
1

FedFly: Towards Migration in Edge-based
Distributed Federated Learning

Rehmat Ullah, Di Wu, Paul Harvey, Peter Kilpatrick, Ivor Spence, and Blesson Varghese

Abstract—Federated learning (FL) is a privacy-preserving
distributed machine learning technique that trains models while
keeping all the original data generated on devices locally. Since
devices may be resource constrained, offloading can be used to
improve FL performance by transferring computational work-
load from devices to edge servers. However, due to mobility,
devices participating in FL may leave the network during training
and need to connect to a different edge server. This is challenging
because the offloaded computations from edge server need to be
migrated. In line with this assertion, we present FedFly, which
is, to the best of our knowledge, the first work to migrate a
deep neural network (DNN) when devices move between edge
servers during FL training. Our empirical results on the CIFAR-
10 dataset, with both balanced and imbalanced data distribution,
support our claims that FedFly can reduce training time by
up to 33% when a device moves after 50% of the training is
completed, and by up to 45% when 90% of the training is
completed when compared to state-of-the-art offloading approach
in FL. FedFly has negligible overhead of up to two seconds and
does not compromise accuracy. Finally, we highlight a number
of open research issues for further investigation. FedFly can be
downloaded from https://github.com/qub-blesson/FedFly.

Index Terms—Federated learning, Edge computing, Deep neu-
ral networks, Distributed machine learning, Internet-of-Things.

I. INTRODUCTION

Internet applications that rely on classic machine learning
(ML) techniques gather data from mobile and Internet-of-
Things (IoT) devices and process them on servers in cloud data
centres. Limited uplink network bandwidth, latency sensitivity
of applications and data privacy concerns are key challenges
in streaming large volumes of data generated by devices
to geographically distant clouds. The concept of Federated
Learning (FL) provides privacy by design in an ML technique
that collaboratively learns across multiple distributed devices
without sending raw data to a central server while processing
data locally on devices.

Copyright © 20xx IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribu-
tion to servers or lists, or reuse of any copyrighted component of this work
in other works.

This work was supported by funds from Rakuten Mobile, Japan. The last
author was also supported by a Royal Society Short Industry Fellowship.

R. Ullah, D. Wu and B. Varghese are with the School of Computer Science,
University of St Andrews, UK.

P. Kilpatrick and I. Spence are with the School of Electronics, Electrical
Engineering and Computer Science, Queen’s University Belfast, UK.

P. Harvey is with Autonomous Networking Research & Innovation Depart-
ment, Rakuten Mobile, Japan.

However, given the limited availability of resources on many
devices, performing FL on such devices is impractical due to
increased training times [1]. One approach is to leverage the
computational resources offered by edge servers (located at the
edge of the network) for training. The concept of offloading
computations of the ML model that may be a Deep Neural
Network (DNN) from a device to an edge server for FL by
splitting the ML model has been introduced [2] (this concept
is referred to as edge-based FL). However, a major challenge
that has not been considered within the context of edge-based
FL is device mobility.

Mobile devices participating in edge-based FL may need
to move from one edge server to another (for example, a
smartphone or a drone moving from the connectivity of one
edge node to another). This will in turn affect the performance
of edge-based FL and result in large training times [3], [4].
Moving a device without migrating the accompanying training
data from an edge server to the destination will result in
training for the device having to start all over again on
the destination server. This would be inefficient resulting in
an increased overall training time [5]. Therefore, there is a
need for developing techniques that can move devices while
accounting for migrating partially trained FL models of a
device from one edge server to another.

Research on device mobility has been considered in the con-
text of migration. Migration on the edge has been investigated
in the literature, more specifically by exploring VM migra-
tion [6] and container migration [7], [8]. However, migration
in edge-based FL is minimally considered. This paper presents
FedFly that addresses the mobility challenge of devices in
edge-based FL, and the key research contributions are:

(1) The technique for migrating DNNs in edge-based FL,
which to the best of our knowledge is the first time to be
considered in the context of edge-based FL. When a device
moves from an edge server to a destination server after 50%
of FL training is completed, then the training time using
the FedFly migration technique is reduced by up to 33%
compared to the training time when restarting training on the
destination server. Similarly, 45% reduction is obtained when
a device moves to a destination server after 90% FL training is
completed. It is noted that the original accuracy is maintained.

(2) The implementation and evaluation of FedFly in a
hierarchical cloud-edge-device architecture that validates the
migration technique of edge-based FL on a lab-based testbed.
The experimental results are obtained from a lab-based testbed
that includes four IoT devices, two edge servers, and one
central server (cloud-like) running the VGG-5 DNN model.
The evaluation is done on both a balanced (equal data distri-

ar
X

iv
:2

11
1.

01
51

6v
2

 [
cs

.D
C

]
 1

4
Ju

l 2
02

2

https://github.com/qub-blesson/FedFly

2

bution) and an imbalanced dataset (unequal data distribution).
The empirical findings show that FedFly has a negligible
overhead of up to two seconds on the testbed. It is further
noted that the accuracy is preserved even when data on devices
is imbalanced and the most significant node(s) (i.e., nodes with
majority of data) move across edge servers.

The rest of this paper is organized as follows: Section II
introduces the concepts of FL and offloading in FL. Section III
presents the motivation for FedFly. Section IV proposes the
migration technique for edge-based FL. Section V presents the
performance analysis of FedFly. Section VI concludes the
paper and highlights directions for future research.

II. BACKGROUND

This section provides an overview of FL and highlights the
benefits of offloading ML computations on to edge servers.

FL [9] is a privacy-preserving technique in which an ML
model is collaboratively trained across several participating
distributed devices. All data generated by a device that is
used for training resides on local devices. In an FL system,
the server initiates a global model and distributes the model
parameters to all connected devices. Then each device trains
a local version of the ML model using local data. Instead of
sending the raw data to the server, the local model parameter
updates are sent up to the server. Subsequently, the server
computes a weighted average using the parameter updates on
the server using the Federated Averaging (FedAvg) algorithm
[9] to obtain a new set of parameters for the global model. The
updated global model is then sent back down to each device
for the next round of training by the edge server. The entire
process is repeated until the model converges [10].

In practice, running FL across resource constrained devices,
for example in an IoT environment, will result in large training
times. Therefore, the concept of partitioning and offloading
the ML model, for example for a DNN has been explored for
performance efficiency [11]. Split Learning (SL) [12] is one
ML technique that leverages this concept.

In SL, a DNN is partitioned across the device and server.
The DNN layer after which the model is partitioned is referred
to as the split layer. The device trains the model up to the
split layer and then sends the split layer activation (referred
to as smashed data) to the server. The server trains the
remaining layers of the DNN using the smashed data. The
server performs back-propagation up to the split layer and
sends the gradients of the smashed data to the devices. The
devices use the gradients to perform back-propagation on the
rest of the DNN.

However, when multiple devices participate in SL, the
devices are trained in a sequential round robin fashion whereby
only one device is connected to the server at a time. This
limitation is overcome by SplitFed [2] and FedAdapt [13].
SplitFed and FedAdapt allow for simultaneous training of
all participating devices and at the same time leverage on
partitioning the DNN to alleviate the computational burden
of training on the device. In addition to the underlying ap-
proaches of SplitFed, FedAdapt incorporates a reinforcement
learning approach to dynamically identify the DNN layers that

need to be offloaded from the device to the edge based on
the operational conditions of the environment. In this paper,
SplitFed is considered as the baseline.

SplitFed reduces the amount of computation carried out on
the device and is faster than classic SL. However, it is limited
in that the challenge of device mobility during training has not
been considered. Currently, there is no research in the literature
that considers the migration of edge-based FL when devices
move between edge servers. The next section highlights the
key challenges when using SplitFed.

III. IMPACT OF DEVICE MOBILITY ON EDGE-BASED
FEDERATED LEARNING

This section considers the impact of device mobility on the
training time in edge-based FL. Three contributing factors,
namely model training, imbalanced data distribution and fre-
quency of device mobility are considered.

Model training: Due to mobility, a device participating in
FL may disconnect from one edge server and will need to
connect to another server at any stage during training. For
example, in the early stages of training, if a device moves,
restarting training on a different edge server may result in
a small increase in training time. However, if the device
had completed a larger portion of its training on an edge
server before the device moved, then the training time would
significantly increase. A migration mechanism is required so
that mobile devices can resume training on the destination
edge server rather than starting over.

Imbalanced data distribution: In a real edge-based FL
system, some devices may have more data than others due to
frequent use of specific services or have more resources such
as memory [3], [9]. Consequently, these devices will make a
significant contribution to the quality (overall accuracy) of the
global model. However, devices that generate a large amount
of data cannot be removed from contributing to training since
the eventual accuracy of the global model will be adversely
affected. Furthermore, devices with more data will require
more training time. As a result, restarting training for the
device after it has moved to a different edge server will
increase the training time. A migration mechanism that allows
such devices to resume training (rather than restarting from the
beginning) when moving between edge servers is required to
reduce training time while not compromising the global model
accuracy.

Frequency of device mobility: The frequency with which
devices may move between edge servers can have an impact on
training time. If the devices move frequently during training,
the overall training time will increase because training will
need to be restarted on each device after it has moved to a
different edge server.

In this paper, we present FedFly, that aims to address the
device mobility challenge by taking into account the above
factors for reducing the training time and maintaining the
accuracy of the global model as close to that in classic FL.

3

Global model feedback

(Iterative)

D
is

trib
u

te
 in

itia
l p

a
ra

m
e

te
rs

Model aggregation

Source edge server

F
o

rw
a

rd
 a

c
ti

v
a

ti
o

n

F
o

rw
a

rd
 a

c
ti

v
a

ti
o

n

B
a

c
k

w
a

rd
 g

ra
d

ie
n

ts

Destination edge server

Central server

U
p

lo
a

d
 m

o
d

e
ls

D
is

trib
u

te
 in

itia
l p

a
ra

m
e

te
rs

Global model feedback

(Iterative)

R
e

s
u

m
e

 t
ra

in
in

g

D
is

trib
u

te
 in

itia
l p

a
ra

m
e

te
rs

U
p

lo
a

d
 m

o
d

e
ls

Model Splitting

Model data:

(epoch number, gradients, model

weights, loss value, optimizer's state)

B
a

c
k

w
a

rd
 g

ra
d

ie
n

ts

Device movement

Fig. 1: System of FedFly.

IV. FEDFLY FOR MIGRATION IN HIERARCHICAL
EDGE-BASED FEDERATED LEARNING

This section presents FedFly (https://github.com/
qub-blesson/FedFly), the edge-based distributed FL system
that caters for mobility of devices. A hierarchical structure
that comprises three entities, namely devices, edge servers,
and a central server (cloud-like) is considered. The FedFly
system is shown in Figure 1. The following highlights the
steps in relation to distributed FL and the mobility of devices
within the FedFly system:

Central server initialization: When training begins, the
central server initializes the global model parameters and
distributes them to the edge servers. The model parameters are
received by the edge servers and passed to the participating
devices (Step 1). The training on the devices begins when the
devices receive the model parameters from the servers.

Splitting Deep Neural Networks: When the model is initial-
ized, the DNN that would in classic FL run on a device is split

between device and the edge server. After all devices and edge
servers complete local training on the data generated by the
device, i.e., forward and backward propagation (Step 2 and
Step 3), the local model updates are sent to the central server
for global model aggregation (Step 4). A complete forward
and backward propagation corresponds to one local epoch (an
epoch refers to one complete cycle of an entire dataset on a
device through the neural network) of a device for all local
data of that device. The central server aggregates the model
(Step 5), and then the updated parameters of the global model
are sent back to the edge servers and devices for training for
a next round of FL training (Step 6).

At any point during training, it is possible for a device to
move between edge servers. Figure 2 shows the sequence of
activities initiated by FedFly when a device needs to move
from source edge server to the destination edge server. Assume
that a device disconnects from the source edge server after
the 50𝑡ℎ round of training. When a device connects to the

https://github.com/qub-blesson/FedFly
https://github.com/qub-blesson/FedFly

4

Text

Notify source edge server

Device side

model
Edge server

side model

Forward propagation

Backward propagation

Device mobility (i.e., at

50th round of training)

Transfer of model data

Resume training

Upload model update

Model data

checkpoint:

(epoch, gradients,

model weights, loss

value, optimizer's

state)

Paritcipating devices Source edge server Destination edge server

Iterative

Global model feedback

Initial model parameters

Central server

Step 6 to Step 9

FedFly migration steps

Fig. 2: Sequence diagram of FedFly.

destination server without using a migration mechanism, all
the training is lost until the 50𝑡ℎ round, and training is restarted
on the destination edge server. This is because the destination
edge server does not have a copy of the model that was trained
on the source edge server. It is necessary to migrate the model
data from the source edge server to the destination edge server
before training can resume.
FedFly overcomes the mobility challenge by migrating

model data from the source edge server to the destination edge
server. There are three steps that are considered in FedFly
when a device starts moving during FL training.

Notify edge server: When a device starts to move, it notifies
the source edge server to prepare data that needs to be migrated

to the destination edge server (Step 6). In this article it is
assumed that the moving device knows when to disconnect
from the source edge server.

Model data checkpoint: The source edge server creates a
data checkpoint that includes the epoch number, gradients,
model weights, loss value, and state of optimizer (such as Gra-
dient Descent) (Step 7). The checkpointed data is transferred
via a socket to the destination edge server (Step 8).

Resume training: At the destination edge server, the check-
pointed data is received via a socket. When a device connects
to the destination edge server, training is resumed from the
point where the device started moving at the source edge server
(Step 9).

5

There are several possible ways to transfer model data
between edge-servers. In FedFly, the source edge server
transfers data directly to the destination edge server, after
which the device resumes training. However, in practice the
two-edge servers may not be connected or may not have the
permission to share data with each other. In this case, the
device can then transfer the checkpointed data between edge
servers.

V. EVALUATION

This section first describes the experimental setup, including
the lab-based testbed used for carrying out experiments, and
then substantiates the key claims of FedFly by presenting
and analysing the results obtained.

A. Experimental Setup

The testbed includes four devices, two edge servers and one
central server. The devices are: (i) two Raspberry Pi 4 (Pi4_1,
and Pi4_2) Model B with 1.5GHz quad-core ARM Cortex-A72
CPU, 4GB RAM and 32GB storage, and (ii) two Raspberry Pi
3 (Pi3_1, and Pi3_2) Model B with 1.2GHz quad-core ARM
Cortex-A53 CPU, 1GB RAM and 32GB storage. The edge
servers comprise: (i) a 2.3GHz quad-core Intel i5 CPU, 8GB
RAM and 256GB storage, and (ii) a 2.3GHz quad-core Intel
i7 CPU, 16GB RAM and 500GB storage. The central server
has a 2.9GHz quad-core Intel i5 CPU, 16GB RAM and 1TB
storage. All Raspberry Pis have the same version of Raspbian
GNU/Linux 10 (Buster) operating system, Python version 3.7
and PyTorch version 1.4.0. The edge servers and the central
server have the same version of Python and PyTorch using
Anaconda. All devices are connected to the servers in a Wi-Fi
network with an average available bandwidth of 75Mbps.

The DNN model used is VGG-5 [14] and the CIFAR-
10 [15] dataset is used as input with size 3@32 × 32 and a
batch size of 100 is used for all experiments. The CIFAR-
10 dataset contains 50K training and 10K testing samples
that consist of color images of ten objects (classes), including
plane, car, bird, cat, deer, dog, frog, horse, ship, and truck.
The standard FedAvg [9] aggregation method is used, and
the model parameters are updated using Stochastic Gradient
Descent (SGD), with a learning rate of 0.01 and a momentum
of 0.9.

B. Empirical Results and Discussion

In this section, we demonstrate the performance of FedFly
by comparing it with SplitFed in terms of device training time
and model accuracy. We validate our claims using balanced
and imbalanced datasets at various stages (i.e., 50% and 90%)
of FL training.

Effect of mobility on device training time: When a device
moves between edge servers, factors such as training stage
and the dataset available on the device can affect training
time. In this experiment, we validate the training time claim
by generating 25% and 50% of the data required for training
on a single device (i.e., Pi3_1, Pi3_2, Pi4_1 and Pi4_2) with
training stages at 50% and 90% as shown in Figure 3 (a) and
Figure 3 (b).

4 8 8 4 8 4

3 2 7
3 8 2

7 1 4

8 8 0

4 7 9

7 2 2

4 8 8 4 8 4

3 2 7
3 8 2

7 1 4

8 8 0

4 7 9

7 2 2

P i 3 _ 1 (5 0 %) P i 3 _ 2 (9 0 %) P i 4 _ 1 (5 0 %) P i 4 _ 2 (9 0 %)0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

Tra
inin

g T
im

e (
s)

D e v i c e s

 R e s u m e t r a i n i n g (F e d F l y)
 R e s t a r t t r a i n i n g (S p l i t F e d)

(a)

9 9 1 9 8 8

7 4 6
6 3 0

1 4 6 8

1 8 5 3

1 0 9 8
1 2 2 0

9 9 1 9 8 8

7 4 6
6 3 0

1 4 6 8

1 8 5 3

1 0 9 8
1 2 2 0

P i 3 _ 1 (5 0 %) P i 3 _ 2 (9 0 %) P i 4 _ 1 (5 0 %) P i 4 _ 2 (9 0 %)0
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0

Tra
inin

g T
im

e (
s)

D e v i c e s

 R e s u m e t r a i n i n g (F e d F l y)
 R e s t a r t t r a i n i n g (S p l i t F e d)

(b)

3 0 1

4 8 4

7 3 2

5 6 2

8 8 0

1 3 8 3

3 0 1

4 8 4

7 3 2

5 6 2

8 8 0

1 3 8 3

S P 1 S P 2 S P 30

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

Tra
inin

g T
im

e (
s)

S p l i t P o i n t s (S P)

 R e s u m e t r a i n i n g (F e d F l y)
 R e s t a r t t r a i n i n g (S p l i t F e d)

(c)

Fig. 3: (a) Device training time per round when 25% of the
dataset is required for training on a mobile device, (b) Device
training time per round when 50% of the dataset is required
for training on a mobile device (c) Device training time per
round by varying SPs with 25% of the dataset on a mobile
device and at 90% of the FL training.

6

Figure 3 (a) shows the effects of device mobility on device
training time when 25% of the dataset is required for training
on a single device, as well as device movement when 50% and
90% of the training is completed. It is evident from Figure 3
(a) that FedFly always outperforms SplitFed, in which the
training is restarted at the destination edge server. When we
move Pi3_1 when 50% of the training is done, the training
time is reduced by up to 33% per round. However, when we
move Pi3_2 with the same dataset but 90% of the training
is completed, the training time is reduced by up to 45% per
round. We also move devices (Pi4_1 and Pi4_2) when 50% and
90% of the training is done, and the training time is reduced
by up to 33% and 45% per round, respectively.

Figure 3 (b), shows the effects of device mobility on device
training time when 50% of the dataset is required for training
on a single device, as well as device movement when 50% and
90% of the training is completed. It can be seen in Figure 3
(b) that training time on devices is longer than on devices in
Figure 3 (a). This is due to the fact that 50% of the dataset
is used for training on mobile devices, which is comparably
larger than used for devices in Figure 3 (a). It has been
demonstrated from Figure 3 (a) and Figure 3 (b) that FedFly
can save a significant amount of training time when compared
to SplitFed.

Figure 3 (c) highlights the system performance with device
mobility by varying the split points (SP). SP1 denotes the
first convolutional layer on devices, SP2 denotes the first two
convolutional layers on devices, and SP3 denotes the first three
convolutional layers on devices, with the remaining layers
on edge-servers. It should be noted that in the experiments
illustrated in Figure 3 (a) and Figure 3 (b), all devices and
edge servers have fixed split points (i.e., SP2). Figure 3 (c)
depicts that SPs impact the system performance, in terms of
training time. By changing the SPs from SP1 to SP3, we
note a significant increase in training time. This is because
as the number of layers (i.e., computation) on devices and
servers increases or decreases, the training time on devices
or servers increases or decreases accordingly. In all cases,
FedFly saves a significant amount of training time when
compared to SplitFed. The transfer time is still up to two
seconds. This is because the VGG-5 model is used in the
experiments, and the data that is checkpointed did not change
significantly by varying SPs.

Effect of mobility on global accuracy: In this experiment,
we verify the accuracy of the global model when a device
moves frequently between edge servers.

We ran this experiment for a total of 100 rounds, with a
mobile device holding 20% of the dataset and 50% of the
dataset. We move the device at various rounds during 100
rounds of training, such as at the 10𝑡ℎ , 20𝑡ℎ , 30𝑡ℎ , 40𝑡ℎ , 50𝑡ℎ ,
60𝑡ℎ , 70𝑡ℎ , 80𝑡ℎ , and 90𝑡ℎ rounds. Figure 4 clearly shows
that there is no effect on accuracy. FedFly and SplitFed
both maintain accuracy when a device moves between edge
servers holding 20% and 50% of the datasets. In the case of
SplitFed, the training is restarted at the destination edge server
without any accuracy loss. This is because the device obtains
the updated model parameters from the central server and
restarts training at the destination edge server. For example,

if a device moves at the 10𝑡ℎ round, the central server has
the updated model parameters until the 10𝑡ℎ round, and when
a device connects to the destination edge server, it receives
updated parameters from the central server. Only the training
is restarted, which increases the training time but has no effect
on accuracy.
FedFly, on the other hand, transfers the data to the des-

tination edge server, where training is resumed and maintains
the same level of accuracy as SplitFed. The training, however,
is not repeated at the destination edge server.

0 20 40 60 80 100
Rounds

50

55

60

65

70

75

80

Te
st

 a
cc

ur
ac

y
(%

)

Restart training (SplitFed, 50% dataset)
Resume training (FedFly, 50% and 20% dataset)
Restart training (SplitFed, 20% dataset)

Fig. 4: Global accuracy when 20% and 50% of datasets are
required for training on a mobile device for 100 rounds of
training.

C. Summary of the evaluation results

FedFly performance is affected by a number of factors,
including i) balanced and imbalanced datasets on devices, ii)
varying the SPs, iii) the frequency with which devices move;
and iv) the model training stages. Our experimental results
provide the following insights:

• In comparison to SplitFed, FedFly reduces the training
time per round by up to 33% when a device moves after
50% of the training is completed, and by up to 45% when
90% of the training is completed.

• FedFly maintains global accuracy as does SplitFed and
there is no accuracy loss.

• FedFly results in up to two seconds overhead, which
is the time it takes to transfer data between edge servers
during migration. This overhead is negligible when com-
pared to the device training time when training is restarted
at the destination server. The reduction in training time
and overhead reported in this paper are based on experi-
ments carried out on the lab-based testbed.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

The FL system is hindered by two major issues: training
time and accuracy. This becomes more challenging when a
device moves during FL training and especially when a DNN
is partitioned between device and edge server. This paper
has proposed FedFly, which for the first time addresses the
device mobility challenge during FL training, particularly in
edge-based FL. We develop a prototype on a lab-based testbed,

7

that upholds and validates our claims in terms of training time
and accuracy using balanced and imbalanced datasets when
compared to state-of-the-art SL approach called SplitFed. Our
empirical results reveal that FedFly introduces a negligible
overhead but saves a significant amount of training time while
maintaining accuracy.

Future Research Directions: We develop FedFly for
migration in edge-based distributed FL —but this is only the
tip of the iceberg of the opportunities it makes available. What
follows are a few research questions that we may further
investigate.

Multiple devices mobility: Further challenges may occur in
the FL setting if multiple devices try to move at the same time
with various data distribution at each node. The impact of a
large number of devices on training time and accuracy will be
investigated further in order to realise migration in practical
FL systems.

Hardware heterogeneity: In FedFly, we perform migration
in a homogeneous environment, i.e., the hardware at the
edge servers is of the same instruction set architecture (ISA).
However, in practical scenarios, edge servers are often built
with CPUs of different ISAs. As a result, a DNN model
that has been natively trained for one ISA cannot be moved
to another, making migration to the destination edge server
difficult. Migration at runtime across edge servers featuring
CPUs of different ISAs, such as ARM and x86, requires
further investigation.

Neural network optimization: In practice, the destination
edge server may not have enough resources to run the DNN
model, meaning that the destination edge server resource is
not equivalent to the source edge server resource. How to
move DNN on the fly so that the DNN model can run on
the destination edge server with limited resources and how
to optimise the DNN without impacting its accuracy may be
further investigated.

Asynchronous training: FedFly currently focuses on syn-
chronous training in edge-based distributed FL. However, the
practical FL scenario shows significant heterogeneity in terms
of computation resources, hardware, dataset distribution, and
communication, etc. It would be worthwhile to investigate
the migration issues for asynchronous training in edge-based
distributed FL.

Communication overhead: FedFly does not impose any
communication challenges, as training from the source edge
server is resumed with a 2 second overhead at the destination
edge server. However, communication challenges may arise as
a result of the hierarchical cloud-edge-device architecture in
which FedFly operates since the volume of communication
between the cloud, edge servers and devices increase. This
may result in a higher communication overhead since model
parameters are frequently shared between the cloud to edge
to device and vice-versa. Efficient mechanisms for reducing
communication overhead between devices, edge servers, and
the cloud will be considered in the future.

REFERENCES

[1] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[2] C. Thapa, M. A. P. Chamikara, and S. Camtepe, “Splitfed: When fed-
erated learning meets split learning,” arXiv preprint arXiv:2004.12088,
2020.

[3] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A survey on
federated learning for resource-constrained iot devices,” IEEE Internet
of Things Journal, vol. 9, no. 1, pp. 1–24, 2021.

[4] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and
H. Vincent Poor, “Federated learning for internet of things: A compre-
hensive survey,” IEEE Communications Surveys Tutorials, vol. 23, no. 3,
pp. 1622–1658, 2021.

[5] Q. Xia, W. Ye, Z. Tao, J. Wu, and Q. Li, “A survey of federated learning
for edge computing: Research problems and solutions,” High-Confidence
Computing, vol. 1, no. 1, p. 100008, 2021.

[6] F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A survey on virtual
machine migration: Challenges, techniques, and open issues,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 2, pp. 1206–1243,
2018.

[7] G. Singh and P. Singh, “A taxonomy and survey on container migration
techniques in cloud computing,” in Sustainable Development Through
Engineering Innovations. Springer, 2021, pp. 419–429.

[8] S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager: Complete
container state migration,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), 2017, pp. 2137–2142.

[9] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. of 20th Artificial Intelligence and Statistics, 2017, pp.
1273–1282.

[10] Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim, S. A.
Camtepe, H. Kim, and S. Nepal, “End-to-end evaluation of feder-
ated learning and split learning for internet of things,” arXiv preprint
arXiv:2003.13376, 2020.

[11] L. Lockhart, P. Harvey, P. Imai, P. Willis, and B. Varghese, “Scission:
Performance-driven and context-aware cloud-edge distribution of deep
neural networks,” in 2020 IEEE/ACM 13th International Conference on
Utility and Cloud Computing (UCC), 2020, pp. 257–268.

[12] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
arXiv:1812.00564, 2018.

[13] D. Wu, R. Ullah, P. Harvey, P. Kilpatrick, I. Spence, and B. Varghese,
“Fedadapt: Adaptive offloading for iot devices in federated learning,”
arXiv preprint arXiv:2107.04271, 2021.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

[15] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Technical report, University of Toronto, 2009.

Rehmat Ullah is a research fellow at the University of St Andrews, UK.
His research focuses on the broader areas of network and distributed systems,
particularly edge computing and information centric networking, with a recent
focus on federated learning for edge computing systems. More information is
available from www.rehmatkhan.com.

Di Wu is currently pursuing a PhD degree in computer science at University
of St Andrews, UK. His major interests are in the areas of federated
learning, distributed machine learning, edge computing, model compression,
and Internet-of-Things.

Paul Harvey is one of the original founders of the Autonomous Networks
Research and Innovation Lab in Rakuten Mobile, Japan, and is a co-chair
in the ITU focus group on autonomous networks. He is Research Lead at
the Autonomous Networking Research and Innovation Department, Rakuten
Mobile, Japan.

Peter Kilpatrick is a Reader in computer science at Queen’s University
Belfast, UK. His interests include parallel programming models and cloud
and edge computing.

Ivor Spence is a Reader in computer science at Queen’s University Belfast,
UK, where he leads the artificial intelligence (AI) research theme with a focus
on heterogeneous computing systems for AI.

Blesson Varghese is a Reader in computer science at the University of St
Andrews, UK, and the Principal Investigator of the Edge Computing Hub. His
recent interests are at the intersection of the cloud-edge-device continuum and
machine learning. More information is available from www.blessonv.com.

www.rehmatkhan.com
www.blessonv.com

	I Introduction
	II Background
	III Impact of Device Mobility on Edge-based Federated Learning
	IV FedFly for Migration in Hierarchical Edge-based Federated Learning
	V Evaluation
	V-A Experimental Setup
	V-B Empirical Results and Discussion
	V-C Summary of the evaluation results

	VI Conclusion and Future Research Directions
	References
	Biographies
	Rehmat Ullah
	Di Wu
	Paul Harvey
	Peter Kilpatrick
	Ivor Spence
	Blesson Varghese

