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Abstract

While previous studies have emphasised the role of individual factors in understanding mul-

timorbidity disparities, few have investigated contextual factors such as air pollution (AP).

We first use cross-sectional latent class analysis (LCA) to assess the associations between

PM2.5 exposure and multimorbidity disease clusters, and then estimate the associations

between PM2.5 exposure and the development of multimorbidity longitudinally using growth

curve modelling (GCM) among adults aged 45–85 in China. The results of LCA modelling

suggest four latent classes representing three multimorbidity patterns (respiratory, musculo-

skeletal, cardio-metabolic) and one healthy pattern. The analysis shows that a 1 μg/m3

increase in cumulative exposure to PM2.5 is associated with a higher likelihood of belonging

to respiratory, musculoskeletal or cardio-metabolic clusters: 2.4% (95% CI: 1.02, 1.03),

1.5% (95% CI: 1.01, 1.02) and 3.3% (95% CI: 1.03, 1.04), respectively. The GCM models

show that there is a u-shaped association between PM2.5 exposure and multimorbidity, indi-

cating that both lower and higher PM2.5 exposure is associated with increased multimorbid-

ity levels. Higher multimorbidity in areas of low AP is explained by clustering of

musculoskeletal diseases, whereas higher AP is associated with cardio-metabolic disease

clusters. The study shows how multimorbidity clusters vary contextually and that PM2.5

exposure is more detrimental to health among older adults.

Introduction

The number of older adults living with multimorbidity, defined as the coexistence of two or

more chronic diseases or conditions, is rising globally [1]. Research based on survey data

shows a high prevalence of multimorbidity among older adults in low and middle income

countries (LMICs), such as 63% in India [2], 65% in Brazil [3], 69% in South Africa [4], and

46% in China [5]. The increasing prevalence of multimorbidity is associated with worse func-

tional ability, reduced healthy life expectancy, increased mortality, and a higher rate of hospita-

lisations [6–8], leading to a heavy burden on medical and health systems and inequalities in
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health outcomes [9]. This is a particular challenge in rapidly ageing societies such as China,

which has a high prevalence of multimorbidity among older adults [5]. The proportion of the

population with multimorbidity in China, as measured by population-based panel data, was

62% for people aged 50 years and 69% for those aged over 75 years [9]. In terms of the determi-

nants of multimorbidity, current studies highlight a range of individual factors, including

demographic (e.g., age, sex and race) and socio-economic (e.g., education and income) charac-

teristics [9–12]. However, research on possible contextual and environmental determinants of

multimorbidity is less common, and in particular the role of air pollution (AP) remains poorly

understood [13].

Recent research on elderly health shows that older people are more susceptible to environ-

mental factors than younger adults [14], with higher risks of living with chronic diseases due

to exposure to environmental pollution [15, 16]. Furthermore, there is abundant evidence on

the association between AP and individual chronic diseases, for example, cardiorespiratory

disease [17], chronic obstructive pulmonary disease (COPD) [18], diabetes [19], heart disease

[20], hypertension [21], and kidney diseases [22]. Although chronic diseases cluster due to

shared biological or environmental risk factors [13], there is limited understanding of how AP

might operate to promote accumulation of multiple chronic diseases.

Similar to many LMICs, AP is an important public health risk in China: in 2017, 81% of the

Chinese population lived in regions which exceed the World Health Organisation Interim Tar-

get 1 (35 μg/m3) [23]. In particular, ambient AP was estimated to be responsible for over

850,000 deaths in China in 2017 [23]. Although ambient AP has decreased markedly in the last

two decades, the older population of China has spent a large proportion of the life course

experiencing historically high levels of AP exposure [24, 25]. China therefore suffers from a

double burden of multimorbid ageing and AP, and understanding the association between

them may be beneficial for development of strategies to prevent or manage chronic diseases in

later life.

Evidence shows that multimorbidity prevalence is likely higher in some social groups

because chronic diseases often cluster due to common risk factors, such as socioeconomic dep-

rivation and environmental risks [13]. These risk factors for diseases clustering make it diffi-

cult to isolate the effects of AP from other factors of socioeconomic deprivation [26].

Therefore, motivations for this study are not only to understand the relationship between his-

toric AP exposure and changes in multimorbidity, but also to explore individual-level charac-

teristics that are associated with multimorbidity inequalities.

In this study, we analyse the associations between cumulative, historic exposure to AP as

predictive of cross-sectional multimorbidity disease clusters and multimorbidity accumula-

tion. We use large, prospective and nationally representative survey data, the China Health

and Retirement Longitudinal Study (CHARLS), linked with historical satellite data on PM2.5

exposure over 15 years. Using this novel dataset, we address a research gap for longitudinal

studies of multimorbidity and provide assessment of the associations between AP and the

development of multimorbidity.

Methods

Study population

Data used in this study are from three waves of the China Health and Retirement Longitudinal

Study (CHARLS 2011, 2013, 2015), which is a nationally representative longitudinal survey of

the middle-aged and elderly population of China, consisting of persons aged 45 years or older,

as well as their spouses when possible. CHARLS used computer-assisted in-person interviews

to obtain samples through four-stage stratified sampling, with an overall response rate of
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80.5% at the baseline. From June 2011 and March 2012, CHARLS conducted the baseline sur-

vey (wave 1) that included assessments of the social, economic, and health circumstances of

17,705 respondents from 28 provinces, 150 cities/counties/districts, 450 communities, and

10,257 households [27]. Following wave 1, two follow-up surveys were conducted in 2013 and

2015.

Fig 1 shows the criteria of sample inclusion. In 2011, the baseline CHARLS sample size was

17,705. Between 2011 and 2013, 2,526 respondents attrited due to death (n = 441) or non-spec-

ified reasons (n = 2,125). In 2013, a refreshment sample was added of 3,425 new respondents,

making the total 2013 sample consist of 18,604 individuals. The 2015 wave of CHARLS had a

total sample size of 21,100, including 3,826 new joiners. Between 2013 and 2015, 689

Fig 1. Flowchart of study inclusion criteria. Note: CHARLS, the China Health and Retirement Longitudinal Study.

https://doi.org/10.1371/journal.pgph.0000520.g001
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respondents died and 1,658 attrited, and 1,017 respondents, interviewed in 2011 but missing

in 2013, returned. It is noted that these refreshment samples did not participate in the first

wave in 2011. Finally, the three waves of CHARLS include 24,956 respondents (57,409

observations).

We restrict our analysis to the 19,098 respondents (45,788 observations) from 125 cities

who were aged 45 to 85 years old at any wave of the study. The listwise deletion process is also

shown in Fig 1.

Main outcome: Multimorbidity

The ‘Health status and function’ module in the CHARLS questionnaire includes 14 self-

reported doctor-diagnosed chronic diseases for each respondent, asking “Have you been diag-

nosed with the following conditions by a doctor”: hypertension; dyslipidaemia; diabetes or

high blood sugar; cancer or malignant tumour; chronic lung disease; liver disease; heart prob-

lems; stroke; kidney disease; stomach or other digestive diseases; emotional, nervous or psychi-

atric problems; memory-related disease; arthritis or rheumatism [12]. In line with previous

CHARLS studies, we use a disease count approach where we summed 14 binary disease indica-

tors (range 0–14) to capture multimorbidity [12, 28].

We exclude respondents who are missing any components of these 14 indicators of chronic

disease. Using this method, there are 7,469 observations with missingness on multimorbidity.

Note that CHARLS 2015 contributes to over half of these (4,654 observations), partly due to

survey design, because around 2,800 respondents were interviewed in the Life History Survey

(in 2014) but not in previous waves (CHARLS 2011 and 2013). In these cases, the respondents

were not asked if they ever had a condition and therefore their chronic disease records are

missing in 2015. We explain how we deal with missingness in the statistical analysis section.

Air pollution: PM2.5

Many studies use ground air pollutants concentration (e.g., PM2.5, PM10, NO2) from monitor-

ing stations to measure the exposure to AP [29, 30]. In China, however, most AP monitoring

stations were established by the Ministry of Ecology and Environment only after 2013, limiting

the ability to study long-term exposure.

Compared with ground monitoring data, satellite data with broad spatial coverage, a long-

term data record, and high spatial resolutions could support the assessment of historical AP

levels in developing regions. A detailed description of the ensemble machine learning model

to generate our long-term PM2.5 exposure estimates is published elsewhere [31], and summa-

rised briefly here. Given the large modelling domain, China was first divided into seven subre-

gions using a geographically weighted regression approach to allow the machine learning

algorithms to capture different spatiotemporal patterns of PM2.5 in each subregion caused by

different terrain, weather conditions, and emission source profiles. A random forest, an

extreme gradient boosting (XGBoost), and a generalized additive model (GAM) were then

trained in each subregion. Their predictions of daily PM2.5 concentration levels at 10 km2 spa-

tial resolution were combined using weights determined by prediction accuracy. Compared

with previous models, this ensemble model provided more accurate out-of-range predictions

at the daily and monthly levels. Based on the administrative regions in China, 150 cities of

CHARLS are clustered to aggregate PM2.5 concentration from satellite data at the city level. To

match with CHARLS, we selected monthly PM2.5 concentration as the temporal scale (see

Table G in S1 File).

As used in previous studies, the measure of cumulative exposure is operationalised using

the average mean of pollutant concentrations during the exposure window [32, 33]. Chinese
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ambient air quality standards use two cut-offs to indicate the hazardous level of exposures, 35

μg/m3 (Level 1) and 75 μg/m3 (Level 2) [34]. In this study, we exploit our longer-term PM2.5

data and calculate a more fine-grained measure: the average concentration of monthly expo-

sure from March 2000 until the survey date, which provides a measure of historical exposure.

Additionally, we initially categorise PM2.5 exposure into six groups using 10 μg/m3 intervals:

0–35, 36–45, 46–55, 56–65, 66–75, 76+ μg/m3. Due to small numbers exposed to PM2.5 over 76

+ μg/m3, we later collapse the last two categories resulting in five groups.

Covariates: Demographic, socioeconomic status (SES), health behaviour

and regional factors

In this study, the covariates include four components: demographic, socioeconomic status

(SES), behavioural, and contextual factors. Demographic variables include age, age squared,

gender, and marital status (single vs. partnered). Individual SES consists of education (no

schooling, primary, middle or more education), occupation (agricultural, non-agricultural,

and managerial), and HuKou (rural, rural-urban, urban). CHARLS life history survey records

the longest occupation during the respondents’ occupational history. Agricultural jobs include

farming, fishing, managing forest products or fruit trees, raising livestock, and selling these

products in the market. Non-agricultural jobs include civil servants, office clerks or non-agri-

cultural self-employment (e.g., running a restaurant or supermarket). Respondents who are in

a supervisory position in their offices are considered “managers”. Respondents who have

never worked (e.g., “housewife”, or disabled people) are sparse in the CHARLS (only 137

respondents) and are marked as missing.

HuKou is a special national household registration system in China that has two categories:

rural and urban. People usually remain in the same HuKou as their parents, and once HuKou

is registered, it is difficult to change even if people move. HuKou is related to occupational sta-

tus, education, and health care access [35, 36]. Due to the urbanisation and internal migration,

people who originate in a rural HuKou increasingly live in the urban areas. Thus, considering

both HuKou and current residence, there are three types: rural (rural HuKou living in rural

areas), rural-urban (rural HuKou living in urban areas), and urban (urban HuKou living in

urban areas). HuKou is an important feature in this study as it is strongly related to personal

SES, not solely housing address [35].

Smoking status is controlled for as an important health behaviour (never smoking, former

smoker, and current smoker). To account for the urbanisation and industrialisation of cities,

this study includes annual regional Gross Domestic Product (GDP) at the city level (logged).

Analysis strategies

To analyse multimorbidity disease clusters, we use latent class analysis (LCA) on a cross-sec-

tional sample of the baseline wave of CHARLS as LCA can pick up clusters of diseases shared

with the common risk factors. The LCA models can identify multimorbidity patterns by

assigning individuals to a set of discrete, mutually exclusive groups—latent classes—based on

their responses to the 14 chronic disease indicators in the CHARLS. A sequence of 14 LCA

models was estimated starting with a one-class model and increasing the number of classes in

a stepwise approach. Following examples in previous studies [37, 38], the LCA model selection

was based on examinations of several fit indices, including AIC, BIC and likelihood estimates.

We then regressed the resulting latent class memberships on cumulative PM2.5 exposure in

2011 using multinomial regression, adjusting for the covariates discussed above.

We use growth curve modelling (GCM) to examine the relationship between PM2.5 expo-

sure in the period of 2000–2015 and multimorbidity accumulation between 2011–2015. An
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important advantage of GCM is the ability to model the trajectories of individuals over time

and distinguish within-individual from between-individual heterogeneities in estimating mul-

timorbidity accumulation/changes shaped by other variables [39]. In this study, we use three

waves of CHARLS across four years (2011–2015) of data collection. As multimorbidity is a

count variable, we assume a Poisson distribution. As there is likely a non-linear relationship

between PM2.5 exposure and elderly health, we add a quadratic term of PM2.5 exposure, as well

as alternative models (detailed below) using categorisations of PM2.5. To examine heterogene-

ity in the associations of PM2.5 exposure among different groups, we further explore the inter-

actions between PM2.5 exposure and age, SES (education, occupational status, HuKou-

residence), and smoking status.

We conduct a number of robustness checks. First, we run the same set of LCA and GCMs

models but use a categorical measure of PM2.5 exposure to allow for a more flexible estimation

of the association between AP and multimorbidity (shown in Tables B and C in S1 File). Sec-

ond, we run the GCMs first on the entire sample 45–85 years, then we subset the data into ages

45–64 and 65–85 years to compare middle-aged and oldest individuals (Tables D and E in S1

File). Third, given that 7,867 observations are deleted due to missingness, we apply multiple

imputation (MI) using chained equations to complete our analysis samples under the missing-

at-random assumption. We then use multilevel random-intercept Poisson regression to com-

pare the results from the MI and complete datasets (Table F in S1 File).

Results

Descriptive analysis

At baseline, the average age of respondents is approximately 59 years old. 49% are men. 39% of

the population attained primary education and 34% had middle or higher education. 78% of

respondents are registered with rural HuKou but 19% respondents with rural HuKou are liv-

ing in urban areas; 72% worked for agricultural jobs, and 88% are married. Average multimor-

bidity is 1.5 at baseline, increasing to 2.08 by 2015. From 2011 to 2015, average PM2.5 rises

only slightly from 51.27 to 52.90 μg/m3 (Table 1). In addition, Table 1 shows that descriptive

statistics for both the baseline and entire period’s analytical samples are very similar to the

entire sample, suggesting that sample selection, including attrition, may not substantially affect

results.

Latent class analysis

First, we use LCA to explore the association between PM2.5 exposure and multimorbidity pat-

terns at baseline (CHARLS 2011). Based on the comparisons of AIC, BIC, and likelihood esti-

mates, the four-class model was chosen as the final model in this study (Table A and Fig A in

S1 File). Table 2 shows the distribution of the sample across the four classes. Based on the

probability distribution of chronic diseases across the classes, they are labelled: respiratory

(Class 1), musculoskeletal (Class 2), cardio-metabolic (Class 3) and relatively healthy (Class 4).

The label takes its name from the main diseases (items) that characterise it. For example, we

labelled Class 1 as respiratory because the probability of lung diseases is 0.79, which means

79% of respondents in Class 1 suffered from lung diseases. Similarly, labels of class 2 and 3 are

originated from high probabilities of arthritis/rheumatism (0.81) and hypertension (0.71).

Multinomial regression

Second, we present the results from the cross-sectional multinomial models analysing the asso-

ciations between PM2.5 and multimorbidity patterns at baseline, controlling for a set of
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covariates. The findings show that higher exposure to AP is associated with a higher prevalence

of the other three classes of chronic diseases, compared to those who are “relatively healthy”

(Table 3). Specifically, a 1 μg/m3 increase in cumulative exposure to PM2.5, is associated with a

higher likelihood of belonging to respiratory, musculoskeletal and cardio-metabolic cluster:

2.4% (95% CI: 1.02, 1.03), 1.5% (95% CI: 1.01, 1.02) and 3.3% (95% CI: 1.03, 1.04),

respectively.

In terms of the other covariates, the regression model shows that women have a lower likeli-

hood of belonging to any of three multimorbidity classes compared with the healthy class.

Older age is associated with a higher likelihood of belonging to respiratory and cardio-meta-

bolic clusters but with a lower likelihood in musculoskeletal cluster. The relationship between

education and multimorbidity patterns is complex. Compared with respondents without

schooling, those with primary education have a lower likelihood of belonging to the musculo-

skeletal cluster, and those with middle or higher education have a higher likelihood of belong-

ing to cardio-metabolic cluster.

Respondents with urban HuKou have a higher likelihood of belonging to any of the three

disease clusters, especially the cardio-metabolic cluster. Working in non-agricultural positions

is associated with a higher likelihood of being in those three classes. Being single is associated

Table 1. Descriptive statistics of the study population in CHARLS 2011, 2013, 2015.

CHARLS CHARLS CHARLS CHARLS 2011- CHARLS

2011 (analysis) 2013 (analysis) 2015 (analysis) 2015 (analysis) 2011–2015

Multimorbidity (Mean/SD) 1.45 (1.43) 1.60 (1.52) 2.08 (1.75) 1.69 (1.59) 1.69 (1.59)

Cumulative PM2.5 exposure (Mean/SD) 51.27 (15.63) 52.10 (16.44) 52.90 (16.84) 52.06 (16.31) 52.01 (16.42)

Age (Mean/SD) 59.10 (9.49) 60.01 (9.54) 61.32 (9.26) 60.10 (9.48) 59.82 (9.66)

Gender (N/%)

Men 7,795 (49.00) 7,582 (48.65) 6,887 (48.18) 9,277 (48.58) 11,358 (49.12)

Women 8,114 (51.00) 8,003 (51.35) 7,407 (51.82) 9,821 (51.42) 11,766 (50.88)

Education (N/%)

No schooling 4,318 (27.14) 4,019 (25.79) 3,621 (25.33) 4,914 (25.73) 5,572 (24.14)

Primary 6,243 (39.24) 6,259 (40.16) 5,824 (40.74) 7,548 (39.52) 9,026 (39.11)

Middle + 5,348 (33.62) 5,307 (34.05) 4,849 (33.92) 6,636 (34.75) 8,481 (36.75)

HuKou (N/%)

Rural 9,320 (58.58) 9,193 (58.99) 8,481 (59.33) 10,852 (56.21) 12,647 (54.18)

Rural-urban 3,065 (19.27) 2,973 (19.08) 2,734 (19.13) 3,777 (19.56) 4,757 (20.38)

Urban 3,524 (22.15) 3,419 (21.94) 3,079 (21.54) 4,676 (24.22) 5,938 (25.44)

Occupation (N/%)

Agricultural 11,413 (71.74) 11,965 (76.77) 10,661 (74.58) 14,276 (67.80) 16,649 (66.55)

Non-agricultural 3,582 (22.52) 3,4015 (21.82) 2,917 (20.41) 5,146 (24.44) 6,371 (25.47)

Managerial 914 (5.75) 219 (1.41) 716 (5.01) 1,633 (7.76) 1,998 (7.99)

Marital (N/%)

Partnered 13,976 (87.85) 13,660 (87.65) 12,420 (86.89) 16,960 (85.52) 20,589 (85.96)

Single 1,933 (12.15) 1,925 (12.35) 1,874 (13.11) 2,871 (14.48) 3,362 (14.04)

Smoking status (N/%)

Never 9,433 (59.29) 8,869 (56.91) 8,317 (58.19) 11,774 (53.62) 14,119 (53.92)

Former 1,401 (8.81) 1,146 (7.35) 1,964 (13.74) 3,176 (14.46) 3,721 (14.21)

Current 5,075 (31.90) 5,570 (35.74) 4,017 (28.07) 7,007 (31.91) 8,345 (31.87)

Log GDP (Mean/SD) 10.29 (0.56) 10.47 (0.65) 10.47 (0.63) 10.41 (0.63) 10.42 (0.62)

Number of respondents 15,909 15,585 14,294 19,098 23,124

https://doi.org/10.1371/journal.pgph.0000520.t001

PLOS GLOBAL PUBLIC HEALTH PM2.5 exposure and multimorbidity

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0000520 June 29, 2022 7 / 20

https://doi.org/10.1371/journal.pgph.0000520.t001
https://doi.org/10.1371/journal.pgph.0000520


with a higher likelihood of being in the respiratory cluster but is not associated with member-

ship in the musculoskeletal and cardio-metabolic clusters. Smoking status is associated with a

higher likelihood of respiratory and cardio-metabolic clusters but not associated with the mus-

culoskeletal cluster. Compared with non-smokers, former smokers have a higher likelihood of

belonging to the cardio-metabolic cluster, whereas current smokers have a lower likelihood.

Higher GDP is associated with a higher likelihood of belonging to any of the three disease

clusters.

Heterogeneity in patterns

We also analyse the heterogeneity in multimorbidity cluster membership by age, gender and

HuKou. Fig 2 shows the association between multimorbidity patterns and 11-year exposure to

PM2.5, comparing middle-aged (45–65 years old) with older adults (66–85 years old). Gener-

ally, higher exposure to PM2.5 is associated with a higher probability of belonging to respira-

tory and, especially, cardiometabolic clusters. Unexpectedly, lower levels of PM2.5 are

associated with higher likelihood of belonging to the musculoskeletal cluster. We can see the

negative associations of PM2.5 exposure are more substantial among the group aged 66–85,

because there is a lower likelihood of belonging to the relatively healthy class but a higher like-

lihood in the respiratory, musculoskeletal, and cardio-metabolic clusters when PM2.5 exposure

levels are elevating.

Growth curve models

To examine the associations between cumulative PM2.5 exposure and multimorbidity accumu-

lation, we conduct a set of GCMs. First, we examine the linear and non-linear relationships

between PM2.5 exposure and multimorbidity by adding linear and quadratic terms of PM2.5

exposure in GCMs (Table 4). The significant coefficients of both PM2.5 exposure and its qua-

dratic term suggest a u-shaped association between PM2.5 exposure and multimorbidity

(Table 4). This means that exposure to PM2.5 is positively associated with the likelihood of

Table 2. Class proportions and class-specific probabilities from a four-latent-class model of chronic conditions.

Latent Class

Class 1 Class 2 Class 3 Class 4

Assigned label Respiratory Musculoskeletal Cardio-metabolic Relatively healthy

Class Proportion 0.075 0.207 0.172 0.546

Items (chronic diseases) Response probabilities

Hypertension 0.319 0.243 0.713 0.129

Dyslipidaemia 0.099 0.039 0.394 0.029

Diabetes 0.069 0.027 0.244 0.021

Cancer/malignant tumour 0.011 0.006 0.034 0.005

Lung diseases 0.787 0.094 0.053 0.034

Liver diseases 0.072 0.065 0.052 0.018

Heart problems 0.269 0.156 0.354 0.025

Stroke 0.044 0.024 0.102 0.005

Kidney diseases 0.123 0.122 0.088 0.023

Stomach/digestive diseases 0.323 0.447 0.204 0.138

Emotional/nervous/psychiatric 0.041 0.018 0.017 0.011

Memory-related diseases 0.059 0.020 0.051 0.005

Arthritis/rheumatism 0.477 0.813 0.340 0.155

Asthma 0.496 0.018 0.017 0.006

https://doi.org/10.1371/journal.pgph.0000520.t002
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multimorbidity when the concentration of PM2.5 exposure is higher than 53.3 μg/m3. The

inflection point of the u-shaped curve is slightly lower among older adults (Tables D and E in

S1 File). For example, the inflection point is 56 μg/m3 among adults aged 45–64 years old and

declines to 43 μg/m3 among adults aged 65–85 years old, suggesting that higher AP exposure

has worse health effects on the older population.

Table 3. Odds ratios with 95% confidence intervals from multinomial logistic regression results for PM2.5 by latent disease class (reference class: Relatively healthy),

CHARLS 2011.

Class 1: Class 2: Class 3:

Respiratory Musculoskeletal Cardio-metabolic

PM2.5 exposure 1.024��� 1.015��� 1.033���

(1.017–1.031) (1.011–1.020) (1.026–1.039)

Age 1.046��� 0.971��� 1.041���

(1.033–1.058) (0.963–0.980) (1.030–1.052)

Gender (ref: Men)

Women 0.479��� 0.427��� 0.682��

(0.352–0.652) (0.347–0.524) (0.522–0.890)

Education (ref: no schooling)

Primary 0.963 0.671��� 0.989

(0.751–1.235) (0.569–0.791) (0.788–1.241)

Middle + 0.879 0.995 1.481��

(0.629–1.227) (0.801–1.235) (1.115–1.967)

HuKou (ref: Rural)

Rural-urban 0.829 1.003 1.294��

(0.631–1.088) (0.846–1.189) (1.032–1.622)

Urban 2.132��� 1.766��� 4.695���

(1.520–2.991) (1.352–2.307) (3.507–6.285)

Occupation (ref: agricultural)

Non- agricultural 1.456�� 1.287� 1.575���

(1.097–1.934) (1.038–1.596) (1.230–2.018)

Managerial 0.929 1.669� 1.277

(0.490–1.763) (1.125–2.477) (0.782–2.086)

Marital (ref: partnered)

Single 1.408� 1.176 1.000

(1.064–1.863) (0.951–1.455) (0.766–1.305)

Smoking (ref: never)

Former 2.820��� 0.762# 1.477�

(1.945–4.088) (0.556–1.045) (1.033–2.111)

Current 1.467�� 0.966 0.691��

(1.100–1.956) (0.792–1.178) (0.536–0.892)

Log GDP 1.488��� 2.393��� 2.686���

(1.220–1.816) (2.096–2.733) (2.265–3.186)

Constant 0.0001��� 0.002��� 3.93e-07���

(0.000–0.001) (0.0004–0.006) (0.000–0.000)

��� p<0.001,

�� p<0.01,

� p<0.05,
# p<0.1

https://doi.org/10.1371/journal.pgph.0000520.t003
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In Model 4 (the full model) women have a higher prevalence of multimorbidity than men,

and there is a curvilinear increase in multimorbidity over age. Unexpectedly, people with

higher education and urban HuKou have a higher prevalence of multimorbidity. Occupation

and partnership status is not significantly associated with the risk of multimorbidity. Com-

pared with respondents who never smoked, former smokers have a higher prevalence of multi-

morbidity, but current smokers do not. There is not a significant association between GDP

and multimorbidity accumulation.

Heterogeneity in multimorbidity accumulation

To explore the trajectory of multimorbidity associated with PM2.5 exposure across age, based

on Model 4 in Table 4, we interact age with PM2.5 exposure and PM2.5 squared; then, we plot

the association between PM2.5 exposure and multimorbidity scores in Fig 3. Generally, respon-

dents exposed to higher PM2.5 exposure have higher risk of multimorbidity. Over the age of

60, the respondents in the highest AP exposure categories (e.g., PM2.5 over 80+) have steeper

multimorbidity trajectories than those in lower exposure categories. However, it is only at cer-

tain older ages (75 years, for example) that this is statistically significant. There is an inverted

u-shaped relationship between age and multimorbidity, indicating a higher risk in multimor-

bidity with ageing among adults aged under 75 but a decline in multimorbidity with ageing

among those between 75–85 years old. The oldest old (aged over 75) have a lower prevalence

of multimorbidity.

We conduct a set of analyses to understand heterogeneities in the association between

PM2.5 and multimorbidity among different HuKou-residence groups. Generally, we can see

that there is a u-shaped relationship between PM2.5 exposure and multimorbidity

Fig 2. Predicted probabilities of 11-year PM2.5 exposure on latent multimorbidity patterns by age groups. Note:

Models adjusted for age, age squared, gender, education, HuKou-residence, occupations, marital status, smoking status

and logged GDP.

https://doi.org/10.1371/journal.pgph.0000520.g002
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Table 4. Coefficients with 95% confidence intervals of growth curve models on the associations of 10 μg/m3 increase in PM2.5 exposure and its quadratic terms and

covariates, with multimorbidity, CHARLS 2011–2015.

Model 1: Model 2: Model 1 Model 3: Model 2 Model 4: Model 3

Base + Education + SES + Smoking+ GDP

PM2.5 exposure -0.191��� -0.200��� -0.206��� -0.202���

(-0.235 - -0.147) (-0.244 - -0.155) (-0.250 - -0.162) (-0.246 - -0.158)

PM2.5 exposure square 0.018��� 0.019��� 0.019��� 0.019���

(0.014–0.022) (0.015–0.023) (0.015–0.023) (0.015–0.023)

Age 0.140��� 0.139��� 0.137��� 0.137���

(0.124–0.155) (0.123–0.154) (0.121–0.153) (0.122–0.153)

Age square -0.0009��� -0.0009��� -0.0009��� -0.0009���

(-0.0011 - -0.0008) (-0.00099 - -0.0007) (-0.00098 - -0.0007) (-0.00099 - -0.0007)

Gender (ref: Men)

Women 0.152��� 0.189��� 0.180��� 0.197���

(0.124–0.180) (0.159–0.219) (0.150–0.210) (0.159–0.235)

Education (ref: no schooling)

Primary 0.147��� 0.136��� 0.135���

(0.110–0.184) (0.0983–0.173) (0.098–0.173)

Middle + 0.130��� 0.0867��� 0.0869���

(0.089–0.171) (0.0423–0.131) (0.0425–0.131)

HuKou (ref: Rural)

Rural-urban -0.029 -0.025

(-0.066–0.008) (-0.062–0.012)

Urban 0.105��� 0.107���

(0.066–0.144) (0.068–0.146)

Occupation (ref: agricultural)

Non- agricultural -0.008 -0.012

(-0.043–0.026) (-0.046–0.022)

Managerial -0.042 -0.044

(-0.095–0.011) (-0.097–0.009)

Marital (ref: partnered)

Single 0.014 0.017

(-0.024–0.052) (-0.021–0.054)

Smoking (ref: Never)

Former 0.175���

(0.137–0.214)

Current -0.024

(-0.060–0.012)

Log GDP -0.014

(-0.036–0.008)

Constant -4.518��� -4.631��� -4.521��� -4.385���

(-5.015 - -4.022) (-5.131 - -4.131) (-5.024 - -4.018) (-4.931 - -3.838)

Random effects

Variance

Individuals (age) 4.75e-17��� 3.12e-17��� 2.23e-17��� 4.84e-17���

Years 0.608��� 0.607��� 0.602��� 0.593���

(0.586–0.631) (0.585–0.630) (0.580–0.625) (0.572–0.615)

Covariance

Individuals—Years 3.95e-12��� 2.85e-12��� 2.49e-12��� 4.87e-12���

(Continued)
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accumulation among all groups. Fig 4 shows that people with urban HuKou have a higher like-

lihood of being multimorbid than those with a rural Kukou when PM2.5 concentration is

lower than 70 μg/m3, but when PM2.5 exposure is over 70 μg/m3, the associations of PM2.5 are

not different between rural, rural-urban and urban residents. However, respondents with rural

HuKou share a similar trajectory of multimorbidity across PM2.5 exposure regardless of their

residences.

We conduct a number of robustness checks. We use categorical PM2.5 exposure to check

the non-linear relationship between PM2.5 exposure and multimorbidity. First, we find that

compared with the relatively healthy class, higher exposure to PM2.5 is associated with a higher

prevalence of the other three classes of chronic diseases (Table B in S1 File). Second, higher

exposure to PM2.5 is associated with a higher incidence rate ratio of multimorbidity in the lon-

gitudinal analyses (Table C in S1 File). In addition, comparing findings from complete data

Table 4. (Continued)

Model 1: Model 2: Model 1 Model 3: Model 2 Model 4: Model 3

Base + Education + SES + Smoking+ GDP

Log likelihood -69877.261 -69845.32 -69824.071 -69750.266

Observations 45,788 45,788 45,788 45,788

Number of IDs 19,098 19,098 19,098 19,098

��� p<0.001,

�� p<0.01,

� p<0.05,
# p<0.1

https://doi.org/10.1371/journal.pgph.0000520.t004

Fig 3. Predicted multimorbidity score across PM2.5 exposure by age. Note that this model controls age, age squared,

gender, education, HuKou-residence, occupations, marital status, smoking status, and logged GDP.

https://doi.org/10.1371/journal.pgph.0000520.g003
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and MI data shows that results are consistent (Table F in S1 File). These sensitivity analyses

indicate the robustness of our results.

Discussion

By linking the CHARLS, a nationally representative dataset, with historical PM2.5 records

derived from remote sensing technology, we investigate the associations between long-term

exposure to PM2.5 and patterns and accumulation of multimorbidity. Incorporating 15-year

PM2.5 exposure histories enables us to capture the associations between long-term exposure

and chronic disease accumulation. To the best of our knowledge, this is the first study to estab-

lish a link between PM2.5 exposure and multimorbidity patterns, and to estimate associations

between cumulative exposure and the accumulation of multimorbidity longitudinally. Find-

ings from the LCA for multimorbidity patterns suggest that higher exposure to PM2.5 is associ-

ated with a higher risk of cardio-metabolic and respiratory multimorbidity (dominated by

lung disease), whereas lower PM2.5 exposure is associated with a higher likelihood of musculo-

skeletal multimorbidity. Our longitudinal GCM findings show that both lower and higher his-

torical AP exposure is associated with faster multimorbidity accumulation. This u-shaped

association may be explained by the different multimorbidity clusters at opposite ends of AP

exposure spectrum, as shown in the LCA models. These estimates suggested that for many

middle-income countries such as China, more efforts to reduce PM2.5 concentrations would

be associated with a substantial reduction in burden of multiple diseases.

First, our LCA analyses show that the four latent classes are differentially associated with

PM2.5 exposure, which are partly in accordance with previous studies of AP and single diseases

[40, 41]. For example, higher exposure to PM2.5 is associated with an increased likelihood of

Fig 4. Predicted multimorbidity score across PM2.5 exposure by HuKou-residence. Note that this model controls

age, age squared, gender, education, HuKou-residence, occupations, marital status, smoking status and logged GDP.

https://doi.org/10.1371/journal.pgph.0000520.g004
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developing respiratory diseases and particularly, cardio-metabolic diseases (a cluster domi-

nated by hypertension). Previous studies about associations between AP and hypertension are

inconsistent, some of which find significant associations between them but others do not [32,

42–44]. These studies suggest that hypertension may be related to AP or caused and exacer-

bated by other cardiometabolic disorders (e.g., cardiovascular diseases) attributable to PM2.5.

One unexpected finding, partly inconsistent with previous research [45], is that higher

PM2.5 exposure is associated with a reduced likelihood of developing musculoskeletal diseases

such as arthritis, or to put it another way, that those suffering with musculoskeletal multimor-

bidity are more likely to live in areas of low air pollution. A possible explanation is that the

rural-urban difference in environmental exposures (besides PM2.5 exposure)—like noise,

green space, food environments—which makes urban residents more likely to be ill from met-

abolic conditions than achy joints and cartilages [32, 46–48]. Second, rural and urban residents

may have had different occupational exposures throughout their lifetime. Our analysis shows

that there are more urban residents working at non-agricultural jobs than rural residents (65%

vs. 15%). It is likely that urban residents have led a more sedentary lifestyle (working in white-

collar occupations) compared with rural residents who have been employed in farming, forest,

hunting and fishing that are physically demanding [49]. This might predispose them to

develop musculoskeletal conditions as there is more wear and tear on the body [50, 51]. Third,

although AP exposure is higher in urban areas than in rural areas in China, there are potential

offsetting benefits of urban residence, such as better access to health care [52]. Urban residents

may be more likely to have better healthcare and get diagnosed for conditions that are not

immediately obvious (e.g., hypertension); hence, those disorders might be undiagnosed and

potentially underestimated in rural residents. Fourth, in China, rural areas consume more

solid fuels (e.g., coal and wood) as the major source of energy [53], which leads to more severe

indoor air pollution that is associated with increased odds of arthritis [54]. Furthermore, com-

pared with respiratory or cardio-metabolic diseases, musculoskeletal diseases (especially

arthritis) might be more influenced by health care than AP [55]. This should be explored in

future research by using finer measures of rural-urban residence and migration, and by explic-

itly investigating these potential mechanisms for disparities.

Our results of GCMs suggest that cumulative PM2.5 exposure is associated with higher mul-

timorbidity scores at both lower and higher levels of PM2.5 (e.g., a u-shaped association).

Although there are few studies related to the u-shape association of environmental pollution

with multimorbidity, the u-shape links between AP and health risks (e.g., hospital admissions

and mortality) are well established [56]. Most AP in Chinese cities comes from industrial pro-

duction and vehicle traffic, which is increasing in conjunction with economic development

[57]. Due to a high proportion of industrial sectors and increasing traffic intensity in China,

massive fossil fuels, especially coal, are consumed for economic development, and AP has been

more and more severe [57]. This may explain why higher AP is associated with higher risk of

chronic health diseases. Apart from the above contextual characteristics (urbanisation and eco-

nomic development), the elevated multimorbidity at lower PM2.5 exposure might be attributed

to higher levels of musculoskeletal multimorbidity that are related to the differences in the

rural-urban context (as explained above). However, due to the strong side effects of AP, higher

exposure to PM2.5 could lead to increased risk of multimorbidity once PM2.5 levels exceed the

threshold (approximately 53 μg/m3 in our findings). The annual average PM2.5 exposure in

China in 2015 was 55.2 μg/m3 [58], indicating that current PM2.5 exposure is harmful to

human health among the majority of Chinese adults. These findings suggest that correspond-

ing policies regarding AP should be implemented based on the strategies of sustainable devel-

opment and disease prevention.
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Third, the associations of multimorbidity accumulation show unexpected links with SES

(the higher SES, including higher education and urban HuKou, is associated with a higher risk

of multimorbidity). These unexpected results regarding SES can be understood from two per-

spectives. First of all, respondents with higher SES are more likely to be urban dwellers, who

are exposed to higher AP as well as engaging in less physical exercise and more harmful health

behaviours [59, 60]. Second, as mentioned above, this rural-urban differences in social fabric,

including contextual and compositional factors associated with rural-urban residence, are per-

haps fully captured by the current covariates. For example, urban residents tend to have higher

educational levels and other social advantages (e.g., income, wealth, health awareness, social

support etc.), as well as better access to health care. In addition, the measure of multimorbidity

in this study is based on self-rated diagnosis, so respondents with higher SES might report a

higher prevalence of chronic diseases [59]. The rural-urban environmental context may also

contribute to these findings. Urban residents experience more environmental stressors

(including noise and fast food), which lead to higher risks of multimorbidity [61, 62].

In the LCA results, we find that women have a lower likelihood of belonging to multimor-

bid classes, which is inconsistent with our findings in the longitudinal analyses. The reason

might be that the multimorbidity classes in the LCA are each dominated by one disease. In this

study, the respiratory cluster is dominated by lung diseases, and cardio-metabolic and muscu-

loskeletal clusters are dominated by hypertension and arthritis. These findings are in line with

previous studies that show that the prevalence of pulmonary diseases, hypertension and arthri-

tis, is higher in men than women in China [63–65]. However, when considering multiple

chronic diseases, women might have higher risks in multimorbidity because Chinese women

have less access to medical resources than men [12].

In additional analyses (Figs 3 and 4), we further explore the associations between PM2.5

exposure and multimorbidity accumulation by age and HuKou-residence. First, these associa-

tions by age show that PM2.5 is associated with a higher number of morbidities among respon-

dents aged 45–75, whereas for respondents aged over 75, PM2.5 is associated with lower risk of

multimorbidity. This might be due to mortality selection. Older people with multiple morbidi-

ties might die younger or they are less exposed to AP. Second, we see that when PM2.5 expo-

sure is lower than 80 μg/m3, respondents with urban HuKou have a higher risk of

multimorbidity accumulation than those with rural residence. As previously discussed, urban

residents have more advantageous socio-economic conditions and might report a higher prev-

alence of multimorbidity. However, when PM2.5 exposure exceeds 80 μg/m3, there is no signifi-

cant difference in the associations between PM2.5 exposure and multimorbidity among groups

with different HuKou-residence. This inconsistent finding might be due to two reasons.

Firstly, the insignificant difference might be due to small sample sizes. There are only 5% of

respondents living in cities where PM2.5 levels are over 80 μg/m3. Secondly, due to more

opportunities in major cities (e.g., more high-paying jobs, better education, and more access to

health care), many people with rural HuKou decide to live and work in urban areas (30% peo-

ple with rural HuKou live in urban areas). This might explain why there is no rural-urban dif-

ference in areas with high exposure (over 80 μg/m3).

Our study has several advantages over previous studies. First, we link the CHARLS with his-

torical PM2.5 records over a 15-year period, which enables us to measure long-term exposure

to AP for each respondent. Second, this is a first study to analyse associations between AP and

multimorbidity clusters. Nevertheless, there are several limitations in this study. First, we were

unable to obtain detailed addresses of respondents from CHARLS, and thus we use city-level

exposure to predict individual multimorbidity. In the Chinese context, a city might cover a

large area (e.g., Beijing city) and consist of inner-city areas (more urban, more polluted) and

suburb areas (more rural, less polluted). This means that we cannot accurately compare the
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variations within the same city. Future research should link AP at a smaller geographic scale.

Second, multimorbidity is measured by self-reported doctor’s diagnosis which might underes-

timate chronic diseases due to lower levels of diagnosis in some groups [66]. This might be

related to individual characteristics (e.g., gender, age) making it less likely to seek treatment or

related to reduced access to healthcare in some places. Third, our findings only indicate the

associations of PM2.5 with multimorbidity, and thus do not have a causal interpretation. We

cannot rule out that our findings might be the result of other air pollutants (e.g., indoor air pol-

lution, NO2, O3, etc), or contextual factors that are highly correlated with PM2.5 exposure, for

example, lack of green space or noise pollution. Fourth, our latent class analysis is based on 14

chronic diseases available in the CHARLS and does not therefore cover all chronic diseases.

From the perspective of the association between multimorbidity and exposure to air pollution,

the breadth of chronic diseases not included in the CHARLS survey makes it difficult to pre-

dict the direction of bias for each cluster. Thus, further analyses should collect a broader range

of diseases to reduce the bias in disease clusters. Fifth, 13% of participants (7,469 observations)

did not have complete disease-reporting data. In longitudinal analyses, we used multiple impu-

tation to complete the dataset; however, for the LCA analyses, this was not an option. It is pos-

sible that underreporting of certain types of diseases might create a bias in how disease clusters

are associated with exposure to air pollution, although it is difficult to predict that bias. Future

research with more complete disease data could help to solve this issue. Finally, we measure

multimorbidity accumulation over a relatively short period of 4 years (2011–2015).

Conclusion

This study provides evidence showing that higher cumulative exposure to PM2.5 is associated

with increased risks of all types of multimorbidity patterns, but especially cardio-metabolic mul-

timorbidity, and higher multimorbidity accumulation over 15 years. Notably, areas with low AP

exposure still have higher rates of multimorbidity, associated with musculoskeletal disorders.

Thus, our study highlights how multimorbidity clusters vary contextually and reveals that PM2.5

exposure is more detrimental to health among older adults. However, further research is needed

to unpick the nexus of contextual and compositional factors associated with the development of

chronic diseases in rural and urban settings and to detect their causal mechanisms.
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