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ON RELATIONAL COMPLEXITY AND BASE SIZE
OF FINITE PRIMITIVE GROUPS

VERONICA KELSEY AND COLVA M. RONEY-DOUGAL

We show that if G is a primitive subgroup of Sn that is not large base, then any
irredundant base for G has size at most 5 log n. This is the first logarithmic
bound on the size of an irredundant base for such groups, and it is the
best possible up to a multiplicative constant. As a corollary, the relational
complexity of G is at most 5 log n + 1, and the maximal size of a minimal
base and the height are both at most 5 log n. Furthermore, we deduce that a
base for G of size at most 5 log n can be computed in polynomial time.

1. Introduction

Let � be a finite set. A base for a subgroup G of Sym(�) is a sequence 3 =

(ω1, . . . , ωl) of points of � such that G(3) = Gω1,...,ωl = 1. The minimum base size,
denoted b(G, �) or just b(G) if the meaning is clear, is the minimum length of a
base for G. Base size has important applications in computational group theory; see,
for example, [Sims 1970] for the importance of a base and strong generating set.

Liebeck [1984] proved the landmark result that with the exception of one family of
groups, if G is a primitive subgroup of Sn = Sym({1, . . . , n}), then b(G) < 9 log n.
The members of the exceptional family are called large-base groups: they are
product action or almost simple groups whose socle is one or more copies of
the alternating group Ar acting on k-sets. Moscatiello and Roney-Dougal [2022]
improve this bound, and show that if G is not large base, then either G = M24 in
its 5-transitive action of degree 24 or b(G) ≤ ⌈log n⌉+ 1. Here and throughout, all
logarithms are to the base 2.

We say that a base 3 = (ω1, . . . , ωk) for a permutation group G is irredundant if

G > Gω1 > Gω1,ω2 > · · · > Gω1,...,ωl = 1.

If no irredundant base is longer than 3, then 3 is a maximal irredundant base, and
we denote the length of 3 by I(G, �) or I(G).

From Liebeck’s 9 log n bound on base size, a straightforward argument (see
Lemma 1.2) shows that if G is a primitive non-large-base subgroup of Sn , then
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I(G) ≤ 9 log2 n. However, Gill, Lodà and Spiga [Gill et al. 2022b] conjectured that
for such groups G there exists a constant c such that I(G) ≤ c log n. They show
that for some families of groups the conjecture holds with c = 7. Our main result
establishes this conjecture, whilst also improving the constant.

Theorem 1.1. Let G be a primitive subgroup of Sn . If G is not large base, then

I(G) < 5 log n.

It turns out that there are infinitely many primitive groups for which the maximal
irredundant base size is greater than ⌈log n⌉+1. For example, if d ≥5, G =PGLd(3)

and � is the set of 1-spaces of Fd
3 , then by Theorem 3.1 I(G, �) = 2d − 1 >

⌈log n⌉+ 1. Hence, up to a multiplicative constant the bounds in Theorem 1.1 are
the best possible.

Relational complexity has been extensively studied in model theory, see, for
example, [Lachlan 1984]. A rephrasing of the definition, to make it easier to
work with for permutation groups, was introduced more recently in [Cherlin et al.
1996]. For an excellent discussion and more context, see [Gill et al. 2022a]. Let
k, l ∈ N with k ≤ l, and let 3 = (λ1, . . . , λl), 6 = (σ1, . . . , σl) ∈ �l . We say that
3 and 6 are k-subtuple complete with respect to a subgroup G of Sym(�), and
write 3 ∼k 6, if for every subset of k indices i1, . . . , ik there exists g ∈ G such that
(λ

g
i1
, . . . , λ

g
ik
) = (σi1, . . . , σik ). The relational complexity of G, denoted RC(G), is

the smallest k such that for all l ≥ k and all 3, 6 ∈ �l , if 3 ∼k 6, then 3 ∈ 6G .
Cherlin [2000] gave examples of groups with relational complexity 2, called binary
groups, and conjectured that this list is complete. In a dramatic breakthrough, Gill,
Liebeck and Spiga [Gill et al. 2022a] have just announced a proof of this conjecture.

Let 3 be a base for a permutation group G. Then 3 is minimal if no proper
subsequence of 3 is a base. We denote the maximum size of a minimal base
by B(G). The height, H(G), of G is the size of the largest subset 1 of � with the
property that G(0) ̸= G(1) for each 0 ⊊ 1. The following key lemma relates all of
the group statistics studied in this paper.

Lemma 1.2 [Gill et al. 2022b, Equation 1.1 and Lemma 2.1]. Let G be a subgroup
of Sn . Then

b(G) ≤ B(G) ≤ H(G) ≤ I(G) ≤ b(G) log n,

and
RC(G) ≤ H(G) + 1.

Gill, Lodà and Spiga [Gill et al. 2022b] proved that if G ≤ Sn is primitive and not
large base, then H(G) < 9 log n; and so, RC(G) < 9 log n + 1 and B(G) < 9 log n.

It will follow immediately from Theorem 1.1 and Lemma 1.2 that we can tighten
all of these bounds.
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Corollary 1.3. Let G be a primitive subgroup of Sn . If G is not large base, then

RC(G) < 5 log n + 1, B(G) < 5 log n, and H(G) < 5 log n.

Blaha [1992] proved that the problem of computing a minimal base for a permuta-
tion group G is NP-hard. Furthermore, he showed that the obvious greedy algorithm
to construct an irredundant base for G produces one of size O(b(G) log log n).
Thus, if G is primitive and not large base, it follows from Liebeck’s result that
in polynomial time one can construct a base of size O(log n log log n). Since an
irredundant base can be computed in polynomial time (see, for example, [Sims
1970]), we get the following corollary, which improves this bound to the best
possible result, up to a multiplicative constant.

Corollary 1.4. Let G be a primitive subgroup of Sn which is not large base. Then
a base for G of size at most 5 log n can be constructed in polynomial time.

(We note that using the bound on B(G) from [Gill et al. 2022b], a very slightly
more complicated argument would yield a similar result, but with 9 log n in place
of 5 log n.)

The paper is structured as follows. In Section 2, we prove some preliminary
lemmas about I(G). In Section 3, we let F be an arbitrary field and find upper and
lower bounds on the size of an irredundant base for PGLd(F) acting on subspaces
of Fd , which differ by only a small amount. In Section 4, we prove a result which
is a slight strengthening of Theorem 1.1 for almost simple groups. Finally, in
Section 5, we complete the proof of Theorem 1.1.

2. Preliminary bounds on group statistics

Here we collect various lemmas about bases, and about the connection between
I(G) and other group statistics.

For a subgroup G of Sym(�) and a fixed sequence (ω1, . . . , ωl) of points from �,
we let G(i)

= Gω1,...,ωi for 0 ≤ i ≤ l, so G(0)
= G. Furthermore, the maximum

length of a chain of subgroups in G is denoted by ℓ(G).

Lemma 2.1. Let G be a subgroup of Sn .

(i) If G is insoluble, then I(G) < log |G| − 1.

(ii) If G is transitive and n ≥ 5, then I(G) < log |G| − 1.

(iii) If G is transitive and b = b(G), then I(G) ≤ (b − 1) log n + 1.

Proof. Let a be the number of prime divisors of |G|, counting multiplicity. Since G
is insoluble there exists a prime greater than 22 dividing |G|, and so |G| > 2a+1. It
is clear that I(G) ≤ ℓ(G) ≤ a, and so Part (i) follows, and we assume from now on
that G is transitive.
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Let l = I(G) with a corresponding base 3 = (ω1, . . . , ωl). Since G is transitive,
[G(0)

: G(1)
] = n by the Orbit–Stabiliser Theorem. From [G(i−1)

: G(i)
] ≥ 2 for

2 ≤ i ≤ l, it follows that |G| ≥ 2l−1n. Hence, if n ≥ 5, then |G| ≥ 2l−1
· 5 > 2l+1.

Therefore, by taking logs Part (ii) follows.
Similarly, |G| ≤ nb, and so 2l−1n ≤ |G| ≤ nb. Hence,

l − 1 + log n = log(2l−1n) ≤ log |G| ≤ b log n,

and so
l ≤ b log n − log n + 1 = (b − 1) log n + 1

and Part (iii) follows. □

Lemma 2.2. Let G be a subgroup of Sym(�), let l ≥1 and let 3= (λ1, . . . , λl)∈�l .
Then there exists a subsequence 6 of 3 such that 6 can be extended to an irredun-
dant base and G(6) = G(3).

Proof. The sequence 3 cannot be extended to an irredundant base if and only if
there exists a subsequence λi , . . . , λi+ j of 3 with j ≥ 1 such that

G(i)
= G(i+1)

= · · · = G(i+ j).

Let 6 be the subsequence of 3 given by deleting all such λi+1, . . . , λi+ j . Since
G(i)

= G(i+ j) it follows that G(3) = G(6). □

The following describes the relationship between the irredundant base size of a
group and that of a subgroup.

Lemma 2.3. Let H and G be subgroups of Sn , with H≤G. Then the following hold.

(i) I(H) ≤ I(G).

(ii) If H ⊴ G, then I(G) ≤ I(H) + ℓ(G/H).

(iii) If H ⊴ G and [G : H ] is prime, then I(H) ≤ I(G) ≤ I(H) + 1.

Proof. An irredundant base for H ≤ G can be extended to an irredundant base
for G, so Part (i) is clear. Part (ii) is [Gill et al. 2022b, Lemma 2.8] and Part (iii)
follows immediately from Parts (i) and (ii). □

3. Groups with socle PSLd(q) acting on subspaces

Throughout this section, let F be a field, let V be a d-dimensional vector space
over F and let � =PGm(V ) be the set of all m-dimensional subspaces of V . In this
section we begin by proving Theorem 3.1, which bounds I(PGLd(F), �) in terms
of d and m.

In Section 3B, let q = p f for some prime p and f ≥ 1 and let F = Fq . By
finding lower bounds on n = |�|, we then prove Proposition 3.6, which bounds
I(P0Ld(q), �) in terms of n.
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3A. Bounds as a function of d and m. In this subsection, we prove the following
theorem, which in the case m = 1 and F a finite field recovers the lower bounds
found by Lodà [2020].

Theorem 3.1. Let PGLd(F) act on �. Then

I(PGLd(F)) ≤ (m + 1)d − 2m + 1

and

I(PGLd(F)) ≥

{
md − m2

+ 1, if F = F2,

(m + 1)d − m2, otherwise.

We begin by proving the upper bound in Theorem 3.1. Let M = M(V ) be the
algebra of all linear maps from V to itself. Furthermore, let ω0 = ⟨0⟩, let l > 1 be
an integer, let 3 = (ω1, ω2, . . . , ωl) ∈ �l and for 0 ≤ k ≤ l, let

Mk = {g ∈ M | ωi g ≤ ωi for 0 ≤ i ≤ k}, so that M0 = M.

For 0 ≤ k ≤ l − 1, it is easily verified that Mk+1 is a subspace of Mk . Now assume
in addition that

(1) M0 > M1 > · · · > Ml = FI,

with l as large as possible. Fix a basis ⟨e1, . . . , ed⟩ of V which first goes through
ω1 ∩ω2, then extends to a basis of ω1, and then for each k ≥ 2 extends successively
to a basis of ⟨ω1, . . . , ωk⟩. Therefore, there exist integers

m = a1 ≤ · · · ≤ al = d such that ⟨e1, . . . , eak ⟩ = ⟨ω1, . . . , ωk⟩.

Since ω0 = ⟨0⟩, we may let a0 = 0. From now, on we identify M with the algebra
of d × d matrices over F with respect to this basis.

We will show that l ≤ (m + 1)d − 2m + 1, from which the upper bound in
Theorem 3.1 will follow. For 0 ≤ k ≤ l − 1, let

fk = dim(Mk) − dim(Mk+1),

and let bk = ak+1 − ak so that 0 ≤ bk ≤ m. In the following lemmas we consider
the possible values of fk based on bk .

Lemma 3.2. Let fk and bk be as above.

(i) The dimension of M1 is d2
− m(d − m), and so f0 = m(d − m).

(ii) f1 = b1(d − b1).

Proof. First consider Part (i). Since ω1 = ⟨e1, . . . , em⟩ it follows that g = (gi j ) ∈ M1

if and only if ei g ∈ ω1 for 1 ≤ i ≤ m. Equivalently, gi j = 0 for 1 ≤ i ≤ m and
m + 1 ≤ j ≤ d. Hence, dim(M1) = d2

− m(d − m), and the final claim follows
from dim(M0) = d2.
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Now consider (ii). The subspace M2 contains all matrices of shape
x1 0 0 0
x2 x3 0 0
x4 0 x5 0
y1 y2 y3 y4

 ,

where x1, x3 and x5 are square with m − b1, b1 and b1 rows, respectively. Hence,

dim(M2) = (m − b1)
2
+ 2b1(m − b1) + 2b2

1 + (d − m − b1)d

= d2
− m(d − m) − b1(d − b1),

and the result follows from Part (i). □

Lemma 3.3. Let k ≥ 2. Then fk ≥ max{1, bk(d − m)}.

Proof. For 0 ≤ k ≤ l we define two subspaces of Mk , namely

Xk ={g∈ Mk |ei g =0 for ak+1≤ i ≤d} and Yk ={g∈ Mk |ei g =0 for 1≤ i ≤ak}.

We begin by showing that

(2) Mk = Xk ⊕ Yk and dim(Yk) = d(d − ak).

By construction, Xk ∩ Yk = {0M}. Let g = (gi j ) ∈ Mk . Then there exist
x = (xi j ), y = (yi j ) ∈ M , with xi j = gi j and yi j = 0 for i ≤ ak , and xi j = 0
and yi j = gi j for i ≥ ak + 1. Then g = x + y with x ∈ Xk and y ∈ Yk , hence
Mk = Xk ⊕ Yk . Since g ∈ Yk if and only if gi j = 0 for i ≤ ak , it follows that
dim(Yk) = d(d − ak). Hence, (2) holds.

Our assumption that Mk > Mk+1 implies that fk ≥ 1, so we may assume that
bk ≥ 1. By (2),

fk = dim(Mk) − dim(Mk+1)

= (dim(Xk) + dim(Yk)) − (dim(Xk+1) + dim(Yk+1))

= dim(Xk) − dim(Xk+1) + d(d − ak) − d(d − ak+1)

= dim(Xk) − dim(Xk+1) + bkd.

We now bound dim(Xk) − dim(Xk+1). By choice of basis

ωk+1 = ⟨u1, . . . , um−bk , eak+1, . . . , eak+bk ⟩

for some u1, . . . , um−bk ∈ ⟨ω1, . . . , ωk⟩. Hence if v ∈ {eak+1, . . . , eak+bk }, then
⟨v⟩Mk+1 ≤ωk+1. Therefore, ⟨vMk+1⟩ has dimension at most m, and so dim(Xk+1)≤

dim(Xk) + bkm. Hence,

fk = dim(Xk) − dim(Xk+1) + bkd ≥ −bkm + bkd = bk(d − m). □
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Proof of upper bound of Theorem 3.1. We shall show that l ≤ (m + 1)d − 2m + 1,
from which the result will follow, since I(PGLd(F), �)= I(GLd(F), �) and GLd(F)

is a subgroup of M .
For 0 ≤ b ≤ m, let

Cb =
{
k ∈ {0, . . . , l − 1} | bk = b

}
,

and let cb = |Cb|. Then

(3) l =

m∑
b=0

cb.

Since al = d and a0 = 0, it follows that

(4) d = al − a0 =

l−1∑
k=0

(ak+1 − ak) =

l−1∑
k=0

bk =

m∑
b=0

bcb =

m∑
b=1

bcb.

Since a1 = m and a0 = 0, it follows that b0 = m, so 0 ∈ Cm and cm ≥ 1. Since
ω1 ̸= ω2 it follows that b1 ̸= 0, and 1 ∈ Cb1 , so

(5) cb1 ≥ 1 and cm ≥ 1 + δm,b1,

where δm,b1 is the Kronecker delta. Lemmas 3.2 and 3.3 yield

(6)
f0 = m(d − m), f1 = b1(d − b1) = b1(m − b1) + b1(d − m),

fk ≥ max{1, bk(d − m)} for k ≥ 2.

Since M0 = M and Ml = FI , it follows from the definition of fk that

d2
−1 = dim(M0)−dim(Ml)

=

l−1∑
k=0

(dim(Mk)−dim(Mk+1))

=

l−1∑
k=0

fk =
∑

k∈C0

fk + f1+
∑

k∈Cb1\{1}

fk +
∑

k /∈C0∪Cb1

fk

≥
∑

k∈C0

1+b1(m−b1)+b1(d−m)+
∑

k∈Cb1\{1}

b1(d−m)+
∑

k /∈C0∪Cb1

bk(d−m)

(by (6))
= c0+b1(m−b1)+

∑
k∈Cb1

b1(d−m)+
∑

k /∈C0∪Cb1

bk(d−m)

= c0+b1(m−b1)+
∑

k /∈C0

bk(d−m)

= c0+b1(m−b1)+(d−m)
m∑

b=1
bcb

= c0+b1(m−b1)+(d−m)d (by (4)).

By rearranging, we find that

(7) c0 ≤ md − b1(m − b1) − 1.
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We bound I(G) by maximising l =
∑m

b=0 cb subject only to (4), (5) and (7).
By (4), an upper bound on

∑m
b=0 cb is given by maximising c0, maximising cb for b

small and minimising cb for b large. Hence, we substitute c0 = md −b1(m −b1)−1
by (7), substitute cb = 0 for b /∈ {0, 1, b1, m}, and maximise c1 and minimise cm

subject to (5).
First let m = 1. Since b1 ̸= 0 it follows that b1 = 1, and hence c1 = d by (4). Now

let m ≥ 2. Then there are three possibilities for b1. If b1 = m, then to minimise cm

subject to (5) let cm = 2, and so (4) yields c1 = d −2m. If b1 = 1, then cm = 1, and
(4) yields c1 = d − m. Otherwise cm = cb1 = 1, and (4) yields c1 = d − m − b1.
Hence, in all cases

|C1 ∪ Cb1 ∪ Cm | = 2 + d − m − b1.

Therefore,

m∑
b=0

cb ≤
(
md−b1(m−b1)−1

)
+2+d−m−b1 = (m+1)d−m+1−b1(m−b1+1).

Hence if
∑m

b=0 cb is maximal, then b1(m −b1 +1) is minimal subject to 1 ≤ b1 ≤ m.
Therefore, b1 is 1 or m, and so

m∑
b=0

cb ≤ (m + 1)d − 2m + 1.

The result now follows from (3). □

We now consider the lower bounds in Theorem 3.1.

Proof of lower bound of Theorem 3.1. Let G = GLd(F). Here we give a sequence of
m-spaces of V such that each successive point stabiliser in G is a proper subgroup
of its predecessor. Its length is therefore a lower bound on I(PGLd(F), �).

For 1 ≤ k ≤ md − m2
+ d , we define the following three variables:

rk =

⌊k−2
m

⌋
+ m + 1, sk = m − ((k − 2) mod m) and tk = k − md + m2.

A few remarks are in order. Firstly, it is immediate from the definition of sk that

1 ≤ sk ≤ m.

Secondly, if m + 2 ≤ k ≤ md − m2
+ 1, then

(8) m + 2 ≤ rk ≤ d.

Finally, notice that tk ≤ d for all k, and

2 ≤ tk ≤ m + 1 if and only if md − m2
+ 2 ≤ k ≤ md − m2

+ m + 1.
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Therefore, the following sets Wk of m linearly independent vectors of V are
well defined.

Wk =


{
ei | i ∈ {1, . . . , m+1}\{m+2−k}

}
, 1 ≤ k ≤ m+1,{

ei | i ∈ {1, . . . , m, rk}\{sk}
}
, m+2 ≤ k ≤ md−m2

+1,{
e1+etk , ei | i ∈ {2, . . . , m+1}\{tk}

}
, md−m2

+2 ≤ k ≤ md−m2
+m+1,{

e1+etk , ei | i ∈ {2, . . . , m}
}
, md−m2

+m+2 ≤ k ≤ md−m2
+d.

Let ωk = ⟨Wk⟩ ∈ �, and let G(k)
= Gω1,...,ωk . For 1 ≤ x, y ≤ d, let T (x, y) be

the matrix I + Ex,y (acting on V on the right), and let Suppx(Wk) be the set of
vectors in Wk which are nonzero in position x . Recall that

ei T (x, y) =

{
ei + ey, if i = x,

ei , otherwise.

Hence, if a vector v is zero in position x , then vT (x, y) = v. Thus, ωk T (x, y) = ωk

if and only if Suppx(Wk)T (x, y) ⊆ ωk . In particular, if Suppx(Wk) = ∅, then
ωk T (x, y) = ωk . Furthermore, T (x, y) ∈ G unless F = F2 and x = y.

It is clear that G > G(1), so let k ∈ {2, . . . , md −m2
+1} and let j ≤ k. We shall

show that there exist x and y such that ωk T (x, y) ̸= ωk and ω j T (x, y) = ω j for
all j < k. Hence, T (x, y) ∈ G(k−1)

\G(k) and so G(k−1) > G(k).
First consider k ∈ {2, . . . , m + 1}, and let T = T (m + 1, m + 2 − k). Then

Suppm+1(W1) = ∅, and for 1 < j ≤ k

Suppm+1(W j )T = {em+1}T = {em+1 + em+2−k}.

Hence, Suppm+1(W j )T ⊆ ω j if and only if j ̸= k. Therefore, ω j T = ω j for j < k,
and ωk T ̸= ωk .

Next consider k ∈ {m + 2, . . . , md − m2
+ 1}. Hence (8) holds, and so we may

let T be the matrix T (rk, sk). If j ≤ m + 1 or if r j ̸= rk , then Supprk
(W j ) = ∅ and

so ω j T = ω j . Therefore, assume that j ≥ m + 2 and r j = rk . Then

Supprk
(W j )T = {erk }T = {erk + esk }.

Since (r j , s j ) = (rk, sk) if and only if j = k, it follows that Supprk
(W j )T ⊆ ω j

if and only if j ̸= k. Therefore, ω j T = ω j for j < k, and ωk T ̸= ωk . Hence,
G(k−1) > G(k) for 1 ≤ k ≤ md − m2

+ 1, and so if F = F2 then the result follows.
It remains to consider |F| > 2 and k ≥ md − m2

+ 2. Let T = T (tk, tk), and let
u ∈ {ei , e1 + ei | 1 ≤ i ≤ d}. Then

uT =


e1 + 2etk , if u = e1 + etk ,

2u, if u = etk ,

u, otherwise.
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If 1 ≤ j ≤ md −m2
+1, then W j ⊆ {e1, . . . , ed}, and if md +m2

+1 < j < k, then
W j ⊆{e1+et j , e1, . . . , ed} with t j ̸= tk . Hence, if j <k, then Supptk (W j )T ⊆ω j , and
so ω j T = ω j . Since e1 +etk ∈ ωk but e1 +2etk /∈ ωk it follows that ωk T (tk, tk) ̸= ωk .
Hence, G(k−1) > G(k) for 1 ≤ k ≤ md − m2

+ d, and so the result follows. □

Remark 3.4. The interested reader may wish to check, using the notation of the
previous proof, that the following holds. Let 3 = (ωi )2≤i≤md−m2+1 if F = F2, and
let 3 = (ωi )m+1≤i≤md−m2+d otherwise. Then 3 is a minimal base for the action of
PGLd(F) on PGm(F). Hence,

B(PGLq(F),PG(V )) ≥

{
md − m2, if F = F2,

(m + 1)d − m2
− m, otherwise.

3B. Upper bounds as a function of |�|. We now let q = p f for some prime p and
integer f ≥ 1, and let F = Fq . Our main result in this subsection is Proposition 3.6,
which bounds I(PGLd(q), �) as a function of n = |�|, rather than of m and d . We
begin by bounding the size of � = PGm(Fd

q).

Lemma 3.5. Let n(d, m, q) = |PGm(Fd
q)|. Then

log |�| = log(n(d, m, q)) >

{d2

4 +
1
2 , if q = 2 and m =

d
2 ≥ 2,

m(d − m) log q, for all m and q.

Proof. The second bound is immediate since (qd−m+i
− 1)/(q i

− 1) > qd−m for
1 ≤ i ≤ m. Hence, we consider n(2m, m, 2), which we must show is greater
than 2m2

+1/2.
We induct on m. Since n(4, 2, 2) = 35 > 222

+1/2, the result holds for m = 2. Now,

n(2m, m, 2) =
(22m

− 1)(22m−1
− 1)(22m−2

− 1) · · · (2m+1
− 1)

(2m − 1)(2m−1 − 1)(2m−2 − 1) · · · (2 − 1)

=
(22m

− 1)(22m−1
− 1)

(2m − 1)2 ·
(22m−2

− 1) · · · (2m+1
− 1)(2m

− 1)

(2m−1 − 1)(2m−2 − 1) · · · (2 − 1)

=
(22m

− 1)(22m−1
− 1)

(2m − 1)2 · n(2m − 2, m − 1, 2)

≥
(22m

− 1)(22m−1
− 1)

(2m − 1)2 · 2(m−1)2
+1/2 (by induction).

It is easily verified that

(2m
+1)(22m−1

−1) = 23m−1
+22m−1

−2m
−1 > 23m−1

−22m−1
= 22m−1(2m

−1).
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Hence,

(22m
− 1)(22m−1

− 1)

(2m − 1)2 2(m−1)2
=

(2m
+ 1)(22m−1

− 1)

(2m − 1)
2(m−1)2

>
22m−1(2m

− 1)

(2m − 1)
2(m−1)2

= 2m2
,

and the result follows. □

Recall that q = p f with p prime, and � = PGm(Fd
q), with n = |�|.

Proposition 3.6. Let G = P0Ld(q) and assume that m ≤
d
2 . Then

I(G,�)≤


2(d−1)+1 ≤ 2 log n+1, if m = 1 and q = 2,
4
3(d−1) log q+1+log f ≤

4
3 log n+1+log f, if m = 1 and q ≥ 3,

d2

2 +1 ≤ 2 log n, if m =
d
2 ≥ 2 and q = 2,

2m(d−m) log q+log f ≤ 2 log n+log f, otherwise.

Proof. Since G = PGLn(q)⋊C f , Lemma 2.3(ii) and Theorem 3.1 imply that

(9) I(G) = I(PGLn(q)) + ℓ(C f ) ≤ (m + 1)d − 2m + 1 + log f.

First let m = 1, so that I(G) ≤ 2(d − 1) + 1 + log f . Then, by Lemma 3.5,
(d − 1) log q < log n. Hence, the result is immediate for q = 2, and follows from
log q > 3

2 for q ≥ 3.
Now let m =

d
2 ≥ 2, so that I(G) ≤

d2

2 + 1 + log f . If q = 2 then d2

4 +
1
2 < log n

by Lemma 3.5, and so the result follows. If q ≥ 3, then it follows from d ≥ 4 that
1 ≤

d2

4 , and so

d2

2
+ 1 ≤

3d2

4
<

d2

2
log q = 2m(d − m) log q.

Therefore,

I(G) ≤ 2m(d − m) log q + log f < 2 log n + log f,

by Lemma 3.5. Finally consider 1 < m < d
2 . Then 1 ≤ d − 2m, and so

d − 2m + 1 ≤ 2(d − 2m) ≤ m(d − 2m).

Hence by (9),

I(G)−log f ≤md+d−2m+1≤md+m(d−2m)=2m(d−m)≤2m(d−m) log q.

Therefore, I(G) ≤ 2m(d − m) log q + log f ≤ 2 log n + log f , by Lemma 3.5. □
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4. Almost simple groups

In this section, we prove Theorem 1.1 for almost simple groups. More precisely,
we prove the following result.

Theorem 4.1. Let G be an almost simple primitive subgroup of Sn . If G is not
large base, then

I(G, �) < 5 log n − 1.

We begin with two definitions which we shall use to divide this section into cases.

Definition 4.2. Let G be almost simple with socle G0, a classical group with natural
module V . A subgroup H of G not containing G0 is a subspace subgroup if for
each maximal subgroup M of G0 containing H ∩ G0 one of the following holds.

(i) M = GU for some proper nonzero subspace U of V , where if G0 ̸= PSLd(F),
then U is either totally singular or nondegenerate, or if G is orthogonal and
p = 2 a nonsingular 1-space.

(ii) G0 = Spd(2 f ) and M ∩ G0 = GO±

d (2 f ).

A transitive action of G is a subspace action if the point stabiliser is a subspace
subgroup of G.

Definition 4.3. Let G be almost simple with socle G0. A transitive action of G
on � is standard if up to equivalence of actions one of the following holds, and is
nonstandard otherwise.

(i) G0 = Ar and � is an orbit of subsets or partitions of {1, . . . , r}.

(ii) G is a classical group in a subspace action.

This section is split into three subsections. The first considers G0 = PSLd(q)

acting on subspaces and pairs of subspaces. In the second, we deal with the case
of G another classical group in a subspace action. Finally, in the third, we prove
Theorem 4.1.

4A. G0 = PSLd(q). Let G be almost simple with socle PSLd(q), in a subspace
action on a set �. We first consider � = PGm(V ).

Proposition 4.4. Let G be almost simple with socle PSLd(q) acting on � =

PGm(V ), and let n = |�|. Then

I(G) < 3 log n.

Proof. If m = 1, then G ≤ P0Ld(q), so I(G) ≤ I(P0Ld(q)) by Lemma 2.3(i).
Otherwise G ∩ P0Ld(q) has index at most 2 in G, so by Lemma 2.3(i) and (iii)

I(G) ≤ I(G ∩ P0Ld(q)) + 1 ≤ I(P0Ld(q)) + 1.
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Therefore, we can bound I(G) by our bound for I(P0Ld(q)) when m =1, and by one
more than that when m > 1. Thus, Proposition 3.6 yields I(G) ≤ 2 log n + log f +1.
It is easily seen that log f + 1 ≤ log q ≤ m(d − m) log q, and so by Lemma 3.5
log f + 1 < log n and the result follows. □

We now consider the action of G on the following subsets of PGm(V )×PGd−m(V ),
with m < d

2 :

�⊕
=

{
{U, W } | U, W ≤ V, dim U = m, dim W = d − m, with U ⊕ W = V

}
,

�≤
=

{
{U, W } | U, W ≤ V, dim U = m, dim W = d − m, with U ≤ W

}
.

Note that in both cases we require d ≥ 3.

Lemma 4.5. Let G be almost simple with socle PSLd(q), let H = G ∩ P0Ld(q)

and let � be either �⊕ or �≤. Then

I(G, �) ≤ 2I(H,PGm(V )) + 1.

Proof. We first show that

(10) I(H, �) ≤ I(H,PGm(V )) + I(H,PGd−m(V )).

Let l = I(H, �) and let 3 = ({U1, W1}, . . . , {Ul, Wl}) be a corresponding base,
where dim(Ui ) = m for all i . Let 5 = (U1, . . . , Ul), and let 6 = (W1, . . . , Wl).
Then by Lemma 2.2, 5 and 6 contain subsequences which can be extended to
irredundant bases for the action of H on PGm(V ) and PGd−m(V ), respectively.

Let 5′ be the subsequence of 5 which contains Ui if and only if HU1,...,Ui−1 >

HU1,...,Ui−1,Ui . Then 5′ can be extended to an irredundant base for the action of H
on PGm(V ). Let k = |5′

|, so k ≤ I(H,PGm(V )).
Let 6′

= (W j1, . . . , W j(l−k)
) be the subsequence of 6 which contains Wi if and

only if HU1,...,Ui−1 = HU1,...,Ui−1,Ui . Assume, for a contradiction, that 6′ cannot be
extended to an irredundant base for the action of H on PGd−m(V ). Since H is
irreducible, H > HW j1

. Therefore, there exists s ≥ 2 such that

HW j1 ,W j2 ,...,W j(s−1)
= HW j1 ,W j2 ,...,W j(s−1)

,W js
.

Let i = js . Then intersecting both sides of the above expression with HW1,...,Wi−1 gives

(11) HW1,...,Wi−1 = HW1,...,Wi−1,Wi .

Since Wi ∈ 6′, it follows that

(12) HU1,...,Ui−1 = HU1,...,Ui−1,Ui .

Elements of H = G∩P0Ld(q) cannot map Ui to Wi . Thus, (11) and (12) imply that

H{U1,W1},...,{Ui−1,Wi−1} = H{U1,W1},...,{Ui−1,Wi−1},{Ui ,Wi },

a contradiction since 3 is irredundant. Hence l − k ≤ I(H,PGn−m(V )), and
so (10) holds.



102 VERONICA KELSEY AND COLVA M. RONEY-DOUGAL

The subgroups of Sym(PGm(V )) and Sym(PGn−m(V )) representing the ac-
tions of H are permutation isomorphic. Therefore, (10) implies that I(H, �) ≤

2I(H,PGm(V )). Since H has index at most 2 in G, the result follows from
Lemma 2.3(iii). □

Lemma 4.6. Let � be either �⊕ or �≤, and let n = |�|. Let G be an almost simple
subgroup of Sym(�) with socle PSLd(q). Then

I(G) < 5(log n − 1).

Proof. Let H = G ∩ P0Ld(q), then by Proposition 3.6 and Lemma 4.5

(13) I(G)≤2I(H,PGm)+1≤


4(d−1)+3, if m = 1 and q = 2,
8
3(d−1) log q+2 log f +3, if m = 1 and q ≥ 3,

4m(d−m) log q+2 log f +1, otherwise.

Since 1 ≤ m < d
2 , each m-dimensional subspace of V has more than one comple-

ment and is contained in more than one (d − m)-dimensional subspace. Hence
n ≥ 2|PGm(V )|, and so Lemma 3.5 gives

(14) m(d − m) log q < log n
2 = log n − 1.

Recall that d ≥ 3. First let m = 1. If (d, q) = (3, 2), then n ∈ {21, 28}. Therefore,
by (13), it follows that I(G) ≤ 11 < 5(log n − 1).

Hence if q = 2, then we may assume that d ≥ 4, and so by (13) and (14),

I(G) ≤ 4(d − 1) + 3 ≤ 5(d − 1) < 5(log n − 1).

Still with m = 1, let q ≥ 3. Then

I(G) ≤
8
3(d−1) log q+2 log f +3 (by (13)),

< 8
3(d−1) log q+2(d−1) log q+1 (since log f +1≤ log q < (d−1) log q),

< 5(d−1) log q (since 1 < 1
3(d−1) log q),

< 5(log n−1) (by (14)).

Finally, let m ≥2 so that m(d−m)≥6. Then it is easily checked that 2 log f +1≤

m(d − m) log q , so by (13) and (14),

I(G) ≤ 4m(d − m) log q + 2 log f + 1 ≤ 5m(d − m) log q < 5(log n − 1). □

4B. G0 another classical group.

Lemma 4.7. Let G be almost simple with socle G0 = P�+

8 (q), acting faithfully
and primitively on a set � of size n. Then

I(G) < 5 log n − 1.
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Proof. Let q ≥ 3. Then the reader may check that 6 f < q2, and so by [Gill et al.
2022b, (6.19)],

|G| < 6 f q28
≤ q30.

If q = 2, then |G| ≤ 6|G0| < q30 also. Hence by Lemma 2.1(ii), since n > 4,

I(G) ≤ log q30
− 1 = 5 log q6

− 1 < 5 log n − 1,

by [Landazuri and Seitz 1974]. □

Proposition 4.8. Let G be almost simple with socle G0, a classical group with
natural module V . Assume that G0 ̸= PSL(V ) and G0 ̸= P�+

8 (q). Let 0 < m < d ,
let � be a G-orbit of totally isotropic, totally singular, or nondegenerate subspaces
of V of dimension m, and let n = |�|. Then

I(G, �) < 5 log n − 1.

Proof. First, let G0 = P�+

d (q) and m =
d
2 . Then d ≥ 10, and so 2d2

−12d −16 > 0.
Hence 10d2

− 20d > 8d2
− 8d + 16 and it follows that d2

8 −
d
4 > d2

10 −
d
10 +

1
5 . By

[Burness and Giudici 2016, Table 4.12],

(15) n =

d/2−1∏
i=1

(q i
+ 1) >

d/2−1∏
i=1

q i
= qd2/8−d/4 > qd2/10−d/10+1/5.

Hence,

I(G) ≤ log |G| − 1 (by Lemma 2.1(ii)),

≤ log
(
qd2/2−d/2+1)

− 1 (by [Gill et al. 2022b, p. 25]),

= 5 log
(
qd2/10−d/10+1/5)

− 1

< 5 log n − 1 (by (15)).

Therefore, we may assume for the rest of the proof that G0 ̸= P�+

d (q), so by [Gill
et al. 2022b, Lemma 7.14],

(16) 1
2 m(d − m) log q < log n.

Since � is a G-orbit of subspaces, if G0 = PSp4(q), then G does not induce the
graph isomorphism by [Bray et al. 2013, Table 8.14]. Hence since G0 ̸=P�+

8 (q) and
� ⊆ PGm(V ), we may assume that G ≤ P0Ld(q). Then Lemma 2.3(i) implies that

I(G) ≤ I(P0Ld(q),PGm(V )),

and so, in particular, the bounds from Proposition 3.6 apply.
We begin with m = 1. If q = 2, then we split into two cases. If d ≤ 4, then by

Proposition 3.6,
I(G) ≤ 2(d − 1) + 1 ≤ 7 < 5 log n − 1.
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If instead d ≥ 5, so that 1
2(d − 1) ≥ 2, then by Proposition 3.6 and (16),

I(G) ≤ 2(d − 1) + 1 ≤ 2(d − 1) +
1
2(d − 1) − 1 < 5 log n − 1.

To complete the case of m = 1, let q ≥ 3. Since G0 ̸= PSLd(q), we may assume
that d ≥ 3 and so it can be verified that 6

7 f (2 + log f ) + 1 < 3 ≤ d. Hence,

2 + log f < 7
6 f (d − 1) ≤

7
6 f (d − 1) log p =

7
6(d − 1) log q.

Therefore, it follows from Proposition 3.6 and (16) that

I(G) ≤
4
3(d − 1) log q + log f + 1 < 5

2(d − 1) log q − 1 < 5 log n − 1.

Now let m =
d
2 and q = 2. Then by Proposition 3.6 and (16),

I(G) ≤
d2

2 + 1 = 4
( 1

2 m(d − m)
)
+ 1 < 4 log n + 1 < 5 log n − 1,

since n > 4.
Hence, we may assume that m ≥ 2, that m(d − m) ≥ 4, and that if m =

d
2 , then

q ≥ 3. Therefore,

I(G) ≤ 2m(d−m) log q+log f (by Proposition 3.6),

≤ 2m(d−m) log q+
1
3 m(d−m) log q−

4
3 (since 4logq ≥3(log f +1)+1),

< 14
3 log n−

4
3 (by (16)),

< 5 log n−1. □

4C. Proof of Theorem 4.1. We begin by proving Theorem 4.1 for nonstandard
actions.

Proposition 4.9. Let G be an almost simple, primitive nonstandard subgroup of
Sym(�) and let n = |�|. Then

I(G, �) ≤ 4 log n + 1.

Proof. By a landmark result of Burness and others [Burness 2018; Burness 2007;
Burness et al. 2009; Burness et al. 2010], either (G, �) = (M24, {1, . . . , 24}) or
b(G, �) ≤ 6. By [Gill et al. 2022b, p. 10], I(M24, {1, . . . , 24}) = 7 < 2 log 24. If
b(G) ≤ 5, then the result follows by Lemma 2.1(iii). Hence we may assume that
b(G, �) = 6.

Let G have point stabiliser H . By a further result of Burness [2018, Theorem 1],
either

(17) (G, H) ∈
{
(M23, M22), (Co3, McL.2), (Co2, U6(2).2), (Fi22.2, 2.U6(2).2)

}
or

(18) (Soc(G), H) ∈
{
(E7(q), P7), (E6(q), P1), (E6(q), P6)

}
.
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We first deal with (G, H) = (M23, M22). Since M23 is the point stabiliser of M24,
it follows that

I(M23, {1, . . . , 23}) = I(M24, {1, . . . , 23, 24}) − 1 = 6 < 2 log 23.

For the other cases of (17) and (18) we verify that |H | < [G : H ]
4, and so since

H is insoluble, it will follow by Lemma 2.1(i) that

I(G) = I(H) + 1 < log |H | < log[G : H ]
4
= 4 log n.

For the remaining (G, H) in (17), it is easy to use [Conway et al. 1985] to verify
that |H | < [G : H ]

4. Therefore, we may assume that (Soc(G), H) is as in (18).
Let m(G) be the smallest degree of a faithful transitive permutation representation
of G. If |G| < m(G)5, then

|H | =
|G|

[G : H ]
<

m(G)5

[G : H ]
≤ [G : H ]

4,

and so the result will follow.
First, let G0 = E6(q). Then by [Steinberg 1968],

|E6(q)| =
q36(q12

− 1)(q9
− 1)(q8

− 1)(q6
− 1)(q5

− 1)(q2
− 1)

(3, q − 1)

and |Out(E6(q))| ≤ 2 f (3, q − 1) ≤ q(3, q − 1). Hence,

|G|≤q37(q12
−1)(q9

−1)(q8
−1)(q6

−1)(q5
−1)(q2

−1)<q37+12+9+8+6+5+2
=q79.

By [Vasilev 1997, p. 2],

m(G)≥m(G0)≥
(q9

− 1)(q8
+ q4

+ 1)

q − 1
= (q8

+q7
+· · ·+q+1)(q8

+q4
+1)>q16.

Hence, |G| < q79 < q80 < m(G)5, as required.
Now let G0 = E7(q). Then by [Steinberg 1968],

|E7(q)| =
q63(q18

− 1)(q14
− 1)(q12

− 1)(q10
− 1)(q8

− 1)(q6
− 1)(q2

− 1)

(2, q − 1)

and |Out(E7(q))| = (2, q − 1) f < (2, q − 1)q . Hence,

|G| ≤ q64(q18
− 1)(q14

− 1)(q12
− 1)(q10

− 1)(q8
− 1)(q6

− 1)(q2
− 1)

< q64+18+14+12+10+8+6+2
= q134.

By [Vasilev 1997, p. 5],

m(G) =
(q14

− 1)(q9
+ 1)(q5

+ 1)

q − 1

= (q13
+ q12

+ · · · + q + 1)(q9
+ 1)(q5

+ 1) > q13+9+5
= q27.

Hence, |G| < q134 < q135 < m(G)5. □
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We note that this bound could be improved if the groups with minimal base
size 5 were classified.

Proof of Theorem 4.1. If the action of G on � is nonstandard, then the result follows
by Proposition 4.9. Hence, we may assume that G is standard.

If G is alternating and not large base, then � is a set of partitions. Hence,
I(G, �) < 2 log |�| by [Gill et al. 2022b, Lemma 6.6].

Therefore G is classical, and the action of G on � is a subspace action. If G is
as in Case (ii) of Definition 4.2, then I(G, �) < 11

3 log |�| by [Gill et al. 2022b,
Lemma 6.7]. If G0 = PSLd(q) and � is a set of subspaces, or a set of pairs of
subspaces, of V , then the result holds by Proposition 4.4 or Lemma 4.6, respec-
tively. If G0 ̸= PSLd(q) and � is a set of subspaces, then the result follows by
Proposition 4.8. Hence, by [Burness et al. 2013, 5.4], we may assume that either
G0 = P�+

8 (q) and G contains a triality automorphism; or G0 = Sp4(2
f )′ and G

contains a graph automorphism. In the former case the result holds by Lemma 4.7.
In the latter I(G, �) < 11

3 log |�| by [Gill et al. 2022b, Lemma 6.12]. □

5. Proof of Theorem 1.1

Here we use the form and notation of the O’Nan–Scott Theorem from [Praeger
1990]. We begin by considering groups of type PA, and then we prove Theorem 1.1.

Lemma 5.1. Let G be a subgroup of Sn of type PA that is not large-base. Then

I(G) < 5 log n.

Proof. Since G is of type PA there exists an integer r ≥ 2, a finite set 1 and
an almost simple subgroup H of Sym(1) such that G ≤ H ≀ Sr . Since G is not
large base, neither is H . Let s = |1|, so that n = sr with s ≥ 5. Then

I(G, �) ≤ I(H r , 1r ) + ℓ(Sr ) (by Lemma 2.3(i) and (ii)),

≤ I(H r , 1r ) +
3
2r (by [Cameron et al. 1989]),

≤ r(I(H, 1)− 1) + 1 +
3
2r (by [Gill et al. 2022b, Lemma 2.6]),

< r(5 log s − 2) + 1 +
3
2r (by Theorem 4.1),

< 5 log sr
−

1
2r + 1

≤ 5 log n (since r ≥ 2). □

We can now prove Theorem 1.1.

Proof of Theorem 1.1. Let G be a primitive group which is not large base. If G is
almost simple, then the result holds by Theorem 4.1. If G is of type PA, then the
result holds by Lemma 5.1. For all other G, the result holds by [Gill et al. 2022b,
Propositions 3.1, 4.1 and 5.1]. □
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