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a b s t r a c t

We present an administration technique for the bookkeeping of adaptive mesh re-
finement on (hyper-)rectangular meshes. Our technique is a unified approach for
h-refinement on 1-, 2- and 3D domains, which is easy to use and avoids traversing
the connectivity graph of the ancestry of mesh cells. Due to the employed rectangular
mesh structure, the identification of the siblings and the neighbouring cells is greatly
simplified. The administration technique is particularly designed for smooth meshes,
where the smoothness is dynamically used in the matrix operations. It has a small
memory footprint that makes it affordable for a wide range of mesh resolutions over
a large class of problems. We present three applications of this technique, one of which
addresses h-refinement and its benefits in a 2D tumour growth and invasion problem.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Time and again adaptive mesh refinement (AMR) has been employed to improve the accuracy of numerical methods and
o alleviate their computational burden. Typical fields of application of AMR include engineering, astrophysics, and fluid
ynamics, where the associated techniques have become a vital component of the overall numerical investigation, see,
.g., [1–8]. In mathematical biology however, they have been scarcely applied yet. Some examples can be found in [9–13].
AMR, has become a standard for which particular and elaborate numerical methods have been developed. Still the mesh

dministration remains a complex process, which most scientific computing efforts try to avoid. The aim of the current
aper is to propose a ‘‘do-it-yourself’’ recipe of AMR and mesh administration strategy that emphasizes its simplicity
f implementation and use, while allowing for the handling of situations that cover most of the spectrum of scientific
omputing.
In this perspective, one of the aims of our work is to apply AMR to models that describe the first stage in cancer

etastasis – and one of the hallmarks of cancer – the invasion of the extracellular matrix (ECM) [14]. The models we consider
n this work are typically advection–reaction–diffusion (ARD) systems where the involved quantities are represented by
heir macroscopic densities. The dynamics that their solutions exhibit can be complex and their numerical treatment is
hallenging, and hence, AMR is seen as an important tool. A 1D application of AMR – in particular h-refinement – in a Finite
olume (FV) method for such a system has been studied in our previous work [13]. There, we demonstrated a significant
mprovement in accuracy and efficiency when AMR was employed. For 2D (or higher dimensional) cases however, a series
f additional numerical difficulties arise. For example, the nature of these particular cancer invasion models promotes the
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use of FV methods over meshes with rectangular cells, which when combined with h-refinement techniques lead to hanging
nodes. This complicates significantly the computation of the advection and, most notably, of the diffusion components of
the system. In the literature, 2D convection–diffusion problems have been previously solved by FV methods augmented by
AMR techniques, see e.g. [15] and the references therein.

Many technical issues related to the implementation of the AMR techniques arise as well. Some are typical: traversing
the connectivity graph between children, parents, and ancestor mesh cells, as well as the identification of sibling and
neighbour cells needed for the computation of the numerical fluxes and for the refinement/coarsening procedures. Other
difficulties are less common e.g. particularities of the model that might pose additional conditions on the structure and the
handling of the mesh. To mention but a few: the fast dynamics of the solutions and the diffusion of the model manifest
themselves in the ‘‘smoothness’’ of the mesh, we refer e.g. to [16] for a thorough discussion on the topology of mesh
generation. Furthermore, the large number of system components and the richness of phenomena to be resolved call for
different (sometimes multiple) refinement and coarsening criteria; the possibility of a blow-up, which is inherent in this
type of systems, see e.g. [17,18], requires a dynamic adaptation of the highest refinement level.

To address the above numerical and technical issues, we develop our own AMR and mesh administration techniques.
There are several reasons for that: first, we aim for simplicity, flexibility, and portability of our algorithms. Secondly, we
want complete control of all the stages of the numerical treatment of the models. This includes various components of
the implementation: the numerical methods for the solution of the partial differential equation (PDE) systems, the AMR
techniques for the refinement/coarsening process, as well as the grid administration and bookkeeping algorithms for the
handling of the data on the mesh.

The overall effort is extensive; we have previously addressed the development of the numerical methods to solve
the corresponding models, and the 1D h-refinement technique [13,19,20]. In the current paper, we focus primarily on
the grid administration/handling, and secondarily on the presentation of a concrete application of h-refinement to a 2D
cancer invasion system. The h-refinement technique that we employ, makes use of cell bisection in 2, 4, or 8 equivalent
rectangle cells in 1-, 2-, or 3D, respectively. This approach has been widely used in the application of AMR methods, see
e.g. [6,8].

Regarding the structure of the mesh data and their bookkeeping, there are several requirements that should be fulfilled
by a modern mesh administration technique. We mention here only the following, and refer to [21–25] for more details:
(a) generality with respect to the dimensions of the problems and the shape of the domain, (b) efficiency in the access
times of the stored information during and after the reconstruction of the mesh, (c) at least affordable, if not minimal,
memory costs, (d) simplicity, portability, and transparency of the implementation, and (e) extensibility to parallelizations.

The most common practice is to use pointer-based mesh data structures. In this approach, the basic objects considered –
e.g. vertices – are explicitly represented by their physical coordinates. The edges/faces/cells are defined by reference to the
vertices using a cascade of pointers/handles, see e.g. [23,26,27]. In the particular case of a 2D triangulation, these references
are to the three vertices as well as the three neighbouring triangles of each triangle are stored. This is an intuitive
and relatively easy to implement and use technique, but it has a significant memory footprint, and poses additional
computational burden at every step of the method, cf. [22]. When a discretization cell is refined the references pointing to
this cell as well as the other cells it points to, need to be adjusted accordingly — a process that can be complex especially
in 3D volumes. For further information on the implementation and the applications of this technique, we refer to [25,28–
32] and the references therein. Alternative approaches have been devised with main aim to increase the efficiency of
the methods, see e.g. the half-edge and half-facet array-based mesh data structure implementations, see e.g. [23–25]. These
techniques have been used primarily for the computer graphics representation of surface objects in 3D, see e.g. [33–35].

The approach we propose in the current paper is problem-specific and focuses on rectangular meshes in 1-, 2- and 3D.
Unlike the pointer-based method, we store the full data structure of the mesh tree in the form of a matrix and refer to
different mesh cells via the corresponding lines of the matrix. Every cell points to its children and parent cells. We do not
store the physical coordinates, we instead store the indices of the mesh cells, i.e. the refinement level and an intra-level
identifier of every cell instead of the physical coordinates of its vertices. In more detail, for given minimum and maximum
refinement levels, we pre-compile a matrix in which we store, for each cell of the discretization tree, information on its
parent and children cells. This along with an enforced grid regularity, allows for the effortless and efficient refinement,
coarsening, and neighbour identification processes. The memory footprint of the method we propose is reasonable, even
for a large cascade of refinement levels in 2- and 3D experiments without using memory compression.

When comparing with the software library p4est [36], our approach exhibits both commonalities and differences.
On the one hand, both approaches assume a tree based cell-hierarchy that branches-off from a root cell and reaches
the leaf cells. Each cell points to its parent and its children cells. On the other hand, in our approach we characterize the
computational cells in the mesh tree by a single integer (in one-, two-, and three-D), where in p4est every 3-dimensional
mesh cell is characterized by 3 (real number) coordinates x, y, z. Moreover, our representation refers to the centre of the
computational cell, whereas in p4est the lower left corner is represented. This introduces some ambiguity as no two
different cells in a binary-, quad-, or octree share the same centre but they might share the same lower left corner (as,
e.g., parent and some child cells). For more information on the structure and functionality of p4est we refer to [36,37].
We also refer to its employment in the deal.II computational framework [38,39]. The comparison of our proposed
technique with alugrid, [40] is less straight forward as the information stored in alugrid is more diverse and includes
vertices, edges, faces, and more. Still, we refer the interested reader to [40,41] for a thorough discussion of this method
and its employment within the DUNE computational framework [42,43].
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Overall, in this work we propose a mesh data structure, which is easy to understand, implement, and use, and it can
andle mesh resolutions that are sufficient for a wide range of academic investigations in 1-, 2- and 3D. We exhibit this
lexibility by presenting three different applications/experiments while giving particular emphasis on a cancer invasion
roblem.
The rest of the paper is structured as follows: in Section 2 we present the mesh administration technique, address

asic operations, such as the refinement/coarsening and the identification of neighbours and siblings, and discuss the
emory usage and computational costs. In Section 3 we present three numerical experiments: a generic one exhibiting

he properties of the mesh administration technique, as well as applications in a Euler system and a cancer invasion
odel. We discuss the basic ingredients of the numerical methods and the AMR technique we use.

. Mesh data structure and handling

A significant burden in the development of AMR techniques is the administration of the discretization meshes, in
particular when dealing with time dependent 2- or 3D problems. We propose in this section a particularly easy procedure
to represent, store, handle, and in general bookkeep dyadic rectangular meshes in a unified way for 1-, 2-, or even 3D domains.

Main characteristic of the proposed mesh administration technique is that we encode the information of the dyadic
tree inside an easy-to-use matrix. We do it in such a way that we access with ease the parent, children, and most notably
he siblings and neighbouring cells of any given cell. In effect we simplify greatly the refinement and, most importantly,
the coarsening steps of the mesh.

This part of the paper is structured as follows: in Section 2.1 we present the main notations and definitions, in
Section 2.2 we describe the way we store the information of the computational cells and the dyadic meshes, and comment
on the memory usage of the method. In Section 2.3 we present the operations needed to identify the sibling and neighbour
cells, in Section 2.4 we elaborate on the refinement and coarsening procedures, and in Section 2.5 we discuss the handling
of data on the mesh.

2.1. Basic definitions and notations

The proposed technique can be employed on general hyperrectangles in 1-, 2-, or 3D domains. For the sake of simplicity
we will restrict the presentation to the discretization of the domain Ω = [0, 1]d for d = 1, 2.

We denote by Gd
l , l ∈ N a uniform partition of Ω with cardinality

|Gd
l | = 2ld. (1)

Here, l is the refinement level of Gd
l assumed to be bounded by lmin ≤ l ≤ lmax with lmin, lmax ∈ N. The elements of Gd

l are
called cells and they are either intervals in d = 1, or squares in d = 2.

For every cell C ∈
⋃lmax

l=lmin
Gd
l , we denote its refinement level, i.e. the index l for which C ∈ Gd

l , by L(C), its centre by
Mp(C) ∈ Ω , and the occupied physical domain by D(C) ⊂ Ω . Accordingly we can write,

Mp(C) ∈

{
d∑

i=1

2ki − 1
2L(C)+1 ei, 1 ≤ ki ≤ 2L(C), ki ∈ N

}
, (2a)

D(C) =

{
Mp(C)+

d∑
i=1

λi

2L(C) ei, −
1
2

< λi <
1
2
, λi ∈ R

}
. (2b)

here ei, i = 1, 2 represents the unit vector of the corresponding axis.
A cell C̃ is termed child cell of the cell C ∈ Gd

l if C̃ ∈ Gd
l+1 and Mp(C̃) ∈ D(C). Equivalently, the cell C is called the parent

ell of C̃ . Every parent cell has several (2,4, or 8, depending on the dimension d) children cells, and every child cell has a
single parent cell. Children cells of the same parent cell are called siblings. Geometrically, the children cells are obtained
by bisection of the parent cell.

The centre of a parent cell resides on the boundary of all its children cells, and the boundary of a parent cell is partly
shared with the boundaries of its children cells. The cell C̃ ∈ Gd

l̃
is a descendant of the cell C ∈ Gd

l , equivalent to saying
that C is an ancestor of C̃ , if there is a cascade of parent–children relations between C and C̃ .

Two cells that share a (part of their) boundary of co-dimension 1 but no part of their physical domain are called
neighbours. In 2D, this definition excludes cells that share a single point of their boundary. The common boundary between
two neighbour cells is their interface.

For the rest of this work, we consider meshes that are subsets of
⋃lmax

l=lmin
Gd
l , for particular lmin, lmax ∈ N. We also expect

them to obey a particular smoothness relation discussed in the following definition.

Definition 1 (Regular Structured Mesh). A d-dimensional (d = 1, 2) mesh G is called Regular Structured Mesh (RSM) of
minimum and maximum refinement levels lmin, lmax ∈ N, and of mesh regularity mr ∈ N if

G ⊂
lmax⋃

Gd
l , (3)
l=lmin

3
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Table 1
Mesh cells on uniform dyadic meshes that discretize [0,1] with refinement level 0 through lmax . The
refinement level l and the intra-level index k suffice for their complete characterization.
Level Number of cells Centres Cell size

0 1
{
1
2

}
1

1 2
{
1
4

,
3
4

}
1
2

2 4
{
1
8

,
3
8

,
5
8

,
7
8

}
1
4

.

.

.
.
.
.

.

.

.
.
.
.

lmax 2lmax

{
2k− 1
2lmax+1

, k = 1, . . . , 2lmax

}
1

2lmax

and if

1. For all x ∈ [0, 1]d either ∃! C ∈ G such that x ∈ D(C) or ∃C ∈ G such that x ∈ ∂D(C).
2. For all neighbour cells Cj, Ck ∈ G, the mesh regularity condition holds:

|L(Cj)− L(Ck)| ≤ mr . (4)

We can now introduce the basic operations of refinement and coarsening: for G ⊂
⋃lmax

l=lmin
Gd
l a RSM of regularity mr ,

and a cell C ∈ G, we set

– Refinement to be the process of replacing a cell C in G by all of its children from the level L(C)+ 1.
– Coarsening to be the process of replacing a cell C and all of its siblings in G by their parent cell from the level L(C)−1.

As we expect the mesh G to maintain the RSM properties after the refinement and coarsening, both operations are
subject to additional constraints, i.e. the resulting cells have to be of refinement level l such that lmin ≤ l ≤ lmax, and
the resulting mesh should respect the mesh regularity condition (4). See Section 2.4, for a detailed description of the
refinement–coarsening procedures.

2.2. Cell representation for nonuniform meshes

The proposed mesh administration and book-keeping technique has the benefit of being a unified approach over 1-,
2-, and 3D domains, although for the sake of presentation we will discuss here only the 1- and 2D cases.

In what follows we present the technique in its constituent components: the representation of cells and meshes,
and how basic operations like refinement, coarsening or accessing siblings or neighbours are performed. For ease of the
presentation, we start with the 1D case.

Cell representation in 1D
We consider all possible mesh cells C ∈

⋃lmax
l=lmin

G1
l and identify their centres, relative positions, and sizes with respect

to the levels of refinement in Table 1. We note at first that every cell C can be uniquely defined by its refinement level
L(C) and its centre Mp(C). The centre Mp(C) in turn can be uniquely characterized by the refinement level L(C) and an
ntra-level index k enumerating the cells in the current level, see also Table 1.

Hence, the full sequence of dyadic meshes
⋃lmax

l=lmin
Gl can be described by the matrix

C =

⎡⎢⎢⎢⎣
k
l
p
dl
dr

⎤⎥⎥⎥⎦
T

, (5)

here the lines (i.e. the columns of CT ) represent the cells C ∈
⋃lmax

l=lmin
G1
l and the line vectors k, l, and p include their

ntra-level index, their refinement level, and the line of C in which the parent of the current cell is located. Furthermore
l, dr are the lines where the children cells (left and right respectively) of the cell are stored in terms of line numbers of
. Every cell included in the matrix C can be characterized uniquely by its refinement level l and intra-level index k, or
y the corresponding line of the matrix.
4
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Fig. 1. The 1D grid with centres
{ 1

4 , 9
16 , 11

16 , 7
8

}
and sizes

{ 1
2 , 1

8 , 1
8 , 1

4

}
is equivalently given by the set {2, 12, 13, 7} including the corresponding

ines of the matrix C .

Accordingly, the tree-example presented in Table 1 can be written in a matrix formulation as

C =

⎡⎢⎢⎢⎣
1 1 2 1 2 3 4 1 2 3 4 5 6 7 8
0 1 1 2 2 2 2 3 3 3 3 3 3 3 3
− 1 1 2 2 3 3 4 4 5 5 6 6 7 7
2 4 6 8 10 12 14 − − − − − − − −

3 5 7 9 11 13 15 − − − − − − − −

⎤⎥⎥⎥⎦
T

, (6)

where the vertical lines separate cells of different refinement levels, with l = 3 being the maximum in this case. The
empty component in the first column of CT implies that the corresponding first cell does not posses a parent cell within⋃lmax

l=lmin
G1
l . Similarly, the empty components in the fourth and fifth line of CT imply that the corresponding cells do not

posses any children cells in
⋃lmax

l=lmin
G1
l .

Well posedness. The centres of the cells of different levels cannot coincide since, otherwise, that would mean, for two
cells with levels of refinement l1 < l2 and intra cell indices k1, k2 that:

2k1 − 1
2l1+1

=
2k2 − 1
2l2+1

⇔ N ∋ 2k1 − 1 =
2k2 − 1
2l2−l1

̸∈ N.

Since the size of every cell of level l is 1
2l
, cells of different levels will not intersect, unless one of them is a descendant

of the other.

Size of C and memory usage in 1D. As the refinement level l is upper bounded by lmax, the size of the matrix C is finite. In
particular, assuming a cascade of meshes starting from the coarse mesh G1

lmin=5
of 32 cells up to the fine mesh G1

lmax=11
of 2048 cells, the matrix C in its formulation (5) would have (25

+ · · · + 211) = 4096 lines, accounting for the levels
l = 5, . . . , 11, and 4096× 5 = 20480 (unsigned) integer valued entries. Accounting for 4 bytes per integer, the memory
needed to store C is 80 KB.

Mesh representation. Based on the above formulation, the computational grid can be represented by the (finite) sequence
of line numbers of C corresponding to the cells of the grid. Consider, for example, the 1D mesh

G1
=

{(
1
4
,
1
2

)
,

(
9
16

,
1
8

)
,

(
11
16

,
1
8

)
,

(
7
8
,
1
4

)}
, (7)

where each included cell is characterized by its centre Mp(C) and its size |D(C)|, see also Fig. 1. The size of each cell of
level l is 2−l, its centre is given through the intra-level index k as 2k−1

2l+1
. The corresponding matrix C is given by (6). The

atrix lines that correspond to the mesh (7), and in effect represent it, are given by the set

GC = {2, 12, 13, 7}. (8)

The order in which the cells appear in GC follows the Z-order or Lebesgue space filling curve, namely, they are order
irst with respect to their refinement level l, and then to their intra-level index k. This becomes most important in 2-
nd higher spatial dimensions. From the implementation point of view, we use vectors of the form (8), instead of (7), to
ommunicate the grid between different parts of the algorithm.
The following example considers the adaptation of GC in the case of refinement: if one step of the refinement takes

lace and the cell
( 1
4 ,

1
2

)
∈ G1 is replaced by its children cells, the mesh cell 2 ∈ GC needs to be replaced by its children

cells, represented in the lines 4 and 5 of C, and the grid GC becomes

Gnew
C = {4, 5, 12, 13, 7}.

Cell representation in 2D
In dimension two, we include two additional columns in the matrix C to account for all the children, i.e.

C =

⎡⎢⎢⎢⎢⎢⎢⎣

k
l
p

dNW
dNE
dSW

⎤⎥⎥⎥⎥⎥⎥⎦

T

, (9)
dSE

5
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where the intra-level index in the line vector k describes the cells of the same level in a lexicographic order first with
respect to the x- and the y- coordinate of the centre of the cell. Here dNW, dNE, dSW and dSE are the lines of CT corresponding
o the four children cells located northwest (NW), northeast (NE), southwest (SW), and southeast (SE) with respect to the
entre of the parent cell indicated by the matrix line. As in the 1D case, the line vectors k, l and p include the intra-level
ndex of the cell, its refinement level, and the line of its parent cell. Again each cell can be uniquely identified by its
efinement level and its intra-level index.

ize of C and memory usage in 2D. It is more instructive to describe the memory needed for storing the matrix C via an
xample that covers a wide class of numerical experiments. The general case follows in a similar way. We assume hence,
cascade of meshes G2

l , with lmin ≤ l ≤ lmax where lmin = 4, i.e. 16 × 16 cells are included on the coarsest mesh and
max = 10, i.e. 1024 × 1024 cells are included on the finest mesh. The total number of entries of the matrix C is 9,786,112
and, with 4 bytes per input, the memory needed is approximately 39 MB.

Such a memory consumption is not a strong constraint, especially since it refers to a high resolution in 2D. Confer,
e.g., [44] where a similar mesh resolution was used to solve the first stage of a tsunami wave. Despite that, we can even
more reduce the memory usage after noting that the cells on the coarsest level lmin do not posses any parent cells, nor do
the cells in the finest level lmax posses any children cells. This means that the matrix C will need 4,194,560 less entries,
and the actual memory used is reduced to approximately 22 MB. To achieve such savings in practice the columns of C
are separately stored in memory blocks of different sizes.

An even further reduction in memory consumption can be achieved by removing the k- and l-column from the matrix C.
The cell level and the intra-level index can be easily recomputed on the fly as follows: if i is the matrix line corresponding
to a cell, its level is given by the smallest integer l ≥ lmin such that

k =
l−1∑

j=lmin

2jd
− i

is positive. Then, the intra-level index is also given by k. In the example above the memory needed reduces to
approximately 11 MB this way. Note that the efficient mesh administration algorithms that we propose employ an
inclusion map, see (11), which requires a small amount of additional memory.

Size of C and memory usage in 3D. In the same manner we note that the memory required for a 3D case that spans from
a coarse mesh of 16 × 16 × 16 cells to a fine mesh of 256 × 256 × 256 cells will be approximately 292 MB. These
requirements can also be reduced by computing the k- and l-columns on the fly to approximately 146MB, i.e. an average
of 16 or 8 bytes per mesh cell respectively. To computationally facilitate the search for neighbours, we derive an inclusion
map, see (11), which has an additional burden of 36.8 MB. These memory costs are affordable, especially if it is taken into
account that the resolution 256 × 256 × 256 is adequate even for challenging problems, e.g. in [45] such mesh resolution
as deemed sufficiently accurate for the comparative study of numerical methods solving the turbulent Rayleigh–Taylor

nstability. Additional memory can be saved if the refinement level l is stored in C as an unsigned integer of 1 byte size;
this would result in a further reduction by 18 MBs.

In an even larger scale, further reduction in memory usage can be achieved by elaborate compression techniques,
see e.g. [22], but they fall beyond the scope of this paper. However, we note that the above mentioned 2- and 3D mesh
resolutions are memory-wise affordable and adequate for a wide range of academic and non-academic studies.

Comparison with other grid administration techniques
The reported memory consumption in alugrid [40] ranges between 700–800 bytes per element for hexahedral

elements. Due to the structure and the information stored, alugrid cannot be directly compared to our method, but
assuming a memory consumption of 146 MB, alugrid can store approximately the information for 2×105 cells whereas
our method stores the information for 2× 107 cells.

The memory consumption of p4est on 3D domains, as discussed in [36], is 24 bytes per octant. Our proposed method
on the other hand necessitates 16 bytes per octant. However, in our case we store the information of the full tree rather
than the current mesh conformation as done in p4est. In a more generally setting, p4est aims to the scalable parallelism
to thousands of processors, whereas our approach emphasizes on the simplicity, ease of implementation, and portability
of the code.

2.3. Siblings and neighbours

From the information stored in the matrix C, the parent and the children cells of every cell are directly accessible.
However, in practical situations further information is needed. In particular, the identification of the siblings and the
6
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neighbours of a given cell is important in e.g. the coarsening procedure or the computation of the numerical fluxes. In
the following we describe these operations, based on the information stored in the matrix C.

iblings
Let a cell C be represented in the line i of the matrix C. Then, its parent cell can be found in the line m = C(i, 3), and

ts group of siblings in the lines C(m, 4) through C(m, 5) in 1D, and C(m, 4) through C(m, 7) in 2D.
To identify the relative position of a cell among its siblings, we use the ordering with respect to the (intra-level) index

. In 2D in particular, a cell is a south-(S), north-(N), west-(W), or east-(E) sibling according to the rules{
W-cell, if k is odd
E-cell, if k is even,

and

⎧⎨⎩N-cell, if
⌊

k
2l

⌋
is odd

S-cell, if
⌊

k
2l

⌋
is even.

(10)

eighbours
To efficiently identify the neighbours of a cell, we employ the regularity of the mesh. For a RSM G of smoothness mr ,

nd a cell C ∈ G of level L(C) = l and intra-level index k we identify its neighbours by distinguishing the following cases:

eighbours of the same level. The neighbours of C on the uniform mesh Gd
l can be easily found using the intra-level index k.

eighbours to the left and right in dimension one, and to the W- and E- in dimension two, have respectively indexes k∓1,
hile neighbours to the S- and N- in dimension two have indexes k∓2l−1. Thus they are represented in the corresponding
1 and ∓2l−1 lines of the matrix C relative to the cell C . The same level neighbours however are not necessarily cells of

he grid G. Nevertheless the identification of these 2 cells in 1D, or 4 cells in 2D is crucial in the neighbour finding process.

eighbours of lower levels. If N is a same level neighbour of C , but not part of the actual grid, i.e. N /∈ G, then an ancestor
of N could be included in the current mesh G. If there is such an ancestor A ∈ G, then A is also a neighbour of C due

o the grid structure. In order to find all possible neighbours, we check mr generations of ancestors for inclusion in the
urrent grid. These ancestors can be identified by iteratively using the parent-cell entry m of the matrix C and switching
o the corresponding line. This means that for at most 2mr cells in 1D and 4mr cells in 2D it needs to be examined if they
re included in G.

eighbours of higher levels. As before, let N be a same-level neighbour of the cell C . If neither N nor any of its ancestors is
ncluded in G, we look for neighbours of C among the descendants of N . Once again, mr generations have to be screened.
n the algorithm we propose, we exploit the relative position of N , e.g. assume that N is an E-neighbour of C in 2D and
roceed as follows:

starting with a queue containing only N we iterate through the queue by checking each entry for inclusion in G. If
it is included, we have found a neighbour, otherwise we add the NE- and SE-child of the entry to the queue for the
next iteration step.

his way all neighbours of C , among the descendants of N , can be found in at most mr + 1 iteration steps.
For an efficient computation of all the neighbours of a cell C ∈ G, we propose to compute all same level neighbours

irst, and afterwards check the same level neighbours themselves, then their ancestors, and last their descendants for
eing included in the grid G. To allow for computationally inexpensive checks for inclusion of a cell in the current mesh,
e derive an inclusion map from the grid: For G = {C1, . . . , CN} we store

mG(C) =
{
k if C = Ck ∈ G
0 if C /∈ G

(11)

or every cell C decoded by the matrix C. This map is also used for the handling of approximate functions in FV schemes.
Note that the additional memory requirements are minor, e.g., in the 3D example in Section 2.2 approximately 36.8 MB
are required.

2.4. Refinement/coarsening

If the mesh is used for the numerical solution of PDEs, we employ the monitor functionM , which assigns a non-negative
value to each cell of the grid and accordingly marks cells for refinement and coarsening. Typically, the marking is decided
by two threshold values θcoars < θrefin. The cells for which the monitor function is below θcoars are marked for coarsening,
hereas the cells where the value of the monitor function is greater θrefin are marked for refinement.
By Gref(T ) we denote the mesh G where all cells in T ⊂ G have been refined once, i.e. replaced by their children

cells, similarly G denotes the mesh G where all cells in T ⊂ G have been coarsened once, i.e. replaced by their
coars(T )

7
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corresponding parent cell. In what follows, we assume that after evaluation of the mesh by the monitor function, we
have identified the subsets Tr , Tc ⊂ G that include cells which are marked for refinement and coarsening, respectively.

Strong refinement and weak coarsening. Note that the meshes Gref(Tr ), and Gcoars(Tc ) might not satisfy the grid regularity
condition (4). Hence Tr and Tc have to be adjusted according to the structure of G. In practice, we set higher priority on
refinement and lower priority on coarsening; we aim for strong refinement and weak coarsening. That is, we possibly refine
more cells than initially marked for refinement and coarsen less cells than initially marked for coarsening. In effect, the
actually refined and coarsened meshes are given by Gref(TR) for TR ⊇ Tr and Gcoars(TC ) for TC ⊆ Tc , respectively.

For each cell Cm we denote the dependency sets by

Dr (Cm) = {smallest set T ⊆ G : Cm ∈ T , Gref(T ) satisfies (4)},

Dc(Cm) = {smallest set T ⊆ G : Cm ∈ T , Gcoars(T ) satisfies (4)}.

Given these definitions we conduct strong refinement and weak coarsening using

TR =
⋃
Cr∈Tr

Dr (Cr ), and TC = {Cc ∈ Tc | Dc(Cc) ⊆ Tc}.

Algorithm. We conduct both, strong refinement and weak coarsening by starting with TR ← Tr , TC ← Tc and iterating
through TR and Tc from the highest to the lowest level of the cells. If a cell Cr ∈ TR in the refinement process has a
neighbour CN with L(Cr )− L(CN ) = mr , we mark the neighbour for refinement, i.e. we add CN to the refinement set TR. If
a cell Cc ∈ TC in the coarsening process has a neighbour CN with L(CN )− L(Cc) = mr , and CN /∈ TC , we remove Cc from the
coarsening set TC . We refer to the Algorithms 1 and 2 for further details.

In numerical computations, we perform a mesh update of a grid G as follows: we first compute the monitor function,
mark cells for refinement and coarsening and deduce the sets Tr and T̃c using threshold values as described above. Then
we conduct strong refinement using the effective refinement set TR. Since the refined mesh might not include all the cells
that were initially marked for coarsening, i.e. possibly T̃c ⊈ Gref(TR), we afterwards conduct weak coarsening using the
updated set Tc = T̃c\TR ⊆ Gref(TR).

Algorithm 1 Strong refinement. Mesh cells are marked for refinement using an indicator function and then sorted by
their refinement level in Tlmin , . . . , Tlmax . In the following iterations sorted by refinement level, conflicts, due to condition
(4), are resolved by additionally refining neighbours causing these conflicts.
1: Input: the current mesh Gold and the numerical solution Uold

2: Initialize the new mesh Gnew
← Gold

3: Initialize Tlmin , . . . , Tlmax ← ∅

4: for C ∈ Gold do
5: if M(C) > θrefin and L(C) < lmax then
6: TL(C) ← TL(C) ∪ C
7: end if
8: end for
9: for l = lmax − 1, . . . , lmin +mr do
0: for C ∈ Tl do
1: find the set of neighbours N(C) of C
2: for CN ∈ N(C) do
3: if l− L(CN ) = mr and CN ̸∈ Tl−mr then
4: Tl−mr ← Tl−mr ∪ {CN}

5: end if
6: end for
7: end for
8: end for
9: for C ∈

⋃lmax−1
l=lmin

Tl do
0: identify the set of children C(C) of C
1: Gnew

← Gnew
\ {C}

2: Gnew
← Gnew

∪ C(C)
3: project the numerical solution from Uold

⏐⏐
C to Unew

⏐⏐
C(C)

4: end for
5: Output: the refined mesh Gnew and the updated numerical solution Unew
8
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Algorithm 2 Weak coarsening. Mesh cells are marked for coarsening using an indicator function and then sorted by their
refinement level in Tlmin , . . . , Tlmax . In the following iterations from high to low refinement levels, coarsening of a mesh
cell only takes place if all sibling cells are on the same refinement level and marked for coarsening and no conflicts due
to (4) are detected.
1: Input: the current mesh Gold and the numerical solution Uold

2: Initialize the new mesh Gnew
← Gold

3: Initialize the new numerical solution Unew
← Uold

4: Initialize Tlmin , . . . , Tlmax ← ∅

5: for C ∈ Gold do
6: if M(C) < θcoar and L(C) > lmin then
7: TL(C) ← TL(C) ∪ {C}
8: end if
9: end for
0: for l = lmax, . . . , lmin + 1 do
1: for C ∈ Tl do
2: identify the set of siblings S(C) of C
3: if S(C) ̸⊂ Tl then
4: Tl ← Tl \ {S(C)}
5: continue for loop in line 11
6: end if
7: if l <lmax −mr then
8: compute the set N (C) = {neighbour cells of all cell in S(C)}

19: for CN ∈ N (C) do
20: if L(CN )− l = mr and CN ̸∈ Tl+mr then
21: Tl ← Tl \ {S(C)}
22: continue for loop in line 11
23: end if
24: end for
25: end if
26: identify the parent cell Cp of C
27: Gnew

← Gnew
\ {S(C)}

28: Gnew
← Gnew

∪
{
Cp
}

29: project the numerical solution Uold
⏐⏐
S(C) to Unew

⏐⏐
Cp

30: end for
31: end for
32: Output: the coarsened mesh Gnew and the updated numerical solution Unew

2.5. Data handling and projection in FV

In practice a RSM is used to handle piecewise defined functions. Let us consider a measurable function u : (0, 1)d → R
and its piecewise constant representation on a RSM G,

uG(x) =
∑
C∈G

UCχD(C)(x),

where

UC = |C |−1
∫
C
u(x) dx (12)

and where χD is the characteristic function of the set D ⊂ Ω . If we assume the representation of the grid as a vector
G = {C1, C2, . . . , CN}, such a function can be simply stored in a corresponding vector UG = {UC1 , UC2 , . . . ,UCN }.

In our implementation the information of both G and UG are stored in arrays of the same size that in general allow
for more entries as cells are included in the grid. Initially, we allocate arrays of a generous size, which we later extend in
large increments if further memory for refinement is required. The array including the information in G is not ordered and
allows for holes since array entries for cells removed by coarsening are ‘‘deleted’’ and set to zero. To account for newly
added cells by refinement the first free memory positions being zero are used. The cell average UC in the array for UG
is stored at the same index where the corresponding cell C is stored in the array for G. To identify a cell and associated
data in memory we use the inclusion map (11). We compute cell-wise fluxes in our numerical simulations for which
this approach has been efficient. However, we note that the data needs to be reordered to efficiently use common linear
algebra packages such as LAPACK [46].
9



N. Kolbe and N. Sfakianakis Journal of Computational and Applied Mathematics 416 (2022) 114442

C
i

t

c
f

P
c
w
c

a

3

i
m
s
t
e
(
r

3

W

U
c

l
a
c
a
c

Fig. 2. Diagonal movement of the monitor function (15) with refinement at intermediate and final time and after one and two subsequent coarsening
steps.

Projection to lower levels. Let Glow be a RSM derived by a series of subsequent coarsening operations on G. For each
l
∈ Glow we define LG(Cl) to be the set that includes either C l if C l

∈ G or otherwise all descendants of C l that are
ncluded in G. The elements in LG(Cl) can be easily identified using the matrix C. We employ the formula

UC l =

∑
C∈LG(C l)

(
2L(C l)−L(C)

)d
UC , (13)

o define the projected function uGlow . This function satisfies (12) for all C ∈ Glow, hence no accuracy is lost.
We apply this projection after the weak coarsening procedure to update the FV solution. Further, it can be used to

ompute the difference (e.g. in the discrete L1 norm) of two functions on different RSMs. In this case the function on the
iner grid is first projected to the coarser grid before the difference is computed.

rojection to upper levels. This projection is needed to update piecewise constant functions after strong refinement. Let us
onsider a RSM Gup, which has been derived by a series of subsequent refinement operations on G. For each cell Cu

∈ Gup

e define by U(Cu) either Cu itself if Cu
∈ G or otherwise the ancestor of Cu which is included in G. Once again, U(Cu)

an be easily identified using C. A simple projection for the definition of uGup would be the choice

UCu = UU(Cu). (14)

Higher order projections, which are not considered in this work, make use of reconstructions that take into account
lso the neighbour cells of U(Cu), these include minmod, CWENO, and more [8,47,48].

. Numerical experiments

We present three numerical applications of the mesh administration technique and the AMR method. The first one
s a generic experiment without any physical or biological interpretation. In this, we demonstrate the properties of the
esh administration and the AMR techniques using predefined monitor functions to drive the grid reconstruction. The
econd one is a 2D explosion experiment using the 2D Euler system showing that our methods can efficiently capture
he more important regions of the phenomenon. The third one is a biological application; a 2D cancer invasion model
xhibiting highly dynamic and complex solutions. The computer programs employed are implemented in Fortran 2008
mesh administration and numerical schemes) and Python 3 (visualization and error computation) and are available upon
equest.

.1. Generic experiment

In a first test, we consider a 2D RSM with refinement levels set to lmin = 5 and lmax = 7 and mesh regularity mr = 1.
e start with a uniform mesh on the lowest level, i.e. G = G2

5, and consider the time dependent monitor function

M1(x, t) = e
−100

x−(0.1+t)(1, 1)T
2
2 . (15)

sing the small time step ∆t = 0.005 and starting at t = 0, we advance in time and perform strong refinement (without
oarsening) once at every time step with threshold θref = 0.8 until the time t = 0.8 is reached.
The resulting meshes at t = 0.4 and at the final time are shown in Fig. 2. The movement of the Gaussian M1(x, t) has

eft a trace on the grid. On the trace of the Gaussian, the cells have been refined to the maximal level 7. Cells of level 6
re only visible on the transition between the finer and the coarser grid and are a result of the mesh regularity. We then
oarsen the mesh twice using θcoars = 0.8 without evolving the monitor function further in time. Fig. 2 exhibits the mesh
fter performing each weak coarsening procedure. The trace of the movement is completely coarsened after the second
oarsening.
10
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Fig. 3. Circular movement of the monitor function (16). Refinement and coarsening take place with the time evolution.

Fig. 4. Diagonally moving monitor functions meet. Note their ‘‘tails’’ obtained by setting the refinement and coarsening parameters θrefin , and θcoars
o different values.

Fig. 5. Ring of increasing diameter crossed by a plane wave used as monitor function.

In a second test we employ another 2D RSM with lmin = 3 and lmax = 7 and mesh regularity mr = 1. We start again
ith a uniform mesh on the lowest level, i.e. G = G2

3, and consider the time dependent monitor functions

M2(x, t) = e
−100

x−0.9(cos(0.5π t), sin(0.5π t))T
2
2 , (16)

M3(x, t) = e
−100

x−0.9(cos(π (1−0.5 t)), sin(π (1−0.5 t)))T
2
2 +M2(t), (17)

M4(x, t) =
{
1, 0.07 < ∥x∥2 − 0.5 t < 0.1 or 0.98 < x1 + 1.5 t < 1.02,
0, otherwise.

(18)

tarting at t = 0 and using the time step ∆t = 0.005, we evolve in time and perform strong refinement and weak
oarsening once at every time step.
In case of the monitor function M2, and θref = θcoars = 0.8, we see in Fig. 3 that the circular movement of the Gaussian

s not memorized by the mesh. We can observe a symmetric stepwise decrease of the cell levels when moving away from
he centre of the Gaussian, which is refined to the maximal level.

Fig. 4 shows the same experiment using the monitor M3 and the distinct thresholds θref = 0.8, θcoars = 0.3. A particular
emory effect of the mesh structure can be observed in the form of ‘‘tails’’ following two travelling Gaussians. The
ppearance of the tails in this experiment is due to the different refinement and coarsening thresholds and the particular
onitor function (cf. Fig. 3). Depending on the problem under consideration, e.g. in a combined shock and rarefaction
ave resolved by a FV, such property might be beneficial for the numerical investigations.
In Fig. 5 we chose as monitor function a ring of increasing diameter intersected by a plane wave given in and

ref = θcoars = 0.5. As the horizontally moving wave intersects the ring, cells in the tail are marked for coarsening but
ue to the strategy we employ and the presence of the ring some of these cells are not coarsened.
11
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3.2. Euler Equations

In this section we apply our mesh administration and refinement technique in a FV method to solve the Euler System

Ut +∇ · F(U) = 0 in Ω, U = (ρ,u, E)T , u = (u1, u2)T , (19)

U(·, 0) = U0(·, t) in Ω (20)

n the square Ω = (0, 1)2, where ρ, u, and E represent the density, velocity, and energy of the fluid per unit volume. The
ystem is equipped with transmissive boundary conditions [49], as well as with flux functions and pressure

F(U) =

(
ρu

ρu⊗ u+ pI
(ρE + p)u

)
,

p
γ − 1

= E −
ρ

2
(u2
+ v2) (21)

with an assumed specific heat ratio of γ = 1.4.
To denote the FV scheme we enumerate the cells of the RSM by Gn

= {Cn
i , i = 1, . . . ,Nn

}. The mesh Gn as well as the
number of included cells Nn changes throughout the computation due to the mesh adaptation that we employ. Further,
we denote the set of neighbours of a cell C in G by N(C). Given a time grid t0 = 0, tn < tn+1 = tn+∆tn, n = 0, 1, 2 . . . ,
we consider the cell averages

Ũn
i =

1
|Cn

i |

∫
Cn
i

U(x, tn) dx, i = 1, . . . ,N,

for which the exact evolution reads

Ũn+1
i = Ũn

i − |C
n
i |
−1

∑
Cn
j ∈N(Cn

i )

∫ tn+1

tn

∫
∂Cn

ij

F(U(x, t))nn
ij dx dt (22)

or i = 1, . . . ,Nn. Here, ∂Cn
ij denotes the edge between the cells Cn

i and Cn
j and nn

i,j is the outer normal vector of Cn
i

ointing towards Cn
j . By abuse of notation we assume in (22) that Ũn

i already refers to the average after projection to
n
i and hence Ũn

i and Ũn+1
i are averages over the same cell. The same is assumed for approximations in the following

escription. Employing approximate averages, Un
i ≈ Ũn

i , and a numerical flux function H, (22) transitions into the FV
cheme

Un+1
i = Un

i −∆tn
∑

Cn
j ∈N(Cn

i )

| ∂Cn
ij |

|Cn
i |

H(Un
i ,U

n
j ,n

n
i,j), (23)

or i = 1, . . . ,Nn. A time update of the FV scheme requires the identification of neighbours as well as an evaluation of
he numerical flux function for each pair of neighbours. The RSM that we use allows us to compute the relation between
eighbouring cell sizes and interfaces by

| ∂Cn
ij |

|Ci|
= 22 L(Cn

i )−max{L(Cn
i ), L(C

n
j )}.

We use a common vector-splitting approach, see [50], to compute both a numerical flux function H(Un
i ,U

n
j ,n

n
ij) as an

approximation to the mean value of the actual flux F through Cn
ij , i.e. of

1
∆tn |∂Cn

ij |

∫ tn+1

tn

∫
∂Cn

ij

F(U(x, t))n dx dt

and propagation velocities anij at each cell interface ∂Cn
ij . The latter allow us to update the time increment of our explicit

scheme by the local CFL condition

∆tn ≤ CFL min
1≤i,j≤Nn

|∂Cn
ij |

|anij|
.

A CFL number of 0.5 is used in our simulations.
We consider the explosion experiment (cf. [51]) with initial condition

U0(x) =
{
(1, 0, 2.5)T , if x ∈ K = {x ∈ R2, ∥x− (0.5, 0.5)T∥2 < 0.12},
(0.125, 0, 0.25)T , otherwise.

Using a RSM with lmin = 7, lmax = 9 and starting on the coarsest grid, i.e. G0
= G2

7, we perform strong refinement and
subsequent weak coarsening once after each time step of scheme (23). Therefore we use the density gradient monitor (cf.
12
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Fig. 6. Euler explosion in 2D with adaptive mesh refinement. Numerical solutions at the time instances t = 0, t = 0.05 and t = 0.12. Top: density
nd mesh in [0.25, 0.5]2 . Bottom: density and energy on the full domain. A shock, a contact discontinuity, and a rarefaction wave are formed and
esolved on the non-uniform grid. The numerical solution employs 16,144 coarse cells (l = 7) and 612 (l = 8) + 1392 (l = 9) refined cells at time
= 0, 15,136 coarse cells (l = 7) and 1208 (l = 8) + 15,136 (l = 9) refined cells at time t = 0.05 and 13,504 coarse cells (l = 7) and 2864 (l = 8)
34,624 (l = 9) refined cells at time t = 0.12.

lso [52]) defined on each cell by

gn
i = max

Cn
j ∈N(Cn

i )

|ρn
j − ρn

i |

∥Mp(Cn
i )−Mp(Cn

j )∥2
, Mn

i =
gn
i

max{0≤i≤Nn} gn
i
,

and the threshold values θref = θcoars = 0.4. We apply the projections (13) and (14) to update the numerical solutions.
In Fig. 6 we show the results of the simulation. We observe the formation of a circular shock wave travelling in an

outward direction, followed by a contact discontinuity that also moves outwards, and by a rarefaction wave that moves
inwards. We see that all three waves are properly resolved by the mesh, most notably the contact discontinuity, despite
the lower order of accuracy of the numerical scheme that we have adopted. Note also that the transition areas between
the waves are resolved by the highest refinement level.

3.3. Tumour growth model

Cancer metastasis starts with the invasion of the local extracellular matrix (ECM) by the cancer cells of the primary
tumour. Then, it evolves as follows: the cancer cells proliferate and migrate until they find neighbouring blood vessels.
They then intravasate (enter the blood stream) and travel with the blood flow. At a secondary location of the organism
they extravasate (exit from the blood stream) to a new organ and engender new tumours. For that reason, the invasion
of the ECM is considered to be one of the ‘‘hallmarks of cancer ’’ [14].

The model we address in this work is a 2D, macroscopic, deterministic, ARD system that describes the densities of the
cancer cells c as the primer unknown variable, the density v of the collagen on which cancer cells adhere and move as the
main component of the extracellular matrix (ECM), and the density of a generic enzyme m of the matrix metalloproteinases
(MMPs) family that is secreted by the cancer cells and is responsible for the degradation of the ECM.

There is a wide variety of cancer invasion models of this type that has been proposed in the literature e.g. [19,20,53–59];
we employ here a model similar to [60] due primarily to its simplicity. This model reads

Ut +∇ · F(U,∇U) = S(U), U = (c, v,m)T in Ω, (24)

U(·, 0) = U0(·, t) in Ω,
∂U
∂n
= 0 on ∂Ω, (25)

here we have assumed homogeneous Neumann boundary conditions on the square Ω = (0, 1)2 and flux function and
source term given by

F(U,∇U) =

(
χc∇v − Dc∇c

0
−Dm∇m

)
, S(U) =

(
µc(1− c)
−δvm

αc − βm

)
. (26)

One of the reasons for choosing to work with this system is the different motility properties that each component
exhibits. The cancer cells, represented by c , move using their motility apparatus on the ECM v in a particular manner:
13
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they exhibit a preferred direction towards higher densities of the ECM (haptotaxis part of the model), but still a part of
heir motion is random and is understood as cellular diffusion. The ECM v does not move or otherwise translocate. The
MPs m diffuse freely in the interstitial fluid without possessing any motility mechanism (molecular diffusion).
In addition to the above motility properties, the cancer cells proliferate and produce MMPs with a constant rate. The

MPs attach on the ECM which they instantly dissolve (at least compared to the invasion time scale of the model), and
isassemble to their constituents due to chemical degradation, see e.g. [61,62].
For the needs of this paper we perform two numerical experiments in which we use the parameters

χ = 2× 10−2, Dc = 2× 10−4, Dm = 10−3, µ = 0.5, δ = 4, α = 0.5, β = 0.3. (27)

For the numerical treatment we proceed in a similar way as with the Euler equations in Section 3.2. We solve the
system (24)–(26) using a FV approach, and consider a time grid t0 = 0, tn+1 = tn + ∆tn for n = 0, 1, . . . . We consider
at every time tn a RSM Gn

=
{
Cn
i , i = 1, . . . ,Nn

}
where the number of computational cells Nn is adapted during the

computation. The numerical solution itself is denoted at time tn by Un
i for i = 1, . . . ,Nn and is obtained through the

numerical scheme

Un+1
i = Un

i +∆tnS(Un
i )−∆tn

∑
Cn
j ∈N(Cn

i )

|∂Cn
ij |

|Cn
i |

H(Un
i ,U

n
j ,n

n
ij), (28)

or i = 1, . . . ,Nn, where ∂Cn
ij denotes the edge between the cells Cn

i and Cn
j and nn

i,j the outer normal vector of Cn
i

ointing towards Cn
j . By abuse of notation we assume in (28) that Un

i already refers to the approximate solution after
rojection to Cn

i and hence both Un
i and Un+1

i are considered on the same cell. The combined diffusion and haptotaxis
flux is approximated by the numerical flux function

H(Un
i ,U

n
j ,±ek) = ±

⎛⎝ −Dc ∇
h
i,jc

n
+χ (∇h

i,jv
n)+ ci − χ (∇h

i,jv
n)− cj

0
−Dm ∇

h
i,jm

n

⎞⎠ , (29)

here ek ∈ {e1, e2} refers to an unit vector in R2 and we use the notations

Un
i =

( cni
vn
i

mn
i

)
,

⎛⎝∇h
i,jc

n

∇
h
i,jv

n

∇
h
i,jm

n

⎞⎠ = Un
j − Un

i

| ∂Cn
ij |

or 1 ≤ i, j ≤ Nn. Moreover, the positive and negative part are defined by

f + = max {0, f } , f − = −min {0, f } .

In (29) we employ for simplicity classical finite differences to discretize diffusion, which are not considered consistent
n case of hanging nodes as they appear in our AMR scheme, clarify [63]. Using this discretization an additional error
s introduced, which depends on the area of all cells that have a hanging node at their boundary [63,64]. While for
his reason in general a more specialized scheme for diffusion on nonconforming meshes such as [65] is preferable, the
inite difference discretization in combination with AMR can still improve the accuracy of the full scheme over a uniform
ethod, when the number of hanging nodes is controlled for example by intervention in the scheme. We verify in our

irst tumour growth experiments that the number of hanging nodes does not become too large even without modification
f the scheme and that convergence can be observed experimentally (see Table 4).
We employ time steps ∆tn according to the condition

∆tn ≤ CFL min
1≤i,j≤Nn

min

{
|∂Cn

ij |

χ |∇h
ijv

n|
, |(∂Cn

ij )|
2 D−1m

}
(30)

sing the CFL number 0.5. Due to the explicit scheme we employ, the quadratic term in (30) is required for numerical
tability. However, due to the low diffusivity this term does not cause a significant computational burden. We discretize
he domain using a RSM with lmin = 5 and lmax = 7, start the simulation on the grid G0

= G2
5 and perform both strong

efinement and weak coarsening once after each time step of scheme (28). Similar as in Section 3.2 we consider the
radient of the cancer density

gn
i = max

Cn
j ∈N(Cn

i )

|cnj − cni |

∥Mp(Cn
i )−Mp(Cn

j )∥2
, Mn

i =
gn
i

max{0≤i≤Nn} gn
i

nd use the threshold values θref = 0.2, θcoars = 0.1. We project the solution between the cells as discussed in Section 2.5.
The domain

Ωtop =

{
x ∈ Ω, x2 ≥ sin

(
x31
+

2x1 + 26
+

1
)}

,

125 25 20
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Fig. 7. Numerical simulation of cancer invasion on a 2D domain with adaptive mesh refinement (time instances t = 0, t = 2.5 and t = 5 of the
ancer cell density). The cancer cells invade the ECM in the form of waves and the mesh is refined at the regions of interest.

Table 2
L1 errors and relative CPU times of the scheme in the tumour growth experiment at t = 2.5 in case
v0 = 1. The solution computed on an uniform mesh on level l = 8 was used as reference in the error
computation. The adaptive grid solution, which uses 789 coarse cells (l = 5) and 396 (l = 6) + 2176
(l = 7) refined cells, outperforms the uniform grid solutions on level 5 and level 6 in terms of error
while taking less CPU time than the uniform grid solution on level 7. More specifically, in order to
obtain approximately half the error of the adaptive mesh solution, the uniform one on level 7 should
be employed, but it implies approximately 5 times more mesh cells and approximately 6 times more
CPU time.
Grid Mesh cells L1 error Relative CPU time

Uniform l = 5 1024 4.092× 10−2 4.92%
Uniform l = 6 4096 1.743× 10−2 44.81%
Uniform l = 7 16384 7.147× 10−3 615.69%
Adaptive l ∈ {5, 6, 7} 3361 1.338× 10−2 100.00%

Table 3
CPU time breakdown of the AMR method in the tumour growth experiment. The computation was run
in case of the uniform initial ECM density v0 = 1 until final time T = 5 with AMR allowing for mesh
cells from level 5 to level 7 (compare also Table 2). The relative times were computed from average
CPU times over 10 runs. CPU time was approximately spent half for flux computations and half for
mesh updates. Within the mesh updates most CPU time was spent for the computation of the monitor
function while mesh refinement and coarsening required similar CPU times. An additional test in the
setting of Table 2 showed that reducing the mesh updates to one every second time step decreases
the total CPU time to 73.2713% of the previous run time and the relative time for mesh updates to
35.5212%, while the error was only increased by 11%.
Flux computation 47.3346%

Mesh update 52.6654% Monitor computation 32.4572%
Mesh refinement 10.1746%
Mesh coarsening 9.4059%

determines our considered initial condition

U0(x, t) =
{
(1, 0, 0.3)T , x ∈ Ωtop

(0, v0, 0)T , x ∈ Ω\Ωtop.
(31)

In a first tumour growth experiment, visualized in Fig. 7, we consider the initial condition (31) for a constant v0 = 1.
e see the creation and the preliminary phase of cancer invasion in the form of waves. These cancer invasion waves

manate from the main body of the tumour and invade the ECM. They are followed by a smooth part of the solution
ith lower cancer cell density. Possible reconstruction of the ECM (not accounted for in the current model) would lead
o a secondary wave of cancer cells invading the ECM in a similar way. We see that the mesh is refined in the area of
he first cancer wave as well as at the front of the main body of the tumour. We also note that despite the first order of
ccuracy of the numerical method, there is still a gain in accuracy and efficiency, by using AMR methods. This is shown
n Table 2, where the L1 error (using a reference solution on a uniform grid on level 8) show that the adaptive case,
here the mesh cells vary between level 5, 6 and 7, outperforms the uniform case on levels 5 and 6 at the time t = 2.5.
he L1 errors have been computed using the projection to lower levels described in Section 2.5. Moreover, the adaptive
umerical solution is more affordable in terms of CPU time1 than the uniform one on level 7. A breakdown of CPU time
hown in Table 3 revealed that roughly half the computation time was spent for flux computations and half for the mesh

1 Computations were run on a Laptop with 2.4 GHz Quad-Core Intel Core i5 CPU and 16 GB of RAM running macOS 11.4.
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Table 4
Refinement levels, final number of mesh cells, maximum number of hanging nodes through all time steps, L1-errors and experimental convergence
ates of the AMR scheme for increased adaptive mesh resolutions in the tumour growth experiment. The case of a uniform initial ECM density
0 = 1 and final time T = 2.5 was considered. CFL was chosen 0.24 and θref was reduced to 0.1 to achieve similar refinement/coarsening dynamics
n all adaptive meshes. For the error computation we employed a uniform solution on refinement level 9. AMR computations were restricted to a
ange of two or three successive refinement levels, which we increased in each run. (On the coarsest grid two refinement levels were only used
s the initial cancer density could not be represented on refinement level 2.) The error in all three components of the model decreases as finer
daptive meshes were employed indicating convergence of the AMR scheme. We further computed the experimental order of convergence (EOC)
or each component by the formula EOC = log2 (Ek−1/Ek) with Ek denoting an error in line k of the table assuming for simplicity that the mesh
fineness halves when going from one line in the table to the next one. The computed EOCs suggest first order of convergence of the AMR scheme.
Levels Mesh cells Hanging nodes c EOC v EOC m EOC

3–4 154 9 9.362× 10−2 5.767× 10−2 5.723× 10−2

3–5 448 28 4.598× 10−2 1.03 3.050× 10−2 0.92 2.517× 10−2 1.19
4–6 1543 92 2.189× 10−2 1.07 1.421× 10−2 1.10 1.049× 10−2 1.26
5–7 5377 327 1.334× 10−2 0.71 6.301× 10−3 1.17 4.663× 10−3 1.17
6–8 18952 924 6.983× 10−3 0.93 2.448× 10−3 1.36 2.318× 10−3 1.01

Fig. 8. Numerical simulation of cancer invasion with adaptive mesh refinement on a non uniform ECM. Left panel: initial ECM density. Middle and
ight panel: Cancer cells density at time instances t = 1 and t = 4. The same colourmap as in Fig. 7 is used. The migration of the cancer cells is
strongly influenced by the non-uniformity of the matrix. They concentrate and invade the ECM in the form of cancer cell ‘‘islands’’. The refinement
of the grid follows the dynamics of the cancer cells.

updates, out of which the computation of the monitor function was the most expensive part. Comparing AMR solutions
on various adaptive meshes we demonstrate in Table 4 that the computed L1-errors decrease as the mesh resolution is
lobally increased and thus the AMR scheme converges experimentally.
In the second experiment, shown in Fig. 8, we investigate the effect that a non-uniform ECM has in the invasion of the

ancer cells by imposing a spatial structure on v0 in (31) shown in the left panel of Fig. 8. We see that, despite the simple
structure of the model, the dynamics of the solution are complex. As in the previous experiment, a propagating wave is
formed. This time however, due to the non-uniformity of the ECM, the cancer cells concentrate in isolated ‘‘islands’’ as
they move through the matrix. We can again notice the separation of these invading islands from the main body of the
tumour; a behaviour that is consistent with the biomedical understanding of tumour spread, [66]. The mesh follows the
dynamics of the solution and finely resolves the front of the main body of the tumour and the areas where the invasion
takes place. The different refinement and coarsening thresholds θref and θcoars employed, cause a ‘‘memory effect’’ in the
mesh, which maintains a higher resolution in previous locations of the cancer islands. These are the areas where the
reconstruction of the ECM (not included in the current model) mostly takes place and a higher resolution can be very
useful; another benefit of the AMR method that we employ.

4. Conclusions

The current work is motivated by our wider investigation of cancer invasion models. The special nature of these
problems and, in particular, the highly dynamic behaviour of the solutions necessitate the development of specialized
numerical methods and techniques. These methods can become expensive, especially in the multidimensional cases, and
so AMR is sought as a way to decrease computational costs. The application of AMR methods in these problems, gives
rise to a series of difficulties that need to be addressed.

We have presented here a newly developed mesh structure data administration technique used as machinery for our
AMR (h-refinement) methods. When compared to existing methods in the literature, our technique exhibits similarities
to pointer-based mesh data structure techniques, and exploits the rectangular structure of the mesh and its refinement
by bisection.

We introduced an easy to use technique that avoids the traversing of the connectivity graph for the cell ancestry and,
due to the structure of the mesh, it greatly simplifies the identification of neighbouring cells. It can be easily implemented
and employed in a wide range of problems in 1-, 2-, and higher dimensional spaces. It is particularly designed for smooth
meshes, and uses their smoothness dynamically in the matrix operations. The memory footprint of the method makes
it affordable on coarse to very fine mesh resolutions. Additionally, our technique allows for adaptive minimum and
maximum refinement levels as well as for a free choice of monitor functions and threshold parameters. Although these
16
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properties are not investigated in the current paper, they are still potentially useful in cases where the solutions exhibit
multiple dynamical phenomena or blow-ups.

We have moreover presented the components of the mesh administration technique in detail and its connection to
he physical discretization of the domain. We have discussed the operations for traversing the mesh, for the identification
f the sibling and neighbour cells, as well as for the local refinement and coarsening of the mesh.
Finally, we have endowed this technique with an AMR method and presented its capabilities and its flexibility in three

pplications. The first is a generic experiment in the absence of physical or biological laws where the mesh refinement is
ictated by synthetic monitor functions. The second is a physical application of the technique and the AMR in the classical
ase of the Euler equation. The discussion of particular numerical solvers is beyond the scope of this paper, so we have
sed a common vector splitting scheme. The third application is a biological problem: a 2D tumour growth and invasion
f the ECM model. This model (like other cancer invasion models) exhibits highly dynamic solutions that constitute a
hallenge for typical numerical methods. Even for the low order of accuracy of the numerical method that we have used
e have seen a gain in efficiency and accuracy obtained by the AMR technique.
Future steps along this direction should focus mostly on the development of higher order and – for the diffusive part

f the problems – implicit numerical solvers to be used in the AMR method. The development of such methods, however,
ecessitates extensive analysis, algorithm implementation, and numerical experimentation, which falls beyond the scope
f the current paper, and is therefore postponed for a subsequent work.
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