypothesis 6.2.7(A), let x 2 X2 such that

|⌦1 \ Supp(x)| = 1, and let A := {↵ 2 ⌦ | ↵x /2 ⌦(↵)}. Then there exists and n-cycle

y 2 M satisfying all of the following.

(i) hx, yi is transitive.

(ii) l(yM) = m.

(iii) A = {1y
i
| 0  i  |A|� 1}.

(iv) For ↵ 2 A, either ↵xy
�1

= ↵ or ↵x
�1

y = ↵.

(v) If � 2 Supp(x) and �x
2 ⌦(�), then either �xy

�m
= � or �x

�1
y
m
= �.

Proof. Let S =
�
i 2 {1, 2, . . . ,m}

�� ⌦x

i
6= ⌦i

 
and let T = {1, . . . ,m}\S. Since

1x = k + 1, it follows that 1, 2 2 S. If i 2 S, then from x 2 X2 it follows that

|⌦1\Supp(x)| � |⌦i\Supp(x)|, and so |⌦i\Supp(x)| = 1. If i 2 T then ⌦x

i
= ⌦i. Hence

we may define

c := x|S
i2S ⌦i and di := x|⌦i for i 2 T.

Therefore Supp(c) = A and x = c ·
Q

i2T
di.

Let Y ✓ G be the set of n-cycles of M . Then Conditions (i) and (ii) hold for all

y 2 Y . Let c = c1c2 · · · ct be the decomposition of c into disjoint non-trivial cycles, and

let lj denote the length of cj. Then l1 + · · · + lt = |A|. Let cj = (↵j,1,↵j,2, . . . ,↵j,lj) for

1  j  t, and if necessary relabel c1, . . . , ct such that ↵1,1 = 1. Since yM is an m-cycle,

it follows that {1y
i
| 0  i  m� 1} contains exactly one point of each M -block. Hence

we may let ; 6= Y1 ✓ Y be such that y 2 Y1 if and only if

↵y

j,u
=

8
<

:
↵j,u+1 if 1  j  t and 1  u  lj � 1,

↵j+1,1 if 1  j < t and u = lj.

Hence if y 2 Y1 then y satisfies Condition (iii). In addition, ↵xy
�1

j,u
= ↵j,u for 1  u  lj�1

and ↵x
�1

y

j,lj
= ↵j,lj , and so y 2 Y1 satisfies Condition (iv).
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For i 2 T let di = ei,1ei,2 · · · ei,ri , be the decomposition of di into disjoint non-trivial

cycles, and label the lengths wi,1, . . . , wi,ri respectively. Then wi,1+· · ·+wi,ri = |Supp(di)|.

Let ei,j = (�i,j,1, �i,j,2, . . . , �i,j,wi,j). By Condition (ii) it follows that

Supp(di) ✓ ⌦(�i,1,1) = �hy
m
i

i,1,1 for all y 2 Y1. Hence we may let Y2 ✓ Y1 such that

y 2 Y2 if and only if for all i 2 T

�y
m

i,j,u
=

8
<

:
�i,j,u+1 if 1  j  ri, and 1  u  wi,j � 1,

�i,j+1,1 if 1  j < ri, and u = wi,j.

Let y 2 Y2 and let �i,j,u 2 Supp(di). If 1  u  wij � 1, then �xy
�m

i,j,u
= �i,j,u; and if

2  u  wij, then �x
�1

y
m

i,j,u
= �i,j,u. Thus y satisfies Condition (v) and so satisfies the

lemma.

Example 6.3.4. Let m = 7 and k = 3 so that ⌦1 = {1, 2, 3}, ⌦2 = {4, 5, 6}, . . . , and

⌦7 = {19, 20, 21}. If x = (1, 5, 7)(10, 14)(16, 17), then S = {1, 2, 3, 4, 5}, T = {6, 7} and

x = c · d6 · d7 = (1, 5, 7)(10, 14) · (16, 17) · id.

One possible y would be

y = (1, 5, 7, 10, 14, 16, 19, 2, 4, 8, 11, 13, 17, 20, 3, 6, 9, 12, 15, 18, 21).

Then yM = (⌦1,⌦2,⌦3,⌦4,⌦5,⌦6,⌦7). We see that

A = {1, 5, 7, 10, 14} = {1i | 1  i  5}

and ↵xy
�1

= ↵ for ↵ 2 {1, 5, 10}, and ↵x
�1

y = ↵ for ↵ 2 {7, 14}. In addition,

Supp(d6) = {16, 17} and 16xy
�7

= 16 and 17x
�1

y
7
= 17. 4

Proposition 6.3.5. Let n, G and M be as in Hypothesis 6.2.7(A). If x 2 X2 \ J , then

there exists y 2 M such that hx, yi = G.

Proof. If |⌦1 \ Supp(x)| � 2, then the result holds by Lemma 6.3.2. Hence we may

assume that |⌦1 \ Supp(x)| = 1 and let A be as in Lemma 6.3.3.

Let y 2 M be as in Lemma 6.3.3 and let H = hx, yi. Hence H is transitive by Lemma

6.3.3(i). For a contradiction, let � be a non-trivial block for H with 1 2 �.

If � \ Fix(x) 6= ;, then �x = � and so 1x, 1x
�1

2 �. By Lemma 6.3.3(iv) either

1xy
�1

= 1 or 1x
�1

y = 1, and so it follows that �y = �. Thus �H = �, and so � = ⌦, a

contradiction.

Suppose that � contains � 2 Supp(x)\A. Then �x
2 ⌦(�). Let ⌃ := �y

m
, and

� := �y
�m

so that 1y
m
, �y

m
2 ⌃ and 1y

�m
, �y

�m
2 �. By Lemma 6.3.3(ii) l(yM) = m,
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and so 1y
m
, 1y

�m
2 ⌦1\{1}, and by assumption ⌦1\{1} ✓ Fix(x). Hence ⌃x = ⌃ and

�x = �. Therefore �y
m
x
�1

2 ⌃ and �y
�m

x
2 �. By Lemma 6.3.3(v), either �xy

�m
= � or

�x
�1

y
m
= �, and so either � = �y

m
x
�1

2 ⌃\� or � = �y
�m

x
2 �\�. Hence either � = ⌃

or � = �. A contradiction since � ✓ Supp(x), 1y
m
2 ⌃ \ Fix(x) and 1y

�m
2 � \ Fix(x).

Hence � ✓ A.

Assume instead that ↵ 2 (� \ A)\{1}. Then by Lemma 6.3.3(iii) ↵ = 1y
l
for some

1  l < |A|  m. Therefore �y
l
= � and so 1y

�l
2 �. A contradiction since 1y

�l
/2 A.

Hence H is primitive. Since x 2 J it follows that An  H by Theorem 4.3.4, and so

H = G by the parity of y.

6.3.2 Hypothesis 6.2.7(B)

Here we show that Theorem 6.3.1 holds under Hypothesis 6.2.7(B). This parity causes

more di�culty, and so we divide into more cases. Even so the proofs are fairly technical

and dense, but matters will improve somewhat in Section 6.4. We split into the following

three regions which we depicted below. Hence we consider a larger range of m and k than

described in Theorem 6.3.1.

Figure 6.2: Patchwork Proof - Division of m and k into regions.

Region (i) - m = 2 and k � 6

Observe that since m = 2, it follows by Hypothesis 6.2.7(B) that G = An. We begin with

a preliminary lemma.

Lemma 6.3.6. Let m = 2, let k � 6, and let G and M be as in Hypothesis 6.2.7(B). If
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x 2 X2 \J , then either there exist ↵,↵x
2 ⌦1 \ Supp(x); or there exists � 2 ⌦1 \Fix(x)

and � 2 ⌦1 such that �x 2 ⌦2\{k + 1}.

Proof. Since ⌦x

1 6= ⌦1 and m = 2, it follows that ⌦x

2 6= ⌦2. Hence

|⌦1 \ Supp(x)| � |⌦2 \ Supp(x)| by the definition of X2. From G = An we deduce

that |Supp(x)| � 3, and so there exists � 2 ⌦1 \ Supp(x)\{1}.

Since x /2 M it follows that ⌦x

1 6= ⌦2 and so � := ⌦x

1 \⌦1 6= ;. If �\Supp(x) 6= ; then

there exists ↵,↵x
2 ⌦1 \ Supp(x), and the result holds. Hence assume that � ✓ Fix(x)

and let � 2 �. It follows that �x 2 ⌦2, and since � 6= 1 we deduce that � 6= k + 1.

Lemma 6.3.7. Let m = 2, let k � 6, and let G and M be as in Hypothesis 6.2.7(B). If

x 2 X2 \ J , then there exists y 2 M such that hx, yi = G.

Proof. Let ↵, � and � be as in Lemma 6.3.6. By Lemma 4.2.1, a product of two cycles

is in G = An. Based on ↵, � and � we split into three cases, although all will follow a

similar structure. We begin with a general argument.

Let y = c1c2 2 M with

C(y) = 2 · 2(k � 1)| {z }
l(yM)=2

,

such that H = hx, yi is transitive. Let ✏ := ⇥1 \⌦1 and ⇣ := ⇥1 \⌦2. Assume by way of

a contradiction that H is imprimitive and let � be a non-trivial block for H containing

✏.

If ⇣ 2 �, then �y = �. Hence if � \ ⇥2 6= ;, then � = ⌦, a contradiction. If ⇣ /2 �

then there exists ⌘ 2 � \ ⇥2. Hence � = {✏} [ ⌘hy
2
i. If ⌘ 2 ⌦1, then � = ⌦1 and so

H = M, a contradiction since x /2 M . Hence either � = {✏, ⇣} or � = {✏} [ ⌦2\{⇣}.

In all cases we show that both possibilities for � lead to a contradiction. Hence it will

follow that H is primitive, and since x 2 J the result will follow by Theorem 4.3.4.

First assume that there exist �, � as in Lemma 6.3.6. Let y = c1c2 2 M , with

C(y) = 2 · 2(k � 1) and ⇥1 = {�, k + 1}. Let H = hx, yi. Then k + 1 2 ⇥1 and 1 2 ⇥2,

and so H is transitive. Let � be a non-trivial block for H containing �. Since � 2 Fix(x)

and k + 1 2 Supp(x) it follows that � 6= {�, k + 1}. If � = {�} [ ⌦2\{k + 1}, then

�y = {k + 1} [ ⌦1\{�}. Since � 2 Fix(x) we deduce that that �, and so �y also, is

fixed by x. This gives a contradiction since � 2 ⌦1\{1} ✓ �y and �x 2 ⌦2\{k+ 1} ✓ �.

Hence the result follows by the above.

Now suppose that there exists ↵,↵x
2 ⌦1\Supp(x) and let ✏ := (k+1)x. We split into

two cases, first assume that ↵x = 1 and ✏ 2 ⌦2. Let y = c1c2 2 M with C(y) = 2 ·2(k�1)
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and ⇥1 = {↵, k + 1} and 1y = ✏. Since k + 1 2 ⇥1 and 1 2 ⇥2, it follows that H = hx, yi

is transitive. Let � be a non-trivial block for H with ↵ 2 �. If � = {k + 1,↵},

then �x = {↵x, (k + 1)x} = {1, ✏}. From 1y = ✏ we deduce that (�x)y = �x, and so

|�x
| � n�2 > 2, a contradiction. If � = {↵}[⌦2\{k+1}, then �y = {k+1}[⌦1\{↵}.

Hence 1, k+1 2 �y and so (�y)x = �y. Thus 1x
�1

= ↵ 2 �\�y, a contradiction. Hence

the result follows by the above.

Finally assume that there exists ↵,↵x
2 ⌦1\Supp(x), and either ↵x

6= 1 or (k+1)x 2 ⌦1.

Let y = c1c2 2 M with C(y) = 2 · 2(k � 1) such that ⇥1 = {↵x, k + 1}, in addition if

↵x
6= 1 then ↵y

2
= 1. Hence ↵x

2 ⇥1 and ↵ 2 ⇥2, and so H = hx, yi is transitive. Let �

be a non-trivial block for H containing ↵x.

First assume that ↵x = 1, and so (k+1)x 2 ⌦1 and 1x = k+1 = 1y. If � = {1, k+1},

then � = �H = ⌦, a contradiction. If � = {1}[⌦2\{k+1}, then �y = {k+1}[⌦1\{1}.

Since ↵ 2 ⌦1 it is immediate that ↵ 6= k + 1 and so ↵x
6= (k + 1)x. Thus from ↵x = 1

and (k + 1)x 2 ⌦1 we deduce that (k + 1)x 2 ⌦1\{1}. Hence k + 1, (k + 1)x 2 �y and so

(�y)x = �y. Therefore 1 = (k + 1)x
�1

2 � \�y, a contradiction.

Now assume that ↵x
6= 1 and so ↵y

2
= 1. If � = {↵x, k+1} then �x

�1
= {↵, 1}. Hence

1hy
2
i
✓ �x

�1
and so |�x

�1
| � k � 2 > 2, a contradiction. If � = {↵x

} [ ⌦2\{k + 1},

then �y = {k + 1} [ ⌦1\{↵x
}. Then 1, k + 1 2 �y and it follows that (�y)x = �y, a

contradiction since ↵ 2 �y and ↵x
2 �. Thus the result follows by the above. Hence the

lemma holds in all cases.

Region (ii) - k � 8 and m � 3

We split into four cases: first that |⌦1 \ Supp(x)|  4; then into two cases when

|⌦1 \ Supp(x)|  3; and then finally the general case of this subsection.

Lemma 6.3.8. Let m � 3, let k � 5, and let G and M be as in Hypothesis 6.2.7(B). If

x 2 X2 \ J and |⌦1 \ Supp(x)| � 4, then there exists y 2 M such that hx, yi = G.

Proof. Since |⌦1 \ Supp(x)| � 4, there exists ↵ 2 ⌦1 \ Supp(x)\{1} and

� 2 ⌦1 \ Supp(x)\{1,↵,↵x
}. By Lemma 4.2.1 an element composed of four cycles

lies in An if and only if G = An. Let Y be the set of elements y = c1c2c3c4 of M such

that

C(y) = 1 · 1 · (k � 2)| {z }
⇥1[⇥2[⇥3=⌦1

· (m� 1)k| {z }
l(cM4 )=m�1

with {↵} = ⇥1 and {�} = ⇥2. For each y 2 Y , let H = H(y) = hx, yi and let Y = hyi.

Then 1 2 ⇥3, k + 1 2 ⇥4, ↵x
2 ⇥3 [ ⇥4 and �x

2 ⇥1 [ ⇥3 [ ⇥4, hence H is transitive.

Assume, by way of a contradiction, that H is an imprimitive group with non-trivial block

system H.
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Let � 2 H with ↵ 2 �. Since |�| > 1 there exists � 2 �\{↵}. From ↵y = ↵ we deduce

that �y = �, and so �Y ✓ �. If � 2 ⇥4, then ⇥4 ✓ �, and so |�| > n

2 , a contradiction.

Hence we may assume that � \⇥4 = ; and so � ✓ ⌦1.

Since ⇥4 = ⌦2[· · ·[⌦m, Lemma 4.2.14(iv) implies thatM\{⌦2, . . . ,⌦m} = {⌦1} 6✓ H,

and so in particular � 6= ⌦1. Thus either � = ⌦1\{�} or � = {↵, �}. If � = ⌦1\{�},

then there exists � 2 H\{�} with � 2 � and � \ ⇥4 6= ;. Since �y = � it follows as for

� that |�| > n

2 , a contradiction. Therefore � = {↵, �} and �x = {↵x, �x
}. If �x = ↵

then � = �x and so � = �H = ⌦, a contradiction. Hence �x
6= ↵ and so �x

✓ ⇥3 [⇥4.

Let z1 := y
|⇥3|
2 and z2 := y

|⇥4|
2 . Since |⇥4| > |⇥3| and �x

✓ ⇥3 [ ⇥4, Lemma 4.2.14(v)

implies that either �x
✓ ⇥3 or �x

✓ ⇥4. From |�x
| = 2 it follows that if �x

✓ ⇥3 then

�xz1 = �x, and if �x
✓ ⇥4 then �xz2 = �x. If ↵x, �x

2 ⇥3, then since k � 3 there exists

y 2 Y such that ↵xz1 6= �x. If ↵x, �x
2 ⇥4, then since k � 3 there exists y 2 Y such that

↵xz2 6= �x. In either case we reach a contradiction.

Therefore H is primitive and contains x 2 J . Hence An  H by Theorem 4.3.4, and

by the parity of y it follows that H = G.

Hence for the remainder of this subsection, we may assume that |⌦1 \ Supp(x)|  3.

We first prove two slightly more general lemmas which we also use in Section 6.7.

Recall that pk is a prime with k

2 < pk < k � 1, and by Lemma 4.4.13 for k � 8 there

exists pk  k�2. In addition, if ↵ 2 ⌦ then ⌦(↵) is the M -block which contains ↵.

Lemma 6.3.9. Let k � 8, let m � 3, and let G and M be as in Hypothesis 6.2.7(B).

Assume that x 2 X2, |⌦1\Supp(x)|  3 and Supp(x) 6✓ ⌦1[⌦2. Then for all pk < k�2,

there exists y 2 M with cycle type mpk ·m(k � pk) such that hx, yi is primitive.

Proof. Since Supp(x) 6✓ ⌦1 [ ⌦2 there exist ↵,↵x
2 Supp(x) such that ↵x /2 ⌦1 [ ⌦2.

Hence in particular ↵x
6= k + 1, and so ↵ 6= 1. By Lemma 4.2.1, elements composed of

two cycles lie in An if and only if G = An. Let Y be the set of elements y = c1c2 2 M

such that yM is an m-cycle with

C(y) = mpk ·m(k � pk)| {z }
l(yM)=m

,

satisfying all of the following.

(i) ↵, 1, 1y = k + 1 2 ⇥1 and ↵x
2 ⇥2.

(ii) If ↵ /2 ⌦1 [ ⌦2, then 1 = ↵y; if ↵ 2 ⌦1, then 1 = ↵y
m
; and if ↵ 2 ⌦2\{k + 1}, then

1 = ↵y
m�1

.

(iii) ⌦1 \⇥1 ✓ {1,↵} [ Fix(x).
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(iv) Let B1 := (⌦1 \ Supp(x))\{1,↵} and Bi := {� 2 ⌦i\{1, k + 1,↵} | �x /2 ⌦i} for

2  i  m. Require that B1, B2, . . . , Bm ✓ ⇥2.

(v) For 2  i  mpk

2 let �i := 1y
i
, and require that �x

i
2 ⇥1 \ ⌦(�i).

We first justify why Y 6= ;. Condition (i) can easily been seen to hold, and Condition (ii)

also since yM is anm-cycle and ⌦y
M

1 = ⌦2. Since |⌦1\Supp(x)|  3 and x 2 X2, it follows

that if ⌦x

i
6= ⌦i then |⌦i \ Supp(x)|  3. Therefore the sets B1 and Bi for 2  i  m all

have size at most 3  k � pk. Hence we can insist that B1, B2, . . . , Bm ✓ ⇥2. Therefore

Conditions (iii) and (iv) can be satisfied. Now consider Condition (v). By Condition (iv)

it follows that �x
i
2 ⌦(�i) automatically, and so we can let �x

i
2 ⇥1 \ ⌦(�i).

Since ↵ 2 ⇥1 and ↵x
2 ⇥2 it follows that for each y 2 Y the group H = H(y) = hx, yi

is transitive. Assume, by way of a contradiction, that H is an imprimitive group with

non-trivial block system H = Hhx, yi.

Since pk - (k � pk) it follows that l(cH1 ) 6= pkm by Lemma 4.2.14(ii). Since |⇥1| >
n

2 it

follows that l(cH1 ) 6= 1 by Lemma 4.2.14(i). Hence we may let � and � be distinct blocks

of H with 1 2 � and k + 1 2 �.

Let d be a divisor of m. If l(cH1 ) = d, then ⌦1\⇥1 ✓ � by Lemma 4.2.13(ii). Therefore

by Condition (iii), � contains a point of ⌦1\Fix(x), and so �x = �. Hence k+1 2 �, a

contradiction since k + 1 2 �. Therefore, for the remainder of the proof we may assume

that the length of cH1 does not divide m.

Assume that l(cH1 ) = pk. By the above we may assume that pk - m and so

gcd(pk,m) = 1. We first show that if ↵ 2 � then we reach a contradiction. If ↵ /2 ⌦1[⌦2,

then let j := 2; if ↵ 2 ⌦1, then let j := m + 1; and if ↵ 2 ⌦2, then let j := m.

Hence by Conditions (i) and (ii) it follows that ↵y
j
= k + 1 and so �y

j
= � and

� := 1y
j+1

= (k + 1)y
j
2 �. Since 3  j + 1  m + 2 < mpk

2 , Condition (v) implies

that �x 2 ⇥1, and so �x
2 Supp(cH1 ). Since ↵x

2 ⇥2 and pk - |⇥2|, we reach a contra-

diction by Lemma 4.2.14(iii). Hence ↵ /2 �. Since gcd(pk,m) = 1, Lemma 4.2.13(iv)

implies that |� \ ⌦i \ ⇥1| = 1 for 1  i  m. In particular, � contains a point of

⌦1 \⇥1\{1,↵} ✓ Fix(x), and so �x = �. Hence 1 = (k+1)x
�1

2 �, a contradiction since

1 2 � 6= �.

Now let 1 < e < m be a divisor ofm, and assume that l(cH1 ) = epk. Then ✏ := 1y
epk

2 �.

Since 1 2 � and k + 1 2 � it follows that �x = �, and so ✏x 2 �. Since epk 
mpk

2 ,

Condition (v) implies that ✏x 2 ⇥1 \ ⌦(✏). Hence ✏x = ✏y
cm

for some c 2 N, and so

(k + 1)y
epk+cm�1

= 1y
epk+cm

= ✏y
cm

= ✏x. (6.2)
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Since k + 1, ✏x 2 �, Equation (6.2) implies that �y
epk+cm�1

= �. From l(cH1 ) = epk we

deduce that �y
epk = �. Hence

�y
epk+cm�1

= � = �y
epk .

Therefore epk divides cm� 1, a contradiction since e | m and e > 1.

Therefore H is primitive.

Lemma 6.3.10. Let k � 8, let m � 3, and let G and M be as in Hypothesis 6.2.7(B).

Assume that x 2 X2, |Supp(x)| � 4 and |⌦1 \ Supp(x)|  3. Then for each prime

pk < k � 2, there exists y 2 M with cycle type mpk · m(k � pk) such that hx, yi is

primitive.

Proof. If Supp(x) 6✓ ⌦1 [ ⌦2 then the result holds by Lemma 6.3.9. Hence we may

assume that Supp(x) ✓ ⌦1 [ ⌦2. Since x 2 X2 it follows that |⌦2 \ Supp(x)|  3. Since

|Supp(x)| � 4 there exists ↵ 2 Supp(x)\{1, k+1, 1x
�1
}, and so in particular ↵x

6= 1, k+1.

By Lemma 4.2.1, elements composed of two cycles lie in An if and only if G = An. Let

Y be the set of elements y = c1c2 2 M with

C(y) = mpk ·m(k � pk)| {z }
l(yM)=m

such that 1, 1y = k + 1,↵ 2 ⇥1, ↵y
2 Fix(x) and Supp(x)\{1, k + 1,↵} ✓ ⇥2. We briefly

justify why Y 6= ;. From 1y = k + 1 it follows that ⌦y

1 = ⌦2. If ↵ 2 ⌦2 then since m � 3

it follows that ↵y /2 ⌦1 [ ⌦2, and so ↵y
2 Fix(x) automatically. If ↵ 2 ⌦1, then ↵y

2 ⌦2.

Since k � 7 and |⌦2 \ Supp(x)|  3, it is possible to ensure that ↵y
2 ⌦2 \ Fix(x).

The last condition is possible since Supp(x) ✓ ⌦1 [ ⌦2, |⌦i\{1, k + 1,↵} \ Supp(x)|  2

for i = 1, 2 and k � pk � 2. This condition implies that ↵x
2 ⇥2, hence H = hx, yi

is a transitive group. Assume, by way of a contradiction, that H is imprimitive with

non-trivial block system H.

Let � 2 H with 1 2 �. Since mpk > m(k � pk) it follows by Lemma 4.2.14(v) that

� contains � 2 ⇥1\{1}. Since 1y = k + 1 = 1x it follows that �xy
�1

= �. Hence

if � 2 Fix(x) [ {k + 1}, then � = ⌦ a contradiction. Therefore we may assume that

� 2 Supp(x)\{1, k + 1}, and so � = ↵. Hence 1y,↵y
2 �y. Since ↵y

2 Fix(x) it follows

that (�y)x = �y. Therefore 1yx
�1

= 1 2 �y, and so (�y)y = �y. Hence�y = (�y)H = ⌦,

a contradiction. Therefore H is primitive.

Using the three previous lemmas we can now complete the proof of Theorem 6.3.1 in

the case of Hypothesis 6.2.7(B) and Region (ii)
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Lemma 6.3.11. Let k � 8, let m � 3, and let G and M be as in Hypothesis 6.2.7(B). If

x 2 X2 \ J , then there exists y 2 M such that hx, yi = G.

Proof. First assume that |Supp(x)| � 4. If |⌦1 \ Supp(x)| � 4, then the result holds by

Lemma 6.3.8. If |⌦1 \ Supp(x)|  3, then by Lemma 6.3.10 there exists a product of two

cycles y 2 M such that hx, yi is primitive. Hence by Theorem 4.3.4 and the parity of y,

it follows that hx, yi = G.

If |Supp(x)| = 2, then x = (1, k + 1) and G = Sn. Let y 2 M is an n-cycle with

1x = k + 1. Then hx, yi = G.

Hence we may assume that |Supp(x)| = 3. Thus there exists ↵ 2 Supp(x) such that

x = (1, k + 1,↵). Let y = c1c2 2 M with

C(y) = m ·m(k � 1)| {z }
l(yM)=m

such that 1, 1y = k + 1 2 ⇥1 and ↵ 2 ⇥2. Let H = hx, yi. Then it is clear that

H is transitive. Assume for a contradiction that � is a non-trivial block for H and

1 2 �. By Lemma 4.2.14(v) it follows that � 6= {1,↵}. Hence � contains a point

of ⌦\{1,↵} = {k + 1} [ Fix(x). Since 1 2 � and 1x = k + 1 = 1y, it follows that

� = �H = ⌦, a contradiction.

Therefore H is primitive. Since x 2 J it follows that An  H by Theorem 4.3.4, and

so H = G by the parity of y.

Region (iii) - 2  k  7 and m � 13

In this subsection we let x 2 X1. Hence 1x = k + 1, ⌦x

1 /2 M, and

|⌦1 \ Supp(x)| � |⌦2 \ Supp(x)|.

We divide into three cases: first Supp(x) 6✓ ⌦1 [ ⌦2 [ ⌦x
�1

2 [ {1x
�1
}; second

Supp(x) ✓ ⌦1 [ ⌦2; and then the general case. Finally we prove Theorem 6.3.1.

We begin with two preliminary lemmas.

Lemma 6.3.12. Let k  7, let m � 13, and let x 2 X1. If

Supp(x) 6✓ ⌦1 [ ⌦2 [ ⌦x
�1

2 [ {1x
�1
},

then there exist distinct points ↵, � satisfying the following:

(i) ⌦(↵) 6= ⌦(�);

(ii) � 2 Supp(x)\(⌦1 [ ⌦2 [ ⌦x
�1

2 [ {1x
�1
}); and
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(iii) if ↵ 2 Supp(x), then ↵x, �x /2 ⌦1 [ ⌦2.

Proof. First suppose that Fix(x) ✓ ⌦1 [ ⌦2. Since m � 13 there exists

↵ 2 ⌦\(⌦1 [ ⌦2 [ ⌦x
�1

1 [ ⌦x
�1

2 ) and � 2 ⌦\(⌦1 [ ⌦2 [ ⌦x
�1

1 [ ⌦x
�1

2 [ ⌦(↵)). Hence

↵ 2 Supp(x), ⌦(↵) 6= ⌦(�), � 2 Supp(x)\(⌦1[⌦2[⌦x
�1

2 [{1x
�1
}) and ↵x, �x /2 ⌦1[⌦2.

Now suppose that Fix(x) 6✓ ⌦1 [ ⌦2. Let i 2 {3, . . . ,m} such that

|⌦i \ Fix(x)| � |⌦l \ Fix(x)| for 3  l  m. Let ↵ 2 ⌦i \ Fix(x). By the max-

imality of |⌦i \ Fix(x)| and since Supp(x) 6✓ ⌦1 [ ⌦2 [ ⌦x
�1

2 [ {1x
�1
}, there exist

j 6= 1, 2, i and � 2 (⌦j \ Supp(x))\(⌦x
�1

2 [ {1x
�1
}). Hence ⌦(↵) 6= ⌦(�) and � 2

Supp(x)\(⌦1 [ ⌦2 [ ⌦x
�1

2 [ {1x
�1
}).

Recall that pm is a Bertrand prime with m

2 < pm < m � 1. The following lemma will

be used to show that an element y 2 M is well defined.

Lemma 6.3.13. Let m � 13, let k  7, let pm � 11, and let n = mk. Then the set of

integers S, as defined below, are distinct modulo n. If k = 2 then let

T 2

n
{0, k, 2k, pm, pm + k, pm + 2k}, {0, k, 2k, 2k + 1}

o
,

if k � 3 then let

T 2

n
{0, k, 2k, k + pm, 2k + pm, 2k + 2pm, (m+ 1)k � pm}, {0, k, 2k, k + 1, 2k + 1}

o
,

and let

S =

8
>>><

>>>:

T [ {2pm} if k = 4,

T [ {2pm, 3pm} if k = 6,

T otherwise.

Proof. Since pm � 11 it follows that pm > k. We begin by claiming that all elements of

T\{k � pm} are positive and less than n = mk. In all cases

T ✓ {0, k, k + 1, 2k, 2k + 1, pm, pm + k, pm + 2k, 2pm + 2k, (m+ 1)k � pm}.

Since pm > k it follows that

0 < k < k + 1 < 2k < 2k + 1  pm + k < pm + 2k < 2pm + 2k and (6.3)

k < pm < pm + k.

For all k we have

pm + 2k  m� 2 + 2(7) = m+ 12 < 2m  n,
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and if k � 3 then 3pm < k(m� 1) and so

2pm + 2k < (m+ 1)k � pm < mk.

The claim then follows since 2pm + 2k, (m+ 1)k � pm 2 T only if k > 3.

Hence elements of T are congruent modulo n if and only if they’re equal. Note that

2k+1 and pm+k are never simultaneously in T , also pm is never in the same set as k+1

or 2k + 1; and pm 6= 2k since pm is odd. Hence in all cases all elements of T are distinct.

Therefore if k 6= 4, 6 then the result follows.

Let k = 4 or 6. Now pm + k < 2pm < 2pm + 2k, and 2pm 6= pm + 2k since one is even

and one is odd. Hence by (6.3) it follows that 2pm /2 T , and so T [ {2pm} contains no

duplications. Hence the result holds for k = 4. Now let k = 6. Then

pm + 2k < 3pm and 3pm < (m+ 1)6� pm = (m+ 1)k � pm.

Since pm is odd it follows that 3pm 6= 2pm + 2k. Hence by (6.3) it follows that 3pm /2

T [ {2pm}, and so T [ {2pm, 3pm} contains no duplications.

Lemma 6.3.14. Let m � 13, let k  7, and let G and M be as in Hypothesis 6.2.7(B).

If x 2 X1 \J and Supp(x) 6✓ ⌦1 [⌦2 [⌦x
�1

2 [ {1x
�1
}, then there exists y 2 M such that

hx, yi = G.

Proof. Let ↵ and � be as in Lemma 6.3.12. Since m � 13, it follows that there exists

pm � 11. Hence Lemma 6.3.13 holds, pm > k and gcd(pm, k) = 1.

By Lemma 4.2.1, elements composed of two cycles lie in An if and only if G = An. Let

Y be the set of elements y = c1c2 2 M with

C(y) = pmk|{z}
l(cM1 )=pm

⌦1,⌦(↵),⌦(�),⌦(↵x),⌦(�x)2Supp(cM1 )

· (m� pm)k| {z }
l(cM2 )=m�pm

⌦22Supp(cM2 )

satisfying the following.

(i) If 2 is a proper divisor of k, then let � := 1y
2pm and require that

�x 2 ⇥1 [ {(k + 1)y
(m�pm)

}. If 3 is a proper divisor of k, then let � := 1y
3pm

and require that �x 2 ⇥1 [ {(k + 1)y
�(m�pm)

}.

(ii) 1y
k
= ↵ and 1y

2k
= �.

(a) If ↵x = ↵, then we require the following to hold. If �x
2 ⌦1, then �x = 1y

pm ; if

�x
2 ⌦(↵), then �x = 1y

pm+k
= ↵y

pm ; if �x
2 ⌦(�), then �x = 1y

pm+2k
= �y

pm ;

otherwise �x = 1y
2k+1

= �y.
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(b) If ↵x
6= ↵, then instead we require the following to hold.

(1) If k = 2 and ⌦(↵),⌦(↵x),⌦(�) and ⌦(�x) are distinct, then either ↵xy =

�x or �xy = ↵x.

(2) If k > 2, then the following hold.

- If ⌦(↵x) = ⌦(�x), then (↵x)y
pm = �x.

- If {⌦(↵x),⌦(�x)} = {⌦(↵),⌦(�)}, then

{↵x, �x
} = {↵y

pm
, �y

2pm
} = {1y

k+pm
, 1y

2k+2pm
}.

- Otherwise, either ↵x = �xy or �x = ↵xy.

We justify why Y is non-empty. We first check that 1y
i
is not defined to be more than

one point. Then we check that each point is placed in the correct M -block.

Let R = {i | 1y
i
is defined for y 2 Y}. Then by Lemma 6.3.13 it follows that the

elements of R are distinct modulo n.

If ✏ 2 ⇥1 then ⌦(✏) = ✏hy
pm i. Hence ↵x and �x are placed in the correct M -blocks. If

✏ 2 ⇥2 then ⌦(✏) = ✏hy
(m�pm)

i. If �x /2 ⌦2 then since pm � 11 we can let ⌦(�x) 2 Supp(cM1 )

and so �x 2 ⇥1. If �x 2 ⌦2 then we may let �x = (k + 1)y
pk(m�pm)

2 ⌦2. Similarly for �.

Since 1 2 ⇥1 and k + 1 2 ⇥2 it follows that H = hx, yi is transitive. Assume, by way

of a contradiction, that H is imprimitive with non-trivial block system H. Let Y = hyi

and let � 2 H with 1 2 �.

Since |⇥1| >
n

2 and pmk - |⇥2|, it follows that l(cH1 ) 6= 1 and l(cH1 ) 6= pmk by Lemma

4.2.14(i) and (ii) respectively.

Suppose that l(cH1 ) = pm. From pm - |⇥2|, Lemma 4.2.11(iv) implies that � \ ⇥2 = ;.

Hence block size is k and so l(cH2 ) = m� pm. Therefore H is the set of translates under y

of 1hy
pm i and (k + 1)hy

(m�pm)
i. Since ⌦1 = 1hy

pm i and ⌦2 = (k + 1)hy
(m�pm)

i, it follows that

H = M, a contradiction since x /2 M .

Let 1 < d < k be a divisor of k. Then d = 2 or 3. Assume that l(cH1 ) = dpm.

Since pm - |⇥2| it follows that � ✓ ⇥1 and so |�| = k

d
. By Condition (i), � con-

tains either � or �. Suppose that � 2 �, the argument for � is very similar. Let

� := �x, so that k + 1, �x 2 �. If �x 2 ⇥1, then cH1 = cH2 by Lemma 4.2.11(i),

a contradiction since � ✓ ⇥1. If �x = (k + 1)y
(m�pm)

, then �y
(m�pm)

= �, and so

(k + 1)hy
pk(m�pm)

i = (k + 1)hy
(m�pm)

i = ⌦2 ✓ �. Thus |�| � k > k

d
, a contradiction.
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Finally assume that l(cH1 ) = e for e > 1 a divisor of k. Then 1,↵, � 2 � and k +

1,↵x, �x
2 �x. We begin by assuming that �x is fixed by either y, ypm or yk+pk , and

derive a contradiction. Since gcd(pm, (m�pm)k) = 1, it follows that (k+1)hy
pm i = (k+1)Y ,

and since gcd(k + pm, pmk) = 1 it follows that ↵hy
k+pk i = ↵Y . Therefore if ypm or yk+pm

fix �x then it follows that y fixes �x. Thus ⌦ = ⇥1 [ ⇥2 = ↵Y
[ (k + 1)Y ✓ �x, a

contradiction.

If ↵x = ↵, then � = �x and so 1,↵, �, k + 1,↵x, �x
2 �. Hence by Condition (ii)(a),

either (�x)y
pm = �x or (�x)y = �x, and so we reach a contradiction. Now assume that

↵x
6= ↵. If k > 2 then by Condition (ii)(b)(2) there exists i 2 {1, pm, k + pm} such

that {↵x, �x
}
y
i
\ {↵x, �x

} 6= ;. Hence �x is fixed by y, ypm or yk+pm , and so we reach a

contradiction by the above.

Hence we may now assume that k = 2. Therefore e = 2, and cH1 = (�,⌃) for some

⌃ 2 H. Thus |�\⇥1| = pm, and since pm - n it follows that yH = (�,⌃). Then �x = �

and ⌃x = ⌃, since Fix(x) 6= ; by Lemma 4.3.5. Hence ↵x, �x
2 �. We now show that

there exists and odd integer t such that either ↵x = ↵y
t
or �x = �y

t
or ↵xy

t
= �x. Hence

it will follows that � contains either ↵x or �x, a contradiction.

Since k = 2, if ✏ 2 ⇥1 then ⌦(✏) = {✏, ✏y
pm
}. If ↵x

2 ⌦(↵) [ ⌦(�) then automatically,

either ↵x = ↵y
pm or ↵x = �y

pm = ↵y
2+pm . If �x

2 ⌦(↵) [ ⌦(�) then again automatically,

�x = �y
pm or �x = ↵y

pm = �y
�2+pm . If ⌦(↵x) = ⌦(�x), then ↵xy

pm = �x. Otherwise, it

follows by Condition (ii)(b)(1) that either ↵xy = �x or �xy = ↵x. Hence the claim holds

and we reach a contradiction.

Therefore H is a primitive group containing x 2 J , and so H = G by Theorem

4.3.4.

Lemma 6.3.15. Let m � 13, let k  7, and let G and M be as in Hypothesis 6.2.7(B).

If x 2 X1 \ J and Supp(x) ✓ ⌦1 [ ⌦2, then there exists y 2 M such that hx, yi = G.

Proof. If x = (1, k + 1), then G = Sn. Let y be an n-cycle with 1x = k + 1, so that

hx, yi = G.

Hence we may assume that |Supp(x)| � 3. If k > 2 then let ↵ 2 Supp(x)\{1, k + 1}.

If k = 2, then ⌦1 = {1, 2} and ⌦2 = {3, 4}. From 1x = 3, Supp(x) ✓ ⌦1 [ ⌦2 and

|Supp(x)| � 3 it follows that x 2
�
(1, 3, 2), (1, 3, 4), (1, 3, 4, 2)

 
. Let ↵x = 1 so that

↵ 6= 1, k + 1. By Lemma 4.2.1, an element of Sn composed of two cycles lies in An if and

only if G = An. Hence we may let Y be the set of elements y = c1c2 2 M with

C(y) = m ·m(k � 1)| {z }
l(yM)=m

,
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such that ↵ 2 ⇥1 and 1, 1y = k + 1,↵x
2 ⇥2. Hence H = H(y) = hx, yi is transitive.

Assume by way of a contradiction that H is imprimitive with non-trivial block system

H.

Let � be the block of H containing 1 and let � 2 �\{1}. Since 1x = k + 1 = 1y, it

follows that �y = �x. If � 2 ⌦\(⌦1 [ ⌦2) then � 2 Fix(x), and so �x = �. Hence

� = �H = ⌦, a contradiction. If � 2 ⌦2 then �y
2 ⌦y

2 ✓ Fix(x), and so (�y)x = �y.

Thus �y = (�y)x
�1

= �xx
�1

= �, and so � = �H = �, a contradiction. Hence we may

assume that � 2 ⌦1 and � ✓ ⌦1.

If � 2 ⌦1 \ ⇥1, then �y
m
= �. Hence �y

m
= � and {�} [ 1hy

m
i
✓ �. By the cycle

type of y, it follows that ⌦1 = {�}[ 1hy
m
i. Hence � = ⌦1, and by taking translates of �

under y it follows that H = M, a contradiction.

Thus we may assume that � 2 ⌦1 \ ⇥2 and � ✓ ⌦1 \ ⇥2. Hence by Lemma 4.2.11(i)

no H-block contains points of both ⇥1 and ⇥2. Let � 2 H with ↵ 2 �. Then � ✓ ⇥1

and there exists � 2 �\{↵}. If � 2 ⌦\(⌦1 [ ⌦2) ✓ Fix(x) then �x = �, a contradiction

since � ✓ ⇥1 and ↵x
2 ⇥2. Hence we may assume that � ✓ ⇥1 \ (⌦1 [⌦2). By the cycle

type of y it follows that |⌦i \ ⇥1| = 1 for i = 1, 2, and since 1y = k + 1 it follows that

⌦y

1 = ⌦2. Hence �y = � and so ⇥1 ✓ �, a contradiction.

ThereforeH is a primitive group containing x 2 J and soH = G by Theorem 4.3.4.

Lemma 6.3.16. Let m � 13, let k  7, and let G and M be as in Hypothesis 6.2.7(B).

If x 2 X1 \ J , then there exists y 2 M such that hx, yi = G.

Proof. If Supp(x) 6✓ ⌦1 [ ⌦2 [ ⌦x
�1

2 [ {1x
�1
}, then the result holds by Lemma 6.3.14. If

Supp(x) ✓ ⌦1 [ ⌦2, then the result holds by Lemma 6.3.15. Hence we may assume that

Supp(x) ✓ ⌦1 [ ⌦2 [ ⌦x
�1

2 [ {1x
�1
} and there exists ↵ 2 Supp(x)\(⌦1 [ ⌦2).

By Lemma 4.2.1, an element of Sn composed of two cycles lies in An if and only if

G = An. Let Y be the set of elements y = c1c2 2 M with

C(y) = m ·m(k � 1)| {z }
l(yM)=m

satisfying the following.

(i) 1, 1y = k + 1 2 ⇥1.

(ii) ⇥1 contains exactly one of ↵,↵x.

(iii) (⌦2\{k + 1})y \ Fix(x) 6= ;.

(iv) There exists � 2 ⌦x
�1

2 \⌦1 such that �y or �y
�1

2 ⌦1.
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We justify why Y is non-empty. If ↵x
2 {1, k+1}, then let ↵ 2 ⇥2; and if ↵x /2 {1, k+1},

then let ↵ 2 ⇥1 and ↵x
2 ⇥2. Hence Condition (ii) can hold. Since x 2 X1, it follows

that ⌦x

1 6= ⌦2 and so there exists � 2 ⌦x
�1

2 \⌦1. By Condition (i) ⌦y

1 = ⌦2, and so if

� 2 ⌦2, then �y
�1

2 ⌦1. Otherwise let ⌦(�)y = ⌦1, then Condition (iv) holds. Since

Supp(x) ✓ ⌦1 [ ⌦2 [ ⌦x
�1

2 [ {1x
�1
} and m � 13, there exists ⌦i 6= ⌦1,⌦2,⌦(�) and

� 2 ⌦i \ Fix(x). Hence let � 2 ⇥2 and ⌦y

2 = ⌦i, so that Condition (iii) holds.

By Condition (ii), H = H(y) = hx, yi is transitive. Assume, by way of a contradiction,

that H is imprimitive with non-trivial block system H.

Let � be the block containing 1, and let � 2 �\{1}. Then from 1x = k + 1 = 1y, it

follows that �y = �x. Hence if � 2 {k+1, 1x
�1
}[Fix(x) then �x = �, and so �H = �,

a contradiction. Thus � ✓ Supp(x)\{1x
�1
, k + 1} ✓ ⌦1 [ ⌦2 [ ⌦x

�1

2 \{k + 1}. Since

1y
m
= 1 it follows that �hy

m
i
✓ �. Observe that if � 2 ⇥2, then by the cycle type of y it

follows that �y
hmi

= ⌦(�) \⇥2.

If � 2 ⌦2\{k + 1}, then � 2 ⇥2, and so �hy
m
i = ⌦2 \ ⇥2 = ⌦2\{k + 1}. Hence

⌦2\{k + 1} ✓ � and so {k + 1} [ (⌦2\{k + 1})y ✓ �y. By Condition (iii) it follows

that �yx = �y. Combining this with �x = �y gives �y = � = �x. Thus � = ⌦, a

contradiction.

Therefore we may assume that � 2 ⌦1 [ ⌦x
�1

2 and � ✓ ⌦1 [ ⌦x
�1

2 . If � ✓ ⌦1, then

� 2 ⌦1\{1} ✓ ⇥2. Hence �hy
m
i = ⌦1 \⇥2 = ⌦1\{1}, and so � = ⌦1. By taking y trans-

lates of � we see that H = M, a contradiction. Hence there exists

� 2 � \ (⌦x
�1

2 \{1}), and so �x 2 ⌦2\{k + 1} ✓ ⇥2 and k + 1, �x 2 �x
\ ⌦2. Now

(k+ 1)y
m
= k+ 1 implies that {k+ 1}[ (�x)hy

pm i = ⌦2 ✓ �x. From �x = �y we deduce

that ⌦y
�1

2 [ ⌦x
�1

2 = ⌦1 [ ⌦x
�1

2 ✓ �. Therefore � = ⌦1 [ ⌦x
�1

2 since � ✓ ⌦1 [ ⌦x
�1

2 . By

Condition (iv) it follows that �y = �, and so � = �y = �x, a contradiction.

Therefore H is a primitive group containing x 2 J , and so H = G by Theorem

4.3.4.

Proof of Theorem 6.3.1.

By Proposition 6.2.8, we may assume that if Hypothesis 6.2.7(B) holds and n is as in

Region (iii), then x 2 X1, and otherwise that x 2 X2.

If Hypothesis 6.2.7(A) holds, then the result follows from Proposition 6.3.5.

Suppose that Hypothesis 6.2.7(B) holds, and use the divisions of possibilities for m

and k given in Figure 6.3.2. If n is in Region (i) then the result holds by Lemma 6.3.7.

In Region (ii) the result follows from Lemma 6.3.11. In Region (iii) the result holds by

Lemma 6.3.16.
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6.4 Hypothesis 6.2.7(A), Region four - m � 19, k � 28

In this section we prove the following proposition.

Proposition 6.4.1. Let m � 19, let k � 28 and let G and M be as in Hypothesis

6.2.7(A). Then for all x 2 X1\J there exists y 2 M such that hx, yi = G.

Recall that X1 is the set of elements x 2 G\M such that 1x = k + 1, ⌦x

1 /2 M and

|⌦1 \ Supp(x)| � |⌦2 \ Supp(x)|. In addition we recall the definition

M̂ = Sym(⌦1 [ ⌦2)⇥ ⌦3 ⇥ · · ·⇥ ⌦m.

We first assume that the support of x is contained within few M -blocks. We then divide

into two subsections - in the first we assume that x /2 M̂ , and in the second we assume

that x 2 M̂ .

Lemma 6.4.2. Let m � 19, let k � 28 and let G and M be as in Hypothesis 6.2.7(A).

If x 2 X1\J and there exist 3  i, j  m such that Supp(x) ✓ {1, k + 1} [⌦i [⌦j, then

there exists y 2 M such that hx, yi = G.

Proof. By Proposition 6.2.6(ii) we may assume that ⌦i = ⌦3 and ⌦j = ⌦4. By Lemma

4.2.1, an n-cycle is in An if and only if G = An. Let Y be the set of n-cycles y 2 M such

that

⌦y

2 = ⌦1, ⌦y
2

2 = ⌦3, ⌦y
3

2 = ⌦5, ⌦y
4

2 = ⌦4 and ⌦y
5

2 = ⌦6.

and (k + 1)y = 1. Since y is an n-cycle it is clear that H = H(y) = hx, yi is transitive.

Let � be a non-singleton block for H containing k + 1 and let ↵ 2 �\{k + 1}. Since

(k + 1)yx = 1x = k + 1 it follows that �yx = �. If ↵ 2 Supp(x)\{1, k + 1} ✓ ⌦3 [ ⌦4,

then ↵y
2 ⌦5 [⌦6 ✓ Fix(x), and so ↵yx = ↵y

2 �\Fix(x). Hence � contains a point of

Fix(x) and {↵,↵y
}, and so � = �H = ⌦.

Thus H is a primitive group containing an n-cycle and |Supp(x)|  2 + 2k < 19
2 k < n

2 .

Therefore by Theorem 4.3.7, it follows that An  H, and so H = G by the parity of

y.

6.4.1 x 2 X1\(M̂ [ J )

Here we prove Proposition 6.4.1 under the assumption that x 2 X1\(M̂ [ J ). We first

assume that |⌦1 \ Supp(x)| � 2, and then prove the general case. We begin with two

preliminary lemmas.

Lemma 6.4.3. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(A).

If x 2 X1\(M̂ [ J ) and |⌦1 \ Supp(x)| � 2, then one of the following holds.
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(i) There exist ↵ 2 ⌦1\Supp(x)\{1} and distinct points �, � 2 ⌦1\Supp(x)\{↵} such

that ⌦(�x),⌦(�x),⌦1 are distinct.

(ii) There exists ↵ 2 ⌦1 \ Supp(x)\{1} and �, �x 2 ⌦1\{1,↵} (with possibly � = �x).

Proof. First assume that ⌦1\⌦x

1 = ;, and so ⌦1 ✓ Supp(x). We show that (i) holds. Since

x 2 X1 it follows that ⌦x

1 /2 M, and so there exist �, � 2 ⌦1 such that ⌦(�x) 6= ⌦(�x).

From ⌦x

1\⌦1 = ;, it follows that none of ⌦(�x),⌦(�x),⌦1 are equal. Let ↵ 2 ⌦1\{1, �, �},

which exists because k � 28.

Now assume that ⌦1 \ ⌦x

1 6= ;. We show that (ii) holds. If ⌦1 \ Fix(x) 6= ;, then let

� = �x 2 ⌦1 \ Fix(x) and let ↵ 2 ⌦1 \ Supp(x)\{1}. Otherwise ⌦1 ✓ Supp(x) and so we

let �x 2 ⌦1 \ ⌦x

1 and ↵ 2 ⌦1\{1, �, �x}, again using k � 28.

Lemma 6.4.4. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(A).

If x 2 X1\(J [ M̂), then the following both hold.

(i) Either there exists ↵,↵x
2 ⌦1 or there exists � 2 ⌦1\{1} such that �x /2 ⌦1 [ ⌦2.

(ii) If there exist distinct Bertrand primes pk, pk 0 and a Bertrand prime pm such that

pm  m � 4 and pkpk 0 | (m � 1), then there exist distinct points

�, �x, �, �x, ✏, ✏x 2 Supp(x)\(⌦1 [ ⌦2 [ ⌦(�x)), and an element with cycle structure

1n�pmk
· pk

m
is in Jw.

Proof. Part (i) is immediate by the definition of X1 since ⌦x

1 6= ⌦2.

We now prove Part (ii). We claim that |Supp(x)| � 6k + 8. Since x /2 Js ✓ J and

pkpk 0 | (m� 1) it follows that

Supp(x) > 2(
p

mk � 1) > 2(
p
pkpk 0k � 1).

We now show that 2(
p
pkpk 0k � 1) � 6k + 8, from which the claim will follow.

If 26  k  35, then it can be verified using [33, Code 20] that 2(
p
pkpk 0k�1) � 6k+8 for

all distinct primes pk, pk 0. Hence we may assume that k � 36. Let

y(k) = k3
� 30k2

� 115k � 100. Then y(k) > 0 for k � 36. Therefore

k(k2 + 6k + 5) = k3 + 6k2 + 5k > 36k2 + 120k + 100 = (6k + 10)2

and so

2

 r
k ·

k + 1

2
·
k + 5

2
� 1

!
=
p
k(k2 + 6k + 5)� 2 > 6k + 8.

Since pk and pk 0 are distinct odd primes, it follows that pk · pk 0 �
k+1
2 ·

k+5
2 , and so the

claim follows.
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Hence |Supp(x)| � 6k + 8. Let T = (⌦1 [⌦x
�1

1 [⌦2 [⌦x
�1

2 [⌦(�x)[⌦(�x)x
�1
). Then

|Supp(x)\T | � 8, and so there exist

� 2 Supp(x)\T, � 2 Supp(x)\(T[{�, �x, �x
�1
}) and ✏ 2 Supp(x)\(T[{�, �x, �x

�1
, �, �x, �x

�1
}).

Hence �, �x, �, �x, ✏, ✏x are as required.

We now verify that an element with cycle type 1n�pmk
· pk

m
is in Jw by Definition

4.3.2. Since k � 8, it su�ces to show that pm > 2k � 1 and n > (pm + 4)k � 4. Since

pkpk 0 | (m � 1), it follows that m > pkpk 0 >
k

2 ·
k

2 = k
2

4 . In addition k
2

8 �
28k
8 > 2k � 1,

and so

pm >
m

2
>

k2

8
> 2k � 1. (6.4)

Finally, since pm  m� 4, it follows that

n = mk � (pm + 4)k > (pm + 4)k � 4.

Lemma 6.4.5. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(A).

If x 2 X1\(M̂ [J ) and |⌦1\Supp(x)| � 2, then there exists y 2 M such that hx, yi = G.

Proof. By Lemma 4.4.15 there exist distinct primes pk, pk 0 and pm such that pm  m�4.

First assume that pkpk 0 - (m� 1) and, if necessary, relabel such that pk - (m� 1). Let

↵, �, � or ↵, �, �x be as in Lemma 6.4.3. By Lemma 4.2.1, an element composed of three

cycles is in An if and only if G = An. Let Y be the set of elements y = c1c2c3 2 M with

C(x) = pk · (k � pk)| {z }
⇥1[⇥2=⌦1

· (m� 1)k| {z }
l(cM3 )=m�1

,

such that 1 2 ⇥1, ↵ 2 ⇥2, ↵x
2 ⇥1 [ ⇥3, and either �, �x 2 ⇥1, or �, � 2 ⇥1 and

�xy = �x. Hence H = H(y) = hx, yi is transitive. Assume, by way of contradiction, that

H is imprimitive with non-trivial block system H.

Since pk divides neither |⇥2| nor |⇥3|, it follows that l(cH1 ) 6= pk by Lemma 4.2.14(ii).

Hence l(cH1 ) = 1 and so there exists� 2 H such that⇥1 ✓ �. Thus�y = �. If �, �x 2 ⇥1,

then � = �H = ⌦, a contradiction. Hence we may assume that �, � 2 ⇥1 ✓ � and so

�x, �x 2 �x. Since �xy = �x it follows that (�x)y = �x. Therefore ⇥3 ✓ �x and so

|�x
| = (m� 1)k > n

2 , a contradiction.

Thus H is primitive and contains the pk-cycle y(m�1)k(k�pk) 2 Jc. Hence An  H by

Theorem 4.3.4, and so H = G by the parity of y.

Now assume that pkpk 0 | (m � 1). Since x /2 J , Lemma 6.4.4(i) and (ii) imply that
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there exist either ↵,↵x
2 ⌦1 or � 2 ⌦1\{1} such that �x /2 ⌦1 [ ⌦2; there exist distinct

points �, �x 2 Supp(x)\(⌦1 [⌦2 [⌦(�x)); and an element with cycle type 1n�pmk
· pk

m
is

in Jw. Observe that pm > k by the latter deduction.

By Lemma 4.2.1 an element composed of three cycles is in An if and only if G = An.

Let Y be the set of elements y = c1c2c3 2 M with

C(y) = pmpk · pm(k � pk)| {z }
l((c1c2)M)=pm

⌦1,⌦(�x),⌦(�),⌦(�x)2Supp((c1,c2)M)

· (m� pm)k| {z }
l(cM3 )=(m�pm)

⌦22Supp(cM3 )

such that 1, 1y = � 2 ⇥1, �x 2 ⇥2, k + 1 2 ⇥3 and either ↵,↵x or �, �x
2 ⇥1. Then,

H = H(y) = hx, yi is transitive.

We claim that there exists y 2 Y for which H is primitive by Lemma 4.2.15. Let

(q1, q2, i, j, �,�) = (pm, pk, 3, 2, 1, �) and either  = ↵ = ! or  = � = !. Then pm - |⇥3|

and pk - |⇥2|, hence pmpk - |⇥l| for 2  l  3. Also 1, � 2 ⇥1, 1x = k + 1 2 ⇥3 and

�x 2 ⇥2, and either ↵,↵x
2 ⇥1 or �, �x

2 ⇥1. Finally 1hy
pm i = ⌦1 \ ⇥1 contains either

↵ or �, and by Lemma 4.2.13(iv) there exists y 2 Y such that �hy
pk i contains either ↵ or

�. Hence Conditions (i), (ii) and (iii)(a) of Lemma 4.2.15 are satisfied, and so the claim

holds

Now ypk(k�pk)(m�pm)k has cycle type 1n�pmk
· pk

m
, and so ypk(k�pk)(m�pm)k

2 Jw. Hence

H = G by Theorem 4.3.4.

We now complete the proof in the case of x /2 M̂ .

Lemma 6.4.6. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(A).

If x 2 X1\(M̂ [ J ), then there exists y 2 M such that hx, yi = G.

Proof. If |⌦1 \ Supp(x)| � 2, then the result holds by Lemma 6.4.5. Hence we may

assume that |⌦1 \ Supp(x)| = 1, and so |⌦2 \ Supp(x)| = 1 since x 2 X1. If there

exist 3  i, j  m such that Supp(x) ✓ {1, k + 1} [ ⌦i [ ⌦j, then the result holds by

Lemma 6.4.2. Hence assume otherwise, and so by Proposition 6.2.6(iv) we may assume

that there exists ↵ 2 ⌦3\Supp(x), � 2 ⌦5\Supp(x) and i 2 {1, 4} such that ↵x
2 ⌦i. If

pk - (m�2), then let a := 2, otherwise let a := 4. Thus pk - (m�a) and (m�a) > a, a�1.

Since k � 28, there exists �5 2 ⌦5\{�, �x
�1
} and �6 2 ⌦6\{�x

�1
}. From

⌦2 \ Supp(x) = {k + 1} = {1x} it follows that �x5 , �
x

6 /2 ⌦2.

By Lemma 4.2.1 an element composed of three cycles is in An if and only if G = An.
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Let Y be the set of elements y = c1c2c3 2 M with

C(y) = apk · a(k � pk)| {z }
(l(c1c2)M)=a

· (m� a)k| {z }
l(cM3 )=m�a

.

such that y satisfies all of the following.

(i) If a = 2 then (c1c2)M = (⌦1,⌦5), and if a = 4 then (c1c2)M = (⌦1,⌦5,⌦6,⌦7).

(ii) 1 2 ⇥1, � 2 ⇥2 and �x
2 ⇥1 [⇥3.

(iii) If a = 2 then let � = �5 = 1y
pk , and if a = 4 then let � = �6 = 1y

2pk . Also

�x 2 ⇥1 [ {(k + 1)y
i
| 1  i < m� a}.

(iv) One of the follows holds.

(a) If ↵x
2 ⌦1, then (k + 1)y

�1
= ↵.

(b) If ↵x
2 ⌦4, then (k + 1)y

�a
= ↵ and (k + 1)y

�(a+1)
= ↵x.

By Conditions (i) and (ii), H = hx, yi is transitive. Assume, by way of contradiction,

that H is imprimitive with non-trivial block system H. Let � 2 H with 1 2 �.

Since ⇥1 contains points of ⌦1\{1} ✓ Fix(x), Lemma 4.2.14(i) implies that l(cH1 ) 6= 1.

Since pk - |⇥2|, |⇥3|, Lemma 4.2.14(ii) implies that l(cH1 ) 6= apk.

If a = 2 then let d = 1, and if a = 4 then let d 2 {1, 2}. Hence d < a is a divisor of

a. Assume that l(cH1 ) = dpk. Then by Condition (iii), 1, � 2 �. Since pk - |⇥2|, |⇥3| it

follows by Lemma 4.2.11(iv) that � ✓ ⇥1 and so |�| = a

d
 4. If �x 2 ⇥1 [ ⇥2, then

�x 2 ⇥1 by Condition (iii), and so �x contains �x 2 ⇥1 and k + 1 2 ⇥3. Hence cH1 = cH3
by Lemma 4.2.11(i), a contradiction since pk - |⇥3|. If �x 2 ⇥3, then by Condition (iii),

there exists 1  i  m � a such that (k + 1)y
i
= �x. Hence (�x)y

i
= �x, and so

|�x
| �

(m�a)k
i

� k > 4 � |�|, a contradiction.

Let e > 1 be a divisor of a and assume that l(cH1 ) = e. Then in particular �y
a
= �.

By Lemma 4.2.13(ii) we deduce that ⌦1 \ ⇥1 ✓ � \ ⇥1. Since |⌦1 \ Supp(x)| = 1 it

follows that �x = �, and so k + 1 2 �. Recall that ↵x
2 ⌦1 [ ⌦4. If ↵x

2 ⌦1, then

from |⌦1 \ Supp(x)| = 1 it follows that ↵x = 1 2 �. From �x = � and Condition

(iv)(a), we deduce that ↵ = (k + 1)y
�1

2 �, and so � = �H = ⌦, a contradiction.

Hence ↵x
2 ⌦4. Since �x = � = �y

a
and k + 1 2 � it follows by Condition (iv)(b) that

↵ = (k + 1)y
�a
,↵x = (k + 1)y

�a
x
2 �. Since ↵xy = ↵, we deduce that � = �H = ⌦, a

contradiction.

Therefore H is primitive and contains ya(m�a)k(k�pk) which has cycle type 1n�apk · pka.
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We now show that this is a Jordan element. Now a = 2 or 4, pk � 7 and

n� apk = mk � apk > (m� a)pk > (m� 4)pk > 4.

Hence ya(m�a)k(k�pk) 2 Jw, and so H = G by Theorem 4.3.4.

6.4.2 x 2 (X1 \ M̂)\J

In this subsection we prove Proposition 6.4.1 under the assumption that x 2 (X1 \

M̂)\J .

We begin with the case of |⌦1 \ Supp(x)| � 2. For |⌦1 \ Supp(x)| = 1 we first assume

that m � 4k � 2, secondly that k  m < 4k � 2, and then we consider the general case.

Finally we complete the proof of Proposition 6.4.1.

Lemma 6.4.7. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(A).

If x 2 (X1\M̂)\J and |⌦1\Supp(x)| � 2, then there exists y 2 M such that hx, yi = G.

Proof. We first show that there exist ↵ 2 (⌦1 \ Supp(x))\{1} and �, �x
2 ⌦1\{↵}.

If ⌦1\Fix(x) 6= ;, then let � = �x
2 ⌦1\Fix(x) and let ↵ 2 ⌦1\Supp(x)\{1}. Hence

assume that ⌦1\Fix(x) = ;. Since x 2 M̂ it follows that ⌦x

1 ✓ ⌦1[⌦2, and since x /2 M

it follows that ⌦x

1 6= ⌦2. Hence there exist �, �x
2 ⌦1 and we may let ↵ 2 ⌦1\{1, �, �x

}.

By Lemma 4.2.1 an element composed of three cycles is in An if and only if G = An.

We split into two cases. First assume that there exists a Bertrand prime pk such that

pk - (m� 1). Let Y be the set of elements y = c1c2c3 2 M with

C(y) = pk · (k � pk)| {z }
⇥1[⇥2=⌦1

· (m� 1)k| {z }
l(cM3 )=m�1

,

such that 1, �, �x
2 ⇥1, ↵ 2 ⇥2, and ↵x

2 ⇥1 [ ⇥3. Then H = hx, yi is transitive.

Assume, by way of contradiction, that H is imprimitive with non-trivial block system

H. Since pk - |⇥2|, |⇥3|, Lemma 4.2.14(ii) implies that l(cH1 ) 6= pk and since �, �x
2 ⇥1,

Lemma 4.2.14(i) implies that l(cH1 ) 6= 1. Thus H is primitive and contains the pk-cycle

y(k�pk)(m�1)k
2 Jc. Therefore H = G by Theorem 4.3.4.

If there is no pk as in the previous case, then by Lemma 4.4.11 there exist a prime

q > pk such that q - mk, k < (m� q) and kq < 2(
p
n� 1). By Lemma 6.2.3 there exist

�, �x 2 ⌦3. Let Y be the set of elements y = c1c2c3 2 M such that

C(y) = qpk · q(k � pk)| {z }
l((c1c2)M)=q

⌦1,⌦32Supp((c1c2)M)

· (m� q)k| {z }
l(cM3 )=m�q

⌦22Supp(cM3 )
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with 1, �, �x, �, �x 2 ⇥1, ↵ 2 ⇥2, and ↵x
2 ⇥1 [ ⇥3. Then H = hx, yi is transitive.

Assume, by way of a contradiction, that H preserves a non-trivial block system H. Let

� 2 H with 1 2 �.

Since �, �x 2 ⇥1 it follows by Lemma 4.2.14(i) that l(cH1 ) 6= 1. Since pk - q(k� pk) and

q - (m� q)k, it follows by Lemma 4.2.14(ii) that l(cH1 ) 6= qpk.

Assume that l(cH1 ) = pk. Then Lemma 4.2.13(iv) implies that |�\⌦j\⇥1| = 1 for each

⌦j 2 Supp(cM1 ). Hence there exists y 2 Y such that 1, � 2 �. Therefore k + 1, �x 2 �x

and so by Lemma 4.2.11(i) it follows that cH1 = cH3 . Hence by Lemma 4.2.10 pk | (m�q)k.

Since pk - k it follows that pk | (m� q). Let � be an arbitrary block in Supp(cH3 ). From

m�q > k > pk, Lemma 4.2.13(ii) implies that �\⇥3 is a union of at least two M -blocks.

Since ⌦x

j
= ⌦j for j 6= 1, 2, it follows that �x = �. Hence from ↵x

2 ⇥1 [⇥3, ↵ 2 ⇥2 and

pk - |⇥2| we reach a contradiction by Lemma 4.2.14(iii).

Assume finally that l(cH1 ) = q. Then � \ ⇥1 = ⌦1 \ ⇥1 by Lemma 4.2.13(i). Hence

�, �x
2 �, and so �x = � and k + 1 2 � \ ⇥3. From q - |⇥3| we derive a contradiction

by Lemma 4.2.14(iii).

Hence H is primitive. Since q - mk it follows that y(m�q)k is non-trivial and has support

size kq < 2(
p
n� 1). Therefore y(m�q)k

2 Js, and so H = G by Theorem 4.3.4.

For the rest of this section we may assume that x 2 M̂ and |⌦1 \ Supp(x)| = 1. We

split into three cases, first m � 4k � 2 then k  m < 4k � 2 and finally m < k.

We first prove a preliminary lemma which guarantees the existence of certain points.

Lemma 6.4.8. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(A).

Assume that x 2 (X1 \ M̂)\J , Supp(x) \ (⌦1 [ ⌦2) = {1, k + 1} and

Supp(x) 6✓ {1, k + 1} [ ⌦i [ ⌦j for any 3  i, j  m. Then there exist distinct points

↵,↵x
2 ⌦3 \ Supp(x), �, �x

2 ⌦4 \ Supp(x), �, �x 2 ⌦5 \ Supp(x) and

�, �x, ✏, ✏x 2 (⌦5 [ ⌦6 [ ⌦7) \ Supp(x).

Proof. By Proposition 6.2.6(iii) we may assume that

0 < |⌦3 \ Supp(x)|  |⌦4 \ Supp(x)|  |⌦5 \ Supp(x)|.

Hence there exists ↵,↵x
2 ⌦3\Supp(x) and �, �x

2 ⌦4\Supp(x). If |⌦5\Supp(x)| � 7,

then there exists � 2 ⌦5 \ Supp(x), � 2 ⌦5 \ Supp(x)\{�, �x, �x
�1
} and

✏ 2 ⌦5 \ Supp(x)\{�, �x, �x
�1
, �, �x, �x

�1
}. Otherwise |⌦5 \ Supp(x)|  6 and so

|⌦3 \ Supp(x)|  6 and |⌦4 \ Supp(x)|  6. Since x /2 Js it follows that

|Supp(x)| > 2(
p
19 · 28� 1) � 44. Hence assume otherwise, and so

|Supp(x)\(⌦1 [ ⌦2 [ ⌦3 [ ⌦4)| � 44� 2(1)� 2(6) = 30.
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Therefore there exist distinct points �, �x, �, �x, ✏, ✏x 2 Supp(x)\(⌦1[⌦2[⌦3[⌦4). Since

x 2 M̂ these points lie in at most three M -blocks. Hence by Proposition 6.2.6(iii), we

may assume that �, �x 2 ⌦5 \ Supp(x) and �, �x, ✏, ✏x 2 (⌦5 [ ⌦6 [ ⌦7) \ Supp(x).

Lemma 6.4.9. Let k � 28, let m � 4k � 2, and let G and M be as in Hypothesis

6.2.7(A). If x 2 (X1 \ M̂)\J and |⌦1 \ Supp(x)| = 1, then there exists y 2 M such that

hx, yi = G.

Proof. By Lemma 4.4.18 since m, k � 18, there exist distinct primes pm and pk such that
m+5
2  pm  m� 5 and pk  k � 5. Hence

pm >
m

2
� 2k � 1 > k � 2, (6.5)

and so pm does not divide any of pk, (k � 2) and (k � pk). From x 2 X1 it follows that

|⌦2 \ Supp(x)| = 1. If Supp(x) ✓ {1, k + 1} [ ⌦i [ ⌦j for some i and j, then the result

follows by Lemma 6.4.2. Since x /2 J , we may let ↵, �, � be as in Lemma 6.4.8.

By Lemma 4.2.1 an element composed of five cycles is in An if and only if G = An. Let

Y be the set of elements y = c1c2c3c4c5 2 M such that

C(y) = pm(k � 2) · pm · pm| {z }
l((c1c2c3)M)=pm

⌦1,⌦3,⌦52Supp((c1c2c3)M)

· pk(m� pm) · (k � pk)(m� pm)| {z }
l((c4c5)M)=m�pm

⌦2,⌦42Supp((c4c5)M)

with 1, 1y = � 2 ⇥1, ↵, �x 2 ⇥2, ↵x
2 ⇥3, k + 1, � 2 ⇥4 and �x

2 ⇥5. Hence H = hx, yi

is transitive. Assume, by way of a contradiction, that H preserves a non-trivial block

system H. Let � 2 H with 1 2 �.

Since ⇥1 contains points of ⌦1\{1} ✓ Fix(x), Lemma 4.2.14(i) implies that

l(cH1 ) 6= 1. From pm > m� pm, pk, k� pk it follows that (k� 2)pm - |⇥i| for i 6= 1. Hence

l(cH1 ) 6= (k � 2)pm, by Lemma 4.2.14(ii).

Let d < k � 2 be a divisor of k � 2, and assume that l(cH1 ) = dpm. Then

|� \ ⌦1 \ ⇥1| = (k�2)
d

> 1. Hence � contains a point of ⌦1\{1} ✓ Fix(x), and so

�x = �. Since k+1 2 ⇥4 and dpm - |⇥4| we reach a contradiction by Lemma 4.2.14(iii).

Let e > 1 be a divisor of k � 2, and assume that l(cH1 ) = e. By Lemma 4.2.13(v),

|�y
\⌦j| � 1 for ⌦j 2 Supp(cM1 ). Hence �y contains � and a point of ⌦1\{1} ✓ Fix(x).

Therefore �yx = �y. Since �x 2 ⇥2 and e - |⇥2| we reach a contradiction by Lemma

4.2.14(iii).

Hence H is a primitive group. Let t = (m� pm)pk(k � 2)(k � pk). Then pm - t, and so

yt has cycle type 1n�pmk
· pk

m
. By assumption k � 8, and pm > 2k � 1 by (6.5), finally by
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Lemma 4.4.18 pm + 4  m, and so

k(pm + 4)� 4  km� 4 < n.

Thus yt 2 Jw and so H = G by Theorem 4.3.4.

Lemma 6.4.10. Let k � 28, let k  m < 4k � 2, and let G and M be as in Hypothesis

6.2.7(A). If x 2 (X1 \ M̂)\J and |⌦1 \ Supp(x)| = 1, then there exists y 2 M such that

hx, yi = G.

Proof. Since x 2 X1 it follows that |⌦2 \ Supp(x)| = 1. If Supp(x) ✓ {1, k+1}[⌦i [⌦j

for some 3  i, j  m, then the result holds by Lemma 6.4.2. Hence we may let ↵, �, �, �, ✏

be as in Lemma 6.4.8. By Lemma 4.4.18 there exist distinct primes pm and pk such that
m+5
2  pm  m� 5, pk  k � 5 and pk - (m� 2).

First assume m is even. Hence 2 - (m� pm), and G = Sn by Hypothesis 6.2.7(A). We

give two possibilities for Y ✓ M . By Lemma 4.2.1 an element composed of five or seven

cycles is in Sn\An. If k is even, then let Y be the set of elements y = c1 · · · c5 2 M such

that

C(y) = pmpk · pm(k � pk)| {z }
l((c1c2)M)=pm

⌦1,⌦42Supp((c1c2)M)

· (m� pm)(k � pk � 2) · (m� pm)pk · (m� pm)2| {z }
l((c3c4c5)M)=m�pm

⌦2,⌦3,⌦52Supp((c3c4c5)M)

with 1, 1y = � 2 ⇥1, �x
2 ⇥2, ↵x

2 ⇥3, k+1,↵, � 2 ⇥4, and �x 2 ⇥5. From pk 6= pm, we

deduce that pk - |⇥2| and pm - |⇥4|, |⇥5|. Since

pm >
m

2
�

k

2
> k � pk � 2 > k � pk � 3, (6.6)

it follows that pm - |⇥3|.

If k is odd, then let Y be the set of elements y = c1 · · · c7 2 M such that

C(y) = pmpk · pm(k � pk � 1) · pm| {z }
l((c1c2c3)M)=pm

⌦1,⌦3,⌦42Supp((c1c2c3)M)

· (m� pm)pk · (m� pm)(k � pk � 3) · (m� pm) · (m� pm)2| {z }
l((c4c5c6)M)=m�pm

⌦2,⌦5,⌦6,⌦72Supp((c4c5c6)M)

with 1, 1y = �,↵ 2 ⇥1, �x
2 ⇥2,↵x

2 ⇥3, k + 1, �, �, ✏ 2 ⇥4 and �x 2 ⇥5, �x 2 ⇥6

and ✏x 2 ⇥7. Note that pk - |⇥2|, |⇥3| and pm - |⇥4|, |⇥6|, |⇥7|. By (6.6), it follows that

pm - |⇥5|.

In both cases, it is clear that H is transitive. We shall use Lemma 4.2.15 to show that

H is primitive. Let (q1, q2, i, j, �,�) = (pm, pk, 4, 2, 1, �). Then pm - |⇥4|, pk - |⇥2| and

pmpk - |⇥l| for l � 2. Also 1, � 2 ⇥1, 1x = k + 1 2 ⇥4 and �x
2 ⇥2. Finally 1y = �
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and by Lemma 4.2.13(i) 1hy
pm i

✓ {1} [ Fix(x). Hence Conditions (i), (ii) and (iii)(b) of

Lemma 4.2.15 are satisfied, and so H is primitive.

If k is even then let t = pmpk(k � pk � 2)(m � pm)(k � pk), and if k is odd then let

t = pmpk(k�pk�1)(m�pm)(k�pk�3). Then yt has cycle structure 1n�2(m�pm)
·2m�pm .

From pm �
m+5
2 , it follows that �m�5 � �2pm, and so m�5 � 2(m�pm). In addition,

4k � 2 > m implies that k > m

4 + 1
2 > m

4 , thus

2(
p
n� 1) = 2(

p
m
p

k � 1) > 2
⇣p

m

r
m

4
� 1
⌘
= m� 2 > m� 5 � 2(m� pm).

Hence yt 2 Js, and so H = G by Theorem 4.3.4.

Now suppose that m is odd. By Lemma 4.2.1 an element composed of three cycles is

in An if and only if G = An. Let Y be the set of elements y = c1c2c3 2 M such that

C(y) = 2pk · 2(k � pk)| {z }
(c1c2)M=(⌦1,⌦3)

· (m� 2)k| {z }
l(cM3 )=m�2

,

with 1, 1y = ↵ 2 ⇥1, ↵x
2 ⇥2 and k + 1 2 ⇥3. Hence H = hx, yi is transitive. Assume,

by way of a contradiction, that H is imprimitive with non-trivial block system H.

Since pk - |⇥2|, |⇥3|, it follows that l(cH1 ) 6= 2pk by Lemma 4.2.14(ii). Since ⇥1 contains

points of ⌦1\{1} ✓ Fix(x) it follows that l(cH1 ) 6= 1 by Lemma 4.2.14(i). Hence we may

let � and � := �y be distinct blocks with 1 2 � and ↵ 2 �.

Assume that l(cH1 ) = pk. Then, by Lemma 4.2.13(iv), |� \ ⌦j \ ⇥1| = 1 for j = 1, 3.

In particular, � contains a point of ⌦1\{1} ✓ Fix(x), and so �x = �. Since ↵x
2 ⇥2 and

pk - |⇥2| we reach a contradiction by Lemma 4.2.14(iii).

Assume that l(cH1 ) = 2 so that cH1 = (�,�). Then �\⇥1 = ⌦1\⇥1 and so �\Fix(x) 6=

;. Hence �x = � and 1x = k+1 2 �. Therefore cH3 = (�,�) by Lemma 4.2.11(i). From

m > 3, we deduce that mk > 3k and so 3mk � 3k > 2mk. Hence mk�k

2 > mk

3 and so

|�| � pk +
(m� 2)k

2
>

k

2
+

(m� 2)k

2
=

(m� 1)k

2
>

n

3
.

ThusH = {�,�}. From 2 - (m�2), it follows by Lemma 4.2.10 that 2 | k. Hence�\⌦j 6=

; and � \ ⌦j 6= ; for

⌦j 2 Supp(cM3 ) by Lemma 4.2.13(v). In particular, there exists y 2 Y with � 2 �

and �x
2 �, contradicting the deduction that �x = �.

Hence H is primitive and a power of y has cycle type 1n�2pk · pk2. Since pk � 5 and

n� 2pk > (m� 2)pk > 2, it follows that yt 2 Jw, and so H = G by Theorem 4.3.4.
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Lemma 6.4.11. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(A).

If x 2 (X1\M̂)\J and |⌦1\Supp(x)| = 1, then there exists y 2 M such that hx, yi = G.

Proof. If m � 4k � 2, then the result holds by Lemma 6.4.9 and if k  m < 4k � 2,

then the result holds by Lemma 6.4.10. Hence we may assume that m < k. Therefore by

Lemma 4.4.19 since m � 18 there exist distinct primes pm and pk such that

pk 6= m� 3 m� pm � 2 and k � 2 > pk >
k

2
>

m

2
> m� pm. (6.7)

Since x 2 X1 it follows that |⌦2\Supp(x)| = 1. If Supp(x) ✓ {1, k+1}[⌦i[⌦j for some

3  i, j  m, then the result holds by Lemma 6.4.2. Hence we may assume otherwise

and let ↵,↵x, �, �x, �, �x be as in Lemma 6.4.8.

First assume that 3 - (m � pm). By Lemma 4.2.1 an element composed of five cycles

lies in An if and only if G = An. If 3 - (k � pk), then let Y be the set of elements

y = c1 · · · c5 2 M such that

C(y) = pmpk · pm(k � pk)| {z }
l((c1c2)M)=pm

⌦1,⌦32Supp((c1c2)M)

· (m� pm)(k � pk � 3) · (m� pm)3 · (m� pm)pk| {z }
l((c3c4c5)M)=m�pm

⌦2,⌦4,⌦52Supp((c3c4c5)M)

with 1, 1y = ↵ 2 ⇥1, ↵x
2 ⇥2, �x 2 ⇥3, �x

2 ⇥4, and k+1, �, � 2 ⇥5. Note that pk - |⇥2|

and pm - |⇥4|, |⇥5|, and by (6.7) pk - |⇥3|.

If 3 | (k�pk), then 3 - (k�pk�1)(k�3). Let Y be the set of elements y = c1 . . . c5 2 M

such that

C(y) = pmpk · pm(k � pk � 1) · pm| {z }
l((c1c2c3)M)=pm

⌦1,⌦3,⌦42Supp((c1c2c3)M)

· (m� pm)(k � 3) · (m� pm)3| {z }
l((c4c5)M)=m�pm

⌦2,⌦52Supp((c4c5)M)

with 1, 1y = ↵, � 2 ⇥1,↵x
2 ⇥2, �x

2 ⇥3, �x 2 ⇥4 and k + 1, � 2 ⇥5. Note that

pk - |⇥2|, |⇥3| and pm - |⇥5|. By (6.7), pk 6= k � 3 and pk > m� pm, and so pk - |⇥4|.

In both cases H is transitive. We shall use Lemma 4.2.15 to show that H is primitive.

Let (q1, q2, i, j, �,�) = (pm, pk, 5, 2, 1,↵). Then pm - |⇥5|, pk - |⇥2| and pmpk - |⇥l| for

2  l  5. Also, 1,↵ 2 ⇥1, 1x = k + 1 2 ⇥5 and ↵x
2 ⇥2. Finally 1y = ↵ and by

Lemma 4.2.13(i) 1hy
pm i

✓ {1} [ Fix(x). Hence H satisfies Conditions (i), (ii) and (iii)(b)

of Lemma 4.2.15 and so H is primitive.

There exists a power of y with cycle type 1n�3(m�pm)
· 3(m�pm). Since m > 2 it follows

that 4m� 2 > 3m. Hence 2(m� 1) > 3m
2 , and so

2(
p
n� 1) > 2(m� 1) > 3

⇣m
2

⌘
> 3(m� pm).
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Therefore yt 2 Js and so H = G by Theorem 4.3.4.

Now assume that 3 | (m� pm). Let Y be the set of elements y = c1c2c3 2 M such that

C(y) = 3pk · 3(k � pk)| {z }
l((c1c2)M)=3

⌦1,⌦32Supp((c1c2)M)

· (m� 3)k| {z }
l(cM3 )=m�3

⌦2,⌦42Supp(cM3 )

with 1, 1y = ↵ 2 ⇥1, ↵x
2 ⇥2 and k + 1, �, �x

2 ⇥3 and (k + 1)y
3
= �. Hence H = hx, yi

is transitive. Assume, by way of a contradiction, that H preserves a non-trivial block

system H. Let � 2 H with 1 2 �.

Clearly pk - |⇥2|. By (6.7) we have pk > m

2 > m�3
2 and pk 6= m � 3, hence pk - |⇥3|.

Therefore l(cH1 ) 6= 3pk by Lemma 4.2.14(ii). Since ⇥1 contains points of ⌦1\{1} ✓ Fix(x)

it follows that l(cH1 ) 6= 1 by Lemma 4.2.14(i).

Assume that l(cH1 ) = pk. Then by Lemma 4.2.13(iv), |�y
\ ⌦j \ ⇥1| = 1 for

⌦j 2 Supp(cM1 ). In particular, �y contains ↵ and a point of ⌦1\{1} ✓ Fix(x). Hence

(�y)x = �y. Since ↵x
2 ⇥2 and pk - |⇥2| we reach a contradiction by Lemma 4.2.14(iii).

Now assume that l(cH1 ) = 3. Then � \ ⇥1 = ⌦1 \ ⇥1 by Lemma 4.2.13(i). Hence

�x = � and k + 1 2 �. Therefore cH1 = cH3 by Lemma 4.2.11(i), and since 3 - (m � 3),

Lemma 4.2.10 implies that 3 | k. Hence � \ ⌦j 6= ; for ⌦j 2 Supp(cM3 ) by Lemma

4.2.13(v). Therefore � 2 �, and there exists y 2 Y such that �x /2 �. A contradiction

since �x = �.

Hence H is primitive and a power of y has cycle type 1n�3pk · pk3. Since pk � 5, and

n� 3pk > (m� 3)pk > 3, it follows that yt 2 Jw. Hence H = G by Theorem 4.3.4.

Proof of Proposition 6.4.1. By Proposition 6.2.8, we may assume that x 2 X1. If x 62 M̂ ,

then the result holds by Lemma 6.4.6. If x 2 M̂ and |⌦1 \ Supp(x)| � 2, then the result

holds by Lemma 6.4.7. If x 2 M̂ and |⌦1\Supp(x)| = 1, then the result holds by Lemma

6.4.11.

6.5 Hypothesis 6.2.7(B), Region four - m � 19 and k � 28

Here we prove the following lemma.

Proposition 6.5.1. Let m � 19, let k � 28 and let G and M be as in Hypothesis

6.2.7(B). Then for all x 2 X1\J there exists y 2 M such that hx, yi = G.

Recall that X1 is the set of elements x 2 G\M such that 1x = k + 1, ⌦x

1 /2 M and
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|⌦1 \ Supp(x)| � |⌦2 \ Supp(x)|. In addition we recall the definition

M̂ = Sym(⌦1 [ ⌦2)⇥ ⌦3 ⇥ · · ·⇥ ⌦m.

We divide into two subsections, first that x 2 M̂ and then x /2 M̂ .

6.5.1 x 2 (X1 \ M̂)\J

In this subsection we assume that x 2 (X1\M̂)\J . We split into three cases: first we let

|⌦1\Supp(x)| > 3; then let |⌦1\Supp(x)|  3 and assume that there exists 3  i, j  m

such that Supp(x) ✓ ⌦1 [ ⌦2 [ ⌦i [ ⌦j; finally we assume that |⌦1 \ Supp(x)|  3 and

that Supp(x) 6✓ ⌦1 [ ⌦2 [ ⌦i [ ⌦j for all 3  i, j  m.

|⌦1 \ Supp(x)| > 3

Lemma 6.5.2. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(B).

If x 2 (X1\M̂)\J and |⌦1\Supp(x)| > 3, then there exists y 2 M such that hx, yi = G.

Proof. We begin by showing that there exist distinct points ↵, � 2 ⌦1\{1} such that

�x
6= ↵, and points �, �x 2 ⌦1\{↵, �}.

If ⌦1 \ Fix(x) 6= ;, then there exists � = �x 2 ⌦1 \ Fix(x). Since |⌦1 \ Supp(x)| > 3,

there exist ↵ 2 ⌦1 \ Supp(x)\{1} and � 2 (⌦1 \ Supp(x))\{1,↵,↵x
}.

Now assume that ⌦1 ✓ Supp(x). Since x 2 M̂ it follows that (⌦1 [ ⌦2)x = ⌦1 [ ⌦2,

since x 2 X1 it follows that ⌦x

1 6= ⌦2. Therefore there exist �, �x 2 ⌦1 \ Supp(x). Now

from k � 6 there exist ↵ 2 ⌦1\{1, �, �x} and � 2 ⌦1\{1, �, �x,↵,↵x
}.

By Lemma 4.2.1 an element composed of four cycles is in An if and only if G = An.

Using Lemma 4.4.11 we split into two cases. First assume that there exists a prime pk

such that k

2 < pk < k�1 and pk - (m�1). Let Y be the set of elements y = c1c2c3c4 2 M

such that

C(y) = 1 · pk · (k � pk � 1)| {z }
⇥1[⇥2[⇥3=⌦1

· (m� 1)k| {z }
l(cM4 )=m�1

with ⇥1 = {↵}, 1, �, �x 2 ⇥2, � 2 ⇥3, and �x
2 ⇥2 [⇥4.

First note that since �x
6= ↵ it follows that Y 6= ;. Let H = hx, yi. Then 1 2 ⇥2

and k + 1 2 ⇥4 imply that ⇥2 [ ⇥4 ✓ 1H . Hence �x
2 1H , and so ⇥3 2 1H . Therefore

⌦\{↵} ✓ 1H , and since ↵ 2 Supp(x) it follows that H is transitive. Assume, by way of

a contradiction, that H is imprimitive with non-trivial block system H. Since pk - |⇥i|

for i 6= 2, Lemma 4.2.14(ii) implies that l(cH2 ) 6= pk. Since �, �x 2 ⇥2 it follows that

l(cH2 ) 6= 1 by Lemma 4.2.14(i). Hence H is primitive by Lemma 4.2.10.
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Since y(k�pk�1)(m�1)k is a pk-cycle it follows that y(k�pk�1)(m�1)k
2 Jc. Therefore An  H

by Theorem 4.3.4, and so H = G by the parity of y.

By Lemma 4.4.11, if there is no prime pk as in the previous case, then there exist two

primes q > pk such that q - mk, k < (m� q) and kq < 2(
p
n� 1). By Lemma 6.2.3 there

exist �,�x 2 ⌦3 (possibly equal). Let Y be the set of elements y = c1c2c3c4 2 M with

C(y) = qpk · q(k � pk � 1) · q| {z }
l((c1c2c3)M)=q

⌦1,⌦32Supp((c1c2c3)M)

· (m� q)k| {z }
l(cM4 )=m�q

⌦2,⌦52Supp(cM4 )

such that 1, �, �x,�,�x 2 ⇥1, ↵ 2 ⇥2, � 2 ⇥3, �x
2 ⌦1 [ ⌦4 and

↵x /2 ⇥2. Hence H = hx, yi is transitive. We assume, by way of a contradiction, that H

is imprimitive with non-trivial block system H. Let � 2 H with 1 2 �.

Since pk - |⇥2|, |⇥3| and q - |⇥4|, it follows that l(cH1 ) 6= qpk by Lemma 4.2.14(ii). From

�, �x 2 ⇥1, Lemma 4.2.14(i) implies that l(cH1 ) 6= 1.

If l(cH1 ) = q, then � \ ⇥1 = ⌦1 \ ⇥1 by Lemma 4.2.13(i). Hence �, �x 2 � and so

�x = �. Since k + 1 2 ⇥4 and q - |⇥4| we reach a contradiction by Lemma 4.2.14(iii).

Suppose that l(cH1 ) = pk, so that there exist �1 := �,�2, . . . ,�pk
2 H such that

cH1 = (�1, . . . ,�pk
). By Lemma 4.2.13(iv), |�i \ ⌦j \ ⇥1| = 1 for 1  i  pk and

⌦j 2 Supp((c1c2c3)M). Therefore there exists y 2 Y such that � 2 �1. Since �x 2 ⇥1

it follows that �x

1 = �i for some 1  i  pk. Therefore k + 1 2 �i, and so cH1 = cH4
by Lemma 4.2.11(i). Hence there exists 1  l  pk such that �l containing �x. Since

pk - k and l(cH4 ) = pk, we deduce by Lemma 4.2.10 that pk | (m � q). Therefore by

Lemma 4.2.13(ii), there exists ⌦j 2 Supp(cM4 ) such that ⌦j ✓ �l \ ⇥4. By Lemma

6.2.3, ⌦x

j
\ ⌦j 6= ;, and so �x

l
= �l. However, � 2 ⇥3 and pk - |⇥3| and so we reach a

contradiction by Lemma 4.2.14(iii).

Therefore H is a primitive group containing y1 := y(m�q)k. From q - (m � q)k, we

deduce that y1 6= id. In addition |Supp(y1)| = qk < 2(
p
n � 1), and so y1 2 Js. Hence

An  H by Theorem 4.3.4, and so H = G by the parity of y.

|⌦1 \ Supp(x)|  3 and Supp(x) 6✓ ⌦1 [ ⌦2 [ ⌦i [ ⌦j for any i, j

Here we assume that x 2 X1 and |⌦1\Supp(x)|  3, and so |⌦2\Supp(x)|  3. We first

assume further that m � k before proving the general case. We begin with a technical

lemma on the existence of certain points.

Lemma 6.5.3. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(B).

Assume that x 2 (X1 \ M̂)\J , with |⌦1 \ Supp(x)|  3 and |Supp(x)| � 36, in addition
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Supp(x) 6✓ ⌦1 [ ⌦2 [ ⌦i [ ⌦j for any i, j. Then there exist distinct points ↵,↵x
2 ⌦5,

�, �x
2 ⌦5 [ ⌦6, �, �x 2 ⌦5 [ ⌦6 [ ⌦7, �, �x 2 ⌦5 [ ⌦6 [ ⌦7 [ ⌦8, ✏, ✏x,2 Supp(x) \ ⌦3

and ⇣, ⇣x 2 Supp(x) \ ⌦4; and points ⌘, ⌘x 2 ⌦3, ◆, ◆x 2 ⌦4 and ,x 2 ⌦5 such that

⌘, ⌘x, ◆, ◆x,,x /2 {↵,↵x, �, �x, �, �x, �, �x, ✏, ✏x, ⇣, ⇣x}.

Proof. Since Supp(x) 6✓ ⌦1 [ ⌦2 [ ⌦i [ ⌦j for all 3  i, j  m, Proposition 6.2.6(iii)

implies that

0 < |⌦3 \ Supp(x)|  |⌦4 \ Supp(x)|  |⌦5 \ Supp(x)|.

Hence since x 2 M̂ there exist ✏, ✏x 2 ⌦3 \ Supp(x) and ⇣, ⇣x 2 ⌦4 \ Supp(x). If

|⌦5\Supp(x)| � 10 then there exist distinct points ↵,↵x, �, �x, �, �x, �, �x 2 ⌦5\Supp(x).

If |Supp(x) \ ⌦5| < 10, then |Supp(x) \ ⌦3|, |Supp(x) \ ⌦4|  9 and so

|Supp(x)\(⌦1 [ ⌦2 [ ⌦3 [ ⌦4)| � 36� 2(3)� 2(9) = 12.

Therefore there exist distinct points ↵,↵x, �, �x, �, �x, �, �x 2 Supp(x)\{⌦1[⌦2[⌦3[⌦4}.

Since x 2 M̂ , these points lie in at most four M -blocks, and by Proposition 6.2.6(iii) we

may assume that these four blocks are ⌦5,⌦6,⌦7,⌦8.

Finally, since x 2 M̂ and k � 28, it is immediate that there exist ⌘, ⌘x 2 ⌦3, ◆, ◆x 2 ⌦4

and ,x 2 ⌦5 such that ⌘, ⌘x, ◆, ◆x,,x /2 {↵,↵x, �, �x, �, �x, �, �x, ✏, ✏x, ⇣, ⇣x}.

First suppose that m � k.

Lemma 6.5.4. Let k � 28, let m � k and let G and M be as in Hypothesis 6.2.7(B)

Assume that x 2 (X1 \ M̂)\J with |⌦1 \ Supp(x)|  3 and Supp(x) 6✓ ⌦1 [⌦2 [⌦i [⌦j

for all i, j. Then there exists y 2 M such that hx, yi = G.

Proof. Since 35 < 2(
p
n � 1) and x /2 Js, we may assume that |Supp(x)| � 36 and so

there exists ✏, ✏x 2 ⌦3, ⇣, ⇣x 2 ⌦4 and ↵,↵x, �, �x
2 ⌦5 [ ⌦6 as in Lemma 6.5.3.

First let m � 4k � 2. By Lemma 4.4.15 there exist distinct primes pm and pk, so that

pm 6= pk and 4  m � pm. Since m � 4k � 2 it follows that pm > (k � 2), (k � pk � 1),

and so in particular pm - (k � 2), (k � pk � 1).

By Lemma 4.2.1 elements composed of six cycles are in An if and only if G = An. Let

Y be the set of elements y = c1c2c3c4c5c6 2 M such that

C(y) = (k � 2)pm · pm · pm| {z }
l((c1c2c3)M)=pm

⌦1,⌦5,⌦62Supp((c1c2c3)M)

· pk(m� pm) · (m� pm) · (k � pk � 1)(m� pm)| {z }
l((c4c5c6)M)=(m�pm)

⌦2,⌦3,⌦42Supp((c4c5c6)M)

with 1, 1y = ↵, � 2 ⇥1,↵x
2 ⇥2, �x

2 ⇥3, k + 1, ✏, ⇣ 2 ⇥4, ✏x 2 ⇥5, ⇣x 2 ⇥6, and

⌦1\Supp(x) ✓ {1}[⇥2[⇥3. The final condition can be satisfied since |⌦1\Supp(x)|  3.

158



Hence H = hx, yi is transitive. Suppose, by way of a contradiction, that H is imprimitive

with non-trivial block system H. Let � 2 H with 1 2 �.

Since ⌦1 \ Supp(x) ✓ {1} [⇥2 [⇥3, Lemma 4.2.14(i) implies that l(cH1 ) 6= 1.

Suppose that l(cH1 ) = pm. Then �\⇥1 = ⌦1 \⇥1 by Lemma 4.2.13(i), and so �x = �

since ⌦1 \ Supp(x) ✓ {1} [ ⌦2 [ ⌦3. From k + 1 2 ⇥4 and pm - |⇥4|, we reach a

contradiction by Lemma 4.2.14(iii).

Let d be a divisor of k�2, and assume that l(cH1 ) = d and let ⌃ = �y. Since pm > (k�2)

it follows that (d, pm) = 1. Then |⌃ \ ⌦j \ ⇥1| � 1 for all ⌦j 2 Supp(cM1 ) by Lemma

4.2.13(v). Hence ⌃ contains ↵ and a point of (⌦1 \⇥1)\{1} ✓ Fix(x). Therefore ⌃x = ⌃

and so ↵x
2 ⌃. However ↵x

2 ⇥2 and d - pm, and so we reach a contradiction by Lemma

4.2.14(iii).

Let e > 1 be a divisor of k � 2, and assume that l(cH1 ) = epm, so that |� \⇥1| =
k�2
e
.

Since dpm - |⇥i| for i 6= 1, Lemma 4.2.14(ii) implies that |� \ ⇥i| 6= ; for i 6= 1. Hence

e < k�2 sinceH is non-trivial. Therefore by Lemma 4.2.13(iii), � contains 1 and another

point of ⌦1 \⇥1 ✓ Fix(x). Hence �x = � and k + 1 2 � \⇥4. Since pm - |⇥4| we reach

a contradiction by Lemma 4.2.14(iii).

Hence H is a primitive group. Let y1 = ypk(m�pm)(k�pk�1)(k�2). Then y1 has cycle type

1n�pmk
· pk

m
. Now k � 8 and pm > m

2 � 2k � 1. By Lemma 4.4.15 m� pm � 4, and so

n = mk � (pm + 4)k > (pm + 4)k � 4.

Hence y1 2 Jw and so H = G by Theorem 4.3.4.

Now suppose that k  m < 4k � 2. By Lemmas 4.4.8, 4.4.15 and 4.4.16 there exist

primes pm, pk, pk 0 and q such that pm  m � 4, q - m, pk - (m � q) and an element with

cycle type 1n�pkq · pkq is in Jw. Hence by Definition 6.5 it follows that q < pk, pk 0. Let

✏, ✏x 2 ⌦3 and ⇣, ⇣x 2 ⌦4 be as in Lemma 6.5.3. By Lemma 4.2.1, a product of four cycles

is in An if and only if G = An. Let Y be the set of elements y = c1c2c3c4 2 M such that

C(y) = pkq · (k � pk)q| {z }
l((c1c2)M)=q

⌦1,⌦32Supp((c1c2)M)

· pk
0(m� q) · (k � pk

0)(m� q)| {z }
l((c3c4)M)=m�q

⌦2,⌦42Supp((c3c4)M)

with 1, 1y = ✏ 2 ⇥1, ✏x 2 ⇥2, k + 1, ⇣ 2 ⇥3, ⇣x 2 ⇥4 and ⌦1 \ Supp(x) ✓ {1} [⇥2.

Hence H = hx, yi is transitive. We claim that H is primitive by Lemma 4.2.15. Let

(q1, q2, i, j, �,�) = (q, pk, 3, 2, 1, ✏). Then q - |⇥3|, pk - |⇥2| and qpk - |⇥l| for 2  l  4.

Also 1, ✏ 2 ⇥1, 1x = k + 1 2 ⇥3 and ✏x 2 ⇥2. Finally 1y = ✏ and 1hy
q
i
✓ {1} [ Fix(x).

Hence H satisfies Conditions (i), (ii) and (iii)(b) of Lemma 4.2.15 and so is primitive.

159



Since pk - |⇥l| for l 6= 1 it follows that the (k� pk)qpk 0(m� q)(k� pk 0)th power of y has

cycle type 1n�pkq · pkq. Therefore H = G.

We now consider the case of all m and k.

Lemma 6.5.5. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(B).

Assume that x 2 (X1 \ M̂)\J with |⌦1 \ Supp(x)|  3 and Supp(x) 6✓ ⌦1 [⌦2 [⌦i [⌦j

for any i, j. Then there exists y 2 M such that hx, yi = G.

Proof. If m � k, then the result holds by Lemma 6.5.4. Hence we may assume that

m < k. By Lemma 4.4.19 there exist distinct primes pm and pk such that k� pk � 5 and

m�pm � 5. Since x /2 Js, we may assume that |Supp(x)| � 36 and so Lemma 6.5.3 holds.

First assume that 3 - (m � pm). Let ↵, �, �, �, ✏, ⇣, ⌘, be as in Lemma 6.5.3. Since

m > 4 it follows that 3m < 4m � 4 = 4(m � 1), and so 3m
2 < 2(m � 1). Hence since

pm > m

2 and m < k, we see that

3(m� pm) <
3m

2
< 2(m� 1) < 2(

p

mk � 1). (6.8)

Hence an element with support 3(m�pm) is in Js. By Lemma 4.2.1 an element composed

of eight cycles is in An if and only if G = An. We define two possibilities for Y ✓ M and

show that, in each case, if y 2 Y then hx, yi is transitive and contains an element with

support size 3(m� pm).

If 3 - (k � pm), then Y be the set of elements y = c1 · · · c8 2 M such that

C(y) = pmpk · pm(k � pk � 3) · pm · pm · pm| {z }
l((c1c2c3c4c5)M)=pm

⌦1,⌦5,⌦6,⌦7,⌦8,⌦92Supp((c1c2c3c4c5)M)

· (m� pm)pk · (m� pm)(k � pk � 3) · (m� pm)3| {z }
l((c6c7c8)M)=m�pm

⌦2,⌦3,⌦42Supp((c6c7c8)M)

with 1, 1y = ↵, �, �, �,,x 2 ⇥1, ↵x
2 ⇥2, �x

2 ⇥3, �x 2 ⇥4, �x 2 ⇥5, k + 1, ✏, ⇣ 2 ⇥6,

✏x 2 ⇥7, ⇣x 2 ⇥8 and ⌦1 \ Supp(x) ✓ {1} [ ⇥2 [ ⇥3. Since pk 6= pm it follows that

pk - |⇥2|, |⇥3|, |⇥4|, |⇥5| and pm - |⇥6|, |⇥8|. Furthermore, since pk > k

2 > m

2 > m � pm

it follows that pk - |⇥7|. Therefore the pmpk(k � pk � 3)(m� pm)th power of y has cycle

type 13(m�pm)
· 3(m�pm).

If 3 | (k � pk), then 3 - (k � pk � 1)(k � pk � 5). Let Y be the set of elements
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y = c1 · · · c8 2 M such that

C(y) = pmpk · pm(k � pk � 1) · pm| {z }
l((c1c2c3)M)=pm

⌦1⌦3,⌦42Supp((c1c2c3)M)

·

(m� pm) · (m� pm) · (m� pm)pk · (m� pm)(k � pk � 5) · (m� pm)3| {z }
l((c4c5c6c7c8)M)=m�pm

⌦1,⌦5,⌦6,⌦7,⌦82Supp((c4c5c6c7c8)M)

with 1, 1y = ✏, ⇣, ⌘, ⌘x 2 ⇥1, ✏x 2 ⇥2, ⇣x 2 ⇥3, ↵x
2 ⇥4, �x

2 ⇥5, k + 1,↵, �, �, � 2 ⇥6,

�x 2 ⇥7, �x 2 ⇥8 and ⌦1 \ Supp(x) ✓ {1} [ ⇥2 [ ⇥3. Observe that, pk - |⇥2|, |⇥3|

and pm - |⇥4|, |⇥5|, |⇥6|, |⇥8|. Furthermore, since pk > k

2 > m

2 > m � pm it follows that

pk - |⇥7|. Therefore the pmpk(k� pk � 1)(k� pk � 5)(m� pm)th power of y has cycle type

13(m�pm)
· 3(m�pm).

Hence in both cases H = hx, yi is transitive. We claim that H is primitive by Lemma

4.2.15. Let (q1, q2, i, j, �) = (pm, pk, 6, 2, 1), in addition: if 3 - (k� pk) then let � = ↵; and

if 3 | (k � pk) then let � = ✏. Then pm - |⇥6|, pk - |⇥2| and pmpk - |⇥l| for 2  l  8.

Also, 1,� 2 ⇥1, 1x = k + 1 2 ⇥6 and �x
2 ⇥2. Finally 1y = � and 1hy

pm i
✓ {1} [ Fix(x).

Hence H satisfies Conditions (i), (ii) and (iii)(b) of Lemma 4.2.15, and so H is primitive.

Thus in both cases, H is primitive and contains an element of Js. Therefore H = G

by Theorem 4.3.4, and so the result holds if 3 - (m� pm).

Now assume that 3 | (m� pm). Let ↵, ✏, ⇣, ⌘, ◆ be as in Lemma 6.5.3. By Lemma 4.2.1

an element composed of four cycles is in An if and only if G = An. Let Y be the set of

elements y = c1c2c3c4 2 M such that

C(y) = 3pk · 3 · 3(k � pk � 1)| {z }
l((c1c2c3)M)=3

Supp((c1c2c3)M)={⌦1,⌦3,⌦4}

· (m� 3)k| {z }
l(cM4 )=m�3

with 1, 1y = ✏, ⇣, ⌘, ⌘x, ◆, ◆x 2 ⇥1, ✏x 2 ⇥2, ⇣x 2 ⇥3, k + 1 2 ⇥4 and

⌦1 \ Supp(x) ✓ {1} [⇥2 [⇥3.

HenceH = hx, yi is transitive. Assume, by way of a contradiction, thatH is imprimitive

with non-trivial block system H. Let � 2 H with 1 2 �.

Since ⌘, ⌘x 2 ⇥1, Lemma 4.2.14(i) implies that l(cH1 ) 6= 1. By Lemma 4.4.19 pk 6= m�3

and combining this with pk >
k

2 > m

2 > m�3
2 gives pk - |⇥4|. Hence pk - |⇥i| for i 6= 1, and

so l(cH1 ) 6= 3pk by Lemma 4.2.14(ii).

Assume that l(cH1 ) = pk. Then |�y
\ ⌦j \ ⇥1| = 1 for all ⌦j 2 Supp(cH1 ) by Lemma

4.2.13(iv). Hence �y contains ✏ and a point of ⌦1\Fix(x). Therefore (�y)x = �y. Since
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✏x 2 ⇥2 and pk - |⇥2| we reach a contradiction by Lemma 4.2.14(iii).

Hence we may assume that l(cH1 ) = 3, so that there exist �1 := �,�2,�3 2 H such

that cH1 = (�1,�2,�3). Then�1\⇥1 = ⌦1\⇥1, �2\⇥1 = ⌦3\⇥1 and�3\⇥1 = ⌦4\⇥1

by Lemma 4.2.13(i), and so �1\Fix(x) 6= ;, ⌘, ⌘x 2 �2 and ◆, ◆x 2 �3. Therefore �1,�2

and �3 are fixed by x. Hence k + 1 2 �1 and so cH4 = (�1,�2,�3) by Lemma 4.2.11(i).

From 3 | (m�pm) we deduce that 3 - (m�3), so by Lemma 4.2.10 we conclude that 3 | k.

Thus by Lemma 4.2.13(v), 1  |�i\⌦j| < k for 1  i  3 and ⌦j 2 Supp(cM4 ). Therefore

there exists y 2 Y and 1  i  3, such that ↵ 2 �i and ↵x /2 �i. A contradiction since

�x

i
= �i.

Hence H is a primitive group containing the 3(k � pk � 1)(m� 3)kth power of y which

has cycle type 1n�3pk · pk3. Since pk � 5 and n� 3pk > (m� 3)pk > 3, this power of y is

in Jw. Hence H = G by Theorem 4.3.4.

|⌦1 \ Supp(x)|  3 and Supp(x) ✓ ⌦1 [ ⌦2 [ ⌦i [ ⌦j

Here we assume that x 2 X1. Hence by Proposition 6.2.6(ii) we may assume

Supp(x) ✓ ⌦1 [ ⌦2 [ ⌦3 [ ⌦4 and |⌦3 \ Supp(x)| � |⌦4 \ Supp(x)|.

This result comprises of three main lemmas: under the existence of certain primes

we consider Supp(x) ✓ {1, k + 1} [ ⌦3 and Supp(x) 6✓ {1, k + 1} [ ⌦3 separately and

then finally we prove the general case for this section. We begin with a preliminary

lemma.

Lemma 6.5.6. Let x 2 (X1 \ M̂)\J , let |⌦1 \ Supp(x)|  3 and let Supp(x) ✓ ⌦1 [

⌦2 [ ⌦3 [ ⌦4. If |Supp(x)| > 12, then there exist distinct points ↵,↵x, �, �x
2 ⌦3.

Proof. Since x 2 X1 it follows that |⌦2 \ Supp(x)|  3, and so

|Supp(x) \ (⌦3 [ ⌦4)| � 12� 2(3) = 6.

Therefore it follows that |⌦3 \ Supp(x)| � 4. Since x 2 M̂ it follows there exist

↵,↵x, �, �x
2 ⌦3 \ Supp(x).

The next two lemmas assume that there exists primes q and pk such that

q <
m

4
, q - m, m� q /2 {pk, 2pk} and

k + 9

2
 pk  k � 4. (6.9)

Lemma 6.5.7. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(B).

Assume that x 2 (X1 \ M̂)\J and Supp(x) ✓ {1, k + 1} [ ⌦3. If there exists primes q

and pk as in (6.9), then there exists y 2 M such that hx, yi = G.
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Proof. Since Supp(x) ✓ {1, k + 1} [⌦3 it follows that |Supp(x)|  k + 2. If k + 9  4m,

then
(k + 4)2

k
= k + 8 +

16

k
 4m,

and so k+4  2
p
mk. Hence |Supp(x)|  k+2  2(

p
mk�1). Thus if either k+9  4m

or |Supp(x)|  12, then x 2 Js, contradicting our assumptions on x. Hence assume

otherwise and so we may let ↵ be as in Lemma 6.5.6, and by (6.9)

pk �
k + 9

2
> 2m > 2m� 1. (6.10)

By Lemma 4.2.1 an element composed of two cycles is in An if and only if G = An. Let

Y be the set of elements y = c1c2 2 M such that

C(y) = pkm · (k � pk)m| {z }
l((c1c2)M)=m

with 1, 1y = k + 1, 1y
2
= ↵ 2 ⇥1 and ↵x

2 ⇥2. Hence H = H(y) = hx, yi is transitive.

Assume, by way of a contradiction, that H is primitive with non-trivial block system H.

Let � 2 H with 1 2 �.

By (6.10), pk - m. Hence pk - |⇥2| and so l(cH1 ) 6= mpk by Lemma 4.2.14(ii).

Since ⇥1 contains points of ⌦4 ✓ Fix(x) it follows that l(cH1 ) 6= 1 by Lemma 4.2.14(i).

Hence �y
6= �, and so k + 1 /2 �.

Suppose that l(cH1 ) = pk and let � 2 H contain ↵. Then � \ ⌦j \ ⇥1 6= ; for

⌦j 2 Supp(cM1 ) by Lemma 4.2.13(iv). In particular, � contains a point of ⌦4 ✓ Fix(x),

and so �x = �. Since ↵x
2 ⇥2 and pk - |⇥2| we reach a contradiction by Lemma 4.2.14(iii).

Let d > 1 be a divisor of m, and assume that l(cH1 ) = d. Then ⌦1 \⇥1 ✓ � by Lemma

4.2.13(ii), and so �x = � since ⌦1\{1} ✓ Fix(x). Hence k + 1 2 �, a contradiction.

Let 1 < e < m be a divisor of m, and assume that l(cH1 ) = pke. Since pk - |⇥2| it

follows that � ✓ ⇥1. Let � 2 �\{1}. If � 2 Fix(x), then �x = � and k + 1 2 �,

a contradiction. Thus � ✓ Supp(x)\{k + 1} ✓ {1} [ ⌦3 and so � 2 ⌦3. By Lemma

4.2.13(vi) it follows that � = {1, �}. Since 1x = k + 1 = 1y it follows that �x = �y.

However there exists y 2 Y such that �y
6= �x, a contradiction.

Hence H is a primitive group containing ym(k�pk) with cycle type 1n�mpk · pkm. Now by

(6.9) and (6.10) it follows that

pk �
k + 9

2
�

4m

2
> 2m� 1 and n = mk > (pk + 4)m� 4.

Hence ym(k�pk) 2 Jw, and so H = G by Theorem 4.3.4.
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Lemma 6.5.8. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(B).

Assume that x 2 (X1\ M̂)\J with |⌦1\Supp(x)|  3 and Supp(x) ✓ ⌦1[⌦2[⌦3[⌦4.

If there exists primes q and pk as in (6.9), then there exists y 2 M such that hx, yi = G.

Proof. If Supp(x) ✓ {1, k+1}[⌦3 then the result holds by Lemma 6.5.7. Hence suppose

that Supp(x) 6✓ {1, k + 1} [ ⌦3. Since x 2 X1 it follows that |⌦1 \ Supp(x)| � |⌦2 \

Supp(x)|, hence we may assume that there exist either �, �x 2 ⌦4 \ Supp(x) or � 2

⌦1 \ Supp(x)\{1}. Since x 2 M̂ , in the latter case �x 2 ⌦1 [ ⌦2. Since x /2 Js we may

assume that |Supp(x)| > 12, and let ↵ and � be as in Lemma 6.5.6.

If k + 9  m, then
(k + 4)2

k
= k + 8 +

16

k
 k + 9  m,

and so k+4 
p
mk. Hence 2k+6  2(

p
mk�1). Since x 2 X1 and |⌦1\Supp(x)|  3,

it follows that |⌦2 \ Supp(x)|  3. Thus from Supp(x) ✓ ⌦1 [ ⌦2 [ ⌦3 [ ⌦4 we deduce

that |Supp(x)|  2k + 6. Hence if k + 9  m, then x 2 Js. Therefore we may assume

that k + 9 > m.

By Lemma 4.2.1, elements composed of 4 cycles are in An if and only if G = An. Let

Y be the set of elements y = c1c2c3c4 2 M with

C(y) = k(m� q)| {z }
l(cM1 )=m�q

⌦1,⌦42Supp(cM1 )

· pkq · (k � pk � 1)q · q| {z }
l((c2c3c4)M)=q

⌦2,⌦3,⌦52Supp((c2c3c4)M)

such that k + 1,↵ = (k + 1)y, � 2 ⇥2, ↵x
2 ⇥3, �x

2 ⇥4 and (Supp(x) \ ⌦2)\{k + 1} ✓

⇥3. Hence H = hx, yi is transitive. We assume, by way of a contradiction, that H is

imprimitive with non-trivial block system H. Let � 2 H with k + 1 2 �.

Since (Supp(x) \ ⌦2)\{k + 1} ✓ ⇥3, Lemma 4.2.14(i) implies that l(cH2 ) 6= 1. By (6.9)

q < m

2 < k+9
2 < pk, and so pk - |⇥3|, |⇥4|. Also by (6.9), pk 6= m� q, and since

m� q < m < k + 9  2pk

it follows that pk - |⇥1|. Hence Lemma 4.2.14(ii) implies that l(cH2 ) 6= pkq.

First assume that l(cH2 ) = pk. Then by Lemma 4.2.13(iv), |�y
\ ⌦j \ ⇥2| � 1 for

each ⌦j 2 Supp(cM2 ). In particular, �y contains ↵ and a point of ⌦5 ✓ Fix(x). Hence

(�y)x = �y and so ↵x
2 �y. Since ↵x

2 ⇥3 and pk - |⇥3| we reach a contradiction by

Lemma 4.2.14(iii).

Now assume that l(cH2 ) = q, and let � be an arbitrary element of Supp(cH2 ). Then by

Lemma 4.2.13(i) there exists ⌦j 2 Supp(cM2 ) such that � \ ⇥2 = ⌦j \ ⇥2. Since x 2 M̂

and (Supp(x)\⌦2)\{k+1} ✓ ⇥3 it follows that ⌦x

j
\⌦j \⇥2 6= ;, and so �x = �. Hence
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1 = (k + 1)x
�1

2 � and so cH1 = cH2 by Lemma 4.2.11(i). Since q - m by (6.9), it follows

that q | k by Lemma 4.2.10. Hence Lemma 4.2.13 implies that |� \ ⌦l \⇥1| =
k

q
< k for

each ⌦l 2 Supp(cM1 ). Therefore there exists y 2 Y and � 2 Supp(cH2 ) such that either

|� \ {�, �x}| = 1 or |� \ {�, �x}| = 1, contradicting the deduction that �x = �.

Hence H is a primitive group containing yk(m�q)q(k�pk�1), an element with cycle type

1n�pkq · pkq. From (6.9) and m < k + 9, we deduce that

2q � 1 < 2q < 2
⇣m
4

⌘


k + 9

2
 pk,

and

(pk + 4)q � 4 <
km

4
� 4 < n.

Thus an element with cycle type 1n�pkq · pkq is in Jw. Therefore H = G by Theorem

4.3.4.

In the previous two lemmas we assumed the existence of primes pk and q satisfying (6.9).

Here we drop this assumption, and so complete the case of x 2 M̂ , |⌦1 \ Supp(x)|  3

and Supp(x) ✓ ⌦1 [ ⌦2 [ ⌦3 [ ⌦4.

Lemma 6.5.9. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(B).

Assume that x 2 (X1\ M̂)\J with |⌦1\Supp(x)|  3 and Supp(x) ✓ ⌦1[⌦2[⌦3[⌦4.

Then there exists y 2 M such that hx, yi = G.

Proof. If there exists primes pk and q as in (6.9), then the result holds by Lemmas 6.5.8

and 6.5.7. If k � 33; or if 28  k  32, 19  m  41 and m 6= 30 then Lemma 4.4.14

implies the existence of primes as in (6.9).

We show that if m � 41 and 28  k  32, then x 2 J . First

(k + 4)2

k
= k + 8 +

16

k
< k + 8 + 1  41  m,

and so k + 4 
p
mk and 2k + 6  2(

p
mk � 1). Since x 2 X1, it follows that

|⌦2 \ Supp(x)|  3, and so |Supp(x)|  2k + 6. Therefore if m � 41 then x 2 Js.

Therefore we may assume that m = 30 and 28  k  32. Since x /2 J it follows

that |Supp(x)| > 12, and so we may let ↵, � be as in Lemma 6.5.6. It can be verified in

Magma (see Appendix - Lemma 8.1.1) that there exist distinct odd primes qm, qk and

positive integers a, b such that qk + a + b = k, qm < m, qm - mk, qk - ab(m � qm)k, and

an element with cycle type 1n�qkqm · qqm
k

is in Js [ Jw.
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By Lemma 4.2.1 an element composed of four cycles is in An if and only if G = An.

Let Y to be the set of elements y = c1c2c3c4 2 M such that

C(y) = qmqk · qma · qmb| {z }
l((c1c2c3)M)=qm

⌦1,⌦3,⌦52Supp((c1c2c3)M)

· (m� qm)k| {z }
l(cH4 )=m�pm

⌦22Supp(cH4 )

with 1, 1y = ↵ 2 ⇥1, ↵x, � 2 ⇥2, �x
2 ⇥3 and ⌦1 \ Supp(x) ✓ {1} [⇥2 [⇥3.

Hence, H = H(y) = hx, yi is transitive. We claim that Lemma 4.2.15 implies that

H is primitive. Let (q1, q2, i, j, �,�) = (qm, qk, 4, 2, 1,↵). Then qm - |⇥4|, qk - |⇥2| and

qmqk - |⇥l| for 2  l  4. Also 1,↵ 2 ⇥1, 1x = k + 1 2 ⇥4 and ↵x
2 ⇥2. Finally 1y = ↵

and 1hy
qm i

✓ {1} [ Fix(x). Hence H satisfies Conditions (i), (ii), and (iii)(b) of Lemma

4.2.15, and so H is primitive.

Hence H is primitive and contains y1 := yqmab(m�qm)k, an element with cycle type

1n�qkqm · qqm
k
. By assumption on qm and qk, it follows that y1 2 Js [ Jw. Hence H = G

by Theorem 4.3.4.

6.5.2 x 2 X1\(M̂ [ J )

We split into two cases based on |⌦1 \ Supp(x)|.

|⌦1 \ Supp(x)| � 2

We first assume the existence of certain primes, and then prove the general case.

Lemma 6.5.10. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(B).

Assume x 2 X1\(M̂ [ J ) with |⌦1 \ Supp(x)| � 2. If there exist distinct primes pk, pk 0

such that pk - (m� 1), then there exists y 2 M such that hx, yi = G.

Proof. We begin by proving the existence of certain points. Since |⌦1 \ Supp(x)| � 2

there exists ↵ 2 ⌦1 \ Supp(x)\{1}. By Proposition 6.2.6, we may assume that there

exists � 2 ⌦3 such that �x /2 ⌦3. Since x /2 Js we may assume that |Supp(x)| � 10,

and so there exists � in Supp(x)\{1, k + 1, 1x
�1
,↵,↵x,↵x

�1
, �, �x, �x

�1
} so that �, �x 2

{1, k + 1,↵,↵x, �, �x
}.

Since k � 28, either there exists points �, �x 2 ⌦1\{1,↵,↵x,↵x
�1
, �, �x, �x

�1
, �, �x, �x

�1
},

or distinct point ✏, ⇣ 2 ⌦1\{1,↵,↵x,↵x
�1
, �, �x, �x

�1
, �, �x, �x

�1
} such that ✏x, ⇣x /2 ⌦1.

By interchanging ✏ and ⇣ if necessary, we may assume that either ✏x /2 ⌦2 or ✏x, ⇣x 2 ⌦2.

By Lemma 4.2.1 elements composed of four cycles are in An if and only if G = An. Let
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Y be the set of elements y = c1c2c3c4 2 M such that

C(y) = pk · (k � pk)| {z }
⇥1[⇥2=⌦1

· (m� 1)pk
0
· (m� 1)(k � pk

0)| {z }
l((c3c4)M)=m�1

satisfying the following.

(i) 1 2 ⇥1, ↵ 2 ⇥2, k + 1 2 ⇥3, � 2 ⇥4, ↵x /2 ⇥2 and �x /2 ⇥4.

(ii) One of the following holds.

(a) If (↵, �) is a not a cycle of x, then either �x
2 ⇥1 [⇥3 or ↵x

2 ⇥1 [⇥3.

(b) If (↵, �) is a cycle of x and �, �x 2 ⌦1, then � 2 ⇥1 and �x 2 ⇥2.

(c) If (↵, �) is a cycle of x and �, �x /2 ⌦1, then � 2 ⇥3 and �x 2 ⇥4.

(d) If (↵, �) is a cycle of x and |⌦1\{�, �x}| = 1, then {⇥(�),⇥(�x)} = {⇥2,⇥3}.

(iii) One of the following holds.

(a) If there exist �, �x 2 ⌦1, then �, �x 2 ⇥1.

(b) If there exist ✏, ⇣ such that ✏x /2 ⌦2, then let ✏, ⇣ 2 ⇥1, (k + 1)y = ✏x and

⇣x 2 ⇥4.

(c) If there exist ✏, ⇣ 2 ⌦2, then let ✏, ⇣ 2 ⇥1, ✏x = (k + 1)y
(m�1)

and ⇣x 2 ⇥4.

We claim that H = H(y) = hx, yi is transitive. By Condition (i) it follows that

⇥1 [ ⇥3 ✓ 1H . If (↵, �) is not a cycle of x then by Condition (ii)(a) either ↵x or

�x
2 ⇥1 [ ⇥3 ✓ 1H . If ↵x

2 1H then ↵, and so ⇥2 also, is in 1H . Hence ⌦\⇥4 ✓ 1H .

Since � 2 ⇥4 and �x /2 ⇥4, it follows that 1H = ⌦. If �x
2 1H , then the argument above

with ↵ and � exchanged shows that H is transitive. Hence assume that (↵, �) is a cycle

of x. Then by Condition (i) ⇥1 [⇥3 ✓ 1H and ⇥2 [⇥4 ✓ ↵H . By Conditions (ii)(b)-(d),

it follows that both of ⇥1 [ ⇥3 and ⇥2 [ ⇥4 contain exactly on point of {�, �x}. Hence

H is transitive.

Let Y = hyi. Assume, by way of a contradiction, that H is an imprimitive group

preserving a non-trivial block system H. Let � 2 H with 1 2 �.

Since pk - |⇥i| for i 6= 1, it follows l(cH1 ) 6= pk by Lemma 4.2.14(ii). Hence l(cH1 ) = 1

and �y = �. If �, �x 2 ⌦1, then �x = � by Condition (iii)(a), and so � = �H = ⌦, a

contradiction. Hence we may assume that 1, ✏, ⇣ 2 � and k + 1, ✏x, ⇣x 2 �x. If ✏x /2 ⌦2,

then (�x)y = �x by Condition (iii)(b). Hence (k + 1)Y [ (⇣x)Y = ⇥3 [ ⇥4 ✓ �x, and

so |�x
| � (m � 1)k > n

2 , a contradiction. If ✏x, ⇣x 2 ⌦2, then (�x)y
(m�1)

= �x. Hence

(k + 1)hy
m�1

i
[ (⇣x)hy

m�1
i = ⌦2 ✓ �x, and so |�x

| � k > |⇥1|. Therefore � contains a

point ⌘ /2 ⇥1, and since �y = � it follows that ⌘hyi ✓ �. If ⌘ 2 ⇥3 [ ⇥4, then ⇥3 or
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⇥4 ✓ �. Hence either ✏x 2 � or ⇣x 2 � by Condition (iii)(c), and so � = �H = ⌦,

a contradiction. Therefore assume that � ✓ ⇥1 [ ⇥2 = ⌦1, and hence ⌘ 2 ⇥2, and so

� = ⌦1 and H-block size is k. Now from ⌦2 ✓ �x, it follows that �x = ⌦2. We reach a

contradiction since x 2 X1, and so ⌦x

1 6= ⌦2.

Hence H is primitive and contains the pk-cycle y(k�pk)(m�1)pk0(k�pk
0)
2 Jc. Thus H = G

by Theorem 4.3.4.

Lemma 6.5.11. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(B).

If x 2 X1\(M̂ [J ) and |⌦1\Supp(x)| � 2, then there exists y 2 M such that hx, yi = G.

Proof. Let pk, pk 0 and pm be as in Lemma 4.4.15. If either pk or pk 0 do not divide m� 1

then, by interchanging pk and pk 0 if necessary, the result holds by Lemma 6.5.10. Since

x /2 J , Lemma 6.4.4 implies that there exist either ↵,↵x
2 ⌦1 or � 2 ⌦1\{1} such that

�x /2 ⌦1 [⌦2; there exist distinct points �, �x, �, �x 2 Supp(x)\(⌦1 [⌦2 [⌦(�x)) and an

element with cycle type 1n�kpm · pk
m
is in Jw.

By Lemma 4.2.1 an element composed of four cycles is in An if and only if G = An.

Let Y be the set of elements y = c1c2c3c4 2 M such that

C(y) = pmpk · pm(k � pk � 1) · pm| {z }
l((c1c2c3)M)=pm

⌦1,⌦(�),⌦(�x),⌦(�),⌦(�x),⌦(�x)2Supp((c1c2c3)M)

· (m� pm)k| {z }
l(cM4 )=m�pm

⌦22Supp(cM4 )

with 1, �, �x 2 ⇥1, � 2 ⇥2, �x 2 ⇥3, k + 1 2 ⇥4 and either ↵,↵x or �, �x
2 ⇥1.

Hence, H = hx, yi is transitive. We claim that Lemma 4.2.15 implies that H is prim-

itive. Let (q1, q2, i, j, �,�) = (pm, pk, 4, 3, 1, �), and either let  = ↵ = ! or  = � = !.

From pk, pk 0 | (m� 1) it follows that m > pkpk 0 >
k
2

4 , and so pm > m

2 > k
2

8 . Thus pm > k

and pm - k. Hence pm - |⇥4|, pk - |⇥3|, and pmpk - |⇥l| for 2  l  4. Also 1, � 2 ⇥1,

1x = k + 1 2 ⇥4 and �x 2 ⇥3. Finally  , x,!,!x
2 ⇥1,  2 ⌦1 \⇥1 = 1hy

pm i, and since

! 2 ⌦1 and � /2 ⌦1, there exists y 2 Y such that ! 2 �hy
pk i. Thus H satisfies Conditions

(i), (ii) and (iii)(a) of Lemma 4.2.15, and so H is primitive.

Hence H is primitive and contains y(m�pm)k(k�pk�1)pk 2 Jw, an element of cycle type

1n�kpm · pk
m
. Therefore H = G by Theorem 4.3.4.

|⌦1 \ Supp(x)| = 1

We first assume that there exists 3  j  m such that |⌦j \ Supp(x)| � 4, then we prove

the general case, and finally prove Proposition 6.5.1.

Lemma 6.5.12. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(B).

Assume that x 2 X1\(M̂ [ J ), |⌦1 \ Supp(x)| = 1 and there exists 3  j  m with
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|⌦j \ Supp(x)| � 4. Then there exists y 2 M such that hx, yi = G.

Proof. Since x 2 X1 it follows that |⌦2 \ Supp(x)| = 1. By Proposition 6.2.6(iv) we may

assume that there exists ↵ 2 ⌦3 and i 2 {1, 4} such that ↵x
2 ⌦i, and we may assume

that j = 3, 4, or 5. Since |⌦j \ Supp(x)| � 4 and |⌦j \ {↵,↵x
}|  1 it follows that there

exist � 2 (⌦j \ Supp(x))\{↵,↵x
} and � 2 (⌦j \ Supp(x))\{↵,↵x, �, �x

}. If pk - (m� 2)

then let a := 2; and otherwise let a := 3. Hence pk - (m� a) and a < m� a.

By Lemma 4.2.1 an element composed of four cycles is in An if and only if G = An.

Let Y be the set of elements y = c1c2c3c4 2 M with

C(y) = apk · a · �(k � pk � 1)| {z }
l((c1c2c3)M)=a

⌦1,⌦j2Supp((c1c2c3)M)

· (m� a)k| {z }
l(cM4 )=m�a

{⌦2,⌦3,⌦4,⌦5}\{⌦j}✓Supp(cM4 )

such that ⌦y

1 = ⌦j, 1 2 ⇥1, � 2 ⇥2, � 2 ⇥3, k + 1 2 ⇥4, �x /2 ⇥2, �x /2 ⇥2 [⇥3.

Hence H = H(y) = hx, yi is transitive. Assume, by way of a contradiction, that H is

an imprimitive group preserving a non-trivial block system H. Let � 2 H with 1 2 �.

Since ⇥1 contains a point of ⌦1\{1} ✓ Fix(x) and pk - |⇥i| for i 6= 1, it follows by

Lemma 4.2.14(i) and (ii) that l(cH1 ) 6= 1, apk.

First assume that l(cH1 ) = pk. Then we claim that cH1 = cH4 , a contradiction since

pk - |⇥4|. By Lemma 4.2.13(iv) |� \ ⌦j \ ⇥1| = 1. If ⌦j \ Fix(x) 6= ; then there

exists y 2 Y such that � \ ⌦j \ Fix(x) \ ⇥1 6= ;. Hence �x = � and so k + 1 2 �

and the claim holds by Lemma 4.2.11(i). Therefore we may assume that ⌦j ✓ Supp(x).

Since k > 10 there exists ✏ 2 ⌦j\{1x
�1
,↵,↵x,↵x

�1
, �, �x, �x

�1
, �, �x, �x

�1
} and so ✏, ✏x /2

{1, k + 1,↵,↵x, �, �x, �, �x}. Thus ✏x 2 Supp(x)\{1} and so ✏x /2 ⌦1. If ✏x 2 ⌦j, then

by Lemma 4.2.13(iv) there exists y 2 Y such that ✏, ✏x 2 ⇥1 and 1, ✏ 2 �. Therefore

k + 1, ✏x 2 �x, and since k + 1 2 ⇥4 and ✏x 2 ⇥1 the claim follows by Lemma 4.2.11(i).

If ✏x /2 ⌦j, then there exists y 2 Y and � 2 H such that ✏x 2 ⇥4 and � contains ✏ 2 ⇥1

and a point of ⌦1\{1} ✓ Fix(x). Therefore �x = � and so ✏x 2 �. Thus the claim holds

by Lemma 4.2.11(i), and so we reach a contradiction.

Now assume that l(cH1 ) = a. Then � \ ⇥1 = ⌦1 \ ⇥1 by Lemma 4.2.13(i), and so

�x = � since |⌦1 \ ⇥1 \ Fix(x)| � pk � 1. Therefore k + 1 2 � and so cH1 = cH4 .

Recall that ↵ 2 ⌦3 and ↵x
2 ⌦i with i = 1 or 4. We claim there exists y 2 Y such

that |� \ {↵,↵x
}| = 1, contradicting the deduction that �x = �. We now prove the

claim by considering the possibilities for i and j. If i = 1, then from ⌦1 \ Supp(x) = 1,

it follows that ↵x = 1 2 �. If j = 3, then there exists y 2 Y with ↵ 2 ⇥1, and so

↵ 2 �y
\⇥1 = ⌦3 \⇥1. If j 6= 3, then ⌦3 ✓ Supp(cM4 ) and there exists y 2 Y such that
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(k + 1)y = ↵, and so ↵ 2 �y. Therefore if i = 1, then the claim holds. Hence assume

that i = 4. If j = 4, then ⌦4 2 Supp(cM1 ) and ⌦3 2 Supp(cM4 ), and so there exists y 2 Y

such that ↵x
2 ⌦4 \⇥1 = �y

\⇥1 and ↵ = (k+1)y
a
2 �. If j = 3, then ⌦3 2 Supp(cM1 )

and ⌦4 2 Supp(cM4 ). Hence ↵ 2 ⌦3 \ ⇥1 = �y
\ ⇥1 and there exists y 2 Y such that

↵x = (k + 1)y
a
2 �. If j = 5, then ⌦3,⌦4 2 Supp(cM4 ) and there exists y 2 Y such that

↵x = ↵y. Hence the claim holds in all cases and we reach the desired contradiction.

Therefore H is primitive and contains ya(k�pk�1)(m�a)k, an element of cycle type

1n�apk ·pka. Now a 2 {2, 3}, pk � 5 and n�apk > (m�3)pk > 3, and so ya(k�pk�1)(m�a)k
2

Jw. Hence H = G by Theorem 4.3.4.

Lemma 6.5.13. Let m � 19, let k � 28, and let G and M be as in Hypothesis 6.2.7(B).

If x 2 X1\(M̂ [J ) and |⌦1\Supp(x)| = 1, then there exists y 2 M such that hx, yi = G.

Proof. If there exists 3  j  m such that |Supp(x) \ ⌦j| � 4, then the result holds by

Lemma 6.5.12. Hence we may assume that otherwise.

Therefore |⌦1 \ Supp(x)| = |⌦2 \ Supp(x)| = 1 and |⌦j \ Supp(x)|  3 for j 6= 1, 2.

Since x /2 Js it follows that |Supp(x)| � 15 > 1 + 1 + 4(3), and so there exist at least

seven M -blocks containing points of Supp(x). By Proposition 6.2.6(iv) we may assume

that ↵ 2 ⌦3 such that ↵x
2 ⌦1 [ ⌦4, ⌦1, . . . ,⌦7 contain points of Supp(x), and there

exist � 2 ⌦5 \ Supp(x) and � 2 ⌦6 \ Supp(x) such that �x
6= �.

Let pk and pk 0 be as in Lemma 4.4.12. If pk - (m� 2) then let a := 2 and otherwise let

a := 3, so that pk - (m � a). By Lemma 4.2.1, an element composed of four cycles is in

An if and only if G = An. Let y = c1c2c3c4 2 M with

C(y) = apk · a(k � pk)| {z }
l(c1c2)=a

· (m� a)pk
0
· (m� a)(k � pk

0)| {z }
l((c3c4)M)=m�a

satisfying the following.

(i) If a = 2 then (c1c2)M = (⌦1,⌦5), and if a = 3 then (c1c2)M = (⌦1,⌦5,⌦8).

(ii) 1 2 ⇥1, � 2 ⇥2, k + 1 2 ⇥3, � 2 ⇥4, �x
2 ⇥1 [⇥3 and �x /2 ⇥4.

(iii) For all ⌦i 2 Supp((c1c2)M) there exists �i 2 ⌦i \ Fix(x) \⇥1.

Condition (iii) is automatically satisfied since |⌦i \ Supp(x)|  3 < pk for 1  i  m. By

Condition (ii), H = H(y) = hx, yi is transitive. Assume, by way of a contradiction, that

H is imprimitive and let H be a non-trivial block system for H. Let � 2 H with 1 2 �.

Since ⌦1\{1} ✓ Fix(x), Lemma 4.2.14(i) implies that l(cH1 ) 6= 1. Since pk - |⇥i| for

i 6= 1, Lemma 4.2.14(ii) implies that l(cH1 ) 6= apk.
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Assume that l(cH1 ) = pk. Then |� \ ⌦j \ ⇥1| = 1 for ⌦j 2 Supp(cM1 ) by Lemma

4.2.13(iv). Hence there exists y 2 Y such that 1, �5 2 �, and so �x = � and k + 1 2 �.

Since k + 1 2 ⇥3 and pk - |⇥3| we reach a contradiction by Lemma 4.2.14(iii).

Suppose that l(cH1 ) = a = 3 (the case for a = 2 is almost identical). Then there

exists �1 := �,�2,�3 2 H such that cH1 = (�1,�2,�3). By Lemma 4.2.13(i)

�1 \ ⇥1 = ⌦1 \ ⇥1, �2 \ ⇥1 = ⌦5 \ ⇥1 and �3 \ ⇥1 = ⌦8 \ ⇥1. Hence by Condi-

tion (iii), �1,�2 and �3 are all fixed by x. Then k + 1 2 �1 and by the transitivity

of H and Lemma 4.2.11(i), it follows that yH = (�1,�2,�3). Recall that ↵ 2 ⌦3 and

↵x
2 ⌦i for i = 1 or 4. If i = 1, then ↵x = 1 and so ↵x

2 �1. There exists y 2 Y with

(k + 1)y = ↵, so that ↵ 2 �2. If i = 4, then there exists y 2 Y with (k + 1)y = ↵ and

(k + 1)y
2
= ↵x, so that ↵ 2 �2 and ↵x

2 �3. In either case we reach a contradiction

since each block was fixed by x.

Therefore H is a primitive group containing ya(k�pk)(m�a)pk0(k�pk
0), an element of cycle

type 1n�apk ·pka. As in the previous proof, a 2 {2, 3}, pk � 5 and n�apk > (m�3)pk > 3.

Hence ya(k�pk)(m�a)pk0(k�pk
0)
2 Jw and so H = G by Theorem 4.3.4.

Proof of Proposition 6.5.1. First suppose that x 2 M̂ . If |⌦1 \ Supp(x)| > 3, then the

result holds by Lemma 6.5.2. If |⌦1 \ Supp(x)|  3 and Supp(x) 6✓ ⌦1 [ ⌦2 [ ⌦i [ ⌦j

for any 3  i, j  m, then the result holds by Lemma 6.5.5. If |⌦1 \ Supp(x)|  3 and

Supp(x) ✓ ⌦1 [ ⌦2 [ ⌦i [ ⌦j for some i, j, then the result holds by Lemma 6.5.9.

Now suppose that x /2 M̂ . If |⌦1 \ Supp(x)| � 2, then the result holds by Lemma

6.5.11. If |⌦1 \ Supp(x)| = 1, then the result holds by Lemma 6.5.13.

6.6 Small m or small k

Recall that m, k � 2, n = mk, G = Sn or An, and M = (Sk wr Sm) \ G. Here we

consider m and k in Regions one, two or six of Figure 6.1. In particular we consider

2  k  6 and m � 23; then 7  k  28 for m � 4k � 1; and finally 2  m  18 and

k � max{4m� 1, 28}.

In this section we let x 2 X1, and so 1x = k + 1, ⌦x

1 /2 M and

|⌦1 \ Supp(x)| � |⌦2 \ Supp(x)|.

6.6.1 Region one - 2  k  6 and m � 23

For 2  k  6 there is no Bertrand prime pk with k

2 < pk < k� 1. As a result we require

some more technical lemmas on the existence of certain points, and so this subsection is

the largest of the section. We consider Hypothesis 6.2.7(A) and (B) separately.
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Hypothesis 6.2.7(A)

We begin with two preliminary lemmas.

Lemma 6.6.1. Let 2  k  6 and let m � 23. If x 2 X1\J and |Supp(x)| > max{7, 2k+

1}, then there exists ↵ 2 Supp(x)\({k + 1} [ ⌦x

2 [ ⌦1) such that the following hold.

(i) If k = 2, then ⌦x

1 6✓ {k + 1} [ ⌦(↵).

(ii) If k > 2 and ⌦x

1 ✓ {k + 1} [ ⌦(↵), then ↵x
�1

/2 ⌦(↵).

Proof. Since |Supp(x)| > 2k+ 1 there exists ↵ 2 Supp(x)\({k+ 1}[⌦x

2 [⌦1). We show

that there exists � 2 Supp(x) such that, by exchanging ↵ and � if necessary, the lemma

holds.

(i) If k = 2, then max{7, 2k + 1} = 7 and |Supp(x)| > 7 � |{k + 1}[⌦(↵)[⌦x

2 [⌦1|.

Hence there exists � 2 Supp(x)\({k + 1} [ ⌦(↵) [ ⌦x

2 [ ⌦1) and so ⌦(↵) 6= ⌦(�).

By interchanging ↵ and � if necessary ⌦x

1 6✓ {k + 1} [ ⌦(↵).

(ii) Now assume that k > 2 and ⌦x

1 ✓ {k + 1} [ ⌦(↵). From x 2 X1, it follows that

⌦x

1 /2 M, and so in particular ⌦x

1 6= ⌦(↵). Thus ⌦x

1 ✓ {k + 1} [ ⌦(↵) implies that

k + 1 2 ⌦x

1\⌦(↵). Hence there exists � 2 ⌦(↵)\⌦x

1 such that

⌦(↵) = (⌦1\{1})
x
[̇ {�}. (6.11)

Hence

⌦(↵) \ ⌦x

2 =
⇥
(⌦1\{1})

x
\ ⌦x

2

⇤
[
⇥
{�} \ ⌦x

2

⇤
= ; [

⇥
{�} \ ⌦x

2

⇤
✓ {�}. (6.12)

In addition, (6.11) implies that |⌦x

1 \ ⌦(↵)| = k � 1 > 1. Thus there exists � 2

⌦x

1\⌦(↵), and it follows by (6.11) and (6.12) that � /2 {k+1}[⌦x

2[⌦1. Furthermore

since ↵ /2 ⌦1 it follows by (6.11) that ⌦x

1 \ ⌦1 = ;. Thus ⌦1, and so ⌦x

1 also, are

contained in Supp(x). Hence

� 2 ⌦x

1\({k + 1} [ ⌦x

2 [ ⌦1) ✓ Supp(x)\({k + 1} [ ⌦x

2 [ ⌦1).

Finally, ↵, � 2 ⌦(↵) 6= ⌦1. Thus �x
2 ⌦x

1 gives �x
�1

2 ⌦1 6= ⌦(�). Therefore the

result follows with � in place of ↵.

Lemma 6.6.2. Let 2  k  6, let m � 23 and let ↵ be as in Lemma 6.6.1. Then at least

one of the following holds:

(i) ⌦x

1 \ ⌦1 6= ;;
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(ii) there exists � 2 ⌦1 such that �x /2 ⌦2 [ ⌦(↵);

(iii) there exists � 2 ⌦1\{1} such that �x 2 ⌦2; or

(iv) ⌦x

1 ✓ {k + 1} [ ⌦2 and there exists � 2 ⌦1\{1} such that �x 2 ⌦(↵)\{↵}.

Proof. Assume that (i)-(iii) do not hold. Then (ii) not holding implies that ⌦x

1 ✓ ⌦2 [

⌦(↵), and that (iii) not holding implies that (⌦1\{1})x \ ⌦2 = ;. Hence ⌦x

1 ✓ {k + 1} [

⌦(↵). If k = 2, then we reach a contradiction by Lemma 6.6.1(i). Hence let k > 2 and

� 2 ⌦1\{1,↵x
�1
}, so that �x 2 ⌦(↵)\{↵}.

Lemma 6.6.3. Let 2  k  6, let m � 23, and let G and M be as in Hypothesis 6.2.7(A).

If x 2 X1\J , then there exists y 2 M such that hx, yi = G.

Proof. We first show that if |Supp(x)|  max{7, 2k + 1}, then |Supp(x)|  2(
p
n � 1),

and so x 2 J . If k = 2, then max{7, 2k + 1} = 7 and

|Supp(x)|  7 < 2(
p

2 · 11� 1)  2(
p

mk � 1).

If k � 3, then max{7, 2k + 1} = 2k + 1, we show this is less that 2(
p
mk � 1). Let

f(k) = 4k2
� 44k + 9. Then f has roots in 0 < k < 1 and 10 < k < 11. Hence f(k) < 0

for 3  k  6, and so

(2k + 3)2 = 4k2 + 12k + 9 < 56k = 4(14k),

Therefore 2k + 1 < 2(
p
14k � 1)  2(

p
mk � 1). Thus if |Supp(x)|  max{7, 2k + 1},

then x 2 Js.

Therefore assume that |Supp(x)| > max{7, 2k + 1}. Let ↵ be as in Lemma 6.6.1, let

�, � or � be as in Lemma 6.6.2. By Lemma 4.4.17 there exists a prime pm such that

pm  m� 3. Note that pm > m

2 � 7 and so pm - k(k � 1).

Let Y be the set of elements y = c1c2c3 2 M with

C(y) = pm · pm(k � 1)| {z }
l((c1c2)M)=pm

⌦2,⌦(↵)2Supp((c1c2)M)

· (m� pm)k| {z }
l(cM3 )=m�pm

⌦12Supp(cM3 )

such that the following hold.

(i) k + 1 2 ⇥1, ↵ 2 ⇥2 and 1 2 ⇥3.

(ii) If ↵x
�1

/2 ⌦(↵), then ↵x
�1

2 ⇥3; and otherwise ↵x
�1

2 ⇥1

(iii) If � exists, then �, �x
2 ⇥3. If � exists, then � 2 ⇥3 and �x 2 ⇥2. If � exists, then

� 2 ⇥3; while �x 2 ⇥2 if ⌦(↵) = ⌦2, and �x 2 ⇥1 otherwise.
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We begin by justifying why Y 6= ;.

By Lemma 6.6.1 ↵ /2 ⌦x

2 , and so ↵x
�1

/2 ⌦2. Hence if ↵x
�1

/2 ⌦(↵), then

⌦(↵x
�1
) 6= ⌦1,⌦(↵) and so we can insist that ⌦(↵x

�1
) 2 Supp(cM3 ), and so ↵x

�1
2 ⇥3.

If ↵x
�1

2 ⌦(↵), then ↵x
�1

2 ⇥1 [ ⇥2 and so since ↵x
�1

/2 ⌦2 it follows we can place

↵x
�1

in ⇥1. If � exists as in Lemma 6.6.2, then �x /2 ⌦2 [⌦(↵x) and so ⌦(�x),⌦2,⌦(↵x)

are distinct. So far Supp(cM3 ) contains ⌦1 and possibly ⌦(↵x
�1
), and by Lemma 4.4.17

m� pm � 3. Hence we can insist that ⌦(�x) 2 Supp(cM3 ) so that �x
2 ⇥3.

If � 2 ⌦1\{1} exists as in Lemma 6.6.2, then �x 2 ⌦2 ✓ ⇥1[⇥2. From � 6= 1 it follows

that �x 6= k + 1, and so �x 2 ⇥2 automatically.

Finally, if � 2 ⌦1\{1} exists as in Lemma 6.6.2, then �x 2 ⌦(↵)\{↵} ✓ ⇥1 [⇥2. Since

� 6= 1 it follows that � 6= k + 1,↵. Hence if ⌦2 = ⌦(↵), then we can insist that �x 2 ⇥2,

and if ⌦2 6= ⌦(↵) that �x 2 ⇥1.

It is clear by Conditions (i) and (ii) that H = hx, yi is transitive. Assume, by way of a

contradiction, that H is imprimitive with non-trivial block system H. Let � 2 H with

k + 1 2 �.

If l(cH1 ) = 1, then �y = � and ⇥1 ✓ �. Since |⇥1| = pm and pm - n it follows by

Lemma 4.2.6 that there exists ✏ 2 �\⇥1. Hence ✏Y [⇥1 ✓ �. If ✏ 2 ⇥2, then |�| > n

2 , a

contradiction. If ✏ 2 ⇥3, then 1, k + 1 2 � and so �H = �, a contradiction.

Assume that l(cH1 ) = pm. Since pm - |⇥3|, Lemma 4.2.11(iv) implies that � \ ⇥3 = ;.

Since H is non-trivial, it follows by Lemma 4.2.11(i) that cH2 = cH1 . Hence block size is

k, and so l(cH3 ) = m � pm. Therefore by Lemma 4.2.13(i) cH3 = cM3 . Thus there exists

� 2 H with � = ⌦1. Since 1x = k + 1 it follows that �x = �. If ⌦x

1 \ ⌦1 6= ;, then

� = �, a contradiction since � \ ⇥3 = ;. If � exists, then � 2 � and so �x
2 � \ ⇥3

by Condition (iii), a contradiction. If � exists, then 1, � 2 � and so k + 1, �x 2 �.

Since (k + 1)y
pm = k + 1, Condition (iii) implies that � = {k + 1} [ (�x)hy

pm i = ⌦2, a

contradiction since � = ⌦1 and ⌦x

1 6= ⌦2.

Hence if Lemma 6.6.2(i)-(iii) hold, then ⌦x

1 ✓ {k + 1} [ ⌦(↵) and � exists. Hence

� 2 ⌦1 = � and by Lemma 6.6.1 k > 2 and ↵x
�1

/2 ⌦(↵). Therefore k + 1, �x 2 �.

If ⌦(↵) = ⌦2, then � = {k + 1} [ (�x)hy
pm i = ⌦2, a contradiction since ⌦x

1 6= ⌦2. If

⌦(↵) 6= ⌦2, then |� \⇥1| = 2, a contradiction.

Hence H is a primitive group containing y1 = y(k�1)(m�pm)k which has cycle type

1n�pmk
· pk

m
. Note that since 2  k  6 and 11  pm  m� 3, it follows that

n = mk � k(pm + 3) � kpm + 3k � kpm + 6.
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Hence y1 2 Jw and so H = G by Theorem 4.3.4.

Hypothesis 6.2.7(B)

We begin with a preliminary lemma.

Lemma 6.6.4. Let 2  k  6, let m � 23 and let x 2 X1\J . If |Supp(x)| > 3k + 3,

then the following holds.

(i) If k > 2, then there exist distinct points ↵,↵x, �, �x
2 Supp(x)\⌦2 such that

↵, � 6= 1 and ⌦(↵) 6= ⌦(�).

(ii) If k = 2 and x /2 M̂ , then there exist distinct points �, �x, � 2 Supp(x) such that

� 2 ⌦3, �x /2 ⌦3, � /2 ⌦1 [ ⌦2 and �x /2 ⌦2.

Proof. (i) Since |Supp(x)| > 3k + 3 there exists ↵ 2 Supp(x)\(⌦2 [ ⌦x
�1

2 ) and

� 2 Supp(x)\(⌦2 [ ⌦x
�1

2 [ ⌦(↵) [ {↵x,↵x
�1
}). Hence ↵,↵x, �, �x /2 ⌦2 and

⌦(↵) 6= ⌦(�). Since 1x 2 ⌦2 and ↵x, �x /2 ⌦2 it follows that ↵, � 6= 1.

(ii) Since x 2 X1\M̂ , Proposition 6.2.6(i) implies that we may assume that there exists

� 2 ⌦3 such that �x /2 ⌦3. Since 1 = (k + 1)x
�1

2 ⌦1 \ ⌦x
�1

2 , it follows by

inclusion-exclusion that |⌦1 [ ⌦x
�1

2 |  3. Therefore

|⌦2 [ ⌦x
�1

2 [ ⌦1 [ ⌦(�) [ ⌦(�x)|  2 + 3 + 2 + 2 = 9  3k + 3.

Hence there exists � 2 Supp(x)\(⌦2 [ ⌦x
�1

2 [ ⌦1 [ ⌦(�) [ ⌦(�x)).

Lemma 6.6.5. Let 2  k  6, let m � 23 and let G and M be as in Hypothesis 6.2.7(B).

If x 2 X1\J , then there exists y 2 M such that hx, yi = G.

Proof. Since 2  k  6, it follows that

9k + 24 +
16

k
< 9(6) + 24 +

16

2
= 86 < 92  4m.

Hence (3k + 4)2 = 9k2 + 24k + 16  4mk, and so 3k + 2  2(
p
mk � 1). Hence if

|Supp(x)|  3k + 2, then x 2 Js. Therefore, we may assume otherwise and let ↵, � or

�, � be as in Lemma 6.6.4. Since m � 23 it follows that pm � 13, and so (pm, k) = 1. Let

Y be the set of elements y = c1c2 2 M with

C(y) = pmk|{z}
l(cM1 )=pm

⌦12Supp(cM1 )

· (m� pm)k| {z }
l(cM2 )=m�pm

⌦22Supp(cM2 )

satisfying the following.
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(i) If k > 2, then let ↵,↵x, �, �x
2 ⇥1 and ↵y

k
= �.

(a) If ⌦(↵x) = ⌦(�x) let (↵x)y
pm = �x.

(b) If ⌦(↵x) 6= ⌦(�x) and either ↵x /2 ⌦(↵) [ ⌦(�) or �x /2 ⌦(↵) [ ⌦(�), then let

(↵x)y = �x.

(c) If {⌦(↵),⌦(�)} = {⌦(↵x),⌦(�x)}, then let {↵y
pm , �y

2pm
} = {↵x, �x

}.

(ii) If k = 2, then let ⌦3 2 Supp(cM1 ). In addition, if x /2 M̂ do the following.

(a) If �x /2 ⌦1 [ ⌦2, then let {1, �, �x} ✓ {1, 1y
2
, 1y

4
} and �y

i
= �x with i odd.

(b) If �x 2 ⌦1\{1}, then let 1y = � and �y
i
= �x with i odd.

(c) If �x = 1, then let 1y
2
= � and �y

i
= �x with i odd.

(d) If �x 2 ⌦2, then let 1y = � if 2 | (m� pm), and let � = 1y
2
if 2 - (m� pm).

(iii) If 2 is a proper divisor of k let ✏ := 1y
2pm , and if 3 is a proper divisor of k let

⇣ := 1y
3pm . If ✏x /2 ⌦2, then let ⌦(✏x) 2 Supp(cM1 ), otherwise let ✏x = (k+1)y

(m�pm)
.

If ⇣x /2 ⌦2, then let ⌦(⇣x) 2 Supp(cM1 ), otherwise let ⇣x = (k + 1)y
�(m�pm)

.

The placements of ↵y
k
= � in Condition (i) can hold since (k, pm) = 1. If ⌦(�) = ⌦(�x),

then the condition on �y
i
in (ii) is automatic since pm is odd. If ⌦(�) 6= ⌦(�x), then

there are no other restrictions on ⌦(�), and so we can place ⌦(�) in yM to satisfy Hence

Condition (ii).

Since 1 2 ⇥1 and k + 1 2 ⇥2 it follows that H = hx, yi is transitive. Assume, by way

of a contradiction, that H is an imprimitive group with non-trivial block system H. Let

� 2 H with 1 2 �.

Since |⇥1| > |⇥2| and pm - (m � pm)k, Lemma 4.2.14(i) and (ii) imply that l(cH1 ) 6=

1, pmk. If l(cH1 ) = pm, then from pm - |⇥2|, Lemma 4.2.11(iv) implies that � ✓ ⇥1 and

block size is k. Hence l(cH2 ) = m� pm, and so H is the set of translates under y of 1hy
pm i

and (k+1)hy
(m�pm)

i. Since ⌦1 = 1hy
pm i and ⌦2 = (k+1)hy

(m�pm)
i, it follows that H = M,

a contradiction since x /2 M .

First assume that l(cH1 ) = dpm for 1 < d < k a divisor of k. Then d = 2 or 3. Let

l(cH1 ) = 2pm, the argument for d = 3 is very similar. Since pm - |⇥2| it follows by Lemma

4.2.11(iv) that � ✓ ⇥1. Hence by Lemma 4.2.11(i), for all � 2 H, either � ✓ ⇥1 or

� ✓ ⇥2. In addition block size is k

2 . By Lemma 4.2.13(iii) � ✓ ⌦1 and ✏ 2 �. If ✏x /2 ⌦2,

then �x contains ✏x 2 ⇥1 and k + 1 2 ⇥2, a contradiction. If ✏x 2 ⌦2, then �x is left

invariant by y(m�pm). Hence |�x
| � |(k + 1)hy

(m�pm)
i
| = k > k

2 , a contradiction.

Let k > 2, let e > 1 be a divisor of k, and assume that l(cH1 ) = e. Let � 2

H with ↵ 2 �. Then ↵hy
k
i
✓ ↵hy

e
i
✓ � and so � contains ↵ and ↵y

k
= �. If
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{⌦(↵),⌦(�)} = {⌦(↵x),⌦(�x)} or ⌦(↵x) = ⌦(�x), then by Condition (i)(a) and (i)(c) �x

is fixed by ypm . Hence pm | l(cH1 ), a contradiction. Therefore, either ↵x /2 ⌦(↵)[⌦(�) or

�x /2 ⌦(↵)[⌦(�). Hence by Condition (i)(b) ↵xy = �x, and so �x is fixed by y. Therefore

cH1 = (�x), a contradiction since l(cH1 ) = e > 1.

It remains to consider the case of that k = 2 and cH1 = (�,�) for some � 2 H. First

let x 2 M̂ . Lemma 6.6.4 and Conditions (i)-(iii) imply only that ⌦1,⌦3 2 Supp(cH1 ). For

1  i  m let ⌦i = {⌘i, ◆i} so that ⌘1 = 1 and ⌘2 = k + 1. Since ⌦x

1 6= ⌦2 it follows that

◆1 = 2, ◆2 = k + 1 2 Fix(x). Hence

x = (1, k + 1)(⌘i1 , ◆i1) · · · (⌘ir , ◆ir)

with i1, . . . , ir 2 {3, . . . ,m}. Since |Supp(x)| > 3k + 3, it follows that r � 4, and so

(⌘i1 , ◆i1) is a cycle of x. By Lemma 4.2.13(iv) |� \ ⌦i1 | = 1 = |� \ ⌦i1 |, and so �x = �.

Again by Lemma 4.2.13(iv), � \ ⌦1 = {1} and so s1 = 2 2 �. Hence �x = �, a

contradiction. Thus for the remainder of the proof we may assume that x /2 M̂ .

If �x /2 ⌦1 [ ⌦2, then by Condition (ii)(a) �, �x 2 � and so �x = �. However, again

by Condition (ii)(a), � contains exactly one of �, �x, and so we reach a contradiction. If

�x 2 ⌦1\{1}, then by Condition (ii)(b) � 2 � and by Lemma 4.2.13(iv) �x 2 �. Hence

�, �x 2 �, a contradiction since � contains exactly one of �, �x by Condition (ii)(b). If

�x = 1, then by Condition (ii)(c) it follows that �, �x 2 � and that � contains exactly

one of �, �x, a contradiction. Hence �x 2 ⌦2, and so ⌦2 = {k+1, �x}. Since |�\⇥1| = pm

and pm - n it follows by Lemma 4.2.6 that yH = (�,�). If 2 | (m� pm), then by Lemma

4.2.13(ii) � \ ⇥2 and � \ ⇥2 are a union of M -blocks. Hence {k + 1, �x} = ⌦2 ✓ �x,

a contradiction since 1 2 � and � 2 � by Condition (ii)(d). If 2 - (m � pm), then by

Condition (ii)(b) 1, � 2 �. However by Lemma 4.2.13(iv) � contains exactly one of

⌦1 = {k + 1, �x}, a contradiction.

Hence H is a primitive group containing yk(m�pm), with cycle type 1n�pmk
· pk

m
. Now

2  k  6 and pm > 11 and n � pmk = (m � pm)k � 2k. Hence yk(m�pm)
2 Jw and so

H = G by Theorem 4.3.4.

6.6.2 Region two - 7  k  27 and m � 4k � 1

Here we consider Hypothesis 6.2.7(A) and (B) simultaneously.

Lemma 6.6.6. Let 7  k  28, let m � 4k � 1, and let G and M be as in Hypothesis

6.2.7. If x 2 X1\J , then there exists y 2 M such that hx, yi = G.

Proof. By Theorem 4.4.1, there exists a prime pk � 5, and by Lemma 4.4.15 there exists
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a prime pm such that m

2 < pm  m� 4. Hence

pm �
m

2
+

1

2
� 2k � 1 and n = mk � (pm + 4)k > (pm + 4)k � 4, (6.13)

and so pm - k and an element with cycle type 1n�kpm · pk
m

is in Jw. We claim that since

x /2 J we may assume that if |Supp(x)| > 3k + 3. Let y(k) = 7k2
� 34k � 25. Then

y(k) > 0 for k > 6. Therefore

(3k + 5)2 = 9k2 + 30k + 25 < 16k2
� 4k = 4(4k � 1)k

and so

3k + 3 < 2
p
(4k � 1)k � 2  2(

p

mk � 1).

Thus if |Supp(x)|  3k + 3 then x 2 Js, and so the claim holds.

Since x 2 X1, it follows automatically that either there exists ↵,↵x
2 ⌦1 or � 2 ⌦1

such that �x /2 ⌦1 [ ⌦2. Since |Supp(x)| > 3k + 3 there exists � 2 Supp(x)\(⌦1 [

⌦2 [ ⌦x
�1

2 [ {�, �x, �x
�1
}). Since k > 3 it follows that 2k + 6 < 3k + 3 and so there

exists � 2 Supp(x)\(⌦2 [⌦x
�1

2 [ {�, �x, �x
�1
, �, �x, �x

�1
}). Therefore �, �x, �, �x, �, �x are

distinct points, �, �x, �, �x, �, �x /2 ⌦2 and � /2 ⌦1.

Let Y1 be the set of elements y = c1c2c3 2 M such that

C(y) = pmpk · pm(k � pk)| {z }
l((c1c2)M)=pm

⌦1,⌦(�),⌦(�x),⌦(�x)2Supp((c1c2)M)

· (m� pm)k| {z }
l(cM3 )=m�pm

⌦22Supp(cM3 )

with �x 2 ⇥2, k + 1 2 ⇥3 and either {1, �, �, �x
} or {1, �,↵,↵x

} 2 ⇥1.

Let Y2 be the set of elements y = c1c2c3c4 2 M such that

C(y) = pmpk · pm(k � pk � 1) · pm| {z }
l((c1c2c3)M)=pm

⌦1,⌦(�),⌦(�x),⌦(�),⌦(�x),⌦(�x)2Supp((c1c2c3)M)

· (m� pm)k| {z }
l(cM4 )=m�pm

⌦22Supp(cM4 )

with �x 2 ⇥2, �x 2 ⇥3, k + 1 2 ⇥4, and either {1, �, �, �, �x
} or {1, �, �,↵,↵x

} 2 ⇥1.

We first show that if y 2 Y1 [Y2, then H = hx, yi is primitive. Clearly H is transitive.

We claim Lemma 4.2.15 implies thatH is primitive. Let (q1, q2, j, �,�) = (pm, pk, 2, 1, �),

let  = ! be ↵ or �, if y 2 Y1 then let i = 3, otherwise let i = 4. Then pm - |⇥i|, pk - |⇥2|

and pmpk - |⇥l| for l � 2. Also 1, � 2 ⇥1, 1x = k + 1 2 ⇥i and �x 2 ⇥2. Finally

 , x,!,!x
2 ⇥1,  2 ⌦1 \ ⇥1 = 1hy

pm i and there exists y 2 Y1 and y 2 Y2 such that

! 2 �hy
pk i. Hence H satisfies Conditions (i), (ii) and (iii)(a) of Lemma 4.2.15, and so H

is primitive.
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ThusH is primitive. If y1 2 Y1 and y2 2 Y2, then ypk(m�pm)(k�pk)k
1 and ypk(k�pk�1)(m�pm)k

2

respectively have cycle type 1n�pmk
· pk

m
. Hence by (6.13) these are in Jw. Thus An  H

by Theorem 4.3.4. Since y1 2 Y1 and y2 2 Y2 have di↵erent parties, it follows there exists

y 2 Y1 [ Y2 such that H = G.

6.6.3 Region six - 2  m  18 and k � max{4m � 1, 28}

We consider 6.2.7(A) and (B) separately.

Hypothesis 6.2.7(A)

We begin with a preliminary lemma.

Lemma 6.6.7. Let k > 12, let x 2 X1\J and let |Supp(x)| � 10.

(i) If ⌦x

1 \ ⌦1 = ;, then there exist distinct points ↵,↵x, � such that ↵ 2 ⌦1\{1},

↵x /2 ⌦1 [ ⌦2 and � 2 ⌦2\{k + 1, 1x
�1
}.

(ii) If ⌦x

1 \⌦1 6= ; and |⌦2 \ Supp(x)| � 4, then exists distinct points �, �, �x such that

�, �x 2 ⌦1, � 2 ⌦2 \ Supp(x) and �, �x /2 {1, k + 1, �, �x}.

(iii) If ⌦x

1 \ ⌦1 6= ; and |⌦2 \ Supp(x)|  3, then there exist distinct points �, ✏, ⇣, ⇣x

such that �, �x 2 ⌦1, ✏ 2 ⌦2 \ Fix(x) and ⇣, ⇣x /2 {1, k + 1, �, �x}.

In all cases there also exist distinct points ⌘, ⌘x /2 {1, k + 1,↵,↵x, �, �, �x, �, �x, ✏, ⇣, ⇣x},

and in addition for each 2  i  m, there exists ◆i 2 ⌦i such

◆i, ◆xi /2 {1, k + 1,↵,↵x, �, �, �x, �, �x, ✏, ⇣, ⇣x, ⌘, ⌘x}.

Proof. (i) Since x 2 X1 it follows that ⌦x

1 6= ⌦2, and so if ⌦x

1 \ ⌦1 = ;, then there

exists ↵ 2 ⌦1 as required. Let � 2 ⌦2\{k + 1, 1x
�1
,↵x

�1
}.

(ii)-(iii) If ⌦x

1 \ ⌦1 6= ;, then there exist �, �x 2 ⌦1 (possibly equal). If |⌦2 \ Supp(x)| � 4,

then there exists � 2 (⌦2 \ Supp(x))\{k + 1, 1x
�1
, �x

�1
}. It follows automatically

that � /2 {1, �, �x} ✓ ⌦1, and so �, �x /2 {1, k + 1, �, �x}. If |⌦2 \ Supp(x)|  3,

then since k > 3 there exists ✏ 2 ⌦2\Supp(x) ✓ Fix(x). Since |Supp(x)| � 10 there

exists ⇣ 2 Supp(x)\{1, k + 1, 1x
�1
, �, �x, �x

�1
} hence ⇣, ⇣x /2 {1, k + 1, �, �x, ✏}.

Let A = {1, k + 1, 1x
�1
,↵,↵x,↵x

�1
, �, �x, �x

�1
}, {1, k + 1, 1x

�1
, �, �x, �x

�1
, �, �x, �x

�1
} or

{1, k + 1, 1x
�1
, �, �x, �x

�1
, ⇣, ⇣x, ⇣x

�1
}, then |A|  9. Since |Supp(x)| � 10 it follows that

there exists ⌘ 2 Supp(x)\A, hence ⌘ and ⌘x are as required. Let 2  i  m, since k > 12

there exists ◆i 2 ⌦i\(A [ {⌘, ⌘x, ⌘x
�1
}). Hence ◆i and ◆xi satisfy the lemma.

Lemma 6.6.8. Let 2  m  18, let k � max{28, 4m � 1}, and let G and M be as in

Hypothesis 6.2.7(A). If x 2 X1\J , then there exists y 2 Y such that hx, yi = G.

179



Proof. By Lemma 4.4.19, there exists a prime pk such that pk  k � 4. Since x /2 J ,

we may assume that |Supp(x)| � 10, and so there exist points as in Lemma 6.6.7. Since

m  18 < 2 · 3 · 5, it follows that m has at most two proper prime divisors. If m has

exactly one proper prime divisor, then denote it by q1; and if m has two, then denote

them by q1 and q2. Thus if 1 < d < m is a divisor of m then d divides either m

q1
or m

q2
.

Let Y be the set of elements y = c1c2c3 2 M with

C(y) = pkm · (k � pk � 1)m ·m| {z }
l((c1c2c3)M)=m

satisfying the following.

(i) 1 2 ⇥1, k + 1 2 ⇥2, ⌘ 2 ⇥3 and ⌘x 2 ⇥1 [⇥2.

(ii) If ⌦x

1 \ ⌦1 = ;, then ↵ 2 ⇥1, (k + 1)y = ↵x and �, �x
2 ⇥2.

(iii) If ⌦x

1 \ ⌦1 6= ; and |⌦2 \ Supp(x)| � 4, then �, �x 2 ⇥1. In addition the following

hold.

(a) If �x 2 ⌦1, then �, �x 2 ⇥2 and (k + 1)y
�1

= �x.

(b) If �x 2 ⌦2, then � 2 ⇥2 and 1y = �x 2 ⇥1.

(c) If �x /2 ⌦1 [ ⌦2, then � 2 ⇥2 and 1�y = �x 2 ⇥1.

(iv) If ⌦x

1 \ ⌦1 6= ; and |⌦2 \ Supp(x)|  3, then �, �x 2 ⇥1 and 1y = ✏ 2 ⇥1. In

addition the following hold.

(a) If ⌦(⇣), ⌦(⇣x),⌦1,⌦2 are distinct, then (k + 1)y = ⇣ and ⇣x = ⇣y 2 ⇥2.

(b) If ⌦(⇣) = ⌦(⇣x), and if ⌦(⇣x),⌦1,⌦2 are distinct, then (k + 1)y = ⇣ 2 ⇥2 and

✏y = ⇣x 2 ⇥1.

(c) If ⇣, ⇣x 2 ⌦1 or ⌦2, then let |{⇣, ⇣x} \⇥1| = 1 = |{⇣, ⇣x} \⇥2|.

(d) If {⌦(⇣),⌦(⇣x)} = {⌦1,⌦2}, then let ⇣, ⇣x 2 ⇥1.

(v) When q1 is defined label ⌦i := ⌦y

m
q1

pk

1 and ◆ := ◆i = 1y
m
q1

pk
, and let ◆x 2 ⇥1. When

q2 is defined label ⌦j := ⌦y

m
q2

pk

1 and  := ◆j = 1y
m
q2

pk
, and let x 2 ⇥1.

Since (m, pk) = 1 and 1 < m

q2
< m

q1
< m it follows that 0, pk,

m

q1
pk and m

q2
pk are distinct

modulo n. Hence ⌦i,⌦j,⌦l,⌦1 are all distinct, and so ↵, ◆, are distinct. By Condition

(i), H = hx, yi is transitive. Assume, by way of a contradiction, that H is an imprimitive

group with non-trivial block system H. Let � 2 H with 1 2 �.

Since |⇥1| >
n

2 and pk - |⇥2|, |⇥3|, Lemmas 4.2.14(i) and (ii) imply that l(cH1 ) 6= 1, pkm.

Let 1 < d < m be a divisor of m, and assume that l(cH1 ) = dpk. Then d divides m

q1
or
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m

q2
, and so � contains ◆ or . From ◆x,x 2 ⇥1 it follows that �x

2 Supp(cH1 ), and since

k + 1 2 ⇥2 and pk - |⇥2| we reach a contradiction by Lemma 4.2.14(iii).

Let e > 1 be a divisor of m, and suppose that l(cH1 ) = e. Therefore ⌦1 \ ⇥1 ✓ �

by Lemma 4.2.13(ii). If ⌦x

1 \ ⌦1 = ;, then Condition (ii) holds, and so 1,↵ 2 � and

k + 1,↵x
2 �x. Now (k + 1)y = ↵x by Condition (ii), and so (�x)y = �x. Hence

�, �x
2 ⇥2 ✓ �x, and so �x = (�x)H = ⌦, a contradiction.

Therefore we may assume that ⌦x

1 \ ⌦1 6= ;, and so either Conditions (iii) or (iv)

hold. Hence �, �x 2 �, and so �x = � and k + 1 2 �. Since l(cH1 ) = e it follows that

�hy
e
i = �, and so (⌦1 \⇥1) [ (⌦2 \⇥2) = 1hy

e
i
[ (k + 1)hy

e
i
✓ �. If |⌦2 \ Supp(x)| > 3,

then Condition (iii) holds. Hence � 2 ⌦2 \ ⇥2, and so � 2 �. From �x = � it follows

that �x 2 �. By Condition (iii), �x 2 �y
[�y

�1
, and so � = �H = ⌦, a contradiction.

Hence assume that |⌦2 \ Supp(x)|  3 and so Condition (iv) holds. If ⌦(⇣x),⌦1,⌦2

are distinct, then by Conditions (iv)(a) and (b) �y contains 1y = ✏ and (k + 1)y = ⇣.

Since ✏ 2 Fix(x) it follows that (�y)x = �y, and so ⇣x 2 �y. By Condition (iv)(a) or

(b) either ⇣x = ⇣y or ⇣x = ✏y, and so �y = (�y)H = ⌦, a contradiction. Hence we may

assume that ⇣, ⇣x 2 ⌦1 [ ⌦2. From (⌦1 \ ⇥1) [ (⌦2 \ ⇥2) ✓ �, Conditions (iv)(c) and

(d) imply that � contains at least one of {⇣, ⇣x}. Since �x = � it follows that ⇣, ⇣x 2 �.

Let B := {1, k + 1, ⇣, ⇣x}hy
m
i, so that B ✓ �. By Condition (iv)(c) or (iv)(d) either

(⌦1 [ ⌦2) \ ⇥1 or (⌦1 [ ⌦2) \ ⇥2 ✓ B. Now ⌦y

1 = ⌦2 implies that � = �H = �, a

contradiction.

Thus H is a primitive group containing y(k�pk�1)m which has cycle type 1n�pkm · pkm.

Since n = mk > m(pk + 4) � 4 and pk > k

2 > 2m � 1 it follows that y(k�pk�1)m
2 Jw.

Hence An  H by Theorem 4.3.4, and so H = G.

Hypothesis 6.2.7(B)

We begin with the following preliminary lemma.

Lemma 6.6.9. Let k � 7, x 2 X1\J and |Supp(x)| � 9.

(i) If |⌦1 \ Supp(x)| � 3, then there exists distinct points ↵, � 2 ⌦1 \ Supp(x)\{1}

such that ↵x
6= 1. If ↵x, �x

2 ⌦2, then there exists � 2 ⌦1 such that �x /2 ⌦2.

(ii) If |⌦1\Supp(x)|  2, then there exist distinct points �, �x 2 Supp(x)\(⌦1[⌦2) and

✏ 2 ⌦2 \ Fix(x).

In either case, for all 2  i  m, there exists ⇣i 2 ⌦i such that

⇣i, ⇣xi /2 {1x
�1
, k + 1,↵x, �x, �, �x, ✏}.

Proof. Let S1 = ⌦1 \ Supp(x) and S2 = ⌦2 \ Supp(x). If |S1| � 3, then there exists
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↵, � 2 S1\{1}. By interchanging ↵ and � if necessary, it follows that ↵x
6= 1. Since

x 2 X1, it follows that ⌦x

1 6= ⌦2. Hence if ↵x, �x
2 ⌦2, then there exists a � as required.

If |S1|  2, then |S2|  2 since x 2 X1. Now k � 7 implies that there exists ✏ 2 ⌦2\S2 ✓

Fix(x). Since |Supp(x)| � 9 it follows that there exists � 2 Supp(x)\(S1[Sx
�1

1 [S2[Sx
�1

2 ).

Hence �, �x 2 Supp(x)\(⌦1 [ ⌦2).

Let 2  i  m. Since k � 7 there exists either ⇣i 2 ⌦i\{1x
�1
, 1x

�2
, k + 1,↵x, �x

} or

⌦i\{1x
�1
, 1x

�1
, k + 1, �, �x, �x

�1
}. Since ⇣i /2 ⌦1 it follows that ⇣i 6= 1,↵, �, and so

⇣x
i
6= k + 1,↵x, �x. Since ✏x

�1
= ✏ = ✏x, it follows that ⇣i 6= ✏x

�1
, ✏x. Thus ⇣i, ⇣xi are as

required.

Lemma 6.6.10. Let 2  m  18, let k � max{28, 4m � 1}, and let G and M be as in

Hypothesis 6.2.7(B). If x 2 X1\J , then there exists y 2 M such that hx, yi = G.

Proof. If

|Supp(x)| < 9 < 2(
p
2(28)� 1) < 2(

p

mk � 1),

then x 2 Js. Hence we may assume that |Supp(x)| � 9 and let ↵, �, �, �, ✏, ⇣i be as in

Lemma 6.6.9. By Lemma 4.4.18 there exists a prime pk  k � 4. From m < k

2 < pk,

it follows that pk - m. Since m  18, it follows that m has at most two distinct proper

prime divisors. If m has exactly one, then denote this prime by q1; and if m has two,

then denote them by q1 and q2. By Lemma 4.2.1, a product of two cycles is an element

of An if and only if G = An. Let Y be the set of elements y = c1c2 2 M with

C(y) = pkm · (k � pk)m| {z }
l((c1c2)M)=m

satisfying the following.

(i) 1 2 ⇥1 and k + 1 2 ⇥2.

(ii) If |⌦1 \ Supp(x)| � 3, then ↵, � 2 ⇥1.

(a) If ↵x, �x
2 ⌦2 and �x /2 ⌦1, then ⌦y

2 = ⌦(�x) and �x, �, �x 2 ⇥1.

(b) If ↵x, �x
2 ⌦2 and �x 2 ⌦1, then ⌦y

1 = ⌦2 and �x, �, �x 2 ⇥1.

(c) If ↵x /2 ⌦2 or if �x /2 ⌦2 [ {1}, then let (k + 1)y be either ↵x or �x.

(d) If ↵x
2 ⌦2 and �x = 1, then ⌦y

1 = ⌦2 and ↵x
2 ⇥1.

(iii) If |⌦1\Supp(x)| < 3, then 1y = ✏ and (k+1)y = �. Hence ⌦y

1 = ⌦2 and ⌦y
2

1 = ⌦(�).

In addition, if �x 2 ⌦(�), then ✏y = �x, otherwise �x = �y. Hence in the latter case

⌦y
3

1 = ⌦(�x).
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(iv) If q1 is defined, then label ⌦i := ⌦y

m
q1

pk

1 and ⇣ := ⇣i = 1y
m
q1

pk
, and let ⇣x 2 ⇥1. If q2

is defined, then label ⌦j := ⌦y

m
q2

pk

1 and ⌘ := ⇣j = 1y
m
q2

pk
, and let ⌘x 2 ⇥1.

(v) Label ⌦l := ⌦y
pk

1 and ◆ := ⇣l = 1y
pk , and let ◆x 2 ⇥1.

Note that Condition (ii) and (iii) never happen simultaneously. Since (m, pk) = 1 and

1 < m

q2
< m

q1
< m, it follows that 0, pk,

m

q1
pk and m

q2
pk are distinct modulo n. Hence the

placements of ⌦i,⌦j,⌦l,⌦1, and so ⇣, ⌘, ◆ also, are well defined.

By Condition (i), H = hx, yi is transitive. Assume, by way of a contradiction, that H

is a primitive group with non-trivial block system H. Let � 2 H with 1 2 �.

Since |⇥1| > |⇥2|, and pk - |⇥2| it follows that l(cH1 ) 6= 1, pkm by Lemma 4.2.14(i) and

(ii).

Let l(cH1 ) = pk. Then by Condition (v) 1, ◆ 2 � and ◆x 2 ⇥1. Hence �x
2 Supp(cH1 ).

Since k + 1 2 ⇥2 and pk - |⇥2| we reach a contradiction by Lemma 4.2.14(iii).

If m is composite, then let 1 < d < m be a divisor of m and assume that l(cH1 ) = dpk.

Then from pk - |⇥2| it follows that � ✓ ⇥1 by Lemma 4.2.11(iv). Now d divides either
m

q1
or m

q2
, and so either 1hy

m
q1

pk
i or 1hy

m
q2

pk
i
✓ 1hy

dpk i = �. Hence � contains either ⇣ or ⌘.

Since ⇣x, ⌘x 2 ⇥1 it follows that �x
2 Supp(cH1 ), and from k + 1 2 ⇥2 and pk - |⇥2| we

reach a contradiction by Lemma 4.2.14(iii).

Let e > 1 be a divisor of m and suppose that l(cH1 ) = e. Then |� \ ⇥1| = pk
m

e
, and

⌦1\⇥1 ✓ � by Lemma 4.2.13(ii). Since pk - n Lemma 4.2.6 implies that � 6✓ ⇥1. Hence

yH = cH1 , and so no H-block is fixed by y. We show that Conditions (ii) and (iii) imply

a contradiction.

First assume that |⌦1 \ Supp(x)| < 3. Then ⌦1 \ ⇥1 ✓ � and |⌦1 \ ⇥1| = pk � 3,

imply that �x = �. Hence {1, 1x} = {1, k + 1} ✓ � and {1y, (k + 1)y} = {✏, �} ✓ �y

by Condition (iii). Since ✏ 2 Fix(x) it follows that (�y)x = �y, and so �x 2 �y. By

Condition (iii), either �x = ✏y or �x = �y and so (�y)y = �y, a contradiction.

Finally assume that |⌦1 \ Supp(x)| � 3. Then 1,↵, �, � 2 ⌦1 \ ⇥1 ✓ �. Hence

k + 1,↵x, �x, �x 2 �x. If ↵x /2 ⌦2 or �x /2 ⌦2\{1}, then (�x)y = �x by Condition

(ii)(c), a contradiction. If �x = 1 and ↵x
2 ⌦2, then 1 = �x

2 � \ �x by Condition

(ii)(d), and so � = �x. Since l(cH1 ) = e and e | m, it follows that �y
m

= �. Hence

1hy
m
i
[ (↵x)hy

m
i = (⌦1 [ ⌦2) \ ⇥1 ✓ �. Thus �y = � since ⌦y

1 = ⌦2 by Condition

(ii)(d), a contradiction. Hence we may assume that ↵x, �x
2 ⌦2. Since l(cH1 ) = e and

�x, k + 1 2 �x, it follows that �xhy
m
i
[ (k + 1)hy

m
i = (⌦(�x) [ ⌦2) \ ⇥1 ✓ �x. By

Condition (ii)(a) and (ii)(b), either ⌦y

2 = ⌦(�x) or ⌦(�x)y = ⌦2. Therefore (�x)y = �x,

a contradiction.
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Hence H is a primitive group and contains y(k�pk)m with cycle type 1n�pkm · pkm. Since

pk > k

2 > 2m � 1 and n = mk > m(pk + 4) � 4, it follows that y(k�pk)m 2 Jw. Hence

An  H by Theorem 4.3.4, and so H = G by the parity of y.

6.7 Finite regions

In this section we complete the proof of Theorem 6.1.1 by considering the remaining

(finite) collection of m and k. Let m and k be as in Regions three and five of Figure

6.1.

Throughout this section we let x 2 X2. Hence 1x = k+1 and for 1  i  m, if ⌦x

i
6= ⌦i

then |⌦1 \ Supp(x)| � |⌦i \ Supp(x)|.

6.7.1 Region three - 7  k  27 and 27  m < 4k � 1

Here we consider Hypothesis 6.2.7(B) and Hypothesis 6.2.7(A) simultaneously. We begin

with the case of k = m = 27.

Lemma 6.7.1. Let k = m = 27, let G and M be as in Hypothesis 6.2.7. If x 2 X2\J ,

then there exists y 2 M such that hx, yi = G.

Proof. Since x /2 J , we may assume that |Supp(x)| > 2(
p
n � 1) = 52. Therefore there

exists ↵ 2 Supp(x)\(⌦1 [ {k + 1}) and � 2 Supp(x)\(⌦1 [ {k + 1,↵,↵x,↵x
�1
}).

Let Y1 be the set of elements y = c1c2c3 2 M such that

C(y) = 27|{z}
⇥1=⌦1

· 20(26) · 7(26)| {z }
l((c2c3)M)=26

with 1 2 ⇥1, k + 1 2 ⇥2, ↵ 2 ⇥3 and ↵x
2 ⇥1 [⇥2.

Let Y2 be the set of elements of y = c1c2c3c4 2 M such that

C(y) = 27|{z}
⇥1=⌦1

· 20(26) · 5(26) · 2(26)| {z }
l((c2c3c4)M)=26

with 1 2 ⇥1, k + 1 2 ⇥2, ↵ 2 ⇥3, � 2 ⇥4 and ↵x, �x
2 ⇥1 [⇥2.

Let s 2 {1, 2}, and for y 2 Ys let H = H(y) = hx, yi. Then H is transitive. We show

that there exists y 2 Ys such that H is primitive. Assume, by way of a contradiction,

that H preserves, a non-trivial block � containing 1.

Since l(c1) = 33, it follows by Lemma 4.2.10 that l(cH1 ) = 1, 3, 9 or 27. From 3 - |⇥i| for

i 6= 1, Lemma 4.2.11(iv) implies that� ✓ ⇥1. In addition, since� is non-trivial, it follows

that l(cH1 ) 6= 27. Therefore from 1hy
9
i
✓ 1hy

3
i
✓ 1hyi, we deduce that 1y

9
, 1y

18
2 �. If there
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exist �, �x 2 ⌦1, then there exists y1 2 Y1 and y2 2 Y2 such that {�, �x} ✓ {1, 1y
9
, 1y

18
}.

In which case �x = � and so k + 1 2 �, a contradiction since � ✓ ⇥1. Hence we may

assume that ⌦x

1 \ ⌦1 = ;. Since ⌦x

1 6= ⌦2 it follows that there exists � 2 ⌦1 and i > 2

such that �x 2 ⌦i. There exist ys 2 Ys such that 1y
9
= � and (k + 1)y = �x. Hence

k+1, �x 2 �x and so (�x)y = �x. Therefore ⇥2 ✓ �x and so |�x
| � 20(26) > 27 � |�|,

a contradiction.

Thus there exist y 2 Ys such that H = hx, yi is primitive. Either y26·20·7 or y26·20·5·2

is a 27-cycle. Hence H contains an element of Jc and so An  H by Theorem 4.3.4.

Therefore H = G by the parity of y.

Lemma 6.7.2. Let 7  k  27, let 27  m  4k�2 and let G and M be as in Hypothesis

6.2.7. If x 2 X2\J , then there exists y 2 M such that hx, yi = G.

Proof. If m = k = 27, then the result follows by Lemma 6.7.1. Hence assume otherwise.

Since ⌦x

1 6= ⌦2, we may let ↵,↵x
2 ⌦1 if ⌦x

1 \ ⌦1 6= ;; and otherwise let � 2 ⌦1 such

that �x
2 ⌦i for some i � 2.

From k � 7 it follows that k + 7  2k and so k + 5  2(k � 1) = 2(
p

k2 � 1) with

equality if and only if k = 7. Since k  27 it follows that k  m with equality if and

only if k = 27. Hence k + 5 < 2(
p
mk � 1). Therefore if |Supp(x)|  k + 5, then

x 2 Js. Thus we may assume otherwise. Since |{↵,↵x, �, �x
}|  2, there exists either

� 2 Supp(x)\({1,↵,↵x, �, �x
}[⌦2) and � 2 Supp(x)\({1,↵,↵x, �, �x, �, �x}[⌦2). Hence

�x 6= �. It can be verified in Magma, see Lemma 8.1.2 in the Appendix, that for each

m and k there exist primes pm and pk such that pk - (m� pm), pm - kpk(k � pk) and an

element with cycle type 1n�pmk
· pk

m
is a Jordan element.

Let Y1 be the set of elements y = c1c2c3 2 M such that

C(y) = pmpk · pm(k � pk)| {z }
l((c1c2)M)=pm

⌦1,⌦i,⌦(�)2Supp((c1c2)M)

· (m� pm)k| {z }
l(cM3 )=m�pm

⌦22Supp(cM3 )

with � 2 ⇥2, k + 1 2 ⇥3, �x 2 ⇥1 [⇥3 and either 1,↵,↵x
2 ⇥1 or 1, �, �x

2 ⇥1.

Let Y2 be the set of elements y = c1c2c3c4 2 M such that

C(y) = pmpk · pm(k � pk � 1) · pm| {z }
l((c1c2c3)M)=pm

⌦1,⌦i,⌦(�),⌦(�)2Supp((c1c2c3)M)

· (m� pm)k| {z }
l(cM4 )=m�pm

⌦22Supp(cM4 )

with � 2 ⇥2, � 2 ⇥3, k + 1 2 ⇥4, �x 2 ⇥1 [ ⇥4, �x /2 ⇥3, and either 1,↵,↵x
2 ⇥1 or

1, �, �x
2 ⇥1.
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For y 2 Y1 [ Y2 it is clear that H = hx, yi is transitive. We claim that H is primitive.

Let y 2 Y2, the case of y 2 Y1 follows similarly. Suppose, by way of a contradiction, that

H is an imprimitive group with non-trivial block system H. Let � 2 H with 1 2 �.

Since ⇥1 contains either ↵,↵x or �, �x, it follows that l(cH1 ) 6= 1 by Lemma 4.2.14(i).

Since pmpk - |⇥j| for j 6= 1 it follows that l(cH1 ) 6= pmpk by Lemma 4.2.14(ii).

If l(cH1 ) = pm, then � \ ⇥1 = ⌦1 \ ⇥1 by Lemma 4.2.13(i). Hence � contains either

{1,↵} or {1, �} and there exists � 2 Supp(cH1 ) containing either ↵x or �x. Thus �x = �.

Since k + 1 2 ⇥4 and pm - |⇥4| we reach a contradiction by Lemma 4.2.14(iii).

If l(cH1 ) = pk, then |� \ ⇥1| = pm. Since pk - |⇥i| for i 6= 1 Lemma 4.2.11(i) implies

that � ✓ ⇥1. Thus |�| = ±, a contradiction since pm - n.

Hence H is a primitive group. If y 2 Y1 then ypk(k�pk)(m�pk)k; and if y 2 Y2 then

ypk(k�pk�1)(m�pm)k has cycle type 1n�pmk
· pk

m
. Hence An  H and so H = G by the parity

of y.

6.7.2 Region five - 7  m  18 and 26  k < 4m � 1

Here we deal with Hypothesis 6.2.7(A) and Hypothesis 6.2.7(B) in two separate lem-

mas.

Lemma 6.7.3. Let 7  m  18 and let 26  k  4m � 2, and let G and M be as in

Hypothesis 6.2.7(A). If x 2 X2\J , then there exists y 2 Y such that hx, yi = G.

Proof. First let |⌦1 \ Supp(x)| � 2, so that there exists ↵ 2 ⌦1 \ Supp(x)\{1}. Let pk

be as in Lemma 4.4.7. Then pk � 23, and so pk - m(m� 1). By Lemma 4.2.1 an element

composed of three cycles is in An if and only if G = An. Let Y be the set of element

y = c1c2c3 2 M such that

C(y) = pk · (k � pk)| {z }
⇥1[⇥2=⌦1

· (m� 1)k| {z }
l(cM3 )=m�1

with 1 2 ⇥1, ↵ 2 ⇥2, k + 1 2 ⇥3 and ↵x
2 ⇥1 [⇥3.

Clearly H is transitive. Assume by way of a contradiction that H is imprimitive with

non-trivial block system H. Let � 2 H with 1 2 �. Since pk - m(m � 1) it follows

that pk - n, |⇥2|, |⇥3|. Hence Lemma 4.2.14(ii) implies that l(cH1 ) 6= pk. If l(c1)H = 1,

then ⇥1 ✓ � and so �y = �. Since pk - n it follows that � 6= ⇥1. Hence � is

either ⇥1 [ ⇥2 or ⇥1 [ ⇥3. Since ⇥3 = ⌦2 [ · · · [ ⌦m, it follows by Lemma 4.2.14(iv)

that M\{⌦2, . . . ,⌦m} = {⌦1} 6✓ H, and so in particular � 6= ⇥1 [ ⇥2 = ⌦1. Thus

� = ⇥1 [⇥3, then |�| > n

2 , a contradiction. Hence H is primitive.
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Since pk - (m � 1) it follows that y(k�pk)k(m�1) is a pk-cycle, and so y(k�pk)k(m�1)
2 Jc.

Hence H = G by Theorem 4.3.4.

Hence we may assume that |⌦1 \ Supp(x)| = 1. Thus since x 2 X2 it follows that

|⌦2\Supp(x)| = 1. If x = (1, k+1), then x 2 J . Hence we may assume that x 6= (1, k+1)

and let ↵ 2 Supp(x)\{1, k + 1}. Since |⌦1 \ Supp(x)|, |⌦2 \ Supp(x)| = 1 it follows that

there exists 3  i  m such that ↵ 2 ⌦i. By Lemma 8.1.3(i), there exists a prime

q 2 {2, 3, 5, 7, 11, 13} and pk � 23, such that q < m, q - (m� q)k, and Sn and An are the

only primitive groups of degree n containing elements with cycle type 1n�pkq · pkq. Since

pk � 23, q  13 and m  18, it follows that pk - q(m� q).

Let Y be the set of elements y = c1c2c3 2 M such that

C(y) = qpk · q(k � pk)| {z }
l((c1c2)M)=q

⌦1,⌦i2Supp((c1c2)M)

· (m� q)k| {z }
l(cM3 )=m�q

⌦22Supp(cM3 )

with 1 2 ⇥1, ↵ 2 ⇥2 and ↵x
2 ⇥1 [⇥3.

Clearly H is transitive, assume by way of a contradiction that H is an imprimitive

group with non-trivial block system H. Let � 2 H with 1 2 �.

Since |⌦1 \ Supp(x)| = 1, it follows that ⌦1\{1} \ ⇥1 ✓ Fix(x), and so l(cH1 ) 6= 1 by

Lemma 4.2.14(i). From pk - |⇥2|, |⇥3| Lemma 4.2.14(ii) implies that l(c1)M 6= qpk.

First assume that l(cH1 ) = pk. Hence |� \ ⌦i \ ⇥1| = 1 for all ⌦i 2 Supp(cM1 ). If

⇥1 \ Supp(x) = {1}, then �x = � and so k + 1 2 �, a contradiction by Lemma

4.2.14(iii). If there exists � 2 Supp(x)\{1, k + 1,↵} then � 2 ⌦j for some j 6= 1, 2. Let

Y1 ✓ Y be the set of y for which: ⌦j 2 Supp((c1c2)M); 1y = �; and if �x
6= 1 then

�x
2 ⇥2 [ ⇥3. Hence for y 2 Y1 it follows that � 2 �y. Since |�y

\ ⌦1 \ ⇥1| = 1, we

deduce that �y contains a point of ⌦1\{1} ✓ Fix(x), and so (�y)x = �y. If �x = 1, then

�xy = � and so �y = (�y)H = ⌦, a contradiction. If �x
6= 1 then �y contains a point of

⇥2 or ⇥3, a contradiction since pk - |⇥2|, |⇥3|.

If l(cH1 ) = q, then � \ ⇥1 = ⌦1 \ ⇥1 by Lemma 4.2.13(i). Hence � contains points of

⌦1\{1} ✓ Fix(x). Therefore �x = � and so k + 1 2 �, contradicting Lemma 4.2.14(iii)

since k + 1 2 ⇥3 and q - |⇥3|.

Hence H is primitive and contains yq(k�pk)(m�q)k with cycle type 1n�qpk · pkq. Therefore

H contains An, and so H = G by the parity of y.

Lemma 6.7.4. Let 7  m  18, let 26  k  4m � 2, and let G and M be as in

Hypothesis 6.2.7(B). If x 2 X2\J , then there exists y 2 Y such that hx, yi = G.
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Proof. Since x /2 J it follows that |Supp(x)| � 4. First assume that |⌦1 \ Supp(x)|  3.

By 8.1.3(ii) there exists pk < k� 2 such that an element with cycle type 1n�mpk · pkm is a

Jordan element. By Lemma 6.3.10 there exists y 2 M such that H = hx, yi is primitive

and has cycle type 1n�mpk · pkm. Hence An  H, and so H = G by the parity of y.

Finally suppose that |⌦1 \ Supp(x)| � 4. Let ↵ 2 ⌦1 \ Supp(x)\{1} and let

� 2 ⌦1 \ Supp(x)\{1,↵,↵x
�1
} so that �x

6= ↵. Let �, � 2 ⌦1\{1,↵,↵x,↵x
�1
, �, �x, �x

�1
}.

By Lemma 4.4.7 there exists a prime pk � 23, and so pk - (m � 1). Let Y be a set of

elements y = c1c2c3c4 2 M such that

C(y) = pk · (k � pk � 1) · 1| {z }
⇥1[⇥2[⇥3=⌦1

· (m� 1)k| {z }
l(cM4 )=m�1

with 1, �, � 2 ⇥1, � 2 ⇥2, {↵} = ⇥3, �x
2 ⇥1 [ ⇥4, if �x 2 ⌦1 then let �x 2 ⇥1, and

if �x 2 ⌦1 then let �x 2 ⇥1. Let y 2 Y and H = H(y) = hx, yi. Hence H is transitive.

Suppose that H is imprimitive with non-trivial block system H. Let � 2 H with 1 2 �.

Since pk - |⇥i| for i 6= 1 it follows that l(cH1 ) 6= pk by Lemma 4.2.14(ii). Thus by Lemma

4.2.10, l(cH1 ) = 1 and �y = �.

If ⇥1 contains �x or �x, then �x = �, and so � = �H = ⌦, a contradiction. Hence

�x, �x 2 ⇥4 \ �x. If ⌦(�x) 6= ⌦(�x), then there exists Y1 ✓ Y such that (�x)y = �x

for all y 2 Y1. Thus (�x)y = �x, and so ⇥4 ✓ �x. Hence |�x
| > n

2 , a contradiction.

Therefore assume that ⌦(�x) = ⌦(�x). There exists y 2 Y such that (�x)y
m�1

= �x.

Hence (�x)y
m�1

= �x, and so (�x)hy
m�1

i = ⌦(�x) ✓ �x and |�x
| � k. Since |⇥1|  k,

there exists ✏ 2 �\⇥1. From �y = � it follows that ✏hyi [ ⇥1 ✓ �. If ✏ 2 ⇥4 then �

contains �x 2 ⇥4. Hence �x = �, and so � = �H = ⌦ a contradiction. Therefore from

|�| = |�x
| � k, it follows that � = ⇥1 [⇥2 [⇥3 = ⌦1. Hence we reach a contradiction

by 4.2.14(iv), since ⇥4 = ⌦2 [ · · · [ ⌦m and M\{⌦2, . . . ,⌦m} = {⌦1} ✓ H.

Therefore H is a primitive group containing y1 = y(k�pk�1)(m�1)k. Since pk - (m� 1), it

follows that y1 is a pk-cycle, and so y1 2 Jc. Hence H = G by Theorem 4.3.4.

6.8 Proof of Theorems 6.1.1 and 6.1.2

In this section we complete the proof of Theorem 6.1.1 and prove Theorem 6.1.2. Recall

the division of m and k into regions as illustrated in Figure 6.1.

Proof of Theorem 6.1.1. Let x be as in Proposition 6.2.8. It su�ces to show that there

exists y 2 M such that hx, yi = G.

If x 2 J then the result holds by Lemma 6.3.1. Hence assume that x /2 J and divide
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into the six regions depicted in Figure 6.1. If n is in Region one, then 2  k  6 and

m � 23 so the result holds by Lemmas 6.6.3 and 6.6.5. If n is as in Region two, then

7  k  27 and m � 4k � 1, and the result holds by Lemma 6.6.6. If n is as in Region

three then 7  k  27 and 27  m  4k � 2, and so the result holds by Lemma 6.7.2.

If n is as in Region four, then m � 19 and k � 28 and the result holds by Propositions

6.4.1 and 6.5.1. If n is as in Region five then 7  m  18 and 26  k  4m � 2 and

the result holds by Lemmas 6.7.3 and 6.7.4. If n is as in Region six, then 2  m  18

and k � max{4m� 1, 28} the result holds by Lemmas 6.6.8 and 6.6.10. This covers all

possible values of m � 27 or k � 28 as required.

Proof of Theorem 6.1.2. If M is an intransitive subgroup, then the result follows by

Theorem 5.1.1. If M is an imprimitive subgroup, then the result follows by Theorem

6.1.1.

Therefore for G = An the result holds, and it remains to consider the case G = Sn and

M = An. By [48], G is 3
2 -generated. Thus in particular, for all x 2 G\M there exists

y 2 G such that hx, yi = G. The result then follows since hx, yi = hx, xyi and either y or

xy is in M .
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Chapter 7

Conclusion

Here we discuss some of further areas of interest and improvements that could be made

to the work in Chapters 3, 5 and 6.

As mentioned in Section 2.2, in [47] Moscatiello and Roney-Dougal prove that for G a

primitive group which is not large base, either G = M24 in its natural action on 24 points,

or b(G)  dlog ne + 1. In addition they prove that this result is optimal by showing

that there are infinitely many primitive non-large-base groups with b(G) > log n + 1.

In Theorem 3.0.3 we show that I(G)  5 log n and since there exist a group G with

I(G) > log n, it follows that up to multiplication by 1
5 < c  1 this bound is the best

possible. It would be interesting to find the exact value of c and so have a result similar

to that on b(G) in [47]. The current bounds on I(G) are largest when G has socle

PSUd(q), PSpd
(q) or P⌦✏

d
(q), and so improving the bounds for these groups would be a

good starting place.

A tighter upper bound on I(G) would also improve the upper bound on RC(G) given

in Theorem 3.0.5. As part of a joint project with S. Freedman and C.M. Roney-Dougal,

we have found upper and lower bounds on PSLd(q)  G  PGLd(q) acting on subspaces,

and for G = PSLd(q) and PGLd(q) acting on 1-spaces have found the exact value RC(G).

Another area of interest would be to find exact values or tight bounds on relational com-

plexity of other groups.

Currently Theorem 5.1.4 holds only for primes p 6= q
d
�1

q�1 . Under the current restrictions

on p, Theorem 5.4.1 implies that a transitive subgroup H of Sp either contains Ap or is

contained in a conjugate of AGL1(p). Since non-identity elements of AGL1(p) fix either

0 or 1 point, it is relatively easy to test if H is contained in AGL1(p). However, it also

follows from Theorem 5.4.1, that to extend Theorem 5.1.4 to the case of p = q
d
�1

q�1 we

would need to generate transitive subgroups of Sp and show that these subgroups lie in

no conjugate of P�Ld(q).
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I am currently working on extending Theorem 6.1.1 for all m, k � 2. In particular

considering the region 2  m  27 and 2  k  28. So far it seems that in this region

M will also be a maximal coclique in �(G). The smaller k is the smaller the interval

(k2 , k � 1) is, and so there are fewer Bertrand primes pk. The current proof of Theorem

6.1.1 relies on the existence of multiple Bertrand primes pm and pk. As a consequence,

the proof for the region 2  m  27 and 2  k  28 will likely divide into even more

cases.

Very small values of n = mk can be programmed using similar code to [33, Code 1].

The number of elements in G\M , even up to M -conjugation, grow rapidly as n grows.

Therefore the current limitations of the code are n � 12. To extend Theorem 6.1.1 it

would be useful to improve the e�ciency of this code.

As pointed out by Prof Liebeck there are stronger results on primitive groups con-

taining elements of prime order than those given in Section 4.3 - see for example [41].

Hopefully using some of these results will help to streamline the proofs in Chapter 6 for

publication.
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Chapter 8

Appendix

8.1 Small primes

In Chapters 5 and 6, we require the existence of primes with certain properties and

associated Jordan elements. Here we prove there exist such primes in certain small

integer ranges. In the following Lemma we find primes qm and qk, note that these are

not Bertrand primes.

Lemma 8.1.1. Let m = 30, let 28  k  32 and let n = mk. Then there exist distinct

odd primes qm, qk and positive integers a, b such that qk + a + b = k, qm < m, qm - mk,

qk - ab(m� qm)k, and either qmqk  2(
p
n�1) or an element with cycle type 1n�qmqk · qqm

k

is in Jw.

Proof. Call (qm, qk) Type 1 if qmqk  2(
p
n � 1), and Type 2 if an element with cycle

type 1n�qmqk · qqm
k

is in Jw. The following tables gives the value of qm, qk, a and b for each

k and the type.

k qm qk a b Type

28 11 3 11 14 1

29 7 3 13 13 1

30 7 11 7 12 2

31 7 3 14 14 1

32 7 3 13 16 1

Lemma 8.1.2. Let 7  k  27, let 27  m  4k � 2 with (m, k) 6= (27, 27) and let

n = mk. Then there exist primes pk and pm such that

pk - (m� pm), pm - kpk(k � pk), (8.1)
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and Sn and An are the only primitive groups of degree n which contain an element with

cycle type 1n�pmk
· pk

m
.

Proof. We split into two cases. First suppose that m and k are not as in Table 8.1, and

let n = mk. We show by Lagrange’s Theorem that Sn and An are the only primitive

groups containing elements of order pm, and so the result will follow.

We prove the claim using [33, Code 4], which we summarise here. Let Y be an empty set,

fix a value of k and calculate PK the set of Bertrand primes pk. For each 27  m  4k�1

calculate PM the set of primes Bertrand primes pm. For each pk in PK calculate a

corresponding set

Q =
�
pm 2 PM

�� gcd(pk,m� pm) = 1 and gcd(pm, k(k � pk)pk) = 1
 
✓ PM. (8.2)

For each pm 2 Q calculate Prim, the set of primitive groups of degree n whose order is

divisible by pm, and if |Prim| = 2, then add m to Y . Hence if Y has order 4k � 27 then

the result holds for this fixed value of k.

Now let m and k be as in Table 8.1, and let n = mk. We claim that there exist primes

satisfying (8.1), such that if G is a primitive group of degree n, other than Sn or An, then

the Sylow pm-subgroups of G are cyclic and generated by an element whose cycle type is

not 1n�pmk
· pk

m
. Therefore the result will follow.

We prove the claim using [33, Code 5] which we summarise here. Let k and m be

one of the possibilities in Table 8.1. We calculate PK and PM the set of Bertrand

primes pk and pm. Let pk be a random element of PK and calculate the corresponding

set Q ✓ PM as in (8.2). We choose a random pm 2 Q and calculate the set Prim of

primitive groups whose order is divisible by pm. We now let Prim2 = Prim\{Sn,An}.

For each G 2 Prim2 calculate S 2 Syl
pm
(G) and g a generator of S. If |S| = pm and g

has cycle type other than 1n�pmk
· pk

m
, then the result holds for this value of k and m.

k 10 13 14, . . . , 25 21 26 27

m 30 27 2k � 1, 2k + 1 30, 41, 43 30, 51, 53 53, 55

Table 8.1: Exceptions

Lemma 8.1.3. Let 7  m  18, let 26  k < 4m � 1, and let n = mk. Then the

following all hold.

(i) There exists q 2 {2, 3, 5, 7, 11, 13} and pk � 23 such that q < m, q - (m� q)k, and
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Sn and An are the only primitive groups of degree n which contain an element with

cycle type 1n�pkq · pkq.

(ii) There exists pk < k� 2 such that Sn and An are the only primitive groups of degree

n which contain an element with cycle type 1n�pkm · pkm.

Proof. The methods here are very similar to those of Lemma 8.1.2. First assume that

m and k are not in Table 8.2. Then [33, Code 21] shows that there exist pk and q as

described such that Sn and An are the only primitive groups of degree n whose order is

divisible by pk.

Let m and k be as in Table 8.2. Then [33, Code 22] shows that there exists pk and

q as described such any primitive group of degree n, other than Sn and An, has cyclic

Sylow pk-subgroups which are generated by an element whose cycle structure is neither

1n�pkq · pkq nor 1n�pkm · pkq.

m 10 13 14, . . . , 18

k 30 27 2k � 1, 2k + 1

Table 8.2: Exceptions

8.2 Small cases of Theorem 5.1.1

Recall Notation 5.2.1 and Hypothesis 5.2.5 - let n > k > n

2 � 6 and let ⌦ = ⌦1 [ ⌦2 =

{1, . . . , k} [ {k + 1, . . . , n}. Let G = Sn or An acting on ⌦, let

M = StabG(⌦1) = StabG(⌦2) ⇠=
⇣
Sk ⇥ Sn�k

⌘
\G,

and let x 2 G\M . Let Jt,Jc and Js be as in Definition 4.3.3, and let J be as in Theorem

4.3.4.

Here we prove three useful elementary lemmas that help to simplify the proof of Theo-

rem 5.1.1. We show, under particular restrictions on n and x 2 G\M , that either x 2 J

or there exists y 2 M such that hx, yi = G.

For clearer exposition, in the following lemmas we omit fixed points in cycle type

notation. So, for example, in place of 1n�5
· 2 · 3 we write 2 · 3.

Lemma 8.2.1. Let n � 12, G, M and x be as in Hypothesis 5.2.5. If |Supp(x)|  11

then either x 2 J or

C(x) 2 T1 := {23, 24, 25, 32, 33, 42, 42 · 2, 52, 6 · 2, 6 · 22, 6 · 3 · 2, 6 · 3, 8 · 2, 10, 11}.
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Proof. Using ConjugacyClasses(Sym(11)) in Magma we find the 56 possible cycle struc-

tures of elements with support at most 11 (i.e. all partitions of s  11). Since |T1| = 15,

and by Hypothesis 5.2.5 x is neither the identity or a transposition, there are 39 cycle

structures left to consider. We show that every element with one of these cycle structures

is in J .

If

C(x) 2

8
>>>>>>>>><

>>>>>>>>>:

U1 := {3, 4, 5, 6, 7, 8, 9},

U2 := {2 · 3, 22 · 3, 23 · 3, 24 · 3, 2 · 5, 22 · 5, 23 · 5, 2 · 7, 22 · 7, 2 · 9},

U3 := {2 · 32, 2 · 33, 3 · 4, 32 · 4, 3 · 5, 32 · 5, 3 · 7, 3 · 8},

U4 := {3 · 42, 2 · 3 · 4, 22 · 3 · 4, 2 · 4 · 5, 4 · 5, 4 · 7}, or

U5 := {2 · 3 · 5, 5 · 6}

then x, x2, x3, x4 or x6 respectively is in Jc.

If

C(x) 2

8
>>>>>><

>>>>>>:

U6 := {22}

U7 := {2 · 4, 22 · 4, 23 · 4},

U8 := {22 · 32}, or

U9 := {4 · 6}

then x, x2, x3 or x6 respectively is in Jt.

Since U1, . . . , U9 are pairwise disjoint, and
P9

i=1 |Ui| = 39 the result follows.

Lemma 8.2.2. Let n, G, M and x be as in Hypothesis 5.2.5, and assume that

|Supp(x)|  11 and

C(x) /2 T2 := {25, 42, 42 · 2, 52, 6 · 2, 6 · 22, 6 · 3 · 2, 6 · 3, 8 · 2, 10, 11}.

Then either x 2 J or there exists an element y 2 M such that hx, yi = G.

Proof. By Lemma 8.2.1 if C(x) /2 T1 then x 2 J . Hence it remains to consider

T3 : = T1\T2 = {23, 32, 24, 33}.

First suppose that C(x) = 23. Then x is odd, and so G = Sn. If n � 16 then |Supp(x)| =

6  2(
p
n�1), and so x 2 Js. Recall that n � 12 by Hypothesis 5.2.5, so we may assume

that 12  n  15. For these remaining cases we consider the possibilities for x and n�k.

By Lemmas 4.1.7 and 5.2.2 we may assume that x is one of the following.
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x1 = (1, k + 1)(2, 3)(4, 5) x4 = (1, k + 1)(2, 3)(k + 2, k + 3)

x2 = (1, k + 1)(2, 3)(4, k + 2) x5 = (1, k + 1)(2, k + 2)(k + 3, k + 4)

x3 = (1, k + 1)(2, k + 2)(3, k + 3) x6 = (1, k + 1)(k + 2, k + 3)(k + 4, k + 5)

Since 12  n  15, it follows that 1  n � k  7. Some of x1, . . . , x6 are only defined

for n � k suitably large, for example x5 requires n � k � 4. For each possible value of

n� k we give the corresponding possibilities for k and the maximum value of i for which

x1, . . . , xi are well defined.

n � k 1 2 3 4 5 6 7

k 11-14 10-13 9-12 8-11 7-10 7-9 8

i 1 2 4 5 6 6 6

We then use [33, Code 7] in Magma, which tests elements of M at random to see if they

are suitable choices of y. In each case we find y 2 M such that hx, yi = G.

We now carry out the same method for the remaining cycle structures. In each case

Lemmas 4.1.7 and 5.2.2 imply that it su�ces to consider the following possibilities for k,

n� k and x. The result then follows by [33, Code 7].

If C(x) = 32, then G = Sn or An. If n � 16 then x 2 Js. Hence we may assume that

n  15 and we have the following possibilities for x, n� k and k.

x1 = (1, k + 1, 2)(3, 4, 5) x5 = (1, k + 1, 2)(k + 2, k + 3, 3)

x2 = (1, k + 1, k + 2)(2, 3, 4) x6 = (1, k + 1, k + 2)(k + 3, k + 4, 2)

x3 = (1, k + 1, 2)(k + 2, 3, 4) x7 = (1, k + 1, 2)(k + 2, k + 3, k + 4)

x4 = (1, k + 1, k + 2)(k + 3, 2, 3) x8 = (1, k + 1, k + 2)(k + 3, k + 4, k + 5)

n � k 1 2 3 4 5 6 7

k 11-14 10-13 9-12 8-11 7-10 7-9 8

i 1 3 5 7 8 8 8

If C(x) = 24, then G = Sn or An. If n � 25 then x 2 Js. Hence we may assume that

n  24 and we have the following possibilities for x, n� k and k.

x1 = (1, k + 1)(2, 3)(4, 5)(6, 7) x6 = (1, k + 1)(k + 2, k + 3)(k + 4, 2)(3, 4)

x2 = (1, k + 1)(k + 2, 2)(3, 4)(5, 6) x7 = (1, k + 1)(k + 2, k + 3)(k + 4, 2)(k + 5, 3)

x3 = (1, k + 1)(k + 2, k + 3)(2, 3)(4, 5) x8 = (1, k + 1)(k + 2, k + 3)(k + 4, k + 5)(2, 3)

x4 = (1, k + 1)(k + 2, 2)(k + 3, 3)(4, 5) x9 = (1, k + 1)(k + 2, k + 3)(k + 4, k + 5)(k + 6, 2)

x5 = (1, k + 1)(k + 2, 2)(k + 3, 3)(k + 4, 4) x10 = (1, k + 1)(k + 2, k + 3)(k + 4, k + 5)(k + 6, k + 7)
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n � k 1 2 3 4 5 6 7 8 9 10 11

k 11-23 10-22 9-21 8-20 7-19 7-18 8-17 9-16 10-15 11-14 12-13

i 1 2 4 6 8 9 10 10 10 10 10

If C(x) = 33, then G = Sn or An. If n � 31 then x 2 Js. Hence we may assume that

n  30 and we have the following possibilities for x, n� k and k.

x1 = (1, k + 1, 2)(3, 4, 5)(6, 7, 8)

x2 = (1, k + 1, k + 2)(2, 3, 4)(5, 6, 7)

x3 = (1, k + 1, 2)(k + 2, 3, 4)(5, 6, 7)

x4 = (1, k + 1, k + 2)(k + 3, 2, 4)(4, 5, 6)

x5 = (1, k + 1, 2)(k + 2, k + 3, 3)(4, 5, 6)

x6 = (1, k + 1, 2)(k + 2, 3, 4)(k + 3, 5, 6)

x7 = (1, k + 1, k + 2)(k + 3, k + 4, 2)(3, 4, 5)

x8 = (1, k + 1, k + 2)(k + 3, 2, 3)(k + 4, 4, 5)

x9 = (1, k + 1, 2)(k + 2, k + 3, k + 4)(3, 4, 5)

x10 = (1, k + 1, 2)(k + 2, k + 3, 3)(k + 4, 4, 5)

x11 = (1, k + 1, k + 2)(k + 3, k + 4, k + 5)(2, 3, 4)

x12 = (1, k + 1, k + 2)(k + 3, k + 4, 2)(k + 5, 3, 4)

x13 = (1, k + 1, 2)(k + 2, k + 3, k + 4)(k + 5, 3, 4)

x14 = (1, k + 1, 2)(k + 2, k + 3, 3)(k + 4, k + 5, 4)

x15 = (1, k + 1, k + 2)(k + 3, k + 4, k + 5)(k + 6, 2, 3)

x16 = (1, k + 1, k + 2)(k + 3, k + 4, 2)(k + 5, k + 6, 3)

x17 = (1, k + 1, 2)(k + 2, k + 3, k + 4)(k + 5, k + 6, 3)

x18 = (1, k + 1, k + 2)(k + 3, k + 4, k + 5)(k + 6, k + 7, 2)

x19 = (1, k + 1, 2)(k + 2, k + 3, k + 4)(k + 5, k + 6, k + 7)

x20 = (1, k + 1, k + 2)(k + 3, k + 4, k + 5)(k + 6, k + 7, k + 8)

n � k 1 2 3 4 5 6 7 8 9 10 11

k 11-29 10-28 9-27 8-26 7-25 7-24 8-23 9-22 10-21 11-20 12-19

i 1 3 6 10 14 17 19 20 20 20 20

n-k 12 13 14

13-18 14-17 15-16

20 20 20
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Lemma 8.2.3. Let n,G,M , and x be as in Hypothesis 5.2.5. If n � k  10 and

|⌦1 \ Supp(x)| = 1, then either x 2 J or there exists y 2 M such that hx, yi = G.

Proof. From |⌦1 \ Supp(x)| = 1 and n� k  10, it follows that |Supp(x)|  11.

By Lemma Lemma 8.2.2 the result holds if x /2 T2. Since |⌦1| = k > n

2 > 6, it follows

that x fixes at least 5 points. Hence if x a cycle, then x 2 Jc. Therefore we may assume

that

C(x) 2 T4 := T2\{10, 11} = {25, 42, 42 · 2, 52, 6 · 2, 6 · 22, 6 · 3, 6 · 3 · 2, 8 · 2}

Therefore by Lemmas 4.1.7 and 5.2.2 we may assume that x is one of the following.

x1 =(1, k + 1)(k + 2, k + 3)(k + 4, k + 5)(k + 6, k + 7)(k + 8, k + 9)

x2 =(1, k + 1, k + 2, k + 3)(k + 4, k + 5, k + 6, k + 7)

x3 =(1, k + 1)(k + 2, k + 3, k + 4, k + 5)(k + 6, k + 7, k + 8, k + 9)

x4 =(1, k + 1, k + 2, k + 3)(k + 4, k + 5, k + 6, k + 7)(k + 8, k + 9)

x5 =(1, k + 1, k + 2, k + 3, k + 4)(k + 5, k + 6, k + 7, k + 8, k + 9)

x6 =(1, k + 1)(k + 2, k + 3, k + 4, k + 5, k + 6, k + 7)

x7 =(1, k + 1, k + 2, k + 3, k + 4, k + 5)(k + 6, k + 7)

x8 =(1, k + 1)(k + 2, k + 3)(k + 4, k + 5, k + 6, k + 7, k + 8, k + 9)

x9 =(1, k + 1, k + 2, k + 3, k + 4, k + 5)(k + 6, k + 7)(k + 8, k + 9)

x10 =(1, k + 1, k + 2)(k + 3, k + 4, k + 5, k + 6, k + 7, k + 8)

x11 =(1, k + 1, k + 2, k + 3, k + 4, k + 5)(k + 6, k + 7, k + 8)

x12 =(1, k + 1)(k + 2, k + 3, k + 4)(k + 5, k + 6, k + 7, k + 8, k + 9, k + 10)

x13 =(1, k + 1, k + 2)(k + 3, k + 4)(k + 5, k + 6, k + 7, k + 8, k + 9, k + 10)

x14 =(1, k + 1, k + 2, k + 3, k + 4, k + 5)(k + 6, k + 7)(k + 8, k + 9, k + 10)

x15 =(1, k + 1)(k + 2, k + 3, k + 4, k + 5, k + 6, k + 7, k + 8, k + 9)

x16 =(1, k + 1, k + 2, k + 3, k + 4, k + 5, k + 6, k + 7)(k + 8, k + 9)

We now introduce two equations which bound the possibilities for n and n� k. If x 2 Js

then the lemma holds. Hence assume that x /2 Js and so 2(
p
n � 1) < |Supp(x)|.

Therefore

n 

l⇣1
2
|Supp(x)|+ 1

⌘2m
� 1. (8.3)

Recall that n�k < n

2 , and so n�k 
n�1
2 . Additionally, by assumption, |⌦1\Supp(x)| = 1

and n� k  10, thus

|Supp(x)|� 1  n� k  min
n
10,

n� 1

2

o
. (8.4)
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Using (8.3) and (8.4) we calculate the possibilities for n� k and k, and then proceed via

Magma.

If x 2 {x2, x6, x7}, then |Supp(x)| = 8. Hence n  24 by (8.3), and 7  n� k  10 by

(8.4). Therefore we need to consider the following values of n� k and k.

n � k 7 8 9 10

k 8-17 9-16 10-15 11-14

If x 2 {x10, x11}, then |Supp(x)| = 9. Hence n  30 by (8.3), and 8  n � k  10 by

(8.4). Therefore we need to consider the following values of n� k and k.

n � k 8 9 10

k 9-22 10-21 11-20

If x 2 {x1, x3, x4, x5, x8, x9, x15, x16}, then |Supp(x)| = 10. Hence n  35 by (8.3), and

9  n� k  10 by (8.4). Therefore we need to consider the following values of n� k and

k.

n � k 9 10

k 10-26 11-25

If x 2 {x12, x13, x14}, then |Supp(x)| = 11. Hence n  42 by (8.3), and 10  n�k  10

by (8.4). Therefore we need to consider n� k = 10 and 11  k  32.

For each x, k and n�k we use [33, Code 6], which tests random elements of M , to find

y 2 M such that hx, yi = G.

Lemma 8.2.4. Let n, G, M and x be as in Hypothesis 5.2.5. If k  9 and

|⌦2 \ Supp(x)| = 1 then either x 2 J or there exists y 2 M such that hx, yi = G.

Proof. It is immediate from Hypothesis 5.2.5 that 7  k  9 and 12  n  17. Our

assumption that |⌦2 \ Supp(x)| = 1, implies that |Supp(x)|  k + 1  10.

By Lemma 8.2.2 the result holds if x /2 T2. Therefore we may assume that

C(x) 2 T4 : = {C(x) 2 T2 | |Supp(x)|  10}

= {25, 42, 42 · 2, 52, 6 · 2, 6 · 22, 6 · 3, 8 · 2, 10}

Therefore by Lemmas 4.1.7 and 5.2.2 we may assume that x is one of the following (where

we list the possibilities for x with support increasing).
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x1 = (1, k + 1, 2, 3)(4, 5, 6, 7) x8 = (1, k + 1)(2, 3, 4, 5)(6, 7, 8, 9)

x2 = (1, k + 1, 2, 3, 4, 5)(6, 7) x9 = (1, k + 1, 2, 3, 4)(5, 6, 7, 8, 9)

x3 = (1, k + 1)(2, 3, 4, 5, 6, 7) x10 = (1, k + 1, 2, 3, 4, 5)(6, 7)(8, 9)

x4 = (1, k + 1, 2, 3, 4, 5)(6, 7, 8) x11 = (1, k + 1)(2, 3, 4, 5, 6, 7)(8, 9)

x5 = (1, k + 1, 2)(3, 4, 5, 6, 7, 8) x12 = (1, k + 1, 2, 3, 4, 5, 6, 7)(8, 9)

x6 = (1, k + 1)(2, 3)(4, 5)(6, 7)(8, 9) x13 = (1, k + 1)(2, 3, 4, 5, 6, 7, 8, 9)

x7 = (1, k + 1, 2, 3)(4, 5, 6, 7)(8, 9) x14 = (1, k + 1, 2, 3, 4, 5, 6, 7, 8, 9)

The following gives the possibilities for k and n � k, and the corresponding maximum

values of i for which x1, . . . , xi are defined.

k 7 8 9

n � k 5, 6 4, . . . , 7 3, . . . , 8

xi 3 5 14

For each G and x we use [33, Code 9] in Magma. This shows that by choosing su�ciently

many random elements of M , we find y 2 M such that hx, yi = G.
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