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1 Introduction28

Automated planning is a fundamental discipline in Artificial Intelligence [14]. Given a model29

of the environment, a planning problem is to find a sequence of actions to progress from an30

initial state of the environment to a goal state while respecting some constraints. Examples31

of planning problems in industry and academia are numerous, such as drilling operations [22],32

logistics [25] or chemistry [23]. Among other techniques, Constraint Programming has been33

successfully used to solve planning problems [5, 6]. It is especially suited when the problem34

requires a certain level of expressivity, such as temporal reasoning or optimality [31, 3].35

Herein, we focus on finding optimal solutions for a discrete time and space puzzle, Plotting,36

a puzzle video game published by Taito in 1989 and ported to many platforms. The objective37

is to reduce a given grid of coloured blocks to a goal number or fewer (Figure 1). This is38

achieved by the avatar character repeatedly shooting the block it holds into the grid. It is39

also known as Flipull in Japan as well as in versions for the Famicom and Game Boy.40

Plotting is naturally characterised as a planning problem, to find a sequence of positions41

from which to fire such that enough blocks are removed to beat the current scenario. It is of42
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23:2 Plotting: A Planning Problem With Complex Transitions

Figure 1 Plotting (Taito, 1989). The avatar is seen on the left, holding a green block. The
objective is to reduce the number of blocks in the middle pile up to the goal. In this particular case
there are 16 left (see center-right of the image), and the goal is 8 or less (see top-right of image).

interest because of the complexity of the state transitions after every shot: some blocks are43

affected directly, while others can be indirectly affected by gravity, as explained in Section 3.44

Modelling the complex dynamics of the game in the de-facto standard modelling language for45

planning problems, PDDL [17], is difficult, as we will demonstrate. The resulting complexity46

of the model severely hinders the ability of planning systems to produce a valid plan.47

Constraint modelling languages can be used to express planning problems [3, 6, 9, 30].48

They are richer than PDDL and, while still a challenge to formulate, permit a more concise49

representation of Plotting. We present two models of the game in Essence Prime [27] and50

employ Savile Row [26] to transform them into SAT, MIP, and CP instances for solution.51

Plotting is also of interest as an example application in the video games industry, which52

last year was last year valued at over USD 300 billion [1]. Puzzle games are perennially53

popular, with other examples similar to Plotting including Puzznic (Taito, 1989) and54

Lumines (Q Entertainment, 2004). Constraint Programming can provide a tool to assist55

game designers [16]. Randomly generated levels are commonly used either to save developer56

time or to generate more content for players. The ability to model game mechanics and57

solve generated levels provides the opportunity to check if they have a solution, or to get an58

impression as to how difficult they are [20]. This paper contributes to this growing effort; in59

addition to the constraint and PDDL models we provide a parameterised instance generator,60

and an empirical evaluation of the proposed models with a variety of solving back-ends.61

2 Background62

A classical planning problem is a tuple
∏

= ⟨F, A, I, G⟩, where: F is a set of propositional63

state variables, A is a set of actions, I is the initial state and G is the goal. A state is a64

variable-assignment (or valuation) function over state variables F , which maps each variable65

of F into a truth value. An action a ∈ A is defined as a tuple a = ⟨Prea, Eff a⟩, where Prea66

refers to the preconditions and Eff a to the effects of the action. Preconditions (Pre) and the67

goal G are first-order formulas over propositional state variables. Action effects (Eff ) are68

sets of assignments to propositional state variables.69

An action a is applicable in a state s only if its precondition is satisfied in s (s |= Prea).70

The outcome after the application of an action a will be the state where variables that are71

assigned in Eff a take their new value, and variables not referenced in Eff a keep their current72
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values. A sequence of actions ⟨a0, . . . , an−1⟩ is called a plan. We say that the application73

of a plan starting from the initial state I brings the system to a state sn. If each action is74

applicable in the state resulting from the application of the previous action and the finalstate75

satisfies the goal (i.e., sn |= G), the sequence of actions is a valid plan. A planning problem76

has a solution if a valid plan can be found for the problem.77

The Planning Domain Definition Language (PDDL) [17] is the de-facto standard modelling78

language for planning problems, supported by most planning systems. Its widespread79

use started thanks to the collaborative efforts and desire of the community to facilitate80

benchmarking and applications of planning systems. When using PDDL, the user describes81

the problem in terms of predicates, actions and functions with parameters. In turn, these82

parameters are instantiated with a set of defined objects.83

2.1 Planning as Satisfiability84

When a planning problem has a fixed length, such as peg solitaire [19], modelling in a85

constraint language is simplified to deciding a fixed-length sequence of actions. Otherwise,86

the modeller must consider how to find a plan of unknown length. There have been various87

successful approaches to encoding a planning problem into SAT [21, 29] and to CP [6, 30, 3, 24],88

amongst others. When encoding these problems, it is common in this situation to solve the89

planning problem by considering a sequence of satisfaction problems ϕ0, ϕ1, ϕ2, . . . , where90

ϕi encodes the existence of a plan that reaches a goal state from the initial state in i steps.91

As described in Section 5, in constructing each ϕ herein we take the common approach92

[6, 19] of formulating a “state and action” constraint model of the planning problem, where93

we employ decision variables to capture both the state of the puzzle at each time step and the94

action taken to transform the preceding into the succeeding state. Constraints ensure that95

when an action is executed, its preconditions hold with respect to the problem variables and96

its effects are applied to modify the state. Constraints on the variables representing the state97

of the final step require that the goal conditions are met. Finally, frame axioms are made98

explicit, i.e. constraints specify that if no action has modified a variable, it keeps its value99

between steps. There are semantics such as the ∀ and ∃-step [29], or transition-systems [15]100

that allow more than one action per step. Since we are interested in optimal plans in the101

total number of actions, we consider sequential plans, i.e., one action per step.102

3 Plotting103

Plotting is played by one agent with full information of the state, and the effects of each104

action are deterministic. This situation is common in puzzle-style video games, and similar105

to pen and paper puzzles [10], some variants of patience like Black Hole [12], and board106

games such as peg solitaire [19] or the knight’s tour [2]. The objective in Plotting is to reduce107

a given grid of coloured blocks down to a goal number or fewer. This is achieved by the108

avatar character shooting the block it holds into the grid, either horizontally directly into the109

grid, or by shooting at the wall blocks above the grid, and bouncing down vertically onto the110

grid. When shooting a block, if it hits a wall as it is travelling horizontally, it falls vertically111

downwards. In a typical level, additional walls are arranged to facilitate hitting the blocks112

from above. Alternatively, if it falls onto the floor, it rebounds into the avatar’s hand. The113

rules for a shot block S colliding with a block B in the grid are a bit more complex:114

If the first block S hits is of a different type from itself, S rebounds into the avatar’s115

hand and the grid is unchanged — a null move.116

CP 2022
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If S and B are of the same type, B is consumed and S continues to travel in the same117

direction. All blocks above B fall one grid cell each.118

If S, having already consumed a block of the same type, hits a block B of a different type,119

S replaces B, and B rebounds into the avatar’s hand.120

A simple horizontal shot is depicted in Figure 2. A red block is shot, consuming the two121

red blocks of the second row and traversing the empty space between them. It replaces the122

green block, which rebounds to the avatar’s hand, ready for the next action. Blocks above123

the two removed red blocks fall. A more complex shot is depicted in Figure 3, where a green124

block consumes an entire row of the grid, hits the wall, and continues to consume blocks as125

it falls until it finds a differently colored block (red). Finally, the block shot replaces the126

final red block, which rebounds to the avatar’s hand. As before, blocks above the consumed127

green blocks fall. If, after making a shot, the block that rebounds into the avatar’s hand is128

such that there is now no possible shot that can further reduce the grid, we reach a dead end129

and the block in the avatar’s hand is transformed into a wildcard block, which transforms130

into the same type as the first block it hits. However, in our models we consider the task of131

finding a solution without reaching any dead end. Each level also begins with the avatar132

holding a wildcard block.133

Considered as a planning problem, Plotting’s initial state is the given grid, and there are134

usually multiple goal states where the grid is sufficiently reduced to meet the target. We135

abstract the avatar’s movement to consider the key decisions: the rows or columns chosen at136

which to shoot the held blocks. Therefore, the sequence of actions to get us from the initial137

to the goal state is comprised of individual shots at the grid, either horizontally or vertically.138

4 Modelling Plotting in PDDL139

As Plotting is naturally characterised as a planning problem, we start by modelling it in140

PDDL [17], the de-facto standard language for AI planners. Due to its length, the full PDDL141

model can be found in the supplementary material. PDDL is an expressive and modular142

modelling language, able to encode many real-life problems with complex dynamics. However,143

the complexity of its many features resulted in most AI planners lagging behind, supporting144

only a small core set of features.145

To compactly model the sets of state variables F and actions A as described in Section 2,146

PDDL models use parameterised representations with types. PDDL is action-oriented: a147

PDDL model mainly defines the possible actions at each step. Also for each action, we must148

define the precondition over the state of the previous time step required to perform the149

action, and the effect over the state when that action is performed.150

G G
R G G
R R G
G R R R

Hand: R →

G G
R G G
R R G
G R R R

Hand: ∅
G G G
R G R
G R R R

Hand: G

Figure 2 Diagram of a horizontal shot. R and G denote red and green blocks respectively. The
initial state is shown on the left figure. The middle figure shows the blocks directly affected: the
two light-red crossed out blocks will be removed, and all of the blocks on top will fall downwards.
Finally, the right figure shows the resulting state after the shot, having swapped the hand’s initial
colour for the first one found in the trajectory that is not equal. A vertical shot works similarly.
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G G R
G G G G
R R R G
G R R R

Hand: G →
G G R
G G G G
R R R G
G R R R

Hand: ∅ G G
R R R R
G R R G

Hand: R

Figure 3 A more complex shot where the firing block reaches the end and goes downwards. Note
the top right red block has to fall a variable number of positions (two in this case), depending on
the state of the board and the colour of the shot.

4.1 On Numeric Planning151

Naturally, one would gravitate towards the PDDL versions for numeric planning to be able152

to use numeric indexing. In [11], where PDDL is extended with numeric features, it is said:153

Numeric expressions are not allowed to appear as terms in the language (that is, as154

arguments to predicates or values of action parameters) . . . Functions in PDDL2.1155

are restricted to be of type Objectn → R, for the (finite) collection of objects in a156

planning instance, Object and finite function arity n.157

Namely, no action, predicate or function can have a number as a parameter. Sadly, these158

severe limitations render numeric planning useless for our needs.159

In addition, an essential construct in the preconditions and effects of the actions would160

be the usage of arithmetic to deal with indices of rows and columns. For example, when161

we remove a block in a given row and col, if there was a block above it, this block would162

fall and we would need to refer to its color. As we will see, this can be easily expressed163

in Essence Prime by arithmetically operating on the indices of the matrix: grid[row+1,164

col]. Unfortunately, since row cannot be a number in PDDL, here we are forced to use165

quantifiers to be able to refer to the “block that is above it” (i.e., its row is equals to row+1).166

Therefore, we must define predicates to simulate some basic arithmetic on indices.167

4.2 The PDDL Model168

In this section we provide fragments of the model to illustrate the main drawbacks of PDDL169

for modelling Plotting. The game board is abstracted as a grid of coloured cells. The colour170

of the cell is the colour of the block it contains, or null if empty. Therefore, the full viewpoint171

(or state F ) is the colour of each cell and the colour of the block in the avatar’s hand.172

To parameterise the actions and the predicates defining the state, we use two types of173

objects: colour and number, where number is the name of a type used to manually encode174

the basic required numerical properties. The predicate hand has one colour parameter, and175

encodes if the avatar has a block of the given colour. Given parameters row, col and c, the176

coloured predicate expresses if the block in that row and column has the given colour.177

178
(hand ?c - colour)179
(coloured ?row ?col - number ?c - colour)180181

Auxiliary predicates such as islastcolumn or isbottomrow are added for perspicuity and182

to reduce the use of quantifiers and so the burden on the planner’s preprocessor.183

184
(isfirstcolumn ?n - number)185
(islastcolumn ?n - number)186
(istoprow ?n - number)187
(isbottomrow ?n - number)188189

Moreover, we need to encode some integer relations as Boolean predicates:190

CP 2022
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191
(succ ?p1 ?p2 - number) ; p1 is successor of p2192
(lt ?p1 ?p2 - number) ; p1 is less than p2193
(distance ?p1 ?p2 ?p3 - number) ; p3 is p2 - p1194195

These predicates must be defined in each instance file, along with the specific scenario196

information. For instance, when dealing with a 5 × 5 board we need to state succ for every197

pair of successive numbers between 1 and 5, and lt and distance for every pair of two198

numbers (p1, p2) between 1 and 5 such that p1 < p2.199

Figure 4 is an excerpt of the action consisting of partially removing blocks of colour ?c in200

row ?r until column ?t, i.e. not reaching the last column. One of the principal difficulties is in201

identifying successors and predecessors of particular rows or columns (e.g. Lines 6,12,19,28),202

which could have been alleviated through support for arithmetic expressions on parameters.203

The lack of support for multi-valued variables makes the encoding of some transitions204

difficult. For example, when changing the colour held by the avatar we must state: remove205

previous colour in the hand and set the new colour (lines 25-26). Multi-valued variables would206

make this change straightforward. Due to the lack of support for function symbols in the207

considered PDDL fragment, we must also employ quantification to name specific objects. For208

instance, the column of the cell next to ?t (?nextcolumn) and its colour (?nextcolour) have209

1 (:action shoot-partial-row
2 ;; ?r - what row we are shooting at, ?t - the end cell, ?c - the colour we are removing
3 :parameters (?r - number ?t - number ?c - colour)
4 :precondition (and
5 ;; ?col is the successor of ?t with a different colour than ?c
6 (exists (?col - number)
7 (and (succ ?col ?t)
8 (not (coloured ?r ?col ?c))
9 (not (coloured ?r ?col null))))

10 ...
11 ;; all the blocks up to ?t have either the colour ?c or are null
12 (forall (?col - number)
13 (or (lt ?t ?col)
14 (and (= ?col ?t) (coloured ?r ?t ?c))
15 (or (coloured ?r ?col ?c)
16 (coloured ?r ?col null)))))
17 :effect (and
18 ;; Change hands colour and the next cell that we cannot remove gets the colour from hand
19 (forall (?nextcolumn - number ?nextcolour - colour)
20 (when
21 (and (succ ?nextcolumn ?t)
22 (coloured ?r ?nextcolumn ?nextcolour))
23 (and (not (coloured ?r ?nextcolumn ?nextcolour))
24 (coloured ?r ?nextcolumn ?c)
25 (hand ?nextcolour)
26 (not (hand ?c)))))
27 ;; Move everything downwards. Consider 2 cases: base case (top row), and general case (rest).
28 (forall (?currentrow ?nextrow ?currentcol - number)
29 (and ;; First, the general case. Any row except the top one
30 (forall (?currentcolor ?nextcolor - colour)
31 (when
32 (and (lt ?currentrow ?r)
33 (succ ?nextrow ?currentrow)
34 (or (lt ?currentcol ?t) (= ?currentcol ?t))
35 ;; We ensure that the cells have the pertaining colours
36 (coloured ?currentrow ?currentcol ?currentcolor)
37 (coloured ?nextrow ?currentcol ?nextcolor)
38 (not (= ?currentcolor ?nextcolor))) ; avoids a contradiction
39 (and (not (coloured ?nextrow ?currentcol ?nextcolor))
40 (coloured ?nextrow ?currentcol ?currentcolor))))))))
41 ; Then, the base case of firing on the top row.
42 ...))

Figure 4 Fragment of the action shoot-partial-row of the the PDDL model. Note that the when
operator has two parameters: the condition and the effect.
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to be discovered. This quantification is introduced in line 19, and the values of ?nextcolumn210

and ?nextcolour are discovered in lines 20-22 as a condition for the effect to take place.211

If we could use function symbols and arithmetic, we could remove variables ?nextcolumn212

and ?nextcolour, changing the coloured symbol to a function that, given a row and column,213

maps to the colour in that cell. Overall, lines 19-26 could theoretically be simplified to:214

215
(assign (hand (coloured ?r (?t + 1))))216
(assign (coloured ?r (?t + 1)) ?c)217218

Unfortunately, as per the previous subsection, functions can not have numeric expressions as219

parameters. Essence Prime naturally deals with these kinds of statements (see Section 5).220

Finally, we must define the initial and goal states for every instance. The initial state221

is simply stated with a coloured statement for each cell. However, the goal state is more222

complex to express if we do not have arithmetic or aggregate functions to count the number223

of cells coloured with null. In our instances we define the goal as follows. Let g be the224

maximum allowed number of non-null cells in order to satisfy the goal state. We require225

that there exist g different cells such that any other cell is null. For instance, requiring at226

most 2 non-null cells creates the following statement:227

228
(:goal ;; at most 2 cells are not null, i.e., g=2229

(exists (?x1 ?x2 ?y1 ?y2 - number)230
(and (or (not (= ?x1 ?x2))231

(not (= ?y1 ?y2)))232
(forall (?x3 ?y3 - number)233

(or ; Or is one of cell 1 or cell 2, or is null234
(and (= ?x1 ?x3) (= ?y1 ?y3))235
(and (= ?x2 ?x3) (= ?y2 ?y3))236
(coloured ?x3 ?y3 null))))))237238

The length of this goal is Θ(g2), since the g cells must be pair-wise different. Again, this is239

much simpler to state in a constraint language with, for example, an atleast constraint.240

5 Constraint Models in Essence Prime241

Rendl et al. [28] provide a brief description of an incomplete constraint model of Plotting, as242

it does not support the difficult case of a shot travelling horizontally all the way through the243

grid and then continuing to consume blocks in the final column. We present two complete244

models of the problem, formulated in a state and action style, as noted in Section 2.1. Here,245

the state is the current grid configuration and the contents of the hand of the avatar, and246

the single action is a shot along a particular row or column.247

5.1 A Common Viewpoint248

Our models share a common viewpoint, i.e. the choice of variables and domains, which we249

summarise before describing each individual model.250

Each block type is identified with a colour, and the colours are represented by a contiguous251

range of natural numbers in Essence Prime. Empty grid cells are represented by 0. Step 0252

is the initial state, with the action chosen at step 1 transforming the initial state into the253

state at step 1, and so on. Hence, the parameters and constants for the models are:254

255
given initGrid : matrix indexed by[int(1..gridHeight), int(1..gridWidth)] of int(1..)256
letting GRIDCOLS be domain int(1..gridWidth)257
letting GRIDROWS be domain int(1..gridHeight)258
letting NOBLOCKS be gridWidth * gridHeight259
letting COLOURS be domain int(1..max(flatten(initGrid)))260
letting EMPTY be 0261
letting EMPTYANDCOLOURS be domain int(EMPTY) union COLOURS262
given goalBlocksRemaining : int(1..NOBLOCKS)263
given noSteps : int(1..)264

CP 2022
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letting STEPSFROM1 be domain int(1..noSteps)265
letting STEPSFROM0 be domain int(0..noSteps)266267

We capture the current state of the grid and the contents of the avatar’s hand at each268

time step with a time-indexed 2d array of decision variables and an individual variable per269

time step respectively. Only one action is possible per time step, which is the decision as270

to where to fire the block held. Here we introduce a pair of variables per time step, one271

representing the column fired down (if any) and one representing the row fired along (if any):272

273
find fpRow : matrix indexed by[STEPSFROM1] of int(0..gridHeight)274
find fpCol : matrix indexed by[STEPSFROM1] of int(0..gridWidth)275
find grid : matrix indexed by[STEPSFROM0, GRIDROWS, GRIDCOLS] of EMPTYANDCOLOURS276
find hand : matrix indexed by[STEPSFROM0] of COLOURS277278

5.2 Common Constraints279

The two models also share some constraints on the viewpoint described above, which we280

describe in what follows. The initial state constrains the 0th 2d array of grid to be equal to281

the parameter initGrid. The goal state counts the number of empty grid cells:282

283
$ Initial state:284
forAll gCol : GRIDCOLS .285

forAll gRow : GRIDROWS .286
grid[0, gRow, gCol] = initGrid[gRow, gCol],287

$ Goal state:288
atleast(flatten(grid[noSteps,..,..]), [NOBLOCKS - goalBlocksRemaining], [EMPTY]),289290

Having transformed Plotting into a decision problem that asks if there is a plan with a291

fixed number of steps, we might take the view that moves that do not alter the state of the292

puzzle (e.g. firing the held block into one of a different colour) might be used to “pad” a293

short plan to the given length. This is of little benefit and could lead to redundant search,294

so we disallow moves that do not progress the solution of the puzzle:295

296
$ Each move must do something useful:297
forAll step : STEPSFROM1 .298

sum(flatten(grid[step-1,..,..])) > sum(flatten(grid[step,..,..])),299300

Care will be necessary with our frame constraints, which we will describe in the context of301

the two individual models. Any cell unconstrained will be vulnerable to the solver assigning302

an arbitrary (low-numbered) colour so as to satisfy the sum constraint above.303

The other constraint we consider here states that we must fire horizontally or vertically304

(a shot at the wall blocks above the grid that then bounces down) but not both:305

306
forAll step : STEPSFROM1 . $ Exactly one fp axis must be 0. (XOR, only ONE fired angle)307

(fpRow[step] * fpCol[step]) = 0 /\ (fpRow[step] + fpCol[step]) > 0,308309

5.3 An Action-focused Constraint Model of Plotting310

Our two models differ in the way they describe the transition from one state to another via311

the action selected. We start describing a model that focuses on the action selected and312

what must therefore be true of the grid at the preceding step (the action’s preconditions)313

and of the grid subsequently (the action’s effects). Due to the complexity of the state314

changes, this model is quite substantial in size and is provided in full in the supplementary315

material. Herein, we give an overview along with some illustrative fragments of the model.316

The constraints in this model are divided into two, depending on whether the shot is down a317

column or along a row. The column shot is simpler, as it only affects the selected column:318
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319
forAll step : STEPSFROM1 .320

(fpCol[step] > 0) ->321
$ All other columns are untouched.322
(forAll col : GRIDCOLS .323
(col != fpCol[step]) ->324
(forAll row : GRIDROWS . grid[step,row,col] = grid[step-1,row,col])325

) /\326
$ Must exist a row where grid[step-1,row,fpCol[step]] = hand.327
(exists row : GRIDROWS .328
(grid[step-1,row,fpCol[step]] = hand[step-1]) /\329
$ Everything above is empty or same colour as the hand.330
(forAll above : int(1..row-1) .331

grid[step-1,above,fpCol[step]] = EMPTY \/332
grid[step-1,above,fpCol[step]] = hand[step-1]) /\333

$ Effect is to make everything down to this row empty334
(forAll clear : int(1..row) . grid[step,clear,fpCol[step]] = EMPTY) /\335
($ Either this is bottom in which case hand remains same.336
(row = gridHeight) /\ (hand[step] = hand[step-1])337
\/338
$ Or the next row down is of a different colour, swaps with hand.339
(grid[step-1,row+1,fpCol[step]] != hand[step-1] /\340
grid[step,row+1,fpCol[step]] = hand[step-1] /\341
hand[step] = grid[step-1,row+1,fpCol[step]] /\342
forAll below : int(row+2..gridHeight) .343

grid[step,below,fpCol[step]] = grid[step-1,below,fpCol[step]]))344
),345346

The row shot is considerably more complex, since its effects typically include blocks347

falling as a result of gravity. We must also support a horizontal shot reaching the wall on the348

right and falling. We sub-divide into three cases: the shot block is exchanged with another349

in the same row; the block is exchanged with another in the final column, having hit the350

wall and fallen; and the block travels all the way to the rightmost column and falls to the351

floor, consuming only blocks of the same colour, resulting in the same colour block returning352

to the hand. For brevity we show the first of these below. The two remaining can be found353

in the full model contained in the supplementary material.354

355
forAll step : STEPSFROM1 .356

(fpRow[step] > 0) ->357
(exists col : GRIDCOLS .358
$ Preconds: col with a block different from hand.359
( (grid[step-1,fpRow[step],col] != hand[step-1]) /\360

(forAll left : int(1..col-1) . $Left, empty/hand colour, must exist a block of hand colour.361
grid[step-1,fpRow[step],left] = EMPTY \/362
grid[step-1,fpRow[step],left] = hand[step-1]) /\363

(exists left : int(1..col-1) .364
grid[step-1,fpRow[step],left] = hand[step-1]))365

/\366
$ Effects:367
($ left: Blocks falling, staying fixed.368
(forAll left : int(1..col-1) .369

$ Everything below is fixed370
(forall below : GRIDROWS .371

(below > fpRow[step]) ->372
(grid[step,below,left] = grid[step-1,below,left])) /\373

(grid[step,1,left] = EMPTY) /\ $ Top row guaranteed to be empty.374
$ Otherwise fall from above.375
((fpRow[step] > 1) ->376
(forAll above : int(2..gridHeight) .377

above <= fpRow[step] -> grid[step,above,left] = grid[step-1,above-1,left]))378
) /\379
$ this col: all fixed apart from fprow, which exchanges with the hand380
(hand[step] = grid[step-1, fpRow[step], col]) /\381
(grid[step, fpRow[step], col] = hand[step-1]) /\382
(forAll colBlock : GRIDROWS .383

(colBlock != fpRow[step]) ->384
(grid[step,colBlock,col] = grid[step-1,colBlock,col])) /\385

$ right: all fixed386
(forAll right : int(col+1..gridWidth) .387

forAll colBlock : GRIDROWS .388
grid[step,colBlock,right] = grid[step-1,colBlock,right])))389390
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5.4 A State-focused Constraint Model of Plotting391

We now describe an alternative model that focuses on the state of the hand and each cell392

of the grid, how each might change or remain the same, and the valid reasons for doing so.393

Again, due to its substantial size we give an overview along with some illustrative model394

fragments. The full model is provided in the supplementary material.395

We found it expedient to introduce a time-indexed set of auxiliary variables to this model396

to capture the distance travelled in the final column when a block is shot horizontally, reaches397

the wall, then consumes blocks as it falls down the last column. We use these auxiliary398

variables throughout the model to simplify the statement of the constraints.399

400
find wallFall : matrix indexed by[STEPSFROM1] of int(0..gridHeight)401402

The constraints to make the calculation enumerate each possible value for the wallFall403

variable and stipulate what must be true for that value to be valid:404

405
forAll step : STEPSFROM1 .406
forAll i : int (1..gridHeight) .407
(wallFall[step] = i)408
=409
(exists row : int(1..gridHeight) .410

(fpRow[step] = row) /\411
$ Travelled to the rightmost column412
(forAll col : int(1..gridWidth) .413

grid[step-1,row,col] = EMPTY \/414
grid[step-1,row,col] = hand[step-1]) /\415

$ Travelled i in the last column416
(forAll underRow : int (row..row+i-1) .417

grid[step-1,underRow,gridWidth] = hand[step-1] \/418
grid[step-1,underRow,gridWidth] = EMPTY) /\419

$ And no more420
((grid[step-1,row+i,gridWidth] != hand[step-1]) \/421
(row+i > gridHeight)) /\422

$ And consumed a block somewhere, otherwise not a progressing move.423
((exists col : GRIDCOLS .424

grid[step-1,row,col] = hand[step-1]) \/425
(exists underRow : int(row..row+i-1) .426

grid[step-1,underRow,gridWidth] = hand[step-1]))427
),428429

The constraints in the state-focused model are subdivided into four cases: The hand430

is unchanged, a grid cell becomes empty, a grid cell stays the same and grid cell changes431

colour to something other than empty, which can affect the hand. These are all stated in an432

if-and-only-if form to ensure that no part of the state (hand or grid) is left unconstrained433

and therefore vulnerable to the solver assigning arbitrary values.434

There are two scenarios leaving the hand unchanged when we require a progressing move.435

First, firing down a column of the same colour blocks as the block fired. Second, along a row436

of the same colour, hitting the wall, then consuming everything beneath on the rightmost437

column before hitting the floor. The wallFall variables simplify this second scenario:438

439
forAll step : STEPSFROM1 .440

(hand[step-1] = hand[step])441
=442
( $ Fired down col, hitting wall443

( (forAll colBlock : GRIDROWS .444
((grid[step-1,colBlock,fpCol[step]] = hand[step-1]) \/445
(grid[step-1,colBlock,fpCol[step]] = EMPTY)))446

) \/447
$ Fired row, hitting wall, dropping through hand-colour only. Test by comparing wallFall with fpRow:448
(wallFall[step] = gridHeight-fpRow[step]+1)449

),450451

A grid cell remains empty if it was empty at the previous time step. Otherwise it becomes452

empty if the block that was occupying it is deleted by the chosen shot, or the block that was453

occupying it falls through the action of gravity. In both of these scenarios we must check454
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that another block has not fallen into this cell and of course we must cater for the fact that455

in the rightmost column several blocks can be consumed or fall. We present an illustrative456

fragment below, again exploiting wallFall, and refer the reader to the full model for the457

complete constraint covering this case:458

459
forAll step : STEPSFROM1 .460

forAll gRow : GRIDROWS .461
forAll gCol : GRIDCOLS .462

(grid[step,gRow,gCol] = EMPTY)463
=464
( $ When a cell is EMPTY, it stays EMPTY465

(grid[step-1,gRow,gCol] = EMPTY) \/466
...467
$ Final Column shot along a row consuming several blocks underneath468
( $ Only the final column469

(gCol = gridWidth) /\470
$ There was a wallfall - this implies a successful row shot.471
(wallFall[step] > 0) /\472
$ The shot was beneath here473
(fpRow[step] > gRow) /\474
$ Nothing there to fall into here475
(grid[step-1,gRow-wallFall[step],gridWidth] = EMPTY \/476
gRow-wallFall[step] < 1)477

) \/ ...478
)479480

A grid cell remains unchanged from one time step to the next primarily if it is unaffected481

by the action chosen. This may be, for example, because a shot was fired down a different482

column or along a row above. A more subtle scenario is when a block falls down from the483

current cell, but another of the same colour falls from above to take its place. In all, we484

have subdivided this case into nine such scenarios, which can be seen in the full model. An485

illustrative fragment is shown below:486

487
forAll step : STEPSFROM1 .488

forAll gRow : GRIDROWS .489
forAll gCol : GRIDCOLS .490

(grid[step,gRow,gCol] = grid[step-1,gRow,gCol])491
=492
( $ Fired along row above, last col. Something in way on row or last col.493

( (gCol = gridWidth) /\494
(fpRow[step] != 0) /\495
(fpRow[step] < gRow) /\496
( (exists rowBlock : int(1..gridWidth) .497

((grid[step-1, fpRow[step], rowBlock] != EMPTY) /\498
(grid[step-1, fpRow[step], rowBlock] != hand[step-1]))499

) \/500
(exists colBlock : int(1..gRow-1) .501
((colBlock >= fpRow[step]) /\502
(grid[step-1, colBlock, gridWidth] != EMPTY) /\503
(grid[step-1, colBlock, gridWidth] != hand[step-1]))504

)505
)506

) \/507
$ This row or below. Same colour block falls here. Last col.508
( (gCol = gridWidth) /\509

(fpRow[step] >= gRow) /\510
(wallFall[step] > 0) /\511
(grid[step-1,gRow-wallFall[step],gCol] = grid[step-1,gRow,gCol])512

) \/ ...513
)514515

Finally, the contents of a grid cell change to something other than empty either as a result516

of an exchange with the hand or if a different coloured block. Here, we have subdivided into517

five scenarios, depending on whether a row or column shot was selected, and whether the518

final column is involved. A fragment is shown below:519

520
forAll step : STEPSFROM1 .521

forAll gRow : GRIDROWS .522
forAll gCol : GRIDCOLS .523

((grid[step,gRow,gCol] != grid[step-1,gRow,gCol]) /\524
(grid[step,gRow,gCol] != EMPTY))525
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Hand: R
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(c) A state that can only lead to
dead ends.

Figure 5 Illustrative Plotting game situations.

=526
( ...527

$ Cell swaps with hand: row then down last col.528
( $ rightmost col529

(gCol = gridWidth) /\530
$ WallFall implies travel row then col.531
(wallFall[step] > 0) /\532
$ and this cell must be at fpRow+wallFall533
(gRow = wallFall[step] + fpRow[step]) /\534
$ Exchanges with hand535
(hand[step] = grid[step-1,gRow,gridWidth]) /\536
(hand[step-1] = grid[step,gRow,gridWidth]) /\537
$ Which was a different colour538

(hand[step-1] != grid[step-1,gRow,gridWidth])539
) \/ ...540

)541542

5.5 Symmetry Breaking543

Shooting along an empty row has the same effect as shooting down the last column. These544

two actions are interchangeable, so we can disallow the former:545

546
forAll step : STEPSFROM1 .547

$ Assume bottom row not going to be empty.548
forAll gRow : int(1..gridHeight-1) .549

((sum gCol : int(1..gridWidth) . grid[step-1,gRow,gCol]) = 0) -> (fpRow[step] != gRow),550551

This remains true if the row is empty except for the last column, and the block in the last552

column on that row has nothing above it:553

554
forAll step : STEPSFROM1 .555

$ Assume bottom row not going to be empty.556
forAll gRow : int(1..gridHeight-1) .557

((sum gCol : int(1..gridWidth-1) . grid[step-1,gRow,gCol]) = 0) /\558
((gRow = 1) \/ (grid[step-1,gRow-1,gridWidth] = EMPTY))559
->560
(fpRow[step] != gRow),561562

Since they do not interfere with each other in terms of the grid state, it is tempting to563

think that we can freely permute a sequence of consecutive column shots. This is to ignore564

the state of the hand, however. Consider Figure 5a we can shoot down the left column,565

resulting in a green block in the hand, followed by the right column - but not vice versa. If566

the column “prefix” is the same, as per Figure 5b, we can now shoot down either column.567

However, after one such shot we could not immediately fire down the other column because568

the hand would now contain a green block. Therefore, there can be no consecutive column569

shots (with this pair of columns) to permute. If, however, the columns are monochrome,570

consecutive column shots are possible, and so we can insist that they are ordered:571

572
forAll step : int(1..noSteps-1) .573

forAll gCol : int(1..gridWidth-1) .574
forAll gCol2 : int(gCol+1..gridWidth) .575
$ Monochrome576
(forAll gRow : int(1..gridHeight) .577

((grid[step-1,gRow,gCol] = EMPTY) \/578
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(grid[step-1,gRow,gCol] = hand[step-1])) /\579
((grid[step-1,gRow,gCol2] = EMPTY) \/580
(grid[step-1,gRow,gCol2] = hand[step-1])))581

-> ( $ If consecutive must be left to right582
fpCol[step] = gCol2 -> fpCol[step+1] != gCol),583584

5.6 An Implied Constraint585

Consider an arbitrary grid with one red block. If that red block is transferred to the avatar’s586

hand then there is no possible move. Hence, this state is only permissible following the final587

shot in the sequence. If red is already in the hand then the next move must shoot at the red588

block in the grid, again resulting in another colour in the hand and one red block in the grid,589

except in a situation like Figure 5c, where we could shoot down the first column, consume590

the red block and keep red in the hand. Again, however, there will be no possible move. So,591

the implied constraint is: given a single block of colour c in the grid at time step t, then592

colour c cannot be in the hand until the goal state (when no further shots are necessary):593

594
forAll step : int(0..noSteps-2) .595

forAll colour : COLOURS .596
atmost(flatten(grid[step,..,..]), [1], [colour]) ->597

forAll step2 : int(step+1..noSteps-1) . hand[step2] != colour,598599

It might be conjectured that a similar condition holds for two blocks of a particular600

colour remaining. Consider an arbitrary grid with two red blocks. When one is hit, having601

consumed a block of another colour, it appears in the hand. The next shot must be at the602

other red block. That seems to suggest that red can appear at most once in the hand in the603

remainder of the sequence. Consider, however, Figure 6a. If we shoot on the bottom row the604

red block is consumed and the shot block hits the wall, rebounding into the hand, resulting605

in Figure 6b. Similarly, if we again shoot on the bottom row, the result is Figure 6c. Hence,606

a counterexample: red appears twice in the hand when there are only two blocks in the grid.607

Note that the constraints in Section 5.5 and this implied constraint are applicable to models608

in Sections 5.3 and 5.4 as they both share the same viewpoint.609

6 Empirical Evaluation610

We have created a dataset of 200 instances using our parameterised instance generator. These611

have similar properties to the original game levels in terms of size, number of colours and612

goals: their sizes range from 2 × 4 to 7 × 7, the number of colours range from 2 to 4 and613

the maximum allowed remaining blocks (goal) range from 5 to 2. In the original game, the614

scenario sizes range from 4 × 4 to 6 × 6 with 4 colors. The goal objectives also depend on the615

difficulty level but usually range from 7 to 3. The only difference in our synthetic instances616

is that we always allow firing on all rows and columns. Five of our synthetic instances are617

unsolvable, i.e., you always reach a state where you cannot make a progressing move.618

G
R
RHand: R →

(a) State 1

G
RHand: R →

(b) State 2

G
Hand: R

(c) State 3

Figure 6 With two red blocks remaining, red can appear in the hand twice.
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Figure 7 Cumulative instances solved for each model and solver. The all variant of the state- (S)
and action-focused (A) constraint models includes implied and symmetry-breaking constraints.

Our experiments were executed on a cluster of compute nodes with two 2.1 GHz 18-core619

Intel Xeon (Broadwell) processors each. Each process was given a limit of 8GB of memory620

and 1-hour timeout. We used Savile Row [26] 1.9.1 with three different backend solvers:621

CaDiCaL [7], Chuffed [8] and CPLEX Optimisation Studio 20.10. We also used the Fast622

Downward [18] 20.06+ planner. We did consider all planners present in the last IPC and only623

9 claimed to support the features required. Of those, 7 were based on the Fast Downward624

preprocessor and the others crashed when given the instances. We opted to include only625

results on Fast Downward because pre-processing for all planners based on Fast Downward626

is the same, and for the successfully pre-processed instances the search time is very small.627

Fast Downward is the best-known, supported and reused state-of-the-art planning system,628

winning the last International Planning Competition (IPC) using some of its portfolio629

configurations. Its preprocessing module performs sophisticated transformations from PDDL630

to the more solver-amenable SAS+ format [4], and is reused by many state-of-the-art631

planners. Still, planning benchmarks do not usually require the expressivity in the language632

that Plotting does. The extensive use of quantifiers and complex conditional effects in633

the PDDL model are a heavy burden on the preprocessor, preventing the planner from634

pre-processing grids greater than 3 × 3 within the given time-out and memory constraints.635

The longest satisfiable instance solved within the time and memory limits has 26 steps.636

As per Section 2.1, when not using Fast Downward, for each instance we consider a sequence637

of decision problems from 1 to (width × height) − goal steps. We generally observe a phase638

transition around the first satisfiable step. In most cases pre-processing by Savile Row639

is significant. For the solved instances, an average of 54% of the total time is spent on640

preprocessing for CPLEX, 51% for SAT and 53% for Chuffed. For some intermediate steps,641

Savile Row can prove an instance unsatisfiable before encoding it for the backend solver.642

We refer to the action-focused (Section 5.3) state-focused (Section 5.4) as models A and643

S. Figure 7 shows a cactus plot, considering both with and without additional constraints.644

The plot clearly splits the solvers in four performance profiles. SAT solves most instances,645
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#instances PAR2 Score
none de em mo all none de em mo all

SAT+S 174 0 0 0 0 248764 -428 +1129 +1093 +3714
Chuffed+S 139 +5 +5 +1 +4 493458 -34174 -42729 -15553 -28534
CPLEX+S 93 +7 +6 +5 +5 788953 -36517 -32037 -25446 -26264

SAT+A 176 0 -1 -1 0 213866 +1674 +7078 +6875 +3994
Chuffed+A 154 -15 -12 -10 -4 371833 +96809 +76535 +63611 +28808
CPLEX+A 107 +1 +4 -1 -3 719877 -8118 -15288 +10127 +29473

Table 1 Number of instances solved and PAR2 score per solver and model. Column none
is performance without the extra constraints. Columns de, em and mo show the differences in
performance with the dead end implied constraint, the empty column and monochrome symmetry
breaking constraints respectively. Column all shows their combined effect. A decreasing value for the
PAR2 score signals that problems are solved faster, and so a negative value is better. For example,
CPLEX+A solves more instances when separately adding the de and em constraints to the base
model, but solves less instances when adding mo or all of them in combination. The PAR2 score
summarises how this affects solving times in all instances.

followed by Chuffed, CPLEX and finally Fast Downward. Comparing models S and A, we see646

three different behaviours. With SAT, the number of solved instances converges regardless647

of the model, with model A slightly faster. For Chuffed, there is a clear performance gap648

between them throughout. CPLEX seems to work better with model S until around the 1500649

second mark, where model A overtakes it. Overall, model A performs consistently better.650

Table 1 summarises performance with and without the extra constraints. The PAR2651

score is equal to the CPU time of the solver when the instance is solved, and 2 times the652

timeout when the instance is unsolved for any reason. Considering the PAR2 scores, the653

extra constraints are generally slightly harmful for SAT, with only one exception: the dead654

end implied constraint when using SAT+S. Chuffed and CPLEX show a notable difference655

between models: Adding additional constraints to the S model consistently help, while if we656

do the same for model A it generally hinders solving efficiency.657

Breaking symmetries in the PDDL model would require even more involved preconditions.658

For instance, we must state that when shooting a monochrome column there is no (same-659

coloured) monochrome column in a precedent position. Unfortunately, preprocessing time in660

the planner is critical in comparison to solving time. Therefore we have not implemented661

symmetry breaking in PDDL. The native way of handling these is using the constraints662

PDDL3.0 extension [13], sadly with no support among state-of-the-art planners.663

7 Conclusions and Further Work664

Although Plotting is a planning problem, we have shown that automated planners cannot665

deal efficiently with a natural PDDL model. The lack of support for some crucial PDDL666

features such as multi-valued variables, functional symbols and numeric reasoning makes the667

modelling of problems with complex transitions a cumbersome and error-prone process.668

We have presented alternative models in Essence Prime and, in an extensive empirical669

analysis supported by a new instance generator, experimentally validated that this approach670

is efficient using a variety of solving technologies. Although both planning and constraint671

models are quite involved, since Essence Prime is a more expressive language most key672

points in the model are easier to encode. Native constructs for Essence Prime to express673

planning-specific primitives would further aid the encoding of planning problems.674
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