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Abstract

In this thesis we establish a relationship between the Potential Approach to interest

rates and the Market Models. This relationship allows us to derive the dynamics of

forward LIBOR rates and forward swap rates by modelling the state price density. It

means that we are able to secure the arbitrage-free condition and positive interest rate

feature when we model the volatility drifts of those dynamics. On the other hand, we

develop the Potential Approach, particularly the Hughston-Rafailidis Chaotic Interest

Rate Model. The early argument enables us to infer that the Chaos Models belong to

the Stochastic Volatility Market Models. In particular, we propose One-variable Chaos

Models with the application of exponential polynomials. This maintains the generality

of the Chaos Models and performs well for yield curves comparing with the Nelson-

Siegel Form and the Svensson Form. Moreover, we calibrate the One-variable Chaos

Model to European Caplets and European Swaptions. We show that the One-variable

Chaos Models can reproduce the humped shape of the term structure of caplet volatility

and also the volatility smile/skew curve. The calibration errors are small compared

with the Lognormal Forward LIBOR Model, the SABR Model, traditional Short Rate

Models, and other models under the Potential Approach. After the calibration, we

introduce some new interest rate models under the Potential Approach. In particular,

we suggest a new framework where the volatility drifts can be indirectly modelled from

the short rate via the state price density.
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Chapter 1

Introduction

In this thesis we present a quantitative analysis of the Interest Rate Markets. The

motivation is to develop the Potential Approach to interest rates for valuing interest

rate derivatives and to examine the Chaotic Approach. Since the Black-Scholes formula

([10]) was introduced in 1973, over-the-counter (OTC) derivatives have been actively

traded in the financial markets. As can be observed from [2], the interest rate derivative

market is the largest among all derivative markets, which accounts for 887.0 Trillions of

US dollars and 73% of the total global derivatives for the whole of 2009; see Figure 1.1.

There are three types of contracts in the OTC derivatives, namely; OTC swaps, OTC

forwards and OTC options. In the interest rate derivative market, Interest rate swap

belongs to OTC swap, Forward Rate Agreement belongs to OTC forward, and Interest

Rate Cap and Floor, Swaption, Basis Swap and Bond Option belong to OTC option.

The interest rate swap is most actively traded, which account for 691.1 Trillions of US

dollars and 78% of the total interest rate derivatives for the whole of 2009. The value

of interest rate options are 97.3 Trillions of US dollars and 14% of the total interest

rate derivatives for the whole of 2009. As can be observed from Figure 1.2, the trading

value of interest rate options has rapidly expanded during the last decade. The size

of the interest rate option market is 6.1 times bigger in 2009 than the market in 1998.

European Caps and European Swaptions are particularly popular interest rate options.

1



Figure 1.1: Notional amount outstanding of global over-the-counter derivatives

Figure 1.2: Notional amount outstanding of over-the-counter interest rate options
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Research in this area has continuously evolved since the early 1970s. Rogers ([78])

claims the following requirements for a desirable interest rate model:

• Flexibility to reproduce most situations in the financial market.

• Simplicity to calibrate the model on European Options within reasonable time.

• Input parameters can be observed or estimated from the market.

• The model does not generate unrealistic values, such as negative interest rates or

arbitrage opportunities.

• Good fitting ability into the market data.

However, there is still no model which can be thoroughly justified. The Short Rate

Models were the first to be investigated within the modelling of interest rates. The

first consistent Short Rate Model was the Vasicek Model ([92]) in 1977 and then later

the Cox-Ingersoll-Ross Model ([27], hereafter referred as to CIR Model) in 1985. In

these models we specify the dynamics of the short rate. However, the models were not

correctly described, giving rather poor empirical results. As an extension of the Vasicek

Model, the Hull-White Model ([49], hereafter referred as to HW Model) was introduced

in 1990. Although the simplicity of the model still fascinates many practitioners in the

market today, it generates negative interest rates, which is undesirable for valuing

interest rate derivatives. Moreover, it does not fit well to the market data. Soon after

the HW Model, a new general framework called “HJM Framework” ([45], also known

as HJM Model) was published in 1992. In this framework, we specify the dynamics

of the instantaneous forward rate where a drift condition ensures no arbitrage. Here,

a one-factor HJM Framework with deterministic volatility is equivalent to the HW

Model. The key problems in the HJM Framework were to ensure positive interest

rates and compatibility to the Black formula (see, for example [14]). In other words,

3



we wanted to find a drift condition for keeping the interest rate positivity and also

generating log-normal behavior to the instantaneous forward rate.

As a result, the Lognormal Forward LIBOR Model (see [13], hereafter referred to

as LFM, but also called BGM-Jamshidian Model) was introduced in 1997 to generate

log-normal behavior to the forward LIBOR rate. It was the first compatible model

with the Black formula and the first Market Model in which dynamics of a tradable

asset is specified. This model was widely used and once accepted as a market standard

model by the market practitioners. However, in the late 1990s a new dimension has

been added to the interest rate options, that is, the smile/skew curve in the implied

volatility of Caplets and Swaptions across the strike. The main problem of the LFM

is that it does not generate an implied volatility smile/skew curve. It gives only a

flat line, which contradicts the real market data. Since the LFM has been rejected for

modelling the volatility smile, Local Volatility, Stochastic Volatility (hereafter referred

to as SVM) and Jump Diffusion Market Models have been investigated in the area

of quantitative finance for pricing interest rate derivatives. However, it was observed

in [41] that the local volatility models have a crucial error for hedging derivatives,

predicting volatility smiles and skews in the other direction. Moreover, although we

would like to incorporate jump diffusion in the Market Models, it often causes a loss

of computational speed. Therefore the current research trend focuses on the SVM.

Among the SVM, the SABR Model ([41]) proposed in 2002 is the most appreciated

model in the current financial market; hence, it is regarded as the market standard

model (see for example, [76]). The advantages of the SABR Model are the following:

• Intuitive dynamics of the underlying assets, that is, forward LIBOR rates and

forward swap rates.

• Stochasticity in the volatility drift, which property attains volatility smile curve.

• Simple implied volatility approximation forms, which gives very fast computa-

4



tional speed.

• Predicting volatility smiles and skews in the correct direction.

On the other hand, it also has some shortcomings:

• Inconsistency between Caplet and Swaption pricing formulas.

• Lack of mean reverting feature in the volatility term.1

• Failure to satisfy the arbitrage-free and positive interest conditions.

• It does not achieve a great fit to the ATM Options across maturity and tenor, as

we will observe later.2

• Difficulty in pricing exotic options without applying the Monte Carlo Simulation.

To overcome those disadvantages some extensions of the SABR Model have been pro-

posed, see for example [61], [76] and [81]. On the other hand, the Potential Approach

has been investigated as a completely different method since the time when the Market

Model was first considered in the 1990s. The methodology is to construct a potential

process, that is, a supermartingale process which satisfies an asymptotic condition. We

impose the potential process to work as the state price density, which is the inverse of

the natural numeraire. Starting our argument from modelling the potential process, we

secure the arbitrage-free and positive interest rate conditions. It was first introduced

by Constantinides ([26]) in 1992 but the term “Potential Approach” was not coined

until some five years later, by Rogers in [79]. Jin and Glasserman ([56]) derived the

dynamics of the instantaneous forward rate under the Potential Approach, and showed

that it belongs to the HJM Framework while the interest rate positivity is secured by

the potential property of the state price density. Developing the Potential Approach,

1See, Mercurio and Morini ([61])
2Jump Diffusion Models have the same problem as observed in [29] where generated ATM implied

volatilities are increasing with respect to time to maturity, which contradicts the real market data.
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Flesaker and Hughston ([33]) announced the Rational Lognormal Model in 1996. In the

Rational Lognormal Model we apply the Doob-Meyer decomposition (see for example

[72]) and decompose the potential process into a martingale process and an increasing

process, that is,

Vt = Et[A∞]− At, for t ≥ 0.

The increasing process (At)t≥0 is then specified by an integral of deterministic functions

and a martingale process. However, their choice of At results in the LIBOR forward

rate being bounded above and below, which renders it unable to price deep in the

money and out of the money options. Hughston and Rafailidis continued to research

along these same lines and announced the Chaotic Approach in the paper, “A Chaotic

Approach to interest rate modelling” ([48]). They showed in this paper that the state

price density is obtained through the conditional variance representation, that is,

Vt = Et
[
(X∞ − Et [X∞])2] , for t ≥ 0,

where X∞ is unconstrained square integrable random variable. Application of the

Wiener-Chaos expansion (see, for example [66] and [67]) gives a natural choice of the

variable X∞. In this model we are able to price deep in the money and out of the

money options. Moreover, the model holds tractable pricing forms for the European

Caplets and the European Swaptions. In [16], Brody and Hughston introduced the

so-called “Coherent Interest rate Model” in which we also model the variable X∞.

This thesis’s main contributions to the literature are two fold; firstly, we develop

the Potential Approach further. In particular, we extend an argument of Jin and

Glasserman and derive the stochastic differential equations of the forward LIBOR rate

and forward swap rate in the Potential Approach. In other words, we express the

volatility drifts of the underlying assets in terms of the state price density. From this,

we are able to incorporate the Potential Approach into the Market Models. Though

for a long time these dynamics have been assumed to be arbitrary so that we obtain
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desirable distribution for the underlying assets, we now obtain a reasonable framework

in the Market Model. Furthermore, we derive the LIBOR rate volatility and swap rate

volatility in terms of the short rate. While expressing the volatility drifts by the short

rate, we also specify the state price density by the short rate and the market price of

risk. In particular, a positive short rate process secures the potential property of the

state price density. In this framework, we are able to construct a Market Model by a

Short Rate Model via the Potential Approach. Since we have the expression of the state

price density, we are able to compute a discounted value of an interest rate derivative

by the state price density. We particularly suggest to use the Affine Term Structure

Models ([32]) in this framework where the conditional expectation of the stochastic

discount factor can be explicitly solved. We show the Vasicek Model corresponds to

the Shifted-lognormal Market Model ([35], also called Shifted BGM Model). Moreover,

we also show that the Squared Gaussian Model ([69]) gives the forward LIBOR rate

volatility Gaussian distributed.

Secondly, we particularly focus on the Chaotic Approach among the Potential Ap-

proach Models and calibrate the Chaos Models for yield curves, ATM Options and

smile/skew curves of the implied volatility. Although in the original paper the tail

of Wiener-Chaos expansion is truncated at the second term, we first make the argu-

ment without the truncation to keep the generality. In particular, we show the Chaotic

Approach generates stochastic volatility. In other words, we show that the Chaos Mod-

els belong to the SVM. Here, we also notice that the Chaos Models give freedom to

choose an initial yield curve. It means that we can calibrate the models on the yields

and the options separately. In particular, we suggest a One-variable Winer-Chaos ex-

pansion where each chaos coefficient is a function of only one variable and derive the

corresponding Chaos Models, which we call “One-variable Chaos Models”. This speci-

fication allows simple analytical forms for all main processes. Moreover, we obtain the

state price density in this framework by the polynomial of a Gaussian Process. There-
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fore, this method enables us to model a desirable probability density of the state price

density. Furthermore, the One-variable Chaos Models also attain Caplets and Swap-

tions expressed by a polynomial function of the Brownian Motion. We first calibrate

the One-variable Chaos Models on only yields. Among the literature the Nelson-Siegel

Form ([64]) and the Svensson Form [86] are popular in the markets. When the initial

curve can be freely chosen, traders often apply these forms to reproduce yield curves

from the market. However, applying the exponential polynomial family to the One-

variable Chaos coefficients also attains reasonable ability to fit to initial curve. Indeed

it generates the instantaneous forward rate expressed by the following quotient form:

f0T =

∑∞
i=1

(∑mi
j=1 b̃ije

−cijT
)2

T i−1∫∞
T

∑∞
i=1

(∑mi
j=1 b̃ije

−cijs
)2

si−1ds
, for T ≥ 0,

which is comparable with the the Björk and Christensen descriptive form ([12]). Since

we obtain a fitting ability as good as the Svensson Form in the One-variable Chaos

Model, we implement calibration on both yields and options by the Chaos Model so

that we save a number of parameters. The option price calibration is firstly performed

with ATM European Options. Then, we test the models on volatility smile/skew

curves of the implied volatility, that is, away from the money options. We compare

the calibration results with the LFM, the SABR Model, the traditional Short Rate

Models, and the other models under the Potential Approach. From there, we show

that One-variable Chaos Models have an outstanding ability to replicate the financial

market data.

The thesis consists of ten chapters. The second chapter starts by reviewing the

literature on the Potential Approach and the Marker Models, adding a few original re-

sults. Then we remind the reader about interest rate derivatives, using the book, Brigo

and Mercurio ([14]) as a main reference. Among the Potential Approach Models, we re-

view the Chaotic Approach, the Coherent Interest rate Model, the Rational Lognormal

Model, and Constantinides Model. Among the Market Models, we review the LFM
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and the SABR Model. In the third chapter, we investigate the Potential Approach

with particular motivation to establish a link with the Market Models. We develop

the argument of Jin and Glasserman and derive the stochastic differential equations of

the forward LIBOR rate and forward swap rate under the Potential Approach. As an

example of the Potential Approach, we develop the Chaotic Approach and specify the

chaos coefficients particularly for calibration work in the following chapter. Calibration

works are split into three chapters, one each for yield calibration, ATM option price cal-

ibration, and smile calibration. We calibrate all models reviewed in the second chapter

except for the Coherent Model and compare the performances with the One-variable

Chaos Models. Some possible alternative models under the Potential Approach are

proposed in the eighth chapter after the calibration. Here, we propose a new frame-

work where we construct the volatility drifts from the short rate via the state price

density. We then give our conclusions and address further works. Finally, in Chapter

ten, some appendices containing relevant background information can be found.
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Chapter 2

Literature Review

2.1 The Potential Approach

2.1.1 Introduction of the Potential Approach

In this section we mainly refer to [14], [48] and [51]. Let us consider a fixed probability

space (Ω,F ,P) with a filtration (Ft)t≥0, where P is the market probability measure.

Then we assume that there exists a continuous adapted process (ξt)t≥0, called a “natural

numeraire” such that for t ≥ 0,

Ht

ξt
, is a martingale under the market measure P

with respect to the filtration (Ft)t≥0 for some continuous adapted non-dividend paying

asset price process (Ht)t≥0. To define the risk neutral measure, let us define a bank

account process (Bt)t≥0 using the following differential equation:

(2.1.1) dBt = rtBtdt,

where (rt)t≥0 is a progressively measurable stochastic process, such that rt > 0 for all

t ≥ 0. This process is called the “short rate”. The differential equation (2.1.1) has the

solution

Bt = B0e
∫ t
0 rsds, for t ≥ 0.
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The stochastic discount factor is defined by

(2.1.2) mtT :=
Bt

BT

= e−
∫ T
t rsds, 0 ≤ t ≤ T <∞.

Then, we may choose the bank account Bt to be the associated numeraire under the

risk neutral measure Q, that is, for t ≥ 0,

Ht

Bt

, is a martingale under the measure Q

with respect to the filtration (Ft)t≥0. This implies by (2.1.2) that, for t ≥ 0,

m0tHt, is a martingale under the measure Q

with respect to the filtration (Ft)t≥0. It follows by the martingale property that

EQ
t [m0THT ] = m0tHt for 0 ≤ t ≤ T <∞.

In other words, we obtain that

Ht = EQ
t [e−

∫ T
t rsdsHT ] for 0 ≤ t ≤ T <∞.

Since the measure Q is absolutely continuous with respect to P on (Ω,F), we obtain

the Radon-Nikodym derivative

ρ :=
dQ
dP

∣∣∣
F

where

Q(A) =

∫
A

ρ(ω)dP(ω), for all A ∈ F .

Recall that the density ρ belongs to L2 and is unique up to sets of measure zero. A

martingale process (ρt)t≥0 under P defined by

ρt := Et[ρ], for t ≥ 0,

is called a “change of measure density martingale” or a “Radon-Nikodym derivative of

Q relative to P restricted to Ft”. The latter terminology arises from the fact that

ρt =
dQ
dP

∣∣∣
Ft
.
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As is shown in Proposition 5.7 and Corollary 5.9 in [51], we have that for a continuous

adapted process (Ht)t≥0,

EQ[Ht] = E [ρHt] and EQ
t [HT ] =

Et [ρHT ]

Et [ρ]
, 0 ≤ t ≤ T <∞.

The reader might like to notice here that

ρ−1 =
dP
dQ

∣∣∣
F

and E [Ht] = EQ[ρ−1Ht].

The tower property, (see [18]), gives us for each 0 ≤ t ≤ T <∞ that

(2.1.3) EQ[Ht] = E [ρtHt] and EQ
t [HT ] = Et

[
ρT
ρt
HT

]
.

Therefore, the following equation is obtained:

(2.1.4) EQ
[
Ht

Bt

]
= E

[
ρt
Ht

Bt

]
, for t ≥ 0.

On the other hand, from elementary martingale properties we have that

EQ
[
Ht

Bt

]
=
H0

B0

and E
[
ξ0

B0

Ht

ξt

]
=
H0

B0

, for t ≥ 0.

Thus, we obtain that

(2.1.5) EQ
[
Ht

Bt

]
= E

[
ξ0

B0

Ht

ξt

]
.

On combining the equations (2.1.4) and (2.1.5), we find that

E
[
ρt
Ht

Bt

]
= E

[
ξ0

B0

Ht

ξt

]
, for t ≥ 0,

which allows us to express the change of measure density martingale in the following

way:

ρt =
Bt

B0

ξ0

ξt
, for t ≥ 0.

This is indeed a martingale under the measure P and we have that ρ0 = 1. Defining a

process (Vt)t≥0, called a “state price density”, by setting, for each t ≥ 0,

Vt :=
1

ξt
,
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it follows that for t ≥ 0

(2.1.6) ρt =
BtVt
B0V0

.

Considering a conditional expectation, because the relationship (2.1.3) gives us that

EQ
t

[
Bt

BT

HT

]
= Et

[
Bt

BT

ρT
ρt
HT

]
, 0 ≤ t ≤ T <∞,

we find that

(2.1.7) EQ
t

[
Bt

BT

HT

]
= Et

[
ξt
ξT
HT

]
, 0 ≤ t ≤ T <∞.

Furthermore, recalling the definitions, we may express the risk-neutrally discounted

value by

EQ
t [mtTHT ] =

Et [VTHT ]

Vt
, 0 ≤ t ≤ T <∞.

In other words, we have that

Ht =
Et [VTHT ]

Vt
, 0 ≤ t ≤ T <∞.

We now define the zero-coupon bond PtT , also referred to as a “discount bond”, which

gives us a risk-free investment at time t ≥ 0 for its holder securing the payment of one

unit of currency at time T ≥ t without any intermediate payments. In other words,

the discount bond process is a positive continuous adapted process (PtT )0≤t≤T<∞ with

the property PTT = 1. Therefore, it may be defined by the state price density in the

following way:

(2.1.8) PtT :=
Et [VT ]

Vt
, 0 ≤ t ≤ T <∞.

For convenience, we define the conditional expectation of the state price density to be

(2.1.9) ZtT := Et [VT ] , 0 ≤ t ≤ T <∞,

and express the discount bond by

(2.1.10) PtT =
ZtT
Vt

, 0 ≤ t ≤ T <∞.
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The simply compounded (LIBOR) spot rate LtT (also referred as to LIBOR spot rate)

may be expressed using the discount bond as follows:

1 = (1 + τtTLtT )PtT for 0 ≤ t ≤ T <∞,

where τtT is the time difference in years, i.e., τtT := T − t. In other words, the LIBOR

spot rate is defined by the discount bond as follows:

LtT :=
1− PtT
τtTPtT

for 0 ≤ t ≤ T <∞.

Using expression (2.1.10), this can be expressed in the following way:

(2.1.11) LtT =
1

T − t

(
Vt
ZtT
− 1

)
for 0 ≤ t ≤ T <∞.

As is observed in [57], the martingale process (ρt)t≥0 can be modelled by the form:

ρt = e−
1
2

∫ t
0 λ

2
sds−

∫ t
0 λsdWs , for t ≥ 0

for a square-integrable process (λt)t≥0 which satisfies the Novikov condition:

E
[
e

1
2

∫ t
0 λ

2
sds
]
<∞.

This process is called the “market price of risk”. This satisfies the condition that

E[ρt] = 1. Thus we obtain

(2.1.12) dρt = −λtρtdWt.

Note here that Girsanov’s theorem, (see [51]), allows us to introduce a Brownian Motion

under the measure Q as follows:

W̃t := Wt +

∫ t

0

λsds, for t ≥ 0.

Therefore, using the relationship (2.1.6), we obtain that

Vt =B0V0
ρt
Bt

=V0e
−

∫ t
0 (rs+

1
2
λ2
s)ds−

∫ t
0 λsdWs .

(2.1.13)
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A positive supermartingale with the following asymptotic condition is called a “poten-

tial”:

(2.1.14) lim
T→∞

E[VT ] = 0.

The Potential Approach is an interest rate modelling method that models the state

price density process (Vt)t≥0, such that the process is potential. Note here that because

the process (ρt)t≥0 is a martingale and the integral
∫ t

0
rsds is an increasing function of

t if the variable rs is positive for all 0 ≤ s ≤ t, we observe that the process (Vt)t≥0 is a

positive supermartingale. Moreover, because the state price density formed in (2.1.13)

is positive process, the potential property of the state price density is secured under

the positive short rate models. Furthermore, using this expression with (2.1.9) and

(2.1.10), we may express for each 0 ≤ t ≤ T <∞ that

(2.1.15)

ZtT = Et
[
V0e

−
∫ T
0 (rs+

1
2
λ2
s)ds−

∫ T
0 λsdWs

]
and PtT = Et

[
e−

∫ T
t (rs+

1
2
λ2
s)ds−

∫ T
t λsdWs

]
.

Because we have by (2.1.3) that

(2.1.16) ZtT = Et
[
B0V0

ρT
BT

]
= EQ

t

[
B0V0

ρt
BT

]
= B0V0ρtEQ

t

[ 1

BT

]
,

under the risk neutral measure we may express that

ZtT = V0e
−

∫ t
0

1
2
λ2
sds−

∫ t
0 λsdWsEQ

t

[
e−

∫ T
0 rsds

]
.

It follows that

(2.1.17) ZtT = V0e
−

∫ t
0 ( 1

2
λ2
s+rs)ds−

∫ t
0 λsdWsEQ

t

[
e−

∫ T
t rsds

]
and PtT = EQ

t

[
e−

∫ T
t rsds

]
.

In order to obtain the dynamics of the state price density, first notice that on differen-

tiating both sides of (2.1.6) we obtain that

dρt =
1

B0V0

(BtdVt + VtdBt).
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From this, we infer that

dVt = − Vt
Bt

dBt +
B0V0

Bt

dρt.

Applying the expressions (2.1.1) and (2.1.12), we obtain that

dVt = −rtVtdt−
B0V0

Bt

λtρtdWt.

Finally, from equation (2.1.6), we conclude that

(2.1.18) dVt = −rtVtdt− λtVtdWt.

2.1.2 Chaotic Interest Rate Model

For this section, we refer mostly to [48]. Also, unless stated otherwise, for the variable

t we always assume that t ≥ 0. Integrating the stochastic differential equation of the

state price density (2.1.18), we obtain that

Vt = V0 −
∫ t

0

rsVsds−
∫ t

0

λsVsdWs.

This gives us the following relationship:

(2.1.19) Vt +

∫ t

0

rsVsds = V0 −
∫ t

0

λsVsdWs.

By the property of the Itô integral, we notice that the right hand side of equation

(2.1.19) is a martingale. This implies that the left hand side of equation (2.1.19) is also

a martingale. Using the martingale property and the Monotone Convergence Theorem,

(see [53]), it follows that

(2.1.20) Et
[ ∫ ∞

0

rsVsds
]

= Vt +

∫ t

0

rsVsds.

Therefore, defining a positive process σt in the following way,

(2.1.21) σ2
t := rtVt,
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the state price density can be expressed in the following conditional expectation form:

(2.1.22) Vt = Et
[ ∫ ∞

t

σ2
sds
]
.

Defining X∞ to be a square-integrable random variable by setting

X∞ :=

∫ ∞
0

σsdWs,

it follows that

Vt = Et
[
(X∞ − Et [X∞])2] .

The Wiener-Chaos expansion is then applied to let the random variable X∞ be ex-

pressed by a sequence of deterministic functions {φn}∞n=0, called “chaos coefficients”,

as follows:

X∞ =

∫ ∞
0

[
φ1(s) +

∫ s

0

φ2(s, s1)dWs1 +

∫ s

0

∫ s1

0

φ3(s, s1, s2)dWs2dWs1 + · · ·
]
dWs.

Here, the Wiener-Chaos expansion can be proved using iteration of Ito Representation

Theorem, as can be seen in [67] and [89]. Therefore, the variable σs can be expressed

by the sum

(2.1.23) σs = φ1(s) +

∫ s

0

φ2(s, s1)dWs1 +

∫ s

0

∫ s1

0

φ3(s, s1, s2)dWs2dWs1 + · · · .

We call the interest rate model a “kth-order Chaos Model” when the chaos coefficients

exist only up to order k.

2.1.3 Coherent Interest Rate Model

In [16], Brody and Hughston introduced the so-called “Coherent Interest Rate Models”,

in which the chaos expansion is formulated using only one function, i.e.,

φ1(s) = ψ(s), φ2(s, s1) = ψ(s)ψ(s1), φ3(s, s1, s2) = ψ(s)ψ(s1)ψ(s2), · · · .

In this case we have that

X∞ = exp
(∫ ∞

0

ψ(s)dWs− 1

2

∫ ∞
0

ψ2(s)ds
)
.
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This forces the corresponding discount bond system to be deterministic. However,

they use the fact that any element of the Hilbert Space L2(Ω) may be represented as a

superposition of coherent vectors to construct stochastic term structures. For example,

for some constants a, b ∈ R and functions ψ1, ψ2 ∈ L2 they suggest that

X∞ = a exp
(∫ ∞

0

ψ1(s)dWs−1

2

∫ ∞
0

ψ2
1(s)ds

)
+b exp

(∫ ∞
0

ψ2(s)dWs−1

2

∫ ∞
0

ψ2
2(s)ds

)
,

which produces a stochastic interest rate.

2.1.4 Rational Lognormal Model

We use the paper [33] and related literature ([38], [63] and [73]) as references for

recalling the Rational Lognormal Model. Because the state price density is a potential,

the Doob-Meyer decomposition states that there exists a unique increasing process

(At)t≥0 with A0 = 0 such that for each t ≥ 0 we have

(2.1.24) Vt = Et[A∞]− At.

Indeed, in light of (2.1.22), we are able to express the increasing process (At)t≥0 in the

following way:

(2.1.25) At =

∫ t

0

σ2
sds, for t ≥ 0.

In the Rational Lognormal Model we assume that the integrand is represented in the

following form:

σ2
s = g1(s)Ms + g2(s), 0 ≤ s ≤ t,

where g1, g2 are nonnegative deterministic functions of time, and Mt is a strictly pos-

itive continuous martingale such that M0 = 1. Hence, we observe that the Rational

Lognormal Model is comparable with the Chaotic Approach, because the difference is

only the expression of σs, where in the Chaotic Approach we apply the Wiener-Chaos

expansion as seen in (2.1.23). The reader might like to see the remark at the end of
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this section for a further discussion of this comparability. The form in the Rational

Lognormal Model gives that the state price density is represented as

Vt =Et
[∫ ∞

t

(g1(s)Ms + g2(s)) ds

]
=

∫ ∞
t

g1(s)Mtds+

∫ ∞
t

g2(s)ds

=G1(t)Mt +G2(t),

where we denote for t ≥ 0

G1(t) :=

∫ ∞
t

g1(s)ds, and G2(t) :=

∫ ∞
t

g2(s)ds.

Similarly, we obtain the conditional expectation of the state price density as follows:

ZtT =Et
[∫ ∞

T

(g1(s)Ms + g2(s)) ds

]
=

∫ ∞
T

g1(s)Mtds+

∫ ∞
T

g2(s)ds

=G1(T )Mt +G2(T ),

for 0 ≤ t ≤ T <∞. This implies that discount bonds are represented in the following

way:

PtT =
G1(T )Mt +G2(T )

G1(t)Mt +G2(t)
, for 0 ≤ t ≤ T <∞.

Note that, as discussed in [19] and [33], discount bonds are bounded by

G1(T )

G1(t)
≤ PtT ≤

G2(T )

G2(t)
or

G2(T )

G2(t)
≤ PtT ≤

G1(T )

G1(t)
, for 0 ≤ t ≤ T <∞,

because the discount bond may be either decreasing or increasing or constant with

respect to the stochasticity Mt for fixed t and T . As shown in [19], it follows that the

short rate is also bounded by

−
∂
∂t
G1(t)

G1(t)
≤ rt ≤ −

∂
∂t
G2(t)

G2(t)
or −

∂
∂t
G2(t)

G2(t)
≤ rt ≤ −

∂
∂t
G1(t)

G1(t)
, for t ≥ 0.

Therefore we are unable to price deep in the money and out of the money options in

the Rational Lognormal Model.
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Remark (Relationship with the Chaotic Approach)

When we apply the exponential martingale in the Rational Lognormal Model we may

express the function σ2
s in the following way:

σ2
s = g1(s) exp

[
− 1

2

∫ t

0

σ̃2
udu+

∫ t

0

σ̃udWu

]
+ g2(s).

The Clark-Ocone formula, (see, for example [66] and [67]), allows us to express the

functions in the integrand of the Wiener-Chaos expansion (2.1.23), where we denote

the Malliavin derivative of t by Dt, in the following way:

φ1(s) = E[σs], φ2(s, s1) = E[Ds1 [σs]], φ3(s, s1, s2) = E[Ds2 [Ds1 [σs]]],

φ4(s, s1, s2, s3) = E[Ds3 [Ds2 [Ds1 [σs]]]], · · · .

Hence, we find that

φ1(s) = E[σs],

φ2(s, s1) = g1(s)E
[ 1

2σs
exp

[1

2

∫ t

0

σ̃2
udu+

∫ t

0

σ̃udWu

]]
σ̃s1 ,

φ3(s, s1, s2) =g1(s)E
[
− g1(s)

4σ3
s

(
exp

[
− 1

2

∫ t

0

σ̃2
udu+

∫ t

0

σ̃udWu

])2

+
1

2σs
exp

[
− 1

2

∫ t

0

σ̃2
udu+

∫ t

0

σ̃udWu

]]
σ̃s1σ̃s2 ,

and so on. In other words, we obtain that

σs =E[σs] +

∫ s

0

g1(s)E
[ 1

2σs
exp

[1

2

∫ t

0

σ̃2
udu+

∫ t

0

σ̃udWu

]]
σ̃s1dWs1

+

∫ s

0

∫ s1

0

[
g1(s)E

[
− g1(s)

4σ3
s

(
exp

[
− 1

2

∫ t

0

σ̃2
udu+

∫ t

0

σ̃udWu

])2

+
1

2σs
exp

[
− 1

2

∫ t

0

σ̃2
udu+

∫ t

0

σ̃udWu

]]
σ̃s1σ̃s2

]
dWs2dWs1 + · · · .

We observe that the functions in the integrands are factorizable.
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2.1.5 Constantinides Model

We consider the Constantinides Model ([26]), which represents the state price density

in the following exponential form:

Vt = exp
[
−
(
g +

σ2
0

2

)
t+ σ0W0(t) +

N∑
i=1

(xi(t)− αi)2
]
,

where xi(t) for 1 ≤ i ≤ N are Ornstein-Uhlenbeck (hereafter, OU) processes defined

by

dxi(t) = −λixi(t)dt+ σidWi(t),

whereW0(t),W1(t), . . . ,WN(t) are mutually independent Wiener processes, and g, αi, σ0 ≥

0, σi > 0 and λi > 0 are constants. To ensure that the interest rates are positive, the

parameters are restricted by

λi > σ2
i for any i = 1, . . . , N,

and

g −
N∑
i=1

(
σ2
i +

λiα
2
i

2(1− σ2
i /λi)

)
> 0.

It follows that the conditional expectation of the state price density can be represented

as

ZtT =Et
[

exp
[
−
(
g +

σ2
0

2

)
T + σ0W0(T ) +

N∑
i=1

(xi(T )− αi)2
]]

= exp
[
−
(
g +

σ2
0

2

)
T
]
Et[exp[σ0W0(T )]]

N∏
i=1

Et[exp[(xi(T )− αi)2]].

As we will see the Appendix, in the original paper [26], due to the facts that

Et[exp[σ0W0(T )]] = exp
[
σ0W0(t) +

σ2
0

2
(T − t)

]
,

and

Et[exp[(xi(T )− αi)2]] = H
− 1

2
i (T − t) exp[λi(T − t) +H−1

i (T − t)(xt(t)− αieλi(T−t))2]
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where

(2.1.26) Hi(T − t) :=
σ2
i

λi
+
(

1− σ2
i

λi

)
e2λi(T−t)

for i = 1, . . . , N , we obtain that

ZtT = exp
[
−
(
g +

σ2
0

2

)
T + σ0W0(t) +

σ2
0

2
(T − t)

]
×

N∏
i=1

H
− 1

2
i (T − t) exp[λi(T − t) +H−1

i (T − t)(xt(t)− αieλi(T−t))2]

=
(

ΠN
i=1Hi(T − t)

)− 1
2

× exp
[
− gT −

(σ2
0

2

)
t+ σ0W0(t) +

N∑
i=1

λi(T − t) +
N∑
i=1

H−1
i (T − t)(xt(t)− αieλi(T−t))2

]
.

Therefore, the bond price can be expressed for 0 ≤ t ≤ T <∞ by

PtT =
(

ΠN
i=1Hi(T − t)

)− 1
2

×
exp

[
− gT −

(
σ2

0

2

)
t+ σ0W0(t) +

∑N
i=1 λi(T − t) +

∑N
i=1 H

−1
i (T − t)(xt(t)− αieλi(T−t))2

]
exp

[
−
(
g +

σ2
0

2

)
t+ σ0W0(t) +

∑N
i=1(xi(t)− αi)2

]
=
(

ΠN
i=1Hi(T − t)

)− 1
2

× exp
[(
− g +

N∑
i=1

λi

)
(T − t) +

N∑
i=1

H−1
i (T − t)(xi(t)− αieλi(T−t))2 −

N∑
i=1

(xi(t)− αi)2
]
.

In particular, for the initial bond price, that is, when t = 0, the model gives us that

P0T =
(

ΠN
i=1Hi(T )

)− 1
2

× exp
[(
− g +

N∑
i=1

λi

)
T +

N∑
i=1

H−1
i (T )

(
xi(0)− αieλiT

)2

−
N∑
i=1

(xi(0)− αi)2
]
.

Jin and Glasserman ([56]) claim that this form cannot always give a good initial curve

fitting. Note here that, because we restricted the parameters so that λi > σ2
i , we infer

for 0 ≤ t ≤ T <∞ that (
1− σ2

i

λi

)
e2λi(T−t) ≥ 1− σ2

i

λi
.
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Recalling the definition of the function Hi from (2.1.26), it follows that

Hi(T − t) ≥ 1 for any i = 1, . . . , N.

In particular, because we have for T − t > 0 that(
1− σ2

i

λi

)
e2λi(T−t) > 1− σ2

i

λi
,

we find for T − t > 0 that

Hi(T − t) > 1 for any i = 1, . . . , N.

2.2 Market Models

In this section we recall the Market Models, in particular the LFM using the literature

[13], [14], [35] and [75], and the SABR Model using [14], [41], [49] and [76]. Though

these Market Models do not belong to the Potential Approach, they may be compara-

ble. This is because we are able to construct the forward LIBOR rate dynamics and

forward swap rate dynamics from the Potential Approach, as we will show in Section

3.3. We will compare fitting ability of Chaos Models with the LFM and the SABR

Model in the calibration chapters. Let us first recall the forward LIBOR rate and

forward swap rate in this section.

2.2.1 Forward LIBOR rate

The forward rate agreement (FRA) is the name given to a contract in which the

holder receives a fixed interest rate payment in a future time period. In other words,

the contract sets a fixed interest rate at time t for the period between T and S, for

0 ≤ t ≤ T ≤ S < ∞, where the holder of the contract receives the fixed interest rate

K and then pays a floating interest rate LTS upon maturity at time S, i.e., the value

of the contract at time S is given by

NτTS(K − LTS),
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where N denotes a nominal value. Therefore the discounted value at time t is obtained

in the following way:

FRA(t, T, S, τTS, N,K) =NEQ
t [e−

∫ S
t rsdsτTS(K − LTS)]

=NEQ
t

[
e−

∫ S
t rsds

(
τTSK −

1

PTS
+ 1
)]

=N(PtSτTSK + PtS)−NEQ
t

[
e−

∫ S
t rsds

( 1

PTS

)]
,

where EQ
t denotes the conditional expectation on the σ-field Ft under the risk neutral

measure Q. However, because

EQ
t

[
e−

∫ S
t rsds

( 1

PTS

)]
=EQ

t

[
EQ
T

[
e−

∫ S
t rsds

( 1

PTS

)]]
=EQ

t

[
EQ
T

[
e−

∫ S
t rsds

]( 1

PTS

)]
=EQ

t

[
e−

∫ T
t rsdsEQ

T

[
e−

∫ S
T rsdsPSS

]( 1

PTS

)]
=EQ

t

[
e−

∫ T
t rsdsPTS

( 1

PTS

)]
=PtT ,

we may instead express the discounted value as follows:

FRA(t, T, S, τTS, N,K) =N(PtSτTSK − PtT + PtS)

=NPtSτTS

[
K − 1

τTS

(PtT
PtS
− 1
)]
.

The simply compounded forward (LIBOR) rate FtTS is defined so that

FRA(t, T, S, τTS, N, FtTS) = 0, i.e., FtTS :=
1

τTS

(
PtT
PtS
−1

)
for 0 ≤ t ≤ T ≤ S <∞.

We therefore conclude that the expression of the FRA is given by

FRA(t, T, S, τTS, N,K) = NPtSτTS(K − FtTS).

2.2.2 Forward Swap Rate

There are two main types of Interest-Rate Swaps (IRS). The Receiver IRS (RFS) is

the term for when a fixed interest rate is received and a floating interest rate is paid.
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The opposite case is said to be the Payer IRS (PFS). The value of these contracts at

a time t ≥ 0 are expressed, respectively, by

RFS(t, T , τ, N,K) := N

b∑
i=a+1

τiPtTi(K − FtTi−1Ti),

PFS(t, T , τ, N,K) := N
b∑

i=a+1

τiPtTi(FtTi−1Ti −K),

where T =: {Ta, Ta+1, . . . , Tb} denotes a sequence of times, so that Ta ≤ Ta+1 ≤ · · · ≤

Tb, and τ := {τa+1, . . . , τb} denotes the corresponding year fractions, that is, τi :=

Ti − Ti−1 for i = a+ 1, · · · , b. Here the floating leg reset dates are {Ta, Ta+1, . . . , Tb−1}

and the swap payment dates are {Ta+1, Tα+2 . . . , Tb}. We may express the RFS as a

sum of FRA contracts in the following way:

RFS(t, T , τ, N,K) =
b∑

i=a+1

FRA(t, Tt−1, Ti, τi, N,K)

=N
b∑

i=a+1

(
τiPtTiK − PtTi−1

+ PtTi
)

=N
b∑

i=a+1

τiPtTi

(
K − PtTa − PtTb∑b

i=a+1 τiPtTi

)
.

The Forward Swap Rate Sa,b(t) is defined so that

RFS(t, T , τ, N, Sa,b(t)) = 0, i.e., Sa,b(t) :=
PtTa − PtTb∑b
i=a+1 τiPtTi

.

Therefore, we conclude in the expression of the RFS that

RFS(t, T , τ, N,K) = N

b∑
i=a+1

τiPtTi
(
K − Sa,b(t)

)
.

By a similar argument, we obtain the expression

PFS(t, T , τ, N,K) = N
b∑

i=a+1

τiPtTi
(
Sa,b(t)−K

)
.

25



Note here that because the Swap Rate SR(t, Tb) is defined by the forward swap rate

with t = Ta, that is SR(Ta, Tb) := Sa,b(Ta), it follows that

(2.2.1) SR(Ta, Tb) =
1− PTaTb∑b
i=a+1 τiPTaTi

.

2.2.3 Lognormal Forward LIBOR Model

We first make the following notations for the forward LIBOR rate:

Fj(t) = FtTj−1Tj , j = 1, 2, . . . ,

where {Ta, Ta+1, . . . , Ti−1, Ti, . . . , Tb} is an increasing set of dates. Let Qj be the forward

measure for the maturity Tj, having the associated numeraire P (·, Tj). Considering a

process Fj(t)P (t, Tj), t ≥ 0, for j = 1, 2, . . . , that is,

Fj(t)P (t, Tj) =
1

Tj − Tj−1

[P (t, Tj−1)− P (t, Tj)],

we observe using the martingale property that

EQj
t

[Fj(Tj)P (Tj, Tj)

P (Tj, Tj)

]
=
Fj(t)P (t, Tj)

P (t, Tj)
.

Equivalently, we have that

EQj
t [Fj(Tj)] = Fj(t), for j = 1, 2, . . . .

Therefore we observe that Fj(t) is a martingale under the measure Qj. The LFM

defines the forward LIBOR rate dynamics by the following lognormal dynamics:

dFj(t) = σj(t)Fj(t)dZ
j(t),

where σj(t), t ≥ 0 is a deterministic process, and Zj is a Brownian Motion under the

measure Qj with a correlation given by

dZi(t)dZj(t) = ρijdt.
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2.2.4 SABR Model

The SABR (stochastic αβρ) Model defines the forward LIBOR rate dynamics by the

following stochastic differential equation:

dFj(t) = v(t)Fj(t)
βdZj(t),

dv(t) = εv(t)dW j(t), v(0) = α,

where β ∈ (0, 1], ε and α are some positive constants and Zj and W j are Brownian

Motions under the measure Qj with a correlation given by

dZj(t)dW j(t) = ρdt, for ρ ∈ [−1, 1].

In the SABR Model we need to compute Swaption prices separately from the Caplet

prices. Let us consider the forward swap rate Sa,b(t), which is a martingale under the

forward swap measure Qa,b, having associated numeraire Ca,b(t) :=
∑b

i=a+1 τiPt,T−i. In

the SABR Model we assume the following dynamics for the forward swap rate under

the forward swap measure Qa,b:

dSa,b(t) = ṽa,b(t)Sa,b(t)
βdZa,b(t),

dṽa,b(t) = εṽa,b(t)dW
a,b(t), ṽa,b(0) = α,

where β ∈ (0, 1], ε and α are some positive constants,and Za,b and W a,b are Brownian

Motions under the measure Qa,b with a correlation

dZa,b(t)dW a,b(t) = ρdt, for ρ ∈ [−1, 1].

Though we are using the same notations, α, β, ρ, ε, these do not correspond to the ones

in the forward LIBOR rate dynamics.

2.3 Interest Rate Options

In this section we recall interest rate options using [14]. In particular, we consider

European Bond Options, Caps, Caplets, Floors, Floorlets, and European Swaptions.
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2.3.1 European Bond Options

The European Call/Put Bond Options are defined with a T -maturity bond (PtT )0≤t≤T<∞

and strike price K ∈ R+, respectively giving us the following payoff at reset date t ≥ 0:

(PtT −K)+ and (K − PtT )+.

From this, the discounted values of the European Bond Options at time s for 0 ≤ s ≤ t

may be expressed using the risk neutral measure as follows:

ZBC(s, t, T,K) = EQ
s [e−

∫ t
s rudu(PtT −K)+] (Call Option)

and

ZBP (s, t, T,K) = EQ
s [e−

∫ t
s rudu(K − PtT )+] (Put Option).

These may be expressed using the market measure as follows:

ZBC(s, t, T,K) =
1

Vs
Es[Vt(PtT −K)+] =

1

Vs
Es[(ZtT −KZtt)+]

and

ZBP (s, t, T,K) =
1

Vs
Es[Vt(K − PtT )+] =

1

Vs
Es[(KZtt − ZtT )+].

In particular, we have that the values of the European Bond Options at the settlement

s = 0 (the time of buying the derivative) may be expressed using the market measure

as follows:

(2.3.1) ZBC(0, t, T,K) =
1

V0

E[(ZtT −KZtt)+]

and

(2.3.2) ZBP (0, t, T,K) =
1

V0

E[(KZtt − ZtT )+].

28



2.3.2 Caplet/Floorlet

The Caplet/Floorlet are defined with a Tj-maturity LIBOR rate (LTj−1Tj)0≤Tj−1≤Tj<∞,

strike price K ∈ R and a nominal value N (usually N = 104), respectively, giving us

the following payoff at payment date Tj ≥ 0:

Nτj(LTj−1Tj −K)+ and Nτj(K − LTj−1Tj)
+,

where Tj−1 denotes the reset date (the time of exercising the option) and recall that

τj = Tj − Tj−1. The reader might like to notice here that the payment date is not the

reset date. The discounted values at time s for 0 ≤ s ≤ Tj−1 may be expressed using

the risk neutral measure in the following way:

Cpl(s, Tj−1, Tj, τ, N,K) = NEQ
s

[
e−

∫ Tj
s ruduτj(LTj−1Tj −K)+

]
and

Fll(s, Tj−1, Tj, τ, N,K) = NEQ
s

[
e−

∫ Tj
s ruduτj(K − LTj−1Tj)

+
]
.

Then, using (2.1.7), we may also express using the Tj-forward measure that

Cpl(s, Tj−1, Tj, τ, N,K) =NEQ
s

[ Bs

BTj

τj(LTj−1Tj −K)+
]

=NEQj
s

[ PsTj
PTjTj

τj(LTj−1Tj −K)+
]

=NPsTjτjEQj
s

[
(LTj−1Tj −K)+

]
(2.3.3)

and similarly

Fll(s, Tj−1, Tj, τ, N,K) = NPsTjτjEQj
s

[
(K − LTj−1Tj)

+
]
.

29



Recalling that LTj−1Tj = 1
τj

( VTj−1

ZTj−1Tj
− 1
)

from (2.1.11), the discounted values at time s

for 0 ≤ s ≤ Tj−1 can be expressed using the market measure in the following way:

Cpl(s, Tj−1, Tj, τ, N,K) =
N

Vs
Es
[
VTjτj(LTj−1Tj −K)+

]
=
N

Vs
Es
[

VTj
ZTj−1Tj

(
VTj−1

− (1 +Kτj)ZTj−1Tj

)+
]

=
N

Vs
Es
[
ETj−1

[
VTj

ZTj−1Tj

(
Vt − (1 +Kτj)ZTj−1Tj

)+
]]

=
N

Vs
Es
[(
ZTj−1Tj−1

− (1 +Kτj)ZTj−1Tj

)+
]

and similarly

Fll(s, Tj−1, Tj, τ, N,K) =
N

Vs
Es
[(

(1 +Kτj)ZTj−1Tj − ZTj−1Tj−1

)+
]
.

In particular at the settlement s = 0 we find that

(2.3.4) Cpl(0, Tj−1, Tj, τ, N,K) =
N

V0

E
[(
ZTj−1Tj−1

− (1 +Kτj)ZTj−1Tj

)+]
and

Fll(0, Tj−1, Tj, τ, N,K) =
N

V0

E
[(

(1 +Kτj)ZTj−1Tj − ZTj−1Tj−1

)+]
.

Therefore, it is evident that some care is needed in modelling the variable ZTj−1Tj

for pricing the Caplet and the Floorlet. Recalling that LTj−1Tj = Fj(Tj−1), when

K = KATM for KATM = Fj(0) at the settlement s = 0, the Caplet and Floorlet are

called “at-the-money” (ATM). If K < KATM , these are called “in-the-money” (ITM).

If K > KATM , these are called “out-of-the-money” (OTM). Note here that we have

the following relationship for the ATM Swaptions:

Cpl(0, Tj−1, Tj, τ, N,KATM) = Fll(0, Tj−1, Tj, τj, N,KATM).

The book [14] (page 41) and paper [88] show that the relationship between the Euro-

pean bond options and Caplet/Floorlet are for 0 ≤ s ≤ t ≤ T <∞, given by

(2.3.5) Cpl(s, Tj−1, Tj, τ, N,K) = N(1 +Kτj)ZBP
(
s, Tj−1, Tj,

1

1 +Kτj

)
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and

(2.3.6) Fll(s, Tj−1, Tj, τ, N,K) = N(1 +Kτj)ZBC
(
s, Tj−1, Tj,

1

1 +Kτj

)
.

The markets apply the implied volatility to estimate the volatility of the option. Let

us recall the Black formula:

Bl(K,Fj(0), vTj−1
) =EQj [(Fj(Tj−1)−K)+]

=Fj(0)Φ
( ln(

Fj(0)

K
) +

Tj−1v
2
Tj−1

2√
Tj−1vTj−1

)
−KΦ

( ln(
Fj(0)

K
)−

Tj−1v
2
Tj−1

2√
Tj−1vTj−1

)
,

(2.3.7)

where Φ denotes the standard normal cumulative distribution function, i.e.,

Φ(x) :=
1√
2π

∫ x

−∞
e−

X2

2 dX.

Then the Tj−1-caplet can be expressed using expression (2.3.3) in the following way:

Cpl(0, Tj−1, Tj, τj, N,K) = P (0, Tj)τjBl
(
K,Fj(0), vTj−1

)
,

where vTj−1
is referred to as the “Tj−1-caplet implied volatility” or “forward forward

volatility”. An implied volatility curve of ATM Caplets, that is the function T → vT , is

called the “term structure of (caplet) volatility”. We see that the Black formula gives

us a one-to-one correspondence between the option premium and the implied volatility.

The Tj−1-caplet implied volatility is expressed in the LFM by

vTj−1
=

√
1

Tj−1

∫ Tj−1

0

σ2
i (t)dt.

In the SABR Model the closed form of the Tj−1-caplet implied volatilities vTj−1
are

approximated by singular perturbation techniques as a function of the strike K and

forward LIBOR rate Fj(0) as follows:

vTj−1
=

α
(

1 +
[

(1−β)2α2

24(Fj(0)K)1−β + ρβεα

4(Fj(0)K)
1−β

2

+ ε2 2−3ρ2

24

]
Tj−1

)
(Fj(0)K)

1−β
2

[
1 + (1−β)2

24
ln2(

Fj(0)

K
) + (1−β)4

1920
ln4(

Fj(0)

K
)
] z

x(z)
,
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where

z =
ε

α
(Fj(0)K)

1−β
2 ln

(Fj(0)

K

)
and

x(z) = ln
(√1− 2ρz + z2 + z − ρ

1− ρ

)
.

Because the implied volatility form in the Potential Approach is not available, we

need to estimate it from the premium using the Black formula. The books by Brigo

and Mercurio ([14]) and James and Webber ([54]) claim that the term structure of

caplet volatility has a humped shape in a moderate market condition. We observe this

humped shape in the calibration chapter.

2.3.3 Cap/Floor

The Cap/Floor is a sum of Caplet/Floorlet contracts. Therefore the discounted values

at time s for 0 ≤ s ≤ t are expressed in the following manner:

Cap(s, T , τ, N,K) := N
b∑

i=a+1

EQ
s

[
e−

∫ Ti
s ruduτi(LTi−1Ti −K)+

]
,

F lr(s, T , τ, N,K) := N
b∑

i=a+1

EQ
s

[
e−

∫ Ti
s ruduτi(K − LTi−1Ti)

+
]
,

where the reset dates are the times {Ta, Ta+1, . . . , Tb−1} and the payment dates are the

times {Ta+1, Tα+2 . . . , Tb}. These discounted values may be expressed using the market

measure in the following way:

Cap(s, T , τ, N,K) =
N

Vs

b∑
i=a+1

Es
[(
ZTi−1Ti−1

− (1 +Kτi)ZTi−1Ti

)+]
and

Flr(s, T , τ, N,K) =
N

Vs

b∑
i=a+1

Es
[(

(1 +Kτi)ZTi−1Ti − ZTi−1Ti−1

)+]
.

In particular at the settlement s = 0 we have that

Cap(0, T , τ, N,K) =
N

V0

b∑
i=a+1

E
[(
ZTi−1Ti−1

− (1 +Kτi)ZTi−1Ti

)+]
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and

Flr(0, T , τ, N,K) =
N

V0

b∑
i=a+1

E
[(

(1 +Kτi)ZTi−1Ti − ZTi−1Ti−1

)+]
.

For example, a one year maturity Cap in the UK market contains three caplets, whose

reset dates are at 3, 6 and 9 months after the settlement date. Payment dates are at

6, 9 and 12 months after the settlement date, that is, three months in arrears in the

UK. Since we have that

Cap(s, T , τ, N,K)− Flr(s, T , τ, N,K) = N
b∑

i=a+1

EQ
s

[
e−

∫ Ti
s ruduτi(LTi−1Ti −K)

]
,

we obtain the following Put-Call Parity:

Cap(s, T , τ, N,K)− Flr(s, T , τ, N,K) = PFS(s, T , τ, N,K).

Because we have that

PFS(s, T , τ, N, Sa,b(s)) = 0,

we may infer that

(2.3.8) Cap(s, T , τ, N, Sa,b(s)) = Flr(s, T , τ, N, Sa,b(s)).

Equation (2.3.8) yields that the ATM strike of Cap/Floor at the settlement s = 0 by

the forward swap rate as is given as follows:

KATM = Sa,b(0).

In addition, from the relationship between European Call/Put of the zero-coupon bond

and Caplet/Floorlet, the following is inferred:

Cap(s, T , τ, N,K) = N

b∑
i=a+1

(1 +Kτi)ZBP
(
s, Ti−1, Ti,

1

1 +Kτi

)
and

Flr(s, T , τ, N,K) = N
b∑

i=a+1

(1 +Kτi)ZBC
(
s, Ti−1, Ti,

1

1 +Kτi

)
.
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2.3.4 European Swaptions

A European payer Swaption (also called a “European Call Swaption”) is an option to

have a PFS contract at a future time, which corresponds to the swaption maturity.

Therefore the value of the payer Swaption at the maturity date t ≥ 0 is defined by

PS(t, T , τ, N,K) :=
(
PFS(t, T , τ, N,K)

)+

=N
b∑

i=a+1

τiPtTi
(
Sa,b(t)−K

)+
.

Here we note that the length of the underlying IRS, Tb − Ta, is called the “tenor” of

the swaption. Usually the markets apply the first reset date for the swaption maturity

date, that is t = Ta, which implies that

PS(t, T , τ, N,K) =N
b∑

i=a+1

τiPTaTi
(
Sa,b(Ta)−K

)+
.

Hence, the discounted price of the payer swaption at time s, for 0 ≤ s ≤ t, is formulated

by

PS(s, T , τ, N,K) = NEQ
s

[
e−

∫ Ta
s rudu

b∑
i=a+1

τiPTaTi
(
SR(Ta, Tb)−K

)+
]
.

Let us recall that Ca,b(t) :=
∑b

i=a+1 τiPt,Ti is an associated numeraire of the forward

swap measure Qa,b. Then, using (2.1.7), we may also express that

PS(s, T , τ, N,K) =NEQ
s

[ Bs

BTa

Ca,b(Ta)
(
SR(Ta, Tb)−K

)+
]

=NEQ
s

[ Ca,b(s)
Ca,b(Ta)

Ca,b(Ta)
(
SR(Ta, Tb)−K

)+
]

=NCa,b(s)EQ
s

[(
SR(Ta, Tb)−K

)+
]
.

(2.3.9)
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Recalling the definition of the swap rate from (2.2.1), this discounted price may be

expressed using the market measure in the following way:

PS(s, T , τ, N,K) =
N

Vs
Es
[
Vt

(
1− PtTb −K

b∑
i=a+1

τiPtTi

)+]
=
N

Vs
Es
[
Ztt

(
1− ZtTb

Ztt
−K

b∑
i=a+1

τi
ZtTi
Ztt

)+]
=
N

Vs
Es
[(
Ztt − ZtTb −K

b∑
i=a+1

τiZtTi

)+]
.

In particular at the settlement s = 0 we have that

(2.3.10) PS(0, T , τ, N,K) =
N

V0

E
[(
Ztt − ZtTb −K

b∑
i=a+1

τiZtTi

)+]
.

Similarly, the discounted value of a European receiver Swaption (sometimes called a

“European Put Swaption”) with the same underlying IRS is formulated by

RS(s, T , τ, N,K) = NEQ
s

[
e−

∫ Ta
s rudu

b∑
i=a+1

τiPTaTi
(
K − SR(Ta, Tb)

)+
]
.

Using the market measure this can be expressed in the following way:

RS(s, T , τ, N,K) =
N

Vs
Es
[(
K

b∑
i=a+1

τiZtTi − Ztt + ZtTb

)+]
.

In particular, at the settlement s = 0 we have that

RS(0, T , τ, N,K) =
N

V0

E
[(
K

b∑
i=a+1

τiZtTi − Ztt + ZtTb

)+]
.

When K = KATM for KATM = Sa,b(0) at the settlement s = 0, the payer Swaption is

ATM. This is precisely the same as we had for the Cap and the Floor. Note here that

we have the following relationship for the ATM Swaptions:

PS(0, T , τ, N,KATM) = RS(0, T , τ, N,KATM).
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The volatility of the Swaption may be estimated by the Black formula. Recalling the

Black formula from (2.3.7) we may express for the Swaption with the maturity Ta and

the tenor Tb − Ta that

PS(0, T , τ, N,KATM) =NCa,b(0)EQa,b [(Sa,b(Ta)−K)+]

=NCa,b(0)Bl (K,Sa,b(0), va,b(Ta)) ,

where va,b is referred to as the “Swaption implied volatility”. The dynamics of the

SABR Model gives us the following Swaption implied volatility form:

va,b =

α
(

1 +
[

(1−β)2α2

24(Sa,b(0)K)1−β + ρβεα

4(Sa,b(0)K)
1−β

2

+ ε2 2−3ρ2

24

]
Ta

)
(Sa,b(0)K)

1−β
2

[
1 + (1−β)2

24
ln2(

Sa,b(0)

K
) + (1−β)4

1920
ln4(

Sa,b(0)

K
)
] z

x(z)
,

where

z =
ε

α
(Sa,b(0)K)

1−β
2 ln

(Sa,b(0)

K

)
and

x(z) = ln
(√1− 2ρz + z2 + z − ρ

1− ρ

)
.

Though we are using the same notations, α, β, ρ, ε, these do not correspond to the ones

in the Caplet implied volatility.
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Chapter 3

Further investigations of the
Potential Approach

We develop the argument of Jin and Glasserman ([56]) in which the stochastic differen-

tial equations of the variable ZtT and the instantaneous forward rate ftT in the Potential

Approach, in particular Flesaker-Hughston Positive Interest Framework ([33], hereafter

referred to as the FH Framework), are expressed. While Jin and Glasserman proposed

the relationship between the Potential Approach and HJM Framework, we propose a

relationship between the Potential Approach and the Market Model. In other words,

we construct the dynamics of the forward LIBOR rate FtTS and the forward swap rate

Sa,b(t) in the Potential Approach. In Chapter 8 we make further investigation and

show that the Market Model can be constructed from the Short Rate Model via the

Potential Approach.

3.1 Forms of the main processes

Let us first recall the definition of the instantaneous forward rate. This is defined to

be

ftT := − ∂

∂T
lnPtT , 0 ≤ t ≤ T <∞.
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In the Potential Approach, the form of the discount bond is given by the expression

(2.1.10), i.e.,

PtT =
ZtT
Ztt

.

It follows that

ftT =
MtT

ZtT
, 0 ≤ t ≤ T <∞,

where we define a variable MtT to be

(3.1.1) MtT := − ∂

∂T
ZtT , 0 ≤ t ≤ T <∞.

The variable ZtT is positive because it is a conditional expectation of the positive

variable VT with respect to Ft, for 0 ≤ t ≤ T < ∞. In addition, the supermartingale

property of the state price density ensures that the variable MtT is positive for any

0 ≤ t ≤ T < ∞. Therefore, under the Potential Approach the positivity of interest

rates is secured. The short rate, zero-coupon yield (continuously-compounded spot

interest rate), forward LIBOR rate and forward swap rate may be expressed using

their definitions for 0 ≤ t ≤ T ≤ S <∞ in the following way:

rt := ftt =
Mtt

Vt
,

ytT := − 1

T − t
lnPtT = − 1

T − t
ln

(
ZtT
Vt

)
,

(3.1.2) FtTS =
1

S − T

(PtT
PtS
− 1
)

=
1

S − T

(
ZtT
ZtS
− 1

)
and

(3.1.3) Sa,b(t) =
ZtTa − ZtTb∑b
i=a+1 τiZtTi

.

In particular, at the initial time t = 0 we have that

(3.1.4) V0 = Z00, P0T =
Z0T

V0

, f0T =
M0T

Z0T

,
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y0T = − 1

T
ln

(
Z0T

V0

)
, L0T =

1

T

(
V0

Z0T

− 1

)
,

F0TS =
1

S − T

(
Z0T

Z0S

− 1

)
and Sa,b(0) =

Z0Ta − Z0Tb∑b
i=a+1 τiZ0Ti

.

The following can be directly deduced from (3.1.1) and (3.1.4):

(3.1.5) E[Vt] = P0tV0, E[ZtT ] = P0TV0, E[MtT ] = − ∂

∂T
P0TV0 = f0TP0TV0.

Applying the form of the state price density expressed in (2.1.22), the Conditional

Fubini Theorem (See [89]) gives us that

(3.1.6) Vt =

∫ ∞
t

Et[σ2
s ]ds and ZtT =

∫ ∞
T

Et[σ2
s ]ds.

From definition (3.1.1), we obtain that

(3.1.7) MtT = Et[σ2
T ], 0 ≤ t ≤ T <∞.

Then, all main processes can be formulated using the variable σt as follows:

(3.1.8) PtT =

∫∞
T

Et[σ2
s ]ds∫∞

t
Et[σ2

s ]ds
, ftT =

Et[σ2
T ]∫∞

T
Et[σ2

s ]ds
, rt =

σ2
t∫∞

t
Et[σ2

s ]ds
,

ytT = − 1

T − t
ln

(∫∞
T

Et[σ2
s ]ds∫∞

t
Et[σ2

s ]ds

)
, LtT =

1

T − t

∫ T
t
Et[σ2

s ]ds∫∞
T

Et[σ2
s ]ds

,

FtTS =
1

S − T

∫ S
T
Et[σ2

s ]ds∫∞
S

Et[σ2
s ]ds

and Sa,b(t) =

∫ Tb
Ta

Et[σ2
s ]ds∑b

i=a+1 τi
∫∞
T−i Et[σ2

s ]ds
.

The initial prices, that is, the prices at t = 0, are then given by the following expres-

sions:

P0T =

∫∞
T

E[σ2
s ]ds∫∞

0
E[σ2

s ]ds
, f0T =

E[σ2
T ]∫∞

T
E[σ2

s ]ds
, r0 =

σ2
0∫∞

0
E[σ2

s ]ds
,

y0T = − 1

T
ln

(∫∞
T

E[σ2
s ]ds∫∞

0
E[σ2

s ]ds

)
, L0T =

1

T

∫ T
0
E[σ2

s ]ds∫∞
T

E[σ2
s ]ds

,

F0TS =
1

T

∫ S
T
E[σ2

s ]ds∫∞
S

E[σ2
s ]ds

and Sa,b(0) =

∫ Tb
Ta

E[σ2
s ]ds∑b

i=a+1 τi
∫∞
T−i E[σ2

s ]ds
.
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3.2 Dynamics of the main processes

3.2.1 Dynamics of the discount bond

For the conditional expectation of the state price density, because it is a martingale

with respect to Ft, we may express using Martingale Representation Theorem (see for

example, [68]) that

(3.2.1) dZtT = V̂tTZtTdWt for 0 ≤ t ≤ T <∞,

for a unique Ft-measurable random variable V̂tT , which is called the “risk-adjusted

volatility”. It follows that

(3.2.2) ZtT = P0TV0 exp
[
− 1

2

∫ t

0

V̂ 2
uTdu+

∫ t

0

V̂uTdWu

]
and

(3.2.3) Vt = P0tV0 exp
[
− 1

2

∫ t

0

V̂ 2
utdu+

∫ t

0

V̂utdWu

]
,

where we recall that E[ZtT ] = P0TV0 and E[Vt] = P0tV0. Hence, we observe that

modelling the risk adjusted volatility is equivalent to modelling the state price density.

On the other hand, applying the Itô product formula, (see, for example [60] and [68]),

we obtain in this case that

dPtT = d
(ZtT
Vt

)
= ZtTd

( 1

Vt

)
+

1

Vt
dZtT + d

( 1

Vt

)
dZtT .

Applying Itô’s Lemma, (we refer the reader to [57] or [60] for the statement of Itô’s

Lemma), we obtain that

d
( 1

Vt

)
=

1

V 3
t

(dVt)
2 − 1

V 2
t

dVt

=(rt + λ2
t )

1

Vt
dt+ λt

1

Vt
dWt.

(3.2.4)

Therefore, we obtain that for 0 ≤ t ≤ T <∞

dPtT =(rt + λ2
t )
ZtT
Vt

dt+ λt
ZtT
Vt

dWt + V̂tT
ZtT
Vt

dWt + λtV̂tT
ZtT
Vt

dt

=
(
rt + λt(λt + V̂tT )

)
PtTdt+ (λt + V̂tT )PtTdWt.

(3.2.5)
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The dynamics allows us to express the discount bond in the following form:

PtT = P0T exp
[ ∫ t

0

(
ru + λu(λu + V̂uT )− 1

2
(λu + V̂uT )2

)
du+

∫ t

0

(λu + V̂uT )dWu

]
.

However, because we suppose that Ptt = 1, it follows that

PtT =
P0T exp

[ ∫ t
0

(
ru + λu(λu + V̂uT )− 1

2
(λu + V̂uT )2

)
du+

∫ t
0
(λu + V̂uT )dWu

]
P0t exp

[ ∫ t
0

(
ru + λu(λu + V̂ut)− 1

2
(λu + V̂ut)2

)
du+

∫ t
0
(λu + V̂ut)dWu

]
=
P0T

P0t

exp
[
− 1

2

∫ t

0

(V̂ 2
uT − V̂ 2

ut)du+

∫ t

0

(V̂uT − V̂ut)dWu

]
.

It can also be expressed in the following way:

(3.2.6) PtT = P0TV0V
−1
t exp

[
− 1

2

∫ t

0

V̂ 2
uTdu+

∫ t

0

V̂uTdWu

]
, 0 ≤ t ≤ T <∞.

On the other hand, denoting the T -maturity discount bond volatility by

(3.2.7) ΩtT := λt + V̂tT , 0 ≤ t ≤ T <∞,

it follows from (3.2.5) that

dPtT = (rt + λtΩtT )PtTdt+ ΩtTPtTdWt,

which corresponds to the dynamics in [34] and [48].

3.2.2 Dynamics of the instantaneous forward rate

Let us recall the random variable MtT defined in (3.1.1) is a martingale with respect to

Ft. Therefore, applying Martingale Representation Theorem, the stochastic differential

equation of MtT can be expressed as follows:

(3.2.8) dMtT = ηtTMtTdWt,

for a unique Ft-measurable random variable ηtT . We here obtain that

MtT = E[MtT ] exp
[
− 1

2

∫ t

0

η2
uTdu+

∫ t

0

ηuTdWu

]
.
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Using (3.1.5) and (3.1.7) it follows that

(3.2.9) MtT = hTM̂tT , σ2
t = htM̂tt, for 0 ≤ t ≤ T <∞,

where we have defined

hT := f0TP0TV0 and M̂tT := exp
[
− 1

2

∫ t

0

η2
uTdu+

∫ t

0

ηuTdWu

]
.

Note here that, applying these variables to expression (2.1.22), we may construct the

FH Framework, that is,

Vt =

∫ ∞
t

hsM̂tsds and ZtT =

∫ ∞
T

hsM̂tsds, 0 ≤ t ≤ T <∞.

Now, applying the Itô product formula, we obtain that

dftT = d
(MtT

ZtT

)
= MtTd

( 1

ZtT

)
+

1

ZtT
dMtT + d

( 1

ZtT

)
dMtT .

However, because Itô’s Lemma gives us that

d
( 1

ZtT

)
=

1

Z3
tT

(dZtT )2 − 1

Z2
tT

dZtT

=
V̂ 2
tT

ZtT
dt− V̂tT

ZtT
dWt,

we obtain that

dftT =MtT

( V̂ 2
tT

ZtT
dt− V̂tT

ZtT
dWt

)
+

1

ZtT
dMtT +

( V̂ 2
tT

ZtT
dt− V̂tT

ZtT
dWt

)
dMtT

=V̂tT
(
V̂tT − ηtT

)
ftTdt−

(
V̂tT − ηtT

)
ftTdWt.

(3.2.10)

This implies that for 0 ≤ t ≤ T <∞,

ftT = f0T exp
[1

2

∫ t

0

[V̂ 2
uT − η2

uT ]du−
∫ t

0

[V̂uT − ηuT ]dWu

]
and

rt = f0t exp
[1

2

∫ t

0

[V̂ 2
ut − η2

ut]du−
∫ t

0

[V̂ut − ηut]dWu

]
.
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However, since for each 0 ≤ t ≤ T <∞, we have that

∂

∂T
V̂tT =

∂

∂T

Dt[ZtT ]

ZtT

=
1

ZtT

(ZtT ∂
∂T
Dt[ZtT ]−Dt[ZtT ] ∂

∂T
ZtT

ZtT

)
=
MtT

ZtT

(Dt[−MtT ]

MtT

+
Dt[ZtT ]

ZtT

)
=
(
V̂tT − ηtT

)
ftT ,

(3.2.11)

it follows that equation (3.2.10) can be translated to

(3.2.12) dftT = V̂tT
∂

∂T
V̂tTdt−

∂

∂T
V̂tTdWt,

which corresponds to the one given in [56]. Because we have that∫ T

t

∂

∂s
V̂tsds− λt = V̂tT , 0 ≤ t ≤ T <∞,

the dynamics of the instantaneous forward rate may also be expressed as follows:

dftT =
(∫ T

t

∂

∂s
V̂tsds− λt

) ∂

∂T
V̂tTdt−

∂

∂T
V̂tTdWt.

Notice that these dynamics satisfy the arbitrage free condition. Now, integrating the

dynamics in (3.2.12), we obtain that for 0 ≤ t ≤ T <∞,

(3.2.13) ftT = f0T +

∫ t

0

V̂uT
∂

∂T
V̂uTdu−

∫ t

0

∂

∂T
V̂uTdWu

and

(3.2.14) rt = f0t +

∫ t

0

V̂ut
∂

∂t
V̂utdu−

∫ t

0

∂

∂t
V̂utdWu.

Note here that we may deduce from the definition σ2 := rtVt that

σ2
t =

(
f0t +

∫ t

0

V̂ut
∂

∂t
V̂utdu−

∫ t

0

∂

∂t
V̂utdWu

)
︸ ︷︷ ︸

=rt

P0tV0 exp
[
− 1

2

∫ t

0

V̂ 2
utdu+

∫ t

0

V̂utdWu

]
︸ ︷︷ ︸

=Vt

.
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which corresponds to equation (25) in [56]. The process (σt)t≥0 can also be expressed

in the following way:

σ2
t = f0t exp

[1

2

∫ t

0

[V̂ 2
ut − η2

ut]du−
∫ t

0

[V̂ut − ηut]dWu

]
︸ ︷︷ ︸

=rt

P0tV0 exp
[
− 1

2

∫ t

0

V̂ 2
utdu+

∫ t

0

V̂utdWu

]
︸ ︷︷ ︸

=Vt

=f0tP0tV0 exp
[
− 1

2

∫ t

0

η2
utdu+

∫ t

0

ηutdWu

]
=htM̂tt,

which corresponds to the expression given in (3.2.9).

3.2.3 Dynamics of the short rate

Let us first make two further definitions, namely,

(3.2.15) α̂tT := V̂tT
∂

∂T
V̂tT and σ̂tT := − ∂

∂T
V̂tT for 0 ≤ t ≤ T <∞,

so that the dynamics (3.2.12) may be represented in the following way:

(3.2.16) dftT = α̂tTdt+ σ̂tTdWt.

Proposition 20.5 in [11] states that the dynamics of the instantaneous (3.2.16) gives

the following dynamics of the short rate:

(3.2.17) drt =
(
α̂tt +

∂

∂T
ftT

∣∣∣
T=t+

)
dt+ σ̂ttdWt.

Although the proof of Proposition 20.5 can be found in [11], we attach a detailed proof

in the Appendix. Recalling the definitions given in (3.2.15), we express the dynamics

of the short rate in the following way:

(3.2.18) drt =
(
V̂tT

∂

∂T
V̂tT

∣∣∣
T=t+

+
∂

∂T
ftT

∣∣∣
T=t+

)
dt−

( ∂

∂T
V̂tT

∣∣∣
T=t+

)
dWt.

Furthermore, by the relationship (3.2.11), this equality may be written in the following

way:

(3.2.19) drt =
(
λt(λt + ηtt)rt +

∂

∂T
ftT

∣∣∣
T=t+

)
dt+ (λt + ηtt)rtdWt.
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3.3 Relationship with the Market Models

In this section, we investigate the dynamics of the LIBOR forward rate and swap rate.

In the Market Models we start the argument from modelling these dynamics. It is

a convenient method, because these are the underlying assets of Caps, Floors, and

Swaptions. Moreover, the market applies the corresponding option volatility using the

Black formula, which is derived from the dynamics. Thus, expressing these dynamics

in the Potential Approach enables us to relate the Potential Approach to the Market

Models. We notice that the risk adjusted volatility V̂tT corresponds to the variable−ΣtT

in the Market Model as expressed in the book [35]. Indeed, this book mentions that

specification of the function ΣtT is equivalent to modelling the term structure, while,

as we observed, the risk adjusted volatility V̂tT specifies the dynamics of instantaneous

forward rate as follows: For 0 ≤ t ≤ T <∞,

dftT = V̂tT
∂

∂T
V̂tTdt−

∂

∂T
V̂tTdWt.

In this section, we will observe that it also specifies the forward LIBOR rate dynamics

and forward swap rate dynamics. Furthermore, we will find that the market price of

risk and the bond volatility may be expressed respectively in the following way: For

0 ≤ t ≤ T <∞,

λt = −V̂tt, ΩtT = V̂tT − V̂tt.

3.3.1 Dynamics of the forward LIBOR rate

Let us first make the following definition:

GtTS := −1

2

∫ t

0

(V̂ 2
uT − V̂ 2

uS)du+

∫ t

0

(V̂uT − V̂uS)dWu, 0 ≤ t ≤ T ≤ S <∞.

Then using (3.2.2) we find that

ZtT
ZtS

=
P0T

P0S

eGtTS , 0 ≤ t ≤ T ≤ S <∞
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and also by the forms (2.1.11) and (3.1.2), i.e.,

LtT =
1

T − t

(
Ztt
ZtT
− 1

)
and FtTS =

1

S − T

(
ZtT
ZtS
− 1

)
,

we obtain that for 0 ≤ t ≤ T ≤ S <∞,

LtT =
1

T − t

(1 + TL0T

1 + tL0t

eGttT − 1
)

and FtTS =
(
F0TS +

1

S − T

)
eGtTS − 1

S − T
.

Here we see that the form of the variable V̂tT determines the distribution of the LIBOR

and the forward LIBOR rates. Because Itô’s Lemma gives us that

deGtTS =eGtTSdGtTS +
1

2
eGtTS(dGtTS)2

=eGtTS
(
− 1

2
(V̂ 2

tT − V̂ 2
tS)dt+ (V̂tT − V̂tS)dWt

)
+

1

2
eGtTS(V̂tT − V̂tS)2dt

=eGtTS
(
− 1

2
(V̂ 2

tT − V̂ 2
tS) +

1

2
(V̂tT − V̂tS)2

)
dt+ eGtTS(V̂tT − V̂tS)dWt

=− eGtTS V̂tS(V̂tT − V̂tS)dt+ eGtTS(V̂tT − V̂tS)dWt,

we find that

d
(ZtT
ZtS

)
= −V̂tS(V̂tT − V̂tS)

ZtT
ZtS

dt+ (V̂tT − V̂tS)
ZtT
ZtS

dWt.

Therefore, because we may infer that

dFtTS =
1

S − T
d
(ZtT
ZtS

)
=− V̂tS(V̂tT − V̂tS)

1

S − T
ZtT
ZtS

dt+ (V̂tT − V̂tS)
1

S − T
ZtT
ZtS

dWt,

(3.3.1)

we find that

(3.3.2) dFtTS = −V̂tS(V̂tT − V̂tS)
(
FtTS +

1

S − T

)
dt+ (V̂tT − V̂tS)

(
FtTS +

1

S − T

)
dWt.

By equation (3.2.7) this can be expressed by the discount bond volatility ΩtT in the

following way:

dFtTS = (λt − ΩtS)(ΩtT − ΩtS)
(
FtTS +

1

S − T

)
dt+ (ΩtT − ΩtS)

(
FtTS +

1

S − T

)
dWt.
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We notice here that we may obtain the forward LIBOR rate shifted log-normally dis-

tributed when the process (V̂tT )0≤t≤T<∞ is deterministic. The LIBOR rate volatility

γtTS, which is defined by the equation

(3.3.3) dFtTS = −V̂tSγtTSFtTSdt+ γtTSFtTSdWt,

is computed from (3.3.1) as follows: For 0 ≤ t ≤ T ≤ S <∞

γtTS =(V̂tT − V̂tS)
1

S − T
ZtT
ZtS

[
1

S − T

(
ZtT
ZtS
− 1

)]−1

=(V̂tT − V̂tS)
ZtT

ZtT − ZtS
.

(3.3.4)

Hence we obtain that the forward LIBOR rate dynamics may be expressed in the

following way:

dFtTS = −V̂tS(V̂tT − V̂tS)
ZtT

ZtT − ZtS
FtTSdt+ (V̂tT − V̂tS)

ZtT
ZtT − ZtS

FtTSdWt.

Recalling the expression (3.2.7), the forward LIBOR rate volatility can be expressed

by the discount bond PtT and the discount bond volatility ΩtT in the following way:

(3.3.5) γtTS = (ΩtT − ΩtS)
PtT

PtT − PtS
.

The Black formula assumes that the LIBOR rate volatility γtTS is deterministic. In the

LFM, we estimate the LIBOR rate volatility from the market by applying either non-

parametric methods or parametric methods, assuming it to be deterministic in both

cases. However, when we arbitrarily choose the LIBOR rate volatility, the state price

density is not guaranteed to be a potential. Therefore the arbitrage free and positive

interest conditions are no longer guaranteed. In addition, the assumption of the log-

normality causes a problem for modelling the volatility smiles, as it allows only flat

volatility line. Some other local volatility models have been suggested for the volatility

smiles, such as the shifted BGM Model ([35]). In this case the dynamics of the forward

LIBOR rate is expressed as follows:

(3.3.6) dFtTS = −V̂tS γ̂t(FtTS + kTS)dt+ γ̂t(FtTS + kTS)dWt,
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where

γ̂t(FtTS + kTS) := (V̂tT − V̂tS)
(
FtTS +

1

S − T

)
, 0 ≤ t ≤ T ≤ S <∞,

and where γ̂t and kTS are deterministic functions such that −∞ < kTS ≤ 1
S−T . Unfor-

tunately these local volatilities models have a crucial problem in hedging performance.

The book [35] claims that the shift kTS models volatility skew and stochasticity of

the function γ̂t models kurtosis. Therefore we would need to incorporate a stochastic

property into the risk-adjusted volatility. However, as we observed already, modelling

the process (σt)t≥0 with stochastic property yields desirable features. In addition, as

shown in [48], the Chaotic Approach has analytical formulas for both Caps/Floors and

Swaptions. The SABR dynamics may be constructed from equation (3.3.20) as follows:

For β ∈ (0, 1],

dFtTS =[· · · ]dt+ γtTSF
1−β
tTS F

β
tTSdWt

=[· · · ]dt+ vtTSF
β
tTSdWt,

(3.3.7)

where the quantity vtTS can be expressed as follows:

vtTS := (S − T )β−1(V̂tT − V̂tS)
ZtT
ZtS

( ZtS
ZtT − ZtS

)β
.

3.3.2 Dynamics of the forward swap rate

As we observed in Section 3.1, the forward swap rate may be expressed in the following

way:

Sa,b(t) =
ZtTa − ZtTb∑b
i=a+1 τiZtTi

.

Therefore it is certain that we are able to construct the dynamics of the forward swap

rate only from the process (ZtT )0≤t≤T<∞. Let us first notice that

d(ZtTa − ZtTb) = (V̂tTaZtTa − V̂tTbZtTb)dWt,

d
( b∑
i=a+1

τiZtTi

)
=
( b∑
i=a+1

τiV̂tTiZtTi

)
dWt,
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and (
d

b∑
i=a+1

τiZtTi

)2

=
( b∑
i=a+1

τiV̂tTiZtTi

)2

dt.

In addition, we infer using Itô’s Lemma that

d
( 1∑b

i=a+1 τiZtTi

)
=

1(∑b
i=a+1 τiZtTi

)3

(
d

b∑
i=a+1

τiZtTi

)2

− 1(∑b
i=a+1 τiZtTi

)2d
( b∑
i=a+1

τiZtTi

)

=

(∑b
i=a+1 τiV̂tTiZtTi

)2

(∑b
i=a+1 τiZtTi

)3 dt−
∑b

i=a+1 τiV̂tZtTi(∑b
i=a+1 τiZtTi

)2dWt.

Putting all this together, we are now able to compute the dynamics of the forward

swap rate

dSa,b(t) =(ZtTa − ZtTb)d
(

1∑b
i=a+1 τiZtTi

)
+

1∑b
i=a+1 τiZtTi

d(ZtTa − ZtTb)

+ d

(
1∑b

i=a+1 τiZtTi

)
d(ZtTa − ZtTb)

=

[
(ZtTa − ZtTb)

(∑b
i=a+1 τiV̂tTiZtTi

)2

(∑b
i=a+1 τiZtTi

)3 −
∑b

i=a+1 τiV̂tZtTi(∑b
i=a+1 τiZtTi

)2 (V̂tTaZtTa − V̂tTbZtTb)
]
dt

−
[
(ZtTa − ZtTb)

∑b
i=a+1 τiV̂tZtTi(∑b
i=a+1 τiZtTi

)2 −
V̂tTaZtTa − V̂tTbZtTb∑b

i=a+1 τiZtTi

]
dWt

=−
∑b

i=a+1 τiV̂tZtTi∑b
i=a+1 τiZtTi

[
−
∑b

i=a+1 τiV̂tTiZtTi∑b
i=a+1 τiZtTi

+
V̂tTaZtTa − V̂tTbZtTb

ZtTa − ZtTb

]
Sa,b(t)dt[

−
∑b

i=a+1 τiV̂tZtTi∑b
i=a+1 τiZtTi

+
V̂tTaZtTa − V̂tTbZtTb

ZtTa − ZtTb

]
Sa,b(t)dWt.

Therefore the forward swap rate denoted by γ̃a,b(t) may be expressed in the following

way:

(3.3.8) γ̃a,b(t) :=
V̂tTaZtTa − V̂tTbZtTb

ZtTa − ZtTb
−
∑b

i=a+1 τiV̂tZtTi∑b
i=a+1 τiZtTi

.
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In other words, we have that

(3.3.9) γ̃a,b(t) =
ΩtTaPtTa − ΩtTbPtTb

PtTa − PtTb
−
∑b

i=a+1 τiΩtTiPtTi∑b
i=a+1 τiPtTi

.

We know from the definition that modelling the dynamics of the forward swap rate

provides a Swaptions pricing formula. The Black formula computes the swaption pre-

mium, assuming that the variable γ̃a,b(t) deterministic. Here we notice that the forward

swap rate dynamics is comparable with the forward LIBOR rate dynamics expressed

in (3.3.3). Indeed, the forward rate dynamics can be derived from the forward swap

rate by setting T = Ta and S = Ta+1 = Tb, as could be expected from the definitions.

Finally, the SABR dynamics may be constructed from there as follows:

dSa,b(t) =[· · · ]dt+ γ̃a,b(t)S
1−β
a,b (t)Sβa,b(t)dWt

=[· · · ]dt+ ṽa,b(t)S
β
a,b(t)dWt,

(3.3.10)

where we denote the volatility term by

ṽa,b(t) :=
(
−
∑b

i=a+1 τiV̂tZtTi∑b
i=a+1 τiZtTi

+
V̂tTaZtTa − V̂tTbZtTb

ZtTa − ZtTb

)(∑b
i=a+1 τiZtTi
ZtTa − ZtTb

)β−1

.

3.3.3 Further investigation of the volatility drifts

We apply the Malliavin Calculus to express the volatility drifts by only the variable

ZtT . The Clark-Ocone formula states that a square integrable Ft-measurable random

variable Ft may be represented in the following way:

(3.3.11) Ft = E[Ft] +

∫ t

0

Es
[
Ds[Ft]

]
dWs for t ≥ 0,

where Dt denotes the Malliavin derivative with respect to t. Therefore, the Martingale

Representation Theorem for the variable ZtT can be interpreted in the following way:

ZtT = Z0T +

∫ t

0

Es
[
Ds[ZtT ]

]
dWs for 0 ≤ t ≤ T <∞.
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Differentiating both sides, it follows that

(3.3.12) dZtT = Dt[ZtT ]dWt,

where we define Dt[ZtT ] to be

Dt[ZtT ] := lim
s→t−

Ds[ZtT ] for 0 ≤ s ≤ t,

while we have that

lim
s→t+

Ds[ZtT ] = 0 for 0 ≤ t ≤ s.

The reader can also find this asymptotic argument from the literature [52] and [59].

Note here that, applying Proposition 5.6 from [67], (see also Proposition 4.1 from [7]),

the following interchange is satisfied:

Et
[
Dt[ZtT ]

]
= Dt

[
Et[ZtT ]

]
for 0 ≤ t ≤ T <∞.(3.3.13)

Comparing equation (3.3.12) with expression (3.2.1), we obtain that

(3.3.14) V̂tT =
Dt[ZtT ]

ZtT
for 0 ≤ t ≤ T <∞.

Recalling the dynamics of the state price density, which is expressed in (2.1.18), we

may similarly obtain that

(3.3.15) λt = −Dt[Vt]

Vt
for t ≥ 0.

Furthermore, because the discount bond volatility may be expressed in the following

way:

(3.3.16) ΩtT =
Dt[PtT ]

PtT
, for 0 ≤ t ≤ T <∞,

the quotient rule of the Malliavin derivative gives that

(3.3.17) ΩtT =
Dt[ZtT ]Vt −Dt[Vt]ZtT

VtZtT
=
Dt[ZtT ]

ZtT
− Dt[Vt]

Vt
= V̂tT + λt.
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Because we have that Dt[1] = 0, we obtain from (3.3.16) and (3.3.17) that

(3.3.18) ΩTT = 0 and V̂TT = −λT for T ≥ 0.

Inserting the risk-adjusted volatility expressed in (3.3.14) into equation (3.3.4), the

forward LIBOR rate volatility may be also expressed in the following way: For 0 ≤ t ≤

T ≤ S <∞

γtTS =
(Dt[ZtT ]

ZtT
− Dt[ZtS]

ZtS

) ZtT
ZtT − ZtS

=
(
Dt[ZtT ]−Dt[ZtS]

ZtT
ZtS

) 1

ZtT − ZtS
=
(
Dt[ZtT ]−Dt[ZtS]

(
1 +

ZtT − ZtS
ZtS

)) 1

ZtT − ZtS

=
Dt[ZtT − ZtS]

ZtT − ZtS
− Dt[ZtS]

ZtS
.

(3.3.19)

Therefore, we are now able to express the stochastic differential equation of the forward

LIBOR rate expressed via the Potential Approach as follows:

(3.3.20)

dFtTS = −Dt[ZtS]

ZtS

(Dt[ZtT − ZtS]

ZtT − ZtS
−Dt[ZtS]

ZtS

)
FtTSdt+

(Dt[ZtT − ZtS]

ZtT − ZtS
−Dt[ZtS]

ZtS

)
FtTSdWt.

This allows us to infer that the dynamics of the forward LIBOR rate may be determined

by the conditional expectation of the state price density, i.e., ZtT . Note here that

because we may express that

FtTS = [· · · ]dt+Dt[FtTS]dWt

and

Dt[FtTS] =Dt

[ 1

S − T

(ZtT
ZtS
− 1
)]

=
1

S − T
ZtSDt[ZtT − ZtS]− (ZtT − ZtS)Dt[ZtS]

(ZtS)2
,

the forward LIBOR rate volatility may also be computed in the following way:

γtTS =
Dt[FtTS]

FtTS
=
ZtSDt[ZtT − ZtS]− (ZtT − ZtS)Dt[ZtS]

(ZtT − ZtS)ZtS

=
Dt[ZtT − ZtS]

ZtT − ZtS
− Dt[ZtS]

ZtS
,
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as expected. Similarly, the volatility of volatility ηtTS can be computed in the following

way:

(3.3.21) ηtTS =
Dt[γtTS]

γtTS
=
Dt

[Dt[FtTS ]
FtTS

]
Dt[FtTS ]
FtTS

=
Dt

[
Dt[FtTS]

]
Dt[FtTS]

− Dt[FtTS]

FtTS
.

Because we have that

Dt[Dt[FtTS]] =
1

S − T
Dt

[ZtSDt[ZtT − ZtS]− (ZtT − ZtS)Dt[ZtS]

(ZtS)2

]
=

1

S − T

(
Dt

[
ZtSDt[ZtT − ZtS]− (ZtT − ZtS)Dt[ZtS]

]
(ZtS)2

−
2Dt[ZtS]

(
ZtSDt[ZtT − ZtS]− (ZtT − ZtS)Dt[ZtS]

)
(ZtS)3

)
we find that

Dt

[
Dt[FtTS]

]
Dt[FtTS]

=
Dt

[
ZtSDt[ZtT − ZtS]− (ZtT − ZtS)Dt[ZtS]

]
ZtSDt[ZtT − ZtS]− (ZtT − ZtS)Dt[ZtS]

− 2
Dt[ZtS]

ZtS
.

Therefore we conclude from equation (3.3.21) that

ηtTS =
Dt

[
ZtSDt[ZtT − ZtS]− (ZtT − ZtS)Dt[ZtS]

]
ZtSDt[ZtT − ZtS]− (ZtT − ZtS)Dt[ZtS]

− Dt[ZtT − ZtS]

ZtT − ZtS
− Dt[ZtS]

ZtS

=
Dt[Z̃tTS]

Z̃tTS
− Z̃tTS
ZtS(ZtT − ZtS)

,

where we have defined

Z̃tTS := ZtSDt[ZtT ]− ZtTDt[ZtS] for 0 ≤ t ≤ T ≤ S <∞.

At this point we would also like to formulate the dynamics of the SABR volatility vtTS.

The volatility of volatility under the SABR dynamics may be found by

Dt[vtTS]

vtTS
.

However, it seems we are not able to obtain a simple form. Using expression (3.3.14),

the forward swap rate volatility form in (3.3.8) may be interpreted in the following

way:

(3.3.22) γ̃a,b(t) :=
Dt[ZtTa − ZtTb ]
ZtTa − ZtTb

−
Dt

[∑b
i=a+1 τiZtTi

]∑b
i=a+1 τiZtTi

.
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The volatility of volatility is computed by
Dt[γ̃a,b(t)]

γ̃a,b(t)
. Note here that because we may

express that

dSa,b(t) = [· · · ]dt+Dt[Sa,b(t)]dWt,

we can also compute the swap rate volatility in the following way:

γ̃a,b(t) =
Dt[Sa,b(t)]

Sa,b(t)
=
[ ZtTa − ZtTb∑b

i=a+1 τiZtTi

]−1

Dt

[ ZtTa − ZtTb∑b
i=a+1 τiZtTi

]
=
[ ZtTa − ZtTb∑b

i=a+1 τiZtTi

]−1 (
∑b

i=a+1 τiZtTi)Dt[ZtTa − ZtTb ]− (ZtTa − ZtTb)Dt[
∑b

i=a+1 τiZtTi ]

(
∑b

i=a+1 τiZtTi)
2

=
(
∑b

i=a+1 τiZtTi)Dt[ZtTa − ZtTb ]− (ZtTa − ZtTb)Dt[
∑b

i=a+1 τiZtTi ]

(ZtTa − ZtTb)(
∑b

i=a+1 τiZtTi)

=
Dt[ZtTa − ZtTb ]
ZtTa − ZtTb

−
Dt[
∑b

i=a+1 τiZtTi ]∑b
i=a+1 τiZtTi

.
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Chapter 4

Further investigations of the
Chaotic Approach

In this chapter we develop the analysis of the Chaotic Approach. In the original paper

[48] the focus is on the First Chaos, Second Chaos and Factorizable Second Chaos

Models, where an investigation into pricing options is also given. We follow their

discussion of these models, adding some new ideas. However, we also express the main

processes without truncating the tail of the chaos expansion, and consider higher order

Chaos Models, introducing One-variable Chaos Models. Furthermore, we suggest the

exponential polynomials for the chaos coefficients and calibrate the Chaos Models in

the following chapters.

4.1 Form of the main processes

Recalling the Wiener-Chaos expansion of the variable σs from (2.1.23), we may write

this expression in the following way: For 0 ≤ t ≤ sn · · · ≤ s2 ≤ s1 ≤ s < ∞, we have

that

(4.1.1) σs = R1(t, s) +

∫ s

t

R2(t, s, s1)dWs1 +

∫ s

t

∫ s1

t

R3(t, s, s1, s2)dWs2dWs1 + · · · ,

where

R1(t, s) = φ1(s) +

∫ t

0

φ2(s, s1)dWs1 +

∫ t

0

∫ s1

0

φ3(s, s1, s2)dWs2dWs1 + · · · ,
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Rn(t, s, s1, . . . , sn−1) =φn(s, s1, . . . , sn−1) +

∫ t

0

φn+1(s, s1, . . . , sn)dWsn

+

∫ t

0

∫ sn

0

φn+2(s, s1, . . . , sn+1)dWsn+1dWsn + · · · , for n = 2, 3, . . . .

Note here that we find that

σt = R1(t, t), Dt[σt] = R2(t, t, t), Dt[Dt[σt]] = R3(t, t, t, t), · · · .

In addition, we find that the function Rn for each positive integer n is a martingale

with respect to Ft, since we have that

E[R1(t, s)] =φ1(s),

E[Rn(t, s, s1, . . . , sn−1)] =φn(s, s1, . . . , sn−1), for n = 2, 3, . . . ,

and

dR1(t, s) =R2(t, s, t)dWt,

dR2(t, s, s1) =R3(t, s, s1, t)dWt,

...

dRn−1(t, s, s1, . . . , sn−1) =Rn(t, s, s1, . . . , sn−2, t)dWt.

Because the function Rn for each n is Ft-measurable, it follows by the Itô isometry and

by orthogonality that

(4.1.2) Et[σ2
s ] = R2

1(t, s) +

∫ s

t

R2
2(t, s, s1)ds1 +

∫ s

t

∫ s1

t

R2
3(t, s, s1, s2)ds2ds1 + · · · ,

which implies that

(4.1.3) E[σ2
s ] = φ2

1(s) +

∫ s

0

φ2
2(s, s1)ds1 +

∫ s

0

∫ s1

0

φ2
3(s, s1, s2)ds2ds1 + · · · .

(For another method to derive equation (4.1.2) we refer the reader to the Appendix.)

Because we know from (2.1.22) that Vt =
∫∞
t

Et[σ2
s ]ds, we obtain that

(4.1.4) Vt =

∫ ∞
t

(
R2

1(t, s)+

∫ s

t

R2
2(t, s, s1)ds1+

∫ s

t

∫ s1

t

R2
3(t, s, s1, s2)ds2ds1+· · ·

)
ds,
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(4.1.5)

ZtT =

∫ ∞
T

(
R2

1(t, s) +

∫ s

t

R2
2(t, s, s1)ds1 +

∫ s

t

∫ s1

t

R2
3(t, s, s1, s2)ds2ds1 + · · ·

)
ds,

(4.1.6)

PtT =

∫∞
T

(
R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1 +
∫ s
t

∫ s1
t
R2

3(t, s, s1, s2)ds2ds1 + · · ·
)
ds∫∞

t

(
R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1 +
∫ s
t

∫ s1
t
R2

3(t, s, s1, s2)ds2ds1 + · · ·
)
ds

and

(4.1.7)

FtTS =
1

S − T

∫ S
T

(
R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1 +
∫ s
t

∫ s1
t
R2

3(t, s, s1, s2)ds2ds1 + · · ·
)
ds∫∞

S

(
R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1 +
∫ s
t

∫ s1
t
R2

3(t, s, s1, s2)ds2ds1 + · · ·
)
ds
.

In particular, the initial curve may be drawn by setting

P0T =

∫∞
T

(
φ2

1(s) +
∫ s

0
φ2

2(s, s1)ds1 +
∫ s

0

∫ s1
0
φ2

3(s, s1, s2)ds2ds1 + · · ·
)
ds∫∞

0

(
φ2

1(s) +
∫ s

0
φ2

2(s, s1)ds1 +
∫ s

0

∫ s1
0
φ2

3(s, s1, s2)ds2ds1 + · · ·
)
ds

and

(4.1.8) f0T =
φ2

1(T ) +
∫ s

0
φ2

2(T, s1)ds1 +
∫ T

0

∫ s1
0
φ2

3(T, s1, s2)ds2ds1 + · · ·∫∞
T

(
φ2

1(s) +
∫ s

0
φ2

2(s, s1)ds1 +
∫ s

0

∫ s1
0
φ2

3(s, s1, s2)ds2ds1 + · · ·
)
ds
.

Let us now consider the Malliavin derivative of ZtT and Vt in order to compute the

market price of risk and the risk-adjusted volatility. We first notice that

Dt[R1(t, s)]

=Dt

[
φ1(s) +

∫ t

0

φ2(s, s1)dWs1 +

∫ t

0

∫ s1

0

φ3(s, s1, s2)dWs2dWs1 + · · ·
]

=Dt[φ1(s)] +Dt

[ ∫ t

0

φ2(s, s1)dWs1

]
+Dt

[ ∫ t

0

∫ s1

0

φ3(s, s1, s2)dWs2dWs1

]
+ · · ·

=0 + φ2(s, t) +

∫ t

0

φ3(s, t, s2)dWs2 + · · ·

=R2(t, s, t),
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and for n = 2, 3, . . .

Dt[Rn(t, s, s1, . . . , sn−1)]

=Dt

[
φn(s, s1, . . . , sn−1) +

∫ t

0

φn+1(s, s1, . . . , sn)dWsn

+

∫ t

0

∫ s2

0

φn+2(s, s1, . . . , sn+1)dWsn+1dWsn + · · ·
]

=Dt[φn(s, s1, . . . , sn−1)] +Dt

[ ∫ t

0

φn+1(s, s1, . . . , sn)dWsn

]
+Dt

[ ∫ t

0

∫ s2

0

φn+2(s, s1, . . . , sn+1)dWsn+1dWsn

]
+ · · ·

=0 + φn+1(s, s1, . . . , sn−1, t) +

∫ t

0

φn+2(s, s1, . . . , sn−1, t, sn+1)dWsn+1 + · · ·

=Rn+1(t, s, s1, . . . , sn−1, t).

Therefore, applying the chain rule of the Malliavin derivative, we obtain that

Dt

[
Et[σ2

s ]
]

=Dt[R
2
1(t, s)] +

∫ s

t

Dt[R
2
2(t, s, s1)]ds1 +

∫ s

t

∫ s1

t

Dt[R
2
3(t, s, s1, s2)]ds2ds1

+

∫ s

t

∫ s1

t

∫ s2

t

Dt[R
2
4(t, s, s1, s2, s3)]ds3ds2ds1 + · · ·

=2R1(t, s)Dt[R1(t, s)] +

∫ s

t

2R2(t, s, s1)Dt[R2(t, s, s1)]ds1

+

∫ s

t

∫ s1

t

2R3(t, s, s1, s2)Dt[R3(t, s, s1, s2)]ds2ds1

+

∫ s

t

∫ s1

t

∫ s2

t

2R4(t, s, s1, s2, s3)Dt[R4(t, s, s1, s2, s3)]ds3ds2ds1 + · · ·

=2R1(t, s)R2(t, s, t) +

∫ s

t

2R2(t, s, s1)R3(t, s, s1, t)ds1

+

∫ s

t

∫ s1

t

2R3(t, s, s1, s2)R4(t, s, s1, s2, t)ds2ds1 + · · · .

(4.1.9)

Because we here have that

Dt[Vt] =

∫ ∞
t

Dt

[
Et[σ2

s ]
]
ds and Dt[ZtT ] =

∫ ∞
T

Dt

[
Et[σ2

s ]
]
ds,
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we obtain that

Dt[Vt] =2

∫ ∞
t

(
R1(t, s)R2(t, s, t) +

∫ s

t

R2(t, s, s1)R3(t, s, s1, t)ds1

+

∫ s

t

∫ s1

t

R3(t, s, s1, s2)R4(t, s, s1, s2, t)ds2ds1 + · · ·
)
ds

and

Dt[ZtT ] =2

∫ ∞
T

(
R1(t, s)R2(t, s, t) +

∫ s

t

R2(t, s, s1)R3(t, s, s1, t)ds1

+

∫ s

t

∫ s1

t

R3(t, s, s1, s2)R4(t, s, s1, s2, t)ds2ds1 + · · ·
)
ds.

Therefore the market price of risk and the risk-adjusted volatility formulated by (3.3.14)

and (3.3.15) may be respectively expressed in the Chaotic Approach as follows:

(4.1.10)

λt = −
2
∫∞
t

[
R1(t, s)R2(t, s, t) +

∫ s
t
R2(t, s, s1)R3(t, s, s1, t)ds1 + · · ·

]
ds∫∞

t

[
R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1 +
∫ s
t

∫ s1
t
R2

3(t, s, s1, s2)ds2ds1 + · · ·
]
ds

and

(4.1.11)

V̂tT =
2
∫∞
T

[
R1(t, s)R2(t, s, t) +

∫ s
t
R2(t, s, s1)R3(t, s, s1, t)ds1 + · · ·

]
ds∫∞

T

[
R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1 +
∫ s
t

∫ s1
t
R2

3(t, s, s1, s2)ds2ds1 + · · ·
]
ds
.

4.2 Modelling initial curves in the Chaotic Approach

We are able to secure freedom of modelling initial curves in the Chaotic Approach.

Application of the Clark-Ocone formula to the variable σ2
s , s ≥ 0 gives us that

σ2
s = E[σ2

s ] +

∫ s

0

Eu[Du[σ
2
s ]]dWu.

Then, taking conditional expectation with respect to Ft, 0 ≤ t ≤ s <∞ for both sides

of the equation, we obtain that

(4.2.1) Et[σ2
s ] = Et[E[σ2

s ]] + Et
[ ∫ s

0

Eu[Du[σ
2
s ]]dWu

]
.
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Because E[σ2
s ] is a constant and the Itô integral

∫ s
0
Eu[Du[σ

2
s ]]dWu is a martingale, it

follows that

(4.2.2) Et[σ2
s ] = E[σ2

s ] +

∫ t

0

Eu[Du[σ
2
s ]]dWu.

By (3.1.6), we obtain here that

ZtT =

∫ ∞
T

E[σ2
s ]ds+

∫ ∞
T

∫ t

0

Eu[Du[σ
2
s ]]dWuds.

We apply the Stochastic Fubini Theorem, (see [5] and [72]), to obtain that

(4.2.3) ZtT = P0T

∫ ∞
0

E[σ2
s ]ds+

∫ t

0

∫ ∞
T

Eu[Du[σ
2
s ]]dsdWu,

where we recall from (3.1.5) that E[ZtT ] = P0TV0 and that

V0 =

∫ ∞
0

E[σ2
s ]ds.

It follows that for 0 ≤ t ≤ T <∞

PtT =
P0T

∫∞
0

E[σ2
s ]ds+

∫ t
0

∫∞
T

Eu[Du[σ
2
s ]]dsdWu

P0t

∫∞
0

E[σ2
s ]ds+

∫ t
0

∫∞
t

Eu[Du[σ2
s ]]dsdWu

.

We now see the benefit of the chaos expansion, using (4.1.9), to compute the integrand

as follows: For 0 ≤ u ≤ s <∞,

Eu[Du[σ
2
s ]] = Du[Eu[σ2

s ]] =2
(
R1(u, s)R2(u, s, u) +

∫ s

u

R2(u, s, s1)R3(u, s, s1, u)ds1

+

∫ s

u

∫ s1

u

R3(u, s, s1, s2)R4(u, s, s1, s2, u)ds2ds1 + · · ·
)
.

Therefore, inserting this into equations (4.2.2) and (4.2.3), we obtain that

Et[σ2
s ] =E[σ2

s ] +

∫ t

0

2
(
R1(u, s)R2(u, s, u) +

∫ s

u

R2(u, s, s1)R3(u, s, s1, u)ds1

+

∫ s

u

∫ s1

u

R3(u, s, s1, s2)R4(u, s, s1, s2, u)ds2ds1 + · · ·
)
dWu
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and

ZtT =P0T

∫ ∞
0

E[σ2
s ]ds+ 2

∫ t

0

∫ ∞
T

(
R1(u, s)R2(u, s, u) +

∫ s

u

R2(u, s, s1)R3(u, s, s1, u)ds1

+

∫ s

u

∫ s1

u

R3(u, s, s1, s2)R4(u, s, s1, s2, u)ds2ds1 + · · ·
)
dsdWu.

(4.2.4)

The distribution form of the random variable ZtT is crucial for pricing options as we

will see later. The state price density is then formulated via Vt = Ztt in the following

way:

Vt =P0t

∫ ∞
0

E[σ2
s ]ds+ 2

∫ t

0

∫ ∞
t

(
R1(u, s)R2(u, s, u) +

∫ s

u

R2(u, s, s1)R3(u, s, s1, u)ds1

+

∫ s

u

∫ s1

u

R3(u, s, s1, s2)R4(u, s, s1, s2, u)ds2ds1 + · · ·
)
dsdWu.

(4.2.5)

Hence the discount bond may be formulated as follows: For 0 ≤ t ≤ T <∞,

PtT =

P0T

∫∞
0

E[σ2
s ]ds+ 2

∫ t
0

∫∞
T

(
R1(u, s)R2(u, s, u) +

∫ s
u
R2(u, s, s1)R3(u, s, s1, u)ds1 + · · ·

)
dsdWu

P0t

∫∞
0

E[σ2
s ]ds+ 2

∫ t
0

∫∞
t

(
R1(u, s)R2(u, s, u) +

∫ s
u
R2(u, s, s1)R3(u, s, s1, u)ds1 + · · ·

)
dsdWu

and the forward LIBOR rate may be formulated as follows: For 0 ≤ t ≤ T ≤ S <∞,

FtTS =
1

S − T
×

(P0T − P0S)
∫∞

0
E[σ2

s ]ds− 2
∫ t

0

∫ S
T

(
R1(u, s)R2(u, s, u) +

∫ s
u
R2(u, s, s1)R3(u, s, s1, u)ds1 + · · ·

)
dsdWu

P0S

∫∞
0

E[σ2
s ]ds+ 2

∫ t
0

∫∞
S

(
R1(u, s)R2(u, s, u) +

∫ s
u
R2(u, s, s1)R3(u, s, s1, u)ds1 + · · ·

)
dsdWu

.

These expressions allow us to calibrate the initial curve and options separately. How-

ever, as we observed in (4.1.3), we may also express the initial curve by the chaos

coefficients in the following way: For T ≥ 0,

(4.2.6) P0T =

∫∞
T

[
φ2

1(s) +
∫ s

0
φ2

2(s, s1)ds1 +
∫ s

0

∫ s1
0
φ2

3(s, s1, s2)ds2ds1 + · · ·
]
ds∫∞

0

[
φ2

1(s) +
∫ s

0
φ2

2(s, s1)ds1 +
∫ s

0

∫ s1
0
φ2

3(s, s1, s2)ds2ds1 + · · ·
]
ds
.

Therefore, to save increasing the number of parameters we apply those chaos coefficients

to model the initial curve, and at the same time calibrate options in later chapters.
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4.3 First Chaos Model

In the First Chaos Model, that is, for σt = φ1(t), we have that

R1(t, s) = φ1(s) and Rn ≡ 0 for n = 2, 3, . . . .

By examining the expressions (4.1.4)− (4.1.8), we obtain that for 0 ≤ t ≤ T ≤ S <∞

Vt =

∫ ∞
t

φ2
1(s)ds, ZtT =

∫ ∞
T

φ2
1(s)ds,

ftT =
φ2

1(T )∫∞
T
φ2

1(s)ds
and FtTS =

1

S − T

∫ S
T
φ2

1(s)ds∫∞
S
φ2

1(s)ds
.

Note here that because the process (ZtT )0≤t≤T<∞ does not change over time t ≥ 0, we

infer that

ZtT = Z0T = VT .

Moreover, we observe that the instantaneous forward rate and the forward LIBOR rate

do not change over time t ≥ 0. From the expressions (4.1.10) and (4.1.11), we obtain

that

λt ≡ 0 and V̂tT ≡ 0 for any 0 ≤ t ≤ T <∞.

Thus, in light of (3.2.18), the short rate dynamics is given by

drt =
∂

∂T
f0Tdt,

which is deterministic, as was expected.

European call/put bond option

We now consider option pricing in the First Chaos Model to compare it with the

higher order Chaos Models, although we know that the First Chaos Model gives only

deterministic term structures. The deterministic term structure gives us that

ZBC(0, t, T,K) =
1

V0

E[Vt(PtT −K)+] = (P0T −KP0t)
+

and

ZBP (0, t, T,K) = (KP0t − P0T )+.
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Swaption

Because the First Chaos Model gives us a deterministic term structure, we find for the

nominal N = 1 that

PS(0, T , τ, 1, K) =
1

V0

E
[
Vt

(
1− Pttn −K

n∑
i=1

τiPtti

)+]
=
(
P0t − P0tn −K

n∑
i=1

τiP0ti

)+

.

Therefore when K = KATM we obtain that

PS(0, T , τ, N,KATM) = 0.

4.4 Second Chaos Model

Now we move to the Second Chaos Model, that is, we set σt = φ1(t) +
∫ t

0
φ2(t, s1)dWs1 .

By the expressions in (4.1.4)− (4.1.8), we find in the Second Chaos Model, for 0 ≤ t ≤

T ≤ S <∞, that

(4.4.1) Vt =

∫ ∞
t

(
R2

1(t, s) +

∫ s

t

R2
2(t, s, s1)ds1

)
ds,

ZtT =

∫ ∞
T

(
R2

1(t, s) +

∫ s

t

R2
2(t, s, s1)ds1

)
ds,

PtT =

∫∞
T

(
R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1

)
ds∫∞

t

(
R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1

)
ds

and

FtTS =
1

S − T

∫ S
T

(
R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1

)
ds∫∞

S

(
R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1

)
ds
,

where

R1(t, s) = φ1(s) +

∫ t

0

φ2(s, s1)dWs1, R2(t, s, s1) = φ2(s, s1).

Here we have that

Mts = R2
1(t, s) +

∫ s

t

R2
2(t, s, s1)ds1, 0 ≤ t ≤ s <∞,

63



which corresponds to the expression in [48]. There it is stated that the random variable

Mts in the Second Chaos Model is a parametric family of squared Gaussians plus a

constant. Now by the expressions (4.1.10) and (4.1.11) we infer in the Second Chaos

Model that for 0 ≤ t ≤ T <∞,

λt = −
2
∫∞
t
R1(t, s)R2(t, s, t)ds∫∞

t

(
R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1

)
ds

and V̂tT =
2
∫∞
T
R1(t, s)R2(t, s, t)ds∫∞

T

(
R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1

)
ds
.

Recalling the definition of the variable ηtT from (3.2.8), we derive that

ηtT =
2R1(t, T )R2(t, T, t)

R2
1(t, T ) +

∫ T
t
R2

2(t, T, s1)ds1

, 0 ≤ t ≤ T <∞.

Therefore, equation (3.2.19) allows us to form a stochastic volatility short rate dynamics

in the following way:

drt = [· · · ]dt+ 2
[R2(t, t, t)

R1(t, t)
−

∫∞
t
R1(t, s)R2(t, s, t)ds∫∞

t

(
R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1

)
ds

]
rtdWt.

From equation (3.3.20), we are able to form a stochastic volatility forward LIBOR

dynamics as follows:

dFtTS = [· · · ]dt+2

( ∫ S
T
R1(t, s)R2(t, s, t)ds∫ S

T

(
R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1

)
ds

−
∫∞
S
R1(t, s)R2(t, s, t)ds∫∞

S

(
R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1

)
ds

)
FtTSdWt.

Therefore we obtain a stochastic property in the volatility drift, which secure non-flat

volatility curve.

4.4.1 Factorizable Second Chaos Model

In the Factorizable Second Chaos Model we simplify the Second Chaos Models as

follows:

R1(t, s) = αs +

∫ t

0

βsγs1dWs1 and R2(t, s, s1) = βsγs1 ,
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for some square-integrable functions α, β, γ. Inserting this into the expression (4.4.1)

we find that for 0 ≤ t ≤ T <∞ we have

ZtT =

∫ ∞
T

((
αs + βs

∫ t

0

γs1dWs1

)2

+ β2
s

∫ s

t

γ2
s1
ds1

)
ds.

To simplify the notation in what follows, define:

R̂t :=

∫ t

0

γs1dWs1, Q̂t :=

∫ t

0

γ2
s1
ds1,

At :=

∫ ∞
t

(α2
s + β2

s Q̂s)ds, Bt := 2

∫ ∞
t

αsβsds and Ct :=

∫ ∞
t

β2
sds for t ≥ 0.

We then find that for 0 ≤ t ≤ T <∞

ZtT =

∫ ∞
T

[(αs + βsR̂t)
2 − β2

s Q̂t + β2
s Q̂s]ds

=

∫ ∞
T

[α2
s + β2

s Q̂s + 2αsβsR̂t + β2
s (R̂

2
t − Q̂t)]ds

=

∫ ∞
T

[α2
s + β2

s Q̂s]ds+ 2

∫ ∞
T

αsβsdsR̂t +

∫ ∞
T

β2
sds(R̂

2
t − Q̂t)

=AT +BT R̂t + CT (R̂2
t − Q̂t).

(4.4.2)

Note here that because we may deduce that

E[ZtT ] = AT and V0 = A0 for 0 ≤ t ≤ T <∞,

it follows that

(4.4.3) AT = P0TA0, T ≥ 0.

Hence, we find that

(4.4.4) ZtT = P0TA0 +BT R̂t + CT (R̂2
t − Q̂t), 0 ≤ t ≤ T <∞.

Consequently, we further obtain that

PtT =
P0TA0 +BT R̂t + CT (R̂2

t − Q̂t)

P0tA0 +BtR̂t + Ct(R̂2
t − Q̂t)

, 0 ≤ t ≤ T <∞.
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The initial value can be formed in the following way:

P0T =
AT
A0

, for T ≥ 0.

Note here that we have the following form of the risk-adjusted volatility:

V̂tT =
BTγt + 2CT R̂tγt

P0TA0 +BT R̂t + CT (R̂2
t − Q̂t)

, 0 ≤ t ≤ T <∞.

European call/put bond option

We now recall that the option price is formulated by the expectation rule as follows:

ZBC(0, t, T,K) =
1

V0

E[(ZtT −KZtt)+].

However, because we obtain from (4.4.4) that

ZtT −KZtt = (P0T −KP0t)A0 + (BT −KBt)R̂t + (CT −KCt)(R̂2
t − Q̂t),

we find that

ZBC(0, t, T,K) = E
[(
P0T −KP0t +

1

A0

(BT −KBt)R̂t +
1

A0

(CT −KCt)(R̂2
t − Q̂t)

)+]
.

Therefore, we may make the interpretation that the European bond option in the

Factorizable Second Chaos Model is non-central chi-squared with mean P0T − KP0t.

Furthermore, if we first define some notations,

θ :=
R̂t√
Q̂t

∼ N (0, 1),

Â := (P0T−KP0t)−
1

A0

(CT−KCt)Q̂t, B̂ :=
1

A0

(BT−KBt)

√
Q̂t, Ĉ :=

1

A0

(CT−KCt)Q̂t,

we obtain that

ZBC(0, t, T,K) = E
[(
Â+ B̂θ + Ĉθ2

)+]
.
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Applying the expectation rule, the option price is expressed as follows:

ZBC(0, t, T,K) =
1√
2π

∫
Pc(θ)≥0

Pc(θ)e−
θ2

2 dθ,

where

Pc(θ) := Â+ B̂θ + Ĉθ2 and E[Pc(θ)] = P0T −KP0t.

For put options, letting Pp(θ) = −Pc(θ), it follows that

ZBP (0, t, T,K) =
1√
2π

∫
Pp(θ)≥0

Pp(θ)e−
θ2

2 dθ.

Let Φ be the standard normal cumulative distribution function and ρ be the standard

normal density function, i.e.,

Φ(x) :=
1√
2π

∫ x

−∞
e−

X2

2 dX and ρ(x) :=
1√
2π
e−

x2

2 .

Then, we know that
1√
2π

∫ x

−∞
Xe−

X2

2 dX = −ρ(x)

and
1√
2π

∫ x

−∞
X2e−

X2

2 dX = Φ(x)− xρ(x).

If Ĉ = 0 and B̂ > 0, it follows that

ZBC(0, t, T,K) =
1√
2π

∫ ∞
y

(Â+ B̂θ)e−
θ2

2 dθ = ÂΦ(−y) + B̂ρ(y)

where y = − Â

B̂
. If Ĉ = 0 and B̂ < 0, however, we instead obtain the expression

ZBC(0, t, T,K) =
1√
2π

∫ y

−∞
(Â+ B̂θ)e−

θ2

2 dθ = ÂΦ(y)− B̂ρ(y).

Now, if Ĉ > 0 and ∆ ≤ 0 where ∆ := B̂2 − 4ÂĈ, then

ZBC(0, t, T,K) =
1√
2π

∫ ∞
−∞

(Â+ B̂θ + Ĉθ2)e−
θ2

2 dθ

=E[Â+ B̂θ + Ĉθ2]

=P0T −KP0t.
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If Ĉ < 0 and ∆ ≤ 0, then ZBC(0, t, T,K) = 0. It remains to consider the case where

∆ > 0. In this case, we obtain two roots:

z1 :=
−B̂ −

√
∆

2Ĉ
and z2 :=

−B̂ +
√

∆

2Ĉ
.

There are two further options to consider. Firstly, suppose that Ĉ > 0 and ∆ > 0.

Then z1 < z2 and

ZBC(0, t, T,K) =
1√
2π

∫
{−∞≤θ≤z1}∩{z2≤θ≤∞}

(Â+ B̂θ + Ĉθ2)e−
θ2

2 dθ

=(Â+ Ĉ)(Φ(z1) + Φ(−z2))− (B̂ + Ĉz1)ρ(z1) + (B̂ + Ĉz2)ρ(z2)

=(P0T −KP0t)(Φ(z1) + Φ(−z2))− 1

2
(B̂ −

√
∆)ρ(z1) +

1

2
(B̂ +

√
∆)ρ(z2).

Secondly, if Ĉ < 0 and ∆ > 0, it follows that z1 > z2 and so

ZBC(0, t, T,K) =
1√
2π

∫
{z2≤θ≤z1}

(Â+ B̂θ + Ĉθ2)e−
θ2

2 dθ

=(P0T −KP0t)(Φ(z1)− Φ(z2))− 1

2
(B̂ −

√
∆)ρ(z1) +

1

2
(B̂ +

√
∆)ρ(z2)

Swaption

Plugging the expression of the variable ZtT into the pricing formula, we obtain that

Ztt − ZtTb −K
b∑

i=a+1

τiZtTi =
(
At − ATb −K

b∑
i=a+1

τiATi

)
−
(
Ct − CTb −K

b∑
i=a+1

τiCTi

)
Q̂t

+
(
Bt −BTb −K

b∑
i=a+1

τiBTi

)
R̂t −

(
Ct − CTb −K

b∑
i=a+1

τiCTi

)
R̂2
t .

Therefore, we find that the payer swaption price with the nominal N = 1 has the

following form:

PS(0, T , τ, 1, K) = E[(Ã+ B̃θ + C̃θ2)+],

where

θ =
R̂t√
Q̂t

∼ N (0, 1), Ã =
(
P0t−P0Tb−K

b∑
i=a+1

τiP0Ti

)
− 1

A0

(
Ct−CTb−K

b∑
i=a+1

τiCTi

)
Q̂t,
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B̃ =
1

A0

(
Bt−BTb −K

b∑
i=a+1

τiBTi

)√
Q̂t and C̃ =

1

A0

(
Ct−CTb −K

b∑
i=a+1

τiCTi

)
Q̂t,

Therefore, the payer swaption under the Factorizable Second Chaos Model is also non-

central chi-squared distributed. It has mean

E[Ã+ B̃θ + C̃θ2] = P0t − P0Tb −K
b∑

i=a+1

τiP0Ti .

Applying the expectation rule, we find that

PS(0, T , τ, 1, K) =
1√
2π

∫
PPS(θ)≥0

PPS(θ)e−
θ2

2 dθ,

where we have defined that

PPS(θ) := Ã+ B̃θ + C̃θ2.

Further simplification can be achieved by considering the roots of the function PPS and

dividing into six scenarios as we have done for pricing a European call bond option:

PS(0, T , τ, 1, K) =



ÃΦ(−ỹ) + B̃ρ(ỹ) if {C̃ = 0} ∩ {B̃ > 0},
ÃΦ(ỹ)− B̃ρ(ỹ) if {C̃ = 0} ∩ {B̃ < 0},(
P0t − P0TN −K

∑b
i=a+1 τiP0Ti

)
if {C̃ > 0} ∩ {∆̃ ≤ 0},

0 if {C̃ < 0} ∩ {∆̃ ≤ 0},(
P0t − P0Tb −K

∑b
i=a+1 τiP0Ti

)
(Φ(z1) + Φ(−z2))

−1
2
(B̃ −

√
∆̃)ρ(z1) + 1

2
(B̃ +

√
∆̃)ρ(z2) if {C̃ > 0} ∩ {∆̃ > 0},(

P0t − P0Tb −K
∑b

i=a+1 τiP0Ti

)
(Φ(z1)− Φ(z2))

−1
2
(B̃ −

√
∆̃)ρ(z1) + 1

2
(B̃ +

√
∆̃)ρ(z2) if {C̃ < 0} ∩ {∆̃ > 0},

where

ỹ := − Ã
B̃
, ∆̃ := B̃2 − 4ÃC̃

and z1 and z2 are the two roots of PPS, given by

z1 =
−B̃ −

√
∆̃

2C̃
and z2 =

−B̃ +
√

∆̃

2C̃
.
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It follows that for the ATM Swaptions we have

PS(0, T , τ, 1, KATM) =


ÃΦ(−ỹ) + B̃ρ(ỹ) if {C̃ = 0} ∩ {B̃ > 0},
ÃΦ(ỹ)− B̃ρ(ỹ) if {C̃ = 0} ∩ {B̃ < 0},
0 if {C̃ 6= 0} ∩ {∆̃ ≤ 0},
−1

2
(B̃ −

√
∆̃)ρ(z1) + 1

2
(B̃ +

√
∆̃)ρ(z2) if {C̃ 6= 0} ∩ {∆̃ > 0}.

4.5 Third Chaos Model

In the Third Chaos Model we have

Mts = R2
1(t, s) +

∫ s

t

R2
2(t, s, s1)ds1 +

∫ s

t

∫ s1

t

R2
3(t, s, s1, s2)ds2ds1, 0 ≤ t ≤ s <∞

where

R1(t, s) = φ1(s) +

∫ t

0

φ2(s, s1)dWs1 +

∫ t

0

∫ s1

0

φ3(s, s1, s2)dWs2dWs1,

R2(t, s, s1) = φ2(s, s1) +

∫ t

0

φ3(s, s1, s2)dWs2 and R3(t, s, s1, s2) = φ3(s, s1, s2).

Then, we obtain stochastic forms for 0 ≤ t ≤ T <∞:

Vt =

∫ ∞
t

(
R2

1(t, s) +

∫ s

t

R2
2(t, s, s1)ds1 +

∫ s

t

∫ s1

t

R2
3(t, s, s1, s2)ds2ds1

)
ds,

ZtT =

∫ ∞
T

(
R2

1(t, s) +

∫ s

t

R2
2(t, s, s1)ds1 +

∫ s

t

∫ s1

t

R2
3(t, s, s1, s2)ds2ds1

)
ds,

λt = −
2
∫∞
t

(R1(t, s)R2(t, s, t) +
∫ s
t
R2(t, s, s1)R3(t, s, s1, t)ds1)ds∫∞

t
(R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1 +
∫ s
t

∫ s1
t
R2

3(t, s, s1, s2)ds2ds1)ds

and

V̂tT =
2
∫∞
T

[R1(t, s)R2(t, s, t) +
∫ s
t
R2(t, s, s1)R3(t, s, s1, t)ds1)ds∫∞

T
(R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1 +
∫ s
t

∫ s1
t
R2

3(t, s, s1, s2)ds2ds1)ds
.

The dynamics (3.2.19) and (3.3.20) give us that

drt =[· · · ]dt

+ 2
[R2(t, t, t)

R1(t, t)
−

2
∫∞
t

[R1(t, s)R2(t, s, t) +
∫ s
t
R2(t, s, s1)R3(t, s, s1, t)ds1]ds∫∞

t
[R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1 +
∫ s
t

∫ s1
t
R2

3(t, s, s1, s2)ds2ds1]ds

]
rtdWt
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and

dFtTS =[· · · ]dt

+ 2
( ∫ S

T
[R1(t, s)R2(t, s, t) +

∫ s
t
R2(t, s, s1)R3(t, s, s1, t)ds1]ds∫ S

T
[R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1 +
∫ s
t

∫ s1
t
R2

3(t, s, s1, s2)ds2ds1]ds

−
∫∞
S

[R1(t, s)R2(t, s, t) +
∫ s
t
R2(t, s, s1)R3(t, s, s1, t)ds1]ds∫∞

S
[R2

1(t, s) +
∫ s
t
R2

2(t, s, s1)ds1 +
∫ s
t

∫ s1
t
R2

3(t, s, s1, s2)ds2ds1]ds

)
FtTSdWt.

4.5.1 Factorizable Third Chaos Model

We consider the Factorizable Third Chaos Model, i.e.,

Mts = R2
1(t, s) +

∫ s

t

R2
2(t, s, s1)ds1 +

∫ s

t

∫ s1

t

R2
3(t, s, s1, s2)ds2ds1

where

R1(t, s) = αs + βsJ1(t, γ) + δsJ2(t, εζ), R2(t, s, s1) = βsγs1 + δsεs1J1(t, ζ),

R3(t, s, s1, s2) = δsεs1ζs2 ,

J1(t, γ) :=

∫ t

0

γs1dWs1 and J2(t, εζ) :=

∫ t

0

∫ s1

0

εs1ζs2dWs2dWs1,

for some square-integrable functions α, β, γ, δ, ε and ζ. It follows that for 0 ≤ t ≤ s <

∞, we have that

Mts =α2
s + β2

sJ
2
1 (t, γ) + δ2

sJ
2
2 (t, εζ) + 2αsβsJ1(t, γ) + 2αsδsJ2(t, εζ) + 2βsδsJ1(t, γ)J2(t, εζ)

+

∫ s

t

(
β2
sγ

2
s1

+ δ2
sε

2
s1
J2

1 (t, ζ) + 2βsδsγs1εs1J1(t, ζ)
)
ds1 +

∫ s

t

∫ s1

t

δ2
sε

2
s1
ζ2
s2
ds2ds1

=α2
s +

∫ s

t

β2
sγ

2
s1
ds1 +

∫ s

t

∫ s1

t

δ2
sε

2
s1
ζ2
s2
ds2ds1

+ 2αsβsJ1(t, γ) +

∫ s

t

2βsδsγs1εs1ds1J1(t, ζ) + 2αsδsJ2(t, εζ)

+ β2
sJ

2
1 (t, γ) +

∫ s

t

δ2
sε

2
s1
ds1J

2
1 (t, ζ) + 2βsδsJ1(t, γ)J2(t, εζ) + δ2

sJ
2
2 (t, εζ).

Because we have that for 0 ≤ t ≤ s <∞,∫ s

t

∫ s1

t

ε2s1ζ
2
s2
ds2ds1 =

∫ s

0

∫ s1

0

ε2s1ζ
2
s2
ds2ds1 −

∫ t

0

∫ s1

0

ε2s1ζ
2
s2
ds2ds1 −

∫ s

t

∫ t

0

ε2s1ζ
2
s2
ds2ds1,
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we infer that

Mts =α2
s +

∫ s

0

β2
sγ

2
s1
ds1 +

∫ s

0

∫ s1

0

δ2
sε

2
s1
ζ2
s2
ds2ds1

+ 2αsβsJ1(t, γ) + 2

∫ s

t

βsδsγs1εs1ds1J1(t, ζ) + 2αsδsJ2(t, εζ)

+ β2
s

(
J2

1 (t, γ)−
∫ t

0

γ2
s1
ds1

)
+

∫ s

t

δ2
sε

2
s1
ds1

(
J2

1 (t, ζ)−
∫ t

0

ζ2
s2
ds2

)
+ 2βsδsJ1(t, γ)J2(t, εζ) + δ2

s

(
J2

2 (t, εζ)−
∫ t

0

∫ s1

0

ε2s1ζ
2
s2
ds2ds1

)
.

Therefore, we obtain that for 0 ≤ t ≤ T <∞,

ZtT =AT +BTJ1(t, γ) + CtTJ1(t, ζ) +DTJ2(t, εζ) + ET
(
J2

1 (t, γ)−Q1(t, γ)
)

+ FtT
(
J2

1 (t, ζ)−Q1(t, ζ)
)

+GTJ1(t, γ)J2(t, εζ) +HT

(
J2

2 (t, εζ)−Q2(t, εζ)
)
,

(4.5.1)

where we have defined

AT :=

∫ ∞
T

(
α2
s +

∫ s

0

β2
sγ

2
s1
ds1 +

∫ s

0

∫ s1

0

δ2
sε

2
s1
ζ2
s2
ds2ds1

)
ds,

BT :=2

∫ ∞
T

αsβsds, CtT := 2

∫ ∞
T

∫ s

t

βsδsγs1εs1ds1ds,

DT :=2

∫ ∞
T

αsδsds, ET :=

∫ ∞
T

β2
sds,

FtT :=

∫ ∞
T

∫ s

t

δ2
sε

2
s1
ds1ds, GT := 2

∫ ∞
T

βsδsds, HT :=

∫ ∞
T

δ2
sds,

Q1(t, γ) :=

∫ t

0

γ2
s1
ds1 and Q2(t, εζ) :=

∫ t

0

∫ s1

0

ε2s1ζ
2
s2
ds2ds1.

(4.5.2)

Note here that because we may deduce that

E[ZtT ] = AT and V0 = A0 for 0 ≤ t ≤ T <∞,

it follows that

(4.5.3) AT = P0TA0, T ≥ 0.

Therefore we obtain that

ZtT =P0TA0 +BTJ1(t, γ) + CtTJ1(t, ζ) +DTJ2(t, εζ) + ET
(
J2

1 (t, γ)−Q1(t, γ)
)

+ FtT
(
J2

1 (t, ζ)−Q1(t, ζ)
)

+GTJ1(t, γ)J2(t, εζ) +HT

(
J2

2 (t, εζ)−Q2(t, εζ)
)

(4.5.4)
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and

P0T =
AT
A0

, T ≥ 0.

European call/put option

From (4.5.4), we obtain for the European call bond option that

ZtT −KZtt =(P0T −KP0t)A0 + [BT −KBt]J1(t, γ) + [CtT −KCtt]J1(t, ζ)

+ [DT −KDt]J2(t, εζ) + [ET −KEt]
(
J2

1 (t, γ)−Q1(t, γ)
)

+ [FtT −KFtt]
(
J2

1 (t, ζ)−Q1(t, ζ)
)

+ [GT −KGt]J1(t, γ)J2(t, εζ) + [HT −KHt]
(
J2

2 (t, εζ)−Q2(t, εζ)
)
.

Here we know from [60] (page 183), that

J2(t, εζ) =
1

2

(
J1(t, ε)J1(t, ζ)− L(t, εζ)

)
, where L(t, εζ) :=

∫ t

0

εs1ζs1ds1.

Defining a standard normally distributed random variable θ by setting

θ(γ) :=
J1(t, γ)√
L(t, γ2)

∼ N (0, 1),

we have that

J2(t, εζ) =
1

2

(√
L(t, ε2)

√
L(t, ζ2)θ(ε)θ(ζ)− L(t, εζ)

)
.

Therefore, a function for the call option defined by

Pc(θ(γ), θ(ε), θ(ζ)) :=
1

A0

(ZtT −KZtt),
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can be expressed as

Pc(θ(γ), θ(ε), θ(ζ))

=P0T −KP0t −
1

A0

[ET −KEt]Q1(t, γ)

− 1

A0

[FtT −KFtt]Q1(t, ζ)− 1

A0

[HT −KHt]Q2(t, εζ)

+
1

A0

[BT −KBt]
√
L(t, γ2)θ(γ) +

1

A0

[CtT −KCtt]
√
L(t, ζ2)θ(ζ)

+
1

2A0

[DT −KDt]
(√

L(t, ε2)
√
L(t, ζ2)θ(ε)θ(ζ)− L(t, εζ)

)
+

1

A0

[ET −KEt]L(t, γ2)θ2(γ) +
1

A0

[FtT −KFtt]L(t, ζ2)θ2(ζ)

+
1

2A0

[GT −KGt]
√
L(t, γ2)θ(γ)

(√
L(t, ε2)

√
L(t, ζ2)θ(ε)θ(ζ)− L(t, εζ)

)
+

1

4A0

[HT −KHt]
(√

L(t, ε2)
√
L(t, ζ2)θ(ε)θ(ζ)− L(t, εζ)

)2

,

where we observe that

E[Pc(θ(γ), θ(ε), θ(ζ))] = P0T −KP0t.
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It follows that

Pc(θ(γ), θ(ε), θ(ζ))

=[P0T −KP0t]−
1

A0

[ET −KEt]Q1(t, γ)

− 1

A0

[FtT −KFtt]Q1(t, ζ)− 1

A0

[HT −KHt]Q2(t, εζ)

− 1

2A0

[DT −KDt]L(t, εζ) +
1

4A0

[HT −KHt]L
2
1(t, εζ)

+
1

A0

(
[BT −KB(t)]

√
L(t, γ2)− 1

2
[GT −KGt]

√
L(t, γ2)L(t, εζ)

)
θ(γ)

+
1

A0

[CtT −KCtt]
√
L(t, ζ2)θ(ζ)

+
1

2A0

(
[DT −KDt]− [HT −KHt]L(t, εζ)

)√
L(t, ε2)

√
L(t, ζ2)θ(ε)θ(ζ)

+
1

A0

[ET −KE(t)]L(t, γ2)θ2(γ) +
1

A0

[FtT −KFtt]L(t, ζ2)θ2(ζ)

+
1

2A0

[GT −KGt]
√
L(t, γ2)

√
L(t, ε2)

√
L(t, ζ2)θ(γ)θ(ε)θ(ζ)

+
1

4A0

[HT −KHt]L(t, ε2)L(t, ζ2)θ2(ε)θ2(ζ).

Denoting the coefficients of the function Pc respectively by {A,B,C,D,E, F,G,H} ∈

R8, we may write this in a more convenient fashion as

Pc(x1, x2, x3) = A+Bx1 + Cx3 +Dx2x3 + Ex2
1 + Fx2

3 +Gx1x2x3 +Hx2
2x

2
3.

From this, it follows that

ZBC(0, t, T,K) =

∫ ∫ ∫
Pc(x1,x2,x3)≥0

Pc(x1, x2, x3)D3(x1, x2, x3)dx3dx2dx1,

where D3 denotes the probability density of the trivariate standard normal distribution,

that is,

D3(x1, x2, x3) :=
exp [w1/2w2]

(2π)3/2
√
w2

,

where

w1 = x2
1(ρ2

23−1)+x2
2(ρ2

13−1)+x2
3(ρ2

12−1)+2[x1x2(ρ12−ρ13ρ23)+x1x3(ρ13−ρ12ρ23)+x2x3(ρ23−ρ12ρ13)]
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and w2 = 1 − (ρ2
12 + ρ2

13 + ρ2
23) + 2ρ12ρ13ρ23. For put options, letting Pp = −Pc, it

follows that

ZBP (0, t, T,K) =

∫ ∫ ∫
Pp(x1,x2,x3)≥0

Pp(x1, x2, x3)D3(x1, x2, x3)dx3dx2dx1.

Swaption

We are able to express the Swaption pricing formula in the following way:

Ztt − ZtTb −K
b∑

i=a+1

τiZtTi

=
(
At − ATb −K

b∑
i=a+1

τiATi

)
+
(
Bt −Btn −K

b∑
i=a+1

τiBTi

)
J1(t, γ)

+
(
Ctt − CtTb −K

b∑
i=a+1

τiCtTi

)
J1(t, ζ) +

(
Dt −DTb −K

b∑
i=a+1

τiDTi

)
J2(t, εζ)

+
(
Et − ETb −K

b∑
i=a+1

τiETi

)(
J2

1 (t, γ)−Q1(t, γ)
)

+
(
Ftt − FtTb −K

b∑
i=a+1

τiFtTi

)(
J2

1 (t, ζ)−Q1(t, ζ)
)

+
(
Gt −GTb −K

b∑
i=a+1

τiGTi

)
J1(t, γ)J2(t, εζ)

+
(
Ht −HTb −K

b∑
i=a+1

τiHTi

)(
J2

2 (t, εζ)−Q2(t, εζ)
)
.

Therefore, a function for the European payer Swaption defined by

PPS(θ(γ), θ(ε), θ(ζ)) := Ztt − ZtTb −K
b∑

i=a+1

τiZtTi ,
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can be expressed as

PPS(θ(γ), θ(ε), θ(ζ))

=
(
P0t − P0Tb −K

b∑
i=a+1

τiP0Ti

)
− 1

A0

(
Et − ETb −K

b∑
i=a+1

τiETi

)
Q1(t, γ)

− 1

A0

(
Ftt − FtTb −K

b∑
i=a+1

τiFtTi

)
Q1(t, ζ)− 1

A0

(
Ht −HTb −K

b∑
i=a+1

τiHTi

)
Q2(t, εζ)

− 1

2A0

(
D1(t)−DTb −K

b∑
i=a+1

τiDTi

)
L(t, εζ) +

1

4A0

(
H1(t)−HTb −K

b∑
i=a+1

τiHTi

)
L2

1(t, εζ)

+
1

A0

[(
Bt −BTb −K

b∑
i=a+1

τiBTi

)
− 1

2

(
Gt −GTb −K

b∑
i=a+1

τiGTi

)
L(t, εζ)

]√
L(t, γ2)θ(γ)

+
1

A0

(
Ctt − CtTb −K

b∑
i=a+1

τiCtTi

)√
L(t, ζ2)θ(ζ) +

1

2A0

[(
Dt −DTb −K

n∑
i=1

τiD1(Ti)
)

−
(
Ht −HTb −K

b∑
i=a+1

τiHTi

)
L(t, εζ)

]√
L(t, ε2)

√
L(t, ζ2)θ(ε)θ(ζ)

+
1

A0

(
Et − ETb −K

b∑
i=a+1

τiETi

)
L(t, γ2)θ2(γ) +

1

A0

(
Ftt − FtTb −K

b∑
i=a+1

τiFtTi

)
L(t, ζ2)θ2(ζ)

+
1

2A0

(
Gt −GTb −K

b∑
i=a+1

τiGTi

)√
L(t, γ2)

√
L(t, ε2)

√
L(t, ζ2)θ(γ)θ(ε)θ(ζ)

+
1

4A0

(
Ht −HTb −K

b∑
i=a+1

τiHTi

)
L(t, ε2)L(t, ζ2)θ2(ε)θ2(ζ),

where we observe that

E[PPS(θ(γ), θ(ε), θ(ζ))] = P0t − P0Tb −K
b∑

i=a+1

τiP0Ti .

Similarly, denoting the coefficients of the function Pc respectively by

{A∗, B∗, C∗, D∗, E∗, F ∗, G∗, H∗} ∈ R8, we write this as

PPS(x1, x2, x3) = A∗ +B∗x1 + C∗x3 +D∗x2x3 + E∗x2
1 + F ∗x2

3 +G∗x1x2x3 +H∗x2
2x

2
3,

which is the same expression as the European bond call option, only with different

coefficients. Applying the expectation rule, we express the initial price of the European
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payer Swaption with the nominal N = 1 as

PS(0, T , τ, 1, K) =

∫ ∫ ∫
Pc(x1,x2,x3)≥0

PPS(x1, x2, x3)D3(x1, x2, x3)dx3dx2dx1.

4.5.2 Two-distribution functions Third Chaos Models

European call/put option

Case 1. γ ≡ ζ

Assuming that γ ≡ ζ in the Factorizable Third Chaos Model, we are able to simplify

the model slightly, so that it has two normal distribution functions:

Pc(x1, x2) = A+ (B + C)x1 +Dx1x2 + (E + F )x2
1 +Gx2

1x2 +Hx2
1x

2
2.

Then, we find that the call option pricing formula is given by

ZBC(0, t, T,K) =

∫ ∫
Pc(x1,x2)≥0

Pc(x1, x2)D2(x1, x2)dx2dx1,

where D2 is the bivariate standard normal distribution density, i.e.

D2(x1, x2) :=
1

2π
√

1− ρ2
exp

[
− x2

1 − 2ρx1x2 + x2
2

2(1− ρ2)

]
.

The integrand can be computed by checking that the condition Pc(x1, x2) ≥ 0 holds.

If we assume that γ ≡ ζ ≡ 1, we have that

L(t, γ2) = L(t, ζ2) = t, L(t, εζ) =

∫ t

0

εs1ds1, θ(γ) = θ(ζ) =
Wt√
t
.

Case 2. γ ≡ ε

Assuming that γ ≡ ε in the Factorizable Third Chaos Model, we are again able to

simplify the model slightly, so that we have two normal distribution functions:

Pc(x1, x3) = A+Bx1 + Cx3 +Dx1x3 + Ex2
1 + Fx2

3 +Gx2
1x3 +Hx2

1x
2
3.
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Case 3. ε ≡ ζ

Assuming that ε ≡ ζ in the Factorizable Third Chaos Model, as expected, we are again

able to simplify the model to have two normal distribution functions:

Pc(x1, x2) = A+Bx1 + Cx2 + Ex2
1 + (D + F )x2

2 +Gx1x
2
2 +Hx4

2.

4.5.3 Two-variable Third Chaos Models

If we suppose that ζ ≡ 1 in the Factorizable Third Chaos Model, we are able to slightly

simplify the model, so that

L(t, ζ2) = t, L(t, εζ) =

∫ t

0

εs1ds1, θ(ζ) =
Wt√
t
.

However, the call option function still has three variables:

Pc(x1, x2, x3) = A+Bx1 + Cx3 +Dx2x3 + Ex2
1 + Fx2

3 +Gx1x2x3 +Hx2
2x

2
3.

4.5.4 One-distribution function Third Chaos Models

European call/put option

Assuming further that γ ≡ ε ≡ ζ in the Factorizable Third Chaos Model, we are able

to simplify the model, so that it has a degree four polynomial form with respect to a

unique normally distributed random variable:

Pc(x) = A+ (B + C)x+ (D + E + F )x2 +Gx3 +Hx4.

Therefore, in this case we are able to deduce that the option pricing form is given by

ZBC(0, t, T,K) =
1√
2π

∫
Pc(θ)≥0

Pc(θ)e−
θ2

2 dθ.
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Note here that, recalling the notations used, we can express the function Pc as follows:

Pc(x) =[P0T −KP0t]−
1

A0

[ET −KEt]Q1(t, γ)− 1

A0

[FtT −KFtt]Q1(t, ζ)

− 1

A0

[HT −KHt]Q2(t, εζ)

− 1

2A0

[DT −KDt]L(t, γ2) +
1

4A0

[HT −KHt]L
2(t, γ2)

+
1

A0

(
[BT −KBt]−

1

2
[GT −KGt]L(t, γ2) +

1

A0

[CtT −KCtt]
)√

L(t, γ2)x

+
1

A0

(1

2
[DT −KDt]−

1

2
[HT −KHt]L(t, γ2) + [ET −KEt] + [FtT −KFtt]

)
L(t, γ2)x2

+
1

2A0

[GT −KGt]L
3
2 (t, γ2)x3

+
1

4A0

[HT −KHt]L
2(t, γ2)x4.

Classifications

We are able to investigate the option price further by checking the roots of the function

Pc. Let us first simplify the notation by denoting the coefficients such that

Pc(x) = Ã0 + Ã1x+ Ã2x
2 + Ã3x

3 + Ã4x
4.

We define the roots of the function Pc to be {x1, x2, x3, x4} where −∞ < x1 ≤ x2 ≤

x3 ≤ x4 <∞, and the number of distinct roots by n ∈ {0, 1, 2, 3, 4}. Recall that

ZBC(0, t, T,K) =
1√
2π

∫
Pc(θ)≥0

Pc(θ)e−
θ2

2 dθ.

We now can describe all the different cases. To start, if {n = 4} ∩ {Ã4 > 0}, we have

that

ZBC(0, t, T,K) =
1√
2π

[ ∫ x1

−∞
Pc(θ)e−

θ2

2 dθ +

∫ x3

x2

Pc(θ)e−
θ2

2 dθ +

∫ ∞
x4

Pc(θ)e−
θ2

2 dθ

]
.

If {n = 4} ∩ {Ã4 < 0}, we have that

ZBC(0, t, T,K) =
1√
2π

[ ∫ x2

x1

Pc(θ)e−
θ2

2 dθ +

∫ x4

x3

Pc(θ)e−
θ2

2 dθ

]
.
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If {n = 3} ∩ {Ã4 > 0} ∩ {Pc
(
x2+x3

2

)
> 0}, and Pc has roots {x1, x2, x3}, we have that

ZBC(0, t, T,K) =
1√
2π

[ ∫ x1

−∞
Pc(θ)e−

θ2

2 dθ +

∫ ∞
x2

Pc(θ)e−
θ2

2 dθ

]
.

If {n = 3} ∩ {Ã4 > 0} ∩ {Pc
(
x2+x3

2

)
< 0}, and Pc has roots {x1, x2, x3}, we have that

ZBC(0, t, T,K) =
1√
2π

[ ∫ x2

−∞
Pc(θ)e−

θ2

2 dθ +

∫ ∞
x3

Pc(θ)e−
θ2

2 dθ

]
.

If {n = 3} ∩ {Ã4 < 0} ∩ {Pc
(
x2+x3

2

)
> 0}, and Pc has roots {x1, x2, x3}, we have that

ZBC(0, t, T,K) =
1√
2π

∫ x3

x2

Pc(θ)e−
θ2

2 dθ.

If {n = 3} ∩ {Ã4 < 0} ∩ {Pc
(
x2+x3

2

)
< 0}, and Pc has roots {x1, x2, x3}, we have that

ZBC(0, t, T,K) =
1√
2π

∫ x2

x1

Pc(θ)e−
θ2

2 dθ.

If {n = 3} ∩ {Ã4 = 0} ∩ {Ã3 > 0}, and Pc has roots {x1, x2, x3}, we have that

ZBC(0, t, T,K) =
1√
2π

[ ∫ x2

x1

Pc(θ)e−
θ2

2 dθ +

∫ ∞
x3

Pc(θ)e−
θ2

2 dθ

]
.

If {n = 3} ∩ {Ã4 = 0} ∩ {Ã3 < 0}, and Pc has roots {x1, x2, x3}, we have that

ZBC(0, t, T,K) =
1√
2π

[ ∫ x1

−∞
Pc(θ)e−

θ2

2 dθ +

∫ x3

x2

Pc(θ)e−
θ2

2 dθ

]
.

If {n = 2} ∩ {Ã4 > 0}, and Pc has roots {x1, x2}, we have that

ZBC(0, t, T,K) =
1√
2π

[ ∫ x1

−∞
Pc(θ)e−

θ2

2 dθ +

∫ ∞
x2

Pc(θ)e−
θ2

2 dθ

]
.

If {n = 2} ∩ {Ã4 < 0}, and Pc has roots {x1, x2}, we have that

ZBC(0, t, T,K) =
1√
2π

∫ x2

x1

Pc(θ)e−
θ2

2 dθ.

If {n = 2} ∩ {Ã4 = 0} ∩ {Ã3 > 0}, and Pc has roots {x1, x2}, we have that

ZBC(0, t, T,K) =
1√
2π

∫ ∞
x1

Pc(θ)e−
θ2

2 dθ.
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If {n = 2} ∩ {Ã4 = 0} ∩ {Ã3 < 0}, and Pc has roots {x1, x2}, we have that

ZBC(0, t, T,K) =
1√
2π

∫ x2

−∞
Pc(θ)e−

θ2

2 dθ.

If {n = 2} ∩ {Ã4 = 0} ∩ {Ã3 = 0} ∩ {Ã2 > 0}, and Pc has roots {x1, x2}, we have that

ZBC(0, t, T,K) =
1√
2π

[ ∫ x1

−∞
Pc(θ)e−

θ2

2 dθ +

∫ ∞
x2

Pc(θ)e−
θ2

2 dθ

]
.

If {n = 2} ∩ {Ã4 = 0} ∩ {Ã3 = 0} ∩ {Ã2 < 0}, and Pc has roots {x1, x2}, we have that

ZBC(0, t, T,K) =
1√
2π

[ ∫ x2

x1

Pc(θ)e−
θ2

2 dθ

]
.

If {n = 0 or 1} ∩ {Ã4 > 0}, we have that

ZBC(0, t, T,K) = (KP0t − P0T )+.

If {n = 0 or 1} ∩ {Ã4 < 0}, we have that

ZBC(0, t, T,K) = 0.

If {n = 1} ∩ {Ã4 = 0} ∩ {Ã3 > 0}, and Pc has roots {x1, x2}, we have that

ZBC(0, t, T,K) =
1√
2π

∫ ∞
x1

Pc(θ)e−
θ2

2 dθ.

If {n = 1} ∩ {Ã4 = 0} ∩ {Ã3 < 0}, and Pc has roots {x1, x2}, we have that

ZBC(0, t, T,K) =
1√
2π

∫ x1

−∞
Pc(θ)e−

θ2

2 dθ.

If {n = 0 or 1} ∩ {Ã4 = 0} ∩ {Ã3 = 0} ∩ {Ã2 > 0}, we have that

ZBC(0, t, T,K) = (KP0t − P0T )+.

If {n = 0 or 1} ∩ {Ã4 = 0} ∩ {Ã3 = 0} ∩ {Ã2 < 0}, we have that

ZBC(0, t, T,K) = 0.
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If {n = 1} ∩ {Ã4 = 0} ∩ {Ã3 = 0} ∩ {Ã2 = 0} ∩ {Ã1 > 0}, we have that

ZBC(0, t, T,K) =
1

V0

√
2π

∫ ∞
x1

Pc(θ)e−
θ2

2 dθ.

If {n = 1} ∩ {Ã4 = 0} ∩ {Ã3 = 0} ∩ {Ã2 = 0} ∩ {Ã1 < 0}, we have that

ZBC(0, t, T,K) =
1√
2π

∫ x1

−∞
Pc(θ)e−

θ2

2 dθ.

At this point, we wish to describe the possible outcomes for the bond option. In order

to do this, we first make the following definitions: For {a, b} ∈ R2,

f0(a, b) :=
1√
2π

∫ b

a

e−
θ2

2 dθ, f1(a, b) :=
1√
2π

∫ b

a

θe−
θ2

2 dθ, f2(a, b) :=
1√
2π

∫ b

a

θ2e−
θ2

2 dθ,

f3(a, b) :=
1√
2π

∫ b

a

θ3e−
θ2

2 dθ and f4(a, b) :=
1√
2π

∫ b

a

θ4e−
θ2

2 dθ.

We can then conclude that the bond option can be described as follows:

If {n = 4} ∩ {Ã4 > 0}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãi

(
fi(−∞, x1) + fi(x2, x3) + fi(x4,∞)

)
.

If {n = 4} ∩ {Ã4 < 0}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãi

(
fi(x1, x2) + fi(x3, x4)

)
.

If {n = 3} ∩ {Ã4 > 0} ∩ {Pc
(
x2+x3

2

)
> 0}, and Pc has roots {x1, x2, x3}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãi

(
fi(−∞, x1) + fi(x2,∞)

)
.

If {n = 3} ∩ {Ã4 > 0} ∩ {Pc
(
x2+x3

2

)
< 0}, and Pc has roots {x1, x2, x3}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãi

(
fi(−∞, x2) + fi(x3,∞)

)
.

83



If {n = 3} ∩ {Ã4 < 0} ∩ {Pc
(
x2+x3

2

)
> 0}, and Pc has roots {x1, x2, x3}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãifi(x2, x3).

If {n = 3} ∩ {Ã4 < 0} ∩ {Pc
(
x2+x3

2

)
< 0}, and Pc has roots {x1, x2, x3}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãifi(x1, x2).

If {n = 3} ∩ {Ã4 = 0} ∩ {Ã3 > 0}, and Pc has roots {x1, x2, x3}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãi

(
fi(x1, x2) + fi(x3,∞)

)
.

If {n = 3} ∩ {Ã4 = 0} ∩ {Ã3 < 0}, and Pc has roots {x1, x2, x3}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãi

(
fi(−∞, x1) + fi(x2, x3)

)
.

If {n = 2} ∩ {Ã4 > 0}, having roots {x1, x2}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãi

(
fi(−∞, x1) + fi(x2,∞)

)
.

If {n = 2} ∩ {Ã4 < 0}, having roots {x1, x2}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãifi(x1, x2).

If {n = 2} ∩ {Ã4 = 0} ∩ {Ã3 > 0}, and Pc has roots {x1, x2}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãifi(x1,∞).

If {n = 2} ∩ {Ã4 = 0} ∩ {Ã3 < 0}, and Pc has roots {x1, x2}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãifi(−∞, x2).
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If {n = 2} ∩ {Ã4 = 0} ∩ {Ã3 = 0} ∩ {Ã2 > 0}, and Pc has roots {x1, x2}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãi

(
fi(−∞, x1) + fi(x2,∞)

)
.

If {n = 2} ∩ {Ã4 = 0} ∩ {Ã3 = 0} ∩ {Ã2 < 0}, and Pc has roots {x1, x2}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãifi(x1, x2).

If {n = 0 or 1} ∩ {Ã4 > 0}, we have that

ZBC(0, t, T,K) = (KP0t − P0T )+.

If {n = 0 or 1} ∩ {Ã4 < 0}, we have that

ZBC(0, t, T,K) = 0.

If {n = 1} ∩ {Ã4 = 0} ∩ {Ã3 > 0}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãifi(x1,∞).

If {n = 1} ∩ {Ã4 = 0} ∩ {Ã3 < 0}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãifi(−∞, x1).

If {n = 0 or 1} ∩ {Ã4 = 0} ∩ {Ã3 = 0} ∩ {Ã2 > 0}, we have that

ZBC(0, t, T,K) = (KP0t − P0T )+.

If {n = 0 or 1} ∩ {Ã4 = 0} ∩ {Ã3 = 0} ∩ {Ã2 < 0}, we have that

ZBC(0, t, T,K) = 0.

If {n = 1} ∩ {Ã4 = 0} ∩ {Ã3 = 0} ∩ {Ã2 = 0} ∩ {Ã1 > 0}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãifi(x1,∞).

Finally, if {n = 1} ∩ {Ã4 = 0} ∩ {Ã3 = 0} ∩ {Ã2 = 0} ∩ {Ã1 < 0}, we have that

ZBC(0, t, T,K) =
4∑
i=0

Ãifi(−∞, x1).
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Swaption

Assuming that γ ≡ ε ≡ ζ in the Factorizable Third Chaos Model, we are able to

simplify the method to price swaptions too. In this case, it has a unique normal

distribution function:

PPS(x) = A∗ + (B∗ + C∗)x+ (D∗ + E∗ + F ∗)x2 +G∗x3 +H∗x4.

Recalling the notations given above, the function PPS can be expressed in the following

way:

PPS(x) =
(
P0t − P0Tb −K

b∑
i=a+1

τiP0Ti

)
− 1

A0

(
Et − ETb −K

b∑
i=a+1

τiETi

)
Q1(t, γ)

− 1

A0

(
Ftt − FtTb −K

b∑
i=a+1

τiFtTi

)
Q1(t, ζ)− 1

A0

(
Ht −HTb −K

b∑
i=a+1

τiHTi

)
Q2(t, εζ)

− 1

2A0

(
Dt −DTb −K

b∑
i=a+1

τiDTi

)
L(t, γ2) +

1

4A0

(
Ht −HTb −K

b∑
i=a+1

τiHTi

)
L2(t, γ2)

+
1

A0

[(
Bt −BTb −K

b∑
i=a+1

τiBTi

)
− 1

2

(
Gt −GTb −K

b∑
i=a+1

τiGTi

)
L(t, γ2)

+
(
Ctt − CtTb −K

b∑
i=a+1

τiCtTi

)]√
L(t, γ2)x

+
1

A0

[1

2

(
Dt −DTb −K

b∑
i=a+1

τiDTi

)
− 1

2

(
Ht −HTb −K

b∑
i=a+1

τiHTi

)
L(t, γ2)

+
(
Et − ETb −K

b∑
i=a+1

τiETi

)
+
(
Ftt − FtTb −K

b∑
i=a+1

τiFtTi

)]
L(t, γ2)x2

+
1

2A0

(
Gt −GTb −K

b∑
i=a+1

τiGTi

)
L

3
2 (t, γ2)x3

+
1

4A0

(
Ht −HTb −K

b∑
i=a+1

τiHTi

)
L2(t, γ2)x4.
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where we have that

E[PPS(x)] = P0t − P0Tb −K
b∑

i=a+1

τiP0Ti .

Therefore, we are able to deduce that the swaption pricing form is given by

PS(0, T , τ, 1, K) =
1√
2π

∫
PPS(θ)≥0

PPS(θ)e−
θ2

2 dθ,

where the function PPS has degree-four polynomial form with respect to the nor-

mally distributed random variable θ. We are able to investigate this further, again

by checking the roots of the function PPS. However we can simply use the classifi-

cation which we have outlined above for the bond option, applying the coefficients

{A∗, B∗, C∗, D∗, E∗, F ∗, G∗, H∗}, instead of using {A,B,C,D,E, F,G,H}.

4.6 One-variable Chaos Models

In this section, we suggest Chaos Models in which the random variable X∞ ∈ L2 is

formed from deterministic functions φ̂1, φ̂2, . . . of only one variable, i.e.,

X∞ =

∫ ∞
0

[
φ̂1(s) +

∫ s

0

φ̂2(s)dWs1 +

∫ s

0

∫ s1

0

φ̂3(s)dWs2dWs1 + · · ·
]
dWs.

We call this expansion “One-variable Chaos Expansion” and corresponding Chaos

Model “One-variable Chaos Model”. Applying the expression (4.1.1) we infer that

σs =R̂1(t, s) + R̂2(t, s)

∫ s

t

dWs1 + R̂3(t, s)

∫ s

t

∫ s1

t

dWs2dWs1 + · · ·

=R̂1(t, s) + R̂2(t, s)(Ws −Wt) +
1

2
R̂3(t, s)

[
(Ws −Wt)

2 − (s− t)
]

+ · · · ,
(4.6.1)

where we define R̂n(t, s) := Rn(t, s, 1, . . . , 1) for all n ∈ N, i.e.,

R̂n(t, s) =φ̂n(s) + φ̂n+1(s)

∫ t

0

dWsn + φ̂n+2(s)

∫ t

0

∫ sn

0

dWsn+1dWsn + · · ·

=φ̂n(s) + φ̂n+1(s)Wt + φ̂n+2(s)
1

2
(W 2

t − t) + φ̂n+3(s)
(1

6
W 3
t −

1

2
tWt

)
· · · ,
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because we have that∫ t

0

dWsn = Wt,∫ t

0

∫ sn

0

dWsn+1dWsn =

∫ t

0

WsdWs =
1

2
(W 2

t − t),∫ t

0

∫ sn

0

∫ sn+1

0

dWsn+2dWsn+1dWsn =

∫ t

0

1

2
(W 2

s − s)dWs =
1

6
W 3
t −

1

2
tWt.

As we already observed above, because each function R̂n is Ft-measurable, it follows

from the Itô isometry and orthogonality that

Et[σ2
s ] =R̂2

1(t, s) + R̂2
2(t, s)

∫ s

t

ds1 + R̂2
3(t, s)

∫ s

t

∫ s1

t

ds2ds1 + · · ·

=R̂2
1(t, s) + (s− t)R̂2

2(t, s) +
1

2
(s− t)2R̂2

3(t, s) + · · · .
(4.6.2)

Therefore, we obtain that

Vt =

∫ ∞
t

(
R̂2

1(t, s) + (s− t)R̂2
2(t, s) +

1

2
(s− t)2R̂2

3(t, s) + · · ·
)
ds

and

ZtT =

∫ ∞
T

(
R̂2

1(t, s) + (s− t)R̂2
2(t, s) +

1

2
(s− t)2R̂2

3(t, s) + · · ·
)
ds.

Consequently, the One-variable Second Chaos Model expresses the state price density

via a quadratic form of the Brownian Motion Wt, while the One-variable Third Chaos

Model does the same by a degree four polynomial form, and One-variable Fourth Chaos

Model does it by a degree six polynomial form. Investigating the models further we

find that

(4.6.3)

Dt

[
Et[σ2

s ]
]

= 2R̂1(t, s)R̂2(t, s) + 2(s− t)R̂2(t, s)R̂3(t, s) + (s− t)2R̂3(t, s)R̂4(t, s) + · · · ,

which forms the risk-adjusted volatility and the market price of risk.
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4.6.1 One-variable Second Chaos Model

Let us suppose that γt ≡ 1 for all t ≥ 0 in the Factorizable Second Chaos Model. Then

we have that

R̂t = Wt and Q̂t = t,

which yields that for 0 ≤ t ≤ T <∞,

(4.6.4) Vt = At +BtWt + Ct(W
2
t − t) and ZtT = AT +BTWt + CT (W 2

t − t),

where

At =

∫ ∞
t

(α2
s + sβ2

s )ds, Bt = 2

∫ ∞
t

αsβsds and Ct =

∫ ∞
t

β2
sds.

Note here using (4.4.3) we may also express these variables in the following way:

Vt = P0tA0 +BtWt + Ct(W
2
t − t) and ZtT = P0TA0 +BTWt + CT (W 2

t − t).

Therefore, we may make the interpretation that the state price density Vt and also the

variable ZtT under the One-variable Second Chaos Model are non-central chi-squared

distributed respectively with mean P0tA0 and P0TA0. The expression (4.1.11) gives,

for 0 ≤ t ≤ T <∞, that

V̂tT =
2
∫∞
T
αsβsds+ 2

∫∞
T
β2
sdsWt∫∞

T

(
α2
s + sβ2

s

)
ds+ 2

∫∞
T
αsβsdsWt +

∫∞
T
β2
sds(W

2
t − t)

.

European call/put option

From expression (4.6.1) we obtain that

ZtT −KZtt = (P0T −KP0t)A0 + (BT −KBt)Wt + (CT −KCt)(W 2
t − t).

The call option price is formulated by the expectation rule as follows:

ZBC(0, t, T,K) =
1√
2π

∫
Pc(θ)≥0

Pc(θ)e−
θ2

2 dθ,
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where

Pc(θ) = Â+ B̂θ + Ĉθ2, Â = P0T −KP0t −
1

A0

(CT −KCt)t,

B̂ =
1

A0

(BT −KBt)
√
t, Ĉ =

1

A0

(CT −KCt)t and θ =
Wt√
t
.

Therefore, we find that the European bond option under the One-variable Second

Chaos Model is also non-central chi-squared with mean P0T −KP0t. Note that we are

able to investigate further by applying the same classification as for the Factorizable

Second Chaos Models, that is, considering by the roots of the quadratic functions Pc(θ)

and Pp(θ).

Swaption

The payer swaption price is formulated by the expectation rule as following:

PS(0, T , τ, 1, K) =
1√
2π

∫
PPS(θ)≥0

PPS(θ)e−
θ2

2 dθ,

where PPS(θ) = Ã+ B̃θ + C̃θ2,

θ =
Wt√
t
, Ã =

(
P0t − P0Tb −K

b∑
i=a+1

τiP0Ti

)
− 1

A0

(
Ct − CTb −K

b∑
i=a+1

τiCTi

)
t,

B̃ =
1

A0

(
Bt −BTb −K

b∑
i=a+1

τiBTi

)√
t and C̃ =

1

A0

(
Ct − CTb −K

b∑
i=a+1

τiCTi

)
t.

Again, here that we are able to investigate further in the same way as in the Factorizable

Second Chaos Models, by considering the roots of the function PPS(θ). Therefore we

obtain the same distributions for the derivatives in the One-variable Second Chaos

Model as in the Factorizable Second Chaos Model without loss of generality.

4.6.2 One-variable Third Chaos Model

Assuming that γ ≡ ζ ≡ ε ≡ 1 in the one-distribution Third Chaos Model, we have that

X∞ =

∫ ∞
0

(
αs +

∫ s

0

βsdWs1 +

∫ s

0

∫ s1

0

δsdWs2dWs1

)
dWs

=

∫ ∞
0

(
αs + βsWs +

1

2
δs(W

2
s − s)

)
dWs.
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Because from the definitions (4.5.2) we may infer that

J1(t, γ) =Wt, J2(t, εζ) =
1

2
(W 2

t − t), Q1(t, γ) = t and Q2(t, εζ) =
1

2
t2,

we can then simplify expression (4.5.1) as

ZtT =AT + (BT + CtT )Wt +
(1

2
DT + ET + FtT

)
(W 2

t − t)

+
1

2
GTWt(W

2
t − t) +HT

[(1

2
(W 2

t − t)
)2

− 1

2
t2
]
,

(4.6.5)

where we have that

AT =

∫ ∞
T

(
α2
s + sβ2

s +
1

2
s2δ2

s

)
ds, BT = 2

∫ ∞
T

αsβsds, CtT = 2

∫ ∞
T

βsδs(s− t)ds,

DT =2

∫ ∞
T

αsδsds, ET =

∫ ∞
T

β2
sds,

FtT =

∫ ∞
T

δ2
s(s− t)ds, GT = 2

∫ ∞
T

βsδsds and HT =

∫ ∞
T

δ2
sds.

Note here that we have from (4.5.3) that

(4.6.6) AT = P0TA0, T ≥ 0.

This may be simplified as follows:

ZtT =P0TA0 −
(1

2
DT + ET + FtT

)
t− 1

4
HT t

2

+
(
BT + CtT −

1

2
GT t

)
Wt +

(1

2
DT + ET + FtT −

1

2
HT t

)
W 2
t +

1

2
GTW

3
t +

1

4
HTW

4
t .

The state price density is then given by

Vt =P0tA0 −
(1

2
Dt + Et + Ftt

)
t− 1

4
Htt

2

+
(
Bt + Ctt −

1

2
Gtt
)
Wt +

(1

2
Dt + Et + Ftt −

1

2
Htt
)
W 2
t +

1

2
GtW

3
t +

1

4
HtW

4
t .

Therefore, we have that both the state price density Vt and the variable ZtT are degree

four polynomial forms of Brownian Motion respectively with mean P0tA0 and P0TA0

in the One-variable Third Chaos Model. The One-variable Third Chaos Model gives

us that

L(t, γ2) = L(t, ζ2) = L(t, ε2) = L(t, εζ) = t, θ(γ) = θ(ε) = θ(ζ) =
Wt√
t
,

91



which means that we have a univariate normal density for the computation of the

option price.

European call/put bond option

We are able to express the function Pc in the following way:

Pc(x) =PtT −KPtt −
1

A0

[1

2
(DT −KDt) + ET −KEt + FtT −KFtt

]
t

− 1

4A0

(HT −KHt)t
2

+
1

A0

[
BT −KBt + CtT −KCtt −

1

2
(GT −KGt)t

]√
tx

+
1

A0

[1

2
(DT −KDt) + ET −KEt + FtT −KFtt −

1

2
(HT −KHt)t

]
tx2

+
1

2A0

(GT −KGt)t
3
2x3 +

1

4A0

(HT −KHt)t
2x4,

with

E[Pc(x)] = PtT −KPtt.
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Swaption

Similarly, we are able to express the function PPS as follows:

PPS(x) =P0t − P0Tb −K
b∑

i=a+1

τiP0Ti −
1

A0

[1

2

(
Dt −DTb −K

b∑
i=a+1

τiDTi

)
+ Et − ETb −K

b∑
i=a+1

τiETi + Ftt − FtTb −K
b∑

i=a+1

τiFtTi

]
t

− 1

4A0

(
Ht −HTb −K

b∑
i=a+1

τiHTi

)
t2

+
1

A0

[
Bt −BTb −K

b∑
i=a+1

τiBTi + Ctt − CtTb −K
b∑

i=a+1

τiCtTi

− 1

2

(
Gt −GTb −K

b∑
i=a+1

τiGTi

)
t
]√

tx

+
1

A0

[1

2

(
Dt −DTb −K

b∑
i=a+1

τiDTi

)
+ Et − ETb −K

b∑
i=a+1

τiETi

+ Ftt − FtTb −K
b∑

i=a+1

τiFtTi −
1

2

(
Ht −HTb −K

b∑
i=a+1

τiHTi

)
t
]
tx2

+
1

2A0

(
Gt −GTb −K

b∑
i=a+1

τiGTi

)
t

3
2x3 +

1

4A0

(
Ht −HTb −K

b∑
i=a+1

τiHTi

)
t2x4,

with

E[PPS(x)] = P0t − P0Tb −K
b∑

i=a+1

τiP0Ti .

Therefore we obtain the same distributions for the derivatives in the One-variable Third

Chaos Model as in the One-distribution Third Chaos Model without loss of generality.

4.7 Specification of the chaos coefficients

In this section, we apply descriptive forms to the chaos coefficients, which maintain

the flexibility of the chaos functions. In addition, these forms enable the corresponding

yield curve to have a humped shape.
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4.7.1 The descriptive form

The exponential-polynomial family was introduced by Björk and Christensen ([12])

and is given by:

f0T =
n∑
i=1

( ki∑
j=0

bijT
j
)
e−ciT for some constants bij and ci.

The following three families can be considered as special cases of the exponential-

polynomial family:

• f0T = b0 + [b1 + b2T ]e−c1T (Nelson and Siegel, [64]).

• f0T = b0 + [b1 + b2T ]e−c1T + b3Te
−c2T (Svensson, [86]).

• f0T = b0 +
∑4

i=1 bie
−ciT (Cairns, [21]).

Here, b0 and ci for i = 1, . . . , 4 are positive constants, and the exponential parameters

are fixed over the calibration dates in the Cairns form. As is claimed in [64] and [86],

the asymptote for the instantaneous forward rate is determined by the positive constant

b0, in other words,

lim
T→∞

f0T = b0

for all of the above special cases.

4.7.2 Specification of the deterministic function h

Let us first recall the definition of the function hT :

hT = f0TP0TV0, T ≥ 0.

Also recall that this function is always positive in the Chaotic Approach. However,

because E[σ2
T ] = f0TP0TV0, we may write

f0T =
hT∫∞

T
hsds

, T ≥ 0.
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The denominator is a decreasing function with respect to T > 0, because h is a positive

function. Hence we would like the numerator to have the same features as the curve of

the instantaneous forward rate, i.e., monotonic, humped and S-shaped. Therefore we

may also apply the descriptive forms to the function h, for example:

hT =

{ [
(b1 + b2T )e−c1T

]2[
(b1 + b2T )e−c1T + b3se

−c2T
]2
.

In light of equation (4.1.3), we have in the Chaotic Approach that

hs = φ2
1(s) +

∫ s

0

φ2
2(s, s1)ds1 +

∫ s

0

∫ s1

0

φ2
3(s, s1, s2)ds2ds1 + · · · , s ≥ 0.

It follows that

f0T =
φ2

1(T ) +
∫ T

0
φ2

2(T, s1)ds1 +
∫ T

0

∫ s1
0
φ2

3(T, s1, s2)ds2ds1 + · · ·∫∞
T

[
φ2

1(s) +
∫ s

0
φ2

2(s, s1)ds1 +
∫ s

0

∫ s1
0
φ2

3(s, s1, s2)ds2ds1 + · · ·
]
ds
, T ≥ 0.

In particular, when all of the chaos coefficients are one-variable functions, so that

φ̂n(T ) := φn(T, s1, . . . , sn−1) for each positive integer n, we find that for T ≥ 0

hT =φ̂2
1(T ) + φ̂2

2(T )T + φ̂2
3(T )

1

2
T 2 + φ̂2

4(T )
1

6
T 3 + . . .

=
∞∑
i=1

φ̂2
i (T )

1

(i− 1)!
T i−1.

When we take φ̂i(T ) =
∑mi

j=1 bije
−cijT , where bij and cij are some constants, we obtain

that for T ≥ 0

hT =
∞∑
i=1

( mi∑
j=1

bije
−cijT

)2 1

(i− 1)!
T i−1

=
∞∑
i=1

( mi∑
j=1

b̃ije
−cijT

)2

T i−1 where b̃ij =
bij√

(i− 1)!
,

which may be compared with the Björk and Christensen descriptive form, because we

have that

f0T =

∑∞
i=1

(∑mi
j=1 b̃ije

−cijT
)2

T i−1∫∞
T

∑∞
i=1

(∑mi
j=1 b̃ije

−cijs
)2

si−1ds
, T ≥ 0.
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We observe here that limt→∞ ht = 0. However the instantaneous forward rate is ex-

pressed by the quotient form where the function ht is located in the numerator. So, it

is not immediately apparent that

lim
t→∞

f0t = 0.

4.7.3 Modelling the chaos coefficients

We now apply the descriptive form to all the chaos coefficients, not only to One-variable

Chaos Models. Let us define for the Factorizable Chaos Models that

φ1(s) = α(s), φ2(s, s1) = β(s)γ(s1), φ3(s, s1, s2) = δ(s)ε(s1)ζ(s2), · · · ,

for 0 ≤ sn · · · ≤ s2 ≤ s1 ≤ s <∞ where α, β, γ, δ, ε, ζ are deterministic functions. Then

we obtain the initial instantaneous forward rate curves can be modelled respectively

as follows: For T ≥ 0

f0T =
φ2

1(T )∫∞
T
φ2

1(s)ds
, (First Chaos Model).

f0T =
α2
T + β2

TT∫∞
T

[α2
s + β2

ss]ds
, (One-variable Second Chaos Model).

f0T =
α2
T + β2

T

∫ T
0
γ2
s1
ds1∫∞

T
[α2
s + β2

s

∫ s
0
γ2
s1
ds1]ds

, (Factorizable Second Chaos Model).

f0T =
α2
T + β2

TT + 1
2
δ2
TT

2∫∞
T

[α2
s + β2

ss+ 1
2
δ2
ss

2]ds
, (One-variable Third Chaos Model).

We list all possible choices of the chaos coefficients by the descriptive form. For the

higher order Chaos Models, we investigate all combinations of the forms having six

parameters and seven parameters. Note here that it is possible that all of the forms

given below belong to the First Chaos Model for the initial yield curve fitting, where

we have set M0s = φ2
1(s).

First Chaos Models

1. φ1(s) = b1e
−c1s (Exponential form, 2 parameters).
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2. φ1(s) = (b1 + b2s)e
−c1s (Nelson-Siegel Form, 3 parameters).

3. φ1(s) = (b1 + b2s)e
−c1s + b3se

−c2s (Svensson Form, 5 parameters).

One variable Second Chaos Models, 6 parameters, 2 functions

4. α(s) = (b1 + b2s)e
−c1s, β(s) = (b3 + b4s)e

−c2s.

One variable Second Chaos Models, 7 parameters, 2 functions

5. α(s) = b1e
−c1s, β(s) = (b2 + b3s)e

−c2s + b4se
−c3s.

6. α(s) = (b1 + b2s)e
−c1s + b3se

−c2s, β(s) = b4e
−c3s.

Factorizable Second Chaos Models, 6 parameters, 3 functions

7. α(s) = b1e
−c1s, β(s) = b2e

−c2s, γ(s) = (1 + b3s)e
−c3s.

8. α(s) = b1e
−c1s, β(s) = (b2 + b3s)e

−c2s, γ(s) = e−c3s.

9. α(s) = (b1 + b2s)e
−c1s, β(s) = b3e

−c2s, γ(s) = e−c3s.

Factorizable Second Chaos Models, 7 parameters, 3 functions

10. α(s) = b1e
−c1s, β(s) = (b2 + b3s)e

−c2s, γ(s) = (1 + b4s)e
−c3s.

11. α(s) = (b1 + b2s)e
−c1s, β(s) = b3e

−c2s, γ(s) = (1 + b4s)e
−c3s.

One variable Third Chaos Models, 6 parameters, 3 functions

12. α(s) = b1e
−c1s, β(s) = b2e

−c2s, δ(s) = b3e
−c3s.

One variable Third Chaos Models, 7 parameters, 3 functions

13. α(s) = b1e
−c1s, β(s) = b2e

−c2s, δ(s) = (b3 + b4s)e
−c3s.

14. α(s) = b1e
−c1s, β(s) = (b2 + b3s)e

−c2s, δ(s) = b4e
−c3s.
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15. α(s) = (b1 + b2s)e
−c1s, β(s) = b3e

−c2s, δ(s) = b4e
−c3s.

One-variable Third Chaos Model, 9 parameters, 3 functions

16. α(s) = (b1 + b2s)e
−c1s, β(s) = (b3 + b4s)e

−c2s, δ(s) = (b5 + b6s)e
−c3s.

One-distribution Third Chaos Models, 7 parameters, 4 functions

17. α(s) = b1e
−c1s, β(s) = b2e

−c2s, δ(s) = b3e
−c3s, γ(s) = ε(s) = η(s) = e−c4s.

18. α(s) = b1e
−c1s, β(s) = e−c2s, δ(s) = e−c3s, γ(s) = ε(s) = η(s) = (b2 +

b3s)e
−c4s.

One-distribution Third Chaos Model, 8 parameters, 4 functions

19. α(s) = (b1 + b2s)e
−c1s, β(s) = b3e

−c2s, δ(s) = b4e
−c3s, γ(s) = ε(s) = η(s) =

e−c4s.

The other Third Chaos Models, 7 parameters, 4 functions

20. α(s) = b1e
−c1s, β(s) = b2e

−c2s, γ(s) = e−c3s, δ(s) = b3e
−c4s.

21. α(s) = b1e
−c1s, β(s) = b2e

−c2s, δ(s) = b3e
−c3s, ε(s) = e−c4s.

22. α(s) = b1e
−c1s, β(s) = b2e

−c2s, δ(s) = b3e
−c3s, ζ(s) = e−c4s.

One-variable Fourth Chaos Model, 8 parameters, 4 functions

23. α(s) = b1e
−c1s, β(s) = b2e

−c2s, δ(s) = b3e
−c3s, η(s) = b4e

−c4s.
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Chapter 5

Term Structure Calibration

In the previous chapter we specified coefficients of the Chaos Models, without loss of

generality, by applying the exponential polynomial family. This specification allows

us to compute both initial yield and volatilities at the same time. However, we start

our calibration by looking at only initial yield curves. Here, our main concern in this

chapter is to check if our specification of the chaos coefficients allows to fit well into

the initial yield curves. As seen in [1], the Nelson-Siegel Form ([64]) and the Svensson

Form ([86]) are the ones that most central banks apply, with the exception of those in

Japan, UK and USA which apply Smoothing splines. These forms may be regarded as a

special case of the general parametric form suggested by Björk and Christensen in [12].

Unfortunately this model has the shortcoming that it allows negative interest rates. We

compare initial curve fitting ability of the Chaos Models with those parametric forms

and also among different chaos orders by using data from the UK bond market. We

show that the proposed model attains just as good a fitting to yields as the Svensson

Form does, while also keeping the interest rate positivity condition.

5.1 Calibration Data

A set of yield curve data can be extracted either from the government bond market

(bond prices) or the money markets (LIBOR and swap rates). In this chapter we
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use the bond market because it contains more maturities. However, since Caps and

Swaptions are underlined respectively on the forward LIBOR rate and the forward swap

rate, we extract yield curves from the money markets for the option price calibration

in the next chapter.

We find the clean prices of treasury coupon strips in the UK bond market from the

United Kingdom Debt Management Office (DMO) [90], and directly apply the zero

coupon yield process (ytT )0≤t≤T<∞. Here an Actual/Actual day-count convention is

applied, i.e.,

Factor =
Days not in leap year

365
+

Days in leap year

366
.

We consider the following two data sets:

• The yield data at 146 dates (every other business day) from January 1998 to

January 1999. Each data point has around 49 to 62 maturities,

• The yield data at 157 dates (every Friday) from December 2002 to December

2005. Each data point has around 100 to 130 maturities.

Note that the first data set contains a volatile market including the period of the

Long-Term Capital Management (LTCM) crisis, and the second data set is from a

more moderate market and holds more maturities of yields.

5.2 Models

For the calibration we consider all possible models of the First Chaos, Factorizable

Second Chaos, and One-variable Third Chaos Models, as was specified in Section 4.7.3;

i.e., we calibrate the models numbered 2 through 15. We compare our results with the

traditional descriptive forms:

Nelson and Siegel Form, four parameters:

(5.2.1) f0T = b0 + [b1 + b2T ]e−c1T , such that b0 ≥ 0, c1 ≥ 0,
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Svensson Form, six parameters:

(5.2.2) f0T = b0 + [b1 + b2T ]e−c1T + b3Te
−c2T such that b0 ≥ 0, c1 ≥ 0, c2 ≥ 0.

5.3 Calibration Methods

For the calibration there are various methods available already in the literature, such as

the weighted least squares method ([20], [21], [73]), the maximum likelihood estimation

method ([20], [21], hereafter referred to as MLE), and the Kalman Filtering Method

([54], [82]). We apply the maximum likelihood method for our calibration, and also

the global search procedure ([84]) to find the global maximum, that is, we take several

random starting points to find the global maximum. Let us now recall the weighted

least squares method and the MLE in this section.

5.3.1 Weighted Least Squares Method

Let us first denote by y0Ti
the real market yield data maturing at time Ti ≥ 0, and

denote by y0Ti the theoretical prices. The weighted least-squared method consists of

minimizing the following function with respect to the parameters:

(5.3.1)
1

n1

n1∑
i=1

[
y0Ti − y0Ti

wi

]2

,

where 0 ≤ T1 ≤ T2, . . . ,≤ Tn1 < ∞ is a sequence of the maturities in yields and wi is

the weight of the objective function.

5.3.2 Maximum Likelihood Estimation Method

As an alternative to the weighted least-square method, Cairns has suggested in [20],

[21] the MLE method. To use this MLE method, we must assume that

lnP 0Ti ∼ N (lnP0Ti , ν
2(P0Ti , di)) for each Ti ≥ 0,
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where

ν2(p, d) =
σ2

0(p)[σ2
∞d

2b(p) + 1]

σ2
0(p)d2b(p) + 1

, b(p) =
σ2
d

σ2
0(p)[σ∞ − σ2

0(p)]
,

with the standard deviations defined by:

σ0(p) :=
1

limd→0

√
V ar(p)

1

p
, σd := lim

d→0

∂ν2(p, d)

∂(d2)
, σ∞ := lim

d→∞
ν2(p, d),

and di for the Macaulay duration, which is time in years to maturity for strips. We

have the following MLE function:

n1∏
i=1

1√
2πν2(P0Ti , di)

exp
[
− (lnP0Ti − lnP 0Ti)

2

2ν2(P0Ti , di)

]
,

which leads to the following log-likelihood function:

−1

2

n1∑
i=1

[
ln[2πν2(P0Ti , di)] +

(lnP0Ti − lnP 0Ti)
2

ν2(P0Ti , di)

]
.

However, because ν is a constant, the Cairns MLE is equivalent to minimizing the

following weighted least-squares function:

(5.3.2)

n1∑
i=1

[ lnP0Ti − lnP 0Ti

ν(P0Ti , di)

]2

.

Cairns has applied the specific choices (σ0(p), σd, σ∞) = ( 1
100p

, 0.0004, 0.001) to the

German bond market data between 4 January 1996 and 12 April 1997 in the paper

[20], and (σ0(p), σd, σ∞) = ( 1
3200p

, 0.0005, 0.001) to the UK bond market data between

January 1992 and November 1996 in the other paper [21]. Looking at the Cairns paper

[21], the assumption there is that the published bond prices have rounding error of

around 1/32 per 100 nominal price, and for this reason, the value σ0(p) = 1
3200p

is

applied there. Here Cairns has chosen these values from the historical market data

with advice from various practitioners. From our experiment, the form of the function

σ0(p) greatly affects the value of the likelihood function value, whereas the other two

functions σd and σ∞ do not. Because our calibration dataset is taken from the UK

bond market, and is from just after his calibration data set time period, we also apply

(σ0(p), σd, σ∞) = ( 1
3200p

, 0.0005, 0.001).

102



5.3.3 Scoring Measures

Setting wi ≡ 1 in the least-squared function (5.3.1), the calibration is equivalent to

minimizing the Root-Mean-Squared Error (RMSE). Setting wi = ȳ0Ti , it is equivalent

to minimizing the Root-Mean-Squared Percentage Error (RMSPE) due to the relations

RMSE =

√√√√ 1

n1

n1∑
i=1

[
y0Ti − y0Ti

]2

and RMSPE =

√√√√ 1

n1

n1∑
i=1

[y0Ti − y0Ti

ȳ0Ti

]2

.

5.3.4 Diebold-Mariano Statistics

We apply the Diebold-Mariano Statistics ([30], hereafter referred to as DM statistics)

with the Newey-West standard errors ([65]) to compare fitting performances as is done

in [55] and [88]. Here for the computation we use the program DMARIANO ([4]) in the

statistics package STATA, where the lag order is computed from the Schwert criterion

to be thirteen in both of our two datasets. The null hypothesis, which is that two

models have the same fitting errors, can be rejected at 5% level if the absolute value of

the DM statistics is greater than 1.96. The DM statistics is based on RMSPEs which

are Squared Percentage Errors in [55] and RMSEs in [88]. We compare the calibration

performance of the Chaos Models with the descriptive forms, i.e., Nelson-Siegel Form

and Svensson Form. In our computations, the higher number means that the model

outperforms the corresponding descriptive form.

5.4 Calibration Results

Lets us first explain the notation used in Tables 5.1 - 5.2. “No.” in the tables stands for

the model numbers specified in Section 4.7.3, “N” for the number of the parameters, “L”

for the likelihood function, “DM-NS” for DM statistics compared with Nelson-Siegel

Form and “DM-Sv” for DM statistics compared with Svensson Form. A higher number

of DM statistics means that the model outperforms the descriptive form. Moreover,
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we represent the RMSEs and RMSPEs by percentage, i.e., 0.73 means 0.73%.

Analyzing the calibration results from Tables 5.1 - 5.2 and Figures 5.1 - 5.2, we first

notice that errors by the Nelson-Siegel Form in the volatile market (1998 − 1999) are

very high, that is, the average RMSPE of all dates is 2.67%, which is much higher

than the errors given by the Chaos Models. Indeed, comparing the Chaos Models with

the Nelson-Siegel Form by the DM Statistics we are able to show that all higher order

Chaos Models work better, as can be seen in Table 5.1. On the contrary, errors by the

Nelson-Siegel Form in the moderate market (2002− 2005) are relatively small, that is,

the average RMSPE is 0.97% as can be seen in Table 5.2 and Figure 5.2. However, most

of the Chaos Models achieved even smaller errors and we show by the DM Statistics in

Table 5.2 that around half of the suggested Chaos Models outperform the Nelson-Siegel

Form in this data set.

On the other hand, we observe from the tables and figures that the Svensson Form

achieved very small RMSPE. Comparing the Chaos Models with the Svensson Form, we

are able to accept the null hypothesis in the DM Statistics for most of the Chaos Models

as is seen in Tables 5.1 - 5.2. It means that we cannot state that there exists significant

difference in the calibration performances between the Svensson Form and the Chaos

Models. Here, we are not able to show that the Chaos Models work significantly better

in either of the two datasets. However, in addition to ensuring interest rate positivity,

the Chaos Models are advantageous for modelling volatilities. Moreover, the calibrated

parameters of the yields can be applied directly to the volatility term structure. This

saves degrees of freedom in the option price calibration, as we observe in the next

chapter.

As is stated in Section 4.7.3, for the initial yield curve fitting, it is possible that all

of the Chaos Models belong to the First Chaos Model. Indeed we do not find sig-

nificant difference in the calibration performances between the One-variable Second

Chaos Models and the One-variable Third Chaos Models. However, looking at Figure
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5.1 and Figure 5.2, we observe that the Factorizable Second Chaos Models show dif-

ferent results from the One-variable Chaos Models. The stabilities in RMSPE are not

maintained over the calibration dates. Therefore having the exponential form in the

third function of the Factorizable Second Chaos Model is not desirable.
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Table 5.1: Yield Calibration in 1998− 1999 (Volatile Market)

No. Model N -L RMSE (%) RMSPE (%) DM-NS DM-Sv
2 1st chaos (a) 3 4420 0.73 4.44 -3.41 -11.46
3 1st chaos (b) 5 250 0.19 0.86 4.09 -3.54
4 one-var 2nd chaos 6 162 0.15 0.82 4.52 -2.26
5 one-var 2nd chaos (a) 7 160 0.15 0.69 4.48 0.22
6 one-var 2nd chaos (b) 7 145 0.14 0.75 4.48 -1.05
7 factorizable 2nd (a) 6 335 0.19 0.88 4.46 -2.54
8 factorizable 2nd (b) 6 245 0.19 0.68 4.20 0.27
9 factorizable 2nd (c) 6 1245 0.37 1.26 3.96 -3.81
10 factorizable 2nd (a) 7 179 0.16 0.63 4.35 1.38
11 factorizable 2nd (b) 7 153 0.14 0.72 4.46 -1.07
12 one-var 3rd chaos 6 168 0.15 0.72 4.40 -1.24
13 one-var 3rd chaos (a) 7 141 0.14 0.76 4.36 -1.16
14 one-var 3rd chaos (b) 7 152 0.14 0.72 4.48 -1.19
15 one-var 3rd chaos (c) 7 149 0.14 0.76 4.42 -1.43
- Descriptive NS 4 2101 0.49 2.67 - -4.45
- Descriptive Sv 6 160 0.15 0.70 4.45 -

Table 5.2: Yield Calibration in 2002− 2005 (Moderate Market)

No. Model N -L RMSE (%) RMSPE (%) DM-NS DM-Sv
2 1st chaos (a) 3 8716 0.69 3.96 -3.42 -3.50
3 1st chaos (b) 5 438 0.17 0.99 -0.35 -1.99
4 one-var 2nd chaos 6 388 0.15 0.89 0.75 -1.23
5 one-var 2nd chaos (a) 7 388 0.15 0.80 1.45 -0.38
6 one-var 2nd chaos (b) 7 329 0.14 0.66 5.33 1.26
7 factorizable 2nd (a) 6 437 0.16 1.04 -0.87 -3.33
8 factorizable 2nd (b) 6 495 0.17 0.84 2.16 -0.68
9 factorizable 2nd (c) 6 421 0.16 1.19 -1.70 -2.84
10 factorizable 2nd (a) 7 365 0.15 0.82 1.83 -0.78
11 factorizable 2nd (b) 7 323 0.14 0.72 3.93 0.36
12 one-var 3rd chaos 6 388 0.15 0.87 0.78 -1.06
13 one-var 3rd chaos (a) 7 350 0.15 0.78 2.06 -0.11
14 one-var 3rd chaos (b) 7 367 0.15 0.68 3.31 1.24
15 one-var 3rd chaos (c) 7 325 0.14 0.69 3.46 0.60
- Descriptive NS 4 541 0.18 0.97 - -1.76
- Descriptive Sv 6 442 0.16 0.76 1.76 -
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Figure 5.1: RMSPE (Yield Calibration in 1998− 1999)

Figure 5.2: RMSPE (Yield Calibration in 2002− 2005)
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Chapter 6

Option Price Calibration

In the previous chapter we showed that the Chaotic Approach has good fitting ability

to the yield curves. In this chapter, we take the ATM European Options, particularly

Caps and Swaptions, into account. The issue of the volatility smile will be considered

in Chapter 7. We compare the models among different chaos orders, and also some

popular and classical interest rate models. The books by Brigo and Mercurio ([14])

and James and Webber ([54]) claim that the term structure of caplet volatility has

a humped shape in a moderate market condition. For example, to achieve a good

fitting into the humped shape of the implied volatility, Rebonato ([75]) suggested the

Nelson-Siegel Form applied to the instantaneous caplet volatility in the LFM, that is,

σi(t). Though the LFM has some crucial problems with the volatility smile, it is able to

achieve great fitting ability into the caplet volatility term structure with desirable hump

shaped curves, where many other existing models are unable to do this. Nevertheless,

our calibration work shows that the Chaos Models also succeed on fitting the humped

volatility term structure. The SABR Model holds the stochastic volatility feature used

in the current financial practice as a market standard model. It is well known that the

SABR Model achieves good fitting to volatility smiles. We observe in this chapter that

the calibration errors in the Chaos Models are smaller than the same errors for the

SABR Model for the ATM options. This is mainly because the SABR Model does not
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fit very well to ATM Options across maturity and tenor whereas the Chaos Models do.

For this calibration we apply the day-by-day calibration methodology, which is also

called the global approach (for instance, in [51], page 223), by the least squares method,

as has been done many times before. For example of this approach, see [35], [55],

[62] and [73]. In particular, the literature [35] and [62] mentions the importance of

such calibration work rather than time series calibration, claiming that more valuable

information about the volatility of forward LIBOR rates is in the present market than

in the historical data. Our main motivation here is to replicate the current financial

market by as small number of parameters as possible, which may then be used for

pricing and hedging exotic options, such as the Chooser flexible cap and Bermudan

Swaption. We compare the calibration performances by the DM-statistics, exactly as

in the yield calibration.

6.1 Calibration Data

The zero-coupon yields are from the money markets, which are bootstrapped from the

LIBOR, Futures and Swap rates (see [83] for the detail of the bootstrapping technique).

Interest Rate Option prices are obtained from ICAP (Garban Intercapital - London)

and TTKL (Tullett & Tokyo Liberty - London) via the Bloomberg Database.1 We

consider the UK interest rate market for our calibration. The GBP Caps/Floors apply

three month frequencies for all caplets with ACT/365 day count convention, where all

payments are in arrears. The GBP Swaptions apply Semi/Semi basis and ACT/365

day count convention where all payments are six months in arrears. We particularly

consider the following two data sets:

• Data between September 2000 and August 2001 at 53 dates (every Friday closing

1Here we would like to acknowledge helpfulness of the Bloomberg help desk staff, who have aided
greatly our understanding of the actual market data. We particularly wish to extend thanks David
Culshaw, from ICAP, for his assistance.
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mid price). In each date we have that:

– 17 zero-coupon yields, maturing in 1M, 2M, 3M, 1Y, 1Y6M, 2Y, 3Y, . . . ,

10Y, 12Y, 15Y, 20Y2.

– 37 ATM Caplets implied volatilities maturing in 1Y, 1Y3M, . . . , 9Y9M,

10Y.

– 7 × 6 ATM Swaptions implied volatilities, maturing in 1M, 3M, 6M, 1Y,

2Y, 3Y, 5Y, where the underlying swap contracts are maturing in 1Y, 2Y,

3Y,5Y, 7Y, 10Y, which are lengths called “tenor”.

• Data between May 2005 and May 2006 at 53 dates (every Friday closing mid

price). In each date we have that:

– 22 zero-coupon yields, maturing in 1M, 2M, 3M, 4M, 7M, 10M, 1Y1M,

1Y4M, 1Y7M, 1Y10M, 2Y1M, 3Y, . . . , 10Y, 12Y, 15Y, 20Y3.

– 77 ATM Caplets implied volatilities maturing in 1Y, 1Y3M, . . . , 19Y9M,

20Y.

– 42 ATM Swaptions implied volatilities, maturing in 1M, 3M, 6M, 1Y, 2Y,

3Y, 5Y, where the underlying swap contracts are maturing in 1Y, 2Y, 3Y,5Y,

7Y, 10Y.

Here, M and Y stand for month and year respectively. Note here that the option data

corresponds to a part of the data in [88], where data was analyzed between August

1998 and January 2007. The Caplet implied volatilities are bootstrapped from the

ATM Caps implied volatilities observed in the market by the technique given in the

book [35], where the ATM Caplet implied volatilities maturing at six months and

nine months are obtained by constant extrapolation. Though the extrapolation is

2Though we observe 23 yields we do not use very short maturities and long maturities yield.
3Though we observe 30 yields we do not use very short maturities and long maturities yield.
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necessary to bootstrap the other ATM Caplet implied volatilities, when we calibrate

the data the extrapolated prices give us great errors. Hence, though we follow the

book and implement the extrapolation, we do not use those two short maturities for

the calibration. Moreover, we observed some obvious outliers and corrected them

accordingly. As Gatheral mentions in his book ([36]), it seems indeed to be difficult to

bootstrap the market values without allowing any arbitrage opportunity. The volatility

term structures, which we obtained from the bootstrap technique, are not smooth

curves as the reader may observe from Figure 6.1 and Figure 6.2. However, as can be

seen in [35] (page 78), these are not abnormal feature. The reader might also like to

compare it with the smooth curves in the books [14] (page 88− 95) and [54] (page 50).

The book [14] claims the existence of a relationship between the shape of that implied

volatility curve and the shape of the instantaneous forward rate volatility curve. It

is often observed that both curves have humped shape at the same time. On the

other hand, in the paper [88], the authors have applied the Nelson-Siegel Form to the

instantaneous forward rate volatility curve and calibrated it, though they have not

investigated the implied volatility curve structure.
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Figure 6.1: Market Quotes of Caps and Caplets in Sep 2000 - Aug 2001

Figure 6.2: Market Quotes of Caps and Caplets in May 2005 - May 2006
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6.2 Models

In our calibration we consider the Chaos Models numbered 4, 6, 9, 12, 15, 17, 19, 23 in

Section 4.7.3. We also calibrate the following seven models for the purpose of compar-

ison.

6.2.1 Other models in the Potential Approach

I. Rational Lognormal Model with Nakamura-Yu form and constant σ̃ with
Svensson Form, 9 parameters

To implement the Rational Lognormal Model, (see, Section 2.1.4), Nakamura and Yu

in [63] choose the following forms of the functions g1 and g2:

g1(t) = −α∂P0t

∂t
(P0t)

γ and g2(t) = −∂P0t

∂t
[1− α(P0t)

γ], for t ≥ 0,

for some constants α, γ ∈ R. This choice gives us that

G1(t) =
α

γ + 1
(P0t)

γ+1 and G2(t) = P0t −G1(t), for t ≥ 0.

This means that the initial bond price P0t can be modelled independently from the

Rational Lognormal Model. We hence apply the Svensson Form for our calibration to

the initial forward rate and to express the initial bond prices. A form of the function

Mt is not specified in the paper [63]. However in [38] and [73], it is represented as an

exponential martingale

Mt = exp
[
− 1

2

∫ t

0

σ̃2
sds+

∫ t

0

σ̃sdWs

]
, for t ≥ 0,

for some deterministic function σ̃. In particular, as in [38] we assume that the function

σ̃ is just a constant value, i.e. σ̃ = β where β ∈ R.

II. Rational Lognormal Model with Nakamura-Yu form and exponential σ̃t
with Svensson Form, 9 parameters

We also calibrate the Rational Lognormal Model with an exponential form σ̃t = e−βt

as an experiment, although this example is not found in the literature.
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III. Constantinides Model, 5 parameters

Let us consider the one-factor Constantinides Model, (see, Section 2.1.5), for our cali-

bration, i.e. we set i = 1. Constantinides assumed that α1 = 0. We do not do this, in

order to be as general as possible. We find that for t ≥ 0,

(6.2.1) Vt = exp
[
−
(
g +

σ2
0

2

)
t+ σ0W0(t) + (x1(t)− α1)2

]
,

where x1(t) is the OU process defined by

dx1(t) = −λ1x1(t)dt+ σ1dW1(t).

Because the dynamics can be solved by

x1(t) = σ1e
−λ1t

∫ t

0

eλ1sdW1(s),

we may express the state price density as

Vt = exp
[
−
(
g +

σ2
0

2

)
t+ σ0W0(t) +

(
σ1e
−λ1t

∫ t

0

eλ1sdW1(s)− α1

)2]
.

We note here that this model has 6 parameters, these are g, σ0, σ1, α1, λ1 and x1(0).

Then, the discount bond price for 0 ≤ t ≤ T <∞ is given by

PtT = H
− 1

2
1 (T−t) exp

[
(−g+λ1)(T−t)+H−1

1 (T−t)
(
x1(t)−α1e

λ1(T−t)
)2

−(x1(t)−α1)2
]
.

In particular, at the initial time t = 0 we have that

P0T = H
− 1

2
1 (T ) exp

[
(−g + λ1)T +H−1

1 (T )
(
x1(0)− α1e

λ1T
)2

− (x1(0)− α1)2
]
.

We leave the option pricing forms of the Constantinides Model to the Appendix.

6.2.2 Short Rate Models

IV. Hull-White Model with Svensson Form, 8 parameters

drt = (θt − art)dt+ σdWt, f0t = b0 + [b1 + b2t]e
−c1t + b3te

−c2t.
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V. Cox-Ingersoll-Ross Model, 3 parameters

drt = κ(θ − rt)dt+ σ
√
rtdWt.

6.2.3 Market Models

VI. Lognormal Forward LIBOR Model with Svensson Form, 13 parameters

In our calibration of the LFM (see Section 2.2.3) we apply formulation 6 from [14]

(page 224), i.e., the Rebonato Form:

σi(t) = b1 + (b2 + b3(Ti−1 − t))e−c1(Ti−1−t),

for some parameters b1, b2, b3, c1 ∈ R. Considering a Swaption maturing at Ta with

tenor Tb − Ta, its swaption implied volatility may be modelled in the LFM by the

Rebonato Approximation ([75]):

va,b =

√√√√ 1

Tb

b∑
i,j=a+1

wi(0)wj(0)Fi(0)Fj(0)

S2
a,b(0)

ρij

∫ Ta

0

σi(t)σj(t)dt,

where the forward swap rates are assumed to be expressed by the linear combination

of forward swap rates as follows:

Sa,b(t) =
b∑

i=a+1

wi(t)Fi(t) ≈
b∑

i=a+1

wi(0)Fi(t) where wi(t) =
τiPtTi∑b

k=a+1 τkPtTk
.

We apply the Schoenmakers and Coffey Form ([85]) for the correlation ρij:

ρij = exp
[
− |j − i|
m− 1

(
− lnρ∞ + η1

i2 + j2 + ij − 3mi− 3mj + 3i+ 3j + 2m2 −m− 4

(m− 2)(m− 3)

− η2
i2 + j2 + ij −mi−mj − 3i− 3j + 3m+ 2

(n− 2)(m− 3)

)]
,

for i, j = 1, 2, . . . ,m where m = b − a and parameters η1, η2, ρ∞ ∈ R such that 3η2 ≥

η2 ≥ 0, 0 ≤ η1 + η2 ≤ −lnρ∞. Therefore, we need 5 parameters to model the forward

rate volatility, 3 parameters to model the correlation. Considering the Svensson Form

for the initial curve we use 10 parameters totally to compute a caplet, 13 parameters

totally to computer a swaption.
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VII. SABR Model with Svensson Form, 12 parameters

The reader might like to read Section 2.2.4 for recalling the SABR Model. As is stated

before, there is no link between Caplet pricing and Swaption pricing in the SABR

Model. If we compute either only Caps or only Swaptions, the required number of

parameters is 9. However we need 12 parameters to compute both Caps and Swaptions.

6.3 Calibration Methods

We implement following three types of calibrations:

1. ATM Swaption with yields calibration (Three dimensional).

2. ATM Caplet with yields calibration (Two dimensional).

3. ATM Swaption and ATM Caplet with yields calibration (Four dimensional).

This last calibration is called “Joint calibration”, see [14] (page 539−544) and also [88].

Note here that the ATM Swaptions contain both the maturity and tenor dimensions

while the ATM Caplets contain only the maturity dimension, since the tenor is usually

fixed in the market. Hence, we will show six result tables in total, containing the results

of ATM Swaption calibration, ATM Caplet calibration and Joint calibration for each

data set. In addition, we compare the fitting performances of the proposed models with

the LFM and the SABR Model by the DM statistics. The null hypothesis, which is

that two models have the same fitting errors, may be rejected at 5% level if the absolute

value of the DM statistics is greater than 1.96. In our computations in the tables in

Section 6.4, a higher number in the DM statistics means that the corresponding model

displays a better fitting than the benchmarked model, i.e., LFM and SABR.
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6.3.1 Objective Function

For ATM option price calibrations we apply the weighted least-square method, that is,

we minimize the following function:

1

n1

n1∑
i=1

[
y0Ti − y0Ti

y0Ti

]2

+
1

n2

n2∑
i=1

[
OP (Ti, KATM)−OP (Ti, KATM)

OP (Ti, KATM)

]2

where y0Ti
and OP (Ti, KATM) are defined for the real market data of yields and at

the money interest rate option maturing at Ti ≥ 0, while y and OP are defined for

theoretical prices. We also consider the fitting of both Caps (Floors) and Swaptions,

i.e., Joint calibration. Therefore, in addition to the calibration with one type of option,

we also consider minimizing the following functions:

1

n1

n1∑
i=1

[
y0Ti − y0Ti

y0Ti

]2

+
1

n2

n2∑
i=1

[
Cpl(Ti, KATM)− Cpl(Ti, KATM)

Cpl(Ti, KATM)

]2

+
1

n2

n2∑
i=1

[
SW (Ti, KATM)− SW (Ti, KATM)

SW (Ti, KATM)

]2

,

where C̄pl and ¯SW denote the real market data of caplets and swaptions respectively,

while Cpl and SW denote theoretical prices. We apply the parameters obtained from

the calibration for pricing purpose. For example, after calibrating the ATM Swaptions,

we price the ATM Caplets which are then compared with the market ATM Caplet

prices. Pricing errors are denoted by CplP-PE and CplV-PE for pricing errors in

terms of premium and implied volatility respectively (we will see detail of those scoring

measures in a later section). Similarly, after calibrating the ATM Caps, we price the

ATM Swaptions and compute pricing errors which are denoted by SWP-PE and SWV-

PE.

In some models, such as the Hull-White model and the SABR Model, we are able

to model initial yield curves and options separately. For these we apply the Svensson

Form for the initial curves and minimize ATM options errors only. Moreover, we

minimize the least square sum of implied volatilities when analytical implied volatility
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forms are available, such as in FLM and SABR Model. As we know, we have a one-

to-one correspondence between an option premium and its implied volatility via the

Black formula. Though we are able to compute analytically the premium from the

implied volatility by the Black formula, it is not straightforward to do this in the

converse direction, as it requires some approximations. Many models, such as Hull-

White, CIR, Constantinides, Chaos Models, and others, do not have analytical implied

volatility forms. Indeed, the calibrations for those models are usually implemented by

minimizing the least squares sum of the premiums. Because financial markets show the

implied volatilities instead of the premiums, and the shapes of the implied volatility

curve and surface are very much of interest, it may be better if we could minimize

the error of the implied volatilities. However, sensitivity between the implied volatility

and premium is high, especially for options away from the money. A small error in

implied volatility fitting may cause a great error in premium. Therefore, it is sometimes

claimed that calibration by premiums is important, because that is what traders pay.

6.3.2 Simulation

After the calibration we obtain all parameters, which gives us yield and option prices

as close as possible to the market values. We keep these artificial prices, but leave our

parameters aside. We calibrate our model again but to these artificial prices. This

work allows us to see whether we have really achieved the global minimum. For this

work we focus on the One-variable Third chaos 6 parameter model, i.e.,

α(s) = b1e
−c1s, β(s) = b2e

−c2s, δ(s) = b3e
−c3s,

and apply the artificial data set obtained from the former calibration work in the second

data set, i.e., 2005− 2006.
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6.3.3 Scoring Measure

We apply RMSPE for our scoring measure. Let us first define

Total-E =

√√√√ 1

n1

n1∑
i=1

[y0Ti − y0Ti

y0Ti

]2

+
1

n2

n2∑
i=1

[OP (Ti, KATM)−OP (Ti, KATM)

OP (Ti, KATM)

]2

,

where OP is the corresponding option for the calibration,

Yield-E =

√√√√ 1

n1

n1∑
i=1

[y0Ti − y0Ti

y0Ti

]2

,

SWP-E =

√√√√ 1

n2

n2∑
i=1

[SW (Ti, KATM)− SW (Ti, KATM)

SW (Ti, KATM)

]2

,

SWV-E =

√√√√ 1

n2

n2∑
i=1

[SW vol(Ti, KATM)− SW vol
(Ti, KATM)

SW
vol

(Ti, KATM)

]2

,

where SW is swaption premium and SW vol is swaption implied volatility,

CplP-E =

√√√√ 1

n2

n2∑
i=1

[Cpl(Ti, KATM)− Cpl(Ti, KATM)

Cpl(Ti, KATM)

]2

,

CplV-E =

√√√√ 1

n2

n2∑
i=1

[Cplvol(Ti, KATM)− Cplvol(Ti, KATM)

Cpl
vol

(Ti, KATM)

]2

,

where Cpl is caplet premium and Cplvol is caplet implied volatility.

6.4 Calibration Results

We analyze the calibration results using Tables 6.1 - 6.8 and Figures 6.3 - 6.17. Let us

first explain the notation used in the tables. As was mentioned before, the model num-

bers are specified in Section 4.7.3 and Section 6.2 and we apply the Svensson Form in

the models I,II,IV,VI,VII. CplP-PE and CplV-PE denotes pricing errors of respectively

Caplet premium and Caplet implied volatility from the Swaption calibration. Similarly,
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SWP-PE and SWV-PE pricing denotes errors of respectively Swaption premium and

Swaption implied volatility from the Caplet calibration. The symbol “#” denotes a

value which is greater than 100%. In the LFM, we need to calibrate the correlation

to compute the Swaptions. Hence we are unable to compute the pricing errors of the

Swaptions from the Caplet calibration. Moreover, since Caplet and Swaption formulas

are inconsistent in the SABR Model, we are unable to compute the pricing errors in

the SABR Model.

In our calibration we found the parameters of the models by minimizing the errors

between the market values and the theoretical values so that these parameters replicate

the interest rate market as closely as possible. Let us start our observation by looking

at Figures 6.9 - 6.12. These plots shows the comparisons between the market data

and the replicated data by the interest rate models. From there we can see how well

the models simulate the market data. For instance, we observe that the Rational

Lognormal Model, Hull-White Model, CIR Model and SABR Model all fail to fit into

the implied volatilities across the maturity and the tenor. In particular these models

do not succeed in the humped shape curve of the caplet volatility term structure.

The comparison among the chaos orders are analyzed by Figures 6.3 - 6.8. Looking at

the plots on the left side, we can see the green lines are below the red lines in most of

the cases where the green lines represent the One-variable Third Chaos Models and the

red lines represent the Second Chaos Models. This feature is obvious particularly in

the Swaption calibrations and the Joint calibrations. Furthermore, Figures 6.13 - 6.16

show the same results in pricing performance. The One-variable Third Chaos Model,

numbered 15, would be a particularly ideal model.

Let us further look at the calibration results using Tables 6.7 - 6.8 which show the

DM Statistics compared respectively with the LFM and the SABR Model. Because

the LFM is formed particularly for fitting well into the volatility term structure, it

outperforms the Chaos Models. However, looking at the plots on the right side in
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Figures 6.3 - 6.8, we observe the RMSPEs over the calibration time are not greatly

different between the LFM and One-variable Third Chaos Models. Furthermore, the

LFM has a crucial problem in fitting volatility smile which we consider in the next

chapter. On the other hand, the calibration results show that most of the Chaos

Models are able to fit the ATM Options better than the SABR Model. One of the

remarkable points is that the Chaos Models have a smaller number of parameters,

even while incorporating the initial yield curve calibration at the same time.

After the calibration we obtain the best parameters to replicate the market data. In

other words, we are able to simulate the market data by the interest rate model. We

implement the calibration again but on the replicated artificial data, while putting our

parameters aside. We obtain very small average errors in percentage, as is seen in

Table 6.9. In this calibration, Figure 6.17 compares the parameters which we obtained

from the first calibration and the second calibration. The linear parameters b1, b2, b3

are different between the calibrations. This is because the yield and the options are for-

mulated by the quotient forms in the Chaos Models as seen in Section 4.5.1. However,

we observe that the exactly same exponential parameters c1, c2, c3 are obtained. These

results convince us that the the global minimization is achieved in our calibrations.
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Table 6.1: The average RMSPE (%) of ATM Swaption in 2000− 2001

No. Model N Total-E Yield-E SWP-E SWV-E CplP-PE CplV-PE
4 one-var 2nd chaos 6 7.1 1.8 6.8 7.0 14.5 14.2
6 one-var 2nd chaos 7 7.1 2.0 6.7 7.1 14.6 13.6
9 factorizable 2nd 6 7.1 2.1 6.8 6.8 14.3 13.3
12 one-var 3rd chaos 6 5.3 2.9 4.1 5.2 10.2 11.1
15 one-var 3rd chaos 7 3.8 1.5 3.4 3.6 8.6 8.1
17 one-dist 3rd chaos 7 4.9 2.5 4.1 4.7 13.8 13.8
19 one-dist 3rd chaos 8 3.9 1.7 3.5 3.8 12.8 12.5
23 one-var 4th chaos 8 4.8 2.7 3.9 4.7 9.0 9.9
I Rational-log (a) 9 8.4 0.6 8.4 8.4 15.3 14.4
II Rational-log (b) 9 5.9 0.6 5.9 6.0 24.8 24.3
III Constantinides 5 7.0 2.9 6.3 6.5 99.9 99.9
IV Hull-White 8 10.2 0.6 10.2 10.3 17.6 16.7
V CIR 3 8.5 5.1 6.5 8.7 14.2 14.2
VI LFM 13 5.0 0.6 5.0 5.0 8.1 7.9
VII SABR 9 7.5 0.6 7.5 7.5 - -

Table 6.2: The average RMSPE (%) of ATM Swaption in 2005− 2006

No. Model N Total-E Yield-E SWP-E SWV-E CplP-PE CplV-PE
4 one-var 2nd chaos 6 6.5 3.2 5.5 6.4 32.2 35.1
6 one-var 2nd chaos 7 5.0 1.5 4.8 5.1 11.9 13.7
9 factorizable 2nd 6 6.8 2.3 6.4 6.7 13.7 17.1
12 one-var 3rd chaos 6 4.5 2.2 3.8 4.4 21.2 23.3
15 one-var 3rd chaos 7 4.2 1.6 3.8 4.3 13.4 14.5
17 one-dist 3rd chaos 7 4.5 1.9 4.0 4.5 23.7 25.4
19 one-dist 3rd chaos 8 4.1 1.4 3.8 4.0 28.1 26.4
23 one-var 4th chaos 8 4.3 2.0 3.8 4.5 15.1 19.3
I Rational-log (a) 9 8.2 0.4 8.2 8.0 10.9 10.3
II Rational-log (b) 9 5.8 0.4 5.8 5.7 35.1 35.0
III Constantinides 5 6.3 1.9 5.9 6.3 99.8 99.8
IV Hull-White 8 9.5 0.4 9.5 9.5 11.2 10.7
V CIR 3 5.9 3.5 4.6 6.0 10.1 12.5
VI LFM 13 3.5 0.4 3.5 3.5 14.8 14.9
VII SABR 9 7.5 0.4 7.5 7.5 - -
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Table 6.3: The average RMSPE (%) of ATM Caplet in 2000− 2001

No. Model N Total-E Yield-E CplP-E CplV-E SWP-PE SWV-PE
4 one-var 2nd chaos 6 5.1 2.0 4.6 4.3 14.9 14.4
6 one-var 2nd chaos 7 3.3 1.7 2.7 3.5 16.3 16.7
9 factorizable 2nd 6 3.8 2.1 3.1 3.6 26.5 26.6
12 one-var 3rd chaos 6 4.2 2.0 3.5 4.6 15.5 16.2
15 one-var 3rd chaos 7 3.2 1.3 2.9 3.2 15.7 15.6
17 one-dist 3rd chaos 7 3.4 1.7 2.9 3.2 41.9 41.5
19 one-dist 3rd chaos 8 3.0 1.6 2.4 2.9 41.6 41.3
23 one-var 4th chaos 8 3.7 1.9 3.1 4.3 32.5 32.5
I Rational-log (a) 9 9.2 0.6 9.2 9.2 13.9 13.9
II Rational-log (b) 9 4.7 0.6 4.7 5.0 28.9 29.1
III Constantinides 5 3.8 1.9 3.2 4.2 # #
IV Hull-White 8 9.4 0.6 9.4 9.4 # #
V CIR 3 10.2 2.8 9.5 9.3 36.0 34.8
VI LFM 10 3.0 0.6 3.0 1.9 - -
VII SABR 9 8.0 0.6 8.0 7.7 - -

Table 6.4: The average RMSPE (%) of ATM Caplet in 2005− 2006

No. Model N Total-E Yield-E CplP-E CplV-E SWP-PE SWV-PE
4 one-var 2nd chaos 6 6.3 1.6 6.1 7.4 9.4 9.2
6 one-var 2nd chaos 7 3.4 1.5 3.0 4.7 14.0 14.5
9 factorizable 2nd 6 4.3 2.4 3.4 5.1 20.0 19.9
12 one-var 3rd chaos 6 4.9 1.9 4.4 5.7 26.2 25.7
15 one-var 3rd chaos 7 3.6 1.4 3.2 6.1 14.2 14.5
17 one-dist 3rd chaos 7 3.6 1.3 3.3 4.9 35.3 35.3
19 one-dist 3rd chaos 8 3.4 1.3 3.1 5.5 34.1 34.0
23 one-var 4th chaos 8 4.3 1.9 3.7 5.6 35.9 35.4
I Rational-log (a) 9 9.4 0.4 9.4 9.1 10.5 10.4
II Rational-log (b) 9 7.4 0.4 7.4 7.0 14.2 14.1
III Constantinides 5 4.6 1.8 3.4 5.3 # #
IV Hull-White 8 8.4 0.4 8.4 8.4 16.3 16.3
V CIR 3 8.4 2.4 7.8 9.5 28.7 27.3
VI LFM 10 3.5 0.4 3.5 2.8 - -
VII SABR 9 7.8 0.4 7.8 7.5 - -

123



Table 6.5: The average RMSPE (%) from Joint Calibration in 2000− 2001

No. Model N Total-E Yield-E SWP-E SWV-E CplP-E CplV-E
4 one-var 2nd chaos 6 12.5 2.2 9.3 8.6 7.9 8.1
6 one-var 2nd chaos 7 12.1 2.4 9.3 8.7 7.3 7.9
9 factorizable 2nd 6 12.1 2.6 8.4 9.2 8.2 7.9
12 one-var 3rd chaos 6 8.2 4.3 4.4 5.1 5.2 7.2
15 one-var 3rd chaos 7 7.1 1.6 4.4 4.5 5.2 4.9
17 one-dist 3rd chaos 7 8.2 4.4 4.5 5.1 5.1 7.2
19 one-dist 3rd chaos 8 8.0 2.2 4.8 4.8 5.9 5.9
23 one-var 4th chaos 8 8.1 4.3 4.4 5.1 5.2 7.2
I Rational-log (a) 9 14.6 0.6 10.0 10.0 10.6 9.9
II Rational-log (b) 9 16.8 0.6 12.3 12.3 11.4 10.3
III Constantinides 5 25.8 9.2 22.5 24.0 8.1 14.2
IV Hull-White 8 18.4 0.6 12.2 12.3 13.7 13.0
V CIR 3 15.3 5.1 8.3 10.2 11.3 12.0
VI LFM 13 6.5 0.6 5.5 5.5 3.1 3.1
VII SABR 12 11.1 0.6 7.5 7.5 8.0 7.8

Table 6.6: The average RMSPE (%) from Joint Calibration in 2005− 2006

No. Model N Total-E Yield-E SWP-E SWV-E CplP-E CplV-E
4 one-var 2nd chaos 6 10.4 2.5 7.3 7.8 6.9 10.6
6 one-var 2nd chaos 7 8.6 1.5 6.3 6.7 5.6 5.8
9 factorizable 2nd 6 10.3 1.9 7.9 8.1 6.2 7.0
12 one-var 3rd chaos 6 9.1 3.3 5.8 6.3 6.1 9.1
15 one-var 3rd chaos 7 7.8 1.8 5.0 5.1 5.5 7.4
17 one-dist 3rd chaos 7 8.7 3.0 5.8 6.6 5.5 7.5
19 one-dist 3rd chaos 8 8.3 1.9 5.7 5.6 5.5 7.5
23 one-var 4th chaos 8 8.5 2.9 5.3 5.8 5.8 8.8
I Rational-log (a) 9 13.0 0.4 8.4 8.3 9.9 9.4
II Rational-log (b) 9 13.8 0.4 10.5 10.4 8.8 7.9
III Constantinides 5 24.1 6.5 19.9 20.2 11.7 14.6
IV Hull-White 8 14.0 0.4 10.1 10.1 9.5 9.2
V CIR 3 10.5 3.5 5.3 6.0 8.0 9.5
VI LFM 13 6.2 0.4 4.8 4.8 3.8 3.8
VII SABR 12 10.8 0.4 7.5 7.5 7.8 7.5
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Table 6.7: Comparison with the LFM by DM-Statistics

No. Model N SW SW Cpl Cpl JT JT
00’-01’ 05’-06’ 00’-01’ 05’-06’ 00’-01’ 05’-06’

4 one-var 2nd chaos 6 -25.18 -21.76 -24.93 -17.28 -35.86 -33.71
6 one-var 2nd chaos 7 -23.97 -9.11 -3.34 1.20 -35.57 -9.95
9 factorizable 2nd 6 -8.88 -13.52 -7.89 -5.37 -18.96 -20.93

12 one-var 3rd chaos 6 -1.32 -4.05 -7.41 -9.14 -8.32 -21.86
15 one-var 3rd chaos 7 4.67 -3.13 -3.60 -1.09 -2.19 -9.21
17 one-dist 3rd chaos 7 0.50 -4.73 -5.41 -0.94 -8.44 -10.41
19 one-dist 3rd chaos 8 3.87 -3.52 1.26 1.12 -5.36 -9.13
23 one-var 4th chaos 8 0.63 -4.30 -5.17 -6.33 -8.05 -13.50

I Rational-log (a) 9 -16.40 -21.30 -13.80 -17.31 -22.59 -20.83
II Rational-log (b) 9 -7.38 -22.53 -6.66 -14.65 -45.01 -33.69

III Constantinides 5 -5.25 -12.33 -5.22 -7.45 -64.33 -49.43
IV Hull-White 8 -10.53 -12.55 -13.71 -15.49 -14.22 -12.36
V CIR 3 -12.99 -10.04 -17.60 -17.89 -33.88 -15.07

VII SABR 12 -13.50 -26.12 -12.35 -13.13 -22.81 -15.27

Table 6.8: Comparison with the SABR Model by DM-Statistics

No. Model N SW SW Cpl Cpl JT JT
00’-01’ 05’-06’ 00’-01’ 05’-06’ 00’-01’ 05’-06’

4 one-var 2nd chaos 6 2.35 4.39 8.21 5.80 -8.77 1.27
6 one-var 2nd chaos 7 2.38 9.97 10.88 14.60 -6.34 5.47
9 factorizable 2nd 6 1.79 1.99 11.91 11.63 -3.41 1.40

12 one-var 3rd chaos 6 9.04 9.71 7.46 8.98 12.18 4.97
15 one-var 3rd chaos 7 14.70 11.70 12.20 13.44 12.77 7.65
17 one-dist 3rd chaos 7 11.38 10.54 10.50 14.90 11.78 13.03
19 one-dist 3rd chaos 8 16.08 14.25 12.04 14.12 11.42 17.61
23 one-var 4th chaos 8 9.90 11.85 8.67 11.82 12.90 7.96

I Rational-log (a) 9 -3.14 -5.19 -22.85 -40.87 -14.52 -21.65
II Rational-log (b) 9 14.04 14.72 19.10 4.64 -49.22 -9.04

III Constantinides 5 1.94 6.80 8.29 8.69 -43.73 -50.95
IV Hull-White 8 -4.87 -4.85 -11.92 -13.99 -10.03 -7.85
V CIR 3 -3.75 5.39 -15.18 -3.96 -23.42 1.46

VI LFM 13 13.50 26.12 12.35 13.13 22.81 15.27
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Figure 6.3: Total RMSPE (ATM Swaption Calibration in Sep 2000 - Aug 2001)

Figure 6.4: Total RMSPE (ATM Swaption Calibration in Sep 2005 - Aug 2006)
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Figure 6.5: Total RMSPE (ATM Caplet Calibration in Sep 2000 - Aug 2001)

Figure 6.6: Total RMSPE (ATM Caplet Calibration in Sep 2005 - Aug 2006)
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Figure 6.7: Total RMSPE (Joint Calibration in Sep 2000 - Aug 2001)

Figure 6.8: Total RMSPE (Joint Calibration in May 2005 - May 2006)
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Figure 6.9: ATM Swaption Implied Volatility in 1st Sep 2000 (Blue: Market Quotes,
Green: Theoretical Values)

Figure 6.10: ATM Swaption Implied Volatility in 2nd Dec 2005 (Blue: Market Quotes,
Green: Theoretical Values)
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Figure 6.11: ATM Caplet Implied Volatility in Sep 2000 - Aug 2001 (Blue: Market
Quotes, Green: Theoretical Values)

Figure 6.12: ATM Caplet Implied Volatility in May 2005 - May 2006 (Blue: Market
Quotes, Green: Theoretical Values)
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Figure 6.13: Caplet Pricing Errors from Swaption Calibration in Sep 2000 - Aug 2001

Figure 6.14: Caplet Pricing Errors from Swaption Calibration in May 2005 - May 2006
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Figure 6.15: Swaption Pricing Errors from Caplet Calibration in Sep 2000 - Aug 2001

Figure 6.16: Swaption Pricing Errors from Caplet Calibration in May 2005 - May 2006
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Table 6.9: Simulation Errors

No. Model N Total-E Yield-E SWP-E
12. one-var 3rd chaos 6 0.01 1.98E-07 1.22E-06

Figure 6.17: Parameter comparisons
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Chapter 7

Smile Calibration

Our calibration works in the previous chapter focused on ATM European Options. To

distinguish the models further we consider the volatility smile concept. In other words

we incorporate the ITM and OTM Options. We have shown that the Chaos Models

have stochastic volatility, which property produces volatility smile curves, as can be

seen in [35]. The Chaos Models outperform the LFM in this sense. In this chapter,

we compare the calibration performance with the LIBOR stochastic volatility models,

particularly the SABR Model which we consider to be the most popular model in the

current market. We here notice that we have used a one-factor model of the Chaos

Model while the SABR Model belongs to two-factor model. Following the literature

[14], we implement in our calibration:

• Yield and Caplet smile/skew Calibration for fixed maturity (Two dimensional).

• Yield and Swaption smile/skew Calibration for fixed tenor and maturity (Two

dimensional).

Though it is possible to also consider the following greater dimensional data for our

calibration, we have not found this in the literature about these calibration:

• Yield and Caplet Vol surface Calibration (Three dimensional).

• Yield and Swaption smile/skew Calibration (Three dimensional).
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• Yield and Swaption surface Calibration (Four dimensional),

• Yield, Caplet and Swaption surfaces Calibration (Six dimensional).

We have observed in the previous chapter that the SABR Model cannot fit well into

the data across the maturity. Indeed, in our brief experiment we find that it is difficult

to achieve good fitting of these high dimensional data and so we do not discuss them

here.

7.1 Calibration Data

We analyze data from the UK interest rate markets between May 2005 and May 2006

at 53 dates (every Friday, closing mid price). The data is obtained from ICAP and

TTKL via the Bloomberg Database. For each strike Kj we compute the log moneyness

ratio (hereafter, referred to as LMR), that is,

LMRj = ln
(KATM

Kj

)
.

Then, we obtain the following data set for each date using a cubic spline :

• 22 zero-coupon yields, maturing in 1M, 2M, 3M, 4M, 7M, 10M, 1Y1M, 1Y4M,

1Y7M, 1Y10M, 2Y1M, 3Y,...,10Y, 12Y, 15Y, 20Y1.

• 20 × 7 Caplet implied volatilities maturing in 1Y, 2Y,...,20Y with strikes which

LMR are from −0.3 to 0.3 with 0.1 interval2.

• 7× 6× 7 Swaption implied volatility, maturing in 1M, 3M, 6M, 1Y, 2Y, 3Y, 5Y,

where underlying swap contracts are maturing in 1Y, 2Y, 3Y,5Y, 7Y, 10Y with

strikes which LMR are from −0.3 to 0.3 with 0.1 interval3.

1Though we observe 30 yields we do not use very short maturity and long maturity yields.
2This corresponds to moneyness from 0.74 to 1.35 which may be comparable with the works [14],

[55], [88]. Our raw data contains strikes, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, and 8.0%.
3Data is available between May and July in 2005 at 11 dates. Our raw data contains strikes,

−200,−100,−50,−25, 0,+25,+50,+100,+200 basis points away from the money.
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7.2 Models

We calibrate the One-variable Third Chaos Models numbered 15 in Section 4.7.3 and

the SABR Model. Both models have nine parameters, but we recall here that the

Chaos Model is a one-factor model whereas the SABR Model is a two-factor model.

7.3 Calibration Methods

In our calibrations we apply the weighted least-squares method; that is, we minimize

the following function for the One-variable Third Chaos Model:

1

n1

n1∑
i=1

[
y0Ti − y0Ti

y0Ti

]2

+
1

n2

n2∑
j=1

[
OP (Ti, Kj)−OP (Ti, Kj)

OP (Ti, Kj)

]2

,

where we fix the option maturity at Ti ≥ 0 but consider in the money and out of the

money strikes, K1, K2, · · · , Kn2 . However we minimize only by the implied volatilities

in the SABR Model:

1

n2

n2∑
j=1

[
OP vol(Ti, Kj)−OP

vol
(Ti, Kj)

OP
vol

(Ti, Kj)

]2

,

because we may choose the yield curve without constraints, and analytical expressions

for the implied volatilities are available in the SABR Model.

We apply the DM Statistics to compare the fitting performance of the One-variable

Third Chaos Model with the SABR Model. The null hypothesis, which is that two

models have the same fitting errors, can be rejected at 5% level if the absolute value of

the DM statistics is greater than 1.96. In our computations, a higher number means

that the One-variable Third Chaos Model works better.

7.4 Calibration Results

We analyze the Swaption smile/skew calibration results using Tables 7.1 - 7.5 and

Figures 7.1 while we do the Caplet smile/skew calibration results using Tables 7.6 - 7.7
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and Figures 7.2 - 7.9.

Let us first analyze the result of the Swaption smile/skew calibration. We calibrate

the Chaos Model using the Swaption premiums and the SABR Model using the Swap-

tion implied volatilities for fixed maturity and tenor. The average RMSPE (%) in all

calibration dates (11 dates) in 2005 are shown in Tables 7.1 - 7.4. The short maturity

out of the money swaptions are very sensitive, by which we mean that a small error

in premiums can cause a big error in implied volatilities when we convert. The other

direction is also true, as we can observe this from Tables 7.3 - 7.4. Therefore we should

compare the calibration performance using the objective functions. As seen from Table

7.3 and Table 7.4 the average RMSPEs of the swaption premiums in the One-variable

Third Chaos Model are smaller than the average RMSPEs of the swaption implied

volatilities in the SABR Model. However, looking at the RMSPEs of the yield fitting

in Table 7.2, the Svensson form outperforms the One-variable Third Chaos Model.

However, Table 7.1 compares RMSPEs of yields and swaption premiums in the Chaos

Model and RMSPEs of yields and implied volatilities in the SABR Model and shows

smaller RMSPEs in the Chaos Model. Indeed, in Figure 7.1 we observe the green lines

representing the Chaos Model are below the red lines representing the SABR Model

in most of the maturities and the tenors. It means that the One-variable Third Chaos

Model outperforms the SABR Model for most of the maturities and tenors. The DM

Statistics in Table 7.5 confirm this positive result.

Similarly, for the caplets away from the maturity we calibrate the Chaos Models on

the caplet premiums and the SABR Model by the implied volatilities. The average

RMSPE (%) of all calibration dates (53 dates) in 2005− 2006 are shown in Table 7.6.

We observe again that a small error in premiums of the short maturity caplets can

cause a big error in implied volatilities when we convert. We are here computing the

total errors from the RMSPEs of yields and premiums for both interest rate models.

Although the calibration performance in the Chaos Model is outperformed by the
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SABR Model as seen from the DM Statistics in Table 7.7, we also observe in Figure

7.2 that the Chaos Model works as well as the SABR Model on the short maturity

caplets. In particular we observe that the Chaos Model produces a smile/skew curve

as was expected from the stochasticity of the volatility drift. For instance, Figure 7.4

and Figure 7.5 show the volatility skews by the Chaos Model. On the contrary, looking

at Figures 7.6 - 7.8, we observe that the Chaos Model does not fit well on the long

maturity Caplets data. Here, we have not found the reason of this.

Though we need the additional three parameters to compute the caplets and the

swaptions at the same time in the SABR Model, we can compute them in a straight-

forward way in the Chaos Models. It seems reasonable to consider more parameters

in the Chaos Model for the further improvement. However, since our brief experiment

has shown that One-variable Third chaos with 12 parameters model does not improve

the calibration result very much, we should perhaps consider a two-factor Chaos Model

for further investigations.
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Swaption Smile/Skew Calibration

Table 7.1: Total Errors in (maturity * tenor) Swaption Smile Calibration

3rd chaos, 9par (Objective Function) SABR
1Y 2Y 3Y 5Y 7Y 10Y 1Y 2Y 3Y 5Y 7Y 10Y

1M 4.6 3.9 8.8 3.5 5.8 4.9 1M 4.8 4.7 4.7 4.7 4.7 4.7
3M 2.4 1.1 1.3 1.9 2.3 2.4 3M 4.8 4.8 4.7 4.7 4.7 4.8
6M 1.3 1.3 2.0 2.2 2.2 2.9 6M 4.8 4.7 4.7 4.7 4.8 4.7
1Y 1.1 1.3 1.7 2.5 2.5 3.0 1Y 2.9 2.9 2.9 2.9 2.9 2.9
2Y 1.6 1.6 1.5 2.1 2.2 2.4 2Y 2.4 2.4 2.4 2.4 2.4 2.4
3Y 2.0 2.1 2.1 2.2 2.3 2.1 3Y 2.4 2.4 2.4 2.4 2.1 2.4
5Y 1.2 0.9 1.0 1.0 0.8 1.8 5Y 0.7 3.6 3.9 4.1 3.5 3.7

Table 7.2: Errors in Yields

3rd chaos, 9par Svensson
1Y 2Y 3Y 5Y 7Y 10Y 1Y 2Y 3Y 5Y 7Y 10Y

1M 2.3 2.5 2.2 2.6 4.5 3.0 1M 0.6 0.6 0.6 0.6 0.6 0.6
3M 1.7 0.9 1.0 1.5 2.0 2.1 3M 0.6 0.6 0.6 0.6 0.6 0.6
6M 1.1 1.1 1.8 2.0 1.8 2.3 6M 0.6 0.6 0.6 0.6 0.6 0.6
1Y 0.9 1.0 1.3 2.1 2.2 2.5 1Y 0.6 0.6 0.6 0.6 0.6 0.6
2Y 1.5 1.5 0.9 1.8 1.9 2.2 2Y 0.6 0.6 0.6 0.6 0.6 0.6
3Y 1.8 1.8 1.8 1.9 2.0 1.8 3Y 0.6 0.6 0.6 0.6 0.6 0.6
5Y 1.1 0.6 0.6 0.7 0.4 1.4 5Y 0.6 0.6 0.6 0.6 0.6 0.6
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Table 7.3: Errors in (maturity * tenor) Swaption Premiums

3rd chaos, 9par SABR
1Y 2Y 3Y 5Y 7Y 10Y 1Y 2Y 3Y 5Y 7Y 10Y

1M 3.9 2.8 7.9 2.3 3.4 3.6 1M 51.8 44.3 44.2 45.8 47.7 48.2
3M 1.6 0.5 0.7 0.9 0.9 1.0 3M 31.8 29.9 30.1 31.4 32.7 33.0
6M 0.6 0.6 0.7 0.9 1.1 1.6 6M 22.1 21.4 21.9 23.2 23.9 24.9
1Y 0.5 0.6 0.9 1.3 1.2 1.6 1Y 10.0 10.2 10.3 11.0 11.8 12.4
2Y 0.7 0.5 1.2 1.0 1.1 1.0 2Y 6.6 6.7 6.8 7.4 7.7 8.0
3Y 0.9 1.1 1.1 1.0 1.1 1.1 3Y 5.8 5.9 6.1 6.5 4.4 6.9
5Y 0.2 0.6 0.7 0.6 0.6 1.1 5Y 0.4 6.0 6.6 7.4 6.2 6.8

Table 7.4: Error in (maturity * tenor) Swaption Implied volatilities

3rd chaos, 9par SABR (Objective Function)
1Y 2Y 3Y 5Y 7Y 10Y 1Y 2Y 3Y 5Y 7Y 10Y

1M 44.8 89.7 81.5 33.9 10.0 2.3 1M 4.7 4.7 4.7 4.7 4.7 4.7
3M 49.6 29.8 32.1 37.4 43.9 42.4 3M 4.7 4.7 4.7 4.7 4.7 4.7
6M 8.4 11.1 12.8 15.1 20.0 24.3 6M 4.7 4.7 4.7 4.7 4.7 4.7
1Y 3.7 5.8 9.3 11.8 11.7 13.8 1Y 2.8 2.8 2.8 2.8 2.8 2.8
2Y 1.9 1.2 4.6 3.5 4.1 4.7 2Y 2.4 2.4 2.4 2.4 2.4 2.3
3Y 1.8 2.1 2.5 2.7 3.1 4.4 3Y 2.3 2.3 2.3 2.3 2.0 2.3
5Y 0.6 1.4 1.6 1.1 1.4 3.2 5Y 0.3 3.6 3.9 4.0 3.4 3.7

Table 7.5: DM-Statistics for (maturity * tenor) Swaption Smile Calibration between
One-variable Third chaos and the SABR Model

1Y 2Y 3Y 5Y 7Y 10Y
1M 0.19 1.80 -0.96 5.75 -0.55 -0.31
3M 14.81 13.33 11.65 8.36 7.41 7.56
6M 11.44 11.70 7.87 7.74 9.53 9.68
1Y 16.90 13.41 7.77 2.20 1.89 -0.53
2Y 5.55 4.71 9.53 2.14 1.63 0.34
3Y 2.49 1.78 1.82 1.82 1.82 1.82
5Y -10.96 37.15 33.05 39.51 62.14 14.25
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Figure 7.1: (maturity * tenor) Swaption volatility smile/skew Calibration, Total RM-
SPE in May 2005 - Jul 2005 (Green: One-variable Third chaos, Red: SABR)
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Caplet Smile/Skew Calibration

Table 7.6: RMSPE (%) of Caplet Smile Calibration in 2005− 2006

one-var 3rd chaos, 9par SABR with β = 1
2
, 9par

Maturity Total-E Yield-E CplP-E CplV-E Total-E5 Yield-E6 CplP-E CplV-E
1Y 10.5 5.0 9.1 40.8 12.7 0.4 12.7 2.6
2Y 3.9 2.5 2.9 11.4 2.6 0.4 2.6 1.4
3Y 3.1 1.8 2.4 5.1 1.4 0.4 1.4 0.9
4Y 2.6 1.8 1.7 2.5 1.5 0.4 1.4 1.0
5Y 2.5 1.6 1.7 2.2 1.6 0.4 1.5 1.2
6Y 2.0 1.3 1.4 1.9 1.5 0.4 1.4 1.2
7Y 4.4 3.1 3.1 4.0 1.9 0.4 1.8 1.6
8Y 4.8 3.2 3.5 3.0 2.6 0.4 2.5 2.1
9Y 3.2 1.8 2.5 3.0 2.6 0.4 2.6 2.3

10Y 6.7 4.2 5.1 6.6 2.9 0.4 2.9 2.5
11Y 5.5 3.7 4.1 5.2 1.6 0.4 1.5 1.3
12Y 5.0 2.9 4.0 4.2 1.9 0.4 1.9 1.7
13Y 5.5 3.4 4.3 5.6 1.4 0.4 1.3 1.2
14Y 5.4 3.2 4.4 5.7 1.7 0.4 1.6 1.5
15Y 5.4 3.0 4.5 5.9 1.9 0.4 1.9 1.7
16Y 7.0 3.1 6.2 8.0 3.4 0.4 3.4 3.4
17Y 7.3 3.0 6.6 8.4 3.9 0.4 3.8 3.8
18Y 8.1 3.9 7.1 8.6 4.3 0.4 4.2 4.3
19Y 8.3 3.1 7.6 7.5 4.8 0.4 4.7 4.8
20Y 8.1 3.9 6.9 7.7 5.3 0.4 5.3 5.3

5The total errors are computed by yield errors and caplet premium errors.
6We use the Svensson Form for the yield fitting.

142



Table 7.7: DM-Statistics for Caplet Smile Calibration between One-variable Third
chaos and the SABR Model

Maturity DM Statistics
1Y 1.78
2Y -4.99
3Y -6.40
4Y -8.80
5Y -7.13
6Y -3.66
7Y -13.27
8Y -10.06
9Y -4.70

10Y -14.51
11Y -26.23
12Y -12.69
13Y -30.35
14Y -24.67
15Y -21.20
16Y -21.69
17Y -20.66
18Y -19.16
19Y -16.18
20Y -11.35
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Figure 7.2: Caplet volatility smile/skew RMSPE in May 2005 - May 2006 (Green:
One-variable Third chaos, Red: SABR)

Figure 7.3: Caplet volatility smile/skew, Maturity: 2 years (Blue: Market Quotes,
Green: Theoretical Values)
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Figure 7.4: Caplet volatility smile/skew, Maturity: 6 years (Blue: Market Quotes,
Green: Theoretical Values)

Figure 7.5: Caplet volatility smile/skew, Maturity: 8 years (Blue: Market Quotes,
Green: Theoretical Values)
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Figure 7.6: Caplet volatility smile/skew, Maturity: 10 years (Blue: Market Quotes,
Green: Theoretical Values)

Figure 7.7: Caplet volatility smile/skew, Maturity: 12 years (Blue: Market Quotes,
Green: Theoretical Values)
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Figure 7.8: Caplet volatility smile/skew, Maturity: 14 years (Blue: Market Quotes,
Green: Theoretical Values)

Figure 7.9: Caplet volatility smile/skew, Maturity: 18 years (Blue: Market Quotes,
Green: Theoretical Values)
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Chapter 8

Alternative Models

In this chapter, we introduce several new interest rate models under the Potential

Approach. Firstly, we construct a new framework where we start our argument from the

Short Rate Model so that we keep the state price density potential. On the one hand,

this expression of the state price density works for pricing options. On the other hand,

it allows the LIBOR rate and swap rate volatilities to be explicitly expressed only by

the short rate. Secondly, we investigate the FH framework further, and introduce nth-

order FH Model, which is comparable with the One-variable Chaos Model. Thirdly, we

investigate the Chaotic Approach using the FH framework. Here, we compute the chaos

coefficients using the Malliavin derivative. Moreover, fourthly, we specify the stochastic

differential equation of the random variable σt and compare the corresponding model

with the Chaos Models. Lastly, we model the term structure from the variable ZtT .

Since our main concern in this thesis resides with Chaos Models, we leave calibration

of these models for future works.

8.1 Modelling the volatility drifts from the Short

Rate Models

As we have observed in Chapter 4, due to the fact that we check roots of the distribution

function to compute an option premium in the Chaos Models, we are unable to compute
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many options at the same time. This causes relatively slow computational speed.

However, this can be fixed when we form the state price density as exponential as

in the Constantinides Model. As we usually apply the bank account process for the

market numeraire and the discount bond for the T -forward adjusted measure, that is

respectively,

Bt = B0e
∫ t
0 rsds and PtT = e−

∫ T
t ftsds, for 0 ≤ t ≤ T <∞,

the natural numeraire can also be expected to have an exponential form. Indeed, as

observed in (2.1.13), we may express the state price density, that is the inverse of the

natural numeraire, in the following way:

Vt = V0e
−

∫ t
0 (rs+

1
2
λ2
s)ds−

∫ t
0 λsdWs , for t ≥ 0.

As stated in Section 2.1.1, the state price density is a potential when the short rate is

a positive process. Looking into this further, as observed in (2.1.15) and (2.1.17), we

have for each 0 ≤ t ≤ T <∞ the following expressions:

ZtT = Et[V0e
−

∫ T
0 (rs+

1
2
λ2
s)ds−

∫ T
0 λsdWs ]

and

ZtT = V0e
−

∫ t
0 ( 1

2
λ2
s+rs)ds−

∫ t
0 λsdWsEQ

t [e−
∫ T
t rsds].

This conditional expectation in the last equation can be explicitly solved under the

Affine Term Structure Model ([32]) as we will investigate it later in this section. More-

over, because the risk-adjusted volatility has the following quotient form:

V̂tT =
Dt[ZtT ]

ZtT
, 0 ≤ t ≤ T <∞,

in light of the chain rule of the Malliavin derivative, we can expect the risk-adjusted

volatility to be expressed in a simple form if we have the state price density in an
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exponential form. Indeed, by expression (2.1.17) we may infer using the chain rule

that

Dt[ZtT ] =Dt[V0e
−

∫ t
0 ( 1

2
λ2
s+rs)ds−

∫ t
0 λsdWsEQ

t [e−
∫ T
t rsds]]

=Dt[V0e
−

∫ t
0 ( 1

2
λ2
s+rs)ds−

∫ t
0 λsdWs ]EQ

t [e−
∫ T
t rsds] + V0e

−
∫ t
0 ( 1

2
λ2
s+rs)ds−

∫ t
0 λsdWsDt[EQ

t [e−
∫ T
t rsds]]

=
(
− λtEQ

t [e−
∫ T
t rsds] +Dt[EQ

t [e−
∫ T
t rsds]]

)
V0e

−
∫ t
0 ( 1

2
λ2
s+rs)ds−

∫ t
0 λsdWs

=
(
− λt +

Dt[EQ
t [e−

∫ T
t rsds]]

EQ
t [e−

∫ T
t rsds]

)
ZtT .

(8.1.1)

Therefore, the risk-adjusted volatility may be expressed in the following way:

(8.1.2) V̂tT = −λt +
Dt

[
EQ
t [e−

∫ T
t rsds]

]
EQ
t [e−

∫ T
t rsds]

, 0 ≤ t ≤ T <∞.

This can be also shown from (3.2.7). By definitions (3.1.2) and (3.1.3), i.e., FtTS =

1
S−T

(
ZtT
ZtS
− 1
)

and Sa,b(t) =
ZtTa−ZtTb∑b
i=a+1 τiZtTi

, we obtain that for 0 ≤ t ≤ T ≤ S <∞

FtTS =
1

S − T

(
EQ
t

[
e−

∫ T
t rsds

]
EQ
t

[
e−

∫ S
t rsds

] − 1

)
and Sa,b(t) =

EQ
t

[
e−

∫ Ta
t rsds − e−

∫ Tb
t rsds

]
EQ
t

[∑b
i=a+1 τie

−
∫ Ti
t rsds

] .
Now, we should be able to obtain the volatility drifts in the forward LIBOR rate and

forward swap rate dynamics in terms of the short rate and the market price of risk.

Let us recall the LIBOR rate volatility γtTS from (3.3.19) and the swap rate volatility

γ̃a,b(t) from (3.3.22):

γtTS =
Dt[ZtT − ZtS]

ZtT − ZtS
− Dt[ZtS]

ZtS
and γ̃a,b(t) =

Dt[ZtTa − ZtTb ]
ZtTa − ZtTb

−
Dt

[∑b
i=a+1 τiZtTi

]∑b
i=a+1 τiZtTi

.
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Thus, using (8.1.1) we may deduce that

γtTS =
Dt[ZtT − ZtS]

ZtT − ZtS
+ λt −

Dt

[
EQ
t

[
e−

∫ S
t rsds

]]
EQ
t

[
e−

∫ S
t rsds

]
=
Dt[e

−
∫ t
0 ( 1

2
λ2
s+rs)ds−

∫ t
0 λsdWsEQ

t [e−
∫ T
t rsds − e−

∫ S
t rsds]]

e−
∫ t
0 ( 1

2
λ2
s+rs)ds−

∫ t
0 λsdWsEQ

t [e−
∫ T
t rsds − e−

∫ S
t rsds]

+ λt −
Dt

[
EQ
t

[
e−

∫ S
t rsds

]]
EQ
t

[
e−

∫ S
t rsds

]
=
−λtEQ

t [e−
∫ T
t rsds − e−

∫ S
t rsds] +Dt

[
EQ
t [e−

∫ T
t rsds − e−

∫ S
t rsds]

]
EQ
t [e−

∫ T
t rsds − e−

∫ S
t rsds]

+ λt −
Dt

[
EQ
t

[
e−

∫ S
t rsds

]]
EQ
t

[
e−

∫ S
t rsds

]
=
Dt

[
EQ
t

[
e−

∫ T
t rsds − e−

∫ S
t rsds

]]
EQ
t

[
e−

∫ T
t rsds − e−

∫ S
t rsds

] −
Dt

[
EQ
t

[
e−

∫ S
t rsds

]]
EQ
t

[
e−

∫ S
t rsds

] .

Similarly, we obtain for the swap rate volatility that

γ̃a,b(t) =
Dt

[
EQ
t

[
e−

∫ Ta
t rsds − e−

∫ Tb
t rsds

]]
EQ
t

[
e−

∫ Ta
t rsds − e−

∫ Tb
t rsds

] −
Dt

[
EQ
t

[∑b
i=a+1 τie

−
∫ Ti
t rsds

]]
EQ
t

[∑b
i=a+1 τie

−
∫ Ti
t rsds

] .

Therefore, the forward LIBOR rate dynamics can be expressed in the following way:

(8.1.3) dFtTS = [· · · ]dt+
(
Dt

[
EQ
t [e−

∫ T
t rsds − e−

∫ S
t rsds]

]
EQ
t [e−

∫ T
t rsds − e−

∫ S
t rsds]

−
Dt

[
EQ
t [e−

∫ S
t rsds]

]
EQ
t [e−

∫ S
t rsds]

)
FtTSdWt

and the forward swap rate dynamics can be expressed in the following way:

(8.1.4)

dSa,b(t) = [· · · ]dt+
(
Dt

[
EQ
t

[
e−

∫ Ta
t rsds − e−

∫ Tb
t rsds

]]
EQ
t

[
e−

∫ Ta
t rsds − e−

∫ Tb
t rsds

] −
Dt

[
EQ
t

[∑b
i=a+1 τie

−
∫ Ti
t rsds

]]
EQ
t

[∑b
i=a+1 τie

−
∫ Ti
t rsds

] )
Sa,b(t)dWt.

This means that modelling the short rate process (rt)t≥0 is equivalent to modelling the

forward LIBOR rate and swap rate volatilities. Although we here consider the same

problem as in the short rate models, we gain some advantages in our framework, i.e.,

explicit specification of the volatility terms and analytical option pricing via the state

price density.

8.1.1 From the Affine Term Structure Model to the Market
Model

Let us now apply the one-factor Affine Term Structure Model, i.e., we assume that

drt = (κtrt + ηt)dt+
√
γtrt + δtdWt,
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for some deterministic functions κ, η, γ, δ. In this model we are able to obtain by the

Feynman-Kac Formula, (see for example, [57]), that

PtT = Et[e−
∫ T
t rsds] = eAtT+BtT rt , for 0 ≤ t ≤ T <∞,

for deterministic functions A and B such that ATT = 0, BTT = 0 which satisfy the

following Riccati equations:{
∂
∂t
BtT = −κtBtT − 1

2
γtB

2
tT + 1

∂
∂t
AtT = −ηtBtT − 1

2
δtB

2
tT

.

It gives the discount bond volatility expressed in the following way:

ΩtT =
Dt[e

AtT+BtT rt ]

eAtT+BtT rt
= BtTDt[rt], 0 ≤ t ≤ T <∞.

Recalling the expression (8.1.2) we obtain the risk-adjusted volatility as follows:

V̂tT = −λt +BtTDt[rt], 0 ≤ t ≤ T <∞.

Inserting this expression into equation (3.3.2) we obtain that

dFtTS = (λt−BtTDt[rt])(BtT−BtS)Dt[rt]
(
FtTS+

1

S − T

)
dt+(BtT−BtS)Dt[rt]

(
FtTS+

1

S − T

)
dWt.

Here, we observe the market price of risk has disappeared in the volatility drift. Using

the expression (3.3.5) the forward LIBOR rate volatility is expressed under the Affine

Term Structure in the following way:

γtTS =
1

1− e(AtS−AtT )+(BtS−BtT )rt
(BtT −BtS)Dt[rt].

Similarly, using the expression (3.3.9) the swap rate volatility is expressed in the fol-

lowing way:

γ̃a,b(t) =
[eAtTa+BtTartBtTa − eAtTb+BtTbrtBtTb

eAtTa+BtTart − eAtTb+BtTbrt
−
∑b

i=a+1 τie
AtTi+BtTirtBtTi∑b

i=a+1 τie
AtTi+BtTirt

]
Dt[rt].
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From the Vasicek Model to the Market Model

For instance, in the Vasicek Model, it is assumed that

drt = κ(θ − rt)dt+ σdWt,

for some constants κ, θ, σ ∈ R. Because this Gaussian process gives Dt[rt] = σ, we

obtain in the Vasicek Model that

dFtTS = (λt−BtTσ)(BtT −BtS)σ
(
FtTS+

1

S − T

)
dt+(BtT −BtS)σ

(
FtTS+

1

S − T

)
dWt.

which corresponds to the Shifted-Lognormal Market Model, see (3.3.6). Taking some

function to express the market price of risk to be λt = g(t, rt), we express the super-

martingale process in the following way:

Vt = V0e
−

∫ t
0 ( 1

2
g2(s,rs)+rs)ds−

∫ t
0 g(s,rs)dWs , for t ≥ 0.

In the case of the Vasicek Model we take g(t, rt) = krt for some constant k ∈ R so that

we obtain that

Vt = V0e
−

∫ t
0 ( 1

2
k2r2

s+rs)ds−
∫ t
0 krsdWs , for t ≥ 0,

However, this model is not in our interest, since we know that the Shifted-Lognormal

Market Model performs badly for hedging derivatives. Moreover, because in the Vasicek

Model the process is not guaranteed to be positive, the state price density is not

potential.

From the CIR Model to the Market Model

For other example, the CIR Model assumes that

drt = κ(θ − rt)dt+ σ
√
rtdWt

for some positive constants κ, θ, σ such that 2κθ ≥ σ2, and g(t, rt) = k
√
rt, that is,

Vt = V0e
−

∫ t
0 ( 1

2
k2+1)rsds−

∫ t
0 k
√
rsdWs , for t ≥ 0.
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Application of the CIR Model seems desirable for the positivity condition, which makes

the state price density a potential. However, we find that it is difficult to compute the

Malliavin derivative Dt[rt] in the CIR Model.

8.1.2 From the Squared Gaussian Model to the Market Model

Let us now consider the short rate process taking a powered form of a state variable,

i.e., rt = r̂nt , t ≥ 0, n ∈ N, for a continuous adapted process (r̂t)t≥0. In particular,

taking a squared form, i.e., rt = r̂2
t , t ≥ 0 would be ideal to secure the interest rate

positivity condition. For example, in the Squared Gaussian Model ([69]), we assume

that

dr̂t = κ(θ − r̂t)dt+ σdWt,

for some constants κ, θ, σ ∈ R, which gives the discount bond expressed by some

deterministic function Ã, B̃, C̃ in the following way

PtT = eÃtT+B̃tT r̂t+C̃tT r̂
2
t , 0 ≤ t ≤ T <∞.

Therefore, the Squared Gaussian Model gives the risk adjusted volatility expressed by

the market price of risk and the Gaussian process, that is,

V̂tT =− λt +Dt[ÃtT + B̃tT r̂t + C̃tT r̂
2
t ] = −λt + B̃tTDt[r̂t] + C̃tTDt[r̂

2
t ]

=− λt + B̃tTσ + 2C̃tTσr̂t

Inserting this expression in the equation (3.3.2) we obtain that

dFtTS =(−λt + B̃tSσ + 2C̃tSσr̂t)(B̃tS − B̃tT + (C̃tS − C̃tT )r̂t)
(
FtTS +

1

S − T

)
dt

− (B̃tS − B̃tT + (C̃tS − C̃tT )r̂t)
(
FtTS +

1

S − T

)
dWt.

(8.1.5)

Because r̂t is normally distributed, we obtain stochasticity in the LIBOR rate volatility.

We here suggest that it would be useful to model the process (r̂t)≥0 by the two-factor

Affine Model so that the LIBOR rate volatility and the swap rate volatility have the
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desirable distributions. However, it would not be good idea to apply a Log-r Model

(taking the exponential of a state variable as rt = er̂t , such as Black-Derman-Toy Model

([8]) and Black-Karasinski Model ([9]), see Section 9.3.3 in [54]), because in these model

we do not have analytical expression of the discount bond, which means that we can

not express the forward LIBOR rate volatility explicitly. We leave the remaining works

open.

8.2 Modelling the term structure from (ηtT )0≤t≤T<∞
in the FH Framework

In this section, we make further investigations of the FH Framework. The reader might

like to recall that in the FH Framework the variable ZtT for 0 ≤ t ≤ T <∞ is expressed

as follows:

(8.2.1) ZtT =

∫ ∞
T

hsM̂tsds, 0 ≤ t ≤ T <∞,

where hs = − d
ds
P0s and M̂ts is a strictly positive martingale for each t ∈ [0,∞) such

that M̂0s = 1 and lims→∞ M̂ts = 1. The Martingale Representation Theorem implies

that

dM̂ts = ηtsM̂tsdWt, 0 ≤ t ≤ s <∞,

for some adapted process (ηts)0≤t≤s<∞. Solving the stochastic differential equation we

obtain the following expression:

(8.2.2) M̂ts = exp

[ ∫ t

0

ηusdWu −
1

2

∫ t

0

η2
usdu

]
, 0 ≤ t ≤ s <∞.

From this, it follows that

PtT =

∫∞
T
hs exp

[
− 1

2

∫ t
0
η2
usdu+

∫ t
0
ηusdWu

]
ds∫∞

t
hs exp

[
− 1

2

∫ t
0
η2
usdu+

∫ t
0
ηusdWu

]
ds
.

Therefore, in the FH Framework, we apply the same framework as we observe in the

Chaotic Approach, but specify the function η. Note that in particular we have the
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following form for the initial curve:

f0T =
hT∫∞

T
hsds

, for T ≥ 0,

which corresponds to the curves in the Chaos Models.

8.2.1 Deterministic η

Let us suppose the function η is deterministic. Then, because the generating function

for the Hermite polynomials is given by

exp
[
tx− 1

2
t2
]

=
∞∑
n=0

tnHn(x), where Hn(x) =
1

n!
(−1)ne

1
2
x2 dn

dxn
(e−

1
2
x2

),

we infer that

exp

[ ∫ t

0

ηusdWu −
1

2

∫ t

0

η2
usdu

]
=
∞∑
n=0

ξ
n
2
tsHn(θt).

Here, we have defined

ξts :=

∫ t

0

η2
usdu and θt :=

∫ t
0
ηusdWu√∫ t
0
η2
usdu

∼ N (0, 1).

Therefore, by (8.2.1) and (8.2.2) we can write

ZtT =

∫ ∞
T

hs

∞∑
n=0

ξ
n
2
tsHn(θt)ds.

Continuing further, it follows by the linearity of the Riemann integral that

(8.2.3) ZtT =
∞∑
n=0

∫ ∞
T

hsξ
n
2
tsdsHn(θt).

Since the first few terms of the Hermite polynomials are given by H0(x) = 1, H1(x) =

x,H2(x) = 1
2
(x2 − 1), H3(x) = 1

6
(x3 − 3x), H4(x) = 1

24
(x4 − 6x2 + 3) and so on, we can

see that

ZtT =

∫ ∞
T

hsds+

∫ ∞
T

hs(ξts)
1
2dsθ +

1

2

∫ ∞
T

hsξtsds(θ
2 − 1)

+
1

6

∫ ∞
T

hs(ξts)
3
2ds(θ3 − 3θ) +

1

24

∫ ∞
T

hsξ
2
tsds(θ

4 − 6θ2 + 3) + · · · ,
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which implies that the whole term structure can be modelled by a unique Gaussian

process. Here, we truncate the polynomial at n-th term and then call this the “nth-

order FH Model”. Therefore, the nth-order FH Model gives that both the state price

density Vt and the variable ZtT is distributed by a degree n polynomial of the Gaussian

distribution. It gives us analytical tractability for all main processes and derivatives,

as we will see in Section 8.2.2.

First FH Models

When we truncate the expansion at the first term, we obtain the following deterministic

term structure models:

ZtT =

∫ ∞
T

hsds, Vt =

∫ ∞
t

hsds, PtT =

∫∞
T
hsds∫∞

t
hsds

and ftT =
hT∫∞

T
hsds

.

This corresponds to the First Chaos Model.

Second FH Models

When we truncate the expansion at the second term, we obtain that

ZtT =

∫ ∞
T

hsds+

∫ ∞
T

hs
√
ξtsdsθt and PtT =

∫∞
T
hsds+

∫∞
T
hs
√
ξtsdsθt∫∞

t
hsds+

∫∞
t
hs
√
ξtsdsθt

.

This allows us to model the swaption and caplet normally distributed as in (2.3.4) and

(2.3.10). This corresponds to the Factorizable Second Chaos Model. Note here that

even in this simple case we achieve the construction of a forward LIBOR rate dynamics

with a stochastic volatility.

Exponential example

Cairns ([23]) suggests the exponential form ηus = αe−β(s−u) for some constants α and

β in the FH framework, that is,

MtT = f0TP0TV0 exp
[
− 1

2

∫ t

0

(αe−β(T−u))2du+

∫ t

0

αe−β(T−u)dWu

]
,
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Vt =

∫ ∞
t

f0sP0sV0 exp
[
− 1

2

∫ t

0

α2e−2β(s−u)du+

∫ t

0

αe−β(s−u)dWu

]
ds,

ZtT =

∫ ∞
T

f0sP0sV0 exp
[
− 1

2

∫ t

0

α2e−2β(s−u)du+

∫ t

0

αe−β(s−u)dWu

]
ds.

If we also take the exponential form in our argument we obtain that

ξts = α2e−2βs

∫ t

0

e2βudu, θt =

∫ t
0
eβudWu√∫ t
0
e2βudu

∼ N (0, 1).

Remark

Note that if we consider the multi-dimensional case, we obtain that

M̂ts = exp

[ m∑
j=1

∫ t

0

ηj(u, s)dWj(u)−
m∑
j=1

1

2

∫ t

0

η2
j (u, s)du

]
.

Therefore we obtain in the multi-dimensional case that

ZtT =

∫ ∞
T

hs

m∏
j=1

[ ∞∑
n=0

(∫ t

0

η2
j (u, s)du

)n
2
Hn

(∫ t
0
ηj(u, s)dWj(u)√∫ t

0
η2
j (u, s)du

)]
ds.

8.2.2 Pricing the European Call/Put Bond Options within the
FH framework

Applying the form (8.2.3), we find that

ZtT −KZtt =
∞∑
n=0

∫ ∞
T

hsξ
n
2
tsdsHn(θt)−K

∞∑
n=0

∫ ∞
t

hsξ
n
2
tsdsHn(θt)

=
∞∑
n=0

[ ∫ ∞
T

hsξ
n
2
tsds−K

∫ ∞
t

hs(ξts)
n
2 ds
]
Hn(θt).

Applying the expectation rule, we obtain that

ZBC(0, t, T,K) =
1

V0

√
2π

∫
Pc(θ)≥0

Pc(θ)e−
θ2

2 dθ,

where

V0 =

∫ ∞
0

hsds and Pc(θ) :=
∞∑
n=0

[ ∫ ∞
T

hsξ
n
2
tsds−K

∫ ∞
t

hsξ
n
2
tsds

]
Hn(θ).

We can solve the integral by checking the roots of the function Pc(θ). A similar

argument may be applied for pricing swaptions.
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8.3 Modelling the term structure from (ηtT )0≤t≤T<∞
in the Chaotic Approach

Recall that the process (ηtT )0≤t≤T<∞ was specified as follows:

σ2
s = hs exp

[
− 1

2

∫ s

0

η2
usdu+

∫ s

0

ηusdWu

]
where hs = f0sP0sV0.

In the Chaotic Approach, we implement the chaos expansion on the variable σs and

obtain that:

σs = E[σs] +

∫ s

0

E
[
Ds1 [σs]

]
dWs1 +

∫ s

0

∫ s1

0

E
[
Ds2 [Ds1 [σs]]

]
dWs2dWs1 + · · · .

Therefore the chaos coefficients may be computed by specifying the process (ηtT )0≤t≤T<∞.

8.3.1 Deterministic η

For simplicity, we first assume that the function η is deterministic and find chaos

coefficients. Let us investigate the first chaos coefficient φ1(s):

φ1(s) = E[σs] = E
[√

hs exp
[
− 1

4

∫ s

0

η2
usdu+

1

2

∫ s

0

ηusdWu

]]
.

Since we have that

1

2

∫ s

0

ηusdWu ∼ N (0, σ̂2
s) where σ̂2

s =
1

4

∫ s

0

η2
usdu,

we infer that

E[

√
M̂ss] =E

[
exp

[
1

2

∫ s

0

ηusdWu

]]
exp

[
− 1

4

∫ s

0

η2
usdu

]
=

1√
2πσ̂2

s

∫ ∞
−∞

exe
− x2

2σ̂2
s dxe−σ̂

2
s

=
1√

2πσ̂2
s

∫ ∞
−∞

exp
[
− 1

2σ̂2
s

(x− σ̂2
s)

2 +
σ̂2
s

2

]
dxe−σ̂

2
s

=e
σ̂2
s
2 e−σ̂

2
s = exp

[
− 1

8

∫ s

0

η2
usdu

]
.
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Therefore we obtain that the first chaos coefficient is as follows:

φ1(s) = E[σs] =
√
hsE[

√
M̂ss] =

√
hs exp

[
− 1

8

∫ s

0

η2
usdu

]
.

We now compute the second chaos coefficient, applying the Malliavin derivative:

φ2(s, s1) =E[Ds1σs]

=
√
hsE[Ds1

√
M̂ss]

=
√
hsE

[1

2
ηs1s

√
M̂ss

]
=

1

2

√
hsE

[√
M̂ss

]
ηs1s

=
1

2

√
hs exp

[
− 1

8

∫ s

0

η2
usdu

]
ηs1s.

Similarly, the third chaos coefficient is derived as follows:

φ3(s, s1, s2) =E[Ds2 [Ds1σs]]

=
√
hsE[Ds2 [Ds1

√
M̂ss]]

=
√
hsE

[
Ds2

[1

2
ηs1s

√
M̂ss

]]
=
√
hsE

[1

4
ηs1sηs2s

√
M̂ss

]
=

1

4

√
hsE

[√
M̂ss

]
ηs1sηs2s

=
1

4

√
hs exp

[
− 1

8

∫ s

0

η2
usdu

]
ηs1sηs2s

Continuing in this manner, we find the chaos coefficients are as follows:

φ1(s) =
√
hs exp

[
− 1

8

∫ s

0

η2
usdu

]
, φ2(s, s1) =

1

2

√
hs exp

[
− 1

8

∫ s

0

η2
usdu

]
ηs1s,

φ3(s, s1, s2) =
1

4

√
hs exp

[
− 1

8

∫ s

0

η2
usdu

]
ηs1sηs2s,

φ4(s, s1, s2, s3) =
1

8

√
hs exp

[
− 1

8

∫ s

0

η2
usdu

]
ηs1sηs2sηs3s, · · · .
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First Chaos Model

In the first Chaos Model we have that

ZtT =

∫ ∞
T

hs exp

[
− 1

4

∫ s

0

η2
usdu

]
ds.

Second Chaos Model

In the Second Chaos Model we have that

Mts = R2
1(t, s) +

∫ s

t

R2
2(t, s, s1)ds1, 0 ≤ t ≤ s <∞

where

R1(t, s) =
√
hs exp

[
− 1

8

∫ s

0

η2
usdu

]
+

∫ t

0

1

2

√
hs exp

[
− 1

8

∫ s

0

η2
usdu

]
ηs1sdWs1,

R2(t, s, s1) =
1

2

√
hs exp

[
− 1

8

∫ s

0

η2
usdu

]
ηs1s.

Given that we thus have

R2
1(t, s) = hs exp

[
− 1

4

∫ s

0

η2
usdu

](
1 +

1

2

∫ t

0

ηs1sdWs1

)2

,

R2
2(t, s, s1) =

1

4
hs exp

[
− 1

4

∫ s

0

η2
usdu

]
η2
s1s
,

we infer that

Mts = hs exp

[
−1

4

∫ s

0

η2
usdu

]((
1+

1

2

∫ t

0

ηs1sdWs1

)2

+
1

4

∫ s

t

η2
s1s
ds1

)
, 0 ≤ t ≤ s <∞.

From this, it follows that

Zts =

∫ ∞
T

hs exp

[
−1

4

∫ s

0

η2
usdu

]((
1+

1

2

∫ t

0

ηs1sdWs1

)2

+
1

4

∫ s

t

η2
s1s
ds1

)
ds, 0 ≤ t ≤ T <∞.
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Exponential example

As a specific example, when we suppose the deterministic function to be ηus = αe−β(s−u)

for some constants α and β, the main processes can be approximated using the chaos

coefficients:

φ1(s) =
√
hs exp

[
− α2

16β
(1− e−2βs)

]
, φ2(s, s1) = φ1(s)

α

2
e−βseβs1 ,

φ3(s, s1, s2) = φ1(s)
(α

2
e−βs

)2

eβs1eβs2 , φ4(s, s1, s2, s3) = φ1(s)
(α

2
e−βs

)3

eβs1eβs2eβs3 , · · · .

Therefore we obtain the Factorizable Chaos Models. For example, we may construct a

Factorizable Second Chaos Model as follows:

ZtT = AT +BT R̂t + CT (R̂2
t − Q̂t),

where

At =

∫ ∞
t

φ2
1(s)

[
1+
(α

2
e−βs

)2
]
ds, Bt = 2

∫ ∞
t

φ2
1(s)

(α
2
e−βs

)
ds, Ct = 2

∫ ∞
t

φ2
1(s)

(α
2
e−βs

)2

ds,

φ1(s) =
√
hs exp

[
− α2

16β
(1− e−2βs)

]
, R̂t =

∫ t

0

eβsdWs and Q̂t =

∫ t

0

e2βsds.

8.4 Modelling the primitive process from its SDE

Let us now model the stochastic differential equation of the primitive process (σt)t≥0.

Starting our argument with this process, we do not need to be careful about the

positivity problem, but we need to model the process such that σt ∈ L2, that is,

sup
t∈R+

E[σ2
t ] <∞.

The reader might like to recall here that E[σ2
t ] = V0f0tP0t. We observe some relationship

with the Chaotic Approach, recalling the following form of the variable σt from (2.1.23)

in the Chaotic Approach:

dσt =
( d
dt
φ1(t)

)
dt+

(
φ2(t, t)+

∫ t

0

φ3(t, t, s2)dWs2+

∫ t

0

∫ s1

0

φ4(t, t, s2, s3)dWs3dWs2+· · ·
)
dWt.
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Therefore the First Chaos Model presents a deterministic dynamics, the Second Chaos

Model presents local volatility dynamics, and the higher Chaos Models offer stochastic

volatility dynamics.

8.4.1 One Factor Deterministic Volatility Case

We first consider deterministic term structure and the local volatility case. In other

words, up to the Second Chaos Models are investigated in this section. The higher

order models are researched in the next section.

Deterministic Form

Suppose that we have some integrable deterministic process (ϕt)t≥0 with the property

that

dσt = ϕtdt.

Then this corresponds to the First Chaos Model, as can be seen by recalling expression

(3.1.8) for the short rate:

rt =
σ2
t∫∞

t
Et[σ2

s ]ds
,

which shows a deterministic term structure.

Zero Drift Form

Suppose that we have some integrable deterministic process (υt)t≥0 with the property

that

dσt = υtdWt.

In this case we have that

σt = σ0 +

∫ t

0

υsdWs and E[σ2
t ] = σ2

0 +

∫ t

0

υ2
sds.

Therefore, in this case, we observe that σt /∈ L2.
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Geometric Brownian Motion Form

Suppose that for some constants ϕ and υ, we have that

dσt = ϕσtdt+ υσtdWt.

It follows that

σt = σ0e

(
ϕ−υ

2

2

)
t+υWt , E[σt] = σ0e

ϕt and E[σ2
t ] = σ2

0e
(2ϕ+υ2)t.

Therefore we need to restrict the parameters so that 2ϕ + υ2 < 0, in order to ensure

that σt ∈ L2. However, this form is too simple for initial curve fitting, that is E[σ2
t ] =

V0f0tP0t, and so is not desirable in practice.

Geometric Brownian Motion++

To have a better initial curve fitting we next consider the following extensional form:

σt = xt + zt,

where

dxt = ϕxtdt+ υxtdWt,

ϕ and υ are some constants and zt is some deterministic function. This implies that

σt = x0e

(
ϕ−υ

2

2

)
t+υWt + zt,

from which it follows that

E[σt] = x0e
ϕt + zt and E[σ2

t ] = x2
0e

(2ϕ+υ2)t + 2x0e
ϕtzt + z2

t .

Here the conditions 2ϕ + υ2 < 0 and ϕ < 0 must be imposed. Though this form does

not correspond to the Chaotic Approach, it would satisfy the initial curve condition.

We particularly suggest to model the variable zt by the descriptive form.
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Log-Normal Form

We now consider a more general form. Suppose that

dσt = ϕtσtdt+ υtσtdWt,

for some integrable deterministic processes (ϕt)t≥0 and (υt)t≥0. It follows that

σt = σ0e
∫ t
0 (ϕs−

υ2
s
2

)ds+
∫ t
0 υsdWs , E[σt] = σ0e

∫ t
0 ϕsds,

E[σ2
t ] =E[σ2

0e
∫ t
0 (2ϕs−υ2

s)ds+
∫ t
0 2υsdWs ]

=σ2
0e

∫ t
0 (2ϕs−υ2

s)dsE[e
∫ t
0 2υsdWs ]

=σ2
0e

∫ t
0 (2ϕs+υ2

s)ds.

Log-Normal++

To obtain a better initial curve fitting than in the log-normal case, we next consider

the following form:

σt = xt + zt,

where

dxt = ϕtxtdt+ υtxtdWt,

for some integrable deterministic processes (ϕt)t≥0 and (υt)t≥0 and some deterministic

function zt. From this we infer that

σt = x0e
∫ t
0 (ϕs−

υ2
s
2

)ds+
∫ t
0 υsdWs + zt,

and further that

E[σt] = x0e
∫ t
0 ϕsds + zt and E[σ2

t ] = x2
0e

∫ t
0 (2ϕs+υ2

s)ds + 2x0e
∫ t
0 ϕsdszt + z2

t .

This is a more general form. Although this form does not correspond to the Second

Chaos Model, it would give us good initial curve fitting.
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Gaussian Form

We now consider the dynamics of the primitive process, by assuming that

dσt = −ϕσtdt+ υdWt

for some constants ϕ and υ. It follows that

σt = σ0e
−ϕt + υ

∫ t

0

e−ϕ(t−u)dWu and E[σ2
t ] = σ2

0e
−2ϕt +

υ

2ϕ

[
1− e−2ϕt

]
,

which belongs to the Factorizable Second Chaos Model. The constant ϕ needs to be

positive so that σt ∈ L2.

Gaussian++

Next we consider a more general case of the Gaussian form. Suppose that

σt = xt + zt,

where

dxt = −ϕxtdt+ υtdWt such that ϕ > 0,

where υt and zt are some deterministic functions. This implies that

σt = σ0e
−ϕt + zt +

∫ t

0

e−ϕ(t−u)υudWu,

from which it follows that

E[σt] = σ0e
−ϕt + zt and E[σ2

t ] = (x0e
−ϕt + zt)

2 +

∫ t

0

e−2ϕ(t−u)υ2
udu.

Vasicek Form, OU process

Recalling the short rate formula, which is given by

rt =
σ2
t∫∞

t
Et[σ2

s ]ds
,
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it would be natural to consider the primitive process with mean reverting property.

Suppose that

dσt = κ(ϕ− σt)dt+ υdWt,

for some constants κ, ϕ and υ. It follows that

σt = σ0e
−κt + ϕ

(
1− e−κt

)
+ υ

∫ t

0

e−κ(t−u)dWu,

and also that

E[σt] = σ0e
−κt +ϕ(1− e−κt) and E[σ2

t ] =
(
σ0e
−κt +ϕ(1− e−κt)

)2

+
υ2

2κ

(
1− e−2κt

)
.

The constant κ must be positive to ensure σt ∈ L2.

Vasicek++ Form

Let us suppose that

σt = xt + zt,

where

dxt = κ(ϕ− xt)dt+ υtdWt such that κ > 0,

with some deterministic functions υt and zt. It follows that

σt = x0e
−κt + ϕ

(
1− e−κt

)
+ zt +

∫ t

0

e−κ(t−u)υudWu,

and

E[σt] = x0e
−κt+ϕ(1−e−κt)+zt, E[σ2

t ] =
(
x0e
−κt+ϕ(1−e−κt)+zt

)2

+

∫ t

0

e−2κ(t−u)υ2
udu.

Hull-White Form

Let us also consider the following Hull-White Form:

dσt = (ϕt − κσt)dt+ υtdWt,
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with some positive constant κ and some deterministic functions ϕt and υt. Integrating

the dynamics in this case we obtain that

σt = σ0e
−κt +

∫ t

0

e−κ(t−u)ϕudu+

∫ t

0

e−κ(t−u)υudWu.

Thus, we have that

E[σt] = σ0e
−κt+

∫ t

0

e−κ(t−u)ϕtdu, E[σ2
t ] =

(
σ0e
−κt+

∫ t

0

e−κ(t−u)ϕudu
)2

+

∫ t

0

e−2κ(t−u)υ2
udu.

Hull-White++ Form

We now consider a more general case of the Hull-White form:

σt = xt + zt,

where

dxt = (ϕt − κxt)dt+ υtdWt, such that κ > 0,

with some deterministic functions ϕt, υt, and zt. It follows that

σt = x0e
−κt +

∫ t

0

e−κ(t−u)ϕudu+ zt +

∫ t

0

e−κ(t−u)υudWu.

In this case, we obtain that

E[σt] = x0e
−κt +

∫ t

0

e−κ(t−u)ϕtdu+ zt

and

E[σ2
t ] =

(
x0e
−κt +

∫ t

0

e−κ(t−u)ϕudu+ zt

)2

+

∫ t

0

e−2κ(t−u)υ2
udu.

This is the most general Gaussian one-factor form that we will be concerned with.

It allows a plain option pricing formula with the same framework as the Factorizable

Second Chaos Model. For example, we may take the functions

ϕt = b1e
−c1t, υt = b2e

−c2t and zt = b3te
−c3t
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for some constants b1, b2, b3 and some positive constants c1, c2, c3. Note here that in this

case we have that σ0 = x0. This choice of functions satisfies the required conditions.

We then have that

σt =
(
σ0 −

b1

κ− c1

)
e−κt +

b1

κ− c1

e−c1t + b3te
−c3t +

∫ t

0

b2e
−κte(κ−c2)udWu.

Therefore, we can set

φ1(t) =
(
σ0 −

b1

κ− c1

)
e−κt +

b1

κ− c1

e−c1t + b3te
−c3t, φ2(t, u) = b2e

−κte(κ−c2)u,

so that the Second Chaos Framework can be applied. Note here that if we take κ = c2,

the One-variable Second Chaos Model Framework can be applied.

8.4.2 Two Factor Deterministic Volatility Case

Two-Additive-Factor Gaussian Form G2 + +

We now consider the dynamics of the primitive process assuming that

σt = xt + yt + zt,

where we suppose that xt and yt satisfy the following conditions:

dxt = −ϕxtdt+ υdW 1
t , dyt = −ϕ̂ytdt+ υ̂dW 2

t ,

such that ϕ ≥ 0, ϕ̂ ≥ 0 and such that for some 0 ≤ ρ ≤ 1

dW 1
t dW

2
t = ρdt,

and where zt is some deterministic function. It follows that

σt = x0e
−ϕt + y0e

−ϕ̂t + zt + υ

∫ t

0

e−ϕ(t−u)dW 1
u + υ̂

∫ t

0

e−ϕ̂(t−u)dW 2
u ,

and

E[σ2
t ] = (x0e

−ϕt+y0e
−ϕ̂t+zt)

2 +
υ2

2ϕ

[
1−e−2ϕt

]
+
υ̂2

2ϕ̂

[
1−e−2ϕ̂t

]
+2ρ

υυ̂

ϕ+ ϕ̂

[
1−e−(ϕ+ϕ̂)t

]
.
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This can be shown, for instance, by arguments contained in [14]. In addition we are

freely able to specify the deterministic function zt to resolve the initial curve fitting

issue. As an example, for some constants α, β ∈ R such that α > 0, we could choose

the function zt in the following way:

zt = βte−αt.

Therefore this two factor stochastic differential equation is also ideal for our purpose.

8.4.3 Stochastic Volatility Form

We now investigate the primitive process (σt)≥0 where this is assumed to have a stochas-

tic volatility. We first recall the Third Chaos Model:

dσt =
( d
dt
φ1(t)

)
dt+

[
φ2(t, t) +

∫ t

0

φ2(t, t, s2)dWs2

]
dWt.

It is clear that the Third Chaos Model belongs to the following one factor stochastic

volatility model:

dσt = µ1(t)dt+ σ1(t)dWt,

dσ1(t) = µ2(t)dt+ σ2(t)dWt,

where µ1(t), µ2(t), and σ2(t) are deterministic functions. Similarly, we interpret the

Fourth Chaos Model as belonging to the one factor stochastic volatility model with

three stochastic differential equations, and so on. In this section we focus on the two

factor stochastic volatility model, and leave the higher multi-factor stochastic volatility

models for Section 9.2.2.

Two Factor Stochastic Volatility Hull-White++ Form

We now consider the following form:

σt = xt + zt,
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where

(8.4.1) dxt = (ϕt − κxt)dt+ υtdW
1
t , such that κ > 0,

with some deterministic functions ϕt and zt and some positive constant κ where the

volatility drift is modelled as

(8.4.2) dυt = (ϕ̂t − κ̂υt)dt+ υ̂tdW
2
t , such that κ̂ > 0,

with some deterministic functions ϕ̂t and υ̂t and some positive constant κ̂ such that

for some 0 ≤ ρ ≤ 1

dW 1
t dW

2
t = ρdt.

Equation (8.4.2) can be solved explicitly as follows:

υt = υ0e
−κ̂t +

∫ t

0

e−κ̂(t−u)ϕ̂udu+

∫ t

0

e−κ̂(t−u)υ̂udW
2
u .

Hence, equation (8.4.1) can be expressed in the following way:

dxt = (ϕt − κxt)dt+

[
υ0e
−κ̂t +

∫ t

0

e−κ̂(t−u)ϕ̂udu+

∫ t

0

e−κ̂(t−u)υ̂udW
2
u

]
dW 1

t .

Integrating this yields that

σt =x0e
−κt +

∫ t

0

e−κ(t−s1)ϕs1ds1 + zt +

∫ t

0

e−κt
(
υ0e

κs1−κ̂s1 +

∫ s1

0

eκs1−κ̂(s1−s2)ϕ̂s2ds2

)
dW 1

s1

+

∫ t

0

∫ s1

0

e−κteκs1−κ̂(s1−s2)υ̂s2dW
2
s2
dW 1

s1
.

Also, we have

E[σt] = x0e
−κt +

∫ t

0

e−κ(t−u)ϕtdu+ zt,

and

E[σ2
t ] =

(
x0e
−κt +

∫ t

0

e−κ(t−u)ϕudu+ zt

)2

+

∫ t

0

e−2κt

(
υ0e

κs1−κ̂s1 +

∫ s1

0

eκs1−κ̂(s1−s2)ϕ̂s2ds2

)2

ds1

+

∫ t

0

∫ s1

0

e−2κte2κs1−2κ̂(s1−s2)υ̂2
s2
ds2ds1.
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We observe here that when we set ρ = 1, we are able to apply the Factorizable Third

Chaos Model system and find the pricing option formula explicitly. For example, we

may set the functions ϕt, ϕ̂t, υ̂t and zt to be given by

ϕt = b1e
−c1t, ϕ̂t = b2e

−c2t, υ̂t = b3e
−c3t and zt = b4te

−c4t,

for some constants b1, b2, b3, b4 and some positive constants c1, c2, c3, c4. Note here that

in this case we have that σ0 = x0. We then find that

σt =
(
σ0 −

b1

κ− c1

)
e−κt +

b1

κ− c1

e−c1t + b4te
−c4t

+

∫ t

0

e−κte(κ−κ̂)s1
(
υ0 −

b2

κ̂− c2

+
b2

κ̂− c2

e(κ̂−c2)s1
)
dWs1

+

∫ t

0

∫ s1

0

b3e
−κte(κ−κ̂)s1e(κ̂−c3)s2dWs2dWs1 .

Therefore, we can choose the functions φ1, φ2 and φ3 to be given by

φ1(t) =
(
σ0 −

b1

κ− c1

)
e−κt +

b1

κ− c1

e−c1t + b4te
−c4t,

φ2(t, s1) = e−κte(κ−κ̂)s1
(
υ0 −

b2

κ̂− c2

+
b2

κ̂− c2

e(κ̂−c2)s1
)
,

φ3(t, s1, s2) = b3e
−κte(κ−κ̂)s1e(κ̂−c3)s2 ,

so that the Factorizable Third Chaos Framework can be applied. Note here that if we

take κ̂ = c3, the Two-variable Third Chaos Framework can be applied. Moreover, if

we take κ = κ̂ = c2 = c3, the One-variable Third Chaos Framework can be applied.

8.5 Modelling the forward LIBOR rate dynamics

from (ZtT )0≤t≤T<∞

We have observed the forward LIBOR rate dynamics expressed only by the risk-

adjusted volatilities, which is computed in the following way:

V̂tT =
Dt[ZtT ]

ZtT
, 0 ≤ t ≤ T <∞.
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We now consider whether modelling the process (ZtT )0≤t≤T<∞ may allow us to in-

tegrate the advantages of the SVM and the Potential Approach. It would yield a

desirable forward rate dynamics, satisfying the arbitrage-free and positive interest rate

conditions.

8.5.1 Arbitrage free condition from ZtT

Let us first recall the potential property of the state price density (Vt)t≥0, that is, Vt is

a supermartingale with respect to Ft such that the following asymptotic condition is

satisfied:

(8.5.1) lim
T→∞

E[VT ] = 0.

Because we defined

ZtT := Et[VT ], for 0 ≤ t ≤ T <∞,

the supermartingale property of Vt, that is, that Vt ≥ Et[VT ] for any 0 ≤ t ≤ T < ∞,

is equivalent to the following condition

Ztt ≥ ZtT , for any 0 ≤ t ≤ T <∞.

Because the tower property gives us that

E[ZtT ] = E[VT ],

the asymptotic condition (8.5.1) is equivalent to another asymptotic condition

lim
T→∞

E[ZtT ] = 0.

Therefore we find that the decreasing condition with respect to T ≥ 0 for the martingale

process (ZtT )0≤t≤T<∞ with the asymptotic condition means that the non-arbitrage and

positive interest rate conditions are satisfied. We recall the following form of the process

(ZtT )0≤t≤T<∞ observed in the Chaotic Approach:

ZtT = Et
[ ∫ ∞

T

σ2
sds
]
,
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which is indeed a martingale with respect to Ft, decreasing with respect to T ≥ 0 for

any σs ∈ L2.

8.5.2 Application of the SABR dynamics

Let us assume the random variable ZtT satisfies the SABR dynamics, that is,

dZtT = −ỸtTZβ
tTdWt,

dỸtT = εỸtTdW̃t,

where β ∈ (0, 1], ε and α are some positive constants, and Wt and W̃t are Brownian

Motions with a correlation

dWtdW̃t = ρdt, and ρ ∈ [−1, 1].

This does not already guarantee that the process (ZtT )0≤t≤T<∞ is decreasing with

respect to T ≥ 0. In light of Itô’s Lemma, for 0 ≤ t ≤ T ≤ S <∞, we have that

d
( 1

ZtS

)
=

1

Z3
tS

(dZtS)2 − 1

Z2
tS

dZtS

=
Ỹ 2
tSZ

2β
tS

Z3
tS

dt+
ỸtSZ

β
tS

Z2
tS

dWt

=Ỹ 2
tSZ

2β−3
tS dt+ ỸtSZ

β−2
tS dWt.

Consequently, we may further infer that

d
(ZtT
ZtS

)
=ZtTd

( 1

ZtS

)
+

1

ZtS
dZtT + d

( 1

ZtS

)
dZtT

=Ỹ 2
tSZ

2β−3
tS ZtTdt+ ỸtSZ

β−2
tS ZtTdW

1
t − ỸtT

Zβ
tT

ZtS
dWt − ỸtSỸtTZβ−2

tS Zβ
tTdt

=
(
Ỹ 2
tSZ

2β−3
tS ZtT − ỸtSỸtTZβ−2

tS Zβ
tT

)
dt+

(
ỸtSZ

β−2
tS ZtT − ỸtT

Zβ
tT

ZtS

)
dWt

=ỸtS

( 1

ZtS

)1−βZtT
ZtS

[
ỸtS

( 1

ZtS

)1−β
− ỸtT

( 1

ZtT

)1−β]
dt

+
ZtT
ZtS

[
ỸtS

( 1

ZtS

)1−β
− ỸtT

( 1

ZtT

)1−β]
dWt.
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This then implies

dFtTS =
1

S − T
d
(ZtT
ZtS

)
=

1

S − T
ỸtS

( 1

ZtS

)1−βZtT
ZtS

[
ỸtS

( 1

ZtS

)1−β
− ỸtT

( 1

ZtT

)1−β]
dt

+
1

S − T
ZtT
ZtS

[
ỸtS

( 1

ZtS

)1−β
− ỸtT

( 1

ZtT

)1−β]
dWt.

Because the relationship FtTS = 1
S−T

(
ZtT
ZtS
− 1
)

may be expressed as follows:

1

S − T

(ZtT
ZtS

)
= FtTS +

1

S − T
,

we conclude that

dFtTS =ỸtS

( 1

ZtS

)1−β[
ỸtS

( 1

ZtS

)1−β
− ỸtT

( 1

ZtT

)1−β](
FtTS +

1

S − T

)
dt

+
[
ỸtS

( 1

ZtS

)1−β
− ỸtT

( 1

ZtT

)1−β](
FtTS +

1

S − T

)
dWt.

where

ỸtT = Ỹ0T e
− 1

2
ε2t+εW̃ 2

t .

We now distinguish three cases.

Case 1. β = 1

When β = 1, we find that

dZtT = −ỸtTZtTdWt.

Therefore we have that ỸtT = −V̂tT and we obtain the same dynamics

dFtTS = [· · · ]dt− (V̂tS − V̂tT )
(
FtTS +

1

S − T

)
dWt.

Because V̂tT is lognormally distributed, (V̂tS−V̂tT ) has the same distribution. Therefore

it corresponds to the SABR Model with β = 1.
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Case 2. β = 0

When β = 0, we find that

dZtT = −ỸtTdWt, or, in other words, that ZtT = −
∫ t

0

ỸuTdWu.

This gives us that

dFtTS = [· · · ]dt+
( ỸtS
ZtS
− ỸtT
ZtT

)(
FtTS +

1

S − T

)
dWt.

Case 3. β = 1
2

When β = 1
2

we find that

dZtT = −ỸtT
√
ZtTdWt,

which implies that

dFtTS = [· · · ]dt+
( ỸtS√

ZtS
− ỸtT√

ZtT

)(
FtTS +

1

S − T

)
dWt.

We have not so far found a condition to guarantee that the decreasing property is

satisfied. However we make a note of it here, in case we get further ideas in the future.
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Chapter 9

Conclusion and further works

9.1 Summary of the thesis

This project was started with the aim of calibrating the Chaotic Approach. Knowing

that the Chaotic Approach was constructed under the Potential Approach, we first

investigated the Potential Approach and noticed that SVM may be produced from the

state price density. This implies that the Potential Approach may be regarded as a

framework to model the forward LIBOR rate and forward swap rate dynamics under

which the arbitrage-free and interest rate positivity conditions are satisfied. Let us

recall here the corresponding dynamics:

dFtTS = −Dt[ZtS]

ZtS

(Dt[ZtT − ZtS]

ZtT − ZtS
−Dt[ZtS]

ZtS

)
FtTSdt+

(Dt[ZtT − ZtS]

ZtT − ZtS
−Dt[ZtS]

ZtS

)
FtTSdWt

and

dSa,b(t) =−
Dt

[∑b
i=a+1 τiZtTi

]∑b
i=a+1 τiZtTi

(Dt[ZtTa − ZtTb ]
ZtTa − ZtTb

−
Dt

[∑b
i=a+1 τiZtTi

]∑b
i=a+1 τiZtTi

)
Sa,b(t)dt

+
(Dt[ZtTa − ZtTb ]

ZtTa − ZtTb
−
Dt

[∑b
i=a+1 τiZtTi

]∑b
i=a+1 τiZtTi

)
Sa,b(t)dWt,

where the variable ZtT is conditional expectation of the state price density VT with

respect to Ft for 0 ≤ t ≤ T < ∞ and Dt is the Malliavin derivative with respect to

time t. The SABR type equations are expressed in (3.3.7) and (3.3.10). In addition,
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we observed in (8.1.3) and (8.1.4) that these dynamics may be modelled from the short

rate. In particular, the state price density is potential when the short rate is a positive

process.

For the calibration of the Chaotic Approach we started our argument from initial

yield curves without options. We proposed a family of chaos coefficients expressed by

functions of one-variable and called the corresponding model the “One-variable Chaos

Model”. Specification of these one-variable functions by exponential polynomial forms

allows the deduction of initial forward rates compatible with the Björk and Christensen

descriptive form as follows:

f0T =

∑∞
i=1

(∑mi
j=1 b̃ije

−cijT
)2

T i−1∫∞
T

∑∞
i=1

(∑mi
j=1 b̃ije

−cijs
)2

si−1ds
, for T ≥ 0.

From this polynomial family we suggested some specific models to compare with

Nelson-Siegel Form and Svensson Form, which are special cases of the Björk and Chris-

tensen descriptive form. Our calibration gave successful results. Most of the Chaos

Models outperform the Nelson-Siegel Form and have as good a fitting ability as Svens-

son Form, while also satisfying the interest rate positivity condition.

In [48], it is shown that the variable ZtT is formed as a squared polynomial in a

Gaussian process in the Factorizable Second Chaos Model. This also holds for the

class of One-variable Second Chaos Models, which can be seen for each 0 ≤ t ≤ T <∞

as follows:

ZtT = P0T

∫ ∞
0

(α2
s + sβ2

s )ds+ 2

∫ ∞
T

αsβsdsWt +

∫ ∞
T

β2
sds(W

2
t − t),

where the initial curve may also be expressed in the following way:

P0T =

∫∞
T

(α2
s + sβ2

s )ds∫∞
0

(α2
s + sβ2

s )ds
.

When we take the third chaos coefficient into account, One-variable Third Chaos Mod-

els form the variable ZtT by degree four polynomials in a Gaussian process, while
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One-variable Fourth Chaos Models form degree six polynomials. Those properties not

only secure stochasticity in the volatility term for volatility skew and smile, but also

allow enough flexibility to model the distribution of derivatives.

We observe that there exist two types of interest rate models. The first group gives

us freedom to model initial curves separately from the volatility dynamics. In the

market the Svensson Form is often used to attain a reasonable fit into the initial

curves. Moreover, calibrating options separately, the global minimum may be found

faster. For example the HW, LFM and SABR Model belong that group. Models in

the other group, such as the CIR Model do not give us this freedom. As can be seen in

[14], the CIR++ Model is proposed to correct the nature of the CIR Model to obtain

the tractability for the initial curves. However it costs six parameters to apply the

Svensson Form. For example the SABR Model spends three parameters to model the

forward LIBOR rate dynamics, and the other three parameters to model the forward

swap rate dynamics. Therefore we need twelve parameters in total. On the other hand,

we can choose the group in the Chaotic Approach, that is, we are also able to model

the initial curves from the chaos coefficients. The One-variable Chaos Models achieve

reasonable fit into initial curve and volatilities at the same time without increasing

the number of parameters. We observe that even seven parameter Chaos Models may

generate reasonable option prices with good fit into initial curve.

The calibrations were implemented with two goals in mind. Firstly, we wanted to

compare the calibration performances within the Chaos Models. Secondly, we wanted

to compare the performances with the popular models and other traditional models.

We found that One-variable Third Chaos Models are outstanding among all Chaos

Models, particularly regarding fast computational speed. This model is comparable

with the LFM and the SABR Model. For example, the One-variable Third Chaos

Model with seven parameters works better than the SABR Model for calibrating the

ATM options. We observe that the application of the descriptive form in the Chaos
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Models forms enough flexibility to reproduce the humped shape of the caplet volatility

term structure, and also smile/skew shape for in the money and out of the money

options. Although it does not generate great fit into Caplet smiles, the one-variable

nine parameters model gives us very small errors for fitting into Swaption smiles, even

smaller than those we observed in the SABR Model.

We noticed from the literature that the Stochastic Volatility Market Models are one

of the most successful and popular models amongst practitioners in recent years, and

many researchers focus on modelling a stochastic volatility. Our research described

here suggests indirect methodology to model the forward LIBOR rate and forward

swap rate dynamics via the state price density. We hope it will be a framework for the

next generation of interest rate modelling. We list possible further works in the next

section and finish the argument.

9.2 Further work

We believe that there are a lot of exciting avenues open for further research. Here we

suggest four possible topics.

9.2.1 Improvements of the Model

Though we focused our calibration on the Chaotic Approach, it is exciting work to

model the state price density paying particular attention to those volatility drifts of

the underlying dynamics for improving fitting ability into the volatility surface. Our

final goal is to establish a model which enables to fit well into a volatility surface

across the maturity and the strike. We here list shortcomings of the One-variable

Chaos Models so that possible improvement may be discussed.

• Option premiums can be computed only one at a time.

• The parameters in the model do not have an intuitive real-world meaning.
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• An explicit implied volatility form is not available.

• Analytical forward LIBOR rate correlation form is not available.

The first shortcoming is discussed in Section 8.1. We proposed to take an exponential

form for the state price density. In particular, we suggested modelling the LIBOR rate

and swap rate volatility by the application of the short rate models. In other words, we

suggested to incorporate the Short Rate Model, the Market Model and the Potential

Approach. Since the Vasicek Model in 1977 there have been many interest rate models

developed by various researchers. However, as is suggested in Chapter 8, it is possi-

ble to combine all the previous described techniques of interest rate theory, in order to

make the best advantage of existing work. We observed that the Affine Term Structure

Model gives an analytical stochastic differential equations of the underlying assets. As

examples, we showed that the Vasicek Model belongs to the Shifted-lognormal Market

Model, and the Squared Gaussian Model belongs to the SVM. Here, it would be opti-

mistic to generate the market by only one factor, we would need multiple factors. For

example the SABR Model applies two correlated factors. Therefore we should consider

two-factor Affine Term Structure Model so that we indirectly model the distribution

of the volatility drift terms in the underlying assets. It is also advantageous to have

an intuitive meaning for each parameter. A question now is about the market price of

risk, which is not present in the volatility drift terms. However, the state price density

is expressed by the short rate and the market price of risk. Hence, it is important

to model the market price of risk for the propose of pricing options. To model the

state price density we should also incorporate the discussions in Economics, see for

example [25] and [31]. Some other ideas are also proposed in Chapter 8, but we leave

the remaining questions open.

Finally, having explicit implied volatility and forward rate correlation forms is a de-

sirable feature in interest rate modelling. Though it is straightforward to compute
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premium from implied volatility, the other way around is not simple and is often ap-

proximated. We understand that not many practitioners apply the lognormal distribu-

tion for underlying assets any more, but they still apply the Black formula to measure

volatilities, using implied volatility as a benchmark. We observe that the SABR Model

outperforms the Wu-Zhang Model ([93]) in this sense. However, Chaos Models do not

have that capacity either. Moreover, as is stated in [62] we should extract the forward

LIBOR rate correlation information from the market in the calibration work, not only

the volatility information. Therefore, we should also derive the correlation form in the

Potential Approach for future work.

9.2.2 Improvements of the calibration

Though we understand that the market does not apply historical data but estimates

volatilities only from the current data, the model assumption claims that the parame-

ters are time independent. For example, Rogers ([80]) suggests time series calibration

methodologies. Kalman Filtering, General Method of Moments, or Maximum Like-

lihood method may be applied where the bid-ask spreads or liquidity would work to

estimate volatility for the Maximum Likelihood function. Moreover we should also cali-

brate the models proposed in Chapter 8 and the other popular SVM such as Wu-Zhang

Model and Piterbarg Model ([70]), not only the SABR Model.

Calibration is implemented for pricing and hedging purpose. Here we take exotic

options into account. Particularly, the chooser flexible cap and the Bermudan Swaption

are liquidly traded in the market. However, as is the case for the SABR Model, it is

often not easy to price those options, we must rely on either Monte Carlo Simulation or

the trinomial tree algorithm, (see, for example [87]). One of the most appealing parts

of the Potential Approach is its tractability to price options, because we are modelling

the stochastic discount factor itself. We could investigate pricing method for those

exotic options and also check pricing errors, using calibrated parameters by European
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options.

In addition to checking the pricing error, model performance may be evaluated by

its hedging performance. Although we observe some literature about the hedging the

delta and vega risks under the SABR Model, (see for example [3] and [41]), we do not

find it under the Potential Approach. As stated in Rebonato’s book ([76]), we may not

say a model is perfectly good unless hedging ability is checked. A desirable model has

to have a stable and non-erratic feature of prediction in the future time. For example,

as stated in the book [76], the Local Volatility Market Models do not have great ability

in this sense, since there the dynamics move the other way around, even though it

satisfies fitting ability to the volatility smiles. We notice that nobody has investigated

evolution in time of the term structure of volatility in the Potential Approach. Here

again the SABR Model would work as a benchmark of the performance.

9.2.3 Further investigations in Mathematics

In this thesis we proposed the One-variable Wiener-Chaos expansion. Although we did

not find loss of generality under the One-variable Chaos Models, it is still an open topic

to compare the convergence speed between the usual Wiener-Chaos expansion and the

One-variable Wiener-Chaos expansion. As an alternative direction, may we suggest

applying the Winker-Askey Polynomial Chaos Expansion (or Generalized Polynomial

Wiener-Chaos expansion, sometimes written as GPCE), which has been used recently

in Physics and Engineering fields to estimate a square integrable random variable as

an alternative to the Monte Carlo Method, see for example [94]. This method is

appropriate to estimate a non-Gaussian variable.

9.2.4 Application to other products

The expressions of the stock price process and FX system are derived in [48]. Hence, it is

straightforward work to price stock options under the Potential Approach in particular
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the One-variable Chaos Models. Moreover, it gives an easy access to Hybrid products.

As also claimed by Rogers ([79]), it is advantageous under the Potential Approach that

we are able to model the interest rate markets in several countries at the same time

with those exchange rate. Here, the Market Models encounter computational difficulty

on the multi-currency products as discussed in Appendix H from [14]. A possible

extension of the Potential Approach is also for Credit Risk.
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Chapter 10

Appendix

10.1 Pricing Options in the Constantinides Model

We formulate a method to price the European bond option and Swaption in the Con-

stantinides Model. Though Swaptions are not considered in the original paper, we

believe that it is straightforward to extend to this.

European call/put bond option

Because the initial values of the European bond options are formulated by

ZBC(0, t, T,K) =
1

V0

E[Vt(PtT −K)+] and ZBP (0, t, T,K) =
1

V0

E[Vt(K − PtT )+],

we find for the call option that

ZBC(0, t, T,K)

=E

[
exp

[
−
(
g +

σ2
0

2

)
t+ σ0W0(t) + (x1(t)− α1)2

]
exp

[
σ0W0(0) + (x1(0)− α1)2

] (PtT −K)+

]

=E
[

exp
[
− σ2

0

2
t+ σ0W0(t)

]
exp

[
− gt+ (x1(t)− α1)2 − (x1(0)− α1)2

]
(PtT −K)+

]
.

Because the Wiener processes W0 and W1 are independent it follows that

ZBC(0, t, T,K) = E
[

exp
[
− gt+ (x1(t)− α1)2 − (x1(0)− α1)2

]
(PtT −K)+

]
.
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Recalling the discount bond formula, it follows that

PtT−K = H
− 1

2
1 (T−t) exp

[
(−g+λ1)(T−t)+H−1

1 (T−t)
(
x1(t)−α1e

λ1(T−t)
)2

−(x1(t)−α1)2
]
−K.

Therefore, the condition PtT −K ≥ 0 is equivalent to the following inequality:

Ic(x) := Cx2 +Bx+ A ≥ 0,

where

C := −(1−H−1
1 (T − t)), B := 2α1(1−H−1

1 (T − t)eλ1(T−t))

and

A := −(1−H−1
1 (T − t)e2λ1(T−t))α2

1 + (−g + λ1)(T − t)− ln(KH
1
2
1 (T − t)).

Similarly, the condition K − PtT ≥ 0 is equivalent to the following inequality:

Ip(x) := −Cx2 −Bx− A ≥ 0.

However, because we know that H1(T − t) > 1 for T > t, we notice here that C < 0.

Therefore both functions Ic(x) and Ip(x) have a quadratic form. If ∆ := B2−4AC ≤ 0

we obtain that

ZBC(0, t, T,K) = 0 and ZBP (0, t, T,K) = 0.

Now let us consider the case ∆ > 0. Because we know that

ZBC(0, t, T,K) = E
[(
Pc(x)

)+]
,

where

Pc(x) =H
− 1

2
1 (T − t) exp

[
λ1(T − t)− gT +H−1

1 (T − t)
(
x− α1e

λ1(T−t)
)2

− (x1(0)− α1)2
]

−K exp
[
− gt+ (x− α1)2 − (x1(0)− α1)2

]
=H

− 1
2

1 (T − t) exp
[
λ1(T − t)− gT − (x1(0)− α1)2

]
exp

[
H−1

1 (T − t)
(
x− α1e

λ1(T−t)
)2]

−K exp
[
− gt− (x1(0)− α1)2

]
exp

[
(x− α1)2

]
,
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denoting the roots of the function Ic(x) by z1 ≤ z2, we find that, when ∆ > 0,

ZBC(0, t, T,K) =

∫ z2

z1

Pc(x)fx(x)dx

where fx is the probability density function of the random variable x1(t). Similarly for

the put option we obtain that

ZBP (0, t, T,K) =

∫ z1

−∞
[−Pc(x)]fx(x)dx+

∫ ∞
z2

[−Pc(x)]fx(x)dx.

Because the dynamics of x1(t) can be solved explicitly to give

x1(t) = x1(0)e−λ1t + σ1

∫ t

0

e−λ1(t−u)dW1(u),

we find that x1(t) is normally distributed with mean µ := x1(0)e−λ1t and variance

s2 :=
σ2

1

2λ1
(1− e−2λ1t). Therefore we infer that, when ∆ > 0,

ZBC(0, t, T,K) =
1

s
√

2π

∫ z2

z1

Pc(x)e−
(x−µ)2

2s2 dx

=H
− 1

2
1 (T − t) exp

[
λ1(T − t)− gT − (x1(0)− α1)2

]
× 1

s
√

2π

∫ z2

z1

exp
[
H−1

1 (T − t)
(
x− α1e

λ1(T−t)
)2]

e−
(x−µ)2

2s2 dx

−K exp
[
− gt− (x1(0)− α1)2

] 1

s
√

2π

∫ z2

z1

exp
[
(x− α1)2

]
e−

(x−µ)2

2s2 dx.

As in [26], the following is satisfied for β, γ ∈ R:

1

s
√

2π

∫ β

−∞
e−γx

2

e−
(x−µ)2

2s2 dx =e
−γµ2

1+2γs2
1

s
√

2π

∫ β

−∞
e−

(x−a)2

2b2 dx

=(1 + 2γs2)−
1
2 e

−γµ2

1+2γs2
1

b
√

2π

∫ β

−∞
e−

(x−a)2

2b2 dx

=(1 + 2γs2)−
1
2 e

−γµ2

1+2γs2
1√
2π

∫ (β−a)/b

−∞
e−z

2/2dz

=(1 + 2γs2)−
1
2 e

−γµ2

1+2γs2 Φ
(β − a

b

)
,

where a = µ
1+2γs2

and b = s(1 + 2γs2)−
1
2 , provided that 1 + 2γs2 > 0 and

Φ(x) =
1√
2π

∫ x

−∞
e−

X2

2 dX.
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Similarly we find that for α, β, γ ∈ R

1

s
√

2π

∫ β

−∞
e−γ(x−α)2

e−
(x−µ)2

2s2 dx =e
− γ(α−µ)2

1+2γs2
1

s
√

2π

∫ β

−∞
e−

(x−â)2

2b2 dx

=(1 + 2γs2)−
1
2 e
− γ(α−µ)2

1+2γs2
1

b
√

2π

∫ β

−∞
e−

(x−â)2

2b2 dx

=(1 + 2γs2)−
1
2 e
− γ(α−µ)2

1+2γs2
1√
2π

∫ (β−â)/b

−∞
e−z

2/2dz

=(1 + 2γs2)−
1
2 e
− γ(α−µ)2

1+2γs2 Φ
(β − â

b

)
,

where â = 2s2γα+µ
1+2γs2

. Therefore we find that for the first term of the option pricing

formula, setting γ := −H−1
1 (T − t), we obtain

H
− 1

2
1 (T − t) exp

[
λ1(T − t)− gT − (x1(0)− α1)2

]
× 1

s
√

2π

∫ z2

z1

exp
[
H−1

1 (T − t)
(
x− α1e

λ1(T−t)
)2]

e−
(x−µ)2

2s2 dx

=H
− 1

2
1 (T − t) exp

[
λ1(T − t)− gT − (x1(0)− α1)2

]
×

[
1

s
√

2π

∫ z2

−∞
exp

[
H−1

1 (T − t)
(
x− α1e

λ1(T−t)
)2]

e−
(x−µ)2

2s2 dx

− 1

s
√

2π

∫ z1

−∞
exp

[
H−1

1 (T − t)
(
x− α1e

λ1(T−t)
)2]

e−
(x−µ)2

2s2 dx

]
=H

− 1
2

1 (T − t) exp
[
λ1(T − t)− gT − (x1(0)− α1)2

]
× (1− 2H−1

1 (T − t)s2)−
1
2 exp

[H−1
1 (T − t)(α1e

λ1(T−t) − µ)2

1− 2H−1
1 (T − t)s2

]
×
[
Φ
(z2 − â

b

)
− Φ

(z1 − â
b

)]
=H

− 1
2

1 (T − t)(1− 2H−1
1 (T − t)s2)−

1
2

× exp
[
λ1(T − t)− gT − (x1(0)− α1)2 +

H−1
1 (T − t)(α1e

λ1(T−t) − µ)2

1− 2H−1
1 (T − t)s2

]
×
[
Φ
(z2 − â

b

)
− Φ

(z1 − â
b

)]
,
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where

â =
2s2γα1e

λ1(T−t) + µ

1 + 2γs2
=
−2s2H−1

1 (T − t)α1e
λ1(T−t) + µ

1− 2H−1
1 (T − t)s2

=− 2α1e
λ1(T−t)H−1

1 (T − t)s2

1− 2H−1
1 (T − t)s2

+
µ

1− 2H−1
1 (T − t)s2

=−
α1e

λ1(T−t)H−1
1 (T − t)σ

2
1

λ1
(1− e−2λ1t)

1−H−1
1 (T − t)σ

2
1

λ1
(1− e−2λ1t)

+
x1(0)e−λ1t

1−H−1
1 (T − t)σ

2
1

λ1
(1− e−2λ1t)

and

b =s(1 + 2γs2)−
1
2 = s(1− 2H−1

1 (T − t)s2)−
1
2

=
[ s2

1− 2H−1
1 (T − t)s2

] 1
2

=
[ σ2

1

2λ1
(1− e−2λ1t)

1−H−1
1 (T − t)σ

2
1

λ1
(1− e−2λ1t)

] 1
2
.

Recalling the definitions:

H1(τ) :=
σ2

1

λ1

+
(

1− σ2
1

λ1

)
e2λ1τ and s2 :=

σ2
1

2λ1

(1− e−2λ1t),

we observe that

H1(T − t)(1− 2H−1
1 (T − t)s2) =H1(T − t)− 2s2

=
σ2

1

λ1

+
(

1− σ2
1

λ1

)
e2λ1(T−t) − σ2

1

λ1

(1− e−2λ1t)

=
(

1− σ2
1

λ1

)
e2λ1(T−t) +

σ2
1

λ1

e−2λ1t

=e−2λ1t
((

1− σ2
1

λ1

)
e2λ1T +

σ2
1

λ1

)
=e−2λ1tH1(T ).
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Therefore, recalling also that µ := x1(0)e−λ1t, we find that

H
− 1

2
1 (T − t)(1− 2H−1

1 (T − t)s2)−
1
2

× exp
[
λ1(T − t)− gT − (x1(0)− α1)2 +

H−1
1 (T − t)(α1e

λ1(T−t) − µ)2

1− 2H−1
1 (T − t)s2

]
×
[
Φ
(z2 − â

b

)
− Φ

(z1 − â
b

)]
=eλ1tH

− 1
2

1 (T ) exp
[
λ1(T − t)− gT − (x1(0)− α1)2 +H−1

1 (T )e2λt(α1e
λ1(T−t) − x1(0)e−λ1t)2

]
×
[
Φ
(z2 − â

b

)
− Φ

(z1 − â
b

)]
=H

− 1
2

1 (T ) exp
[
(−g + λ1)T +H−1

1 (T )(x1(0)− α1e
λT )2 − (x1(0)− α1)2

]
×
[
Φ
(z2 − â

b

)
− Φ

(z1 − â
b

)]
=P0T

[
Φ
(z2 − â

b

)
− Φ

(z1 − â
b

)]
.

Similarly, the second term follows as, setting γ := −1, we have that

K exp
[
− gt− (x1(0)− α1)2

] 1

s
√

2π

∫ z2

z1

exp
[
(x− α1)2

]
e−

(x−µ)2

2s2 dx

=K exp
[
− gt− (x1(0)− α1)2

]
(1− 2s2)−

1
2 exp

[(α1 − µ)2

1− 2s2

][
Φ
(z2 − a′

b′

)
− Φ

(z1 − a′

b′

)]
=(1− 2s2)−

1
2 exp

[
− gt− (x1(0)− α1)2 +

(α1 − µ)2

1− 2s2

]
K
[
Φ
(z2 − a′

b′

)
− Φ

(z1 − a′

b′

)]
,

where

a′ :=
2s2γα1 + µ

1 + 2γs2
=
−2s2α1 + µ

1− 2s2
= −

α1
σ2

1

λ1
(1− e−2λ1t)

1− σ2
1

λ1
(1− e−2λ1t)

+
x1(0)e−λ1t

1− σ2
1

λ1
(1− e−2λ1t)

and

b′ := s(1 + 2γs2)−
1
2 = s(1− 2s2)−

1
2 =

[ s2

1− 2s2

] 1
2

=
[ σ2

1

2λ1
(1− e−2λ1t)

1− σ2
1

λ1
(1− e−2λ1t)

] 1
2
.

However, because

e−2λ1tH1(t) =
σ2

1

λ1

e−2λ1t + 1− σ2
1

λ1

= 1− σ2
1

λ1

(1− e−2λ1t) = 1− 2s2,

190



we find that

(1− 2s2)−
1
2 exp

[
− gt− (x1(0)− α1)2 +

(α1 − µ)2

1− 2s2

]
K
[
Φ
(z2 − a′

b′

)
− Φ

(z1 − a′

b′

)]
=(e−2λ1tH1(t))−

1
2 exp

[
− gt− (x1(0)− α1)2 +

(α1 − µ)2

e−2λ1tH1(t)

]
K
[
Φ
(z2 − a′

b′

)
− Φ

(z1 − a′

b′

)]
=H

− 1
2

1 (t) exp
[
(−g + λ1)t+H−1

1 (t)(x1(0)− α1e
λ1t)2 − (x1(0)− α1)2

]
K
[
Φ
(z2 − a′

b′

)
− Φ

(z1 − a′

b′

)]
=P0tK

[
Φ
(z2 − a′

b′

)
− Φ

(z1 − a′

b′

)]
.

Therefore, we conclude that

ZBC(0, t, T,K) =

{
0 if ∆ ≤ 0

P0T

[
Φ
(
z2−â
b

)
− Φ

(
z1−â
b

)]
− P0tK

[
Φ
(
z2−a′
b′

)
− Φ

(
z1−a′
b′

)]
if ∆ > 0

.

Considering now the put option, when ∆ > 0, we find that

ZBP (0, t, T,K) =

∫ z1

−∞
[−Pc(x)]fx(x)dx+

∫ ∞
z2

[−Pc(x)]fx(x)dx

=− 1

s
√

2π

∫ z1

−∞
Pc(x)e−

(x−µ)2

2s2 dx− 1

s
√

2π

∫ ∞
z2

Pc(x)e−
(x−µ)2

2s2 dx

where we remind the reader that µ := x1(0)e−λ1t and s2 :=
σ2

1

2λ1
(1− e−2λ1t). Therefore

we obtain that

ZBP (0, t, T,K)

=− P0T

[
Φ
(z1 − â

b

)
− Φ

(−∞− â
b

)]
+ P0tK

[
Φ
(z1 − a′

b′

)
− Φ

(−∞− a′
b′

)]
− P0T

[
Φ
(∞− â

b

)
− Φ

(z2 − â
b

)]
+ P0tK

[
Φ
(∞− a′

b′

)
− Φ

(z2 − a′

b′

)]
=− P0T

[
Φ
(z1 − â

b

)
− Φ

(z2 − â
b

)
+ 1
]

+ P0tK
[
Φ
(z1 − a′

b′

)
− Φ

(z2 − a′

b′

)
+ 1
]
.

This then gives us that

ZBP (0, t, T,K) =


0 if ∆ ≤ 0

−P0T

[
Φ
(
z1−â
b

)
− Φ

(
z2−â
b

)
+ 1
]

+P0tK
[
Φ
(
z1−a′
b′

)
− Φ

(
z2−a′
b′

)
+ 1
]

if ∆ > 0

.
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Swaption

Let us consider the payer Swaption maturing at t > 0, that is,

PS(0, T , τ, N,K) =
N

V0

E
[
Vt

(
1− Pttn −K

n∑
i=1

τiPtti

)+]
.

As we have already seen, it follows that for N = 1, we have that

PS(0, T , τ, N,K) = E
[

exp
[
−gt+(x1(t)−α1)2−(x1(0)−α1)2

](
1−Pttn−K

n∑
i=1

τiPtti

)+
]
.

Recalling the discount bond formula, we find that

1− Pttn −K
n∑
i=1

τiPtti

=1−H−
1
2

1 (tn − t) exp
[
(−g + λ1)(tn − t) +H−1

1 (tn − t)
(
x1(t)− α1e

λ1(tn−t)
)2

− (x1(t)− α1)2
]

−K
n∑
i=1

τiH
− 1

2
1 (ti − t) exp

[
(−g + λ1)(ti − t) +H−1

1 (ti − t)
(
x1(t)− α1e

λ1(ti−t)
)2

− (x1(t)− α1)2
]
.

Therefore we obtain the following expression for the initial price of the payers Swaption:

PS(0, T , τ, N,K) = E
[(
PPS(x1(t))

)+]
,

where

PPS(x) := exp
[
− gt− (x1(0)− α1)2

]
exp

[
(x− α1)2

]
−H−

1
2

1 (tn − t) exp
[
λ1(tn − t)− gtn − (x1(0)− α1)2

]
exp

[
H−1

1 (tn − t)
(
x− α1e

λ1(tn−t)
)2]

−K
n∑
i=1

τiH
− 1

2
1 (ti − t) exp

[
λ1(ti − t)− gti − (x1(0)− α1)2

]
exp

[
H−1

1 (ti − t)
(
x− α1e

λ1(ti−t)
)2]

.

Since for any α, γ ∈ R, we have that

e−γ(x−α)2 1

s
√

2π
e−

(x−µ)2

2s2 = (1 + 2γs2)−
1
2 e
− γ(α−µ)2

1+2γs2
1

b
√

2π
e−

(x−â)2

2b2 ,

where â := 2s2γα+µ
1+2γs2

and b := s(1 + 2γs2)−
1
2 , with 1 + 2γs2 > 0, we infer that

e−γ(x1(t)−α)2 ∼ (1 + 2γs2)−
1
2 e
− γ(α−µ)2

1+2γs2 N (â, b2).
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It follows that

Z :=
1

b

[
(1 + 2γs2)

1
2 e

γ(α−µ)2

1+2γs2 e−γ(x1(t)−α)2 − â
]
∼ N (0, 1).

Therefore, if in order to simplify notation, we first define

ᾱ0 := α1, γ̄0 := −1,

ᾱi := α1e
λ1(ti−t), γ̄i := −H−1

1 (ti − t), for i = 1, . . . , n,

âi :=
2s2γ̄iᾱi + µ

1 + 2γ̄is2
, bi := s(1 + 2γ̄is

2)−
1
2 , for i = 0, 1, . . . , n,

we infer that

P̄PS(Z) := exp
[
− gt− (x1(0)− α1)2

][
b0(1 + 2γ̄0s

2)−
1
2 e
− γ̄0(ᾱ0−µ)2

1+2γ̄0s
2 (Z +

â0

b0

)
]

−H−
1
2

1 (tn − t) exp
[
λ1(tn − t)− gtn − (x1(0)− α1)2

][
bn(1 + 2γ̄ns

2)−
1
2 e
− γ̄n(ᾱn−µ)2

1+2γ̄ns2 (Z +
ân
bn

)
]

−K
n∑
i=1

τiH
− 1

2
1 (ti − t) exp

[
λ1(ti − t)− gti − (x1(0)− α1)2

][
bi(1 + 2γ̄is

2)−
1
2 e
− γ̄i(ᾱi−µ)2

1+2γ̄is
2 (Z +

âi
bi

)
]
,

such that

PS(0, T , τ, N,K) =
1√
2π

∫
P̄PS≥0

P̄PS(z)e−
z2

2 dz.

Because the function P̄PS can be expressed as

P̄PS(Z) = BZ + A,

where

B := exp
[
− gt− (x1(0)− α1)2

]
(1 + 2γ̄0s

2)−
1
2 e
− γ̄0(ᾱ0−µ)2

1+2γ̄0s
2 b0

−H−
1
2

1 (tn − t) exp
[
λ1(tn − t)− gtn − (x1(0)− α1)2

]
(1 + 2γ̄ns

2)−
1
2 e
− γ̄n(ᾱn−µ)2

1+2γ̄ns2 bn

−K
n∑
i=1

τiH
− 1

2
1 (ti − t) exp

[
λ1(ti − t)− gti − (x1(0)− α1)2

]
(1 + 2γ̄is

2)−
1
2 e
− γ̄i(ᾱi−µ)2

1+2γ̄is
2 bi
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and

A := exp
[
− gt− (x1(0)− α1)2

]
(1 + 2γ̄0s

2)−
1
2 e
− γ̄0(ᾱ0−µ)2

1+2γ̄0s
2 â0

−H−
1
2

1 (tn − t) exp
[
λ1(tn − t)− gtn − (x1(0)− α1)2

]
(1 + 2γ̄ns

2)−
1
2 e
− γ̄n(ᾱn−µ)2

1+2γ̄ns2 ân

−K
n∑
i=1

τiH
− 1

2
1 (ti − t) exp

[
λ1(ti − t)− gti − (x1(0)− α1)2

]
(1 + 2γ̄is

2)−
1
2 e
− γ̄i(ᾱi−µ)2

1+2γ̄is
2 âi,

we infer that

PS(0, T , τ, N,K) =

 1√
2π

∫∞
−A
B

(Bz + A)e−
z2

2 dz if B > 0

1√
2π

∫ −A
B

−∞ (Bz + A)e−
z2

2 dz if B < 0
.

Therefore, we conclude that

PS(0, T , τ, N,K) =

{
Bρ(−A

B
) + AΦ(A

B
) if B > 0

−Bρ(−A
B

) + AΦ(−A
B

) if B < 0
.

where

ρ(x) :=
1√
2π
e−

x2

2 .

Note here that

1√
2π

∫ ∞
x

e−
X2

2 dX = Φ(−x),
1√
2π

∫ x

−∞
Xe−

X2

2 dX = −ρ(x)

and
1√
2π

∫ ∞
x

Xe−
X2

2 dX = ρ(x).

10.2 Proof of Proposition 20.5 in [11]

Let us first recall the dynamics of the instantaneous forward rate expressed in (3.2.16),

that is,

dftT = α̂tTdt+ σ̂tTdWt.

From this, Proposition 20.5 gives the dynamics of the short rate expressed as (3.2.17).

Because we have that

ftT = f0T +

∫ t

0

α̂uTdu+

∫ t

0

σ̂uTdWu, 0 ≤ t ≤ T <∞.
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it follows that

drt =d
(
f0t +

∫ t

0

α̂utdu+

∫ t

0

σ̂utdWu

)
=d(f0t) + d

(∫ t

0

α̂utdu
)

+ d
(∫ t

0

σ̂utdWu

)
.

(10.2.1)

By the Leibniz integral rule, (see, for example [71]), we have that

(10.2.2) d
(∫ t

0

α̂utdu
)

= α̂ttdt+
(∫ t

0

∂

∂t
α̂utdu

)
dt.

On the other hand, because, we also have for 0 ≤ u ≤ t <∞ that

σ̂ut = σ̂uu +

∫ t

u

∂

∂s
σ̂usds,

we infer that

d
(∫ t

0

σ̂utdWu

)
=d
(∫ t

0

σ̂uudWu

)
+ d
(∫ t

0

∫ t

u

∂

∂u
σ̂usdsdWu

)
=σ̂ttdWt + d

(∫ t

0

∫ t

u

∂

∂s
σ̂usdsdWu

)
.

(10.2.3)

However, because the equality∫ t

0

∫ t

u

∂

∂s
σ̂usdsdWu =

∫ t

0

∫ s

0

∂

∂s
σ̂usdWuds

is satisfied, the expression (10.2.3) may be simplified in the following way:

(10.2.4) d
(∫ t

0

σ̂utdWu

)
= σ̂ttdWt +

(∫ t

0

∂

∂t
σ̂utdWu

)
dt.

Combining the expressions (10.2.1), (10.2.2) and (10.2.4) we may conclude that

drt =
( ∂
∂t
f0t +

∫ t

0

∂

∂t
α̂utdu+

∫ t

0

∂

∂t
σ̂utdWu

)
dt+ α̂ttdt+ σ̂ttdWt

=
(
α̂tt +

∂

∂T
ftT

∣∣∣
T=t+

)
dt+ σ̂ttdWt.
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10.3 Appendix to the Chaotic Approach

The variable Mts := Et[σ2
s ] is formulated in the Chaotic Approach as the expression

(4.6.2). In this section, we deduce the same form by another method. Recalling the

chaos expansion from (2.1.23), we obtain that for 0 ≤ t ≤ s <∞,

Mts =E

[(
φ1(s) +

∫ s

0

φ2(s, s1)dWs1 +

∫ s

0

∫ s1

0

φ3(s, s1, s2)dWs2dWs1 + · · ·
)2
]

=Et
[(
R1(t, s) +

∫ s

t

φ2(s, s1)dWs1 +

∫ s

t

∫ s1

0

φ3(s, s1, s2)dWs2dWs1 + · · ·
)2]

.

where

R1(t, s) = φ1(s) +

∫ t

0

φ2(s, s1)dWs1 +

∫ t

0

∫ s1

0

φ3(s, s1, s2)dWs2dWs1 + · · · .

Notice here that the random variable R1(t, s) is Ft-measurable and R1(t, t) = σt.

Therefore it follows that

Mts =R2
1(t, s) +R1(t, s)Et

[(∫ s

t

φ2(s, s1)dWs1 +

∫ s

t

∫ s1

0

φ3(s, s1, s2)dWs2dWs1 + · · ·
)]

+ Et
[(∫ s

t

φ2(s, s1)dWs1 +

∫ s

t

∫ s1

0

φ3(s, s1, s2)dWs2dWs1 + · · ·
)2]

=R2
1(t, s) + Et

[(∫ s

t

φ2(s, s1)dWs1 +

∫ s

t

∫ s1

0

φ3(s, s1, s2)dWs2dWs1 + · · ·
)2]

.

The conditional Itô isometry gives us that

Mts =R2
1(t, s) +

∫ s

t

Et
[(
φ2(s, s1) +

∫ s1

0

φ3(s, s1, s2)dWs2 + · · ·
)2]

ds1

=R2
1(t, s) +

∫ s

t

Et
[(
R2(t, s, s1) +

∫ s1

t

φ3(s, s1, s2)dWs2

+

∫ s1

t

∫ s2

0

φ4(s, s1, s2, s3)dWs3dWs2 + · · ·
)2]

ds1,

where

R2(t, s, s1) = φ2(s, s1)+

∫ t

0

φ3(s, s1, s2)dWs2 +

∫ t

0

∫ s2

0

φ4(s, s1, s2, s3)dWs3dWs2 +· · · .
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Because R2
2(t, s, s1) is Ft-measurable, we infer that

Mts =R2
1(t, s) +

∫ s

t

{
R2

2(t, s, s1)

+R2(t, s, s1)Et
[(∫ s1

t

φ3(s, s1, s2)dWs2 +

∫ s1

t

∫ s2

0

φ4(s, s1, s2, s3)dWs3dWs2 + · · ·
)]

+ Et
[(∫ s1

t

φ3(s, s1, s2)dWs2 +

∫ s1

t

∫ s2

0

φ4(s, s1, s2, s3)dWs3dWs2 + · · ·
)2]}

ds1

=R2
1(t, s) +

∫ s

t

R2
2(t, s, s1)ds1

+

∫ s

t

Et
[(∫ s1

t

φ3(s, s1, s2)dWs2 +

∫ s1

t

∫ s2

0

φ4(s, s1, s2, s3)dWs3dWs2 + · · ·
)2]

ds1.

Applying the Itô isometry again, we find similarly that

Mts =R2
1(t, s) +

∫ s

t

R2
2(t, s, s1)ds1

+

∫ s

t

∫ s1

t

Et
[(
φ3(s, s1, s2) +

∫ s2

0

φ4(s, s1, s2, s3)dWs3 + · · ·
)2]

ds2ds1

=R2
1(t, s) +

∫ s

t

R2
2(t, s, s1)ds1

+

∫ s

t

∫ s1

t

Et
[(
R3(t, s, s1, s2) +

∫ s2

t

φ4(s, s1, s2, s3)dWs3 + · · ·
)2]

ds2ds1,

where

R3(t, s, s1, s2) =φ3(s, s1, s2) +

∫ t

0

φ4(s, s1, s2, s3)dWs3

+

∫ t

0

∫ s3

0

φ5(s, s1, s2, s3, s4)dWs4dWs3 + · · · .

As before, it follows that

Mts = R2
1(t, s) +

∫ s

t

R2
2(t, s, s1)ds1 +

∫ s

t

∫ s1

t

R2
3(t, s, s1, s2)ds2ds1

+

∫ s

t

∫ s1

t

Et
[(∫ s2

t

φ4(s, s1, s2, s3)dWs3 +

∫ s2

t

∫ s3

0

φ5(s, s1, s2, s3, s4)dWs4dWs3 + · · ·
)2]

ds2ds1.
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Therefore iterating the expression gives us that

Mts =R2
1(t, s) +

∫ s

t

R2
2(t, s, s1)ds1 +

∫ s

t

∫ s1

t

R2
3(t, s, s1, s2)ds2ds1

+

∫ s

t

∫ s1

t

∫ s2

t

R2
4(t, s, s1, s2, s3)ds3ds2ds1

+

∫ s

t

∫ s1

t

∫ s2

t

∫ s3

t

R2
5(t, s, s1, s2, s3, s4)ds4ds3ds2ds1 + · · · ,

where

R1(t, s) = φ1(s) +

∫ t

0

φ2(s, s1)dWs1 +

∫ t

0

∫ s1

0

φ3(s, s1, s2)dWs2dWs1 + · · · ,

Rn(t, s, s1, . . . , sn−1) =φn(s, s1, . . . , sn−1) +

∫ t

0

φn+1(s, s1, . . . , sn)dWsn

+

∫ t

0

∫ sn

0

φn+2(s, s1, . . . , sn+1)dWsn+1dWsn + · · · , for n = 2, 3, . . . .

Therefore we obtain the same result here.
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