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In this paper we examine the emergent structures of random networks that have undergone bond percolation
an arbitrary, but finite, number of times. We define two types of sequential branching processes: a competitive
branching process, in which each iteration performs bond percolation on the residual graph (RG) resulting
from previous generations, and a collaborative branching process, where percolation is performed on the giant
connected component (GCC) instead. We investigate the behavior of these models, including the expected size
of the GCC for a given generation, the critical percolation probability, and other topological properties of the
resulting graph structures using the analytically exact method of generating functions. We explore this model
for Erdős-Renyi and scale-free random graphs. This model can be interpreted as a seasonal N-strain model of
disease spreading.
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I. INTRODUCTION

A network is a collection of nodes connected by edges.
Bond percolation on complex networks is a widely studied
binary-state stochastic process. In this model, the edges of a
graph are iterated and said to be occupied with probability
T and remain unoccupied with probability 1 − T . When T
is small, the network is composed of many small isolated
components of occupied edges. At some critical value, Tc,
the small components connect together to form a macroscopic
giant connected component (GCC), exhibiting a second-order
phase transition. As T → 1 the GCC occupies an increasing
fraction of the network. Nodes not contained within the GCC
are said to be in the residual graph (RG) of the percolation
process; see Fig. 1. The size of the GCC following bond
percolation, as well as the value of the critical bond occupa-
tion probability, have an equivalence to the absorbing state of
the susceptible, infected, removed (SIR) epidemic process [1]
when a node’s infectious period is drawn from a single-valued
distribution [2]. In the SIR model, nodes are either susceptible
to infection from their infected neighbors, i.e., infectious, or
are in the removed state. Transmission of infection occurs
along edges that connect infected nodes to their susceptible
neighbors. Once infected, a node remains infectious for a fixed
period [2,3], τ , before recovering to the R state. Hence, the
absorbing equilibrium of the model is a static binary state that
is composed of susceptible nodes that did not contract the dis-
ease or removed nodes that did. The size of the GCC following
bond percolation is equivalent to the largest outbreak size of
the SIR model.

There has been previous work on extending the
percolation-SIR equivalence to additional, temporally sepa-
rate strains of an epidemic for random graphs [4–12]. Such
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models can be thought of as a model of seasonal diseases, with
each pathogen running its course through a population before
the next season’s strain spreads. Within this context, the nature
of how the second strain interacts with nodes that have been
previously infected is very important to the resultant disease
dynamics. Newman [4,5] studied two strains that compete for
hosts by not allowing nodes in the removed state of strain
1 to become infected by strain 2. This model is an example
of perfect cross-immunity. Mann et al. extended this work
to study the role of contact clustering and modularity on the
spread of the second pathogen [10]. Conversely, Newman and
Ferrario [6] studied the opposite scenario in which only those
nodes that have been infected by strain 1 can be later infected
by strain 2. This is an example of a perfect coinfection model,
and the extension to the clustered case was also studied [9].
In each case, the second strain is a separate SIR process that
either spreads exclusively on the RG (cross-immune) or the
GCC (coinfection) of the first percolation process; see Fig. 1.
Both processes are abstractions of the spread of real diseases,
since the strict requirements of perfect cross-immunity and
perfect coinfection are the two limits of a spectrum of partial
interactions. Partial cross-immunity and partial coinfection
passing through a point of complete decoupling is known
as a partial immunity model and has recently been studied
using bond percolation [13] for the case of two sequential
percolation processes (diseases).

Whilst these models are of clear interest to an epidemi-
ology readership, the implications for the understanding of
network structure cannot be understated. In particular, the
cross-immune model provides us with a model of the RG of a
network following bond percolation; similarly, the coinfection
model yields insight into the structure of the GCC.

In this paper we extend the percolation models of [4–6]
from two sequential strains to an arbitrary, but finite, number
N ∈ N of sequential strains. We study the topological proper-
ties of the graph structures that arise, quantifying the expected
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FIG. 1. A substrate network (left) is percolated to yield a GCC (red) and an RG. In the competetive branching process, the RG is percolated
again to create another GCC (green), and so on. This is a cross-immunity model. The collaborative branching process instead percolates the
GCC of each generation and constitutes a model of complete coinfection.

outbreak sizes for each disease and the critical points of the
model as well as their degree distributions and cumulative
degree distributions of the graph structures that emerge.

II. GENERATING FUNCTIONS

The study of a bond percolation process over a network us-
ing generating functions was pioneered by Newman, Strogatz,
and Watts around 20 years ago [1,14,15]. In this section we
will review the key components of the generating function
formulation that our N-strain model will use. Generating func-
tions are infinite series; in the context of network science
the summation is over the degrees of the nodes, k, while the
coefficients are the values of the degree distribution, pk , the
probability of choosing a degree k node at random. This is
generated by

G0(x) =
∞∑

k=0

pkxk . (1)

The coefficients of a generating function can be recovered by
repeated differentiation,

pk = 1

k!

dkG0

dxk

∣∣∣∣
x=0

. (2)

It is commonplace to evaluate the derivatives by numerical
contour integration using the Cauchy formula

pk = 1

2π i

∮
G0(z)

zk+1
dz. (3)

We can obtain the cumulative distribution function (CDF),
pk<ν = ∑ν

k=0 pk , defined as the probability that a randomly
chosen node has a degree less than or equal to ν, directly from
G0(x). To achieve this, it is convenient to instead calculate
one minus the probability of a node having a degree greater
or equal to ν, pk�ν , which is called the survival function [16].
The latter distribution is generated by

G0,ν (x) = G0(x) − p0 − · · · − pν−1xν−1

xν
. (4)

The values of pk can be obtained from Eq. (3) and evaluating
G0,ν (x) at x = 1 yields pk�ν .

The probability of choosing an edge at random from the
network and following it randomly to a particular end to reach
a node of degree k is generated by

G1(x) = G′
0(x)

G′
0(1)

, (5)

where G′
0(1) = 〈k〉 is the average degree of the network.

For example, one of the simplest degree distributions oc-
curs when the degrees are binomially distributed; this is the
Erdős-Renyi degree distribution. In this model, the proba-
bility, θ = 〈k〉/V , where V is the number of nodes, is the
probability that an edge connects any two nodes, for all pairs
of nodes in the network. In this instance, we find

G0(x) =
V∑

k=0

(
V

k

)
θ k (1 − θ )V −kxk, (6)

which, in the limit of large V , is equal to G0(x) = e〈k〉(x−1) It
must be noted, in this special case, that G1(x) = G0(x), which
simplifies the model significantly.

Cavity method

The cavity method is a statistical technique that is com-
monly used when dealing with generating functions. The
method considers the local environment of a particular node
chosen from the network at random (the focal node) once a
(percolation) process has reached equilibrium. We suppose
that the focal node’s degree is k. We then calculate the
probability associated with all configurations of the node’s
neighbors before averaging over the probability that the node
we chose did indeed have degree k. As a motivating example
of this method, consider a graph whose nodes are in one of two
states, A or B, after a binary-state process has reached a static
absorbing state. The focal node will have kA � k neighbors
that are in state A and kB = k − kA neighbors that are in
the mutually exclusive state B. Assuming that the neighbor-
state probabilities are independent and identically distributed
(iid) along each edge, the sum over all configurations of the
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probability of configuration kA and kB given k is

gk =
k∑

kA=0

(
k

kA

)
(πAx)kA (1 − πA)k−kA . (7)

Each combination of kA and kB is then wrapped into the kth
term of a generating function as we average over the prob-
ability that the focal node we chose had degree k,

∑
k pkgk .

This method is key to the analytical description we present
in this paper. We will continually examine the permissible
neighbours that connect to our focal node and their associated
probabilities of occurring along each iid edge. As the number
of generations of the disease process increases, the number
of permissible neighbor states grows too; and so the local
environment that an embedded node experiences evolves into
a rich and complex landscape.

III. COMPETITIVE BRANCHING PROCESS

In this section, we define the ith competitive branching
process as successive bond percolations occurring on the RG
created by the i − 1 previous processes for i = 1, . . . , N . This
process has been studied previously using generating func-
tions by Newman and Karrer when N = 2 [4,5]. The structure
of the RG has also been studied for clustered and modular net-
works [10]. From a network science perspective, this model
allows us to study the structure of the RG of sequential bond
percolation processes. In particular, we observe how those
sequential processes fracture the RG into isolated components
and study the phase behavior associated with the sudden in-
ability of the RG to support a GCC. Within the context of
the SIR equivalence, this model considers the behavior of
N seasonal strains of a disease (or separate diseases) that
confer complete cross-immunity to all subsequent pathogens.
The model allows us to study the expected outbreak size of
each generation and the point of natural burn out due to the
shrinking of the susceptible subpopulation.

A. Outbreak size

To the ith process, i = 1, . . . , N , we assign a bond oc-
cupation probability Ti and aim to calculate the probability
that a randomly chosen node does not belong to the largest
percolated component of that generation. From this, we can
find the mutually exclusive probability that a node does belong
to the ith GCC, Ai. To do this, we define the probability that
a neighbor of our randomly selected node is not part of the ith
GCC, ui, given that it does not belong to any of the previous
percolated components. Under the SIR equivalence, Ti is the
transmissibility of the ith strain and ui is the probability that a
neighbor is not thus far infected.

There are two ways in which an edge emanating from
the focal node can fail to connect it to the GCC: first, the
neighbor could itself be unconnected, the probability of which
by definition is ui. Second, the neighbor could be connected,
(1 − ui ), but the bond is unoccupied (1 − Ti ). Therefore, the
probability, ḡi, that an edge fails to connect the focal node to
the ith GCC given that the neighbor does not belong to any
other GCC is

ḡi(Ti, ui | RG) = ui + (1 − ui )(1 − Ti ) (8)

The total probability that a neighbor belongs to the RG of
the ith percolation can then be found through a set of recursive
functions gi that describe the probability that each iterative
percolation failed to occupy this edge as

gi(T , u) = ui−1ḡi + (1 − ui−1)(1 − Ti−1) (9)

with u0 = 1. A hierarchy of self-consistent equations can be
written to sequentially solve for each ui value:

ui = G1(gi )∏
j u j

, j = 1, . . . , i − 1. (10)

The size of the ith GCC (epidemic) is then found by

Ai =
i−1∏
j=1

G0(g j ) − G0(gi ). (11)

The total infected fraction of the network is given by
A = ∑

i Ai.
As an example of Eq. (11), we can obtain the expected

outbreak size of the first epidemic, i = 1, from this system
as A1 = 1 − G0(g1), where u1 = G1(g1) and g1 = u1 + (1 −
u1)(1 − T1), [1]. In the case that i = 2 [4], we have A2 =
G0(g1) − G0(g2), where u2 = G1(g2)/u1 and

g2 =u1[u2 + (1 − u2)(1 − T2)] + (1 − u1)(1 − T1). (12)

Similarly, for i = 3 we have A3 = G0(g1)G0(g2) − G0(g3)
with u3 = G1(g3)/(u1 · u2) and

g3 = u1{u2[u3 + (1 − u3)(1 − T3)]

+ (1 − u2)(1 − T2)} + (1 − u1)(1 − T1). (13)

With these examples, it is hopefully clear how to write further
generations of the competitive percolation process.

Given this, we can derive the conditions under which Ai

is maximized given that the previous strains have run their
course of the network. To see this, consider that each expres-
sion G1(gi ) has at most two roots for ui: the trivial case ui = 1,
corresponding to no GCC (Ai = 0), and a nonzero root in the
unit interval that indicates that a finite fraction of the network
is occupied by this strain (Ai > ε for some nonzero fraction
ε). Since the coefficients of G1(gi ) are non-negative, so too are
its derivatives (for ui � 0). Hence, G1(gi ) is in general positive
and convex. Given that each gi is convex in ui for Ti ∈ [0, 1],
then, by Jensen’s inequality [17], there exists a unique root
T ∗

i that minimizes g(ui ). Thus, the best case scenario for
the ith strain to maximize Ai is to have g j = 1 and gi = 0
for j = 1, . . . , i − 1. This is obtained by all previous strains
adopting the minimizing transmissibility of T ∗

j = 0 and the
ith strain adopting Ti = 1.

B. Invasion threshold

The R0 value is defined as the number of new infections
caused by an infected individual. When R0 < 1, the epidemic
fails to infect a significant portion of the network; the GCC
comprises O(1) nodes. When R0 = 1, the probability that an
epidemic infects a macroscopic fraction of the network, O(V ),
is nonzero, where V is the number of nodes in the network.
This point is also the critical point in bond percolation that
marks the smallest value of T that can form a GCC. Within
our model, there is an R0,i value and a critical transmissibility
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for each strain. This critical point is a function of both the
network topology and the transmissibilities of the previous
strains. If the transmissibility of a particular strain is below its
critical threshold, it only infects O(1) nodes before it burns
out. Therefore, in the following analysis, we assume that the
transmissibility of each strain is greater than its minimum
threshold.

The critical point for the ith percolation can be found
by applying linear stability analysis on the system given in
Eq. (10) around the fixed point ui = 1. This is the point at
which the fixed point in ui bifurcates into two solutions and
Ai becomes nonzero. Performing a Taylor expansion around
ε = 1 − ui we find the following condition:

εi = 1 − 1∏
j u j

∂G1(gi )

∂gi

∂gi

∂ui
εi

∣∣∣∣
ui=1

+ (O2), (14)

where the derivatives are given by

∂gi

∂ui
= Ti

i−1∏
j=1

u j . (15)

When evaluated at ui = 1, G′
1(gi ) becomes G′

1(gi−1) from
Eqs. (8) and (9). The critical transmissibility is found to be

Ti,c = 1

G′
1(gi−1)

. (16)

Thus, the minimum transmissibility required for each strain
to create an epidemic is a function of the network topol-
ogy and the transmissibilities of the preceding strains. Given
that the coefficients of G′

1(x) are non-negative and therefore
monotonically increasing on the positive real line (within its
radius of convergence), and that gj ∈ [0, 1] (since it is a prob-
ability) and because Tj, u j � 1, then it follows that G′

1(gi ) �
G′

1(gi−1) ∀i. This indicates [from Eq. (14)] that Ti,c � Ti−1,c.
In other words, the epidemic threshold of each strain increases
with each generation. This is an intuitive result, since, as
each strain passes through the network, nodes with higher de-
gree are preferentially embedded into the GCC of that strain.
Therefore, the RG is increasingly composed of lower degree
nodes as it fractures with each iteration of the percolation.

Following [5] we can also prove a stronger condition on
the minimum bond occupation probability that a subsequent
strain must have in order to exhibit an epidemic on the net-
work. It happens that each generation of the disease must
have an increasingly higher transmissibility than the last in
order to infect O(V ) nodes in the RG. To see this, we note
that gi(T , u) is the probability that an edge fails to connect
a node to the GCC of the ith epidemic and that this prob-
ability can only decrease or stay constant as Ti increases;
this implies that dTi/dgi � 0. Inverting this quantity such
that Ti = Ti(u, gi, T\{Ti}), where the notation S\{s} excludes
element s from set S, and performing the derivative we have
an expression that involves Ti and G′

1(gi−1). This can then be
isolated and it can be shown that Ti,c � Ti−1 ∀i ∈ [1, N]. For
example, the critical point of strain 2 is known [4,5] to be
greater than the transmissibility of strain 1, T1. The critical
point of strain 3 is given by T3,c = 1/G′

1(g2) from Eq. (14),

which through the above prescription satisfies

T3,c �
g1 − g2

1 − u2
= T2. (17)

This logic can be applied to all adjacent strains to create an
ordered set of critical transmissibilities {T1,c � T2,c, . . . , Tn,c}.
This indicates that transmissibility must evolve to increase in
order for a given strain to create an epidemic in the presence
of others.

The coexistence threshold Tx was defined in [4,5] for two
pathogens and marks an additional phase transition in the
model. For N = 2 it is the largest value of T1 that still allows
the RG to retain sufficient connectivity to support its own
GCC for future strains. For instance, when T1 > Tx, the RG
fails to be globally connected and strain 2 fails to infect
O(V ) nodes even if T2 > T2,c. For our purpose we extend
the definition of the coexistence threshold, Ti,x, in the con-
text of N sequential strains to be the largest transmissibility
of strain i that allows the RG to support a GCC for future
generations, assuming that they are sufficiently transmissible.
Thus, Ti,x is a function of the bond occupancy probabilities of
all previous percolations, Ti,x = Ti,x (u, T\{Ti}). As for N = 2
[4,5], Eq. (14) implicitly defines the coexistence threshold
of the ith strain and we find that Ti,x is the value of Ti for
which G′

1(gi ) = 1. For instance, for an Erdős-Renyi degree
distribution this condition becomes

1

〈k〉 ln

[
ui

i−1∏
j=1

u j

]
= gi − 1, (18)

from which we can solve for Ti,c by inverting gi. For i = 1
we have

T1,x = ln(u1)

〈k〉
1

(u1 − 1)
. (19)

In Fig. 2 we plot Ai for N = 5 against T1 ∈ [0, 1] and T2 =
0.35, T3 = 0.5, T4 = 1.0, and T5 = 1.0 for a Erdős-Renyi
random graph with mean degree 〈k〉 = 4 and V = 35 000
nodes. We observe excellent agreement between experimental
bond percolation (scatter points) and the analytical results of
Eq. (11) (plotted lines). Below the epidemic threshold of the
first strain, T1 < T1,c, strain 1 does not exhibit a GCC. Hence,
the RG is large enough to enable the subsequent strains to
form their own GCCs, each consuming more of the available
space. With T4 = 1, the last edges in the RG are occupied
and, despite a supercritical T5, we have A5 = 0. Strain 4 is
bimodal, exhibiting two turning points as a function of T1.
This is because, at the first turning point, the transmissibility
of the previous strains is sufficient to form their own large
GCCs in the RG; however, as T1 increases, strains 2 and 3 fall
below their critical thresholds, allowing strain 4 to consume
the available sites into its own GCC. The outbreak size of
strain 4 then falls to zero through a final turning point as the
transmissibility of strain 1 is increased beyond the coexis-
tence threshold. The inset figure shows the total fraction of
the network that has become infected, A, versus T1. Against
intuition, the largest fraction of the network that is occupied
by (any) disease is not constant. To see this, we understand
that the early generations of the disease consume the high
degree sites. As these become embedded within the GCC,
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FIG. 2. The outbreak fractions for five generations of the com-
petitive branching process as a function of T1. Solid lines are the
theoretical results from Eq. (11) while scatter points are the average
of 50 repetitions of bond percolation over a network with V = 35 000
nodes. The inset shows the total number of infected nodes.

those nodes they connect to can become isolated and thus
cannot be incorporated in subsequent GCCs (see Fig. 3). The
effect of this is prominent at the onset of the GCC of strain 1
and leads to a local minimum in the total infecteds. Therefore,
a disease of low transmissibility early on not only consumes
nodes into its own GCC, but also reduces the accessible sites
by removing the infection pathways. As the transmissibility of
the initial pathogen increases, this effect is reduced and the to-
tal infected fraction of the network increases to A ≈ 0.9. The
global minimum at T1 ≈ 0.45 coincides with the coexistence
threshold for strain 1; we observe the inability of subsequent
strains to create their own epidemic. At this point, strain 1
is sufficiently transmissible to fracture the RG such that it
can no longer support a GCC for the other generations of the
disease. Beyond this point the total infected fraction follows
the number of infected nodes of strain 1.

In a second experiment, we examine the critical points of
the first five strains (see Fig. 4) versus disease-1 transmissi-
bility. To do this, we set the transmissibility of each strain to
its critical point, Ti,c, perturbed by a small parameter, δ, such
that Ti = Ti,c + δ with δ = 1 × 10−4. From the logic above,
this scenario represents the best-case for the ith strain to form
a GCC subject to the constraint that each previous disease
did indeed form an epidemic. When T1 < T1,c the epidemic
threshold of the second strain is equal to 1/〈k〉. As the first
process forms a GCC, the substrate RG available to the second
percolation process fractures, resulting in an increase in the
critical point for the second strain. When there are one or more
GCCs in the network, the critical points of subsequent strains
are increased. This effect is most significant at the formation
of the first GCC, indicating that the RG suddenly “fails” to
be well connected. In the presence of multiple GCCs, the epi-
demic threshold for subsequent strains, i > 2, is only slightly
higher than the last.

FIG. 3. Top: The degree distribution of the RG created once each
strain from Fig. 2 has spread over the network at T1 = 0.0; bottom:
the corresponding cumulative degree distribution. Scatter points are
the average of 50 repetitions of N = 35 000 Erdős-Renyi networks
with 〈k〉 = 4. Curves are the result of Eqs. (3) and (4) acting on
the generating functions for the residual graphs of each generation.
These plots show how the RG becomes increasingly fractured with
each percolation.

In Fig. 5 we examine the outbreak size predicted by the
model for the first N = 75 strains on Erdős-Renyi graphs
as a function of mean degree, finding that the expected out-
break size increases with 〈k〉. In similar fashion to before,
the transmissibility of each strain is set equal to Ti = Ti,c + δ.
In the left figure, we see Ai monotonically decreasing with
generation index i. Thus, while the transmissibility evolves
to increase, the number of infected hosts is expected to de-
crease with each season of the disease. We numerically solve
Eq. (18) to obtain the coexistence threshold and analytically
solve Eq. (14) to find the epidemic threshold of the ith gen-
eration (Fig. 5 right). The two curves for the first strain are
plotted in red, while subsequent strains are lighter grey until
the final generation, which has been highlighted green. We
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FIG. 4. The critical points of the first five strains of the competi-
tive percolation process as a function of strain 1 transmissibility from
Eq. (14). The transmissibility of each strain is set to the critical point
plus a small parameter such that Ti = Ti,c + δ with δ = 1 × 10−4.
The networks are Erdős-Renyi graphs with mean degree 〈k〉 = 4.

observe that both critical points of the model occur at lower
transmissibilities with increasing 〈k〉 as supported by [4] for
N = 2. The coexistence threshold broadens to a larger extent
than the epidemic threshold with increasing i. In other words,
|Ti−1,x − Ti−1,c| � |Ti,x − Ti,c|, indicating that strain coexis-
tence occupies an increasingly larger area of the model’s
phase space with greater i.

FIG. 5. Left: Theoretical results for the outbreak size of the first
N = 75 generations of the competitive percolation for Erdős-Renyi
graphs with varying mean degree 〈k〉. Right: The evolution of the
epidemic threshold and the coexistence threshold for each generation
i. The lines for each subsequent strain are plotted from dark to light
grey while the curves belonging to strain 1 have been colored red and
those of strain N = 75 are highlighted in green.

IV. COLLABORATIVE BRANCHING PROCESS

In this section we define the ith generation of a collabora-
tive branching process as a bond percolation process occurring
on the GCC that is created by the i − 1 previous processes
for i = 1, . . . , N . We impose the strict requirement that only
nodes in the GCC created by all of the previous generations
are included at the ith generation see Fig. 1. This process
has been studied previously by Newman and Ferrario when
N = 2 [6] as well as for clustered and modular networks [9].
Within the context of the SIR equivalence, this model studies
the ability of the ith disease to become an epidemic given that
coinfection with all other i − 1 strains is a prerequisite for
infection with the current strain. If a node fails to become in-
fected with a particular strain, then it cannot become infected
with further generations of the disease; therefore, strains that
have a low transmissibility significantly reduce the pool of
available nodes for future outbreaks.

To describe the model we index the generations i ∈ [1, N]
as before. Consider a node in the GCC after the first dis-
ease has reached its equilibrium, but before the second has
emerged. There are two additional types of neighbor that this
focal node can be surrounded by: infected (but not by the focal
node) and, finally, nodes that were directly infected by the
focal node in addition to the uninfected substrate nodes. We
have to distinguish the particular subset of infected neighbors
which the focal node directly infected from those that where
infected by one of their other neighbors because the probabil-
ities associated with each state are distinct from one another.

Now let the second disease emerge, spread, and reach its
absorbing state, forming its own GCC within the GCC of
the first outbreak. Both kinds of infected neighbors from the
first process (directly and indirectly infected) give rise to two
additional states corresponding to being indirectly or directly
infected with strain 2 given direct or indirect infection with
strain 1. Therefore, there are now seven possible neighbor
states that might surround the focal vertex in the GCC of
the second process (including those already present following
strain 1 if further infection with strain 2 did not occur). The
third process leads to 15 total neighbor states and each one
accounts for the specific details of who infected who at each
generation. We term a specific combination of direct and indi-
rect infection through the previous generations as an infection
history ih.

The number of new neighbor states at each generation of
the branching process is equivalent to the number of leaves of
a perfect binary tree, with the total number of neighbor states
being the total number of nodes in the tree. This is because
each generation branches the current number of maximally
coinfected states by a factor of 2 (accounting for directly and
indirectly infected neighbors of the coinfected nodes in gen-
eration i − 1). This means that the total number of neighbor
states, ηi, in the ith generation is

ηi = 1 +
i∑

j=1

2 j, (20)

comprising all of the states in the previous generation (which
did not contract the ith strain) in addition to 2i−1 new states
that are directly and indirectly infected, plus the uninfected
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nodes from the previous generation. Thus, the set of all in-
fection histories for a given generation i, {h}i, has cardinality
2i−1; therefore, each generation requires 2i−1 new uih values,
with ih ∈ {h}i, h = 1, . . . , 2i−1. A visualization of this process
is provided in the Appendix.

A. Outbreak size

The aim of this section is to define a prescription to obtain
the outbreak size of the ith epidemic of the coinfection model.
Each generation requires 2i−1 unique uih values to be written,
each accounting for a particular infection history that a neigh-
boring node could have. Each uih value will then be generated
by a self-consistent expression in a similar way to those of the
competitive model as

uih = G1(Pih )

Qih

, (21)

where Pih is the probability of not obtaining strain i for infec-
tion history ih and Qih is the prior probability that the neighbor
has infection history ih. Note that Pih is analogous to gi from
the competitive model. Thus, it remains to calculate both the
prior probabilities and Pih . It happens, for a given generation
i, that the probabilities Pih can be factored; thus, each Pih
expression comprises two parts: a multiplying common factor,
Ci, and the unique part of the probability of each specific
infection history, Hih , such that

Pih = CiHih . (22)

First, we calculate Ci, which is simply all of the common
terms belonging to each Pih , ∀ih ∈ {h}i. Consider each branch
point of the collaborative process from the perspective of an
infected node as we progress from generation j − 1 to j.
Neighbours either do not contract strain j or they do, from
either the focal node or one of their other neighbors. Let
f j (u jh , v,w) be a function that encapsulates the three possi-
ble neighbor scenarios and let u jh be the probability that a

neighbor is uninfected by any of its other neighbors by the jth
strain at this branch point, given that its infection history is jh.
We have

f j (u jh , v,w) =
k∑

l=0

(
k

l

)[
u jh (1 − Tj )

]l
k−l∑

mjh =0

(
k − l

m jh

)

× [
(1 − ujh )v

]mjh
[
u jh Tjw

]k−l−mjh . (23)

We have indexed the variable m with the infection history
for later convenience. Despite the complicated form of this
expression it is straightforward to construct each term by
considering the probabilities associated with each neighboring
state. In detail, u jh (1 − Tj ) is the probability that a neighbor
was uninfected by its other neighbors given history h and
that the focal node did not transmit strain j; 1 − ujh is the
probability that a neighbor was already infected and ujh Tj is
the probability that a neighbor was directly infected by the
focal node. The arguments v and w are placeholders that allow
the further subdivision of the number of neighbors in a given
infected state following the next generation.

We construct the common factor Ci by first constructing a
related factor, C̄i, composing this branch-point logic with itself
i times and terminating the composition with v = w = 1 at
the deepest levels (i.e., the leaves of the branching process)
such that

C̄i = f1( f2(· · · fi())). (24)

The function C̄i has 2i−1 arguments. The values of jh in u jh
are given by the particular elements of {h} j j = 1, . . . , i −
1. The common factor for the percolation root (prior to any
diseases) is unity, C̄0 = 1, since all strains belong to the same
state. Following strain 1, C̄1 is given by

C̄1(1, 1) = f1(u11 , 1, 1)

= u11 (1 − T1) + 1 − u11 + u11 T1; (25)

for i = 2 we have

C̄2(1, 1, 1, 1) = f1
(
u11 , f2

(
u21 , 1, 1

)
, f2

(
u22 , 1, 1

))
= u11 (1 − T1) + (

1 − u11

)[
u21 (1 − T2) + 1 − u21 + u21 T2

] + u11 T1
[
u22 (1 − T2) + 1 − u22 + u22 T2

]
; (26)

similarly, for i = 3 we have

C̄3(1) = f1
(
u1, f2

(
u21 , f3

(
u31 , 1, 1

)
, f3

(
u32 , 1, 1

))
, f2

(
u22 , f3

(
u33 , 1, 1

)
, f3

(
u34 , 1, 1

)))
, (27)

and so on. An interesting observation is that this expression
is always unity and that there are always as many terminating
1’s as there are unique infection histories required for the next
generation. We must define another related probability, f̄i, as

f̄ j (u j, v,w) =
k∑

l=0

(
k

l

)
[u j (1 − Tj )]

l
k−l∑
m=0

(
k − l

m

)

× [(1 − u j )(1 − Tj )v]m[u jTjw]k−l−m, (28)

which is equivalent to the ḡi expression from Sec. III and is
the probability that none of the externally infected neighbors
transmitted their infection to the focal node. Given these two

functions, we can now build the common terms in the prob-
ability that the focal node does not contract the ith strain as

Ci = C̄i−1( f̄ i ). (29)

Thus, Ci contains the common terms in the probability that
describes the neighboring states prior to strain i, along with
the probability that each of those states then fails to transmit
strain i itself. For example, the first few values of Ci are

C1 = f̄1(u1, 1, 1), (30a)

C2 = C̄1
(

f̄
(
u21 , 1, 1

)
, f̄

(
u22 , 1, 1

))
, (30b)
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C3 = C̄2
(

f̄3
(
u31 , 1, 1

)
, f̄3

(
u32 , 1, 1

)
,

f̄3
(
u33 , 1, 1

)
, f̄3

(
u34 , 1, 1

))
. (30c)

With a clear prescription to derive Ci for each generation,
we must now calculate the probability associated with each
infection history Hih in order to finalize the expressions for
Pih , which in turn we require in order to write self-consistent
expressions for each uih value in Eq. (21). To do this, we con-
sider each pathway from the percolation root to the leaves of
the tree created by the collaborative branching process. If, at a
particular branching point, we progress via direct infection,
we require that the focal node was the node that transmit-
ted infection to the neighbor. For this to occur we require
that the neighbors other than the focal node failed to trans-
mit their infection. This occurs with probability (1 − Tj )mr ,
with reference to Eq. (23). Similarly, the probability that the
neighbor was infected by a node other than the focal node
is 1 − (1 − Tj )mr . We now see the utility of subscripting m
in Eq. (23) as it allows us to track each particular set of
externally infected neighbors over the arguments of Ci. For
instance, there are two infection histories at the start of the
second process: strain-1 infected nodes have either been ex-
ternally infected, 21, or directly infected by the focal node, 22,
such that {h}2 = {21, 22}. The number of externally 1-infected
neighbors is given by m11 and so we have

H21 = [1 − (1 − T1)m11 ], (31)

H22 = (1 − T1)m11 (32)

Similarly, a node can obtain strain 3 from one of four dif-
ferent neighbor states: externally-1 and externally-2 infected
(31); externally-1 and directly-2 infected (32); directly-1 and
externally-2 infected (33), or, finally, directly-1 and directly-2
infected (34). Thus, there are four infection histories to gener-
ate with {h}4 = {31, 32, 33, 34}. We then write

H31 = H21 [1 − (1 − T2)m21 +m22 ], (33a)

H32 = H21 (1 − T2)m21 +m22 , (33b)

H33 = H22 [1 − (1 − T2)m21 +m22 ], (33c)

H34 = H22 (1 − T2)m21 +m22 . (33d)

Each history is constructed from the necessary probabilities
to create each scenario. For the next generation, each of these
unique infection histories are branched into two to give eight
potential sources of strain 4.

With these examples, we now have a prescription to write
Pih for each potential infection neighboring state. The last
component we require in order to calculate the associated uih
values in Eq. (21) is the prior probabilities that the neighbor
was indeed in that particular state following all of the previous
strains, but prior to the ith strain itself. It happens that this
probability follows a recipe that is simple to compute for each
term. We define the following rule: if a neighbor is externally
infected at the jth strain, we multiply the prior probability by
(1 − u jh ); otherwise, for direct infection, we multiply by u jh
instead. The logic behind this rule is simple: to be directly
infected by the focal node, a neighbor must not be infected
by their other neighbors; the focal node must be the success-
ful infection pathway. Therefore, for the first branch point,

the prior probabilities that the neighbor was externally and
directly infected, respectively, are given by

Q21 = (
1 − u11

)
, (34)

Q22 = u11 . (35)

Similarly following the second strain the prior probabilities
for the four infection histories are

Q31 = Q21

(
1 − u21

)
, (36a)

Q32 = Q21 u21 , (36b)

Q33 = Q22

(
1 − u22

)
, (36c)

Q34 = Q22 u22 . (36d)

With this last component we can now construct the self-
consistent expressions required to compute the uih values in
Eq. (21). At this point, a useful check is to ensure that the
derived components (priors, histories, and base term) are cor-
rect is to set f̄ i = 1. When evaluated at unity, the uih values
should be equal to 1. Both Hih and Qih can be constructed by
multiplying values associated to the nodes of the binary tree
of neighbor states from the root to a given leaf state; this is
visualized in the Appendix.

Next, we require the outbreak size of the ith strain, Ai. It
happens that this expression is very simple to construct once
we have performed the above work; we simply have to take the
expression for uih for the maximally indirect, maximally coin-
fected infection history iX (i.e., the expression for the history
where every node state was externally infected), remove the
prior denominator, and replace the G1(z) generating function
with a G0(z) generating function. We then subtract this value
from the previous outbreak size such that

Ai = Ai−1 − G0(PiX ). (37)

Since G0(PiX ) can never be negative, we observe that the
outbreak size of each generation can never exceed the size
of the previous one. We detail the expressions for the first
few generations in the Appendix and show the percola-
tion results for the first four generations spreading over an
Erdős-Renyi network in Fig. 6. In Fig. 6(a) we plot the out-
break sizes of each strain; each exhibits a smaller size and a
larger percolation threshold with increasing strain index. In
Fig. 6(b) the degree distribution of each of the GCC substruc-
tures is plotted. The average degree is reduced and the height
and variance of each distribution is increasingly reduced and
shifted to the left. In Fig. 6(c) the cumulative probability
that the degree of a node is larger than k is shown for each
strain. These results indicate that eventually the spreading of
cooperative processes on Erdős-Renyi graphs will be limited
by the fractured topology of the substrate network available to
each strain in addition to the transmissibility of the disease.

The complete prescription for solving for the outbreak size
of the N th generation of the cooperative branching process
is to hierarchically solve the coupled linear system of equa-
tions for each ui j , i = 1, . . . , N given by

ui j = ui j

(
u11 , u21 , . . . , ui2i−1 ; T1, . . . , Ti

)
(38)

for infection histories j = 1, . . . , 2i−1, and the functional
form given by Eq. (21). More details on the structure of these
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FIG. 6. Four generations of the cooperative branching process with (T2, T3, T4) = (0.6, 0.5, 0.45) and on an Erdős-Renyi network with
mean degree 〈k〉 = 4. Scatter points are the average of 35 repeats of Monte Carlo simulations over V = 30 000 node networks; solid lines are
the theoretical results. Subplot (a) shows the outbreak sizes; (b) shows the degree distribution at T1 = 1; (c) is the cumulative probability that
a node has degree larger than k at T1 = 1.

expressions in terms of a perfect binary tree, as well as an
examination of their solutions, are treated in the Appendix.

B. Invasion threshold

In this section we examine the critical points of the co-
operative model, generalizing the result of [6] for N > 2. As
with the competitive percolation, there is an R0,i value for
each generation or strain. If at any point the outbreak size of a
generation is subcritical, then there can be no subsequent out-
breaks as coinfection is a strong condition on the proliferation
of future strains. However, assuming that the previous i − 1
strains did indeed cause an O(V ) outbreak, then there is some
point Ti,c at which the ith strain can also lead to a finite sized
propagation if its transmissibility exceeds this value.

The critical point for the ith percolation can be found by
applying linear stability analysis on Eq. (21) around the fixed
point {uh

i } = 1, which is the trivial root of the system of
equations for each generation (see the Appendix). The critical
point of the first strain is identical to the results from Sec. III;
however, it is prudent to review this result. Given that u11 = 1
at the critical point, we perform a Taylor expansion about
ε11 = 1 − u11 using Eq. (21) and truncate it to first order to
obtain

ε11 ≈ 1 − G1( f1)
∣∣
u11 =1 + G′

1( f1) f ′
1

∣∣
u11 =1ε11 . (39)

Rearranging this result, with G1(1) = 1 and f ′
1 = T1, we ob-

tain T1,c = 1/G′
1(1) in accordance with Eq. (16) at i = 1. For

the second strain, we now have two variables to consider
depending on the unique infection history of the neighboring
node. The critical point occurs when both u21 and u22 are
unity (see the Appendix for a graphical motivation of this)
and we again perform a first-order Taylor expansion about the
small parameter ε2 j = 1 − u2 j to obtain the following coupled
system:

ε21 ≈ ε21

∂F21

∂u21

+ ε22

∂F21

∂u22

,

ε22 ≈ ε21

∂F22

∂u21

+ ε22

∂F22

∂u22

, (40)

where we have set the functional form of ui j in Eq. (21) to
ui j = Fij and evaluate the derivatives at the fixed point u21 =
u22 = 1. The derivatives are

∂F21

∂u21

= T2 − G′
1

(
1 − T1 + u11 T1

)
(1 − T1)T2, (41)

∂F21

∂u22

= u11 T1

1 − u11

[
1 − G′

1

(
1 − T1 + u11 T1

)]
T2 (42)

and

∂F22

∂u21

= G′
1

(
1 − T1 + u11 T1

)(
1 − u11

)
(1 − T1)

u11

T2, (43)

∂F22

∂u22

= G′
1

(
1 − T1 + u11 T1

)
T1T2. (44)

Thus, we have the following linear system:

J
(

u21

u22

)
= 1

T2,c

(
u21

u22

)
, (45)

where J is a Jacobian matrix with eigenvalue 1/T2,c. Follow-
ing [6] the system has two eigenvalues, and, by examining the
T1 → 1 limit, the correct eigenvalue is

T2,c = 2

τ + √
τ 2 − 4


, (46)

where τ is the trace of J and 
 is the determinant.
In the general case we have the following linear system

εi j ≈
2i−1∑
k=1

∂Fij

∂uik

εik (47)

with i ∈ [1, n] and j ∈ [1, 2i−1]. The derivatives are given by

∂Fij

∂uik

= G′
1(Pi j )

Q(i j )

∂ C̄i−1Hi j

∂ f̄i

∂ f̄i

∂uik

∣∣∣∣
uik =1

. (48)

The derivative of the final f̄i term is always ∂ f̄i = Ti, meaning
that we have a leading factor of Ti multiplying all terms.
Thus, we can create the following linear system by simple
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rearrangement,

J�u = 1

Ti,c
�u, (49)

where �u = {u11 , u21 , . . . , ui2i−1 }T and J is a Jacobian ma-
trix with elements ∂ikFi j /Ti evaluated at the fixed point u =
{1, 1, . . . , 1}. We then find the eigenvalues by solving det(J −
1
T I) = 0, where I is the identity matrix. The characteristic
polynomial of an n × n matrix can be expressed in terms of
powers of the trace; however, roots of polynomials of degree 5
or more are unlikely to yield a closed form solution in general.

V. DISCUSSION

A. Ti = 1 limit

Consider the competitive branching process for N = 2
strains with T1 = T2 = 1. The first percolation process occu-
pies the entire GCC in the substrate network such that A1 =
1 − G0(u1). The outbreak size of the second strain is zero
since the fixed point of limT1,T2→1 u2 = G1(u1u2)/u1 is unity
and A2 = G0(u1) − G0(u1u2). This fixed point occurs for all
subsequent ui values for the competitive process and hence all
future generations fail to create a finite sized outbreak size.

Consider next the collaborative branching process of N
strains with Ti = 1 for i = 1, . . . , N . Intuitively, we know that
the subsequent generations will occupy all of the edges in the
GCC of the first process (the size of which is in turn a function
of the topological properties of the substrate network). Thus,
we expect

A1 = Ai, ∀i ∈ [1, N]. (50)

With reference to Eq. (37) this indicates that G0(PiX ) = 0,
where iX corresponds to the maximally external-coinfected
history. This can be seen from the T1, T2 → 1 limit of the
outbreak size,

A2 = A1 − G0
((

1 − u11

)
u21 + u11 u22

) + G0
(
u11 u22

)
(51)

with limT1,T2→1 u21 → 0 and limT1,T2→1 u22 → 1. For addi-
tional generations under the same limit, we observe that all
uih values have a fixed point at 0 apart from the history cor-
responding to the maximally directly coinfected state, which
limits to 1; therefore, this result holds for all generations.

B. Scale − freenetworks

Let us now consider the application of the competitive
and collaborative models to the specific example of disease
spreading on scale-free networks. Scale-free networks are
good representations of the heavy tailed degree distributions
found in many empirical networks [1,18]; including human
contact networks. Let the degree distribution be given by a
power law of exponent 2 < α � 3 with an exponential degree
cutoff of κ such that

pk =
{

0, k = 0,

Ck−αe−k/κ , k � 1,
(52)

where C is a constant required to normalize the probability
distribution to unity. Using the definition of the polylogarithm

Liα (z) =
∞∑

k=0

zk

kα
(53)

we can write the G0(z) generating function for this degree
distribution as

G0(z) = Liα (ze−1/κ )

Liα (e−1/κ )
, (54)

while for the excess degree distribution we have

G1(z) = Liα−1(ze−1/κ )

zLiα−1(e−1/κ )
. (55)

Considering the competitive percolation process, the critical
point for the ith strain is found by applying Eq. (16) to this
degree distribution, which gives

Ti,c = Liα−1(e−1/κ )

gi−1

[
Liα−2(gi−1e−1/κ )

− 1

gi−1
Liα−1(gi−1e−1/κ )

]−1

. (56)

Thus, with g0 = 1, the critical point of the first strain of
the competitive process reduces to the expression found by
Newman [1],

T1,c = Liα−1(e−1/κ )

Liα−2(e−1/κ ) − Liα−1(e−1/κ )
. (57)

In the high-degree limit with κ → ∞, the epidemic threshold
of strain 1 occurs at T1,c = 0, since the second moment of the
degree distribution diverges [19]. However, the critical point
of strain 2 is nonzero and is given by

lim
κ→∞ T2,c ≈ 1

ζ (α)

Liα−1(g1)

g1
, (58)

where ζ (α) is the Riemann ζ function. This indicates the rapid
fracture of the RG by the first generation and the subsequent
loss of the scale-free property [4]. This is because the GCC
of the first competitive process targets the high-degree sites of
the network, removing the power-law distribution of degrees.
In the limit that T1 → 1, Eq. (58) diverges, exceeding the
coexistence threshold, and strain 2 fails to spread on the RG.
In Fig. 7 (bottom) we show the cumulative degree distribu-
tion (top) and the outbreak sizes (bottom) of the first five
strains of the competitive process on a scale-free network
with power-law exponent α = 2 and degree cutoff κ = 20 for
transmissibilities (T2, T3, T4, T5) = (0.3, 0.5, 0.6, 1.0). In this
experiment, the total infected fraction of the network is fairly
constant, ≈0.5; however, the outbreak sizes of each strain
are strong, multimodal functions of the available space left
to spread in the RG of the previous strains. These disease
dynamics show that each generation of a disease can generate
a finite GCC of its own in the presence of other outbreaks.
Figure 7 (top, inset) shows the same data as the main panel
on a semilog plot. Each generation leads to an increased frac-
turing of the network and a transition from scale-free behavior
(linearity on a log-log plot) to the emergence of an exponential
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FIG. 7. Top: The cumulative degree distribution of nodes in the
substrate network and the GCCs of the RG following competitive
bond percolation at T1 = 0.0. Bottom: The outbreak sizes of the
competitive branching process. The parameters are (T2, T3, T4, T5) =
(0.3, 0.5, 0.6, 1.0) on a scale-free network with power-law exponent
α = 2 and κ = 20. Scatter points are the average of 35 repeats of
Monte Carlo simulations over V = 30 000 node networks; solid lines
are the theoretical results.

relationship (linearity on a semilog plot) with increasing strain
index.

Turning now to the cooperative process, the general expres-
sion for the critical transmissibility of strain 2 was given in [6]
and is shown in Eq. (46). For the scale-free degree distribution

we have the trace and determinant given by

τ = 1 + (2T1 − 1)
Liα−1(e−1/κ )

f̄1

×
[

Liα−2( f̄1e−1/κ ) − 1

f̄1
Liα−1( f̄1e−1/κ )

]−1

and


 = T 2
1

Liα−1(e−1/κ )

f̄1

×
[

Liα−2( f̄1e−1/κ ) − 1

f̄1
Liα−1( f̄1e−1/κ )

]−1

respectively. At κ → ∞, both τ → ∞ and 
 → ∞ and so
T2c = 0 from Eq. (46). Since the critical point of subsequent
strains will always contain this factor, their critical points
also vanish in this limit. Thus, cooperative diseases on scale-
free networks will theoretically always spread, regardless of
measures that lower the strain transmissibility. In Fig. 8 we
show the percolation properties of the first four strains of
the cooperative branching process on a scale-free network
with power-law exponent α = 2.0 and degree cutoff κ = 20;
the transmission probability of each strain is (T2, T3, T4) =
(0.6, 0.5, 0.45). Figure 8(a) shows the outbreak fractions be-
come successively smaller with increasing generations. In
Fig. 8(b) we see the degree distributions of GCCs formed by
each generation of the process at T1 = 1.0. The inset shows
(from a repeated experiment with κ = 200) that the heavy
tail of the power law is preserved following each percolation,
while the probability of choosing a low degree node becomes
increasingly smaller. In Fig. 8(c) the cumulative probability
that a node has degree larger than k within the GCC structures
shows the removal of the low degree nodes with each genera-
tion of the percolation. This is in direct contrast to the fracture
process that occurs for Erdős-Renyi networks [see Fig. 6(c)],
where the cumulative probability decreased with generation
index under cooperative percolation. The preservation of the
higher-degree core in the scale-free network indicates the
self-similarity of the GCC substructures under cooperative
percolation.

VI. CONCLUSION

In this paper we have introduced two exact models of
generational bond percolation on complex networks. The out-
break sizes as well as the critical points of the models were
solved for and topological properties of the resulting graph
structures were examined.

Competitive branching processes are defined as a perfect
cross-immunity model; each generation spreading on the RG
created by the previous generations. It was shown, under the
constraint that each disease adopts its critical transmissibility,
that there is an evolutionary pressure on each generation to
become more transmissible; however, the expected outbreak
size becomes increasingly smaller. Collaborative branching
processes are defined as a complete coinfection model; each
generation spreading on the GCC created by all of the previ-
ous strains. It was shown that the outbreak size of each strain
is bound by the size of the preceding epidemic.
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FIG. 8. Four generations of the cooperative branching process with (T2, T3, T4) = (0.6, 0.5, 0.45) on a scale-free network with power-law
exponent α = 2 and κ = 20. Scatter points are the average of 35 repeats of Monte Carlo simulations over V = 500 000 node networks; solid
lines are the theoretical results. Subplot (a) shows the outbreak sizes, (b) shows the degree distribution at T1 = 1, the inset is a log-log plot with
κ = 200, and (c) is the cumulative probability that a node has degree larger than k in each GCC at T1 = 1; the inset shows the same data on a
logarithmic scale for κ = 20.

Both of the stochastic branching processes studied in this
paper increasingly fracture the substrate network as they
unfold. This eventually leads to the loss of global connec-
tivity among the nodes of the network and the eventual
burnout of each process. We examined the resulting graph
structures from both competitive and cooperative percola-
tion types for two common degree distributions: Erdős-Renyi
and power-law networks. The RG structures created by the
competitive process led to nontrivial outbreak sizes that can
exhibit multiple turning points depending on the transmissi-
bility of previous strains. Additionally, for both Erdős-Renyi
and scale-free networks the total outbreak size was found
to be a nonmonotonic function of the proceeding fracture
process.

We found that the GCC structures created through coop-
erative percolation on Erdős-Renyi networks fracture through
a gradual loss of high degree sites. Scale-free networks, in
contrast, produce self-similar outbreaks supported by a power-
law core.

Whilst these scenarios are illuminating in their own right,
this work is an important step towards an N-strain partial
immunity model, whereby a strain could infect all nodes,
regardless of their infection history. Recent work by Mann
et al. [13] has shown that bond percolation can also be mapped
to a partial immunity model for N = 2. In this case, the
strict criteria concerning the disease couplings required for the
complete cross-immunity and complete coinfection models
are relaxed. Importantly, such a model would not burn out.
This work can be generalised in many different ways, such
as networks with clustering [20], including hypergraphs as
well as modular systems or multitype networks [21,22]. These
processes could also prove useful to the understanding of
other dynamical processes on networks, such as synchroniza-
tion. Finally, a strong condition on the success of the model
is the temporal separation of each generation; we have not
addressed any dynamical features of the spreading processes,
such as their timescales or growth rates, which we leave for
future work.
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APPENDIX: OUTBREAK SIZES FOR COLLABORATIVE
BRANCHING PROCESSES

In this Appendix we describe how to use the prescription
to obtain the outbreak sizes of the first few generations of the
collaborative branching process.

1. Strain 1

The prescription for the outbreak size of strain 1 is as fol-
lows. First we calculate C1 = f̄1(u1, 1, 1). A node in the GCC
has three neighbor states: uninfected, infected (externally by
other nodes), and infected (directly by the focal node); of
these, only the two infected states play an active role in the
spread of further generations. The probability that an edge
between the focal node and an externally infected neighbor
failed to transmit strain 1 is 1 − T1. Thus, the probability that
all m11 externally infected neighbors failed is (1 − T1)m11 . The
probability that the neighbor was uninfected is then

u11 =
∞∑

k=0

qk
[
u11 (1 − T1) + (

1 − u11

)
(1 − T1) + u11 T1

]k
,

(A1)
where qk = (k + 1)pk+1/〈k〉 from Eq. (5). With this probabil-
ity, we now write the outbreak size as

A1 = 1 −
∞∑

k=0

pk
[
u11 (1 − T1) + (

1 − u11

)
(1 − T1) + u11 T1

]k
.

(A2)
The bracket reduces to Eq. (8); thus, both competitive and
collaborative formulations are in agreement for the first per-
colation process. The solution u11 can also be visualized
graphically, thus confirming the generating function is convex
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FIG. 9. The graphical solution [15] of the generating function
for strain 1 at T1 = 0.6. Plotted are y = u11 against u11 as well as
the value of the generating function z1 = G1(1 − T1 + u11 T1). The
intersection of y = u11 and z1 corresponds to the root. We notice that
the trivial root, u11 , is also a solution. The scatter point is the result
of fixed point iteration.

on the unit interval and that Jensen’s inequality can be applied;
see Fig. 9.

2. Strain 2

For strain 2 there are two possible infection histories that a
neighbor might have: either the focal node infected it directly
or it was externally infected. The probabilities that the focal
node does not get strain 2 from each of these neighbor states
are u21 and u22 , respectively. The common factor is given by

C2 = C̄1
(

f̄
(
u21 , 1, 1

)
, f̄

(
u22 , 1, 1

))
, (A3)

which is simply

C2 =
k∑

l=0

(
k

l

)[
u11 (1 − T1)

]l
k−l∑

m11 =0

(
k − l

m11

)

× [(
1 − u11

)
f̄
(
u21

)]m11
[
u11 T1 f̄

(
u22

)]k−l−m11 , (A4)

where we have dropped the 1s in the function arguments of
the f̄ functions. Following the prescription, the history of u21

is H21 = [1 − (1 − T1)m11 ] while the history of u22 is H22 =
(1 − T1)m11 . Since the u21 history branches from the 1 − u11

compartment, the prior probability is simply Q21 = 1 − u11 ,
and Q22 = u11 . Thus, we have

u21 = 1

Q21

∞∑
k=0

qkC2H21 , (A5)

u22 = 1

Q22

∞∑
k=0

qkC2H22 . (A6)

As we insert the infection histories into this expression, we
observe that externally infected histories lead to multiple
brackets as the generating function acts on each term. For
instance

u21 = 1

Q21

∞∑
k=0

qkC2[1 − (1 − T1)m11 ] (A7)

= 1

Q21

∞∑
k=0

qkC2 − 1

Q21

∞∑
k=0

qkC2(1 − T1)m11 (A8)

= G1(C2)

Q21

− G1
(
C2(1 − T1)m11

)

Q21

(A9)

s = G1
(
u11 (1 − T1) + (

1 − u11

)
f̄2

(
u21

) + u11 T1 f̄2
(
u22

))
1 − u11

− G1
(
u11 (1 − T1) + (

1 − u11

)
(1 − T1) f̄2

(
u21

) + u11 T1 f̄2
(
u22

))
1 − u11

.

(A10)

This does not occur for u22 since the infection history folds into C2:

u22 = G1
(
u11 (1 − T1) + (

1 − u11

)
(1 − T1) f̄2

(
u21

) + u11 T1 f̄2
(
u22

))
u11

(A11)

We exhibit the graphical solution for these coupled equations in Fig. 10.
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FIG. 10. The graphical solution of the generating functions for strain 2 at three different T1 values with T2 = 0.6. Plotted are y = u2i for
i = 1, 2 against u2i as well as the value of the generating functions z1 = G1(C2H21 )/(1 − u11 ) and z2 = G1(C2H22 )/u11 . Each zi varies u2i

while the other value is held fixed at the correct root. The intersection of y = u2i and zi corresponds to the root, which is also marked with a
scatter point. We notice that the trivial root of u21 = u22 = 1 is no longer shown as the system moves away from the critical point when the
GCC first forms. This is also graphical motivation for finding the critical point from a Taylor series around the trivial root. We also notice
the increase (loss) of convexity in u21 (u22 ) as we increase T1. This indicates the increasing (decreasing) importance of the u21 (u22 ) branch to
the formation of the GCC at larger transmissibilities.

3. Strain 3

The first step is to write the common factor C̄2(1) [see Eq. (30c)]; this is given by

C̄2 =
k∑

l=0

(
k

l

)[
u11 (1 − T1)

]l
k−l∑

m11 =0

(
k − l

m11

)[
1 − u11

]m11

m11∑
a=0

(
m11

a

)[
u21 (1 − T2)

]a

×
m11 −a∑
m21 =0

(
m11 − a

m21

)[
1 − u21

]m21
[
u21 T2

]m11 −a−m21
[
u11 T1

]k−l−m11

k−l−m11∑
c=0

(
k − l − m11

c

)[
u22 (1 − T2)

]c

×
k−l−m11 −c∑

m22 =0

(
k − l − m11 − c

m22

)[
1 − u22

]m22
[
u22 T2

]k−l−m11 −c−m22 . (A12)

We then form C3 = C̄2( f̄3(u31 , 1, 1), f̄3(u32 , 1, 1), f̄3(u33 , 1, 1), f̄3(u34 , 1, 1)) as

C3 =
k∑

l=0

(
k

l

)[
u11 (1 − T1)

]l
k−l∑

m11 =0

(
k − l

m11

)[
1 − u11

]m11

m11∑
a=0

(
m11

a

)[
u21 (1 − T2)

]a

×
m11 −a∑
m21 =0

(
m11 − a

m21

)[(
1 − u21

)
f̄3

(
u31

)]m21
[
u21 T2 f̄3

(
u32

)]m11 −a−m21
[
u11 T1

]k−l−m11

k−l−m11∑
c=0

(
k − l − m11

c

)[
u22 (1 − T2)

]c

×
k−l−m11 −c∑

m22 =0

(
k − l − m11 − c

m22

)[(
1 − u22

)
f̄3

(
u33

)]m22
[
u22 T2 f̄3

(
u34

)]s
, (A13)

where we have dropped the 1’s from the f̄ arguments and simplified s = k − l − m11 − c − m22 for brevity. We define the set
{u3 j }, j = 1, . . . , 4, as the set of probabilities that each neighbor fails to transmit strain 3 to the focal node given their particular
history. The probabilities H3 j of each of these unique histories occurring were defined in Eq. (33). Using Eq. (22) we now furnish
C3 with these probabilities to obtain

P31 =
k∑

l=0

(
k

l

)[
u11 (1 − T1)

]l
k−l∑

m11 =0

(
k − l

m11

)[
1 − u11

]m11

m11∑
a=0

(
m11

a

)[
u21 (1 − T2)

]a
m11 −a∑
m21 =0

(
m11 − a

m21

)[(
1 − u21

)
f̄3

(
u31

)]m21
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×[
u21 T2 f̄3

(
u32

)]m11 −a−m21
[
u11 T1

]k−l−m11

k−l−m11∑
c=0

(
k − l − m11

c

)[
u22 (1 − T2)

]c

×
k−l−m11 −c∑

m22 =0

(
k − l − m11 − c

m22

)[(
1 − u22

)
f̄3

(
u33

)]m22
[
u22 T2 f̄3

(
u34

)]s
[1 − (1 − T1)m11 ]

[
1 − (1 − T2)m21 +m22

]
, (A14a)

P32 =
k∑

l=0

(
k

l

)[
u11 (1 − T1)

]l
k−l∑

m11 =0

(
k − l

m11

)[
1 − u11

]m11

m11∑
a=0

(
m11

a

)[
u21 (1 − T2)

]a

×
m11 −a∑
m21 =0

(
m11 − a

m21

)[(
1 − u21

)
(1 − T2) f̄3

(
u31

)]m21
[
u21 T2 f̄3

(
u32

)]m11 −a−m21
[
u11 T1

]k−l−m11

×
k−l−m11∑

c=0

(
k − l − m11

c

)[
u22 (1 − T2)

]c
k−l−m11 −c∑

m22 =0

(
k − l − m11 − c

m22

)[(
1 − u22

)
(1 − T2) f̄3

(
u33

)]m22

×[
u22 T2 f̄3

(
u34

)]s
[1 − (1 − T1)m11 ], (A14b)

P33 =
k∑

l=0

(
k

l

)[
u11 (1 − T1)

]l
k−l∑

m11 =0

(
k − l

m11

)[(
1 − u11

)
(1 − T1)

]m11

m11∑
a=0

(
m11

a

)[
u21 (1 − T2)

]a

×
m11 −a∑
m21 =0

(
m11 − a

m21

)[(
1 − u21

)
f̄3

(
u31

)]m21
[
u21 T2 f̄3

(
u32

)]m11 −a−m21
[
u11 T1

]k−l−m11

k−l−m11∑
c=0

(
k − l − m11

c

)[
u22 (1 − T2)

]c

×
k−l−m11 −c∑

m22 =0

(
k − l − m11 − c

m22

)[(
1 − u22

)
f̄3

(
u33

)]m22
[
u22 T2 f̄3

(
u34

)]s
[1 − (1 − T2)m21+m22 ], (A14c)

P34 =
k∑

l=0

(
k

l

)[
u11 (1 − T1)

]l
k−l∑

m11 =0

(
k − l

m11

)[(
1 − u11

)
(1 − T1)

]m11

m11∑
a=0

(
m11

a

)[
u21 (1 − T2)

]a
m11 −a∑
m21 =0

(
m11 − a

m21

)

× [(
1 − u21

)
(1 − T2) f̄3

(
u31

)]m21
[
u21 T2 f̄3

(
u32

)]m11 −a−m21
[
u11 T1

]k−l−m11

k−l−m11∑
c=0

(
k − l − m11

c

)[
u22 (1 − T2)

]c

×
k−l−m11 −c∑

m22 =0

(
k − l − m11 − c

m22

)[(
1 − u22

)
(1 − T2) f̄3

(
u33

)]m22
[
u22 T2 f̄3

(
u34

)]s
. (A14d)

Next, we construct the prior probabilities that the neighbor in question was in the desired state; these are shown in Eq. (36)
for each history. Lastly, we use Eq. (21) to finalise the self-consistent expressions for the uih values using

uih = 1

Qih

∞∑
k=0

qkPih . (A15)

In some cases, this expression is straightforward to compute; however, those histories obtained from external coinfection lead to
multiple G1(z) terms when the brackets are multiplied out. For instance H31 behaves as follows:

[1 − (1 − T1)m11 ][1 − (1 − T2)m21 +m22 ] = 1 − (1 − T1)m11 − (1 − T2)m21 +m22 + (1 − T1)m11 (1 − T2)m21 +m22 . (A16)

When C2 acts on this expression we generate four brackets. We find

u31 = 1(
1 − u11

)(
1 − u21

)G1
(
u11 (1 − T1) + (

1 − u11

)[
u21 (1 − T2) + (

1 − u21

)
f̄3

(
u31

) + u21 T2 f̄3
(
u32

)]
+ u11 T1

[
u22 (1 − T2) + (

1 − u22

)
f̄3

(
u33

) + u22 T2 f̄3
(
u34

)])
− 1(

1 − u11

)(
1 − u21

)G1
(
u11 (1 − T1) + (

1 − u11

)[
u21 (1 − T2) + (

1 − u21

)
(1 − T2) f̄3

(
u31

) + u21 T2 f̄3
(
u32

)]
+ u11 T1

[
u22 (1 − T2) + (

1 − u22

)
(1 − T2) f̄3

(
u33

) + u22 T2 f̄3
(
u34

)])
014304-15



MANN, SMITH, MITCHELL, AND DOBSON PHYSICAL REVIEW E 106, 014304 (2022)

− 1(
1 − u11

)(
1 − u21

)G1
(
u11 (1 − T1) + (

1 − u11

)
(1 − T1)

[
u21 (1 − T2) + (

1 − u21

)
f̄3

(
u31

) + u21 T2 f̄3
(
u32

)]
+ u11 T1

[
u22 (1 − T2) + (

1 − u22

)
f̄3

(
u33

) + u22 T2 f̄3
(
u34

)])
+ 1(

1 − u11

)(
1 − u21

)G1
(
u11 (1 − T1) + (

1 − u11

)
(1 − T1)

[
u21 (1 − T2) + (

1 − u21

)
(1 − T2) f̄3

(
u31

) + u21 T2 f̄3
(
u32

)]
+ u11 T1

[
u22 (1 − T2) + (

1 − u22

)
(1 − T2) f̄3

(
u33

) + u22 T2 f̄3
(
u34

)])
, (A17a)

u32 = 1(
1 − u11

)
u21

G1
(
u11 (1 − T1) + (

1 − u11

)[
u21 (1 − T2) + (

1 − u21

)
(1 − T2) f̄3

(
u31

) + u21 T2 f̄3
(
u32

)]

+ u11 T1
[
u22 (1 − T2) + (

1 − u22

)
(1 − T2) f̄3

(
u33

) + u22 T2 f̄3
(
u34

)]) − 1(
1 − u11

)
u21

G1
(
u11 (1 − T1)

+ (
1 − u11

)
(1 − T1)

[
u21 (1 − T2) + (

1 − u21

)
(1 − T2) f̄3

(
u31

) + u21 T2 f̄3
(
u32

)] + u11 T1
[
u22 (1 − T2)

+ (
1 − u22

)
(1 − T2) f̄3

(
u33

) + u22 T2 f̄3
(
u34

)])
, (A17b)

u33 = 1

u11

(
1 − u22

)G1
(
u11 (1 − T1) + (

1 − u11

)
(1 − T1)

[
u21 (1 − T2) + (

1 − u21

)
f̄3

(
u31

) + u21 T2 f̄3
(
u32

)]

+ u11 T1
[
u22 (1 − T2) + (

1 − u22

)
f̄3

(
u33

) + u22 T2 f̄3
(
u34

)]) − 1

u11

(
1 − u22

)G1
(
u11 (1 − T1)

+ (
1 − u11

)
(1 − T1)

[
u21 (1 − T2) + (

1 − u21

)
(1 − T2) f̄3

(
u31

) + u21 T2 f̄3
(
u32

)]
+ u11 T1

[
u22 (1 − T2) + (

1 − u22

)
(1 − T2) f̄3

(
u33

) + u22 T2 f̄3
(
u34

)])
, (A17c)

u34 = 1

u11 u22

G1
(
u11 (1 − T1) + (

1 − u11

)
(1 − T1)

[
u21 (1 − T2) + (

1 − u21

)
(1 − T2) f̄3

(
u31

) + u21 T2 f̄3
(
u32

)]
+ u11 T1

[
u22 (1 − T2) + (

1 − u22

)
(1 − T2) f̄3

(
u33

) + u22 T2 f̄3
(
u34

)])
. (A17d)

The outbreak size of the third strain is then given by

A3 =A2 − [
G0

(
u11 (1 − T1) + (

1 − u11

)[
u21 (1 − T2) + (

1 − u21

)
f̄3

(
u31

) + u21 T2 f̄3
(
u32

)]
+ u11 T1

[
u22 (1 − T2) + (

1 − u22

)
f̄3

(
u33

) + u22 T2 f̄3
(
u34

)])
− G0

(
u11 (1 − T1) + (

1 − u11

)[
u21 (1 − T2) + (

1 − u21

)
(1 − T2) f̄3

(
u31

) + u21 T2 f̄3
(
u32

)]
+ u11 T1

[
u22 (1 − T2) + (

1 − u22

)
(1 − T2) f̄3

(
u33

) + u22 T2 f̄3
(
u34

)])
− G0

(
u11 (1 − T1) + (

1 − u11

)
(1 − T1)

[
u21 (1 − T2) + (

1 − u21

)
f̄3

(
u31

) + u21 T2 f̄3
(
u32

)]
+ u11 T1

[
u22 (1 − T2) + (

1 − u22

)
f̄3

(
u33

) + u22 T2 f̄3
(
u34

)])
+ G0

(
u11 (1 − T1) + (

1 − u11

)
(1 − T1)

[
u21 (1 − T2) + (

1 − u21

)
(1 − T2) f̄3

(
u31

) + u21 T2 f̄3
(
u32

)]
+ u11 T1

[
u22 (1 − T2) + (

1 − u22

)
(1 − T2) f̄3

(
u33

) + u22 T2 f̄3
(
u34

)])]
, (A18)

which is simply u31 , the maximally externally coinfected state, without the prior probabilities and with G1(z) replaced by G0(z).

4. Strain 4

In this section we evaluate the expressions for the outbreak size of strain 4 for collaborative percolation. The first step is to
find the base probability. To do this, we require C4 = C̄3( f̄4), which is quite a complicated nested function. However, Figs. 11
and 12 show how this expression is formed graphically as a perfect binary tree. First,

C̄3(1) =
k∑

l=0

(
k

l

)[
u11 (1 − T1)

]l
k−l∑

m11 =0

(
k − l

m11

)[
1 − u11

]m11

m11∑
a=0

(
m11

a

)[
u21 (1 − T2)

]a
m11 −a∑
m21 =0

(
m11 − a

m21

)[(
1 − u21

)]m21

×
m21∑
b=0

(
m21

b

)[
u31 (1 − T3)

]b
m21 −b∑
m31 =0

(
m21 − b

m31

)[
1 − u31

]m31
[
u31 T3

]m21 −b−m31
[
u21 T2

]m11 −a−m21
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FIG. 11. A visualization of the perfect binary tree of coinfected neighbors which a focal node could be surrounded by after strain 3. The
states are marked inside the nodes, while the priors can be constructed by the product of the terms associated to each edge from the root to
each leaf. External infection occurs on the left child, while direct infection occurs on the right.

×
m11 −a−m21∑

c=0

(
m11 − a − m21

c

)[
u32 (1 − T3)

]c
m11 −a−m21 −c∑

m32 =0

(
m11 − a − m21 − c

m32

)[
1 − u32

]m32
[
u32 T3

]m11 −a−m21 −c−m32

× [
u11 T1

]k−l−m11

k−l−m11∑
e=0

(
k − l − m11

e

)[
u22 (1 − T2)

]e
k−l−m11 −e∑

m22 =0

(
k − l − m11 − e

m22

)[
1 − u22

]m22

×
m22∑
f =0

(
m22

f

)[
u33 (1 − T3)

] f
m22 − f∑
m33=0

(
m22 − f

m33

)[
1 − u33

]m33
[
u33 T3

]m22 − f −m33
[
u22 T2

]k−l−m11 −e−m22

×
k−l−m11 −e−m22∑

g=0

(
k − l − m11 − e − m22

g

)[
u34 (1 − T3)

]g
k−l−m11 −e−m22 −g∑

m34 =0

(
k − l − m11 − e − m22 − g

m34

)

× [
1 − u34

]m34
[
u34 T3

]k−l−m11 −e−m22 −g−m34 . (A19)

We then have

C4 = f1
(
u1, f2

(
u21 , f3

(
u31 , f̄4

(
u41

)
, f̄4

(
u42

))
, f3

(
u32 , f̄4

(
u43

)
, f̄4

(
u44

)))
,

f2
(
u22 , f3

(
u33 , f̄4(u45 ), f̄4

(
u46

))
, f3

(
u34 , f̄4

(
u47

)
, f̄4

(
u48

))))
(A20)

FIG. 12. A visualization of the perfect binary tree of coinfected neighbors which a focal node could be surrounded by and the equations that
generate the base probability C̄3(1). In this notation, the left child always represents external infection while the right child represents direct
infection, as in Fig. 11. Thus, the leaves of the tree represent all possible infection histories for the fourth strain.
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FIG. 13. The graphical solution of the generating functions for strain 4 around the critical point of strain 1 (left) with T1 = 0.325, T2 =
0.6, T3 = 0.5, T4 = 0.45 and away from the critical point at T1 = T2 = 0.6, T3 = 0.5, T4 = 0.45 (right). Plotted are y = u4i for i = 1, . . . , 8
against u4i as well as the value of the generating functions zi = G1(C2H4i )/Q4i . Each zi varies u4i while the other value held fixed at the correct
root. The intersection of y = u4i and zi corresponds to the root, which is also marked with a scatter point from a nonlinear solve. We notice that
u41 varies convexly over almost the entire unit interval while the gradient of the other generating functions is increasingly flat in this region of
the parameter space. This indicates that the contribution of these values is less important than that u41 . Thus, we can expect that this infection
history is the dominant term in the nonlinear system that describes strain 4.

The next step is to formulate the eight u4i values given each unique infection history. These are given by

u41 = 1(
1 − u11

)(
1 − u21

)(
1 − u31

) ∞∑
k=0

qkC4H31 [1 − (1 − T3)m31 +m32 +m33 +m34 ], (A21a)

u42 = 1(
1 − u11

)(
1 − u21

)
u31

∞∑
k=0

qkC4H31 (1 − T3)m31 +m32 +m33 +m34 , (A21b)

u43 = 1(
1 − u11

)
u21

(
1 − u32

) ∞∑
k=0

qkC4H32 [1 − (1 − T3)m31 +m32 +m33 +m34 ], (A21c)

u44 = 1(
1 − u11

)
u21 u32

∞∑
k=0

qkC4H32 (1 − T3)m31 +m32 +m33 +m34 , (A21d)

u45 = 1

u11

(
1 − u22

)(
1 − u33

) ∞∑
k=0

qkC4H33 [1 − (1 − T3)m31 +m32 +m33 +m34 ], (A21e)

u46 = 1

u11

(
1 − u22

)
u33

∞∑
k=0

qkC4H33 (1 − T3)m31 +m32 +m33 +m34 , (A21f)

u47 = 1

u11 u22

(
1 − u34

) ∞∑
k=0

qkC4H34 [1 − (1 − T3)m31 +m32 +m33 +m34 ], (A21g)

u48 = 1

u11 u22 u34

∞∑
k=0

qkC4H34 (1 − T3)m31 +m32 +m33 +m34 , (A21h)

We show the solution to these expressions graphically in Fig. 13 around the critical point and for large T values. The outbreak
size is then given by

A4 = A3 −
∞∑

k=0

pkC4H31 [1 − (1 − T3)m31 +m32 +m33 +m34 ]. (A22)
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5. Strain 5

Following the recipe, the outbreak size of strain 5 is calculated as follows:

C5 = f1
(
u1, f2

(
u21 , f3

(
u31 , f4

(
u41 , f̄5

(
u51

)
, f̄5

(
u52

))
, f4

(
u42 , f̄5

(
u53

)
, f̄5

(
u54

)))
, f3

(
u32 , f4

(
u43 , f̄5

(
u55

)
, f̄5

(
u56

))
,

f4
(
u44 , f̄5

(
u57

)
, f̄5

(
u58

))))
, f2

(
u22 , f3

(
u33 , f4

(
u45 , f̄5

(
u59

)
, f̄5

(
u510

))
, f4

(
u46 , f̄5

(
u511

)
, f̄5

(
u512

)))
,

f3
(
u34 , f4

(
u47 , f̄5

(
u513

)
, f̄5

(
u514

))
, f4

(
u48 , f̄5

(
u515

)
, f̄5

(
u516

)))))
, (A23)

u51 = 1(
1 − u11

)(
1 − u21

)(
1 − u31

)(
1 − u41

) ∞∑
k=0

qkC5H41 [1 − (1 − T4)M], (A24a)

u52 = 1(
1 − u11

)(
1 − u21

)(
1 − u31

)
u41

∞∑
k=0

qkC5H41 (1 − T4)M, (A24b)

u53 = 1(
1 − u11

)(
1 − u21

)
u31

(
1 − u42

) ∞∑
k=0

qkC5H42 [1 − (1 − T4)M], (A24c)

u54 = 1(
1 − u11

)(
1 − u21

)
u31 u42

∞∑
k=0

qkC5H42 (1 − T4)M, (A24d)

u55 = 1(
1 − u11

)
u21

(
1 − u32

)(
1 − u43

) ∞∑
k=0

qkC5H43 [1 − (1 − T4)M], (A24e)

u56 = 1(
1 − u11

)
u21

(
1 − u32

)
u43

∞∑
k=0

qkC5H43 (1 − T4)M, (A24f)

u57 = 1(
1 − u11

)
u21 u32

(
1 − u44

) ∞∑
k=0

qkC5H44 [1 − (1 − T4)M], (A24g)

u58 = 1(
1 − u11

)
u21 u32 u44

∞∑
k=0

qkC5H44 (1 − T4)M, (A24h)

u59 = 1

u11

(
1 − u22

)(
1 − u33

)(
1 − u45

) ∞∑
k=0

qkC5H45 [1 − (1 − T4)M], (A24i)

u510 = 1

u11

(
1 − u22

)(
1 − u33

)
u45

∞∑
k=0

qkC5H45 (1 − T4)M, (A24j)

u511 = 1

u11

(
1 − u22

)
u33

(
1 − u46

) ∞∑
k=0

qkC5H46 [1 − (1 − T4)M], (A24k)

u512 = 1

u11

(
1 − u22

)
u33 u46

∞∑
k=0

qkC5H46 (1 − T4)M, (A24l)

u513 = 1

u11 u22

(
1 − u34

)(
1 − u47

) ∞∑
k=0

qkC5H47 [1 − (1 − T4)M], (A24m)

u514 = 1

u11 u22

(
1 − u34

)
u47

∞∑
k=0

qkC5H47 (1 − T4)M, (A24n)

u515 = 1

u11 u22 u34

(
1 − u48

) ∞∑
k=0

qkC5H48 [1 − (1 − T4)M], (A24o)

u516 = 1

u11 u22 u34 u48

∞∑
k=0

qkC5H48 (1 − T4)M, (A24p)

014304-19



MANN, SMITH, MITCHELL, AND DOBSON PHYSICAL REVIEW E 106, 014304 (2022)

with M = ∑8
j=1 m4 j . The outbreak size is then given by

A5 = A4 −
∞∑

k=0

pkC5H41 [1 − (1 − T4)M]. (A25)
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