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Abstract

In this thesis we establish a relationship between the Potential Approach to interest
rates and the Market Models. This relationship allows us to derive the dynamics of
forward LIBOR rates and forward swap rates by modelling the state price density. It
means that we are able to secure the arbitrage-free condition and positive interest rate
feature when we model the volatility drifts of those dynamics. On the other hand, we
develop the Potential Approach, particularly the Hughston-Rafailidis Chaotic Interest
Rate Model. The early argument enables us to infer that the Chaos Models belong to
the Stochastic Volatility Market Models. In particular, we propose One-variable Chaos
Models with the application of exponential polynomials. This maintains the generality
of the Chaos Models and performs well for yield curves comparing with the Nelson-
Siegel Form and the Svensson Form. Moreover, we calibrate the One-variable Chaos
Model to European Caplets and European Swaptions. We show that the One-variable
Chaos Models can reproduce the humped shape of the term structure of caplet volatility
and also the volatility smile/skew curve. The calibration errors are small compared
with the Lognormal Forward LIBOR Model, the SABR Model, traditional Short Rate
Models, and other models under the Potential Approach. After the calibration, we
introduce some new interest rate models under the Potential Approach. In particular,
we suggest a new framework where the volatility drifts can be indirectly modelled from

the short rate via the state price density.
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Chapter 1

Introduction

In this thesis we present a quantitative analysis of the Interest Rate Markets. The
motivation is to develop the Potential Approach to interest rates for valuing interest
rate derivatives and to examine the Chaotic Approach. Since the Black-Scholes formula
([10]) was introduced in 1973, over-the-counter (OTC) derivatives have been actively
traded in the financial markets. As can be observed from [2], the interest rate derivative
market is the largest among all derivative markets, which accounts for 887.0 Trillions of
US dollars and 73% of the total global derivatives for the whole of 2009; see Figure 1.1.
There are three types of contracts in the OTC derivatives, namely; OTC swaps, OTC
forwards and OTC options. In the interest rate derivative market, Interest rate swap
belongs to OTC swap, Forward Rate Agreement belongs to OTC forward, and Interest
Rate Cap and Floor, Swaption, Basis Swap and Bond Option belong to OTC option.
The interest rate swap is most actively traded, which account for 691.1 Trillions of US
dollars and 78% of the total interest rate derivatives for the whole of 2009. The value
of interest rate options are 97.3 Trillions of US dollars and 14% of the total interest
rate derivatives for the whole of 2009. As can be observed from Figure 1.2, the trading
value of interest rate options has rapidly expanded during the last decade. The size
of the interest rate option market is 6.1 times bigger in 2009 than the market in 1998.

European Caps and European Swaptions are particularly popular interest rate options.
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Research in this area has continuously evolved since the early 1970s. Rogers ([78])

claims the following requirements for a desirable interest rate model:

Flexibility to reproduce most situations in the financial market.

Simplicity to calibrate the model on European Options within reasonable time.

Input parameters can be observed or estimated from the market.

The model does not generate unrealistic values, such as negative interest rates or

arbitrage opportunities.
e Good fitting ability into the market data.

However, there is still no model which can be thoroughly justified. The Short Rate
Models were the first to be investigated within the modelling of interest rates. The
first consistent Short Rate Model was the Vasicek Model ([92]) in 1977 and then later
the Cox-Ingersoll-Ross Model ([27], hereafter referred as to CIR Model) in 1985. In
these models we specify the dynamics of the short rate. However, the models were not
correctly described, giving rather poor empirical results. As an extension of the Vasicek
Model, the Hull-White Model ([49], hereafter referred as to HW Model) was introduced
in 1990. Although the simplicity of the model still fascinates many practitioners in the
market today, it generates negative interest rates, which is undesirable for valuing
interest rate derivatives. Moreover, it does not fit well to the market data. Soon after
the HW Model, a new general framework called “HJM Framework” ([45], also known
as HIM Model) was published in 1992. In this framework, we specify the dynamics
of the instantaneous forward rate where a drift condition ensures no arbitrage. Here,
a one-factor HJM Framework with deterministic volatility is equivalent to the HW
Model. The key problems in the HJIM Framework were to ensure positive interest

rates and compatibility to the Black formula (see, for example [14]). In other words,



we wanted to find a drift condition for keeping the interest rate positivity and also
generating log-normal behavior to the instantaneous forward rate.

As a result, the Lognormal Forward LIBOR Model (see [13], hereafter referred to
as LFM, but also called BGM-Jamshidian Model) was introduced in 1997 to generate
log-normal behavior to the forward LIBOR rate. It was the first compatible model
with the Black formula and the first Market Model in which dynamics of a tradable
asset is specified. This model was widely used and once accepted as a market standard
model by the market practitioners. However, in the late 1990s a new dimension has
been added to the interest rate options, that is, the smile/skew curve in the implied
volatility of Caplets and Swaptions across the strike. The main problem of the LFM
is that it does not generate an implied volatility smile/skew curve. It gives only a
flat line, which contradicts the real market data. Since the LFM has been rejected for
modelling the volatility smile, Local Volatility, Stochastic Volatility (hereafter referred
to as SVM) and Jump Diffusion Market Models have been investigated in the area
of quantitative finance for pricing interest rate derivatives. However, it was observed
in [41] that the local volatility models have a crucial error for hedging derivatives,
predicting volatility smiles and skews in the other direction. Moreover, although we
would like to incorporate jump diffusion in the Market Models, it often causes a loss
of computational speed. Therefore the current research trend focuses on the SVM.
Among the SVM, the SABR Model ([41]) proposed in 2002 is the most appreciated
model in the current financial market; hence, it is regarded as the market standard

model (see for example, [76]). The advantages of the SABR Model are the following:

e Intuitive dynamics of the underlying assets, that is, forward LIBOR rates and

forward swap rates.
e Stochasticity in the volatility drift, which property attains volatility smile curve.

e Simple implied volatility approximation forms, which gives very fast computa-

4



tional speed.
e Predicting volatility smiles and skews in the correct direction.
On the other hand, it also has some shortcomings:
e Inconsistency between Caplet and Swaption pricing formulas.
e Lack of mean reverting feature in the volatility term.!
e Failure to satisfy the arbitrage-free and positive interest conditions.

e It does not achieve a great fit to the ATM Options across maturity and tenor, as

we will observe later.?

e Difficulty in pricing exotic options without applying the Monte Carlo Simulation.

To overcome those disadvantages some extensions of the SABR Model have been pro-
posed, see for example [61], [76] and [81]. On the other hand, the Potential Approach
has been investigated as a completely different method since the time when the Market
Model was first considered in the 1990s. The methodology is to construct a potential
process, that is, a supermartingale process which satisfies an asymptotic condition. We
impose the potential process to work as the state price density, which is the inverse of
the natural numeraire. Starting our argument from modelling the potential process, we
secure the arbitrage-free and positive interest rate conditions. It was first introduced
by Constantinides ([26]) in 1992 but the term “Potential Approach” was not coined
until some five years later, by Rogers in [79]. Jin and Glasserman ([56]) derived the
dynamics of the instantaneous forward rate under the Potential Approach, and showed
that it belongs to the HJM Framework while the interest rate positivity is secured by
the potential property of the state price density. Developing the Potential Approach,

1See, Mercurio and Morini ([61])
2Jump Diffusion Models have the same problem as observed in [29] where generated ATM implied
volatilities are increasing with respect to time to maturity, which contradicts the real market data.



Flesaker and Hughston ([33]) announced the Rational Lognormal Model in 1996. In the
Rational Lognormal Model we apply the Doob-Meyer decomposition (see for example
[72]) and decompose the potential process into a martingale process and an increasing

process, that is,

‘/L‘ = Et[Aoo] - At7 for ¢ Z 0.

The increasing process (A;):>o is then specified by an integral of deterministic functions
and a martingale process. However, their choice of A; results in the LIBOR forward
rate being bounded above and below, which renders it unable to price deep in the
money and out of the money options. Hughston and Rafailidis continued to research
along these same lines and announced the Chaotic Approach in the paper, “A Chaotic
Approach to interest rate modelling” ([48]). They showed in this paper that the state

price density is obtained through the conditional variance representation, that is,
V, =B [(Xoo —E [X))?], for t>0,

where X, is unconstrained square integrable random variable. Application of the
Wiener-Chaos expansion (see, for example [66] and [67]) gives a natural choice of the
variable X. In this model we are able to price deep in the money and out of the
money options. Moreover, the model holds tractable pricing forms for the European
Caplets and the European Swaptions. In [16], Brody and Hughston introduced the
so-called “Coherent Interest rate Model” in which we also model the variable X .
This thesis’s main contributions to the literature are two fold; firstly, we develop
the Potential Approach further. In particular, we extend an argument of Jin and
Glasserman and derive the stochastic differential equations of the forward LIBOR rate
and forward swap rate in the Potential Approach. In other words, we express the
volatility drifts of the underlying assets in terms of the state price density. From this,
we are able to incorporate the Potential Approach into the Market Models. Though

for a long time these dynamics have been assumed to be arbitrary so that we obtain



desirable distribution for the underlying assets, we now obtain a reasonable framework
in the Market Model. Furthermore, we derive the LIBOR rate volatility and swap rate
volatility in terms of the short rate. While expressing the volatility drifts by the short
rate, we also specify the state price density by the short rate and the market price of
risk. In particular, a positive short rate process secures the potential property of the
state price density. In this framework, we are able to construct a Market Model by a
Short Rate Model via the Potential Approach. Since we have the expression of the state
price density, we are able to compute a discounted value of an interest rate derivative
by the state price density. We particularly suggest to use the Affine Term Structure
Models ([32]) in this framework where the conditional expectation of the stochastic
discount factor can be explicitly solved. We show the Vasicek Model corresponds to
the Shifted-lognormal Market Model ([35], also called Shifted BGM Model). Moreover,
we also show that the Squared Gaussian Model ([69]) gives the forward LIBOR rate
volatility Gaussian distributed.

Secondly, we particularly focus on the Chaotic Approach among the Potential Ap-
proach Models and calibrate the Chaos Models for yield curves, ATM Options and
smile/skew curves of the implied volatility. Although in the original paper the tail
of Wiener-Chaos expansion is truncated at the second term, we first make the argu-
ment without the truncation to keep the generality. In particular, we show the Chaotic
Approach generates stochastic volatility. In other words, we show that the Chaos Mod-
els belong to the SVM. Here, we also notice that the Chaos Models give freedom to
choose an initial yield curve. It means that we can calibrate the models on the yields
and the options separately. In particular, we suggest a One-variable Winer-Chaos ex-
pansion where each chaos coefficient is a function of only one variable and derive the
corresponding Chaos Models, which we call “One-variable Chaos Models”. This speci-
fication allows simple analytical forms for all main processes. Moreover, we obtain the

state price density in this framework by the polynomial of a Gaussian Process. There-



fore, this method enables us to model a desirable probability density of the state price
density. Furthermore, the One-variable Chaos Models also attain Caplets and Swap-
tions expressed by a polynomial function of the Brownian Motion. We first calibrate
the One-variable Chaos Models on only yields. Among the literature the Nelson-Siegel
Form ([64]) and the Svensson Form [86] are popular in the markets. When the initial
curve can be freely chosen, traders often apply these forms to reproduce yield curves
from the market. However, applying the exponential polynomial family to the One-
variable Chaos coefficients also attains reasonable ability to fit to initial curve. Indeed

it generates the instantaneous forward rate expressed by the following quotient form:
~ 2
2;‘21 <ZT;1 bij@_CijT) Tt
- ~ 2
fzcjo P <ZT;1 bije_c”s> s~ lds

which is comparable with the the Bjork and Christensen descriptive form ([12]). Since

Jor , for T >0,

we obtain a fitting ability as good as the Svensson Form in the One-variable Chaos
Model, we implement calibration on both yields and options by the Chaos Model so
that we save a number of parameters. The option price calibration is firstly performed
with ATM European Options. Then, we test the models on volatility smile/skew
curves of the implied volatility, that is, away from the money options. We compare
the calibration results with the LFM, the SABR Model, the traditional Short Rate
Models, and the other models under the Potential Approach. From there, we show
that One-variable Chaos Models have an outstanding ability to replicate the financial
market data.

The thesis consists of ten chapters. The second chapter starts by reviewing the
literature on the Potential Approach and the Marker Models, adding a few original re-
sults. Then we remind the reader about interest rate derivatives, using the book, Brigo
and Mercurio ([14]) as a main reference. Among the Potential Approach Models, we re-
view the Chaotic Approach, the Coherent Interest rate Model, the Rational Lognormal
Model, and Constantinides Model. Among the Market Models, we review the LFM



and the SABR Model. In the third chapter, we investigate the Potential Approach
with particular motivation to establish a link with the Market Models. We develop
the argument of Jin and Glasserman and derive the stochastic differential equations of
the forward LIBOR rate and forward swap rate under the Potential Approach. As an
example of the Potential Approach, we develop the Chaotic Approach and specify the
chaos coefficients particularly for calibration work in the following chapter. Calibration
works are split into three chapters, one each for yield calibration, ATM option price cal-
ibration, and smile calibration. We calibrate all models reviewed in the second chapter
except for the Coherent Model and compare the performances with the One-variable
Chaos Models. Some possible alternative models under the Potential Approach are
proposed in the eighth chapter after the calibration. Here, we propose a new frame-
work where we construct the volatility drifts from the short rate via the state price
density. We then give our conclusions and address further works. Finally, in Chapter

ten, some appendices containing relevant background information can be found.



Chapter 2

Literature Review

2.1 The Potential Approach
2.1.1 Introduction of the Potential Approach

In this section we mainly refer to [14], [48] and [51]. Let us consider a fixed probability
space (€2, F,P) with a filtration (F;);>0, where P is the market probability measure.
Then we assume that there exists a continuous adapted process (&;)¢>0, called a “natural
numeraire” such that for ¢ > 0,
H,
%,

with respect to the filtration (F;);>o for some continuous adapted non-dividend paying

is a martingale under the market measure P

asset price process (Hi)i>o. To define the risk neutral measure, let us define a bank

account process (By);>o using the following differential equation:
(211) dBt = TtBtdt,

where (r;);>0 is a progressively measurable stochastic process, such that r; > 0 for all
t > 0. This process is called the “short rate”. The differential equation (2.1.1) has the
solution

B, = Boefot rsds, for ¢t>0.

10



The stochastic discount factor is defined by
(2.1.2) mup = = = J T 0 <t < T < oo,

Then, we may choose the bank account B; to be the associated numeraire under the
risk neutral measure Q, that is, for t > 0,
1,
B;’
with respect to the filtration (F;);>o. This implies by (2.1.2) that, for ¢ > 0,

is a martingale under the measure Q

moHy, is a martingale under the measure Q
with respect to the filtration (F;);>o. It follows by the martingale property that
E?[mOTHT] =myuH;, for 0<t<T < .
In other words, we obtain that
H,=E%el md [ for 0<t<T < oo.

Since the measure Q is absolutely continuous with respect to P on (2, F), we obtain

the Radon-Nikodym derivative
dQ

P="ap|x

where

Q(A) = /Ap(w)d]P(w), forall AeF.

Recall that the density p belongs to L? and is unique up to sets of measure zero. A

martingale process (p;)i>o under P defined by
pr :=Efp], for ¢>0,

is called a “change of measure density martingale” or a “Radon-Nikodym derivative of

Q relative to P restricted to F;”. The latter terminology arises from the fact that

_dQ
L

11



As is shown in Proposition 5.7 and Corollary 5.9 in [51], we have that for a continuous

adapted process (H;)¢>o,

E: [pH
EQ[H,] =E[pH,] and EZ[H;|= %, 0<t<T <o0.
t 1P
The reader might like to notice here that
dP -
p= ol d ElH]= E%[p~" H,].
The tower property, (see [18]), gives us for each 0 <t < T < oo that
(2.1.3) EQ[H,) = E[pH,] and EX[H;|=E, B—THT} :
t
Therefore, the following equation is obtained:
H H
2.1.4 E® || =E |p—|, for t>0.
214 B e

On the other hand, from elementary martingale properties we have that

EQ{Elz% and E{%%}:%, for t>0.
0 0 Gt 0

Thus, we obtain that

H, | o Hy
2.1.5 E {— = {——} :
(2.1.5) B, | By &
On combining the equations (2.1.4) and (2.1.5), we find that
Ht:| [ &o Ht:|
Elpp—|=E|=——]|, for t>0,
{p "B B
which allows us to express the change of measure density martingale in the following
way:
By &
=—=>=, for t>0.
"B

This is indeed a martingale under the measure P and we have that py = 1. Defining a
process (V;)i>0, called a “state price density”, by setting, for each t > 0,

1

V= —,
3

12



it follows that for ¢ > 0

_ BV
- BV

(2.1.6) Pt

Considering a conditional expectation, because the relationship (2.1.3) gives us that

B B
E2 [—tHT] = E, {B—t@HT} , 0<t<T < oo,

Br T Pt

we find that
(2.1.7) E2 [&HT] = E, [QHT] , 0<t<T < oo.

Br r
Furthermore, recalling the definitions, we may express the risk-neutrally discounted
value by

ER [myr Hr) :%ﬁHT], 0<t<T< 0.

In other words, we have that

BB

t

We now define the zero-coupon bond P, also referred to as a “discount bond”, which
gives us a risk-free investment at time ¢t > 0 for its holder securing the payment of one
unit of currency at time T > ¢ without any intermediate payments. In other words,
the discount bond process is a positive continuous adapted process (Pir)o<t<T<o0o With
the property Prr = 1. Therefore, it may be defined by the state price density in the
following way:

E, [V;
(2.1.8) P = t[VT], 0<t<T < oco.
t

For convenience, we define the conditional expectation of the state price density to be
(2.1.9) Zir =E[Vr], 0<t<T < o0,

and express the discount bond by

7
(2.1.10) PtTZVtT, 0<t<T < oo

t

13



The simply compounded (LIBOR) spot rate L;r (also referred as to LIBOR spot rate)

may be expressed using the discount bond as follows:
1l=04nrLir)Pr for 0<t<T < o0,

where 737 is the time difference in years, i.e., 7y := T — t. In other words, the LIBOR
spot rate is defined by the discount bond as follows:
1— P

Ty LtT

Lir = for 0<t<T < 0.

Using expression (2.1.10), this can be expressed in the following way:
1 Vi
(2.1.11) LtT:ﬁ (—t—l) for 0<t<T < 0.

As is observed in [57], the martingale process (p;)i>0 can be modelled by the form:
oy = e—%fg A2ds— [ AdeS7 for ¢t>0
for a square-integrable process (A);>o which satisfies the Novikov condition:
E [e%ftf)‘zds} < 00.

This process is called the “market price of risk”. This satisfies the condition that

E[p;] = 1. Thus we obtain

Note here that Girsanov’s theorem, (see [51]), allows us to introduce a Brownian Motion

under the measure QQ as follows:
t
W, = Wﬁ—/ Ads, for t>0.
0

Therefore, using the relationship (2.1.6), we obtain that
Vi =ByVo

(2.1.13) B,
Ve Jo (ret5A2ds— [ Asd W

14



A positive supermartingale with the following asymptotic condition is called a “poten-
tial”:

(2.1.14) lim E[Vy] = 0.

T—o0

The Potential Approach is an interest rate modelling method that models the state
price density process (V});>0, such that the process is potential. Note here that because
the process (p;):>o is a martingale and the integral fot rsds is an increasing function of
t if the variable 7, is positive for all 0 < s < t, we observe that the process (V)0 is a
positive supermartingale. Moreover, because the state price density formed in (2.1.13)
is positive process, the potential property of the state price density is secured under
the positive short rate models. Furthermore, using this expression with (2.1.9) and
(2.1.10), we may express for each 0 <t < T < oo that

(2.1.15)

Zir = E; [%6_ J (re+532)ds— [ AdeS] and P =E, [6_ et 3\ ds— [ AdeS] .
Because we have by (2.1.3) that
1
(2.1.16) Zup = By [BOVO’)—T] — EY [Bovoﬁ] — ByVopuE2 [—}
Br Br Br

under the risk neutral measure we may express that
Typ = Ve~ Jo $Xds= [ AW, g0 [67 I rsds].
It follows that
(2.1.17)  Zyp = Ve Jo(GAtra)ds—[g rsdWs g Q [e— s d} and Py — EQ [6_ ST d]

In order to obtain the dynamics of the state price density, first notice that on differen-

tiating both sides of (2.1.6) we obtain that

1

15



From this, we infer that
Vi ByVy

AV, = — 4B
Vi B, t + B,

dpt-
Applying the expressions (2.1.1) and (2.1.12), we obtain that

B
d‘/t = —Tt‘/;dt — %%Atptdwt.
t

Finally, from equation (2.1.6), we conclude that
(2.1.18) AV = —r,Vidt — NVidWi.

2.1.2 Chaotic Interest Rate Model

For this section, we refer mostly to [48]. Also, unless stated otherwise, for the variable
t we always assume that ¢ > 0. Integrating the stochastic differential equation of the
state price density (2.1.18), we obtain that
t t
Vi=W —/ rsVsds —/ AsVsdWs.
0 0
This gives us the following relationship:
t t
(2.1.19) Vt—l—/ rsVids =V —/ As VsdWs.
0 0
By the property of the Ito integral, we notice that the right hand side of equation
(2.1.19) is a martingale. This implies that the left hand side of equation (2.1.19) is also
a martingale. Using the martingale property and the Monotone Convergence Theorem,

(see [53]), it follows that

[e'e] t
(2.1.20) Et[/ rSVsds} = V}+/ rsVsds.
0 0

Therefore, defining a positive process o; in the following way,

(2.1.21) ol =1 Vi,

16



the state price density can be expressed in the following conditional expectation form:

(2.1.22) V, = E, [/OO afds].
t

Defining X, to be a square-integrable random variable by setting

Xeo ::/ o, dWs,
0

it follows that
Vi =E [(Xoo — B [Xo))?] -

The Wiener-Chaos expansion is then applied to let the random variable X, be ex-

o0

nep, called “chaos coefficients”,

pressed by a sequence of deterministic functions {¢,}

as follows:

e s s .
Koo = / {Qﬁ(s) —l—/ Pa2(s, 51)dW, +/ / b3(s, 51, 52) AW, dW,, + - -+ | dW,.
0 0 o Jo

Here, the Wiener-Chaos expansion can be proved using iteration of Ito Representation
Theorem, as can be seen in [67] and [89]. Therefore, the variable o4 can be expressed

by the sum

(2123) o, = énls) + / (5, 51)dW,, + / / b (5, 51, 59)dWo,dWo + -+ -
0 0 0

We call the interest rate model a “k**-order Chaos Model” when the chaos coefficients

exist only up to order k.

2.1.3 Coherent Interest Rate Model

In [16], Brody and Hughston introduced the so-called “Coherent Interest Rate Models”,

in which the chaos expansion is formulated using only one function, i.e.,

P1(s) = P(s),  ¢als,s1) = P(s)Y(s1), @3(s,51,52) = P(s)P(s1)P(s2),- - - -

In this case we have that
x 1 o0
Xoo = €xp </ P(s)dWs — —/ LZJQ(s)dS>.
0 2 Jo

17



This forces the corresponding discount bond system to be deterministic. However,
they use the fact that any element of the Hilbert Space L?(€2) may be represented as a
superposition of coherent vectors to construct stochastic term structures. For example,

for some constants a,b € R and functions 9,1, € L? they suggest that

Xoo = aexp (/OOO wl(s)dWs—%/Ooo ¢f(s)ds)+bexp (/Ooo ¢2(s)dW3—%/OOO z/)g(s)ds)

which produces a stochastic interest rate.

2.1.4 Rational Lognormal Model

We use the paper [33] and related literature ([38], [63] and [73]) as references for
recalling the Rational Lognormal Model. Because the state price density is a potential,
the Doob-Meyer decomposition states that there exists a unique increasing process

(Ap)i>0 with Ag = 0 such that for each ¢ > 0 we have

Indeed, in light of (2.1.22), we are able to express the increasing process (A;);>o in the

following way:
t

(2.1.25) At:/ o2ds, for t>0.
0

In the Rational Lognormal Model we assume that the integrand is represented in the
following form:

02 = g1(s)M, + go(s), 0<s<t,

where ¢;, go are nonnegative deterministic functions of time, and M, is a strictly pos-
itive continuous martingale such that My = 1. Hence, we observe that the Rational
Lognormal Model is comparable with the Chaotic Approach, because the difference is
only the expression of o, where in the Chaotic Approach we apply the Wiener-Chaos

expansion as seen in (2.1.23). The reader might like to see the remark at the end of

18



this section for a further discussion of this comparability. The form in the Rational

Lognormal Model gives that the state price density is represented as
Vit | [ oM+ (o)
t

:/too g1(s)Mds + /too go(s)ds
=G4 (t) My + Ga(t),

where we denote for ¢ > 0

Gﬁy:[mm@@,am_aﬂy:[mm@@.

Similarly, we obtain the conditional expectation of the state price density as follows:
Zir =5, | [ oM. + (o)
T
:/ g1(s)M,ds +/ g2(s)ds

T T

=G (T)M; + Go(T),
for 0 <t < T < oo. This implies that discount bonds are represented in the following

way:
b _ GUI)M, + Gy(T)
TTUG(t)M, + Gao(t)

Note that, as discussed in [19] and [33], discount bonds are bounded by

for 0<t<T < 0.

G\(T)
Gi(t)

Go(T) Go(T) G1(T)
< Pr < Goll) or Gal®) < Pr < ar(t)

for 0<t<T < o0,

because the discount bond may be either decreasing or increasing or constant with
respect to the stochasticity M, for fixed ¢t and T'. As shown in [19], it follows that the

short rate is also bounded by

561 < < 2.Gy(t) S 2.Gy(t) P 2G4 (t)
Gi(t)

— — , for t>0.
=G G.(t) == TG '

Therefore we are unable to price deep in the money and out of the money options in

the Rational Lognormal Model.
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Remark (Relationship with the Chaotic Approach)

When we apply the exponential martingale in the Rational Lognormal Model we may

express the function o2 in the following way:

1 [f .
o2 = gi(s)exp [— 5/ odu +/ auqu] + g2(s).
0 0

The Clark-Ocone formula, (see, for example [66] and [67]), allows us to express the
functions in the integrand of the Wiener-Chaos expansion (2.1.23), where we denote

the Malliavin derivative of ¢ by D, in the following way:
¢1(s) = Elos],  @a(s,51) = E[Dsy[os]],  ds(s, 51, 82) = E[Ds, [Ds, [04]]],
G4(s, 51, 52, 83) = E[ Dy, [Ds, [ Dy, [0]1]],

Hence, we find that

¢1(s) = Efoy],

1 1", b .
exXp [— Oudu + Uuqu] :| 0817
20 2 Jo 0

®3(s, 81, 82) :gl(s)E[ — gi((é) (exp [— %/Ot oodu + /Ot 5uquD2

1 1 t~2 . 0.0
exp [ — = o, du + UuquHUmUsw
203 2 0 0

and so on. In other words, we obtain that

625, 1) = 91(5)E|

+

s 1 1 t t
os =E[o] +/ gl(s)E[ exp [—/ o2du —|—/ 5uqu”551dWsl
0 20, 2 Jo 0

+/0/0 {gl(s)E[—%(exp[—%/Otagdw/ota—'udwu})z
1 1", L .
exp[—§ /0 Fdu + /O auquHaslo—SQ] AW, dW,, + -+ .

+
20,

We observe that the functions in the integrands are factorizable.
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2.1.5 Constantinides Model

We consider the Constantinides Model ([26]), which represents the state price density
in the following exponential form:
od a
Vi = exp [ - (g + ?O>t + ooWo(t) + Z(ml(t) — ai)Q} ,
where x;(t) for 1 < i < N are Ornstein-Uhlenbeck (hereafter, OU) processes defined
by
dx;(t) = =Nz (t)dt + o, dWi(t),

where Wy(t), Wi (t), ..., Wx(t) are mutually independent Wiener processes, and g, «;, g >
0,0; > 0 and \; > 0 are constants. To ensure that the interest rates are positive, the

parameters are restricted by
N\ >o? forany i=1,...,N,

and
N 2

g- Z(U + 1_02/)\>>>0.

=1

It follows that the conditional expectation of the state price density can be represented

Zip =By exp [ - (9+ ?)T + ooWo(T) + imm )]
= exp [— (g + %g)T} E¢[explooWo(T HEt exp[(z;(T) — a;)?]].

As we will see the Appendix, in the original paper [26], due to the facts that
o2
E[exp[ooWo(T)]] = exp |:O'0W0(t> + ?0(T — t)},

and

-

E,fexpl(2:(T) — )] = H; *(T — t) expl(T — ) + H (T — 1)z, (8) — e T

(2
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where

o2 o2
(2.1.26) H(T — 1) = 5"+ (1 _ )\_Z)GM(T—??)

fori=1,..., N, we obtain that

Zyp =exp [ - (g + %(%)T + aoWo(t) + %S(T — t)]
X H H_%(T —t)exp (T —t) + H; Y (T — t)(24(t) — @792

%
=1

—(m, H(T - 1))

SIS

2

N N
X exp [ —gT — (%)t + ooWo(t) + Z N(T —t) + Z H YT =) (2(t) — cueiT=9)2]
i=1 i=1

Therefore, the bond price can be expressed for 0 <t < T < oo by

-1
2

Por = (1L, H(T — 1)

exp | = g7 = (%)t +0oWo(t) + S M(T = 1) + S, BT = 8) (@a(t) = age 702

X exp [ - (g + 0_23)t + ooWo(t) + Zfil('rl(t) N Oéi)Q}

D=

(I, 1(T - 1))

X exp [( —g+ i )\i) (T — 1) + i H7UT = 1) (@it) — e T9)? =S (a(t) — ai)z] .

i=1
In particular, for the initial bond price, that is, when ¢t = 0, the model gives us that

1
2

Por :(HLHJT))

X exp [( —g+ z]_v: )\Z->T + ﬁ:Hi_l(T) (fL‘Z(O) - aie’\"T>2 — i(xl(O) - ai)Q].

i=1
Jin and Glasserman ([56]) claim that this form cannot always give a good initial curve
fitting. Note here that, because we restricted the parameters so that \; > o2, we infer

for 0 <t <T < oo that

2 2
o o
1— _’L>€2)\i(T7t) >1— b
(-3 rz-3
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Recalling the definition of the function H; from (2.1.26), it follows that
H,(T'—t)>1 forany i=1,...,N.

In particular, because we have for 7' — ¢ > 0 that

o2 o2
1 — _l) 20 (T—t) >1— _l’
( WA hy

we find for T — ¢ > 0 that

H(T—-t)>1 forany i=1,...,N.

2.2 Market Models

In this section we recall the Market Models, in particular the LEM using the literature
[13], [14], [35] and [75], and the SABR Model using [14], [41], [49] and [76]. Though
these Market Models do not belong to the Potential Approach, they may be compara-
ble. This is because we are able to construct the forward LIBOR rate dynamics and
forward swap rate dynamics from the Potential Approach, as we will show in Section
3.3. We will compare fitting ability of Chaos Models with the LFM and the SABR
Model in the calibration chapters. Let us first recall the forward LIBOR rate and

forward swap rate in this section.

2.2.1 Forward LIBOR rate

The forward rate agreement (FRA) is the name given to a contract in which the
holder receives a fixed interest rate payment in a future time period. In other words,
the contract sets a fixed interest rate at time ¢ for the period between T and S, for
0 <t<T <S8 < oo, where the holder of the contract receives the fixed interest rate
K and then pays a floating interest rate Lrg upon maturity at time .S, i.e., the value

of the contract at time S is given by
Nrps(K — Lrs),
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where N denotes a nominal value. Therefore the discounted value at time ¢ is obtained

in the following way:
FRA(,T, S, 7rg, N, K) =NEQ[e= ) 400 (K — Lig)]

1
:]\HE;Q |:€7ffSTSdS <TT5K - — + 1>i|
Prs

—N(Ps7rsK + Pg) — NE2 [e* [ rads (%S)} ,

where E? denotes the conditional expectation on the o-field F; under the risk neutral
measure Q. However, because
1 I s 1
sl ()] e )
' Prg i Prg

—E® ]Eg e J7 rads] <%>}

r T s 1
—ER eI B o ] () |

TS
_ T 1
—Ef e Prs ()|
- T

:-PtTa
we may instead express the discounted value as follows:

FRA(t7T7 S7TT57N7 K) :N<PtSTTSK - PtT + PtS)

1 /P
—NPgrrs [K _ —(LT _ 1)]
Trs \ Pig

The simply compounded forward (LIBOR) rate Firg is defined so that
. I
FRA(t,T,S,mrs, N, Firs) =0, ie., Fipg:=—|—=——-1] for 0<t<T<S <.
Trs \ Fis
We therefore conclude that the expression of the FRA is given by

FRA(t,T, S, TTs,N, K) = NPtSTTS(K — FtTS>~

2.2.2 Forward Swap Rate

There are two main types of Interest-Rate Swaps (IRS). The Receiver IRS (RFS) is

the term for when a fixed interest rate is received and a floating interest rate is paid.
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The opposite case is said to be the Payer IRS (PFS). The value of these contracts at

a time t > 0 are expressed, respectively, by

b
RFES(t,T,7,N,K):=N Y 7Pp(K — F, 1),

1=a+1

b
PFS(@T,T, N>K) =N Z TZ’PtTi(FtTiflTi - K)?

i—at1

where T =: {T,,T,11,- .., Ty} denotes a sequence of times, so that T, < T,y < -+ <
Ty, and 7 := {7,41,..., 7T} denotes the corresponding year fractions, that is, 7; :=
T, =T,y fori =a-+1,---,b. Here the floating leg reset dates are {1y, Tyi1,...,Tp-1}
and the swap payment dates are {T,41,Tos2...,Ty}. We may express the RFS as a

sum of FRA contracts in the following way:

b
RFS(t,T,7,N,K)= Y FRA(tT,_,,T;,7,N,K)

1=a+1

b
=N Z (TiPtTZ-K - Pthq + PtTi)

i=at1
=N Xb: TiPtTi<K— PZTa — P, )
i=a+1 Zi:a-i,-l 7, P tT;
The Forward Swap Rate S, ,(t) is defined so that
Bir, — P,

RES(t, T, 7N, Sup(t)) =0, ie., Sap(t) =

Therefore, we conclude in the expression of the RFS that

b
RFS(t,T,7,N,K) =N Y 7P, (K — Sau(t)).

i=a+1
By a similar argument, we obtain the expression

b
PFS(t,T,7,N,K) =N Y 7:P,(Sas(t) — K).

i=a+1
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Note here that because the Swap Rate SR(t,Ty) is defined by the forward swap rate
with t = T,, that is SR(T,, T,) := Sap(Ts), it follows that

(2.2.1) SR(T,,Ty) =

S a1 iPrT,
2.2.3 Lognormal Forward LIBOR Model

We first make the following notations for the forward LIBOR rate:
Fi(t) = Fry o1y §3=1,2,...,

where {T,, Tyi1,--.,Ti_1,T;, ..., Ty} is an increasing set of dates. Let Q7 be the forward
measure for the maturity 7j, having the associated numeraire P(-,T};). Considering a
process F;(t)P(t,1;),t >0, for j =1,2,..., that is,
1
F;(0)P(t,T;) = W[P(@Tj—l) — P(t,T})],
J Jj—-1

we observe using the martingale property that

EY

(1) P(15, 1) _ B0)PE,T5)
P(T;,T;) ]_ P@t,T;)

Equivalently, we have that
EY [F(T))] = Fj(t), for j=1,2,....

Therefore we observe that F}(t) is a martingale under the measure Q7. The LFM
defines the forward LIBOR rate dynamics by the following lognormal dynamics:

dF;(t) = o;(t) F;(t)dZ’ (t),

where 0;(t),t > 0 is a deterministic process, and Z7 is a Brownian Motion under the

measure Q7 with a correlation given by
dZ'(t)dZ (t) = py;dt.
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2.2.4 SABR Model

The SABR (stochastic afp) Model defines the forward LIBOR rate dynamics by the
following stochastic differential equation:
dFj(t) = v(t)Fj(t)7dZ7 (¢),
dv(t) = ev(t)dW?(t), v(0) = a,

where 3 € (0,1], € and « are some positive constants and Z7 and W7 are Brownian

Motions under the measure Q/ with a correlation given by
dZ(t)dW(t) = pdt, for pe€[-1,1].

In the SABR Model we need to compute Swaption prices separately from the Caplet
prices. Let us consider the forward swap rate S,;(t), which is a martingale under the

) . . b
forward swap measure Q®%, having associated numeraire C,(t) := >, 41 Tilr—i In

the SABR Model we assume the following dynamics for the forward swap rate under

the forward swap measure Q®®:
dSap(t) = Vap(t)Sap(t)?dZ(t),
AV () = €0ap()dW L (t),  Tap(0) = a,

where 3 € (0,1], € and « are some positive constants,and Z%® and W* are Brownian

Motions under the measure Q*? with a correlation
dZP()dW(t) = pdt, for pe[—1,1].

Though we are using the same notations, «a;, 3, p, €, these do not correspond to the ones

in the forward LIBOR rate dynamics.

2.3 Interest Rate Options

In this section we recall interest rate options using [14]. In particular, we consider

European Bond Options, Caps, Caplets, Floors, Floorlets, and European Swaptions.
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2.3.1 European Bond Options

The European Call/Put Bond Options are defined with a T-maturity bond (Pir)o<t<1<oo

and strike price K € RT, respectively giving us the following payoff at reset date ¢t > 0:
(Pr — K)* and (K — Pr)".

From this, the discounted values of the European Bond Options at time s for 0 < s <t

may be expressed using the risk neutral measure as follows:
ZBC(s,t,T, K) = E%[e ) (P, — K)] (Call Option)

and

ZBP(s,t,T,K) = EQe~Jsmdu (K — P)*] (Put Option).

These may be expressed using the market measure as follows:

1 1
ZBC(s,t,T,K) = VES[Vt(PtT —K)"| = VES[(ZtT — KZ4)"]

S S

and

1 1
ZBP(s,t,T,K) = VIES[Vt(K — Pr)t] = vEs[(KZﬁ - Zir)")].

In particular, we have that the values of the European Bond Options at the settlement

s = 0 (the time of buying the derivative) may be expressed using the market measure

as follows:

(2.3.1) ZBC(0.4,T, K) = ViOEKZtT — KZy)Y]
and

(2.3.2) ZBP(0..T, K) = ViOE[(KZtt — Za)M.
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2.3.2 Caplet/Floorlet

The Caplet/Floorlet are defined with a Tj-maturity LIBOR rate (L7, ,7;)o<t;_,<T;<00)
strike price K € R and a nominal value N (usually N = 10%), respectively, giving us

the following payoff at payment date 7; > 0:
NTj(LTj_lTj — K)+ and NTj(K — LTj—lTj>+7

where T;_; denotes the reset date (the time of exercising the option) and recall that
7; = T3 — T;_1. The reader might like to notice here that the payment date is not the
reset date. The discounted values at time s for 0 < s < 7T;_; may be expressed using

the risk neutral measure in the following way:
Cpl(s, Tj_1,Tj, 7, N, K) = NIEQ[ 7l (L K)+]

and

Fil(s, Ty, T;, 7, N, K) = N]EQ[ —Jo rudu (K—LTHTJ,V]

Then, using (2.1.7), we may also express using the T;-forward measure that

B,
Cpl(s, Ty_y, Tj, 7, N, K) N]EQ[B '(LTHT],—KV]
T
i [ Psty
(2.3.3) =NEE [ L7y (L 1, — K)Y]
PTT -

—NPST TjE [(LT] 1T K)Jr]

and similarly

Fll(s,Tj_1,T;,7,N,K) = NPTTJE [(K Lr,_1)t].
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1 ( VTj—l

~(z —1) from (2.1.11), the discounted values at time s
T3 N AT T

Recalling that Lz, _ 7, =

for 0 < s <Tj_; can be expressed using the market measure in the following way:

N
Cpl(s, Ty, Ty, 7, N, K) =17B, [Vay7(Lry 7y — K)7]
N [ Vi, +
=—F, (V. . — 1+ K1) Zr. 7.
Vts _ZTj—lTj( b ( " Tj) T]_lT]) :|
N _ T |
N e [V (- (14 K2 )
Vs | 21,y
N r +
:vEs (ZTj—lTj—l - (1 + KTj)ZTj—lTj) i|

and similarly

N
Fll(s, Ty, Ty, 7. N, K) = TE, | (L4 Km) 2,1y = Zry )|

S
In particular at the settlement s = 0 we find that

N
(234) Cpl<07 ,Tj—la irjv 7, N, K) = VE[(ZTj—lTj—l - (1 + KTj)ZTj—lTj)+]
0

and

N
Fll(oaT‘j—laT‘jaTa N7 K) = VOE[((l + KTJ)ZijlTj - Zijlijl)+j|'

Therefore, it is evident that some care is needed in modelling the variable Zr, 7,
for pricing the Caplet and the Floorlet. Recalling that Ly,_,7, = F;(Tj-1), when
K = Kary for Kary = Fj(0) at the settlement s = 0, the Caplet and Floorlet are
called “at-the-money” (ATM). If K < Kar, these are called “in-the-money” (ITM).
If K > Kary, these are called “out-of-the-money” (OTM). Note here that we have

the following relationship for the ATM Swaptions:
Cpl<07 11]’71) T}) T, Na KATM) = F”(Oa 1}71) 7}7 Tj, N7 KATM)'

The book [14] (page 41) and paper [88] show that the relationship between the Euro-
pean bond options and Caplet/Floorlet are for 0 < s <t < T < 0o, given by

1

(2.3.5) Cpl(s,Tj—1,Tj, 7,N,K) = N(1+ KTj)ZBP(s,Tj_l,Y}, —)
1 + KTj
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and

1

(2.3.6) Fll(s,Tj_1,T;,7,N,K) = N(1+ KTj)ZBC(S, T;.4,7T;, —)
1 + KTj
The markets apply the implied volatility to estimate the volatility of the option. Let

us recall the Black formula:

(2.3.7)
BI(K, F;(0),vr, ) =E¥[(F;(T;-1) — K)7]

. Tj_1v2.
ln(F](O))—i— Tzt In(
=Fj(0)<1>( K 2 ) - K(I)( K

V Tj—lvTj—1

where ® denotes the standard normal cumulative distribution function, i.e.,

1 v x2
O(x) := \/—2_7T/ e zdX.

Then the Tj_;-caplet can be expressed using expression (2.3.3) in the following way:

Cpl(0, Tj_1, Tj, 75, N, K) = P(0,T;)7;Bl (K, F;(0), vz, ,)

14

where vy, , is referred to as the “T);_;-caplet implied volatility” or “forward forward
volatility”. An implied volatility curve of ATM Caplets, that is the function T' — vy, is
called the “term structure of (caplet) volatility”. We see that the Black formula gives
us a one-to-one correspondence between the option premium and the implied volatility.

The T;_;-caplet implied volatility is expressed in the LFM by

1 (B
vr_, = o7 (t)dt.
b Tj /0 )

In the SABR Model the closed form of the T; ;-caplet implied volatilities vy, , are

approximated by singular perturbation techniques as a function of the strike K and

forward LIBOR rate F;(0) as follows:

1—8)2a2 e 2—3p2
O‘(l + [24((}«} g))K 7 + e+ € e }Tj—1>

o — ( AFOK) 7
-1 1-8 _B)2 F:(0 _B)4 F;(0 ’
(F(0)K)' 2" |14+ (52 2 (B0 4 Uit it (50 2(2)



where

2= S0 (B

and

1—2pz4+2242—p
:c(z)zln( )
1—p

Because the implied volatility form in the Potential Approach is not available, we
need to estimate it from the premium using the Black formula. The books by Brigo
and Mercurio ([14]) and James and Webber ([54]) claim that the term structure of
caplet volatility has a humped shape in a moderate market condition. We observe this

humped shape in the calibration chapter.

2.3.3 Cap/Floor

The Cap/Floor is a sum of Caplet/Floorlet contracts. Therefore the discounted values
at time s for 0 < s <t are expressed in the following manner:

b
Cap(sa Ta T, N, K) =N Z E? [6_ fSTi 7nuduTi(LTiflTi - K>+} )

1=a+1

b
Flr(s, T,7.N,K):=N 3 EZ [e* S rdu (g LTFlTi)+],
i=a+1
where the reset dates are the times {7, Ty41, ..., Tp_1} and the payment dates are the

times {Ty41, Tat2 - .-, Tp}. These discounted values may be expressed using the market

measure in the following way:

b

N
Cap(s, 7-7 T, N> K) = v Z Es [(ZTiflTifl - (1 + KTi)ZTiflTi)—i_]
5 i=a+1
and ,
N
Fir(s, T,7. N, K) = > EJ(+ Kn)Zr iz, — Zrim) -
S i=a+1

In particular at the settlement s = 0 we have that
N &
Cap(0,T, 7, N,K) = — > E[(Zr_,1, — 1+ K1) Zr,_,1,)"]
Vb i=a+1
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and
b

FlT(O,T, 7, N, K) = % Z ]E[((l + KTi)ZTi—1Ti - ZTi—lTi—1)+:|'
i=a+1

For example, a one year maturity Cap in the UK market contains three caplets, whose
reset dates are at 3,6 and 9 months after the settlement date. Payment dates are at
6,9 and 12 months after the settlement date, that is, three months in arrears in the

UK. Since we have that

b
Cap(s,T,7,N,K) — Flr(s,T,7,N,K) = N Z EQ [e’ S i ( Ly o — K)|,

i=a+1

we obtain the following Put-Call Parity:
Cap(s,T,7,N,K) — Flr(s,T,7,N,K) = PFS(s,T,7,N, K).

Because we have that

PFS(s,T,7,N,S.(s)) =0,

we may infer that
(2.3.8) Cap(s,T,7,N,Sap(s)) = Flr(s,T,7,N,Sap(s)).

Equation (2.3.8) yields that the ATM strike of Cap/Floor at the settlement s = 0 by

the forward swap rate as is given as follows:
Kary = Sa5(0).

In addition, from the relationship between European Call/Put of the zero-coupon bond
and Caplet/Floorlet, the following is inferred:

b 1

Cap(s, T,7,N,K) = Ni;I(l + K1) ZBP(s. Tt T 1)
and
1
Fir(s,T,7,N,K)=N Y (14 K7)ZBC(s,T;_1, T}, m).

i=a+1
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2.3.4 FEuropean Swaptions

A European payer Swaption (also called a “European Call Swaption”) is an option to
have a PFS contract at a future time, which corresponds to the swaption maturity.

Therefore the value of the payer Swaption at the maturity date ¢ > 0 is defined by

PS(t, T, 7. N, K) =(PFS(t, T,7. N, K)>+
b
=N Z TiPtTi (Sa’b(t) — K)+

Here we note that the length of the underlying IRS, T, — T, is called the “tenor” of
the swaption. Usually the markets apply the first reset date for the swaption maturity
date, that is t = T;,, which implies that

b
PS(t, T,7,N.K)=N Y 7:Pr,7,(Ses(T.) — K) .

1=a+1
Hence, the discounted price of the payer swaption at time s, for 0 < s < ¢, is formulated
by
; b
PS(s,T,7,N,K) = NE [e_ 5 rude N7 Py, (SR(Ta, Th) — K)*].
i=a+1
Let us recall that C,(t) = Zf:a 1 TP 1, is an associated numeraire of the forward

swap measure Q*°. Then, using (2.1.7), we may also express that

S5 CoalT) (SR(TT) — K) )

Caup ((s))
—NC, (s 9E R(T,, Ty) — K)+].

PS(s, T, 7, N, K) :N]E‘S@[

(2.3.9) _N]E@[ Can(T. )(SR(Ta,Tb)—Kﬂ
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Recalling the definition of the swap rate from (2.2.1), this discounted price may be

expressed using the market measure in the following way:

b
N_ 1 +
PS(s, T, 7, N, K) =B, [V (1= Py, - K > 7P, |
VS B i=a+1
b
N i ZtT ZtT- +
— B[ Zy(1- T2 - K Y n o)
[ S i;f Zu
b
N_ 1 +
:VSES _(Ztt — Zth - K Z TiZtTi> i|
i=a+1
In particular at the settlement s = 0 we have that
N ’ =
(2.3.10) PS(0,T,7,N,K) = —]E[(Ztt Ty~ Ky TiZtT) }
Vb i=a+1 Z

Similarly, the discounted value of a European receiver Swaption (sometimes called a

“European Put Swaption”) with the same underlying IRS is formulated by

b
RS(s, T, 7, N, K) = NEZ[e- S re 3™ P (K = SRT,, 1)) ']

i=a+1
Using the market measure this can be expressed in the following way:

b
N +
RS(S,T,T,N, K) = 7E8|:<K Z TfL’ZtTi _Ztt+Zth) :|
s i=a+1

In particular, at the settlement s = 0 we have that

N ’ +
RS(0, 7.7, N,K) = VOEKK > 1~ Zu+ Zim) |

1=a+1
When K = Kary for Kary = Sap(0) at the settlement s = 0, the payer Swaption is
ATM. This is precisely the same as we had for the Cap and the Floor. Note here that

we have the following relationship for the ATM Swaptions:

PS(077—77—7N7KATM) = RS(077—77—7N7KATM)'
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The volatility of the Swaption may be estimated by the Black formula. Recalling the
Black formula from (2.3.7) we may express for the Swaption with the maturity 7, and

the tenor 17, — T, that
PS(0,T,7, N, Karar) =NCap(0)EX[(S,(T0) — K)*]
:NCa,b(O)Bl (K, SaJ,(O), V(1)) ,

where v, is referred to as the “Swaption implied volatility”. The dynamics of the

SABR Model gives us the following Swaption implied volatility form:

(1-B)%a? pBea 22-3p?
a<1 * [24(3 OIS 4(Sup(0)K) 2 T }Ta>

z

Yap = ﬁ’ 52 S (0 gy Sy (0 )
(Sup(0)K) 2 [1+“Qf> In?(Zeal@y 4 LB 14 ;;U)] 2(2)
where
. € % Sa7b(0)
2= ~(Sup(0)K) T In (2=
and

1—2pz24+2242—0p
:U(z):ln( )
I—p

Though we are using the same notations, «a;, 3, p, €, these do not correspond to the ones

in the Caplet implied volatility.
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Chapter 3

Further investigations of the
Potential Approach

We develop the argument of Jin and Glasserman ([56]) in which the stochastic differen-
tial equations of the variable Z;r and the instantaneous forward rate f;r in the Potential
Approach, in particular Flesaker-Hughston Positive Interest Framework ([33], hereafter
referred to as the FH Framework), are expressed. While Jin and Glasserman proposed
the relationship between the Potential Approach and HJM Framework, we propose a
relationship between the Potential Approach and the Market Model. In other words,
we construct the dynamics of the forward LIBOR rate Firg and the forward swap rate
Sap(t) in the Potential Approach. In Chapter 8 we make further investigation and
show that the Market Model can be constructed from the Short Rate Model via the

Potential Approach.

3.1 Forms of the main processes

Let us first recall the definition of the instantaneous forward rate. This is defined to

be

0
ftT = _a_TlnPtT7 0<t<T < 0.
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In the Potential Approach, the form of the discount bond is given by the expression
(2.1.10), i.e.,

It follows that

where we define a variable M;r to be

0
(311) MtT = —8—TZtT, 0 S t S T < 0.

The variable Z;r is positive because it is a conditional expectation of the positive
variable Vp with respect to F;, for 0 <t < T < oo. In addition, the supermartingale
property of the state price density ensures that the variable M;r is positive for any
0 <t <T < oo. Therefore, under the Potential Approach the positivity of interest
rates is secured. The short rate, zero-coupon yield (continuously-compounded spot
interest rate), forward LIBOR rate and forward swap rate may be expressed using

their definitions for 0 < ¢ <T < § < oo in the following way:

My
e = fu = v,
1 1 Zor
= nPy = ———In | 22
= T T—t”(&/t)’

(3.1.2) Fyrg = L(ﬁ _ 1) __ <@ _ 1)

and
(3.1.3) Sap(t) =

In particular, at the initial time ¢ = 0 we have that

Z M,
(3.1.4) Vo= Zw, Por= VLOT for = ZO;
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1 Zor 1 (W
=——in|— Lor==|—— -1
Yor Tn<VO)’ 0T T(ZOT ),
1 ZoT Zot, — 2o
Fars = 5o (1) and S,0(0) = S
S =T \ Zos Z?:a-s-l TiZOTi
The following can be directly deduced from (3.1.1) and (3.1.4):

0
(3.1.5) E[Vi] = PuVo, El[Zir] = PorVo, E[Myr]| = —a—TPOTVo = for PorVb.

Applying the form of the state price density expressed in (2.1.22), the Conditional
Fubini Theorem (See [89]) gives us that

(3.1.6) v, = / Efo2ds and Z = / E,[0%]ds.
t T

From definition (3.1.1), we obtain that
(3.1.7) My =Eio7], 0<t<T < 0.

Then, all main processes can be formulated using the variable o, as follows:

B f;o E;[0?]ds

E, [U?r’] _ Uf

3.1.8 P, —_- R — i =t
( ) tT j;oo ]Et [O’g]dS ) ftT f;o ]Et [O’g]ds ) Tt LOO Et [Ug]ds’
1 [ Ey[0?)ds 1 [ Eo?ds
Yhir = — In 53 2 ) Lir = 59 B )
T—t [ Eylo?]ds T —t [, Eo?]ds

1S Efo)ds Jr, Edlot]ds
L ; and  S,(t) = — = .
S — Tfs E¢[o2]ds Dicatr Ti fT—i ICHEE

The initial prices, that is, the prices at t = 0, are then given by the following expres-

FtTS =

sions:
. :fT E[o?]ds o = E[c2] . :U—g
U LCERds’ T TERHdsT 7 [T E[2ds’

Jr E[O’?]ds> ] T El0?ds

1
= —min| T = R o
Y "<f0 Efo?ds T [ EloZ)ds

S Tb 2

1 E 2 d E O ds
_fgo[—gz]s and  S,5(0) = —; Jr, [Oo] :
Tfs Elo2]ds Yicatr Ti fT—iE[Ug]dS

Fors =
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3.2 Dynamics of the main processes
3.2.1 Dynamics of the discount bond

For the conditional expectation of the state price density, because it is a martingale
with respect to JF;, we may express using Martingale Representation Theorem (see for

example, [68]) that
(3.2.1) dZyr = Vip ZypdW, for 0<t<T < 0,

for a unique F;-measurable random variable ‘A/tT, which is called the “risk-adjusted

volatility”. It follows that

(322) ZtT = POT‘/O exp |: / Tdu + / VquW
and
1 t R t .
(3.2.3) Vi = Py Vo exp [ -5 / V2du + / Vutqu},
0 0

where we recall that E[Z;r] = PorVo and E[V}] = PyVp. Hence, we observe that
modelling the risk adjusted volatility is equivalent to modelling the state price density.
On the other hand, applying the It6 product formula, (see, for example [60] and [68]),

we obtain in this case that
Zyp
aPr = d(ZF) = Zd() —dz d( )dZer.
T v i\ 3y + A + v T
Applying Itd’s Lemma, (we refer the reader to [57] or [60] for the statement of Itd’s

Lemma), we obtain that

1 1
:(rt + A2 %dt + )\tv dW,.
Therefore, we obtain that for 0 <t < T < oo

(3.2.4)

YA YA Zyr Zyr
dP, )\2 Tt N2 AW, + Ve 2 aw, + M\ Vi 2 gt
(3.2.5) =1 + A)— v + At v t + Vir v t + AVir v

:(Tt + MM+ ‘ZﬁT))PtTdt + (A + VtT)PtTth-
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The dynamics allows us to express the discount bond in the following form:

~

t 1 R t R
Pup = Popexyp | / (ru+ 2+ Var) = 500+ Var)? ) du + / O+ Var)dW, .
0 0
However, because we suppose that P; = 1, it follows that

Pyr exp [fg (Tu + A + Vir) —
Py exp [fot (T‘u + A + Vi) —

(M + VuT)2>du + O+ VuT)qu}
(M + f/ut)2>du + O+ f/ut)qu]

N[

Pir =

N[ =

~ A

Bor 1 72 72 '
——Lexp | - 5/0 (V2 = V2)du + /0 (Vaer = Vi)W, .

It can also be expressed in the following way:

t

~

(3.2.6) P = PorVoV, texp [— %/Ot V2 du +/0 VquWu], 0<t<T< o0.
On the other hand, denoting the T-maturity discount bond volatility by
(3.2.7) Qr =M+ Vip, 0<t<T < o0,
it follows from (3.2.5) that
AP = (re + X\Sr) Perdt + Qi PerdWs,
which corresponds to the dynamics in [34] and [48].

3.2.2 Dynamics of the instantaneous forward rate

Let us recall the random variable M;r defined in (3.1.1) is a martingale with respect to
F;. Therefore, applying Martingale Representation Theorem, the stochastic differential

equation of M;r can be expressed as follows:
(3.2.8) dMyr = nir MyrdW,
for a unique F;-measurable random variable 7,7. We here obtain that
1 t t
Myr = E[M;r] exp [ - 5/ ndeu + / nquWu].
0 0
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Using (3.1.5) and (3.1.7) it follows that
(329) Myr = h/TMtTa 0152 = htMtta for 0<t<T < o0,

where we have defined

t

. 1 !
hr == forPorVo and M;p := exp [— 5/ M du +/ nquWu]'
0 0

Note here that, applying these variables to expression (2.1.22), we may construct the

FH Framework, that is,

V.= / hthsds and Zyp = / hSMtsds, 0<t<T < 0.
t

T

Now, applying the Ito product formula, we obtain that

M,y 1 1 1
d :d( >:M d(—) —_dM, d(-)dM .
Ifir Zor T Zor + Zor T+ 7o T
However, because 1t6’s Lemma gives us that
1 1 1
d(—) — (A7)’ — ——dZ,
Zyr Zth( tT) Zt2T "
VZ . Vir
=—=dt — —dW,,
Zao Zo
we obtain that
VQ VT 1 ‘A/Z ‘A/;tT
dfsr =M (ﬂdt _ de) M, (ﬂdt _ —dW)dM
(3.2.10) Ifir T 77 Zor t) + 7 T+ Zor Zor t T

=Vir (V}T — ey ) ferdt — (VtT — 1t ) ferdW.

This implies that for 0 <t < T < oo,

1 t R t R
fir = e [5 [ (Vi = stgldu— [ Wir = nurlaw.]
0 0

and

~

1 t N t
re = fOt exp |:§ / [Vu2t - ngt]du - / [Vut - nut]qui| .
0 0
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However, since for each 0 <t < T < oo, we have that

or " T ar Zyr
1 (ZtTa%Dt[ZtT] - Dt[ZtT]a%ZtT)

0 o _ 0 DilZ]

(3.2.11) " Zir Zyr
:MtT <Dt[_MtT] I Dt[ZtT}>
Zir M Zir

:(‘ZiT - TItT) Jer,
it follows that equation (3.2.10) can be translated to

N 9 .
(3.2.12) dfir = VtTa_TWTdt — 8—TVZTCZWt,

which corresponds to the one given in [56]. Because we have that
T 9 - .
| gVids—x=Vir, 0<t<T <o,
. Os
the dynamics of the instantaneous forward rate may also be expressed as follows:

o . a9 - 9 -
dfer = (/ &%sds — )\t>a—TVtTdt — 8—T‘/%Tth-
t

Notice that these dynamics satisfy the arbitrage free condition. Now, integrating the

dynamics in (3.2.12), we obtain that for 0 <t < T < oo,

tA a . t 8 .

2.13 = Vur —=Vurdu — —VyprdW,
(3 ) fr f0T+/O Ty Vurdi /0 o7 T
and

t . a R t 8 .
(3214) ry = fOt +/0 Vutavutdu —/U EVutqu

Note here that we may deduce from the definition o2 := r,V; that

t . a . t 8 . 1 t . t N
a§:<f0t+ /0 Vit Vil — /0 gvmdwu) P,V exp [—5 /0 V2du + /0 vutdwu]

AN /
~ ~~

=7 =Vi
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which corresponds to equation (25) in [56]. The process (0;);>¢ can also be expressed
in the following way:

1 t o 1 t L
af = forexp [5/ [Vft — nit]du — / Ve — nut]qu} Py Vo exp [ — 5/ Vftdu +/ Vutqu}
0 0 0 0

J/

~~ ~~
=r¢ =Vi
t

1 t
= forPot Vo exp [— 5/ nitdu +/ nutqui|
0 0
:htMtt>

which corresponds to the expression given in (3.2.9).

3.2.3 Dynamics of the short rate

Let us first make two further definitions, namely,

-0 A 0 -
3.2.15 qr = Vir—Vir and 6y = ———Vir for 0<t<T < o0,
oT oT

so that the dynamics (3.2.12) may be represented in the following way:

(3.2.16) dfir = dypdt + 6,0dW,.

Proposition 20.5 in [11] states that the dynamics of the instantaneous (3.2.16) gives

the following dynamics of the short rate:

. 0
(3217) drt = <att + 8_TftT

)dt T 6,d W,

T=t+
Although the proof of Proposition 20.5 can be found in [11], we attach a detailed proof
in the Appendix. Recalling the definitions given in (3.2.15), we express the dynamics
of the short rate in the following way:

~ 0 -
(3.2.18) dry = (VtTa—TV;T

i (] v,

Furthermore, by the relationship (3.2.11), this equality may be written in the following

0
+ a_TftT

T=tt T=t+

way:

0
(3219) th = ()\t(/\t + 7]tt)7’t + a_TftT T:t+>dt + (>\t + ntt),rtth‘
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3.3 Relationship with the Market Models

In this section, we investigate the dynamics of the LIBOR forward rate and swap rate.
In the Market Models we start the argument from modelling these dynamics. It is
a convenient method, because these are the underlying assets of Caps, Floors, and
Swaptions. Moreover, the market applies the corresponding option volatility using the
Black formula, which is derived from the dynamics. Thus, expressing these dynamics
in the Potential Approach enables us to relate the Potential Approach to the Market
Models. We notice that the risk adjusted volatility Vir corresponds to the variable —;7
in the Market Model as expressed in the book [35]. Indeed, this book mentions that
specification of the function ;7 is equivalent to modelling the term structure, while,
as we observed, the risk adjusted volatility Vir specifies the dynamics of instantaneous

forward rate as follows: For 0 <t < T < o0,

9 . 9 .
dfyr = WTﬁ_TVtTdt — a_TVtTth-

In this section, we will observe that it also specifies the forward LIBOR rate dynamics
and forward swap rate dynamics. Furthermore, we will find that the market price of
risk and the bond volatility may be expressed respectively in the following way: For
0<t<T < o0,

A=V, Qur="Vir— V.

3.3.1 Dynamics of the forward LIBOR rate

Let us first make the following definition:

1 t R R t R .
0 0

Then using (3.2.2) we find that

ZtT o POTthTS

= , 0<t<T<S<
Zis  DPos

45



and also by the forms (2.1.11) and (3.1.2), i.e.,

1 A 1 VA
Lth—(i—l) and Fth:S_—T(ﬁ—l),

we obtain that for 0 <t <T < 5 < o0,

) thTS _ 1

Lir = .
- S—T

1 < 1+ TLOT thtT

1
~1) and Firs = (R
T— i\ T+ Ly and furs = \Fors g

Here we see that the form of the variable ‘A/}T determines the distribution of the LIBOR

and the forward LIBOR rates. Because [t0’s Lemma gives us that
ders =915 4G pg + %GGtTS (dGirs)?
—GCirs < _ %(V}?T — V2t 4+ (Vip — f/ts)th> + %@Gm(f/ﬁ — Vis)2dt
_Girs ( _ %(VET —V2) + %(XZT — Vts)2> dt + 73 (Vi — Vig)dW,
= — 9V (Vir — Vig)dt + €775 (Vi — Vig)dW,,

we find that

Z AN NN ~ NNV

d(5E) = ~Vis(Vir = Vig) -t + (Vir = Vis) ZEdWh.

Zus Zis Zs

Therefore, because we may infer that
1 Z
s = a(Z1)
S—T \Zsg
. VsV — Vig) o 2Tt 4 (Vi — Vi) o 2T aw,
- tS\ VT tS S — T ZtS tT tS S — T ZtS ty

we find that

NN . 1 ~ ~ 1
(3:32) dFirs = Vis(Vir = Vis) (Furs + g— ) dt + (Vir = Vis) (Furs + g—= ) dWi.

By equation (3.2.7) this can be expressed by the discount bond volatility ;7 in the
following way:

1 1
dFirs = (At — Qus) (Qr — Qus) (Fth + S——T>dt + (ur — Qus) <FtTS + S——T>th‘
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We notice here that we may obtain the forward LIBOR rate shifted log-normally dis-
tributed when the process (‘Z&T)OStST<oo is deterministic. The LIBOR rate volatility
Yirs, which is defined by the equation

(3.3.3) dFrs = —ViswrsFarsdt + s FirsdWy,

is computed from (3.3.1) as follows: For 0 <t <T < S < o0
~ ~ 1 ZtT 1 ZtT -
=Vir —Vig) ————|—= | =— —1
Yers =(Vir tS)S—TZtS {S—T(Zts )]
Zyr
Zir — Zis
Hence we obtain that the forward LIBOR rate dynamics may be expressed in the

(3.3.4)
=(Vir — Vis)

following way:

A - 7 - - VA
dFyrs = —Vis(Vir — Ws)ﬁFthdt + (Vir — Ws)ﬁFthth.
Recalling the expression (3.2.7), the forward LIBOR rate volatility can be expressed

by the discount bond P,y and the discount bond volatility £2;7 in the following way:

FPir
(3.3.5) Yers = (Qr — th)m.
The Black formula assumes that the LIBOR rate volatility ;g is deterministic. In the
LFM, we estimate the LIBOR rate volatility from the market by applying either non-
parametric methods or parametric methods, assuming it to be deterministic in both
cases. However, when we arbitrarily choose the LIBOR rate volatility, the state price
density is not guaranteed to be a potential. Therefore the arbitrage free and positive
interest conditions are no longer guaranteed. In addition, the assumption of the log-
normality causes a problem for modelling the volatility smiles, as it allows only flat
volatility line. Some other local volatility models have been suggested for the volatility

smiles, such as the shifted BGM Model ([35]). In this case the dynamics of the forward

LIBOR rate is expressed as follows:
(3.3.6) dFyrs = —VisYe(Firs + krs)dt + 41(Firs + krs)dWs,

47



where

. A N 1
Y (Firs + krs) == (Vir — VtS)(EfTS + S——T>’ 0<t<T <S8 <00,

and where 4; and krg are deterministic functions such that —oo < kpg < S_LT Unfor-
tunately these local volatilities models have a crucial problem in hedging performance.
The book [35] claims that the shift krg models volatility skew and stochasticity of
the function 4; models kurtosis. Therefore we would need to incorporate a stochastic
property into the risk-adjusted volatility. However, as we observed already, modelling
the process (01)i>0 with stochastic property yields desirable features. In addition, as
shown in [48], the Chaotic Approach has analytical formulas for both Caps/Floors and
Swaptions. The SABR dynamics may be constructed from equation (3.3.20) as follows:
For 8 € (0, 1],

5 dFyrs =+ |dt + versFyra FlpgdW,

- —[ - )dt + vips FlhgdW,

where the quantity v;7¢ can be expressed as follows:

Zyr ( Zis )B

virs = (S = TV ' (Vir — V4
s 1= (S = 1) (Vir = Vi) 3% (-~

3.3.2 Dynamics of the forward swap rate

As we observed in Section 3.1, the forward swap rate may be expressed in the following
way:
Zir, — Zur,

Sep(t) = —/——.
7b( ) Z?:a—‘rl TiZtTi

Therefore it is certain that we are able to construct the dynamics of the forward swap

rate only from the process (Zir)o<t<r<c- Let us first notice that

d(Zir, — Zir,) = (Vir, Zor, — Var, Zer, ) AW,

d( zb: TiZtTi> = < zb: Tz"ZﬁTiZtTi>th7

i=a+1 i=a+1
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and
b 2 b ~ 2
(d Z TiZtTi> = ( Z Ti‘/tTithl) dt.
i=a+1 i=a+1

In addition, we infer using It6’s Lemma that

! L (a i n) - o i )

! S i TiZer > (5 ; ’ '
imat1 19T Diicap Tilizy ) imat Diicap1 Tidar, ) imatl

N 2
( S a1 TiVir, Zm-) b 7
+1 dt _ ZZ:lZ—‘rl TZ t thQ th

3
< Z?:a-&-l TiZth‘) ( Zi'):a-l—l TiZtTi>

Putting all this together, we are now able to compute the dynamics of the forward

swap rate

1 1
b A ) + b
Zi:a+l Ti LT, Zi:a+1 TiZtTi
1

+ d(ﬁ) d(ZtTa - Zth)
i=a+1 1T

2
b ~ ~
( Zi:a—i—l 7-i‘/tTi ZtTi> Zb Tiv;thTi

1=a-+1
b 3 b
( Zi:a—i-l TiZtTi> ( Zi:a+1 TiZtTi>
b ¥ A N
Zi:a“ TiViZer, Vir, Zir, — VthZth] AW
2 b t
b ; T 2y,
< Zi:a+1 TiZtTi> Z'L:a+1 1 LT
b ’ b - ~ .
Zi:a-i-l Ti‘/tZtTi |: _ Zi:a+1 Ti‘/tTi ZtTi + ‘/tTa ZtTa _ ‘/;Tb Zth

b b _
Zi:a—l—l T Zyr, Zi:a—H T Zy, Zir, — Zi,

0Sus(t) =(Zur, — Zth)d( A Zer, — Zun,)

= l(ZtTa — Zi1y) 3 (Vir, Zir, — ‘A/thZth)] dt

- [(ZtTa — Zum,)

] Sap(t)dt

b ~ N N
{_ Zi:b"“ Vit | Ve Zir, = VthZth] Sap(t)dW;.
Zi:a+1 TiZtTi ZiT, — ZtT,,

Therefore the forward swap rate denoted by 7,,(t) may be expressed in the following

way:
. . ) .

(3.3.8) Fa(t) = Vi, Zvr, — Vir, Zur,, B Zi:aﬂ T.ViZir,

o @ ' Zyr, — 2y, Z?:H T 7, '
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In other words, we have that

QtT P, — QthP Ty, ZZ a+1 TthT PtT
P Ta Pth Zb_ T’L-PtTl

i=a+1

(3.3.9) Yap(t) =

We know from the definition that modelling the dynamics of the forward swap rate
provides a Swaptions pricing formula. The Black formula computes the swaption pre-
mium, assuming that the variable 7, ;(¢) deterministic. Here we notice that the forward
swap rate dynamics is comparable with the forward LIBOR rate dynamics expressed
n (3.3.3). Indeed, the forward rate dynamics can be derived from the forward swap
rate by setting 7' =T, and S = T,,1 = T, as could be expected from the definitions.
Finally, the SABR dynamics may be constructed from there as follows:

dSap(t) = Jdt +Fap(£)Sh, (1) S5, (1) AW,
(3.3.10)
=[--]dt + Vg p(t )S B (1) AWy,

where we denote the volatility term by

~ Zz atl TthZtﬂ VtTa Zyr, — ‘ZﬁTbZth Z?:a+1 Ti Zyr; \ B—1
Tap(t) = ( pes n ) ( ) |
Zi:a+1 T’LZtTl ZtTa - Zth ZtTa - Zth

3.3.3 Further investigation of the volatility drifts

We apply the Malliavin Calculus to express the volatility drifts by only the variable
Zyr. The Clark-Ocone formula states that a square integrable F;-measurable random

variable F; may be represented in the following way:
t
(3.3.11) F, = E[F)] +/ Es[Ds[F]]dW, for ¢ >0,
0

where D; denotes the Malliavin derivative with respect to t. Therefore, the Martingale

Representation Theorem for the variable Z;r can be interpreted in the following way:

t
ZtT = ZOT +/ ES [Ds[ZtT]]dWS for 0 S t S T < 0.
0
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Differentiating both sides, it follows that
(3.3.12) dZyr = Dy Zyr]dW;,
where we define D;[Z;r] to be

Dy Zyr] := lim Ds[Zyp] for 0<s<t,

s—=1—

while we have that

lim Dy[Zir] =0 for 0<t<s.

s—tt
The reader can also find this asymptotic argument from the literature [52] and [59].
Note here that, applying Proposition 5.6 from [67], (see also Proposition 4.1 from [7]),

the following interchange is satisfied:
(3313) Et [Dt[ZtT” = Dt [Et[ZtTH for 0 S t S T < 0.

Comparing equation (3.3.12) with expression (3.2.1), we obtain that

(3.3.14) Vir = for 0<t<T < 0.

Recalling the dynamics of the state price density, which is expressed in (2.1.18), we

may similarly obtain that

D
(3.3.15) At = — i[/%] for t>0.
t

Furthermore, because the discount bond volatility may be expressed in the following

way:

(3.3.16) = for 0<t<T <0,

the quotient rule of the Malliavin derivative gives that

Di[Zir|Vi — Di[VilZer — Di[Zir]  Di[Vi] o

3.3.17 Qpr = = =V P
(8:3.17) & ViZor Zor v, T
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Because we have that D;[1] = 0, we obtain from (3.3.16) and (3.3.17) that
(3318) QTT =0 and VTT = _)\T for T Z 0.

Inserting the risk-adjusted volatility expressed in (3.3.14) into equation (3.3.4), the

forward LIBOR rate volatility may be also expressed in the following way: For 0 <t <

T<S <o

. (Dt [ZtT] D, [ZtS] ) Zyr

TS = -
Zor Zis /) Zyr — Zis
Zir 1

=(DilZi] - DilZis) 5

(3 3 19) ZtS ZtT - ZtS
o Zir — Zs 1
—(D,[Z] — D, Z (1 ))
(D] = Dizs) 1+ 720 ) 7o

:Dt[ZtT — Zis]  Di|Zs]
Zyr — Zis Zis

Therefore, we are now able to express the stochastic differential equation of the forward

LIBOR rate expressed via the Potential Approach as follows:
(3.3.20)

D Zr —Z D, Z
dF s = — t[ tT ts]_ t[ ts]

Zir — Zus Zis

Dt[ZtS] (Dt[ZtT - ZtS] _ Dt[ZtS]

P dt+<
Zys Zir — Zys Zus ) s

) FupsdW,.

This allows us to infer that the dynamics of the forward LIBOR rate may be determined
by the conditional expectation of the state price density, i.e., Z;7. Note here that

because we may express that
FtTS — [ .. ]dt + Dt[FtTS]th

and

1 <ZtT _ 1)] 1 ZtSDt[ZtT - Zts] - (ZtT - ZtS)Dt [ZtS]

D\ Fyrs| =D — =
t[ tTS] t|:S_T Zts S—T (Zt5)2 )

the forward LIBOR rate volatility may also be computed in the following way:
DilFyrs] _ ZisDilZir — Zis] — (Zir — Zis) Di| Zss]

S =T (Zur — Zus) Zus
_DilZr — Zis]  DilZi]
Zir — Zis Zis
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as expected. Similarly, the volatility of volatility 7,75 can be computed in the following

way:
Dy[F,
(3.3.21) Nirs = Dilvirs] Dt[%] _ Di[Di|Firs]]  Dy[Firs]
.O. 4 = = = — .
NS %;?] Dy[Fyrs] Firs
Because we have that
1 Zys Dy Zp — Zys| — (Zir — Zis) Di| Zys]
DDy Fursl] = D [ ]
![Dil Firs]| S—T17" (Zis)?
1 Dy[ZysDi|Zyr — Zis) — (Zur — Zis) D[ Zys]]
S—T (Zis)?
B 2D Zys)(Zis Dy Zur — Zus) — (Zur — Zus) Dy [Zts]))
(Zis)?
we find that
Dy [Dy[Fyrs]] Dy [ZisDi[Zyr — Zis) — (Zur — Zis) D[ Zys]] B 2Dt [Z:s]
Dy[Firs] Zis Dy Zyr — Zis| — (Zyr — Zis) Di[Zys] Zis

Therefore we conclude from equation (3.3.21) that
Dy Zys Dyl Zir — Zus) — (Zur — Zus) Dil Zis)) _ DiZir — Zis]  Di[Zys]
ZisDilZir — Zis| — (Zir — Zis) Di| Zis] Zyr — Zys Zis
_DilZirs] Zirs
EtTS ZtS(ZtT - Zi&S)7

where we have defined

hrs =

ZtTS = ZtSDt[ZtT] - ZtTDt[ZtS] for 0 S t S T S S < 0.

At this point we would also like to formulate the dynamics of the SABR volatility v;rg.
The volatility of volatility under the SABR dynamics may be found by

D, [UtTS]

(]

However, it seems we are not able to obtain a simple form. Using expression (3.3.14),

the forward swap rate volatility form in (3.3.8) may be interpreted in the following

way:
b
(3.3.22) Fus(t) = Dy Zir, — Zi,)] _ Dt[Zi:a-f—l TiZtTJ .
7 Zr, — Zuty, Z;’:aﬂ T 74T,
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Dt[Ya,b(0)]

The volatility of volatility is computed by O

. Note here that because we may

express that

dSap(t) = [+ ]dt + Dy[Sap(t)]dW:,

we can also compute the swap rate volatility in the following way:
) LA _ [ o~ i 17 =
a.b(t) Dicar1 Tl Dicar Tl
[ L, — Zery, 77 (Z?:a—i—l 7:.2v1,) D Zyr, — Zim,) — (Zir, — Zth)Dt[Z?:aH 7. 21,

e i (Ciars Tier,)?
(a1 T Ze) Dl Zir, — Zow)) — (Zer, — Ziy) Dil iy Ti o))
N (Zer, = Zim,) (g Ti o,
:Dt[ZtTa —Zin) Dt[Zﬁ’:aﬂ T 21,

Zit, — 2Ty, Zi.’:a 11 i, .
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Chapter 4

Further investigations of the
Chaotic Approach

In this chapter we develop the analysis of the Chaotic Approach. In the original paper
[48] the focus is on the First Chaos, Second Chaos and Factorizable Second Chaos
Models, where an investigation into pricing options is also given. We follow their
discussion of these models, adding some new ideas. However, we also express the main
processes without truncating the tail of the chaos expansion, and consider higher order
Chaos Models, introducing One-variable Chaos Models. Furthermore, we suggest the
exponential polynomials for the chaos coefficients and calibrate the Chaos Models in

the following chapters.

4.1 Form of the main processes

Recalling the Wiener-Chaos expansion of the variable o, from (2.1.23), we may write
this expression in the following way: For 0 <t < s, -+ < 59 < 51 < s < 00, we have

that
S S S1

(4.1.1) 05 = Ry(t,s) +/ Ry(t, s, 51)dW sy +/ / Rs(t, s, 51, 82)dW sedW sy + - -+ |
t t Jt

where

t t  prs1
Ry(t,s) = ¢1(s) +/ Oo(s, 51)dW sq +/ / 038, 81, 82)dW sodW sy + -+ - |
0 0 Jo
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t
Ru(t, 8,81,y Sn—1) =0n(S, 81, Sn_1) —i—/ Onr1(8, 81, .., $p)dW sy,
0

t Sn
+/ / Gna2(8, 81, Spr1) AW Spy1dWs, + -+, for m=23,....
0o Jo

Note here that we find that
o= Ri(t,t), Doy = Ra(t,t,t), Dy[Diloy]] = Rs(t,t,t,t),

In addition, we find that the function R, for each positive integer n is a martingale

with respect to F;, since we have that
B[Ry (2, 5)] =o1(s),
E[R.(t, 8,81,y 8n_1)] =bn(S, 81, ,8,-1), for n=23 ...,
and
dRy(t,s) =Rs(t, s, t)dW;,
dRy(t,s,s1) =Rs(t, s, s1,t)dW,,

AR, 1(t, 8,81, .., 8n-1) =Ru(t,8,81,...,8p_2,t)dW,.

Because the function R, for each n is F;-measurable, it follows by the It6 isometry and

by orthogonality that

s s 51
(4.12) Eio?] = Ri(t,s) + / R3(t,s,51)ds; +/ / R3(t, s,51,89)dsodsy + -+,
t Jt

t

which implies that

(4.1.3) E[o?] = ¢3(s) +/0 ¢35 (s, 51)dsy +/0 /0 ¢3(s, 51, 52)dsadsy + - - - .

(For another method to derive equation (4.1.2) we refer the reader to the Appendix.)
Because we know from (2.1.22) that V; = [ E;[0?]ds, we obtain that

oo s s ps1
(4.1.4) V; :/ (Rf(t, s)+/ R%(t7s,s1)d31+/ / R3(t, s, 51, 52)dsayds; +- -->d37
t t t t
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00 s S S1
Zw= [ (B + [ Rtessodst [ [ Bt sisadsadsi - s
T t t t

» fT <R (t,s —I—ft Ri(t, s, 51 d31+ft " R2(t, s, 51, 89)dsadsy + - - )d
T =

= <R%(t, s)+ [ R3(t, s, s1)dsy + [ [ R3(t, s, 51, s2)dsadsy + -+ - )ds
and
(4.1.7)

1 fT <R2 (t,s —i—ft Ri(t, s, 81 dsl—i-ft "' R2(t, s, 81, 89)dsadsy + - - )d
Firs = :
S— Tfs (R%(t,s) + [7 R3(t,s,s1)ds1 + [ [ R3(t, s, 51, 82)dsadsy + - - -)ds

In particular, the initial curve may be drawn by setting

fTOO ( ‘|‘f0 ¢2 s, 81)dsy —|—f0 ¢3 s, 81, 89)dsodsy + - >d
or =
f()oo ( )+ fo ®3(s, s1)dsy + fo " ¢2(s, 51, 89)dsodsy + - )d

and

GH(T) + [ 3T, s1)dsy + [; [51 G2(T, 51, 55)dsadsy + - -
fT < +fo ¢3(s, s1)ds1 +f0 L P3(s, 51, 52)dsadsy + - )ds

(4.1.8)  for =

Let us now consider the Malliavin derivative of Z;r and V; in order to compute the

market price of risk and the risk-adjusted volatility. We first notice that
Dy[R(t, s)]
—Dt |:¢1 / (ﬁg S sl)dWsl +/ / ¢3 S 81,52)dW52dW31 + - 1

=Dy[1(s)] +Dt[ /0 ¢2(s,31)dW311 +Dt[ /O /0 ¢3(3,31,52)dW32dW31] +

t
=0 -+ ¢2<S, t) + / ¢3<S, t, 82)dW82 4+ -
0
:RZ(ta Sat)7
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and forn =2,3,...
Dt[Rn(ta 8,815+ +5Sn-1

)
t
:Dt|:¢n<37517---75n—1)+/ ¢n+1(57517-'-73n)dW5n
0
t So
+/ / ¢n+2(8a817"'a3n+1)dW$n+1dWSn+"':|
0 JO

:Dt[qﬁn(s,sl,...,sn_l)]+Dt{/ ¢n+1(s,31,...,sn)dWsn}
0

t So
Dt |:/ / ¢n+2(8, S1ye-y Sn+1>dWSn+1dWSn:| +
0 JO

t
=0+ ¢dny1(8, 81,5 8n-1,1) + / Gri2(8,81, -5 Sno15t, S )AW Sy + -+ -
0
:Rn+1(t, §,81,+--,8n-1, t)
Therefore, applying the chain rule of the Malliavin derivative, we obtain that

(4.1.9)
D, [Et[agﬂ =D, [R}(t, s)] / Dy[R3(t, s, 51)]ds1 +/ / Dy[R3(t, 5, 51, 52)|dsads;

/ / / Dy[R3(t, 5, 51, 89, 53)|dssdsads, + -

COR,(t, ) DilRa (1, )] + / Ry(t, 5, 51) Dyl Ralt, 5, 51)]dsy

t

s s1
+/ / 2R3(t, s, s1,52)Di[Rs(t, s, s1, 52)|dsadsy
t t
+ / / / 2R, (t, s, 51, S2, 53) Di[R4(t, s, 51, S2, S3)|dssdsadsy + - - -
t t t

:2R1(t,s)R2(t,s,t)+/ 2Rs(t, s, s1)Rs(t, s, s1,t)dsy

t

s ps1
+ / / 2R3(t, S, 81, 82)R4(t, S, 81, 82,t>d82d81 + -
t t

Because we here have that
o0

Dy[V}] = /t Oth[Et[ag]]ds and  D,[Zy] = / Dy [E[02]]ds,

T
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we obtain that
Dy[Vi] =2 /Oo (Rl(t, s)Ro(t, s,t) + / Ry(t, s, 51)Rs(t, s, 51, t)ds,
! t
—i—/s /81 Rg(t,s,51,82)34(t,s,81,sz,t)dSstl+,._>d$
t Jt
and
Dy Zyr] =2 /TOO (Rl(t, S)RQ(t,S,t)—l-/ts Ry(t, s, 1) Rs(t, s, s1,t)ds;
—l—/s/sl Rs(t, s, 51, 82) Ry(t, S’Sl’SQ’t)dS2d51+~~)d5_
t Ji

Therefore the market price of risk and the risk-adjusted volatility formulated by (3.3.14)
and (3.3.15) may be respectively expressed in the Chaotic Approach as follows:

(4.1.10)
2ft [Rl t S Rg(t S, t —|—J; RQ t,S,Sl)R3<t S, 81, )d51+ i|d

>\t - —
1= |:R%<t7 s)+ [0 R3(t, s, s1)dsy + [ [ R3(t, s, s1, 59)dsadsy + - - ~}d$
and
(4.1.11)
. 2 [ |:R1<t, s)Ra(t,s,t) + [ Ro(t, s, s1)Rs(t, s, s1,t)ds; + - - -]ds
Vir =

[ [R%(t, s)+ [ R3(t, s, s1)dsy + [ [ R3(t, s, s1,59)dsadsy + - - -}ds'

4.2 Modelling initial curves in the Chaotic Approach

We are able to secure freedom of modelling initial curves in the Chaotic Approach.

Application of the Clark-Ocone formula to the variable 02, s > 0 gives us that

Then, taking conditional expectation with respect to F;, 0 <t < s < oo for both sides

of the equation, we obtain that
(4.2.1) Efo?] = By [E[o?]] +Et[/ Eu[Du[o2]JdW,,|.
0
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Because E[o?] is a constant and the Ito integral [ E,[D,[02]]dW, is a martingale, it
follows that

t
(4.2.2) B0 = E[o?] + / B, [Du[o?]dIV,.
0
By (3.1.6), we obtain here that

i = / ds —i—/ / dW ds.

We apply the Stochastic Fubini Theorem, (see [5] and [72]), to obtain that

(4.2.3) Zir = Py / o2)ds + / / 2|dsdW,,

where we recall from (3.1.5) that E[Z;r] = PorVp and that

Vo = / E[o?]ds.
0
It follows that for 0 <t < 7T < o0

Por [°Elo?|ds + [, [;° Eu[Du[o?]]dsdW,,
Py, [°Elo2)ds + [} [ E,[D,[0?]]dsdW,

tT —

We now see the benefit of the chaos expansion, using (4.1.9), to compute the integrand

as follows: For 0 < u < s < 00,

s

E,[D,[0?]] = D,[E,[0?]] =2 (Rl(u, s)Ra(u, s,u) + /S Ro(u, s, s1)Rs(u, s, s1,u)ds;

s s1
+/ / Rg(u,s,sl,32)R4(u,s,51,52,u)d32d81+--->.

Therefore, inserting this into equations (4.2.2) and (4.2.3), we obtain that

t s
E,[0?] =E[c?] +/ 2<R1(u, s)Ra(u, s, u) +/ Ro(u, s, s1)Rs(u, s, s1,u)ds;
0 u

+/ / R3(Ua3751,52)R4(U75,317527U)d52d51+"‘)qu
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and

(4.2.4)
(o) t o0 S

Zyr :POT/ E[Ug]d5+2/ / (Rl(ua 3)32(U78,U)+/ Ry(u, s,51)R3(u, s, s1,u)ds;
0 0 T u

—i—/ / R3(u, s, s1,82)Ra(u, s, $1, S, u)dsads; —|—--->ddeu.

The distribution form of the random variable Z;r is crucial for pricing options as we

will see later. The state price density is then formulated via V; = Z;; in the following

way:

(4.2.5)

Vi =Py /OOO]E[af]ds + 2/0t /oo (Rl(U,S>R2(U, S,u) + /S Ry(u, s, s1)Rs(u, s, s1,u)ds;
t u

+/ / Rs(u, s, 51, 82) Ra(u, s, 81, So, u)dsadsy —I—---)ddeu.

Hence the discount bond may be formulated as follows: For 0 <t < T < oo,

Py =
Por [y Elo2]ds + 2 fo I (R1 $)Ra(u, s,u) + [ Ro(u, s, s1)Rs(u, s, s1,u)dsy + - -+ )dsdW,

Py fo 02 ds + 2f0 ft ( u, $)Ra(u, s,u) + fus Rs(u, s, s1)Rs(u, s, s1,u)dsy + - - - )ddeu
and the forward LIBOR rate may be formulated as follows: For 0 <t <T < 5 < o0,

1

F =

tTS J_ TX
(Por — Pos) Jy~ EloZ)ds — 2f0 fT (Ri(u,s)Ra(u, s,u) + [ Ra(u,s,s1)Rs(u,s,s1,u)dsy + - - )dsdW,

Pys fo E[o?] ds - 2f0 fs (R1 u, 8)Ro(u, s,u) + fu Ry(u, s, s1)Rs(u, s, s1,u)ds; + - - - )ddeu
These expressions allow us to calibrate the initial curve and options separately. How-
ever, as we observed in (4.1.3), we may also express the initial curve by the chaos

coefficients in the following way: For T' > 0,

I [¢2 + [5 #3(s,s1)ds1 + [ [ #3(s, 51, 52)dsadsy + - ]ds
fo [ )+ fo #3(s, s1)ds; —f-fo Y d2(s, s1, 82)dsadsy + - ]ds.

(4.2.6)  Pyr =

Therefore, to save increasing the number of parameters we apply those chaos coefficients

to model the initial curve, and at the same time calibrate options in later chapters.
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4.3 First Chaos Model

In the First Chaos Model, that is, for o, = ¢;(t), we have that
Ri(t,s) =¢1(s) and R,=0 for n=2.3,....

By examining the expressions (4.1.4) — (4.1.8), we obtain that for 0 <t <7 < S < 00

V= / G(s)ds,  Zur = /T°°¢%<s>ds,

2(T 1 S¢2 s)ds
Jir = # and  Fyrs = f?;o 12( )
Jr di(s)ds S—=T [5 ¢(s)ds
Note here that because the process (Zir)o<t<r<co does not change over time ¢ > 0, we

infer that
Zyr = Zor = Vr.

Moreover, we observe that the instantaneous forward rate and the forward LIBOR rate
do not change over time ¢ > 0. From the expressions (4.1.10) and (4.1.11), we obtain
that

A =0 and IA/tTEO forany 0 <t <T < o0.

Thus, in light of (3.2.18), the short rate dynamics is given by
0
dry = — fordt

which is deterministic, as was expected.
European call/put bond option

We now consider option pricing in the First Chaos Model to compare it with the
higher order Chaos Models, although we know that the First Chaos Model gives only

deterministic term structures. The deterministic term structure gives us that

1
ZBC(0,t,T,K) :vE[Vt(PtT — K)'] = (Pyr — KPy)*
0

and

ZBP(0,t,T,K) = (KPy — Por)*.
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Swaption

Because the First Chaos Model gives us a deterministic term structure, we find for the

nominal N = 1 that

PS(0, 7,71, K) —%E[Vt(l — Py, — Kiﬂpﬁiﬂ
=1

" +
:<P0t_P0tn_KZTiP0ti> .
i=1

Therefore when K = K 4rj; we obtain that

PS(O,T,T,N,KATM) IO

4.4 Second Chaos Model

Now we move to the Second Chaos Model, that is, we set o, = ¢y (f) + fot Go(t, s1)dWs, .
By the expressions in (4.1.4) — (4.1.8), we find in the Second Chaos Model, for 0 <t <
T <S5 < o0, that

(4.4.1) V}:/ <R%(t,s)+/ Rg(t,s,sl)da)ds,
t

t

ZtT :/ (R%(tﬂs) +/ R%(t78781)d81>d8’
T t

pop _ dr (L) + J) F3(L 5, 51)ds1)ds
J7(B3(ts) + [ R3(t, 5, 51)ds1)ds

and 5
P 1 s (Rf(t, s) —l—fts Rg(t,s,sl)dsl)ds
s = g _ Tfsoo (R%(t, s) + fts R%(t,s,sl)dsl)ds’
where

Ry(t,s) = ¢1(s) +/ Pa(s,81)dWs1,  Ra(t,s,s1) = ¢a(s, s1).
0

Here we have that
M, = R3(t, s) +/ Ra(t,s,51)ds;, 0<t<s< o0,
t
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which corresponds to the expression in [48]. There it is stated that the random variable
M;s in the Second Chaos Model is a parametric family of squared Gaussians plus a
constant. Now by the expressions (4.1.10) and (4.1.11) we infer in the Second Chaos
Model that for 0 <t < T < o0,

N— 2 [ Ri(t, s)Ra(t, s, t)ds and Vi — 2 [° Ri(t, s)Ra(t, s, t)ds

[ (R3(t,s) + [ R3(t,s,51)ds1)ds J7> (R3(t,s) + [ R3(t,s,51)ds1)ds

Recalling the definition of the variable 7, from (3.2.8), we derive that

2Ry (t, T)Ry(t, T, 1)

; — , 0<t<T<oo0.

T =

Therefore, equation (3.2.19) allows us to form a stochastic volatility short rate dynamics
in the following way:

RQ(tatat) - LOO R1<t78)R2(t787t)d8
Ri(t,t) [T (Rt s)+ [ R3(t, s, s1)dsy)ds

dry = [- ~]dt+2[ ]rtth.

From equation (3.3.20), we are able to form a stochastic volatility forward LIBOR

dynamics as follows:

fTS Ry(t, s)Ro(t, s, t)ds

J7 (B3t s) + [ B3(t,s,1)dsi ) ds
fs Ri(t,s)Ra(t, s, t)ds

Js (Rt s)+ [ R3(t,s, s1)ds1)ds

dFyrs = |- ~]dt+2(

) FyrsdW;.

Therefore we obtain a stochastic property in the volatility drift, which secure non-flat

volatility curve.

4.4.1 Factorizable Second Chaos Model

In the Factorizable Second Chaos Model we simplify the Second Chaos Models as

follows:

¢
Ry (t,s) = ag +/ BsVs, dWs1 and  Ra(t, s, s1) = BsYs, s
0
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for some square-integrable functions «, 3,. Inserting this into the expression (4.4.1)

we find that for 0 < ¢ <T < oo we have

Zip = /Too ((as + B /Ot VsldWS1>2 + 2 /ts ﬁldsl)ds.

To simplify the notation in what follows, define:
. t . t
Rt = / 781dW517 Qt = / ’Y;dsla
0 0

A, ::/ (a?—}—ﬁf@s)ds, B, ::2/ agfsds and Oy ::/ B32ds for t > 0.
t t t
We then find that for 0 <t < 7T <
Zin = [l AR = 520+ B2Q.)ds
T
= OOoz2+ 2AS+2045 SR + B2(R? — Q,)|ds
" [l 5G4 20+ R - Q)
:/ [a? + ﬁf@s]ds + 2/ s Bsds R +/ ﬁfds(f%f — Qt)
T T

T

=Ar + BTRt + CT(étz — Qt)

Note here that because we may deduce that
E[Zir] = Ar and Vo=A4p for 0<t<T < o0,
it follows that
(4.4.3) Ar = PorAg, T >0.
Hence, we find that
(4.4.4) Zyr = PypAg+ BrRy+ Cr(R2 — Q,), 0<t<T < 0.

Consequently, we further obtain that

T_ PyrAo + BrR, + Cr(R? — Q)
T = - = -
Py Ao+ B.R; + Ct(R% — Q)

, 0<t<T < oo.

65



The initial value can be formed in the following way:

A
POT:A—Z, for T > 0.

Note here that we have the following form of the risk-adjusted volatility:

Brvye 4+ 2Cr Ry,
PyrAo + BrR, + CT(RtQ - Qt>7

VtTZ 0<t<T < 0.

European call/put bond option

We now recall that the option price is formulated by the expectation rule as follows:
1
ZBC(0,t,T,K) = VE[(ZtT — KZ;)*].
0

However, because we obtain from (4.4.4) that
Zir — K Zu = (Por — K Po) Ao + (Br — KB) R, + (Cr — KCy)(B} — Qu),

we find that

1 ~ 1 . A~ N\t
ZBC(0,4,T, K) = E|(Por = Ko+ —~(Br — KB) Ry + o (Cr— KC) (R - Q) |.
0 0

Therefore, we may make the interpretation that the European bond option in the
Factorizable Second Chaos Model is non-central chi-squared with mean FPy;r — K Fy;.

Furthermore, if we first define some notations,

~

R,

0:=——=n~ N(0,1),
Q1
A 1 A N 1 /A A 1 N
A= (POT—KPOt)—A—O(OT—KCt)Qt, B = A—O(BT—KBt) Q:, C:= A—O(OT—KCt)Qt,

we obtain that

ZBC(0,1,T, K) =E[(A+ B+ ée?ﬂ .

66



Applying the expectation rule, the option price is expressed as follows:

ZBC(0,,T,K) = P(&Egd&

1
\/ P(6
where

P.(0) := A+ BO+C0* and E[P,(0)] = Pyy — KPy,.

For put options, letting P,(0) = —P.(6), it follows that

2

ZBP(0,t,T,K) = (0)e~ T do.

75 h”

Let ® be the standard normal cumulative distribution function and p be the standard

normal density function, i.e.,

O(x) = e % dX and p(x) = e

1 x
V 2 /oo
Then, we know that

! /W<X‘de' ()
— e = —p(x
V2T J oo p

and
X?e ’*dX O(x) —x
=/ (@) ~ aplo).
IfC=0and B> 0, it follows that
ZBC(0,1,T, K) (A+ BO)e5do = Ad(—y) + B
( v (~) + Brly)
where y = —%;. IfC=0and B < 0, however, we instead obtain the expression
2 N A~
ZBC(0,t,T,K) A+B€ e~ Tdh) = Ad(y) — B )
( %E/‘ (y) = Bp(y)

Now, if C'> 0 and A < 0 where A := B2 — 4AC, then
1 © R 02
ZBC(0,t, T, K) =—— A+ BO+CO6e =db
( ) m/m( )
—E[A + BO + C]
=Pyr — K Py.
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If C < 0and A <0, then ZBC(0,t,T, K) = 0. It remains to consider the case where
A > 0. In this case, we obtain two roots:

B-VA _BiVA
= ————— and 29 = ——r.
2C 2C

AR

There are two further options to consider. Firstly, suppose that C > 0and A > 0.

Then z; < 2z and

ZBO(0,t,T, K) = (A+ BO+ Co%)e % db

1
\/A_Q_W é—ooges@}ﬁ{zzse@o} o -
=(A+ C)(P(21) + ©(—22)) — (B + C21)p(21) + (B + Cz2)p(22)

=(Por = K Po)(@(21) + B(—22)) = 5(B = VA)o(z1) + 5 (B + VE)p(za).

Secondly, if C <0and A > 0, it follows that z; > z5 and so

1 A A A 02
ZBC(0,t,T, K =—/ A+ B+ CH*)e 2 db
( ) =" {Zﬁgm}( )
1, 4 1 4
=(Por — KPou)(®(21) = ®(22)) — 5(B ~ VA)p(z1) + 5B+ VA)p(z)
Swaption

Plugging the expression of the variable Z;r into the pricing formula, we obtain that

b b b
Ly — Zth - K Z TiZtTi :<At - AT;, - K Z TiATi) - (Ct - CTb - K Z TiCTi)Qt

1=a+1 i=a+1 i=a+1
b b
+ (Bt ~Bp,-K Y. TiBTZ)Rt - (Ct — O -K Y TiC’TZ)R?.
i=a+1 i=a+1
Therefore, we find that the payer swaption price with the nominal N = 1 has the
following form:

PS(0,7T,7,1,K) =E[(A+ B8 + C6*)*],

b b
0 = tA ~ N(O, ].), Z = (POt_POTb_K Z TiPOT,-) —Aio <Ct_OTb_K Z TiCT,-)Qh
O, i=a+1 i=a+1
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1

AD<Bt Br, — KZTlBT>\/@ and 5—A0<Ct Cr, — KZTZC’T>Q,5,

i=a+1 i=a+1

B=
Therefore, the payer swaption under the Factorizable Second Chaos Model is also non-

central chi-squared distributed. It has mean

b
E[A+ BO+C6%) =Py — Por, — K Y 7P,

i=a+1
Applying the expectation rule, we find that

2

1 0
PS(0.T. 7.1, K) = —/ Pps(0)e% do,
( ) \/% Pps(0)>0 PS( )

where we have defined that
Pps(0) == A+ BO + CH?.

Further simplification can be achieved by considering the roots of the function Ppg and

dividing into six scenarios as we have done for pricing a European call bond option:

"

AS(—) + Bp(G) it {C=0}n{B> o},

Ad(j) — Bp(y) if {C=0}n{B <0},

(POt_POTN Kzz i1 Tibor,) if {C>0}n{A <0},
0 if {C<0}n{A<o0},

PSO.7,7.1.K) = (POt — Por, — Kzz‘:aﬂ TiPOTi) (P(21) + (—22))
~YB - VA)p(z) + LB+ VA)p(z) if {C>0yn{A>0},
(POt — POTb KZ? a+1 TZPOT)((I)(31> - (I)(ZQ))
| LB VA)p(a) + AB + VA=) i {C<0yn{A >0},
where _
ji= -4 A= B 4AC
B

and z; and zy are the two roots of Ppg, given by

_B_VA _B+VA
71 =———— and 2= —-x=o-—.

20 20
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It follows that for the ATM Swaptions we have

%cp(_g) —l;ép@) if ié =0} “ié > 0},

Ad() — Bp(y) if {C=0}n{B <0},

0 if {C#0}n{A<0},

—L(B = VA)p(z1) + S(B+ VA)p(z) if {C#0}n{A >0}

PS(OaTa T, 17KATM) =

4.5 Third Chaos Model
In the Third Chaos Model we have
M, = Rf(t,s) + /S Rg(t, s, s1)dsy + /S /S1 Rg(t,s, 81, 82)dsadsy, 0<t<s< o0
t t Jt
where

t t S1
Ri(t,s) = ¢1(s) + / ¢o(s, 81)dW sy + / / b3(s, 81, $2)dW s9dW s1,
0 o Jo

t
Ry(t,s,51) = ¢2(s,51) +/ P3(s,s1,82)dWsy and  Rs(t, s, s1,52) = ¢3(s, 51, 52).
0

Then, we obtain stochastic forms for 0 <t < T < oo:

00 s s s1
V;:/ (Rf(t,s)Jr/ R%(t,S,sl)d81+// R%(t,S,ShSz)dSzdSl)dSv
t t t t
ZtT:/ (Rf(t,s)jt/ Rg(t,s,sl)dsl+/ / R:%(t75>81,82)d32d51>d37
T t

2 [C(Ri(t, s)Ra(t, s,t) + [ Ra(t, s, s1)Rs(t, s, s1,t)dsy)ds
[ (R3(t, s +ft R3(t,s,s1)ds1 + [ [ R3(t, s, 51, 52)dsodsy)ds

>\t:_

and

Vip — 2 [[C[Ri(t, $)Ra(t, s,t) + [ Ro(t, s, s1)Rs(t, s, s1,t)dsy)ds |
Jo (R3(t, s) + [ R3(t,s,s1)dsy + [ " R3(, s, s1, 52)dsadsy)ds

The dynamics (3.2.19) and (3.3.20) give us that

dr, =[ - ]dt
[Rz(t7 tt) 2 [7[Ri(ts)Ralt, s, t) + [ Ra(t,s, 1) Ry(t, s, 51,t)dsi]ds
Ri(t,t)  [TIRI(t,s) + [ R3(t, s, s1)ds1 + [ [ R3(t, s, 51, s2)dsadsy]ds

] rodW,
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and
dFyrs =[ - - ]dt
2( S fTS[Rl(t, s)Ra(t,s,t) + [ Ro(t, s, s1)Rs(t, s, s1,t)ds;]ds
Jo [R3(t, s) + [0 R3(t,s,s1)dsy + [ [7F R3(t, s, s1, 52)dsadsy|ds

B [s [Ri(t,s)Ra(t, s,t) + [ Ra(t, s, s1)Rs(t, s, s1,t)ds1]ds )F W
[o [R3(t,s) + [ R3(t,s,s1)dsy + [ [ R3(t, s, s1, 52)dsadsy]ds st

4.5.1 Factorizable Third Chaos Model

We consider the Factorizable Third Chaos Model, i.e.,

S S S1
M, = Rf(t, s) —|—/ Rg(t, s, 81)dsy +/ / Rg(t, S, 81, S2)dsadsy
¢ Jt

t

where
Rl(t7 S) = O + /Ble(ta 7) + 55J2(t7 EC)a RQ(t> S, 31) - 65751 + 55651J1(ta g)a

R3(t7 S, 51, 32) = 55651C527

t t S1
Ji(t, ) ::/ Vs, dWs1  and  Ja(t,€Q) ::/ / €sy Coy AW s2dW s,
0 0 Jo

for some square-integrable functions «, 5,7, 9, € and (. It follows that for 0 <t < s <

oo, we have that
My =a2 + B2JE(t, ) + 625 (t, €C) + 25 B J1(t, ) + 20565 Ja(t, €C) + 28,05 J1(t, 7) Jo(t, €C)
+ / (8292 + 0262, J2(1, Q) + 280,70 €5, 1 (1,C) ) dsy + / / 03€4, G, dsads:
t t t
S S S1
=a? + / B242 dsy + / d2€2 (2 dsads
t t t

+ 20,851 (L, y) + / 2850575, €s,ds1J1(t, C) + 20505 J2(t, €Q)

t

+ BSJIQ(tu ’7) + / 5§€§1d81‘]12(t7 C) + 25868‘]1(t7 7)‘]2(157 GC) + 63‘]22<t’ GC)
t

Because we have that for 0 <t < s < o0,

s S1 K] S1 t S1 s t
[ [ acisis = [ ["ecisis - [ [ e G - [ [ s
t t 0 JO 0 JO t 0
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we infer that

M :a§+/0 B 751d31+/ / 52€2 (2 dsads

+ 20585 J1 (L, 7y) + 2/ Bs0sYs, €s,ds1J1(t, C) + 200505 J5(t, €C)
¢

t
—l—ﬁf(Jf(t,’y)—/O ’yfldsl) / dfegldsl J1 t,¢) — / 2d52

+ 28505 J1(t,7v) Jo(t, eC)—I—é?(JQQ(t,eQ)—/ / e§1§§2d32d31>.
o Jo

Therefore, we obtain that for 0 <t < T < oo,

(4.5.1)
Zyr =Ar + BrJi(t, ) + CerJi(t, ¢) + DrJo(t, €Q) + Er(Ji (t,7) — Qu(t, 7))

+ ET(JIQ(t7 C) - Q1<t7 C)) + GTJl(t) ’Y)JQ(t? EC) + HT<J22(t7 GC) - QQ(ta EC))7

where we have defined

AT Z—/ (Oé —f—/ 52781d31+/ / 55 81C82d82d81>d8
BT —2/ sﬁsds C(tT - 2/ / 65 5%16516581658
T

(4.5.2) Dr —2/ as0sds, FErp:= Bst

FtT —/ / 5§€§1d81d8 GT = 2/ 6568d87 HT ::/ 5§d87
T T

t S1
Qu(t) = / s and QutQ) = [ [ G
0 0 0

Note here that because we may deduce that

E[Zir] = Ar and Vop=A4p for 0<t<T < o0,
it follows that
(4.5.3) Ar = PyrAg, T >0.

Therefore we obtain that

(4.5.4)
Zir =Por Ao + BrJi(t,7) + CirJi(t, ¢) + DrJa(t, €C) + ET(J12<t’ 7) = @t 7))

+ FtT(‘]12(t7 C) - Ql(ta g)) + Gy (ta V)JQ(t EC) + HT(JQQ(ta Eg) - QQ(tv EC))
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and

Py ==L T>0.

European call/put option

From (4.5.4), we obtain for the European call bond option that
Zir — K Zy =(Por — K Po) Ao+ [Br — KBJJJi(t,7) + [Cor — KCl J1(£,€)
+[Dr — KD Ja(t, Q) + [Er — KE] (J3(t,7) — Qi(t,7))
+ [Fir — KFu](J7(t,0) — Qu(t,Q))
+[Gr — KGi]Ji(t,7) Ja(t, €C) + [Hp — K Hy (J5(t, €¢) — Qa(t, €)).

Here we know from [60] (page 183), that

J2(t,e§):%(Jl(t,e)Jl(t,C)—L(t,e()), where L(t, () i= /O €5, Cordsi.

Defining a standard normally distributed random variable 6 by setting

L Jl(tvv) ~
6(7) T L(t,’72) N(07 1)7

we have that

Rt €)= 5 (VT @)V OO ~ L1, ).

Therefore, a function for the call option defined by

Pu(0(+), 0(6),0()) = Ai(](zn _ KZy),
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can be expressed as

P.(0(7),0(¢),0(¢))
— Py — K Py — Ai[ET — KEQ:(t)

- Aio[FtT — KFu]Q:(t,C) — AL[HT — KH]Qx(t, €C)

—{—A—BT—KBt V L(t,v?)0(~ —I—A—CtT—KCtt\/ L(t, ¢%)0(C)
0 0

+ %%[D ~ KD (VI AVILEP0(C) — Lit, )

; AL[ET = KEJL(.9%)60) + - [Fir = KLt IO

<+ZEGT—KG“/ (t.72)0(y (vmte2¢Lt@ gy—uuaﬁ
+ e~ K1) (VIGAVIE Q) - Lit.<0))

where we observe that

E[Pe(0(),0(€),6(C))] = Por — K Po.
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It follows that
Pe(6(7),0(€),0(¢))
=[Por — K Py — ALO[ET — KE{Q:(t,7)

1 1

— A—O[FtT — KFu](t,¢) — A—O[HT — KH;|Q1(t, €C)
1 1

- 2_140[DT — KD L(t,eC) + 4—AO[HT — KH|L3(t, &)

jﬂ (1Br — KB — 5[6r — KGIVIE L ) )6(3)
+—CtT—KCtt ]V L(t,(?)0(¢

Ao
+ 5 (IPr = KD =y = KEIL(t,0)) VG VI CM((C)
+ AiO[ET ~ KEWL(8 () + - [Frr ~ KFJL( CI(Q)
+ 53[0 = KGIVIEA2VEE &)V LT 00080
+ o [Hr — KHIL(. @)Lt ) (6°(C).

Denoting the coefficients of the function P, respectively by {A, B,C,D,E, F,G,H} €

R®, we may write this in a more convenient fashion as
P.(21, T2, 73) = A+ By + Cxs + Drgxs + Ex® + Fxg + Grix973 + H:vgxg
From this, it follows that
ZBC(0,t, T, K) /// P(x1, 9, x3)D3(x1, T2, 3)drsdradry,
o (21,72,23)

where D3 denotes the probability density of the trivariate standard normal distribution,

that is,
€xXp [w1/2w2]
D =
o B8] = oy
where

wy = 27 (pa3—1)+a3(pls—1)+a3(plo—1)+2[x122(pra—p1apes) 2123 (p13—pizpes) +T223(pas—pi2pis)]
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and wy = 1 — (py + piy + p33) + 2p12p13p23. For put options, letting P, = —P., it
follows that

ZBP(O,t,T, K) :/// Pp<l'1,IEQ,Ig)D3(ZL'1,ZEQ,I‘3)dIE3dIL‘2dl’1.
Pp(z1,22,23)>0

Swaption

We are able to express the Swaption pricing formula in the following way:

By~ B, — K Y 7:Br)Ai(t.7)
i=a+1
b

+ Ctt - Cth — K Z TiOtTi>J1<t7C> + (Dt - DTb — K Z TiDTi>J2(t7€<)

i=a-+1 i=a+1

i=a+1

+ (H— Hy, — K ij riHr, ) (J3(t,€) = Qult.€0)).

i=a+1

Therefore, a function for the European payer Swaption defined by

b
PPS(9(7)79<5)79(C>) =Zy— 2, — K Z Ti 2y,

i=a+1
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can be expressed as

PPS(9(7>7 9(6)7 0(5))

=(Po— Por, — K i;l 7iPor,) - Aio (B Br - K Zb;l mEr, ) Qu(t,7)
- L (- pin - Kz R )Qu(1,C) — - (i~ Hr - Kz ) Qaft, )
_ QLAO (Dl(t) ~ Dy, — K;; T,-DT) (t,€C) + (Hl( ) — Hy, — Kiz; riHTi)Lf(t €C)
n Aio [(Bt ~ By, — K;:;l TiBTi> . %(Gt — G, — K;; TiGTi>L<tv 60] VL(E)6(y)
I K;a;l € )VIEEQ) + 5[ (D= P = KD mon)
(Hi - K Y it ) L,e0)] @ EGC0(00(0
| 1
N A—O<Et By — K;a; n ) L)) + A—(Ftt Fur, — K;agl 7o, ) L(t, C)6%(C)
(6= G - KZ G, ) VLA T @) L () B()0LC)
bl (1 - KZ iz ) Lt )L Q).

where we observe that
b

E[Pps(0(7),60(c),0(¢))] = Pot — Por, = K Y 7iPor;.

i=a+1

Similarly, denoting the coefficients of the function P. respectively by
{A*, B*,C*, D*, E*, F*,G*, H*} € R®, we write this as

Pps(x1, 29, 23) = A* + B*xy + C*x5 + D*woxs + B 22 + F + G*x1xows + H” x2x3,

which is the same expression as the European bond call option, only with different

coefficients. Applying the expectation rule, we express the initial price of the European

7



payer Swaption with the nominal N =1 as
PS(O, 7—7 T, 1, K) = / / / PPS(«Th I, l’g)Dg(I‘l, T, (L’g)dIgdiUle‘l.
e (z1,22,23)>0

4.5.2 Two-distribution functions Third Chaos Models

European call/put option

Case 1. y=(

Assuming that v = ( in the Factorizable Third Chaos Model, we are able to simplify

the model slightly, so that it has two normal distribution functions:
P.(x1,29) = A+ (B+ C)xy + Dryxg + (E + F)2? + Goloy + Hrlzl
Then, we find that the call option pricing formula is given by
ZBC(0,t,T,K) = // e P21, 22)Do(1, ) droday,
o (21,2)>0

where Ds is the bivariate standard normal distribution density, i.e.

1 [ 22 — 2pT179 + T
2my/1 — p? 2(1—p?)

The integrand can be computed by checking that the condition P.(z1,x2) > 0 holds.

Dg(xl, 1‘2) =

If we assume that v = ( = 1, we have that
t
L) = L) =t Lte) = [ eudsi, 0(7) =6(0) =
0

Case 2. v =¢

Assuming that v = € in the Factorizable Third Chaos Model, we are again able to

simplify the model slightly, so that we have two normal distribution functions:

P.(x1,73) = A+ Bxy + Crz + Dryws + Ex? + Fai + Goiws + Halas.
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Case 3. e =(

Assuming that ¢ = ( in the Factorizable Third Chaos Model, as expected, we are again

able to simplify the model to have two normal distribution functions:
P(x1,75) = A+ Bay + Caxy + E2? + (D + F)xi + Gaa2 + Ha).

4.5.3 Two-variable Third Chaos Models

If we suppose that ¢ = 1 in the Factorizable Third Chaos Model, we are able to slightly
simplify the model, so that

L(t, (%) =t, L(t,e) = /0 €s,ds1, 0(¢) = %

However, the call option function still has three variables:
P.(21,T9,73) = A+ By + Cxg + Dagws + Ex? + Fm?,, + Grix073 + ngxg

4.5.4 One-distribution function Third Chaos Models

European call/put option

Assuming further that v = € = ( in the Factorizable Third Chaos Model, we are able
to simplify the model, so that it has a degree four polynomial form with respect to a

unique normally distributed random variable:
Pr)=A+(B+C)x+ (D+ E+ F)a* + Ga® + Ha*.

Therefore, in this case we are able to deduce that the option pricing form is given by

2

ZBC(0,t,T,K) = \/LQ_W/ (6)>077¢(9)ee2d6.
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Note here that, recalling the notations used, we can express the function P, as follows:
1 1
P.(z) :[POT — K Py] — A—[ET — KE]Q(t,7) — A—[FtT — KFy|Q1(t, Q)
0

[HT — KHt]Qg(t 6()

A
1 1
0 0
1 1 1
+ 1 (Br— KB = 5[Gr — KGJL(1.7?) + A_O[C” - K(Jtt]> L{t. %)
11 1
+ i (51Pr = KDi] = SHr = KHL(,?) + [Br - KE] + [Fir — KFu ) L(t,7%)2°
- _ I3 2y,.3
+ 2AO [GT KGt] (t7fy )ZL‘
1 _ 2 2y, .4
+ 14, [Hr — KHL*(t,7")x

Classifications

We are able to investigate the option price further by checking the roots of the function
P.. Let us first simplify the notation by denoting the coefficients such that
P.(z) = Ag + Az + Agn® + Aga® + Az,

We define the roots of the function P. to be {z1,xq, 3,24} where —oco < 1 < 9 <
r3 < x4 < 00, and the number of distinct roots by n € {0,1,2,3,4}. Recall that

2

ZBC(0,t,T, K) / f)e = db.
(0, \/ 21 Jp.(0)>
We now can describe all the different cases. To start, if {n = 4} N {4, > 0}, we have
that
1 xr1 _ﬁ x3 _ﬁ o _ﬁ
ZBOO,,T,K) = —— U Po(0)e= 7 do +/ P.(0)e=Z db +/ P(0)e d@} .
V 27T —00 o T4

If {n =4} N {A; < 0}, we have that

ZBOOAT K) = {/ P.(0 ‘fd9+/ PC(H)eG;dG].
T s
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If {n=3}N{A; >0} {Pc(%) > 0}, and P, has roots {x1, 2, x3}, we have that
ZBC(0,1,T, K) V P(O)eZdo + /Oo PC(H)eQ;dG].
If {n=3}N{A; >0} {Pc(%) < 0}, and P, has roots {x1, x2, x3}, we have that
ZBC(0,1,T, K) V P(O)eZdo + /Oo PC(H)eH;dG].
o3

If {n=3}N{A; <0} {P.(2£%2) > 0}, and P, has roots {z1, 22, z3}, we have that

ZBC(0,t,T, K "P.(0)e % db.
0.07.8) = = [P0
If {n=3}N{A, <0} {P.(2£22) < 0}, and P, has roots {z1, 22, z3}, we have that
1 T2 02
ZBC(0,t,T, K P.(O)e” 2 db.
0.07.K) = = [P0

If {n =3 N{A, =0} N {A; > 0}, and P, has roots {21, 25, x3}, we have that
2 o0 2
ZBC(0,t,T, K) {/ P.(0)e T do +/ PC(G)e%del.
z3
If {n =3 N{A, =0} N {A; < 0}, and P, has roots {21, 25, z3}, we have that
02 3 02
ZBC(O.4LT, K) [/ Pu(0)e=5 do +/ Pc(e>eade].
NoT 22
If {n =2} N{A; > 0}, and P, has roots {z1,z,}, we have that

ZBO(0,1,T, K) {/ P.(0 022d6+/ PC(H)eH;dG].

If {n =2} N{A; <0}, and P, has roots {z1,z,}, we have that

T2

V 27r o1
If {n =2} N{A; =0} N {45 > 0}, and P, has roots {z1, 22}, we have that

ZBC(0,1,T, K) = P.(0)eF do.

ZBO(0,t,T, K) = T p0)e % do.

1
vV 27T o1
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If {n =2} N {A; =0} N {45 < 0}, and P, has roots {z1, 22}, we have that
1 2 _0?
ZBC(0,t,T,K) = —/ Pu(0)e 7 df.
2m J -
If {n=2}N{A; =0} N{A; = 0} N{A, > 0}, and P, has roots {z1, 25}, we have that
1 1 02 > 02
ZBC(0,1,T, K) = —— P.(0 e_2d0+/ P.(0 e_QdG].
o.etm)= | [P0 ")
If {n=2}N{A; =0} N{A; = 0} N{A, < 0}, and P, has roots {z1, 25}, we have that
ZBC(0.4,T, K) — — [/P 9) —Ogde}
s Uy Ly = = c e 2 .
V2 L Jay
If {n =0 or 1} N {A; > 0}, we have that
ZBCO(0,t,T, K) = (K Py, — Por)™
If {n =0 or 1} N {A; < 0}, we have that
ZBC(0,t,T, K) = 0.
If {n=1}N{A; =0} N {A; > 0}, and P, has roots {z1, 25}, we have that
ZBCOLT K) = —— [ P(0)e=%do
s Uy Ly = == c € .
V2T Sy
If {n=1}N{A; =0} N {A; < 0}, and P, has roots {z1, 25}, we have that
ZBC(0,4,T, K) = —— / P(0)e % df
y by dy = c e .
V2T J o
If {n=0o0r 1} N{A; =0} N {43 =0} N {4y > 0}, we have that
ZBCO(0,t,T, K) = (K Py, — Por)™
If {n=0o0r 1} N{A; =0} n{A; =0} N {4, < 0}, we have that
ZBC(0,t,T, K) = 0.
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If {n=1}n{A, =0} n{A; =0} Nn{A;, = 0} N {A; > 0}, we have that
1 o0 2

s ). P.(0)e T db.

If {n=1}n{A, =0} n{A; =0} n{A;, =0} N {A; < 0}, we have that

1™ 2
ZBC(0,t,T,K) = \/?/ P.(0)e T do.
T J—-c0

At this point, we wish to describe the possible outcomes for the bond option. In order

ZBC(0,t,T,K) =

to do this, we first make the following definitions: For {a,b} € R?,

b 2
fola,b) := \/%_ﬂ/ e~7df,  fi(a,b) / b= d,  fo(a,b) / 0% db,

b 2 b 9
f2(a,b) ;:\/LQ_W/ Ge%d0 and  fi(a,d) ;:LQW/ 2oL

We can then conclude that the bond option can be described as follows:

If {n = 4} N {A; > 0}, we have that

4
ZBC(0,t,T,K) Z
i=0

A

—00,x1) + fi(22, 3) + fi(2, OO))
If {n = 4} N {A; < 0}, we have that
4
ZBO O t T K Z (fl T1,T2 +f1($3,.1'4)>
i=0
If {n=3n{A, >0}n {P.(22£22) > 0}, and P. has roots {z1, 22, z3}, we have that
4
ZBC(0,t,T,K) =Y A ( o xl)—l—fz(xg,oo)).
i=0
If {n=3n{4, >0}n {P.(22£22) < 0}, and P. has roots {z1, 22, z3}, we have that

4
ZBC(0,,T,K) =3 A ( (=00, 22) + fi(ws, )).
=0
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If {n=3}N{A; <0} {P.(2£22) > 0}, and P. has roots {z1, 22, z3}, we have that
ZBC(0,t,T,K) ZA filxa, x3).
If {n=3n{A4, <0}n {P.(22£22) < 0}, and P. has roots {z1, 22,23}, we have that
ZBCOtTK ZAfl 513'1,.%'2
If {n =3 N{A; =0} N {A; > 0}, and P, has roots {z1,z2, 73}, we have that
4 ~
ZBO(O, t, T, K) = Z Az <fi(.%‘1, ZL'Q) + fi(Ig, OO))
If {n =3 N{A, =0} N {A; < 0}, and P, has roots {21, 25, x5}, we have that
4 ~
ZBC(0,t,T,K) = ZAi(fi(—oo,xl) + fi(aa, xg)).
i=0
If {n =2} N {A, > 0}, having roots {z1, 25}, we have that
4
ZBO(0,,T.K) =Y 4, ( o xl)—i-fl(a:Q,oo))
1=0
If {n = 2} N {A; < 0}, having roots {z1,z,}, we have that
ZBC(0,t,T,K) ZA filzy, 2).
If {n =2} N{A; =0} N {45 > 0}, and P, has roots {z1, 22}, we have that
ZBC(0,t,T, K) ZAf, 1,00
If {n =2} N{A; =0} N {A; < 0}, and P, has roots {z1, 22}, we have that

ZBC(0,t,T,K) ZAfZ —00, Z3).
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If {n=2}N{A; =0} N{A; = 0} N{A, > 0}, and P, has roots {z1, 25}, we have that
ZBC(0,t,T,K) = iﬁi<f,-(—oo, 21) + fil@s, oo)).
i=0

If {n=2}N{A; =0} N{A; =0} N{A, < 0}, and P, has roots {z1, 25}, we have that

ZBC(0,t,T,K) ZAf@ T, T3).
If {n =0 or 1} N {A; > 0}, we have that

ZBC(0,t,T,K) = (K Py, — Por)*.
If {n =0 or 1} N {A; < 0}, we have that

ZBC(0,+,T,K) = 0.

If {n =1} N {A; =0} N {A; > 0}, we have that

ZBC(0,t,T,K) ZAfZ 1,00
If {n=1}N{A; = 0} N {A; < 0}, we have that

ZBC(0,t,T, K) ZAfZ —00, T1).

If {n=0o0r 1} N{A; =0} N {43 =0} N {4, > 0}, we have that

ZBC(0,t,T,K) = (K Py, — Por)*.
If {n=0o0r 1} N{A; =0} N{A; =0} N {A; < 0}, we have that

ZBC(0,t,T, K) = 0.

IfF{n=1 N{A,=0}n{A; =0} n {4, = 0} N{A4; > 0}, we have that

ZBC(0,t,T,K) ZAfz 1,00
Finally, if {n =1} N {A; =0} N {43 =0} N {Ag =0} N {A, < 0}, we have that

ZBC(0,t,T,K) ZAfl —00,Z1).
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Swaption

Assuming that v = ¢ = ( in the Factorizable Third Chaos Model, we are able to
simplify the method to price swaptions too. In this case, it has a unique normal

distribution function:
Pps(z) = A* + (B* + C*)x + (D* + E* + F*)2® + G*2* + H*z".

Recalling the notations given above, the function Ppg can be expressed in the following

way:

b b
Pps(z) :(POt — Py, — K Z TiPOTi> - i<Et — b, — K Z TiETi>Q1(t7’Y)

‘ Ag ,
1=a+1 1=a+1

b b
| 1
— (B = Fir, = K Y7 73b ) Qu(t.Q) = < (He = Hr, — K Y7 73l ) Qa(t, Q)
0 i=a+1 0 i=a+1
1 ’ 1 ’
S (Di= D, = K Y 7D ) Lt ) + i (H = Hr, = K Y 7l ) L2(2,9°)

i=a+1 i=a+1

el 32 ) (6 n k3 noa)uers

0 i—a+1 i—a+1

+ (Ctt — Cth - K i TiCtTi)} V L<t772)x

i=a+1

b b
11 1 )
o [5 (Dt Dy, — Ki§1 TiDTi) -5 (Ht ~ Hy, — Ki§1 TiHTi>L(t, )

b b
+ (BB, - K Y nir) + (Fu— B, — K Y i )| L(t,9%)a?

1=a+1 i=a+1

b
1 ,
— (G, -G - K Z-G)L’t23
+2A0< t Ty Z.:;AT T; 2(77)1.
b

1
+ o (Ht ~Hy - K Y TiHTZ.)L2(t, )t
0 i=a+1
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where we have that
b
E[Pps(z)] = Por — Por, — K Z 7 Por,.
i=a+1

Therefore, we are able to deduce that the swaption pricing form is given by

PS(0,T,7,1,K) = ﬂﬂ@aﬁw,

V2 Pps(0)>

where the function Ppg has degree-four polynomial form with respect to the nor-
mally distributed random variable §. We are able to investigate this further, again
by checking the roots of the function Ppg. However we can simply use the classifi-
cation which we have outlined above for the bond option, applying the coefficients

{A*, B*,C*, D*, E*, F*,G*, H*}, instead of using {A, B,C, D, E,F,G, H}.

4.6 One-variable Chaos Models

In this section, we suggest Chaos Models in which the random variable X, € L? is

formed from deterministic functions ¢y, ¢o, ... of only one variable, i.e.,

xm—lf[@@»+Ai@@mwg+[flﬁ@@mwgmmfk~}mm.

We call this expansion “One-variable Chaos Expansion” and corresponding Chaos

Model “One-variable Chaos Model”. Applying the expression (4.1.1) we infer that

%:E@@+mmg/@m+&@g//iM@mm+m
(4.6.1) ¢ X t Jt
zﬁﬁ@+$@mm—mwi&@mmme—@—m+m,

where we define Rn(t, s):= R,(t,s,1,...,1) for all n € N| i.e.,

MWFww%m@/mywm // Wos dWe, -

:an(5> +§gn+1( )Wt + ¢n+2( )2(W - t) +¢n+3( )(évvtg - %tWt> R
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because we have that
t
/ dWSn = Wt,
Ot Sn t 1
/ / AW, dWy, = / W dW, = —(W? —t),
o Jo 0 2
U prsn fsSntl tq 9 1 3 1
dWSanWSanWS" = —(Ws — s)dWs =Wy — —tW,.
0o Jo 0 0 2 6 2

As we already observed above, because each function R, is Fi-measurable, it follows
from the It6 isometry and orthogonality that

N ~ s N S S1
E(o?] =R1(t,s) + R3(t, s)/ dsy + R3(t, s)/ / dsadsy + - - -
¢ Ji

t

(4.6.2) X
=R2(t,s) + (s — t)R3(t, s) + 55— 2Rt s) 4 - - .

Therefore, we obtain that
5 12 1 2 H2
Vim [ (B(ts) + (5= OF3e5) + 506 = 02R(00) 4 )
t

and
0 . . 1 .
Zyr = /T (R%(t, s) + (s —t)R3(t,s) + 5(s —t)*R3(t,s) + - - -)ds.

Consequently, the One-variable Second Chaos Model expresses the state price density
via a quadratic form of the Brownian Motion W;, while the One-variable Third Chaos
Model does the same by a degree four polynomial form, and One-variable Fourth Chaos
Model does it by a degree six polynomial form. Investigating the models further we
find that

(4.6.3)

Dy [Ey[02]] = 2Ri(t, 8)Ra(t, 8) + 2(s — t) Ro(t, ) Ra(t, 5) + (s — t)* Ra(t, s) Ra(t, 8) + -+,

which forms the risk-adjusted volatility and the market price of risk.
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4.6.1 One-variable Second Chaos Model

Let us suppose that 7, = 1 for all ¢t > 0 in the Factorizable Second Chaos Model. Then
we have that

ﬁgt = Wt and Qt = t7

which yields that for 0 <t < T < oo,
(464) V,=A, + BW, + Ct(Wt2 — t) and Zyp = Ap + BrW, + CT(Wt2 — ),
where

A = / (a? + sB%)ds, B, = 2/ asfBsds and C; = / B2ds.
t t t
Note here using (4.4.3) we may also express these variables in the following way:
Vi = Pydo + BW, + Cy(W? —t) and  Zir = PorAg + BrW, + Cr(W7 —t).

Therefore, we may make the interpretation that the state price density V; and also the
variable Z;7 under the One-variable Second Chaos Model are non-central chi-squared
distributed respectively with mean Py Ay and PyrAg. The expression (4.1.11) gives,
for 0 <t <T < o0, that

2 [ asBds +2 [ B2dsW,
Jr (02 +sB2)ds +2 [[7 aBudsW, + [;7 Bids(WE —t)

Vir =

European call/put option

From expression (4.6.1) we obtain that
Zyr — KZy = (Por — KPy)Ao + (Br — KB)W,; + (Cr — KCy) (W7 — t).
The call option price is formulated by the expectation rule as follows:
1 02
ZBC(0,t,T,K) = —/ P.(0)e” = db,
V27 Jp.(6)>0
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where

P.(0) = A+ BO+CH, A= Py — KPy — A-(cT — KCy)t,
0

. 1 . W,
B=—(Br— KB)Vvt, C=—(Cr—KGC)t d §=—
AO( T t)\/_7 A ( T t) an \/]_f
Therefore, we find that the European bond option under the One-variable Second
Chaos Model is also non-central chi-squared with mean Pyr — K FPy;. Note that we are
able to investigate further by applying the same classification as for the Factorizable

Second Chaos Models, that is, considering by the roots of the quadratic functions P,.(0)
and P,(0).

Swaption

The payer swaption price is formulated by the expectation rule as following:

PS(0,T,71,K) = Pps(e)e—%w,

1
V2 Pps(f
where Pps(0) = A + BO + CO2,

9—%, A= (Pu - Por, - Klza;lflzDOT)—A—(ct Cr, — Kzza;lTZCT>
B= jﬂ(Bt By, — KZTZBT>\/E and 5_A<Ct Cy, — KZTZCT>

i=a+1 i=a+1
Again, here that we are able to investigate further in the same way as in the Factorizable

Second Chaos Models, by considering the roots of the function Ppg(f). Therefore we
obtain the same distributions for the derivatives in the One-variable Second Chaos

Model as in the Factorizable Second Chaos Model without loss of generality.

4.6.2 One-variable Third Chaos Model

Assuming that 7y = ( = € = 1 in the one-distribution Third Chaos Model, we have that

X, = / o, + / B.dW,, + / / oW, AW, )W,

:/ <a8+ﬂsW + 5 (W2—3)>dW

0

90



Because from the definitions (4.5.2) we may infer that

1 1
Bt =W Bt = (V2 1), @ity =t and QulteQ) = 57"
we can then simplify expression (4.5.1) as

1
o5, Zir =Ar+ (Br + Cur)Ws + (5Dr + Er + Fur ) (W7 — 1)
4.6.5

1 2 1 2 2 1 2
+ 5GIW(WE —1)+ HT[<§(Wt t)) 5t }

where we have that

o 1
AT :/ <CY§ + 863 + 58253)d8, BT = 2/

T T

Dr :2/ g04ds, ET:/ B32ds,
T

T

[e.9]

asfsds, Cyp = 2/ Bs0s(s — t)ds,
T

FtT:/ 62(s — t)ds, GT:2/ Bsdsds and HT:/ §2ds.
T T

T
Note here that we have from (4.5.3) that

(466) AT == POTA(), T Z 0.

This may be simplified as follows:

1 1
Zyr =PorAp — (-DT + Er + FtT>t — —Hrt’
> 1
1 1 1 , 1.1
+ (Br+ Cir - §GTt> W, + <§DT + Bp + Fyr — §HTt) W2+ SGaWi + He W

The state price density is then given by
1 1
Vi, =Py Ag — <_Dt + Ey + Ftt)t — —Ht?
2 4
1 1 1 5 1 3 1 4
+ (B Cu - §G,¢> W, + <§Dt + By + Fy — §Htt>Wt + G + JHW.
Therefore, we have that both the state price density V; and the variable Z;; are degree

four polynomial forms of Brownian Motion respectively with mean Py Ay and PyrAg

in the One-variable Third Chaos Model. The One-variable Third Chaos Model gives
us that

L(t,y*) = L(t,¢*) = L(t, ) = L(t,e¢) = t,  0(7) = 0(c) = 0(C) =
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which means that we have a univariate normal density for the computation of the

option price.
European call/put bond option
We are able to express the function P, in the following way:

11
Pu(z) =Py — KPy — — [E(DT — KD))+ Ep — KE, + Fyr — KFtt]t

Ag
1
— —(Hy — KH,)t?
4A0( g 2
1 1
+ [BT — KBy + Cir = KCy = 5(Gr — KGt)t} Viz
0
171 1
o [§(DT — KD)) + Br = KEy + Fir = KFy — 5(Hr — KH)t]ta?
0
1 . 1
+ 2—140(GT — KGt)tg:LB + E(HT — KHt)tQCC4,

with

E[P.(z)] = Pir — K Py.
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Swaption

Similarly, we are able to express the function Ppg as follows:

b b
Pes(e) =P — Por, = K Y P, = -5 (Di= Dr — K 3 D)

i=a+1 i=a+1

b b
+Et_ETb - K Z TiETi+Et_ETb - K Z TiFtTi]t

i=a+1 i=a+1
1 b
— —~ (H,—Hy, - K iH.)tQ
44 < t " i;l e
1 b b
+ — |:Bt - BTb - K Z TiBTi + Ctt — Cth - K Z TiCtTi
A i=a+1 i=a+1
1 b
_ 5<Gt — G, — K Z TiGTi)ti| Vitx
i=a-+1
11 b b
4 b(Dt ~Dy-K Y TiDTi) + B~ En,-K Y nEr

i=a-+1 i=a+1

b b
1
+ Ftt - Fth — K E TiFtTi - §<Ht - HTb — K E TzHTZ>ti| tﬂfz

1=a+1 1=a+1

b b
1 3 3 1 2 4
+—2A0 <Gt_GTb _Ki;lTiGTi>t2x —|——4A0 <Ht_HTb —Ki;—HTZ‘HTi)t T,

with ,
E[PPS(QZ)] = P()t — POT;, - K Z TiPDTi-

i=a+1
Therefore we obtain the same distributions for the derivatives in the One-variable Third

Chaos Model as in the One-distribution Third Chaos Model without loss of generality.

4.7 Specification of the chaos coefficients

In this section, we apply descriptive forms to the chaos coefficients, which maintain
the flexibility of the chaos functions. In addition, these forms enable the corresponding

yield curve to have a humped shape.
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4.7.1 The descriptive form

The exponential-polynomial family was introduced by Bjork and Christensen ([12])

and is given by:

n k;
for = Z (Z bijTj)e_ciT for some constants b;; and ¢;.
1 =0

The following three families can be considered as special cases of the exponential-

polynomial family:
o for = by + [b1 +bT)e T (Nelson and Siegel, [64]).
o for = by + [by + byT)e T 4+ b3Te=2T  (Svensson, [86]).
o for =100+ Z?:l bie=sT  (Cairns, [21]).

Here, by and ¢; for e = 1,...,4 are positive constants, and the exponential parameters
are fixed over the calibration dates in the Cairns form. As is claimed in [64] and [86],
the asymptote for the instantaneous forward rate is determined by the positive constant

bo, in other WOrdS,
lim f =b
1 oT 0

for all of the above special cases.

4.7.2 Specification of the deterministic function A

Let us first recall the definition of the function Aq:
hr = forPorVo, T > 0.

Also recall that this function is always positive in the Chaotic Approach. However,

because E[o2] = for PorVy, we may write

hr
=4 1 >0
for = =
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The denominator is a decreasing function with respect to T' > 0, because h is a positive
function. Hence we would like the numerator to have the same features as the curve of
the instantaneous forward rate, i.e., monotonic, humped and S-shaped. Therefore we
may also apply the descriptive forms to the function h, for example:

P [(bl + bgT)e_ClT} 2
r [(bl —+ bgT)e*clT —+ ng&iCQT]Q.

In light of equation (4.1.3), we have in the Chaotic Approach that

h - ¢1 / ¢2 S, 81 dsl +/ / (bg S 51,32 dSQdSl + - S Z 0.

It follows that

®2(T) + fo ¢3(T, s1)ds1 + fo L G2(T, 81, 89)dsadsy + - - - _
fT [¢2 * fO 95 (s, 51)ds1 + fo " ¢3(s, 51, 59)dsadsy + - }ds’ -

In particular, when all of the chaos coefficients are one-variable functions, so that

fOT:

én(T) = ¢on(T,s1,...,8,-1) for each positive integer n, we find that for 7> 0

| N
ST AT + ...

hr =¢1(T) + G3(T)T + 63(T) 5 :

—;éf(T)(i_ll)!Til.

When we take ¢;(T) = Z;nzl bije %7 where b;; and ¢;; are some constants, we obtain

that for "> 0

[e’s) m; 9 1 .
_ . —CijT 1—1
hT_Z(Zb”e ) e
i=1 7j=1
SIS 2 ~ b
S (BT T where By =
=1 j=1 (i —1)!

which may be compared with the Bjork and Christensen descriptive form, because we

have that

2
Z'?il (nglb o Cij ) Tzfl

2
T i <ZTZ1b e_c”s> s lds

Jor = , 1T'>0.
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We observe here that lim; .., hy = 0. However the instantaneous forward rate is ex-
pressed by the quotient form where the function h; is located in the numerator. So, it

is not immediately apparent that
lim fo; = 0.
t—o0

4.7.3 Modelling the chaos coefficients

We now apply the descriptive form to all the chaos coefficients, not only to One-variable

Chaos Models. Let us define for the Factorizable Chaos Models that

d1(s) = als),  @a(s,s1) = B(s)y(s1),  P3(s,51,52) = (s)e(s1)((s2), -+,

for0 <s, - <s9 <51 <s<oowhereq, 3,7, 0, ¢, ( are deterministic functions. Then
we obtain the initial instantaneous forward rate curves can be modelled respectively

as follows: For T" > 0

¢1(T) :
for =", First Chaos Model).
T #(s)ds ( )
2 2
oy + BT :
] , One-variable Second Chaos Model).
for [T+ 325)ds (One-variable Secon aos Model)
2 | g2 T2 q
for = OoaTZ BTZf o 7‘;1 i ., (Factorizable Second Chaos Model).
fT [as + Bs fo 731d81]d5
2 2T 152 T2
for or + 51T+ 501 (One-variable Third Chaos Model).

T [0+ 325 + 102s7ds’
We list all possible choices of the chaos coefficients by the descriptive form. For the
higher order Chaos Models, we investigate all combinations of the forms having six
parameters and seven parameters. Note here that it is possible that all of the forms
given below belong to the First Chaos Model for the initial yield curve fitting, where
we have set My, = ¢3(s).

First Chaos Models

L. ¢1(s) = bje=@* (Exponential form, 2 parameters).
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2. ¢1(s) = (by + bas)e™* (Nelson-Siegel Form, 3 parameters).

3. ¢1(s) = (by + bas)e™ ¥ + byse”>*  (Svensson Form, 5 parameters).

One variable Second Chaos Models, 6 parameters, 2 functions

4. a(s) = (by + bas)e ", [(s) = (bg + bys)e 2",

One variable Second Chaos Models, 7 parameters, 2 functions
5. afs) =bre= %, [(s) = (ba + bss)e ° 4 byse™ %,

6. a(s) = (b1 + bas)e " + bgse™2*,  [(s) = bye™ ",

Factorizable Second Chaos Models, 6 parameters, 3 functions
7. a(s) =bie= 5, B(s) =bye 25, (s) = (1 + bzs)e .
8. afs) =bre ", B(s) = (ba +b3s)e 2, ~(s) =e .

9. afs) = (b +bas)e @, B(s) = bge™ 2%, y(s) =e

Factorizable Second Chaos Models, 7 parameters, 3 functions
10. a(s) = bie®, f(s) = (b + bgs)e ", ~(s) = (1 + bys)e .

11. afs) = (by + bes)e™ %, B(s) = bge™ 2%, ~(s) = (1 + bys)e 3%,

One variable Third Chaos Models, 6 parameters, 3 functions

12. afs) = be ", B(s) = bye °,  0(s) = bge ",

One variable Third Chaos Models, 7 parameters, 3 functions
13. a(s) =be %, [B(s) =be %, (s) = (bs + bys)e ".

14. as) =be=",  B(s) = (by + b3s)e™ 2%, §(s) = bye %,
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15. a(s) = (by + bes)e= %, [B(s) = bze™ 2% §(s) = bye 3%,
One-variable Third Chaos Model, 9 parameters, 3 functions
16. a(s) = (by + bas)e= 4, [B(s) = (bs + bas)e 2, 0(s) = (bs + bgs)e 3%,

One-distribution Third Chaos Models, 7 parameters, 4 functions

17. as) = be= ", B(s) =bye *,  0(s) =bge 3, ~(s) = €(s) =n(s) = e %,

18. afs) = bie=®, B(s) = e %, 4(s) = e ®°, 7(s) = €(s) = n(s) =

bss)e 45,

One-distribution Third Chaos Model, 8 parameters, 4 functions

19. a(s) = (by + bas)e= %, [(s) = bge= 2%, 0(s) = bye™ 3%, ~(s) = €(s) =

—C4S8
e s,

The other Third Chaos Models, 7 parameters, 4 functions
20. afs) =bie= ", B(s) =bee @, q(s) =e 3%, 0(s) = bge™ .
21. a(s) =bie %, [B(s) =bge™ 2% §(s) = bge™ 3% €(s) = e 5.

22. a(s) =bie %, [B(s) =bge= 2% §(s) = bge™ 3% ((s) = e %,

One-variable Fourth Chaos Model, 8 parameters, 4 functions

23. a(s) =bie %, [B(s) =bye 2% §(s) = bze 3% n(s) = bye .
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Chapter 5

Term Structure Calibration

In the previous chapter we specified coefficients of the Chaos Models, without loss of
generality, by applying the exponential polynomial family. This specification allows
us to compute both initial yield and volatilities at the same time. However, we start
our calibration by looking at only initial yield curves. Here, our main concern in this
chapter is to check if our specification of the chaos coefficients allows to fit well into
the initial yield curves. As seen in [1], the Nelson-Siegel Form ([64]) and the Svensson
Form ([86]) are the ones that most central banks apply, with the exception of those in
Japan, UK and USA which apply Smoothing splines. These forms may be regarded as a
special case of the general parametric form suggested by Bjork and Christensen in [12].
Unfortunately this model has the shortcoming that it allows negative interest rates. We
compare initial curve fitting ability of the Chaos Models with those parametric forms
and also among different chaos orders by using data from the UK bond market. We
show that the proposed model attains just as good a fitting to yields as the Svensson

Form does, while also keeping the interest rate positivity condition.

5.1 Calibration Data

A set of yield curve data can be extracted either from the government bond market

(bond prices) or the money markets (LIBOR and swap rates). In this chapter we
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use the bond market because it contains more maturities. However, since Caps and
Swaptions are underlined respectively on the forward LIBOR rate and the forward swap
rate, we extract yield curves from the money markets for the option price calibration
in the next chapter.

We find the clean prices of treasury coupon strips in the UK bond market from the
United Kingdom Debt Management Office (DMO) [90], and directly apply the zero
coupon yield process (yir)o<t<r<oo- Here an Actual/Actual day-count convention is
applied, i.e.,

Days not in leap year . Days in leap year
365 366 '

Factor =

We consider the following two data sets:

e The yield data at 146 dates (every other business day) from January 1998 to
January 1999. Each data point has around 49 to 62 maturities,

e The yield data at 157 dates (every Friday) from December 2002 to December
2005. Each data point has around 100 to 130 maturities.

Note that the first data set contains a volatile market including the period of the
Long-Term Capital Management (LTCM) crisis, and the second data set is from a

more moderate market and holds more maturities of yields.

5.2 Models

For the calibration we consider all possible models of the First Chaos, Factorizable
Second Chaos, and One-variable Third Chaos Models, as was specified in Section 4.7.3;
i.e., we calibrate the models numbered 2 through 15. We compare our results with the
traditional descriptive forms:

Nelson and Siegel Form, four parameters:
(5.2.1) for = bo + [b1 + byT)e T, such that by > 0,¢; >0,
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Svensson Form, six parameters:

(522) fOT = bo + [bl + bQT]B_ClT + b3T€_62T such that b(] 2 0, C1 Z O, Co Z 0.

5.3 Calibration Methods

For the calibration there are various methods available already in the literature, such as
the weighted least squares method ([20], [21], [73]), the maximum likelihood estimation
method ([20], [21], hereafter referred to as MLE), and the Kalman Filtering Method
([54], [82]). We apply the maximum likelihood method for our calibration, and also
the global search procedure ([84]) to find the global maximum, that is, we take several
random starting points to find the global maximum. Let us now recall the weighted

least squares method and the MLE in this section.

5.3.1 Weighted Least Squares Method

Let us first denote by 7z, the real market yield data maturing at time 7; > 0, and
denote by yor, the theoretical prices. The weighted least-squared method consists of

minimizing the following function with respect to the parameters:

1 & Yor; — Yot 2
5.3.1 =N | Yo
(5.31) 3 or |

where 0 <T7 <T,,...,<T,, <ooisasequence of the maturities in yields and wj is

the weight of the objective function.

5.3.2 Maximum Likelihood Estimation Method

As an alternative to the weighted least-square method, Cairns has suggested in [20],

[21] the MLE method. To use this MLE method, we must assume that

InPor, ~ N(InPyr,, v*(Por,,d;)) for each T; > 0,
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where

2 2 72 1 2
7/2(}7, d) — 00(1;)[0005 b(p) + ]’ (p) = — 04 5 7
a5(p)d*b(p) + 1 05(p)[ose — o5(P)]
with the standard deviations defined by:

oo(p) = ! 1 og = li —61/2(p,d)
o= limd_m Var(p)P’ T d—0 8(d2)

and d; for the Macaulay duration, which is time in years to maturity for strips. We

. 0o = lim *(p,d),
d—o0

have the following MLE function:

ny 1 (lnPOTi _ lnFOTi)2
H exp [ — 5 } 7
i1V 2mv*(Fory, d;) 2v%(Por;, d;)
which leads to the following log-likelihood function:
1 e (ZTLPOT. — lnFOT.)2
—= 3" | In[2xA(Pog, , d; : : ]
5 ZZI [n[ v (Por,, d;)] + V2 (Bor o)

However, because v is a constant, the Cairns MLE is equivalent to minimizing the

following weighted least-squares function:

ni

InPor, — lnFOTi 2

Cairns has applied the specific choices (0¢(p), 04, 0oo) = 0.0004,0.001) to the

(7005
German bond market data between 4 January 1996 and 12 April 1997 in the paper
[20], and (0¢(p), 0a, 0no) = <ﬁop’ 0.0005,0.001) to the UK bond market data between
January 1992 and November 1996 in the other paper [21]. Looking at the Cairns paper

[21], the assumption there is that the published bond prices have rounding error of

_1
3200p

around 1/32 per 100 nominal price, and for this reason, the value og(p) = is
applied there. Here Cairns has chosen these values from the historical market data
with advice from various practitioners. From our experiment, the form of the function
oo(p) greatly affects the value of the likelihood function value, whereas the other two
functions o4 and o, do not. Because our calibration dataset is taken from the UK
bond market, and is from just after his calibration data set time period, we also apply

(00(p), 74, 7o) = (33055, 0-0005, 0.001).
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5.3.3 Scoring Measures

Setting w; = 1 in the least-squared function (5.3.1), the calibration is equivalent to
minimizing the Root-Mean-Squared Error (RMSE). Setting w; = oz, it is equivalent
to minimizing the Root-Mean-Squared Percentage Error (RMSPE) due to the relations

1 & 12 1 < [Yor: — Jor, |2
RMSE = EZ[yOTi—yOTi} and RMSPE = |—3Y [—OT] .

n o
1 | YoT;

5.3.4 Diebold-Mariano Statistics

We apply the Diebold-Mariano Statistics ([30], hereafter referred to as DM statistics)
with the Newey-West standard errors ([65]) to compare fitting performances as is done
in [55] and [88]. Here for the computation we use the program DMARIANO ([4]) in the
statistics package STATA, where the lag order is computed from the Schwert criterion
to be thirteen in both of our two datasets. The null hypothesis, which is that two
models have the same fitting errors, can be rejected at 5% level if the absolute value of
the DM statistics is greater than 1.96. The DM statistics is based on RMSPEs which
are Squared Percentage Errors in [55] and RMSEs in [88]. We compare the calibration
performance of the Chaos Models with the descriptive forms, i.e., Nelson-Siegel Form
and Svensson Form. In our computations, the higher number means that the model

outperforms the corresponding descriptive form.

5.4 Calibration Results

Lets us first explain the notation used in Tables 5.1 - 5.2. “No.” in the tables stands for
the model numbers specified in Section 4.7.3, “N” for the number of the parameters, “L”
for the likelihood function, “DM-NS” for DM statistics compared with Nelson-Siegel
Form and “DM-Sv” for DM statistics compared with Svensson Form. A higher number

of DM statistics means that the model outperforms the descriptive form. Moreover,
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we represent the RMSEs and RMSPEs by percentage, i.e., 0.73 means 0.73%.

Analyzing the calibration results from Tables 5.1 - 5.2 and Figures 5.1 - 5.2, we first
notice that errors by the Nelson-Siegel Form in the volatile market (1998 — 1999) are
very high, that is, the average RMSPE of all dates is 2.67%, which is much higher
than the errors given by the Chaos Models. Indeed, comparing the Chaos Models with
the Nelson-Siegel Form by the DM Statistics we are able to show that all higher order
Chaos Models work better, as can be seen in Table 5.1. On the contrary, errors by the
Nelson-Siegel Form in the moderate market (2002 — 2005) are relatively small, that is,
the average RMSPE is 0.97% as can be seen in Table 5.2 and Figure 5.2. However, most
of the Chaos Models achieved even smaller errors and we show by the DM Statistics in
Table 5.2 that around half of the suggested Chaos Models outperform the Nelson-Siegel
Form in this data set.

On the other hand, we observe from the tables and figures that the Svensson Form
achieved very small RMSPE. Comparing the Chaos Models with the Svensson Form, we
are able to accept the null hypothesis in the DM Statistics for most of the Chaos Models
as is seen in Tables 5.1 - 5.2. It means that we cannot state that there exists significant
difference in the calibration performances between the Svensson Form and the Chaos
Models. Here, we are not able to show that the Chaos Models work significantly better
in either of the two datasets. However, in addition to ensuring interest rate positivity,
the Chaos Models are advantageous for modelling volatilities. Moreover, the calibrated
parameters of the yields can be applied directly to the volatility term structure. This
saves degrees of freedom in the option price calibration, as we observe in the next
chapter.

As is stated in Section 4.7.3, for the initial yield curve fitting, it is possible that all
of the Chaos Models belong to the First Chaos Model. Indeed we do not find sig-
nificant difference in the calibration performances between the One-variable Second

Chaos Models and the One-variable Third Chaos Models. However, looking at Figure
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5.1 and Figure 5.2, we observe that the Factorizable Second Chaos Models show dif-
ferent results from the One-variable Chaos Models. The stabilities in RMSPE are not
maintained over the calibration dates. Therefore having the exponential form in the

third function of the Factorizable Second Chaos Model is not desirable.

105



Table 5.1: Yield Calibration in 1998 — 1999 (Volatile Market)

No. | Model N[ -L | RMSE (%) | RMSPE (%) | DM-NS | DM-Sv
2 | 1st chaos (a) 3 | 4420 0.73 4.44 -3.41 -11.46
3 | 1st chaos (b) 5 | 250 0.19 0.86 4.09 -3.54
4 | one-var 2nd chaos 6 | 162 0.15 0.82 4.52 -2.26
5 | one-var 2nd chaos (a) | 7 | 160 0.15 0.69 4.48 0.22
6 | one-var 2nd chaos (b) | 7 | 145 0.14 0.75 4.48 -1.05
7 | factorizable 2nd (a) 6 | 335 0.19 0.88 4.46 -2.54
8 | factorizable 2nd (b) 6 | 245 0.19 0.68 4.20 0.27
9 | factorizable 2nd (c) 6 | 1245 0.37 1.26 3.96 -3.81
10 | factorizable 2nd (a) 71 179 0.16 0.63 4.35 1.38
11 | factorizable 2nd (b) 7| 153 0.14 0.72 4.46 -1.07
12 | one-var 3rd chaos 6 | 168 0.15 0.72 4.40 -1.24
13 | one-var 3rd chaos (a) | 7 | 141 0.14 0.76 4.36 -1.16
14 | one-var 3rd chaos (b) | 7 | 152 0.14 0.72 4.48 -1.19
15 | one-var 3rd chaos (c) | 7 | 149 0.14 0.76 4.42 -1.43
- | Descriptive NS 4 | 2101 0.49 2.67 - -4.45
- | Descriptive Sv 6 | 160 0.15 0.70 4.45 -

Table 5.2: Yield Calibration in 2002 — 2005 (Moderate Market)

No. | Model N| -L | RMSE (%) | RMSPE (%) | DM-NS | DM-Sv
2 | Ist chaos (a) 3 | 8716 0.69 3.96 -3.42 -3.50
3 | 1st chaos (b) o | 438 0.17 0.99 -0.35 -1.99
4 | one-var 2nd chaos 6 | 388 0.15 0.89 0.75 -1.23
5 | one-var 2nd chaos (a) | 7 | 388 0.15 0.80 1.45 -0.38
6 | one-var 2nd chaos (b) | 7 | 329 0.14 0.66 5.33 1.26
7 | factorizable 2nd (a) 6 | 437 0.16 1.04 -0.87 -3.33
8 | factorizable 2nd (b) 6 | 495 0.17 0.84 2.16 -0.68
9 | factorizable 2nd (c) 6 | 421 0.16 1.19 -1.70 -2.84
10 | factorizable 2nd (a) 7| 365 0.15 0.82 1.83 -0.78
11 | factorizable 2nd (b) 7 323 0.14 0.72 3.93 0.36
12 | one-var 3rd chaos 6 | 388 0.15 0.87 0.78 -1.06
13 | one-var 3rd chaos (a) | 7 | 350 0.15 0.78 2.06 -0.11
14 | one-var 3rd chaos (b) | 7 | 367 0.15 0.68 3.31 1.24
15 | one-var 3rd chaos (¢) | 7 | 325 0.14 0.69 3.46 0.60
- | Descriptive NS 4 | 541 0.18 0.97 - -1.76
- | Descriptive Sv 6 | 442 0.16 0.76 1.76 -
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Chapter 6

Option Price Calibration

In the previous chapter we showed that the Chaotic Approach has good fitting ability
to the yield curves. In this chapter, we take the ATM European Options, particularly
Caps and Swaptions, into account. The issue of the volatility smile will be considered
in Chapter 7. We compare the models among different chaos orders, and also some
popular and classical interest rate models. The books by Brigo and Mercurio ([14])
and James and Webber ([54]) claim that the term structure of caplet volatility has
a humped shape in a moderate market condition. For example, to achieve a good
fitting into the humped shape of the implied volatility, Rebonato ([75]) suggested the
Nelson-Siegel Form applied to the instantaneous caplet volatility in the LFM, that is,
0;(t). Though the LFM has some crucial problems with the volatility smile, it is able to
achieve great fitting ability into the caplet volatility term structure with desirable hump
shaped curves, where many other existing models are unable to do this. Nevertheless,
our calibration work shows that the Chaos Models also succeed on fitting the humped
volatility term structure. The SABR Model holds the stochastic volatility feature used
in the current financial practice as a market standard model. It is well known that the
SABR Model achieves good fitting to volatility smiles. We observe in this chapter that
the calibration errors in the Chaos Models are smaller than the same errors for the

SABR Model for the ATM options. This is mainly because the SABR Model does not
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fit very well to ATM Options across maturity and tenor whereas the Chaos Models do.

For this calibration we apply the day-by-day calibration methodology, which is also
called the global approach (for instance, in [51], page 223), by the least squares method,
as has been done many times before. For example of this approach, see [35], [55],
[62] and [73]. In particular, the literature [35] and [62] mentions the importance of
such calibration work rather than time series calibration, claiming that more valuable
information about the volatility of forward LIBOR rates is in the present market than
in the historical data. Our main motivation here is to replicate the current financial
market by as small number of parameters as possible, which may then be used for
pricing and hedging exotic options, such as the Chooser flexible cap and Bermudan
Swaption. We compare the calibration performances by the DM-statistics, exactly as

in the yield calibration.

6.1 Calibration Data

The zero-coupon yields are from the money markets, which are bootstrapped from the
LIBOR, Futures and Swap rates (see [83] for the detail of the bootstrapping technique).
Interest Rate Option prices are obtained from ICAP (Garban Intercapital - London)
and TTKL (Tullett & Tokyo Liberty - London) via the Bloomberg Database.! We
consider the UK interest rate market for our calibration. The GBP Caps/Floors apply
three month frequencies for all caplets with ACT/365 day count convention, where all
payments are in arrears. The GBP Swaptions apply Semi/Semi basis and ACT/365
day count convention where all payments are six months in arrears. We particularly

consider the following two data sets:

e Data between September 2000 and August 2001 at 53 dates (every Friday closing

Here we would like to acknowledge helpfulness of the Bloomberg help desk staff, who have aided
greatly our understanding of the actual market data. We particularly wish to extend thanks David
Culshaw, from ICAP, for his assistance.
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mid price). In each date we have that:

— 17 zero-coupon yields, maturing in 1M, 2M, 3M, 1Y, 1Y6M, 2Y, 3Y, ...,
10Y, 12Y, 15Y, 20Y2.

— 37 ATM Caplets implied volatilities maturing in 1Y, 1Y3M, ..., 9Y9M,
10Y.

— 7 x 6 ATM Swaptions implied volatilities, maturing in 1M, 3M, 6M, 1Y,
2Y, 3Y, bY, where the underlying swap contracts are maturing in 1Y, 2Y,
3Y,5Y, 7Y, 10Y, which are lengths called “tenor”.

e Data between May 2005 and May 2006 at 53 dates (every Friday closing mid

price). In each date we have that:

— 22 zero-coupon yields, maturing in 1M, 2M, 3M, 4M, 7M, 10M, 1Y1M,
1Y4M, 1Y7M, 1Y10M, 2Y1M, 3Y, ..., 10Y, 12Y, 15Y, 20Y?3.

— 77 ATM Caplets implied volatilities maturing in 1Y, 1Y3M, ..., 19Y9M,
20Y.

— 42 ATM Swaptions implied volatilities, maturing in 1M, 3M, 6M, 1Y, 2Y,
3Y, 5Y, where the underlying swap contracts are maturing in 1Y, 2Y, 3Y,5Y,
7Y, 10Y.

Here, M and Y stand for month and year respectively. Note here that the option data
corresponds to a part of the data in [88], where data was analyzed between August
1998 and January 2007. The Caplet implied volatilities are bootstrapped from the
ATM Caps implied volatilities observed in the market by the technique given in the
book [35], where the ATM Caplet implied volatilities maturing at six months and

nine months are obtained by constant extrapolation. Though the extrapolation is

2Though we observe 23 yields we do not use very short maturities and long maturities yield.
3Though we observe 30 yields we do not use very short maturities and long maturities yield.
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necessary to bootstrap the other ATM Caplet implied volatilities, when we calibrate
the data the extrapolated prices give us great errors. Hence, though we follow the
book and implement the extrapolation, we do not use those two short maturities for
the calibration. Moreover, we observed some obvious outliers and corrected them
accordingly. As Gatheral mentions in his book ([36]), it seems indeed to be difficult to
bootstrap the market values without allowing any arbitrage opportunity. The volatility
term structures, which we obtained from the bootstrap technique, are not smooth
curves as the reader may observe from Figure 6.1 and Figure 6.2. However, as can be
seen in [35] (page 78), these are not abnormal feature. The reader might also like to
compare it with the smooth curves in the books [14] (page 88 —95) and [54] (page 50).

The book [14] claims the existence of a relationship between the shape of that implied
volatility curve and the shape of the instantaneous forward rate volatility curve. It
is often observed that both curves have humped shape at the same time. On the
other hand, in the paper [88], the authors have applied the Nelson-Siegel Form to the
instantaneous forward rate volatility curve and calibrated it, though they have not

investigated the implied volatility curve structure.
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6.2 Models

In our calibration we consider the Chaos Models numbered 4,6,9,12,15,17,19, 23 in
Section 4.7.3. We also calibrate the following seven models for the purpose of compar-

1son.

6.2.1 Other models in the Potential Approach

I. Rational Lognormal Model with Nakamura-Yu form and constant ¢ with
Svensson Form, 9 parameters

To implement the Rational Lognormal Model, (see, Section 2.1.4), Nakamura and Yu

in [63] choose the following forms of the functions g; and go:

OF, OF,
9i(t) = a5 (P) and ga(t) = ="

for some constants a,y € R. This choice gives us that

Gi(t)

[1—a(Py)"], for t=>0,

. (0%
v+1

(Py)"™ and  Gsy(t) = Py — G1(t), for t>0.

This means that the initial bond price Fy can be modelled independently from the
Rational Lognormal Model. We hence apply the Svensson Form for our calibration to
the initial forward rate and to express the initial bond prices. A form of the function
M, is not specified in the paper [63]. However in [38] and [73], it is represented as an

exponential martingale
1 t t
M; = exp [—5/ bfds—i—/ 5SdWs}, for ¢t >0,
0 0

for some deterministic function o. In particular, as in [38] we assume that the function

o is just a constant value, i.e. ¢ = [ where § € R.

II. Rational Lognormal Model with Nakamura-Yu form and exponential 7,
with Svensson Form, 9 parameters

We also calibrate the Rational Lognormal Model with an exponential form 7, = e=#

as an experiment, although this example is not found in the literature.
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III. Constantinides Model, 5 parameters

Let us consider the one-factor Constantinides Model, (see, Section 2.1.5), for our cali-
bration, i.e. we set ¢+ = 1. Constantinides assumed that a; = 0. We do not do this, in

order to be as general as possible. We find that for ¢ > 0,

2

(6.2.1) Vi = exp [— (g—l—%)tﬂLUoWo(t)-F(m(t) —a1)?,

where z;(t) is the OU process defined by
dl’l(t) = —)\1{L'1(t)dt + O'ldwl(t).
Because the dynamics can be solved by

t
x1(t) = 016_”\”/ M AW, (s),
0

we may express the state price density as

2

Vi, = exp [— (g + %)t + aoWo(t) + (Jle_’\lt /Ot e/\ldel(s) - a1>2}.

We note here that this model has 6 parameters, these are g, 09,01, a1, Ay and z1(0).

Then, the discount bond price for 0 <t < T < oo is given by
_1 2
P = Hy *(T=t)exp | (=g+A) (T=t)+ By (T=1)(w1(8) =ane ™) — (1 () —en 2.

In particular, at the initial time ¢ = 0 we have that

1

_ 2
Por = Hy *(T) exp [(—g YT+ HY(T) (xl(O) - ozle)‘lT> ~ (21(0) — a1)2] .
We leave the option pricing forms of the Constantinides Model to the Appendix.

6.2.2 Short Rate Models
IV. Hull-White Model with Svensson Form, 8 parameters

dry = (0, — ary)dt + odWy,  for = bo + [br + bat]e™ " + bste™ ",
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V. Cox-Ingersoll-Ross Model, 3 parameters
dry = k(0 — ry)dt + o\/ri dW;.
6.2.3 Market Models
VI. Lognormal Forward LIBOR Model with Svensson Form, 13 parameters

In our calibration of the LFM (see Section 2.2.3) we apply formulation 6 from [14]
(page 224), i.e., the Rebonato Form:

0i(t) = b1 + (b2 + b3(Ti—1 — t))e_cl(Ti—l—t)7

for some parameters by, by, b3,c; € R. Considering a Swaption maturing at 7, with
tenor T, — T,, its swaption implied volatility may be modelled in the LFM by the
Rebonato Approximation ([75]):

b

Vap = %bm;ﬁl wi(o)wjéagij(zgo)]%m) Pij/o ) oi(t)o;(t)dt,

where the forward swap rates are assumed to be expressed by the linear combination

of forward swap rates as follows:

b b
Pr.
Sus(t) = 3 wi)F(t) = 3 wi(0)F () where w(t) = —— .
i=a+1 i=a+1 Zk:a—H T Fury,

We apply the Schoenmakers and Coffey Form ([85]) for the correlation p;;:

15 — i i+ 324+ ij —3mi—3mj + 3i +3j +2m* —m — 4
pij:eXp[—m<—lnpoo+m (m—2)(m—3)
P42 4+ij—mi—mj—3i—3j+3m+2
G (n—2)(m — 3) )]

for 7,7 =1,2,...,m where m = b — a and parameters 71,7, pooc € R such that 3n, >
M2 > 0,0 <y 419 < —Inps. Therefore, we need 5 parameters to model the forward
rate volatility, 3 parameters to model the correlation. Considering the Svensson Form
for the initial curve we use 10 parameters totally to compute a caplet, 13 parameters

totally to computer a swaption.
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VII. SABR Model with Svensson Form, 12 parameters

The reader might like to read Section 2.2.4 for recalling the SABR Model. As is stated
before, there is no link between Caplet pricing and Swaption pricing in the SABR
Model. If we compute either only Caps or only Swaptions, the required number of

parameters is 9. However we need 12 parameters to compute both Caps and Swaptions.

6.3 Calibration Methods

We implement following three types of calibrations:
1. ATM Swaption with yields calibration (Three dimensional).
2. ATM Caplet with yields calibration (Two dimensional).
3. ATM Swaption and ATM Caplet with yields calibration (Four dimensional).

This last calibration is called “Joint calibration”, see [14] (page 539 —544) and also [88].
Note here that the ATM Swaptions contain both the maturity and tenor dimensions
while the ATM Caplets contain only the maturity dimension, since the tenor is usually
fixed in the market. Hence, we will show six result tables in total, containing the results
of ATM Swaption calibration, ATM Caplet calibration and Joint calibration for each
data set. In addition, we compare the fitting performances of the proposed models with
the LFM and the SABR Model by the DM statistics. The null hypothesis, which is
that two models have the same fitting errors, may be rejected at 5% level if the absolute
value of the DM statistics is greater than 1.96. In our computations in the tables in
Section 6.4, a higher number in the DM statistics means that the corresponding model

displays a better fitting than the benchmarked model, i.e., LFM and SABR.
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6.3.1 Objective Function

For ATM option price calibrations we apply the weighted least-square method, that is,

we minimize the following function:

_Z[yOT_yOT:| ‘I'_Z[OP( LAT )_W(TiaKATM) ?
ni Yor, n2 O (Ti, Karu)

where Yo, and OP(T;, K aras) are defined for the real market data of yields and at
the money interest rate option maturing at 7; > 0, while y and OP are defined for
theoretical prices. We also consider the fitting of both Caps (Floors) and Swaptions,
i.e., Joint calibration. Therefore, in addition to the calibration with one type of option,

we also consider minimizing the following functions:

1 Z |:ZUOT Yor, } L 1 i [Cpl(na Karn) — Cpl(T;, KATM):| ?

n Yor, N9 Cpl(T;, K arnr)

. —Z {SW(T“KATM) W(Ti,KATmr
o SW(TiyKATM) 7

where Cpl and SW denote the real market data of caplets and swaptions respectively,
while C'pl and SW denote theoretical prices. We apply the parameters obtained from
the calibration for pricing purpose. For example, after calibrating the ATM Swaptions,
we price the ATM Caplets which are then compared with the market ATM Caplet
prices. Pricing errors are denoted by CplP-PE and CplV-PE for pricing errors in
terms of premium and implied volatility respectively (we will see detail of those scoring
measures in a later section). Similarly, after calibrating the ATM Caps, we price the
ATM Swaptions and compute pricing errors which are denoted by SWP-PE and SWV-
PE.

In some models, such as the Hull-White model and the SABR Model, we are able
to model initial yield curves and options separately. For these we apply the Svensson
Form for the initial curves and minimize ATM options errors only. Moreover, we

minimize the least square sum of implied volatilities when analytical implied volatility
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forms are available, such as in FLM and SABR Model. As we know, we have a one-
to-one correspondence between an option premium and its implied volatility via the
Black formula. Though we are able to compute analytically the premium from the
implied volatility by the Black formula, it is not straightforward to do this in the
converse direction, as it requires some approximations. Many models, such as Hull-
White, CIR, Constantinides, Chaos Models, and others, do not have analytical implied
volatility forms. Indeed, the calibrations for those models are usually implemented by
minimizing the least squares sum of the premiums. Because financial markets show the
implied volatilities instead of the premiums, and the shapes of the implied volatility
curve and surface are very much of interest, it may be better if we could minimize
the error of the implied volatilities. However, sensitivity between the implied volatility
and premium is high, especially for options away from the money. A small error in
implied volatility fitting may cause a great error in premium. Therefore, it is sometimes

claimed that calibration by premiums is important, because that is what traders pay.

6.3.2 Simulation

After the calibration we obtain all parameters, which gives us yield and option prices
as close as possible to the market values. We keep these artificial prices, but leave our
parameters aside. We calibrate our model again but to these artificial prices. This
work allows us to see whether we have really achieved the global minimum. For this

work we focus on the One-variable Third chaos 6 parameter model, i.e.,
a(s) = bie” %, B(s) = bae™ %, §(s) = bge™ ™,

and apply the artificial data set obtained from the former calibration work in the second

data set, i.e., 2005 — 2006.
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6.3.3 Scoring Measure

We apply RMSPE for our scoring measure. Let us first define

ni n2

1 Z [yon —?onr . 1 Z [OP(TiaKATM) _ﬁ(ﬂaKATM)]2’

Total-E = , | — — —
n Yo, OP(T;, Karwm)

n
25

where OP is the corresponding option for the calibration,

1 & Yo 12
Vield-E = |- 3 [HL L]
n = Yo,
1 & » — SWA(T: 2
SWP-E — _Z [SW<TMK—A_TM> SW<TwKATM)] |
N2 53 SW(T;, Karm)
1 no vol E K _—vol ﬂ K 9
SWV-E = _Z[SW ( ’_ATfl) SW (T, ATM)] 7
N2 SW Ty, Karwm)

where SW is swaption premium and SW" is swaption implied volatility,

1 & [Opl(Ty, Karnr) — Cpl(Ty, K arar)12
CplP-E= | — AT ,
P N2 ; [ Cpl(Ti, Karw) ]

——wol

n2 vol (. o ] 9
Cplv_E — lz |:Cpl (ﬂ?KATM) Cpl (E7KATM>:| ’

——al
n VO
2=

Cpl (T;, Karum)

where Cpl is caplet premium and Cpl¥® is caplet implied volatility.

6.4 Calibration Results

We analyze the calibration results using Tables 6.1 - 6.8 and Figures 6.3 - 6.17. Let us
first explain the notation used in the tables. As was mentioned before, the model num-
bers are specified in Section 4.7.3 and Section 6.2 and we apply the Svensson Form in
the models LILIV,VI,VII. CplP-PE and CplV-PE denotes pricing errors of respectively

Caplet premium and Caplet implied volatility from the Swaption calibration. Similarly,
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SWP-PE and SWV-PE pricing denotes errors of respectively Swaption premium and
Swaption implied volatility from the Caplet calibration. The symbol “#” denotes a
value which is greater than 100%. In the LFM, we need to calibrate the correlation
to compute the Swaptions. Hence we are unable to compute the pricing errors of the
Swaptions from the Caplet calibration. Moreover, since Caplet and Swaption formulas
are inconsistent in the SABR Model, we are unable to compute the pricing errors in
the SABR Model.

In our calibration we found the parameters of the models by minimizing the errors
between the market values and the theoretical values so that these parameters replicate
the interest rate market as closely as possible. Let us start our observation by looking
at Figures 6.9 - 6.12. These plots shows the comparisons between the market data
and the replicated data by the interest rate models. From there we can see how well
the models simulate the market data. For instance, we observe that the Rational
Lognormal Model, Hull-White Model, CIR Model and SABR Model all fail to fit into
the implied volatilities across the maturity and the tenor. In particular these models
do not succeed in the humped shape curve of the caplet volatility term structure.

The comparison among the chaos orders are analyzed by Figures 6.3 - 6.8. Looking at
the plots on the left side, we can see the green lines are below the red lines in most of
the cases where the green lines represent the One-variable Third Chaos Models and the
red lines represent the Second Chaos Models. This feature is obvious particularly in
the Swaption calibrations and the Joint calibrations. Furthermore, Figures 6.13 - 6.16
show the same results in pricing performance. The One-variable Third Chaos Model,
numbered 15, would be a particularly ideal model.

Let us further look at the calibration results using Tables 6.7 - 6.8 which show the
DM Statistics compared respectively with the LFM and the SABR Model. Because
the LFM is formed particularly for fitting well into the volatility term structure, it
outperforms the Chaos Models. However, looking at the plots on the right side in
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Figures 6.3 - 6.8, we observe the RMSPEs over the calibration time are not greatly
different between the LFM and One-variable Third Chaos Models. Furthermore, the
LFM has a crucial problem in fitting volatility smile which we consider in the next
chapter. On the other hand, the calibration results show that most of the Chaos
Models are able to fit the ATM Options better than the SABR Model. One of the
remarkable points is that the Chaos Models have a smaller number of parameters,
even while incorporating the initial yield curve calibration at the same time.

After the calibration we obtain the best parameters to replicate the market data. In
other words, we are able to simulate the market data by the interest rate model. We
implement the calibration again but on the replicated artificial data, while putting our
parameters aside. We obtain very small average errors in percentage, as is seen in
Table 6.9. In this calibration, Figure 6.17 compares the parameters which we obtained
from the first calibration and the second calibration. The linear parameters by, by, b3
are different between the calibrations. This is because the yield and the options are for-
mulated by the quotient forms in the Chaos Models as seen in Section 4.5.1. However,
we observe that the exactly same exponential parameters ¢, ¢, c3 are obtained. These

results convince us that the the global minimization is achieved in our calibrations.
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Table 6.1: The average RMSPE (%) of ATM Swaption in 2000 — 2001

No. | Model N | Total-E | Yield-E | SWP-E | SWV-E | CplP-PE | CplV-PE
4 | one-var 2nd chaos | 6 7.1 1.8 6.8 7.0 14.5 14.2
6 | one-var 2nd chaos | 7 7.1 2.0 6.7 7.1 14.6 13.6
9 | factorizable 2nd 6 7.1 2.1 6.8 6.8 14.3 13.3
12 | one-var 3rd chaos 6 5.3 2.9 4.1 5.2 10.2 11.1
15 | one-var 3rd chaos 7 3.8 1.5 3.4 3.6 8.6 8.1
17 | one-dist 3rd chaos | 7 4.9 2.5 4.1 4.7 13.8 13.8
19 | one-dist 3rd chaos | 8 3.9 1.7 3.5 3.8 12.8 12.5
23 | one-var 4th chaos 8 4.8 2.7 3.9 4.7 9.0 9.9
I | Rational-log (a) 9 8.4 0.6 8.4 8.4 15.3 14.4
IT | Rational-log (b) 9 5.9 0.6 5.9 6.0 24.8 24.3
III | Constantinides 5 7.0 2.9 6.3 6.5 99.9 99.9
IV | Hull-White 8 10.2 0.6 10.2 10.3 17.6 16.7
V | CIR 3 8.5 5.1 6.5 8.7 14.2 14.2
VI | LFM 13 5.0 0.6 5.0 5.0 8.1 7.9

VII | SABR 9 7.5 0.6 7.5 7.5 - -

Table 6.2: The average RMSPE (%) of ATM Swaption in 2005 — 2006

No. | Model N | Total-E | Yield-E | SWP-E | SWV-E | CplP-PE | CplV-PE
4 | one-var 2nd chaos | 6 6.5 3.2 5.5 6.4 32.2 35.1
6 | one-var 2nd chaos | 7 5.0 1.5 4.8 5.1 11.9 13.7
9 | factorizable 2nd 6 6.8 2.3 6.4 6.7 13.7 17.1
12 | one-var 3rd chaos 6 4.5 2.2 3.8 4.4 21.2 23.3
15 | one-var 3rd chaos 7 4.2 1.6 3.8 4.3 13.4 14.5
17 | one-dist 3rd chaos | 7 4.5 1.9 4.0 4.5 23.7 25.4
19 | one-dist 3rd chaos | 8 4.1 1.4 3.8 4.0 28.1 26.4
23 | one-var 4th chaos 8 4.3 2.0 3.8 4.5 15.1 19.3
I | Rational-log (a) 9 8.2 0.4 8.2 8.0 10.9 10.3
IT | Rational-log (b) 9 5.8 0.4 5.8 5.7 35.1 35.0
IIT | Constantinides 5 6.3 1.9 5.9 6.3 99.8 99.8
IV | Hull-White 8 9.5 0.4 9.5 9.5 11.2 10.7
V | CIR 3 5.9 3.5 4.6 6.0 10.1 12.5
VI | LFM 13 3.5 0.4 3.5 3.5 14.8 14.9

VII | SABR 9 7.5 0.4 7.5 7.5 - -
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Table 6.3: The average RMSPE (%) of ATM Caplet in 2000 — 2001

No. | Model N | Total-E | Yield-E | CpIlP-E | CplV-E | SWP-PE | SWV-PE
4 | one-var 2nd chaos | 6 5.1 2.0 4.6 4.3 14.9 14.4
6 | one-var 2nd chaos | 7 3.3 1.7 2.7 3.5 16.3 16.7
9 | factorizable 2nd 6 3.8 2.1 3.1 3.6 26.5 26.6
12 | one-var 3rd chaos 6 4.2 2.0 3.5 4.6 15.5 16.2
15 | one-var 3rd chaos 7 3.2 1.3 2.9 3.2 15.7 15.6
17 | one-dist 3rd chaos | 7 3.4 1.7 2.9 3.2 41.9 41.5
19 | one-dist 3rd chaos | 8 3.0 1.6 2.4 2.9 41.6 41.3
23 | one-var 4th chaos 8 3.7 1.9 3.1 4.3 32.5 32.5
I | Rational-log (a) 9 9.2 0.6 9.2 9.2 13.9 13.9
IT | Rational-log (b) 9 4.7 0.6 4.7 5.0 28.9 29.1
ITI | Constantinides ) 3.8 1.9 3.2 4.2 # #
IV | Hull-White 8 9.4 0.6 9.4 9.4 # #
V | CIR 3 10.2 2.8 9.5 9.3 36.0 34.8
VI | LFM 10 3.0 0.6 3.0 1.9 - -

VII | SABR 9 8.0 0.6 8.0 7.7 - -

Table 6.4: The average RMSPE (%) of ATM Caplet in 2005 — 2006

No. | Model N | Total-E | Yield-E | CplP-E | CplV-E | SWP-PE | SWV-PE
4 | one-var 2nd chaos | 6 6.3 1.6 6.1 7.4 94 9.2
6 | one-var 2nd chaos | 7 3.4 1.5 3.0 4.7 14.0 14.5
9 | factorizable 2nd 6 4.3 2.4 3.4 5.1 20.0 19.9
12 | one-var 3rd chaos 6 4.9 1.9 4.4 5.7 26.2 25.7
15 | one-var 3rd chaos 7 3.6 14 3.2 6.1 14.2 14.5
17 | one-dist 3rd chaos | 7 3.6 1.3 3.3 4.9 35.3 35.3
19 | one-dist 3rd chaos | 8 3.4 1.3 3.1 5.5 34.1 34.0
23 | one-var 4th chaos 8 4.3 1.9 3.7 5.6 35.9 35.4
[ | Rational-log (a) 9 9.4 0.4 9.4 9.1 10.5 104
IT | Rational-log (b) 9 7.4 0.4 7.4 7.0 14.2 14.1
III | Constantinides 5 4.6 1.8 3.4 5.3 +# #
IV | Hull-White 8 8.4 0.4 8.4 8.4 16.3 16.3
V | CIR 3 8.4 2.4 7.8 9.5 28.7 27.3
VI | LFM 10 3.5 0.4 3.5 2.8 - -

VII | SABR 9 7.8 0.4 7.8 7.5 - -
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Table 6.5: The average RMSPE (%) from Joint Calibration in 2000 — 2001

No. | Model N | Total-E | Yield-E | SWP-E | SWV-E | CplP-E | CplV-E
4 | one-var 2nd chaos 6 12.5 2.2 9.3 8.6 7.9 8.1
6 | one-var 2nd chaos | 7 12.1 2.4 9.3 8.7 7.3 7.9
9 | factorizable 2nd 6 12.1 2.6 8.4 9.2 8.2 7.9
12 | one-var 3rd chaos 6 8.2 4.3 4.4 5.1 5.2 7.2
15 | one-var 3rd chaos 7 7.1 1.6 4.4 4.5 5.2 4.9
17 | one-dist 3rd chaos | 7 8.2 4.4 4.5 5.1 5.1 7.2
19 | one-dist 3rd chaos | 8 8.0 2.2 4.8 4.8 5.9 5.9
23 | one-var 4th chaos 8 8.1 4.3 4.4 5.1 5.2 7.2
I | Rational-log (a) 9 14.6 0.6 10.0 10.0 10.6 9.9
IT | Rational-log (b) 9 16.8 0.6 12.3 12.3 11.4 10.3
III | Constantinides 5 25.8 9.2 22.5 24.0 8.1 14.2
IV | Hull-White 8 18.4 0.6 12.2 12.3 13.7 13.0
V | CIR 3 15.3 5.1 8.3 10.2 11.3 12.0
VI | LFM 13 6.5 0.6 5.5 5.5 3.1 3.1

VII | SABR 12 11.1 0.6 7.5 7.5 8.0 7.8

Table 6.6: The average RMSPE (%) from Joint Calibration in 2005 — 2006

No. | Model N | Total-E | Yield-E | SWP-E | SWV-E | CplP-E | CplV-E
4 | one-var 2nd chaos | 6 10.4 2.5 7.3 7.8 6.9 10.6
6 | one-var 2nd chaos | 7 8.6 1.5 6.3 6.7 5.6 5.8
9 | factorizable 2nd 6 10.3 1.9 7.9 8.1 6.2 7.0
12 | one-var 3rd chaos 6 9.1 3.3 5.8 6.3 6.1 9.1
15 | one-var 3rd chaos 7 7.8 1.8 5.0 5.1 5.5 7.4
17 | one-dist 3rd chaos | 7 8.7 3.0 5.8 6.6 5.5 7.5
19 | one-dist 3rd chaos | 8 8.3 1.9 5.7 5.6 5.5 7.5
23 | one-var 4th chaos 8 8.5 2.9 5.3 5.8 5.8 8.8
[ | Rational-log (a) 9 13.0 0.4 8.4 8.3 9.9 9.4
IT | Rational-log (b) 9 13.8 0.4 10.5 10.4 8.8 7.9
IIT | Constantinides 5 24.1 6.5 19.9 20.2 11.7 14.6
IV | Hull-White 8 14.0 0.4 10.1 10.1 9.5 9.2
V | CIR 3 10.5 3.5 5.3 6.0 8.0 9.5
VI | LFM 13 6.2 0.4 4.8 4.8 3.8 3.8

VII | SABR 12 10.8 0.4 7.5 7.5 7.8 7.5
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Table 6.7: Comparison with the LEFM by DM-Statistics

No. | Model N SW SW Cpl Cpl JT JT
00’-01" | 05°-06" | 00’-01" | 05’-06" | 00’-01" | 05’-06’
4 | one-var 2nd chaos | 6 | -25.18 | -21.76 | -24.93 | -17.28 | -35.86 | -33.71
6 | one-var 2nd chaos | 7 | -23.97 -9.11 -3.34 1.20 | -35.57 -9.95
9 | factorizable 2nd 6 -8.88 | -13.52 -7.89 -5.37 | -18.96 | -20.93
12 | one-var 3rd chaos 6 -1.32 -4.05 -7.41 -9.14 -8.32 | -21.86
15 | one-var 3rd chaos 7 4.67 -3.13 -3.60 -1.09 -2.19 -9.21
17 | one-dist 3rd chaos | 7 0.50 -4.73 -5.41 -0.94 -8.44 | -10.41
19 | one-dist 3rd chaos | & 3.87 -3.52 1.26 1.12 -5.36 -9.13
23 | one-var 4th chaos 8 0.63 -4.30 -5.17 -6.33 -8.05 | -13.50
I | Rational-log (a) 9| -16.40 | -21.30 | -13.80 | -17.31 | -22.59 | -20.83
IT | Rational-log (b) 9 -7.38 | -22.53 -6.66 | -14.65 | -45.01 | -33.69
III | Constantinides 5 -5.25 | -12.33 -5.22 -7.45 | -64.33 | -49.43
IV | Hull-White 8| -10.53 | -12.55 | -13.71 | -15.49 | -14.22 | -12.36
V | CIR 3| -12.99 | -10.04 | -17.60 | -17.89 | -33.88 | -15.07
VII | SABR 12 | -13.50 | -26.12 | -12.35 | -13.13 | -22.81 | -15.27
Table 6.8: Comparison with the SABR Model by DM-Statistics
No. | Model N SW SW Cpl Cpl JT JT
00’-01" | 05°-06" | 00’-01" | 05’-06" | 00’-01" | 05’-06’
4 | one-var 2nd chaos | 6 2.35 4.39 8.21 5.80 -8.77 1.27
6 | one-var 2nd chaos | 7 2.38 9.97 10.88 14.60 -6.34 5.47
9 | factorizable 2nd 6 1.79 1.99 | 11.91 11.63 -3.41 1.40
12 | one-var 3rd chaos 6 9.04 9.71 7.46 8.98 12.18 4.97
15 | one-var 3rd chaos 7 14.70 11.70 12.20 13.44 12.77 7.65
17 | one-dist 3rd chaos | 7 11.38 10.54 10.50 14.90 11.78 13.03
19 | one-dist 3rd chaos | 8 | 16.08 | 14.25 | 12.04 | 14.12 | 1142 | 17.61
23 | one-var 4th chaos 8 9.90 11.85 8.67 11.82 12.90 7.96
I | Rational-log (a) 9| -3.14| -5.19| -22.85| -40.87 | -14.52 | -21.65
IT | Rational-log (b) 9| 14.04 | 1472 | 19.10 4.64 | -49.22 -9.04
IIT | Constantinides 5 1.94 6.80 8.29 8.69 | -43.73 | -50.95
IV | Hull-White 8 -4.87 -4.85 | -11.92 | -13.99 | -10.03 -7.85
V | CIR 3 -3.75 5.39 | -15.18 -3.96 | -23.42 1.46
VI | LFM 13| 1350 | 26.12| 12.35| 13.13| 22.81 15.27
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Comparison within chaos models Comparison with the other models
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Figure 6.3: Total RMSPE (ATM Swaption Calibration in Sep 2000 - Aug 2001)
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Figure 6.4: Total RMSPE (ATM Swaption Calibration in Sep 2005 - Aug 2006)
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Comparison within chaos models Comparison with the other models
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Figure 6.5: Total RMSPE (ATM Caplet Calibration in Sep 2000 - Aug 2001)
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Figure 6.6: Total RMSPE (ATM Caplet Calibration in Sep 2005 - Aug 2006)
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Comparison within chaos models Comparison with the other models
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Figure 6.7: Total RMSPE (Joint Calibration in Sep 2000 - Aug 2001)
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Figure 6.8: Total RMSPE (Joint Calibration in May 2005 - May 2006)
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Figure 6.9: ATM Swaption Implied Volatility in 1st Sep 2000 (Blue: Market Quotes,
Green: Theoretical Values)
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Figure 6.10: ATM Swaption Implied Volatility in 2nd Dec 2005 (Blue: Market Quotes,
Green: Theoretical Values)
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Figure 6.11: ATM Caplet Implied Volatility in Sep 2000 - Aug 2001 (Blue: Market
Quotes, Green: Theoretical Values)
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Figure 6.12: ATM Caplet Implied Volatility in May 2005 - May 2006 (Blue: Market
Quotes, Green: Theoretical Values)
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Figure 6.14: Caplet Pricing Errors from Swaption Calibration in May 2005 - May 2006

131

RIMSPE (%)

RMSPE (%)

Comparison with the other models

34 T T T T T T T
—#— One-var 3rd chaos 7par
2r —— Constantinides Spar ]
ok —#— Rational-log (a) Spar |
—e— HVW Bpar
28 —+—CIR 3par H

—e&— | FM, 13par

i) L
Sepdd OctOD Mo

w00 DecOD JanO1 Mad1  Apd1 May0l Junl Augdl

Calibration Date

34 T T T T T

1l —#— One-var 3rd chaos 7par I
—+— Constantinides Spar

0k —#— Rational-log {a) Spar
—&— HVW Bpar

Ar —+—CIR3par I

EL —&— | FM, 13par i

24 B

Comparison with the other models

0
May05 Jun05 AogD5 Sep05 OctD5 DecO5 JanO6 FebdB ApridS  MayOB
Calibration Date



Comparison within chaos models
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Figure 6.15: Swaption Pricing Errors from Caplet Calibration in Sep 2000 - Aug 2001
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Figure 6.16: Swaption Pricing Errors from Caplet Calibration in May 2005 - May 2006
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Chapter 7

Smile Calibration

Our calibration works in the previous chapter focused on ATM European Options. To
distinguish the models further we consider the volatility smile concept. In other words
we incorporate the ITM and OTM Options. We have shown that the Chaos Models
have stochastic volatility, which property produces volatility smile curves, as can be
seen in [35]. The Chaos Models outperform the LFM in this sense. In this chapter,
we compare the calibration performance with the LIBOR stochastic volatility models,
particularly the SABR Model which we consider to be the most popular model in the
current market. We here notice that we have used a one-factor model of the Chaos
Model while the SABR Model belongs to two-factor model. Following the literature

[14], we implement in our calibration:

e Yield and Caplet smile/skew Calibration for fixed maturity (Two dimensional).

e Yield and Swaption smile/skew Calibration for fixed tenor and maturity (Two

dimensional).

Though it is possible to also consider the following greater dimensional data for our

calibration, we have not found this in the literature about these calibration:

e Yield and Caplet Vol surface Calibration (Three dimensional).

e Yield and Swaption smile/skew Calibration (Three dimensional).
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e Yield and Swaption surface Calibration (Four dimensional),
e Yield, Caplet and Swaption surfaces Calibration (Six dimensional).

We have observed in the previous chapter that the SABR Model cannot fit well into
the data across the maturity. Indeed, in our brief experiment we find that it is difficult
to achieve good fitting of these high dimensional data and so we do not discuss them

here.

7.1 Calibration Data

We analyze data from the UK interest rate markets between May 2005 and May 2006
at 53 dates (every Friday, closing mid price). The data is obtained from ICAP and
TTKL via the Bloomberg Database. For each strike K; we compute the log moneyness
ratio (hereafter, referred to as LMR), that is,

KATM)

J

LMR; =1In (
Then, we obtain the following data set for each date using a cubic spline :

e 22 zero-coupon yields, maturing in 1M, 2M, 3M, 4M, 7M, 10M, 1Y1M, 1Y4M,
1Y7M, 1Y10M, 2Y1M, 3Y,...,10Y, 12Y, 15Y, 20Y*.

e 20 x 7 Caplet implied volatilities maturing in 1Y, 2Y,...,20Y with strikes which
LMR are from —0.3 to 0.3 with 0.1 interval?.

e 7 x 6 x 7 Swaption implied volatility, maturing in 1M, 3M, 6M, 1Y, 2Y, 3Y, 5Y,
where underlying swap contracts are maturing in 1Y, 2Y, 3Y,5Y, 7Y, 10Y with
strikes which LMR are from —0.3 to 0.3 with 0.1 interval®.

!Though we observe 30 yields we do not use very short maturity and long maturity yields.

2This corresponds to moneyness from 0.74 to 1.35 which may be comparable with the works [14],
[55], [88]. Our raw data contains strikes, 2.5,3.0,3.5,4.0,4.5,5.0,6.0, 7.0, and 8.0%.

3Data is available between May and July in 2005 at 11 dates. Our raw data contains strikes,
—200, —100, —50, —25, 0, +25, 450, 4100, +200 basis points away from the money.
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7.2 Models

We calibrate the One-variable Third Chaos Models numbered 15 in Section 4.7.3 and
the SABR Model. Both models have nine parameters, but we recall here that the
Chaos Model is a one-factor model whereas the SABR Model is a two-factor model.

7.3 Calibration Methods

In our calibrations we apply the weighted least-squares method; that is, we minimize

the following function for the One-variable Third Chaos Model:

_Z |:y0T _yOT:|2+ ii [OP(Tiaﬁ) _@(Ti;Kj)r
ny Yor, T2 OP(Tiij) 7

J=1

where we fix the option maturity at 7; > 0 but consider in the money and out of the
money strikes, Ki, Ky, -+ , K,,. However we minimize only by the implied volatilities

in the SABR Model:

Z [OP (T3, K;) — OP“"l(T;,Kj)r
2 O_PvOl(ﬂij) ,

because we may choose the yield curve without constraints, and analytical expressions
for the implied volatilities are available in the SABR Model.

We apply the DM Statistics to compare the fitting performance of the One-variable
Third Chaos Model with the SABR Model. The null hypothesis, which is that two
models have the same fitting errors, can be rejected at 5% level if the absolute value of
the DM statistics is greater than 1.96. In our computations, a higher number means

that the One-variable Third Chaos Model works better.

7.4 Calibration Results

We analyze the Swaption smile/skew calibration results using Tables 7.1 - 7.5 and

Figures 7.1 while we do the Caplet smile/skew calibration results using Tables 7.6 - 7.7
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and Figures 7.2 - 7.9.

Let us first analyze the result of the Swaption smile/skew calibration. We calibrate
the Chaos Model using the Swaption premiums and the SABR Model using the Swap-
tion implied volatilities for fixed maturity and tenor. The average RMSPE (%) in all
calibration dates (11 dates) in 2005 are shown in Tables 7.1 - 7.4. The short maturity
out of the money swaptions are very sensitive, by which we mean that a small error
in premiums can cause a big error in implied volatilities when we convert. The other
direction is also true, as we can observe this from Tables 7.3 - 7.4. Therefore we should
compare the calibration performance using the objective functions. As seen from Table
7.3 and Table 7.4 the average RMSPEs of the swaption premiums in the One-variable
Third Chaos Model are smaller than the average RMSPEs of the swaption implied
volatilities in the SABR Model. However, looking at the RMSPEs of the yield fitting
in Table 7.2, the Svensson form outperforms the One-variable Third Chaos Model.
However, Table 7.1 compares RMSPEs of yields and swaption premiums in the Chaos
Model and RMSPEs of yields and implied volatilities in the SABR Model and shows
smaller RMSPEs in the Chaos Model. Indeed, in Figure 7.1 we observe the green lines
representing the Chaos Model are below the red lines representing the SABR Model
in most of the maturities and the tenors. It means that the One-variable Third Chaos
Model outperforms the SABR Model for most of the maturities and tenors. The DM
Statistics in Table 7.5 confirm this positive result.

Similarly, for the caplets away from the maturity we calibrate the Chaos Models on
the caplet premiums and the SABR Model by the implied volatilities. The average
RMSPE (%) of all calibration dates (53 dates) in 2005 — 2006 are shown in Table 7.6.
We observe again that a small error in premiums of the short maturity caplets can
cause a big error in implied volatilities when we convert. We are here computing the
total errors from the RMSPEs of yields and premiums for both interest rate models.

Although the calibration performance in the Chaos Model is outperformed by the
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SABR Model as seen from the DM Statistics in Table 7.7, we also observe in Figure
7.2 that the Chaos Model works as well as the SABR Model on the short maturity
caplets. In particular we observe that the Chaos Model produces a smile/skew curve
as was expected from the stochasticity of the volatility drift. For instance, Figure 7.4
and Figure 7.5 show the volatility skews by the Chaos Model. On the contrary, looking
at Figures 7.6 - 7.8, we observe that the Chaos Model does not fit well on the long
maturity Caplets data. Here, we have not found the reason of this.

Though we need the additional three parameters to compute the caplets and the
swaptions at the same time in the SABR Model, we can compute them in a straight-
forward way in the Chaos Models. It seems reasonable to consider more parameters
in the Chaos Model for the further improvement. However, since our brief experiment
has shown that One-variable Third chaos with 12 parameters model does not improve
the calibration result very much, we should perhaps consider a two-factor Chaos Model

for further investigations.
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Swaption Smile/Skew Calibration

Table 7.1: Total Errors in (maturity * tenor) Swaption Smile Calibration

3rd chaos, 9par (Objective Function) SABR
1Y | 2Y | 3Y | BY | 7Y | 10Y 1Y | 2Y | 3Y | BY | 7Y | 10Y
IM |46 (39|88 35|58 4.9 IM | 4.8 | 4.7 | 4.7 | 4.7 | 4.7 | 4.7
3M |24 1113|1923 2.4 3M | 4.8 [ 4.8 4.7 | 4.7 4.7 4.8
6M | 1.3 1320|2222 2.9 6M | 4.8 | 4.7 | 4.7 4.7 |48 | 4.7
1Y |11 1.3 |1.7]125]25 3.0 1Y 129129129129 129]| 29
2Y |16 |16 15|21 |22 2.4 2Y |24 12412412424 24
3Y [20]211]21]22|23 2.1 3Y 2412412412421 24
5Y 112109 110]1.0|038 1.8 5Y 1 0.7 1361394135 3.7

Table 7.2: Errors in Yields

3rd chaos, 9par Svensson
1Y | 2Y | 3Y | BY | 7Y | 10Y 1Y | 2Y | 3Y | 5Y | 7Y | 10Y
IM|23[25]22]26[45]| 3.0 IM|06[06[06[06]06]| 0.6
M [ 1.7109|1.0|15]20]| 2.1 3M | 0.6 0.6|0.6|06|06]| 0.6
6M | 1.1 [ 1.1 1.8 2.0 | 1.8 2.3 6M | 0.6 | 0.6 0.6 |0.6|06]| 0.6
1Y |09]10|13]21]22]| 25 1Y |06 06|06 |06[06]| 0.6
2Y [ 1.5 (15109 |1.81.9| 22 2Y 1060606 [06[06| 0.6
3Y 1.8 1.8 181920 1.8 3Y | 06[06[06[06[06| 0.6
5Y 1.1 (0.6 0.6 |0.7/04| 1.4 5Y 106[06[06[06[06| 0.6
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Table 7.3: Errors in (maturity * tenor) Swaption Premiums

3rd chaos, 9par SABR
1Y | 2Y | 3Y | BY | 7Y | 10Y 1Y | 2Y | 3Y | 5Y | 7Y | 10Y
IM|[39(128|79|23|34| 3.6 1M | 51.8 | 44.3 | 44.2 | 45.8 | 47.7 | 48.2
3M | 1.6 [05]07][09]09]| 1.0 3M | 31.8 129.9 | 30.1 | 31.4 | 32.7 | 33.0
6M | 06106 ]0.7|09|1.1| 1.6 6M | 22.1 | 21.4 | 21.9 | 23.2 | 23.9 | 24.9
1Y | 05106091312 1.6 1Y | 10.0 | 10.2 | 10.3 | 11.0 | 11.8 | 12.4
2Y 07105121011 ] 1.0 2Y | 66| 6.7| 68| 74| 7.7| 80
3Y |09 |11 (11(10|11] 1.1 3Y | 58| 59| 61| 65| 44| 6.9
5Y | 021060706 ]06]| 1.1 5Y | 04| 60| 66| 74| 62| 6.8

Table 7.4: Error in (maturity * tenor) Swaption Implied volatilities

3rd chaos, 9par SABR (Objective Function)
1Y | 2Y | 3Y | 5Y | 7Y |10Y 1Y | 2Y | 3Y | 5Y | 7Y | 10Y
1M | 44.8 | 89.7 | 81.5 | 33.9 | 10.0 | 2.3 IM | 4.7 | 4.7 | 4.7 | 47 [ 4.7 4.7
3M | 49.6 | 29.8 | 32.1 | 37.4 | 43.9 | 424 SM | 47 [ 4.7 | 4.7 | 47| 47| 4.7
6M | 84| 11.1 | 12.8 | 15.1 | 20.0 | 24.3 6M | 4.7 | 4.7 | 4.7 | 47| 47| 4.7
1Y | 3.7 58| 93| 11.8 |11.7| 13.8 1Y | 2828|2828 28| 28
2Y | 19| 12| 46| 35| 41| 4.7 2Y |24 1241242424 23
3Y | 1.8] 21| 25| 27| 31| 44 3Y 231231232320 23
Y | 06| 14| 16| 11| 14| 3.2 5Y [ 0.3 3.6 39 4.0]34| 3.7

Table 7.5: DM-Statistics for (maturity * tenor) Swaption Smile Calibration between
One-variable Third chaos and the SABR Model

1Y 2Y 3Y oY 7Y | 10Y
1M 0.19| 1.80| -0.96 | 5.75 | -0.55 | -0.31
3M | 1481|1333 | 11.65 | 836 | 7.41 | 7.56
6M | 1144 | 11.70 | 7.87 | 7.74| 9.53 | 9.68
1Y | 16.90 | 1341 | 7.77| 2.20| 1.89 | -0.53
2Y 5.55 | 471 | 953 | 214 | 163 | 0.34
3Y 249 | 178 | 1.82| 1.82| 1.82| 1.82
oY | -10.96 | 37.15 | 33.05 | 39.51 | 62.14 | 14.25
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Figure 7.1: (maturity * tenor) Swaption volatility smile/skew Calibration, Total RM-
SPE in May 2005 - Jul 2005 (Green: One-variable Third chaos, Red: SABR)
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Caplet Smile/Skew Calibration

Table 7.6: RMSPE (%) of Caplet Smile Calibration in 2005 — 2006

one-var 3rd chaos, 9par

SABR with g = %, 9par

Maturity | Total-E | Yield-E | CplP-E | CplV-E Total-E® | Yield-E® | CplP-E | CplV-E
1Y 10.5 5.0 9.1 40.8 12.7 0.4 12.7 2.6
2Y 3.9 2.5 2.9 11.4 2.6 0.4 2.6 1.4
3Y 3.1 1.8 2.4 5.1 1.4 0.4 1.4 0.9
4Y 2.6 1.8 1.7 2.5 1.5 0.4 1.4 1.0
5Y 2.5 1.6 1.7 2.2 1.6 0.4 1.5 1.2
6Y 2.0 1.3 1.4 1.9 1.5 0.4 1.4 1.2
7Y 4.4 3.1 3.1 4.0 1.9 0.4 1.8 1.6
8Y 4.8 3.2 3.5 3.0 2.6 0.4 2.5 2.1
9Y 3.2 1.8 2.5 3.0 2.6 0.4 2.6 2.3

10Y 6.7 4.2 5.1 6.6 2.9 0.4 2.9 2.5
11Y 5.5 3.7 4.1 5.2 1.6 0.4 1.5 1.3
12Y 5.0 2.9 4.0 4.2 1.9 0.4 1.9 1.7
13Y 5.5 3.4 4.3 5.6 1.4 0.4 1.3 1.2
14Y 5.4 3.2 4.4 5.7 1.7 0.4 1.6 1.5
15Y 5.4 3.0 4.5 5.9 1.9 0.4 1.9 1.7
16Y 7.0 3.1 6.2 8.0 3.4 0.4 3.4 3.4
17Y 7.3 3.0 6.6 8.4 3.9 0.4 3.8 3.8
18Y 8.1 3.9 7.1 8.6 4.3 0.4 4.2 4.3
19Y 8.3 3.1 7.6 7.5 4.8 0.4 4.7 4.8
20Y 8.1 3.9 6.9 7.7 5.3 0.4 5.3 5.3

5The total errors are computed by yield errors and caplet premium errors.
5We use the Svensson Form for the yield fitting.
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Table 7.7: DM-Statistics for Caplet Smile Calibration between One-variable Third

chaos and the SABR Model

Maturity | DM Statistics
1Y 1.78
2Y -4.99
3Y -6.40
4Y -8.80
Y -7.13
6Y -3.66
Y -13.27
8Y -10.06
9Y -4.70

10Y -14.51
11Y -26.23
12Y -12.69
13Y -30.35
14Y -24.67
15Y -21.20
16Y -21.69
17Y -20.66
18Y -19.16
19Y -16.18
20Y -11.35
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Figure 7.2: Caplet volatility smile/skew RMSPE in May 2005 - May
One-variable Third chaos, Red: SABR)
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Capletimpvol (%)
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2006 (Green:

Figure 7.3: Caplet volatility smile/skew, Maturity: 2 years (Blue: Market Quotes,
Green: Theoretical Values)
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Figure 7.4: Caplet volatility smile/skew, Maturity: 6 years (Blue: Market Quotes,
Green: Theoretical Valies)
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Figure 7.5: Caplet volatility smile/skew, Maturity: 8 years (Blue: Market Quotes,
Green: Theoretical Values)
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Figure 7.6: Caplet volatility smile/skew, Maturity: 10 years (Blue: Market Quotes,
Green: Theoretical Valies)
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Figure 7.7: Caplet volatility smile/skew, Maturity: 12 years (Blue: Market Quotes,
Green: Theoretical Values)
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Figure 7.8: Caplet volatility smile/skew, Maturity: 14 years (Blue: Market Quotes,
Green: Theoretical Valies)
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Figure 7.9: Caplet volatility smile/skew, Maturity: 18 years (Blue: Market Quotes,
Green: Theoretical Values)
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Chapter 8

Alternative Models

In this chapter, we introduce several new interest rate models under the Potential
Approach. Firstly, we construct a new framework where we start our argument from the
Short Rate Model so that we keep the state price density potential. On the one hand,
this expression of the state price density works for pricing options. On the other hand,
it allows the LIBOR rate and swap rate volatilities to be explicitly expressed only by
the short rate. Secondly, we investigate the FH framework further, and introduce nt-
order FH Model, which is comparable with the One-variable Chaos Model. Thirdly, we
investigate the Chaotic Approach using the FH framework. Here, we compute the chaos
coefficients using the Malliavin derivative. Moreover, fourthly, we specify the stochastic
differential equation of the random variable o, and compare the corresponding model
with the Chaos Models. Lastly, we model the term structure from the variable Z;r.

Since our main concern in this thesis resides with Chaos Models, we leave calibration

of these models for future works.

8.1 Modelling the volatility drifts from the Short
Rate Models

As we have observed in Chapter 4, due to the fact that we check roots of the distribution

function to compute an option premium in the Chaos Models, we are unable to compute
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many options at the same time. This causes relatively slow computational speed.
However, this can be fixed when we form the state price density as exponential as
in the Constantinides Model. As we usually apply the bank account process for the
market numeraire and the discount bond for the T-forward adjusted measure, that is

respectively,
T
B, = Boef(f”ds and P = e i Jisds — for 0<t<T < o0,

the natural numeraire can also be expected to have an exponential form. Indeed, as
observed in (2.1.13), we may express the state price density, that is the inverse of the

natural numeraire, in the following way:

Vi = Voe~ Jo (rs+322)ds—[3 )‘SdWS, for ¢>0.

As stated in Section 2.1.1, the state price density is a potential when the short rate is
a positive process. Looking into this further, as observed in (2.1.15) and (2.1.17), we

have for each 0 <t < T < oo the following expressions:

Zyr = Ey[Voe™ Jo trs+323)ds—f AsdWe]

and

Zip = Voe o GAT+re)ds— fo AdWegQo— fi 7ads).

This conditional expectation in the last equation can be explicitly solved under the
Affine Term Structure Model ([32]) as we will investigate it later in this section. More-

over, because the risk-adjusted volatility has the following quotient form:

~ D, Z
‘/tT: gtTL OStST<OOa
tT

in light of the chain rule of the Malliavin derivative, we can expect the risk-adjusted

volatility to be expressed in a simple form if we have the state price density in an
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exponential form. Indeed, by expression (2.1.17) we may infer using the chain rule

that

(8.1.1)
Dt [ZtT] :Dt [‘/be_ fg(%AgJ’_TS)dS_fg )\desE;Q [e— ftT T‘Sds]]

= Dy Vi AR I ] 4 Voo = e Q= )
— (= MEQ[e~ 1 reds] 4 D, [EQ[e I o)) Vg o 3N+ AW

Dy[ER[e " 7]
(=2 gy )

Therefore, the risk-adjusted volatility may be expressed in the following way:

D, [EZ[e= i rods]]

8.1.2 Vip = =\ +
( ) tT t E?[G_ ftT rsds]

, 0<t<T < oo

This can be also shown from (3.2.7). By definitions (3.1.2) and (3.1.3), i.e., Firg =

S_LT <% - 1) and S, p(t) = %, we obtain that for 0 <t <T < S < o0

E? [e_ Jereds _ e~ S Tsds]
-1 and  S,(t) = - =
E; [ Dicas1 i€~ S rsds}

Now, we should be able to obtain the volatility drifts in the forward LIBOR rate and

FtTS =

1 E2 [e™ I rads]
S—-T Eg [6_ N rst}

forward swap rate dynamics in terms of the short rate and the market price of risk.
Let us recall the LIBOR rate volatility ;s from (3.3.19) and the swap rate volatility
Yap(t) from (3.3.22):

_ DiZr, — Zum)] Dy[ Y1 TiZ,]

Dy Zyr — Z, IDAVA ~
t[ tT tS] _ t[ tS] and %,b(t) =2 — Zb .
tTa = “tTy i=a+1 Ti 44T,

Zyr — Zts Zis

TS =
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Thus, using (8.1.1) we may deduce that
S
Dt[ZtT — ZtS] n A - Dt [E? |:€7 ft T‘sds:|:|

t

MTS =

Zir — Zis E? [e* s Tsds]
Dyle” Jo A2 4ro)ds— [y )\SdWS]E;Q[e_ S rsds _ o= [ reds]| D, [E? [e* N rsds]:|
e~ fg(%)\g-i-?"s)ds—fg AdesEP [67 ftT reds _ o= fts Tst] t E9 [(2, fts rsds]

o —)\tE? [6_ ftT rsds __ e~ fts Tsds] + Dt [EP [6_ ftT rsds __ e fts Tsds]:| Dt [E? |:e_ fts rsds:|:|

+ N

E?[e— ftT rsds _ o— fts rsds]
. Dt [E? [6_ ‘/‘tT 'rst _ 6_ fts Tsdsj|:| Dt [EP |:6_ ftS rsd$j|:|
QTP e R

E? [6_ I Tsds}

Similarly, we obtain for the swap rate volatility that

 D[ER[e S reds — e R ]] Dy [ER[Y0, , me I o]

?Y/a,b(t) - Ta Ty b e T;
EP [6_ [ reds _ e I Tsds} ]EitQ [ Zi:a-‘rl e Ji Tsd5j|
Therefore, the forward LIBOR rate dynamics can be expressed in the following way:
T S S
Dy [E?[e* Ji rsds _ o= J; ’"SdSH Dy {]E;Q[e* J; TstH )
8.1.3) dF,p¢ = [---|dt+ — FyrsdW,
( ) s [ ] ( E? [ei ftT rsds __ e fts Tsds] E? [67 fts rsds] s !

and the forward swap rate dynamics can be expressed in the following way:

(8.1.4)

Q —ftT“ rsds __ —fth rsds Q b : —ftTi rsds
dSa,b(t) = [ .. ]dt+ (Dt [Et [6 - € - H _Dt [Et [sz:a—i-l T;€ - H )Sa,b(t)th~
E? [e—ft rsds _ o [, rSds:| Et [Zi:aJrl Tiefft Tsd8:|

This means that modelling the short rate process ()0 is equivalent to modelling the
forward LIBOR rate and swap rate volatilities. Although we here consider the same
problem as in the short rate models, we gain some advantages in our framework, i.e.,
explicit specification of the volatility terms and analytical option pricing via the state

price density.

8.1.1 From the Affine Term Structure Model to the Market
Model

Let us now apply the one-factor Affine Term Structure Model, i.e., we assume that

drt = (Kut"“t + nt)dt + et + (Stth,
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for some deterministic functions k,n,v,d. In this model we are able to obtain by the

Feynman-Kac Formula, (see for example, [57]), that
P =Ee” ftTrst] = ArtBirre - for 0<t<T < o0,

for deterministic functions A and B such that Arr = 0, Byr = 0 which satisfy the

following Riccati equations:

%BtT = —ke By — %%BET +1
%AtT = —77tBtT - %5153,527’

It gives the discount bond volatility expressed in the following way:

Dt [eAtT-‘rBtTT‘t]

QtT = = BtTDt[Tt]a 0<t<T < 0.

eAvr+ByrTe
Recalling the expression (8.1.2) we obtain the risk-adjusted volatility as follows:

Vir = =M+ BirDyfry], 0<t<T < oo.

Inserting this expression into equation (3.3.2) we obtain that

AFyrs = (\e=Bur Dilri]) (Ber—Bus) Dilri] (Furs + )aw.

1 1
= )dt+(Bir—Bus) Difre] (Frs+5——
Here, we observe the market price of risk has disappeared in the volatility drift. Using
the expression (3.3.5) the forward LIBOR rate volatility is expressed under the Affine

Term Structure in the following way:

1
Vs = 1 — e(Ats—Aur)+(Brs—Buir)re (

By — BtS)Dt [Tt]'

Similarly, using the expression (3.3.9) the swap rate volatility is expressed in the fol-
lowing way:

A B Ay, +Bi, b A +Byr Ty
Yap(t) = [6 Tt BTT By, — M TP By ) iy T By, [
a,b - - t1't]-

) Ayr +Bir. e A, B Tt Zb Ay, +Byr. T

e tTq tTg Tt e b b i—at1 7-2,6 tTy; tT; Tt
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From the Vasicek Model to the Market Model

For instance, in the Vasicek Model, it is assumed that
dry = k(0 — ry)dt + odW,,

for some constants k,0,0 € R. Because this Gaussian process gives Dy[r;] = o, we

obtain in the Vasicek Model that

1 1
dFyrs = (A — Byro)(Bir — Bis)o <FtTS + S——T> dt+ (Byr — Bs)o (FtTS + S——T> dW;.

which corresponds to the Shifted-Lognormal Market Model, see (3.3.6). Taking some
function to express the market price of risk to be A\, = g(¢,r;), we express the super-

martingale process in the following way:
V, = ‘/067 fg(%g2(37r3)+rs)dsffg g(s,rs)dWs’ for t>0.

In the case of the Vasicek Model we take g(t,7;) = kr; for some constant k& € R so that

we obtain that

V, = %e—fg(%k2r§+r5)ds—fg krSdWS’ for t>0,

However, this model is not in our interest, since we know that the Shifted-Lognormal
Market Model performs badly for hedging derivatives. Moreover, because in the Vasicek
Model the process is not guaranteed to be positive, the state price density is not

potential.
From the CIR Model to the Market Model
For other example, the CIR Model assumes that
dry = k(0 — ry)dt 4+ o\/ri dW;
for some positive constants k, 0, o such that 2k0 > o2, and g(t, ;) = ky/r, that is,
V, = Ve~ Jo GR*+Dreds—fg VWS for > ().
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Application of the CIR Model seems desirable for the positivity condition, which makes
the state price density a potential. However, we find that it is difficult to compute the
Malliavin derivative D[r;] in the CIR Model.

8.1.2 From the Squared Gaussian Model to the Market Model

Let us now consider the short rate process taking a powered form of a state variable,
ie, rn =77, t>0,n €N, for a continuous adapted process (7);>0. In particular,
taking a squared form, i.e., 7, = 77, t > 0 would be ideal to secure the interest rate
positivity condition. For example, in the Squared Gaussian Model ([69]), we assume
that

dry = k(0 — 7y)dt + odW,,

for some constants k,0,0 € R, which gives the discount bond expressed by some

deterministic function ,ZL B , C in the following way
P = 6gtT+§tT7’At+6tT7;§ 0<t<T < o0
, <t< .

Therefore, the Squared Gaussian Model gives the risk adjusted volatility expressed by

the market price of risk and the Gaussian process, that is,
VtT =— N+ D [ZtT + étTTAt + 5tTTAtz] = -\ + étTDt 7] + 5tTDt [ftz]
=— N+ EtTO' + 25tTUft
Inserting this expression in the equation (3.3.2) we obtain that

(8.1.5)

~ T P T 1
dFtTS :(_)\t + BtSJ + 2Ot50rt)<BtS — BtT + (Ctg — CtT)rt) (FtTS + S——T>dt

T Y 1
— (Bis — Bir + (Cis — Cop)14) <Fth + S_—T>th.

Because 7, is normally distributed, we obtain stochasticity in the LIBOR rate volatility.
We here suggest that it would be useful to model the process (7)o by the two-factor
Affine Model so that the LIBOR rate volatility and the swap rate volatility have the
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desirable distributions. However, it would not be good idea to apply a Log-r Model
(taking the exponential of a state variable as r; = €™, such as Black-Derman-Toy Model
([8]) and Black-Karasinski Model ([9]), see Section 9.3.3 in [54]), because in these model
we do not have analytical expression of the discount bond, which means that we can
not express the forward LIBOR rate volatility explicitly. We leave the remaining works

open.

8.2 Modelling the term structure from (7:7)o<t<7<o0
in the FH Framework

In this section, we make further investigations of the FH Framework. The reader might

like to recall that in the FH Framework the variable Z,r for 0 <t < T < o0 is expressed

as follows:
(8.2.1) Zup = / heMysds, 0<t<T < oo,
T
where h, = —d%POS and Mts is a strictly positive martingale for each ¢ € [0, 00) such

that M()s =1 and lim,_,, Mts = 1. The Martingale Representation Theorem implies
that
ths = ﬁtthdet, 0<t<s <o,

for some adapted process (7:s)o<t<s<oo- SOlving the stochastic differential equation we

obtain the following expression:

R t 1 t
(8.2.2) M;s = exp {/ NusdWy — 5/ nisdu}, 0<t<s<oo.
0 0
From this, it follows that

fTOO hs exp [— % (fngsdu + fot nudeu} ds

P — .
O [ heexp [— L [Tn2adu+ [ nu.dW,]ds

Therefore, in the FH Framework, we apply the same framework as we observe in the

Chaotic Approach, but specify the function n. Note that in particular we have the
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following form for the initial curve:

h
for = W]fds’ for T'>0,
T S

which corresponds to the curves in the Chaos Models.

8.2.1 Deterministic 7

Let us suppose the function 7 is deterministic. Then, because the generating function
for the Hermite polynomials is given by

]_ %12 dn 1.2

1 [o¢]
exp [tl‘ — 5152} — nZ:;thn(x), where H,(z) = —(—1)" %@,5% )
we infer that

t 1 t 00 n
€xp {/ NusdWy — 5/ Uisdul = E gtiHn(et)
0 0 n=0

Here, we have defined

o usdW

\ o 12,du

t
i ::/ ngsdu and 0, : N(0,1).
0

Therefore, by (8.2.1) and (8.2.2) we can write

ZtT:/ he Y &2 H,(6;)ds.
T n=0

Continuing further, it follows by the linearity of the Riemann integral that
(8.2.3) Zyr = Z/ hsgt%;dSHn(et)'
n=0"T

Since the first few terms of the Hermite polynomials are given by Hy(z) = 1, Hy(z) =

x, Hy(x) = 5(2* — 1), Hy(x) = §(a® — 3x), Hy(x) = 5;(x* — 62® 4 3) and so on, we can

see that
Zyr :/ hsds +/ hs(ﬁts)%dsﬁ + 1/ hsft8d5(92 — 1)
T T 2 Jr
1 [ 3 1 *
+ _/ (&) 2ds(0° — 36) + —/ he&2ds(0* — 667 +3) 4 --- |
6 T 24 T
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which implies that the whole term structure can be modelled by a unique Gaussian

process. Here, we truncate the polynomial at n-th term and then call this the “n'-

order FH Model”. Therefore, the n'’-order FH Model gives that both the state price
density V; and the variable Z;7 is distributed by a degree n polynomial of the Gaussian
distribution. It gives us analytical tractability for all main processes and derivatives,

as we will see in Section 8.2.2.
First FH Models

When we truncate the expansion at the first term, we obtain the following deterministic

term structure models:

00 00 oohsd
ur = / hods, V= / hads, P — AL g g P
T t ft hSdS

This corresponds to the First Chaos Model.

Second FH Models

When we truncate the expansion at the second term, we obtain that

& o0 > hed > he\/EsdsO
Zir = / hsds + / hsv/&sdsOy  and Py = fToo °r fj;o Stas 3
T T L hst + ft hsvgtsdsé’t

This allows us to model the swaption and caplet normally distributed as in (2.3.4) and

(2.3.10). This corresponds to the Factorizable Second Chaos Model. Note here that
even in this simple case we achieve the construction of a forward LIBOR rate dynamics

with a stochastic volatility.

Exponential example

Cairns ([23]) suggests the exponential form 7,, = ae™?¢~ for some constants a and

£ in the FH framework, that is,
1/ t
Myr = forPorVo exp [— 5/ (aePT=)2qy —|—/ ae PT=aw, |,
0 0
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o] 1 t t
Vi= JosPosVo exp [— 5/ 272w gy +/ ae_ﬁ(s_“)qu} ds,
t 0 0

o] 1 t t
Iy = / fosPosVo exp [ — 5/ ale 2P gy 4 / ae’ﬁ(s’")qu] ds.
T

0 0
If we also take the exponential form in our argument we obtain that

t udW
fts — 0426_2/85/ 626“du, et fU
0

\/ fo e2Pudy

~N(0,1).

Remark
Note that if we consider the multi-dimensional case, we obtain that

—eXp{Z/n]ude Z /n]usdu]

Therefore we obtain in the multi-dimensional case that

ZtT:/T he HLZ(/ 2w, $)du) Hn<f0m u, )W )>]ds.

IN 2 (u, s)du

8.2.2 Pricing the European Call/Put Bond Options within the
FH framework

Applying the form (8.2.3), we find that

ZtT—KZtt_Z/ ho&2dsH, (6,) — KZ/ ho&2dsH,(6,)
—Z [ hedds = [ bt fas] o).

Applying the expectation rule, we obtain that

ZBC(0,t,T, K) )e™ = db,

Vo\/27T o

where

Voz/ heds and P.(0 Z / hg;sds—K/ hftsds (6).
0

We can solve the integral by checklng the roots of the function P.(f). A similar

argument may be applied for pricing swaptions.
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8.3 Modelling the term structure from (7:7)o<t<7<oc
in the Chaotic Approach

Recall that the process (1:r)o<t<r<co Was specified as follows:

1 S S
a? = hsexp [— 5/ nisdu +/ nuSqu} where hy = fosFPosVo.
0 0

In the Chaotic Approach, we implement the chaos expansion on the variable o, and

obtain that:

Os = E[Us] +/ |: s1 0_8 dWsl ‘I’/ / s 51 CTSH:|CH/VSQCZVVS1 —+ .-

Therefore the chaos coefficients may be computed by specifying the process (1:1)o<t<T<oo-

8.3.1 Deterministic n

For simplicity, we first assume that the function n is deterministic and find chaos
coefficients. Let us investigate the first chaos coefficient ¢, (s):

S

61(5) = E[o,] = E[\/h_sexp [— i/ﬂs 02 du -+ %/0 nudeuH.

Since we have that

1 /[° 1 /[°
—/ NusdW, ~ N(0,62) where 62 = —/ n2 . du,
2.Jo 4 Jo

we infer that

E[\/MTS] ZE{eXp B / nudeuH exp {— }1/0 nist}

&2

e’e 203 dxe”

\/ 27162
W “

1 S
—eT e —exp[ / Uist}
8 Jo
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Therefore we obtain that the first chaos coefficient is as follows:

¢1(s \/_E\/7 \/_GXP[——/Snisdu].

We now compute the second chaos coefficient, applying the Malliavin derivative:
¢a(s, s1) =E[Ds, 0]
—VIE[D, /L)
=v/hs E[ nsls\/?}
=—\/_ hsl [\/7} Nsis
:5\/h_sexp [— g/o nisdu} Nsys-
Similarly, the third chaos coefficient is derived as follows:
03(s, 51, $2) =E[Ds,[Ds, 0]
~VIE[D.,[D.,\/ VL)
][]
—\/_E[ nslsan}
z—J_E[\/i} Ns1s7sas
=—\/_ exp { / nust} Nsyssss

Continuing in this manner, we find the chaos coefficients are as follows:
s) = /hs exp [— 1/Snfwdu], ba(s, 51) \/_exp [— —/Snisdulnsls,
¢3(s, $1, 52) \/_ exp { / nust} Ns1sTsass
G4(8, 51, 52, 53) \/_GXP [— —/ Uisdu] TNs157s25s3s>
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First Chaos Model

In the first Chaos Model we have that

0.) 1 S
Zyr = / hs exp [— Z_l/ nisdu] ds.
T 0

Second Chaos Model

In the Second Chaos Model we have that
M, = R3(t, s) +/ R3(t,s,8)ds;, 0<t<s<o0
t

where

t S \/ s €XP |:_ _/ nusdu:| / V s €XP |: / nusdu:| nS1SdW817
Ry(t,s,s1) \/ s €XP [— —/ nisdul Nsys-

Given that we thus have

1 /¢ 1 [t 2
Rf(t, s) = hsexp [— 1/ nzsdu} (1 + 5/ 7751de81> ,
0 0

1 1 [
R2<t S 81) h exXp |: 4/ nzsdu] 77?187
0

we infer that

1 [® 1 [t 2 1 [°
M, = hgexp ——/ nisdu (1+—/ nsldesl) —i——/ 773 s ], 0<t<s<oo0.
4 Jo 2 Jo 4/,

From this, it follows that

[e%¢} 1 s 1 t 2 1 s
s = / hs exp ——/ nisdu <1+—/ nslde81> +—/ 773 sy )ds, 0<t<T <oo0.
T 4 Jo 2o 4/,
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Exponential example

As a specific example, when we suppose the deterministic function to be 7,; = ae™#—
for some constants o and 3, the main processes can be approximated using the chaos

coefficients:
2

¢1(s) = \/h_sexp {— 10(;_5(1 - 6268)] , @a(s, 1) = ¢1(3)%€7586551,
¢3(S7 51, 82) = gbl(s) (%e_65> 2665166527 ¢4(87 51, S2, 83) = ¢1<S) (%6_6S>36651665265837

Therefore we obtain the Factorizable Chaos Models. For example, we may construct a

Factorizable Second Chaos Model as follows:
Zyp = Ap + BTRt + CT(]%? — Qt),

where

I Ty O Py oS

2 ¢ .
o1(s) =/ hsexp [— fgj—ﬂ(l — 6—2/35)}’ R, = / ePsdW, and O, = / o285 Jg.
0 0

8.4 Modelling the primitive process from its SDE

Let us now model the stochastic differential equation of the primitive process (o¢)¢>o-
Starting our argument with this process, we do not need to be careful about the
positivity problem, but we need to model the process such that o, € L?, that is,

sup E[o?] < oo.

teR+
The reader might like to recall here that E[o?] = V{ fo; Po:. We observe some relationship
with the Chaotic Approach, recalling the following form of the variable o; from (2.1.23)
in the Chaotic Approach:

d t t S1
dO‘t = <—¢1 (t))dt+ <¢2(t, t)—i— ng(t, t, Sg)dW52—|— ¢4(t, t, S9, Sg)dWs3dW52+' c >th
dt 0 0 Jo
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Therefore the First Chaos Model presents a deterministic dynamics, the Second Chaos
Model presents local volatility dynamics, and the higher Chaos Models offer stochastic

volatility dynamics.

8.4.1 One Factor Deterministic Volatility Case

We first consider deterministic term structure and the local volatility case. In other
words, up to the Second Chaos Models are investigated in this section. The higher

order models are researched in the next section.

Deterministic Form

Suppose that we have some integrable deterministic process (¢;);>0 with the property
that
dO’t = QOtdt

Then this corresponds to the First Chaos Model, as can be seen by recalling expression

(3.1.8) for the short rate:
2
T4

J;/OO Et [O’g]d87

which shows a deterministic term structure.

Ty =

Zero Drift Form

Suppose that we have some integrable deterministic process (v;);>o with the property
that
dUt = Utth.

In this case we have that
t t
o = 0 +/ v, dW, and E[o?] = o] +/ vids.
0 0

Therefore, in this case, we observe that o; ¢ L.
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Geometric Brownian Motion Form

Suppose that for some constants ¢ and v, we have that
doy = poudt + vo dW.

It follows that

02
op = aoe(‘p_T)H“Wt, Elo,] = ope” and E[o?] = g2+,

Therefore we need to restrict the parameters so that 2 + v? < 0, in order to ensure
that o, € L?. However, this form is too simple for initial curve fitting, that is E[o?] =

Vo for Pot, and so is not desirable in practice.

Geometric Brownian Motion+-+

To have a better initial curve fitting we next consider the following extensional form:
Oy = Ty + Zt,

where

d.Tt = QD.fUtdt + Uﬂftth,

w and v are some constants and z; is some deterministic function. This implies that
o = xoe(“of%)twwt + z,
from which it follows that
Elo,] = z0e” + 2 and E[o?] = 22e#T0 4 25092, + 22,

Here the conditions 2¢ + v? < 0 and ¢ < 0 must be imposed. Though this form does
not correspond to the Chaotic Approach, it would satisfy the initial curve condition.

We particularly suggest to model the variable z; by the descriptive form.
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Log-Normal Form

We now consider a more general form. Suppose that
dUt = QOtUtdt + UtO'tth,
for some integrable deterministic processes (¢;)i>o and (v;)i>o. It follows that
v?
O = erfg(¢57?)ds+fg USdWS? ]E[at] = O-Oef(;5 ¢5d87
E[af] :E[agefg(z%—vg)dsﬁg 2deWS]

:O_gefg(ans—vz)dsE[efg QUSdWS]

:Ugef(f@ws-&-v?)ds.
Log-Normal++

To obtain a better initial curve fitting than in the log-normal case, we next consider
the following form:

O¢ :$t+2t,

where

dﬂft = SOtxtdt —|— Utxtth,

for some integrable deterministic processes (¢;)i>o and (v;);>0 and some deterministic

function z;. From this we infer that
St pam ) dst [ vedW.
op = xoelo\PsT 2 )9 o Us S+ 2z,
and further that

Eloy] = zoeho #2942 and E[o?] = x%efot(w”“g)ds + 2mgelo esds, 4 22,

This is a more general form. Although this form does not correspond to the Second

Chaos Model, it would give us good initial curve fitting.
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Gaussian Form
We now consider the dynamics of the primitive process, by assuming that
dOt = —(,OO-tdt + 'Uth
for some constants ¢ and v. It follows that
t v
oy = ope Pt + U/ e P WaW, and Elo?] = ole 2% + %0 [1 - e’zwt],
0 ¥

which belongs to the Factorizable Second Chaos Model. The constant ¢ needs to be

positive so that o, € L?.
Gaussian-+-+

Next we consider a more general case of the Gaussian form. Suppose that
Oy = Ty + Zt,

where

dr; = —pzdt + v, dW,  such that ¢ > 0,

where v; and z; are some deterministic functions. This implies that
t
Oy = aoeﬂ"t + 2 + / 67(’0(tiu)'i}uqu,
0

from which it follows that

u

t
Elo)] = ooe ™ + 2 and E[o}] = (zoe™ + 2)* +/ e~ 2PV 2 gy,
0

Vasicek Form, OU process

Recalling the short rate formula, which is given by

2
Oy

ftoo Et [O’g]ds’

ry =
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it would be natural to consider the primitive process with mean reverting property.
Suppose that
dO't = K(QO — O't)dt + 'Uth,

for some constants k, ¢ and v. It follows that
t
o, = oge "+ go(l — e*”t) + U/ e " =W,
0

and also that

2 2
Elo] = oo~ +p(1 =) and Bo?] = (one ™+ (1 =)+ 2o (1 - ).
K

The constant x must be positive to ensure oy € L?.

Vasicek++ Form

Let us suppose that

¢ :th+Zt7

where

dxy = k(p — xy)dt + v, dW; such that k>0,

with some deterministic functions vy and 2. It follows that
t
op = xoe "+ go(l — e_”t> + 2z + / e_“(t_")vuqu,
0
and
2 t
Elo)] = zoe " 4o(1—e ) +2, Elo?] = (xoe_“t—i—go(l—e_”t)%—zt) +/ e_Qﬁ(t_“)UZdu.
0

Hull-White Form

Let us also consider the following Hull-White Form:
dO't = (gOt — HO't)dt + 'Utth,
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with some positive constant x and some deterministic functions ¢, and v;. Integrating

the dynamics in this case we obtain that

t t
o = ope " + / e_"“(t_“)goudu + / e_“(t_“)vuqu.
0 0

Thus, we have that
t t 9 t

Eloy] = aoe_’“‘t—l—/ e W, du, Elo?] = (006_”t+/ e_”(t_“)wudu) +/ e 2R 2 gy,
0 0 0

Hull-White+-+ Form
We now consider a more general case of the Hull-White form:
O¢ = Xt + 24,
where
dxy = (py — kxy)dt + v, dW,, such that & > 0,

with some deterministic functions ¢, vy, and z;. It follows that
t t
o, = xpe "+ / e_ﬁ(t_“)goudu + 2z + / e =y, dW,.
0 0
In this case, we obtain that
t
Eloy] = zoe ™ + / e " g du + 2,
0

and
t 2 t
Eloy] = <xoe_”t+/ e_“(t_“)soudu+2t> —I—/ e~ 202y,
0 0

This is the most general Gaussian one-factor form that we will be concerned with.
It allows a plain option pricing formula with the same framework as the Factorizable

Second Chaos Model. For example, we may take the functions

t

Y =bre” " vy = boe” t

2t and  z = bste™®
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for some constants by, by, b3 and some positive constants ¢y, ¢a, 3. Note here that in this
case we have that oy = zy. This choice of functions satisfies the required conditions.

We then have that

b b t
o = (ao S )e‘“t 4L ematl 4 pageest 4 / boe el eu gy,

R — C1 R — C1 0

Therefore, we can set

b b
¢1(t) = <Uo - — )e‘”t +———e O bgte Bt py(t,u) = bye el
KR — C1 R — C1

so that the Second Chaos Framework can be applied. Note here that if we take k = ¢y,

the One-variable Second Chaos Model Framework can be applied.

8.4.2 Two Factor Deterministic Volatility Case
Two-Additive-Factor Gaussian Form G2 + +

We now consider the dynamics of the primitive process assuming that

Oy = Ty + Yp + 24,
where we suppose that x; and y; satisfy the following conditions:

dr; = —pxdt + vthl, dyy = —Qydt + f)de,

such that ¢ >0, » > 0 and such that for some 0 < p <1

dWrdW? = pdt,
and where z; is some deterministic function. It follows that

t t
oy = zoe P+ yoe P + 2 + U/O e Pl ¢ @/0 e P2,

and

lof] = (aoe " byoe " 42 (1o o [Lme w2 [1 oo,
2¢ + ¢



This can be shown, for instance, by arguments contained in [14]. In addition we are
freely able to specify the deterministic function z; to resolve the initial curve fitting
issue. As an example, for some constants a, 5 € R such that a > 0, we could choose

the function z; in the following way:
2 = fte ™.
Therefore this two factor stochastic differential equation is also ideal for our purpose.

8.4.3 Stochastic Volatility Form

We now investigate the primitive process (o;)>o where this is assumed to have a stochas-

tic volatility. We first recall the Third Chaos Model:

doy = (%gbl(t))dt + [gbg(t,t) + /0 t ¢a(t,1, SQ)dWSQ]th.

It is clear that the Third Chaos Model belongs to the following one factor stochastic
volatility model:

doy = pi(t)dt + o1 (t)dWy,
doy(t) = pa(t)dt + oo(t)dWs,

where 11(t), pa(t), and oy(t) are deterministic functions. Similarly, we interpret the
Fourth Chaos Model as belonging to the one factor stochastic volatility model with
three stochastic differential equations, and so on. In this section we focus on the two
factor stochastic volatility model, and leave the higher multi-factor stochastic volatility

models for Section 9.2.2.

Two Factor Stochastic Volatility Hull-White+-+ Form

We now consider the following form:
O = Ty + 24,
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where
(8.4.1) dx; = (p; — Kkay)dt + v dW},  such that & > 0,

with some deterministic functions ¢; and z; and some positive constant x where the

volatility drift is modelled as
(8.4.2) dv; = (py — Avg)dt + 6,dW7,  such that & > 0,

with some deterministic functions ¢; and ¥, and some positive constant & such that
for some 0 < p <1
dWrdW? = pdt.

Equation (8.4.2) can be solved explicitly as follows:
A~ t ~ t A~
vy = vge +/ e_”(t_“)gbudu+/ e =g, dW2,
0 0
Hence, equation (8.4.1) can be expressed in the following way:
t t
dry = (o — Kkwy)dt + {voeﬁw / e MG, du + / —Altmug dwﬂ AW},
0 0

Integrating this yields that

t t S1
xoent+/ efn(tfsl d81+Zt—|—/ efnt <,erl€81l€81 +/ o1 #(s1—s2 S052(152>C”/V‘(511
0 0

/ / —kt nsl R(s1—s2) Sde2 dWl

Also, we have
t
Elo;] = zoe ™ + / 6*“(t’”)<ptdu + z,
0

and

2

¢
E[o?] = <xoe_“t + / =g du + zt>
0

t S1 2
+ / 6—251& (,ermﬁ—nsl + / es1— A(s1— 52) ~ d$2> d31
0 0

t S1
N / 6_2;41:62581—QH(SI_SQ)f)deSQdSl-
0 0
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We observe here that when we set p = 1, we are able to apply the Factorizable Third
Chaos Model system and find the pricing option formula explicitly. For example, we

may set the functions ¢y, ¢y, Uy and z; to be given by

t

©r =bie” M, By =boe 2, Oy =bge” " and  z = byte 4,

for some constants by, bo, b3, by and some positive constants cq, co, c3, ¢4. Note here that

in this case we have that o9 = x¢. We then find that

b
oy :(UO - >€7mt + 1 efclt + b4t€fC4t
K —C1 KR — C1
Lt e by by
b [ oy - g e ay,
0 K — Co K — Co

t S1
+ / / bge Rteln—RIs1 =) gy qyy,
0 JO

Therefore, we can choose the functions ¢, ¢ and ¢3 to be given by

b b
o1(t) = (UO - )6_% +———e ! - byte ",
K—c K—c

; b b )
K — Co K — Cy
¢3 (ta S1, 52) = bge_ﬁte(ﬁ_'%)sle('%_%)@?

so that the Factorizable Third Chaos Framework can be applied. Note here that if we
take & = c3, the Two-variable Third Chaos Framework can be applied. Moreover, if

we take kK = kK = ¢y = c3, the One-variable Third Chaos Framework can be applied.

8.5 Modelling the forward LIBOR rate dynamics
from (Zir)o<i<r<o

We have observed the forward LIBOR rate dynamics expressed only by the risk-

adjusted volatilities, which is computed in the following way:

. Dz
Vi = g”], 0<t<T < 0.
tT

172



We now consider whether modelling the process (Zir)o<t<r<oo may allow us to in-
tegrate the advantages of the SVM and the Potential Approach. It would yield a
desirable forward rate dynamics, satisfying the arbitrage-free and positive interest rate

conditions.

8.5.1 Arbitrage free condition from Z;r

Let us first recall the potential property of the state price density (V;);>0, that is, V; is
a supermartingale with respect to F; such that the following asymptotic condition is

satisfied:

(8.5.1) lim E[Vy] = 0.

T—00
Because we defined

Zyr = Ey[Vp], for 0<t<T < o0,

the supermartingale property of V;, that is, that V; > E;[Vy] for any 0 < ¢t < T < o0,

is equivalent to the following condition
Ly > Zyp, forany 0<t<T <oo.
Because the tower property gives us that
E[Z,r] = E[Vy],
the asymptotic condition (8.5.1) is equivalent to another asymptotic condition

T—o0
Therefore we find that the decreasing condition with respect toT" > 0 for the martingale
process (Zyr)o<t<T<o0o With the asymptotic condition means that the non-arbitrage and
positive interest rate conditions are satisfied. We recall the following form of the process

(Zir)o<t<T<oo Observed in the Chaotic Approach:

ZtT = Et |:/ 03d8:| 5
T
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which is indeed a martingale with respect to F;, decreasing with respect to T' > 0 for

any o, € L%

8.5.2 Application of the SABR dynamics

Let us assume the random variable Z;r satisfies the SABR dynamics, that is,
dZir = —Yir ZjpdW,,

diT = E}ZT devt 5

where € (0,1], € and « are some positive constants, and W; and Wt are Brownian

Motions with a correlation
AW, dW, = pdt, and pe€[-1,1].

This does not already guarantee that the process (Zir)o<i<r<oo is decreasing with

respect to T' > 0. In light of It6’s Lemma, for 0 <t < T < S < oo, we have that

1
d(—) A7) — a7
) 7 7
Y225 YisZps
_ dt + AW,
7, 72,

=Y2Z7 dt + Vs Z05 2dW,.

Consequently, we may further infer that

d(ZtT) ZtTd(ZtS> Lz d

dz,
ZtS ZtS <Zt5> i

_ z0 O,
_Yt?S'ZQﬂ 3ZtTdt + }/tSZtS 2ZtTdW Y;TZ—Sth ES}/tTZES QZtBTdt
t
Y2 7283 V. V.. 78278 v B2 ~ 7
:(Y;SZtS Zir = YisYirZyg ZtT> dt + (YtsZts Zyp — Y;TZ—)th

tS
~ 1 N8 7 [~ 1 \1-8 ~ 1 \1-8
Vs(zo) TolWs(zo) ~Valgo) e
Y\Zs)  Zis U\ Z4 T\ Zur

() ()



This then implies

Zyr
dF, :—d( )
TS =g 7.
1 =~ 1 \N1V-BZir [~ 1 \1-8 ~ 1 \1-8
is(2:) —[Y (—) ~Vir(g) e
T5- Zss Zts o Zis "\ Zu
7o s(gs) —Vulz) ]
dW,.
5oy T 75 |5\ 75 Zer t
Because the relationship Firg = (g— — ) may be expressed as follows:
1 ZtT) 1
- (2T _ g -
S—T(Zts st g

we conclude that

dFrs =V (2 10 (Y v (Y N (e + —at
tTS_tS(Z_tS> [t5<z—w) _tT<Z_tT) ](fTS*s T)

() Tl (s

where

Vir = Yope 22,
We now distinguish three cases.
Case 1. f=1

When g = 1, we find that
dZy = =Y ZypdW,.

Therefore we have that ?}T = —‘A/tT and we obtain the same dynamics
. . 1
dFirs = [---)dt = (Vis = Vi) (Firs + g—= ) dW.

Because VtT is lognormally distributed, (Vts — VtT) has the same distribution. Therefore

it corresponds to the SABR Model with g = 1.
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Case 2. =0

When g = 0, we find that
~ t o~
dZyr = =Y,pdWy,  or, in other words, that Z;r = —/ Y.,7dW,.
0

This gives us that

Case 3. [ = %
When g = % we find that

dZ = =Y/ ZyrdW,,

which implies that

dFigs = Lo+ (D T (g Ly,

We have not so far found a condition to guarantee that the decreasing property is

satisfied. However we make a note of it here, in case we get further ideas in the future.
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Chapter 9

Conclusion and further works

9.1 Summary of the thesis

This project was started with the aim of calibrating the Chaotic Approach. Knowing
that the Chaotic Approach was constructed under the Potential Approach, we first
investigated the Potential Approach and noticed that SVM may be produced from the
state price density. This implies that the Potential Approach may be regarded as a
framework to model the forward LIBOR rate and forward swap rate dynamics under
which the arbitrage-free and interest rate positivity conditions are satisfied. Let us

recall here the corresponding dynamics:

Dy[Zis]  Di|Zir — Zis]  Di[Zis] Dy Zyr — Zis] Dy Zs]
dF g — — ( _ )F dt+< _ )F AW,
e Zis \ Zig— Zis Zis )10 Zor — Zas Zyg )T
and
DS 5Za4) DT — 7 D[S nZg
dS,,(t) = — t@“’“ ri) ( tZ[ — mis t[?‘““ il ) Sap(t)et
Zi:a-{—l T, Zyr, tla — “tTh Zi:a—H T Zy,
b
(Dt[ZtTa - Zth] _ Dt[zi:a—l-l TiZtTJ >S b(t>th
ZtTa - Zth Z?:a—i—l TiZtTi @ ’

where the variable Z;r is conditional expectation of the state price density Vi with
respect to F; for 0 <t < T < oo and Dy is the Malliavin derivative with respect to
time t. The SABR type equations are expressed in (3.3.7) and (3.3.10). In addition,
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we observed in (8.1.3) and (8.1.4) that these dynamics may be modelled from the short
rate. In particular, the state price density is potential when the short rate is a positive
process.

For the calibration of the Chaotic Approach we started our argument from initial
yield curves without options. We proposed a family of chaos coefficients expressed by
functions of one-variable and called the corresponding model the “One-variable Chaos
Model”. Specification of these one-variable functions by exponential polynomial forms
allows the deduction of initial forward rates compatible with the Bjork and Christensen
descriptive form as follows:

2?21 ( Z;n:zl 5ije_cijT> 2Ti_1

2
Jr 222 <Zﬁ1 bz’jefc”s> s~ lds

From this polynomial family we suggested some specific models to compare with

Jor =

, for T >0.

Nelson-Siegel Form and Svensson Form, which are special cases of the Bjork and Chris-
tensen descriptive form. Our calibration gave successful results. Most of the Chaos
Models outperform the Nelson-Siegel Form and have as good a fitting ability as Svens-
son Form, while also satisfying the interest rate positivity condition.

In [48], it is shown that the variable Z;r is formed as a squared polynomial in a
Gaussian process in the Factorizable Second Chaos Model. This also holds for the
class of One-variable Second Chaos Models, which can be seen for each 0 <t < T < o0

as follows:

o0

Zir = POT/ (a? + Sﬁz)ds + 2/ asBsdsWy + / ﬁgds(Wtz — 1),
0 T r

where the initial curve may also be expressed in the following way:

_ Jr (a2 + sB2)ds
(a2 + sp2)ds
When we take the third chaos coefficient into account, One-variable Third Chaos Mod-

POT

els form the variable Z;7 by degree four polynomials in a Gaussian process, while
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One-variable Fourth Chaos Models form degree six polynomials. Those properties not
only secure stochasticity in the volatility term for volatility skew and smile, but also
allow enough flexibility to model the distribution of derivatives.

We observe that there exist two types of interest rate models. The first group gives
us freedom to model initial curves separately from the volatility dynamics. In the
market the Svensson Form is often used to attain a reasonable fit into the initial
curves. Moreover, calibrating options separately, the global minimum may be found
faster. For example the HW, LFM and SABR Model belong that group. Models in
the other group, such as the CIR Model do not give us this freedom. As can be seen in
[14], the CIR++ Model is proposed to correct the nature of the CIR Model to obtain
the tractability for the initial curves. However it costs six parameters to apply the
Svensson Form. For example the SABR Model spends three parameters to model the
forward LIBOR rate dynamics, and the other three parameters to model the forward
swap rate dynamics. Therefore we need twelve parameters in total. On the other hand,
we can choose the group in the Chaotic Approach, that is, we are also able to model
the initial curves from the chaos coefficients. The One-variable Chaos Models achieve
reasonable fit into initial curve and volatilities at the same time without increasing
the number of parameters. We observe that even seven parameter Chaos Models may
generate reasonable option prices with good fit into initial curve.

The calibrations were implemented with two goals in mind. Firstly, we wanted to
compare the calibration performances within the Chaos Models. Secondly, we wanted
to compare the performances with the popular models and other traditional models.
We found that One-variable Third Chaos Models are outstanding among all Chaos
Models, particularly regarding fast computational speed. This model is comparable
with the LFM and the SABR Model. For example, the One-variable Third Chaos
Model with seven parameters works better than the SABR Model for calibrating the

ATM options. We observe that the application of the descriptive form in the Chaos
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Models forms enough flexibility to reproduce the humped shape of the caplet volatility
term structure, and also smile/skew shape for in the money and out of the money
options. Although it does not generate great fit into Caplet smiles, the one-variable
nine parameters model gives us very small errors for fitting into Swaption smiles, even
smaller than those we observed in the SABR Model.

We noticed from the literature that the Stochastic Volatility Market Models are one
of the most successful and popular models amongst practitioners in recent years, and
many researchers focus on modelling a stochastic volatility. Our research described
here suggests indirect methodology to model the forward LIBOR rate and forward
swap rate dynamics via the state price density. We hope it will be a framework for the
next generation of interest rate modelling. We list possible further works in the next

section and finish the argument.

9.2 Further work

We believe that there are a lot of exciting avenues open for further research. Here we

suggest four possible topics.

9.2.1 Improvements of the Model

Though we focused our calibration on the Chaotic Approach, it is exciting work to
model the state price density paying particular attention to those volatility drifts of
the underlying dynamics for improving fitting ability into the volatility surface. Our
final goal is to establish a model which enables to fit well into a volatility surface
across the maturity and the strike. We here list shortcomings of the One-variable

Chaos Models so that possible improvement may be discussed.
e Option premiums can be computed only one at a time.

e The parameters in the model do not have an intuitive real-world meaning.
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e An explicit implied volatility form is not available.
e Analytical forward LIBOR rate correlation form is not available.

The first shortcoming is discussed in Section 8.1. We proposed to take an exponential
form for the state price density. In particular, we suggested modelling the LIBOR rate
and swap rate volatility by the application of the short rate models. In other words, we
suggested to incorporate the Short Rate Model, the Market Model and the Potential
Approach. Since the Vasicek Model in 1977 there have been many interest rate models
developed by various researchers. However, as is suggested in Chapter 8, it is possi-
ble to combine all the previous described techniques of interest rate theory, in order to
make the best advantage of existing work. We observed that the Affine Term Structure
Model gives an analytical stochastic differential equations of the underlying assets. As
examples, we showed that the Vasicek Model belongs to the Shifted-lognormal Market
Model, and the Squared Gaussian Model belongs to the SVM. Here, it would be opti-
mistic to generate the market by only one factor, we would need multiple factors. For
example the SABR Model applies two correlated factors. Therefore we should consider
two-factor Affine Term Structure Model so that we indirectly model the distribution
of the volatility drift terms in the underlying assets. It is also advantageous to have
an intuitive meaning for each parameter. A question now is about the market price of
risk, which is not present in the volatility drift terms. However, the state price density
is expressed by the short rate and the market price of risk. Hence, it is important
to model the market price of risk for the propose of pricing options. To model the
state price density we should also incorporate the discussions in Economics, see for
example [25] and [31]. Some other ideas are also proposed in Chapter 8, but we leave
the remaining questions open.

Finally, having explicit implied volatility and forward rate correlation forms is a de-

sirable feature in interest rate modelling. Though it is straightforward to compute
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premium from implied volatility, the other way around is not simple and is often ap-
proximated. We understand that not many practitioners apply the lognormal distribu-
tion for underlying assets any more, but they still apply the Black formula to measure
volatilities, using implied volatility as a benchmark. We observe that the SABR Model
outperforms the Wu-Zhang Model ([93]) in this sense. However, Chaos Models do not
have that capacity either. Moreover, as is stated in [62] we should extract the forward
LIBOR rate correlation information from the market in the calibration work, not only
the volatility information. Therefore, we should also derive the correlation form in the

Potential Approach for future work.

9.2.2 Improvements of the calibration

Though we understand that the market does not apply historical data but estimates
volatilities only from the current data, the model assumption claims that the parame-
ters are time independent. For example, Rogers ([80]) suggests time series calibration
methodologies. Kalman Filtering, General Method of Moments, or Maximum Like-
lihood method may be applied where the bid-ask spreads or liquidity would work to
estimate volatility for the Maximum Likelihood function. Moreover we should also cali-
brate the models proposed in Chapter 8 and the other popular SVM such as Wu-Zhang
Model and Piterbarg Model ([70]), not only the SABR Model.

Calibration is implemented for pricing and hedging purpose. Here we take exotic
options into account. Particularly, the chooser flexible cap and the Bermudan Swaption
are liquidly traded in the market. However, as is the case for the SABR Model, it is
often not easy to price those options, we must rely on either Monte Carlo Simulation or
the trinomial tree algorithm, (see, for example [87]). One of the most appealing parts
of the Potential Approach is its tractability to price options, because we are modelling
the stochastic discount factor itself. We could investigate pricing method for those

exotic options and also check pricing errors, using calibrated parameters by European
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options.

In addition to checking the pricing error, model performance may be evaluated by
its hedging performance. Although we observe some literature about the hedging the
delta and vega risks under the SABR Model, (see for example [3] and [41]), we do not
find it under the Potential Approach. As stated in Rebonato’s book ([76]), we may not
say a model is perfectly good unless hedging ability is checked. A desirable model has
to have a stable and non-erratic feature of prediction in the future time. For example,
as stated in the book [76], the Local Volatility Market Models do not have great ability
in this sense, since there the dynamics move the other way around, even though it
satisfies fitting ability to the volatility smiles. We notice that nobody has investigated
evolution in time of the term structure of volatility in the Potential Approach. Here

again the SABR Model would work as a benchmark of the performance.

9.2.3 Further investigations in Mathematics

In this thesis we proposed the One-variable Wiener-Chaos expansion. Although we did
not find loss of generality under the One-variable Chaos Models, it is still an open topic
to compare the convergence speed between the usual Wiener-Chaos expansion and the
One-variable Wiener-Chaos expansion. As an alternative direction, may we suggest
applying the Winker-Askey Polynomial Chaos Expansion (or Generalized Polynomial
Wiener-Chaos expansion, sometimes written as GPCE), which has been used recently
in Physics and Engineering fields to estimate a square integrable random variable as
an alternative to the Monte Carlo Method, see for example [94]. This method is

appropriate to estimate a non-Gaussian variable.

9.2.4 Application to other products

The expressions of the stock price process and FX system are derived in [48]. Hence, it is

straightforward work to price stock options under the Potential Approach in particular
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the One-variable Chaos Models. Moreover, it gives an easy access to Hybrid products.
As also claimed by Rogers ([79]), it is advantageous under the Potential Approach that
we are able to model the interest rate markets in several countries at the same time
with those exchange rate. Here, the Market Models encounter computational difficulty
on the multi-currency products as discussed in Appendix H from [14]. A possible

extension of the Potential Approach is also for Credit Risk.
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Chapter 10

Appendix

10.1 Pricing Options in the Constantinides Model

We formulate a method to price the European bond option and Swaption in the Con-
stantinides Model. Though Swaptions are not considered in the original paper, we

believe that it is straightforward to extend to this.

European call/put bond option

Because the initial values of the European bond options are formulated by
1 1
ZBC(0,t,T,K) = VIE[V;(PtT — K)*] and ZBP(0,t,T,K) = VE[Vt(K — Pr)*,
0 0
we find for the call option that
ZBC(0,t,T,K)

exp[— (g + %g)t +ooWo(t) + (21(t) — a1)?]

:E exp [00W0(0) + (3?1 (0) — 041)2]

(PtT—K)+]

o2
—]E{exp [ - ?Ot + ooWo(t)] exp [ — gt + (21(t) — a1)® = (21(0) — a1)*] (Pir — K)*] :
Because the Wiener processes W, and W are independent it follows that

ZBC(0,t,T,K)=E|exp [ — gt + (z1(t) — a1)® — (21(0) — a1)*] (Pir — K)*} :
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Recalling the discount bond formula, it follows that
Por—K = H. 2 (T—t) exp |[(— g4\ ) (T—t)+H; " (T—1) (xl(t)—aleMT—ﬂ)2—(x1(t)—a1)2 _K.
Therefore, the condition P,y — K > 0 is equivalent to the following inequality:

I.(z) := C2® + Bx + A >0,

where

C:=—(1-HYT~1)), B:=2(1—HT—t)enT)
and
A= —(1 = H{Y(T — )M T0)a2 4 (=g + \)(T — t) — In(K HE (T — 1)).
Similarly, the condition K — P, > 0 is equivalent to the following inequality:
I(z) = —C2* — Bz — A > 0.

However, because we know that H,(T —t) > 1 for T > ¢, we notice here that C' < 0.
Therefore both functions I.(x) and I,(z) have a quadratic form. If A := B*—4AC < 0

we obtain that
ZBCO(0,t,T,K) =0 and ZBP(0,t,T,K) = 0.
Now let us consider the case A > 0. Because we know that
ZBC(0,t,T,K) = E[(P.(x))"],
where
1 2
Pu(z) =H, *(T — t) exp [Al(T —t) — gT + HyNT — 1) (ac - alew—f)) — (21(0) — al)ﬂ
—Kexp [ =gt + (v — a1)? = (21(0) — an)?]
1 2
—H (T = t)exp [N (T — 1) = gT = (21(0) = a1)?] exp [ Hy (T = 1) (@ = ™) |
— K exp [— gt — (z1(0) — al)ﬂ exp [(x — al)ﬂ,
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denoting the roots of the function I.(z) by 2z; < z3, we find that, when A > 0,
ZBC(0,t,T,K) = / Pe(x) folx)dz
zZ1

where f, is the probability density function of the random variable x;(¢). Similarly for

the put option we obtain that

z1

2BPO.T.K) = [ FP@he)ds + [ -Pue) Lo

—00 29

Because the dynamics of x1(t) can be solved explicitly to give

t
z1(t) = 21(0)e M + 01/ e~ MG, (u),
0

we find that z(t) is normally distributed with mean p := z;(0)e~** and variance

2
§% = ;Tll(l — e_”lt). Therefore we infer that, when A > 0,

ZBC(0,t, T, K)
( 3v2w

=H, (T - t) exp [/\I(T —t) = gT — (21(0) — 041)2]

2 _@ew?
exp A (x — ozle’\l(T_t)> ]6_ 22 do

8\/_
— Kexp [—gt— (21(0) — an)?

_(1'7u)2
eXp x—al)ﬂe 22 dx.

5\/
As in [26], the following is satisfied for 3,y € R:

2 o w1 F_-a?
e 252 dx =e1+27s2 T2 dx

o
SV2T J_so S\ 2w

=(1+ 273 ) %GHQVS

(1‘*(1)2
22 dx

b\/ 27

—u? ] (ﬁ*a)/b )
=(1+2ys%)"~ 212032 e > 2dy
V2T

:(1—}-275 ) 5611273 CI)</BZGI>’

where a = and b = s(1 + 2ys2) "z, provided that 1 + 2vs2 > 0 and

K
14252

O(z) = \/% /_oo %
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Similarly we find that for o, 5,7 € R

)2 _(@=p)? _ae=pw? ] B a2
e~ V(@=0)® = 5 0 —e 142952 22 dx

s\ 2w sV2m J_

1 _’Y(Q—H)2 1 ‘B _ (z— a)2

=(1 +2ys%) " 2e 1423 22 dr
bv2m J_
a—pw? (B—a)/b
=(1+ 2782)_%671&2;)2 12 / e 2 12q
V2 J_

a—p)2 —a
—(1+ 2ys?)de Himed @(5 ).

where a = 2274 Therefore we find that for the first term of the option pricing

14252
formula, setting v := —H; ' (T — t), we obtain

1

H;E(T _ t) exp [Al(T 1) = gT — (2:(0) — alﬂ

2 (z—p)?
ex T—1 <.1: - e’\l(T_t)> ]e 22 dx
- \/— p N ) 1

=H,? (T - t) exp [)\1( —t) — g7 — (21(0) — 041)2}

27 _(@=p?
/ eXp (T - t)(a:—a (= t)> }ei 22 dx

L\/QW
/ eXP (T =) (m — M= t)>2} e iy
S\/27T

:H;g(T —t)exp [Al(T —t) — g7 — (21(0) — 041)2}
BT = Oanen ™0 — )
1—2H (T —t)s2

x (1= 2H YT — 1)s?) "3 exp [

o7t -s(5Y]

—H (T — )(1 — 2H (T — )2)

H (T — 1) (aqe T )]

X exp [Al(T—t)—gT—(:cl(O)—Oz1)2+ 1—2H (T — {)s?

<[o(277) (5]
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where

252y M= 4 _ —282H; YT — t)aneM T 4y

a =
14 2vs? 1—2H YT —t)s?
20T HTHT — )8 n
1—2H; /(T —t)s? 1—2H YT — t)s?
0'2 _
_ ar MO HTHT — 1) FE (1 — e N 21(0)e Mt
1- Hl—l(T — t)i—f(l — e~2ht) 1 — Hl_l(T _ t)%(l — e~2ht)

and

b=s(1+2ys%)"2 = s(1 — 2H; (T — t)s*) 2

N

0'2 —
_[ 52 ]é_ [ oy (1 —e )
1—2H (T —t)s? 1_H1—1(T_t)i_§<1_6—2)\1t>
Recalling the definitions:
> p 2

H(1):= % + <1 — ﬁ)62’\” and s := ;—;1(1 — e~

we observe that
H(T —t)(1 = 2H; YT — t)s*) =H, (T — t) — 25

_%1 4 (1 _ i_%)ew\l(T—t) _ U—%(l )
1

A
2

o? o
_ 1__1) oA (T—t) | T1 _—2xnt
( WA D

2 2
_e—2nat (1 _ ﬂ) 20T ﬁ)
e (( N e + N

= M H\(T).
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Therefore, recalling also that u := 2,(0)e !, we find that

HO3(T = )(1 = 2H (T — t)s?) "

Hy (T — t)(aq M) — M)Q]

X exp [Al(T—t)—gT—(xl(O)—a1)2+ 1 —2H (T — 1)s?

<[e(25) o ()]
=NH;H(T) exp (T = 1) = T = (11(0) — 1) + Hy H(T)eP (aaeM 00—y (0)e 1)
< |2(F57) -2 (5]
=H; *(T)exp (=g + M)T + H(T) (1(0) — 02)? = (21(0) — e )]
o) ~e(150)
i fo(254) 025

Similarly, the second term follows as, setting v := —1, we have that

1 = e—w)?
Kexp [~ gt = (@(0) ~ ] = [ exp [0 = an?]e 5 ds
sV2m J 2

e (10— 1 =2 Lo [ o () g2

=2 e [ =gt 0 -+ S K[ (P) a5

where
0'2 _
. 282’7041 ‘l‘,u B —252&1 +H - 051)\_1(1 —e 2/\1t) N wl(o)ef)\lt
- - - 2 2
1+ 27ys? 1—2s2 1— %(1 —e2ut) ] — %(1 — e~ 2\ut)
and

1

0'2 —
s p_ A0
1

2
_ %(1 _ 6—2)\1t)

However, because

2 2 2
eMUH () = et ] = TL 1 Z () et = - 28,
A1 A1 At



we find that

(a1 — p)?

e K125

—(e"MUH, (1)) 77 exp [ — gt — (21(0) —a)” + %] [ (

(1—25%)"2 exp [— gt — (21(0) — ay)* +

*)-e(*5")
“)-e(*5")

=H; () exp [(—g + M)t + H (1)1 (0) — ane™)? - ((0)—041)]K[<I><Z2b_a> cp(zll;“')}

() o5 )]

Therefore, we conclude that

it A<O0

_(I)(z1;d)} _POtK[(I)(ZQ;G/)_(P(ZIb—Tal)} 1fA>O

0
ZBC(0,t,T,K) = X
( ) { OT[CI)(Z2;G)

Considering now the put option, when A > 0, we find that

ZBP(0,t,T,K) :/_Zl [—Pe(x)] fo(z)dx + /OO[—PC(x)]fI(as)da:

1 1 (z m? <z u)
=— P. dr — o / P.(x dz
S V 27T /—oo ( S z2

At

and s2 = ZL(1 —e

—2A
o 2 1t)

where we remind the reader that p := x1(0)e” . Therefore

we obtain that

ZBP(0,t,T, K)
!/

- (50 - o(F ) o (25) - o251

!

() e Y]+ [p( ) ()

/! !

- o) -6 ] e o) 1]

This then gives us that

0 if A <0
ZBP(0,t,T,K) = —Por [®(252) — (272) +1] '
—f—POtK[@(le;a/)_CI)(ZQ a)+1:| lfA>0
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Swaption

Let us consider the payer Swaption maturing at ¢ > 0, that is,
N - +
PS(0.T, 7N, K) = 1, E [Vt(1 Py - K;an) }

As we have already seen, it follows that for NV = 1, we have that
n +

PS(O, T, T, N7 K) = E |:eXp [—gt—l—(:ﬂl(t)—a1)2_(;1:1(0)—a1)2} (1_Pttn_KZTiptti> :| .
i=1

Recalling the discount bond formula, we find that

1= Py, — Kzn:TiPtt,-
1 — H % (t, — t) exp [(—g SNt — ) + H Yt — 1) <x1(t) _ aleM(tn—t))Q ~(aa(t) - 041)2]
- Kzn (1, — 1) exp [(—g + M)t — 1) + H (6= 1) (1 (8) = ne™ ) — (1) — en)?].

Therefore we obtain the following expression for the initial price of the payers Swaption:

PS(0,T,7,N,K) = E[(Pps(ﬂvl(t)))wa

Ry,
T
nn
8
~—
I

exp |~ gt = (£1(0) — )’ exp |(x — )]

— H, %(t, —t)exp [Al(tn —t) — gt, — (21(0) — al)g] exp [Hl_l(tn —t) (:U o eMttn= t)>2}

— KZTz t —t)exp [)\1(25 —t) — gt; — (x1(0) — 041)2} exp [Hfl(ti —t) (a: — ettt _t))z].

Since for any «,v € R, we have that

1 (@) 1 _ae=w? ] (z—a)?
e 252 = (1 + 2’}/82)756 142752 22

e 9
21 b\ 27

where G := 215326”;;’“‘ and b := s(1 + 2ys?)~2, with 1 4+ 2ys2 > 0, we infer that

e~ V(@—a)?

y(a—p)?

e 1@m@®—a)? (1+ 2’)/82)_26 29:2 N (@, v?).
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It follows that

y(a— u)

[(1 + 2ys%)ze timsT ¢ 0= _ a1 o A(0,1).

1
Z = -
b

Therefore, if in order to simplify notation, we first define

do = O, ’70 = —1,

= oqeMtT 5= _H Nt —t), for i=1,...,n,
- 28%%i0 + p

A

b; == s(1+ 2%52)*%, for 1=0,1,...,n,

1+ 2%;82 7
we infer that
— 5 g1 —do@e-w? ao
Pps(Z) = exp |:— gt — ($1(O) — O_fl) } [bo(l + 2%s ) 2¢ 1427952 (Z + b—)
0
_’T/n(‘in*H)Q Qa
— H{(t, —t) exp it = £) = gta = (21(0) = a1)?] [ba(1 + 2958%) “3e 1507 (2 4 Z_n)]

_’%‘(%’*H)Z -
- KZTZ (t; — ) oxp [/\1@ — 1) — gt — (22(0) — 0‘1)2} [bz’(l +25;5%) 2 BT (Z 4 &ﬂ,
such that

PS(0,T,7, N, K) = Ye 7 dz.

Pps(z
V2m /7>ps>o

Because the function Ppg can be expressed as
Pps(Z) = BZ + A,

where

Ao (ag—m)?

B = exp [ — gt — (01(0) — ] (1 4+ 29057 2y

_ ’7n(5¢n*l¢>2

— Hy F(tn — t) exp [Mtn 1) = gt = (22(0) = @)’ (14 23,8%) 2T T,

= (~ 2
_vi(a—w)

- Kzn 2 t) exp [)\1(15 —t) — gt; — (21(0) — al)Z] (14 2%, 2 s
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and
2 2 1 7MA
A :=exp [— gt — (21(0) — o) } (14 299s%) "2 1127027 g
In(an—m?

_1 1 —
— HL#(ty = ) exp [ Mi(tn — 1) = gt — (@1(0) = 2| (14 295%) “he 150,

_Aila—m)?

—KZ% t — 1) exp [/\1(t —t) — gt; — (z1(0) _041)2](1+2Wi82)_%6 e gy,

we infer that
z2
\}foo (Bz+ A)e~2dz if B>0

PS(0,T, 7, N, K) = . .
(Bz+ Ae~7dz if B<0

ord I

Therefore, we conclude that
PSO,T,7,N,K) = {

where

Note here that

\/%/ X = o(— 2W/ Xe 5 dX = —p(x)

and

! /OOX %X = p(a)
—— e = xT).
Vor Jg P

10.2 Proof of Proposition 20.5 in [11]

Let us first recall the dynamics of the instantaneous forward rate expressed in (3.2.16),
that is,
dftT - d{tTdt + &tTth-

From this, Proposition 20.5 gives the dynamics of the short rate expressed as (3.2.17).

Because we have that
t t
fir = for +/ @qulH-/ GurdWy,, 0<t<T <oo.
0 0
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it follows that

t t
dr, :d(f0t+ / s + / 6utqu>
0 0

t

—d(for) +d< /0 t dutdu> +d( /0 (3utqu>.

By the Leibniz integral rule, (see, for example [71]), we have that

(10.2.1)

t

(10.2.2) a( / t ) = gt + / %dmdu>dt.
0 0

On the other hand, because, we also have for 0 < u <t < oo that
t
&ut = a-uu + \/1; %a—usdsa
we infer that
t t t t
. R J .
a( /0 GudW,, ) =d( /O FuadWy )+ d( /0 /u %ausddeu>

(10.2.3) o
=0 d d —0 Sd d u -
o dWy + (/0 /u asau s W)

However, because the equality

t t t s
/ / ﬁc}usddeu :/ / 2&ustVucls
o Ju Os o Jo Os

is satisfied, the expression (10.2.3) may be simplified in the following way:

(10.2.4) d< / t &utqu) = G dW, + ( / t %&utdwu)dt.
0 0

Combining the expressions (10.2.1), (10.2.2) and (10.2.4) we may conclude that

0 Lo, Lo . . .
dry = (afOt + /0 aautdu + /0 aautqu> dt + aydt + 64 dW;
0

= <5étt + a_TftT

) dt + 6, dW,.
T=t+
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10.3 Appendix to the Chaotic Approach

The variable My, := E;[0?] is formulated in the Chaotic Approach as the expression
(4.6.2). In this section, we deduce the same form by another method. Recalling the

chaos expansion from (2.1.23), we obtain that for 0 <t < s < o0,

S S S1 2
MtS =K (¢1<3) + /0 ¢2<37 Sl)dWSI + /0 /0 ¢3(57 S1, 32)dWsde81 + oo ) ]

K] s 51 )
:Et[<R1<t,S)+/ ¢2(S;81)dW81+/ / ¢3(S,51,52)dW52dW51+...> }
t ¢ 0

where

t t s1
Ri(t,s) = ¢u(s) +/ P2(s, s1)dW s, +/ / P3(s, 51, 82)dW sgdWsy + - - - .
0 o Jo

Notice here that the random variable R;(t,s) is F;-measurable and R;(t,t) = oy.

Therefore it follows that

Mts :R?(t, 3) + R1<t, S)Et |:(/ (bg(s, sl)dWsl + / / ¢3<S, S1, Sg)dWSdesl + e ):|
t t 0

s S S1 2
E, ,81)dW , S1, S2)dW sodW
+ |:(/t ¢2(S 81) S1 +/t /0 ¢3(S S1 82) S9 S1 =+ ) :|
S S S1 2
=R2(t, EtK ,51)dW , 51, S2)dW sodW H
ity s) + /t ¢a(s, s1)dW sy —|—/t /0 b3(8, 81, 82)dW s9dW sy +

The conditional Ito isometry gives us that

s S1 2
My =Ri(t,s) + / E¢ [(@52(3»51) ‘1”/ $3(8, 51, 52)dW s + - - ) :|d31
0

t

S S1
=R;(t,s) +/ Et{<R2(t,3,31) +/ b3(s, 51, 52)dW s9
t

t

S1 52 2
+ / / Ga(s, 81, 52, 83)dW s3dWsg + - - ) }dsl,
t Jo

where

t t S2
Ry(t,s,51) = ¢2(3731)+/ $3(s, slaSZ)dW32+/ / P4(s, 51,52, 53)dW s3dW s+ - - .
0 o Jo
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Because R3(t,s,s;) is Fi-measurable, we infer that

M =Ri(t)+ [ {R%(t,s,sl)
t

+R2(t, S,Sl)Et[(/ (bg(S, Sl,Sg)dWSQ +/ / ¢4(8,$1,SQ,83>dW53dW52+ )1
t t 0

S1 81 S2 2
+ E, {(/ ®3(s, s1, 52)dW sg +/ / Pa(s, 51,52, 53)dW s3dW sy + - - ) } }dsl
t t 0

=Ri(t, s)—l—/ R3(t, s,51)ds
t

K] S1 S1 S2 2
+/ Et|:</ ¢3(S,81,82>dW82 +/ / ¢4(S,81,82,83)dW53dW82 + > :|d81.
t t t 0

Applying the It6 isometry again, we find similarly that
M, =R2(t, s) +/ R3(t, s,51)ds,
t

s S1 52 2
—l—/ / ]Evt|:<¢3(3,81,32) —I—/ G4(8, 81, S2,83)dW s3 + - - ) ]dSstl
t t 0

=R3(t, s)+/ R3(t, s, 5,)ds;

t

S S1 52 2
‘|‘/ / Et{(Rg(t,S,Sl,SQ) +/ ¢4(S,81,82,83)dW83+ ) :|d82d31,
t t t

t
RS(t7 S, 81, 32) :¢3(37 51, 32) + / ¢4(S7 51, S92, SS)dWS?)
0

where

t S3
+ / / ®5(8, 81, 2, 53, 84)AW s4dWsg + « -+ .
o Jo

As before, it follows that

S S S1
M, = R3(t, ) —|—/ R3(t, s, 51)ds; +/ / R3(t, s, 51,52)dsads;
v Ji

t

s s1 S9 So s3
+/ / Et|:(/ ¢4(S,81752,33)dW83+/ / ®5(8, 51, S2, 83, 84)dAW s4dW s3 +
t t t t 0
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Therefore iterating the expression gives us that

M, =R2(t, s) + / R%(t, s, 5,)ds; +/ / R3(t, 5,51, 52)dsads,

/ / / R3(t, s, 51, 89, 53)ds3dsads,
+/ / / / R2(t, 8,51, 59,83, 54)ds4ds3dsodsy + - - -
¢ Jie Jeo S

where

t t S1
Ri(t,s) = ¢1(s) "‘/ Pa(s, s1)dW sy +/ / ¢3(s, 51, 52)dW sodW sy + - -+,
0 o Jo

t
Rn(ta 8,815+, Sn—l) :gbn(S, S1y - - )Sn—l) + / ¢n+1(3a St1y-- ) Sn)dWSn
0

t Sn
+ / / Onra(8, 81,y Spy1)dAW s 1 dWsy, + -+
0o Jo

Therefore we obtain the same result here.
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