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While there is considerable work on refactoring functional programs, so far this had not extended to
dependently-typed programs. In this paper, we begin to explore this space by looking at a range of
transformations related to indexed data and functions.

1 Introduction

Dependently-typed programming languages are becoming increasingly popular in the functional pro-
gramming community, allowing programmers to express logical properties and their proofs as part of a
program. Languages such as Agda [13], Idris [3] and Coq [2] have gained particular prominence in the
past decade. Dependent types permit the programmer to implement safe programs, by encoding safety
properties as parts of the types themselves; these properties can be encoded by permitting the types to
depend on values. However, programming dependently-typed systems is still very difficult for the av-
erage software developer, who may have had some prior training with functional languages, such as
Haskell, but lacks the background and experience in logic and type systems to make appropriate use of
the dependent types to build strong safe systems as a part of their day-to-day practice.

Refactoring [14, 9], the process of changing the structure of a program without changing its be-
haviour, has a long history, going back to the 1977 Fold/UnFold system [6], proposed by Burstall and
Darlington. Refactoring aims to provide programmers with the ability to systemically restructure their
code to better reflect its purpose, making it more amenable to change and maintainability, or simply to
make it more understandable. Developers often make these structure changes manually, but it is also
possible to use a refactoring tool that attempts to automate the transformation. Many refactoring tools
have been built for a variety of different languages, such as Java [9], C++ [15], Haskell [11, 5, 4] and
Erlang [10]. The advantage of refactoring tool support is that it not only presents the programmer with
a structured set of well-defined transformations, but it also alleviates the error-prone burden of manually
making modifications across an entire project that might contain thousands of source code modules.

To date, however, there are no refactoring tools for dependently-typed programming languages. In-
deed, even though several refactorings have been proposed and even implemented for (non-dependently-
typed) functional programs, there is no taxonomy of refactorings specifically for dependently-typed
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2 Refactorings for dependently-typed programs

programs. In this paper, we address this problem by discussing a number of new refactorings to be
implemented for the dependently-typed programming language, Pi-Forall1 developed by Weirich. We
particularly focus on refactorings for extending and maintaining data types in Pi-Forall.

A key characteristic of dependently-typed programming is to use value-dependent types to refine
types, and an example of this to help intuition is replacing lists of arbitrary length by vectors of a known
length: the additional parameter – here a natural number – is often known as an index. The examples we
discuss include:

• introducing a new index to an existing data type, with the consequence of modifying functions
over the existing data type to be able to take possible proof terms to satisfy the proof obligations
generated by indexing;

• refinement of existing indices, including refactorings to add new parameters to constructors of
data types, such as proof obligations affecting indices, unification of indices across constructor
parameters, and refining indices for particular constructor cases; and

• refactoring of the functions and expressions over the original data types.

We demonstrate our refactorings over a small language implementation, presented in Section 3. In
the longer term, our goal is to develop a new refactoring tool, RePi, that gives the programmer effective
tool-support to assist in the development of dependently-typed programming.

2 Background

2.1 Refactoring

Refactoring is the process of changing the structure of a program whilst preserving its functional se-
mantics. Refactoring can, inter alia, increase code quality, programming productivity, and code reuse.
The term refactoring was first introduced by Opdyke [14], and the concept goes at least as far back as
Burstall and Darlington’s fold/unfold system [6]. In order to facilitate refactoring, a variety of refactor-
ing tools have been developed [10, 11, 8, 16], enabling source-to-source transformations to be applied
semi-automatically under the programmer’s guidance. Refactorings provided by such tools often tar-
get value-level constructs, such as renaming, lambda lifting, and generalising a definition, but can also
provide refactorings that transform data type definitions, e.g. introducing a new constructor or grouping
similar constructors together2.

2.2 Dependent Types

Dependently-typed languages feature type systems that are enriched such that types can depend on val-
ues. A key feature of full-spectrum dependently-typed languages, e.g. Agda [13], Idris [3], and Pi-Forall
(Section 2.3), is that data declarations can have indices. Unlike parameters, e.g. for polymorphism,
indices allow the programmer to further constrain the set of values that a given type represents, e.g. re-
stricting lists (or vectors) to a given length. Given these restrictions, the use of indices can significantly
affect the structure of the overall program, e.g. fetching an element in a vector by its position does not
require the function to countenance failure (as in Haskell) when the types ensure that the position being
accessed is less than the length of the vector. Introducing, or otherwise transforming, such indices can

1https://github.com/sweirich/pi-forall
2https://www.cs.kent.ac.uk/projects/refactor-fp/catalogue/Layered.html
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therefore be seen as directly affecting the structure of the program, and can require many subsequent,
and potentially non-local, transformations.

2.3 Pi-Forall

Pi-Forall is a dependently typed programming language first developed for a series of lectures at the
Oregon Programming Languages Summer School 2013 [1], and has subsequently featured in Weirich’s
keynote talk at Compose 2015 [18]. Built as a teaching aid, it intentionally implements a simple, but
core, dependently-typed calculus. It is implemented in Haskell and comprises both syntax and a type
checker. The relatively small size of Pi-Forall (e.g. when compared with Idris or Agda), whilst simul-
taneously incorporating key features of larger dependently-typed languages, makes it an ideal target for
our prototype refactoring tool.

3 Refactorings for Indexing Data Types

This section proposes new refactorings to be implemented in RePi for Pi-Forall. Although the exam-
ples and concepts of the refactorings are themselves couched in Pi-Forall, the concepts and techniques
described here are, in fact, just as applicable to other dependently-typed languages. We focus on a prelim-
inary set of refactorings that transform data types, using the running example of a λ -calculus interpreter.
The refactorings are characteristic of changes made in initial exploration of encoding such interpreters
in dependently-typed languages. Throughout the presentation to avoid the overloading of data type and
constructor names, we manually append the refactored data type and its constructors with a version in
order to differentiate between refactored versions in the examples given. We intend the refactorings
presented to be semi-automatic, in that they may require additional parameters from the user to proceed.

3.1 Adding an Index to a Data Type

The index to be added is introduced in the first indexing position for the data type (σ ) in question.
The type, τ , of the introduced index is provided. All constructors that have an argument of type σ

are refactored to pass in a variable, ε , so that σ is applied to ε , in all positions of the constructor that
originally referenced σ . All functions over the type σ must also be transformed, so that their type
signatures represent the transformed σ ; all pattern matching over constructors of σ must be transformed;
all recursive calls must be transformed to take into account the introduced variable; all constructions of σ

in the body of the function must also be transformed to take into account the new constructor parameters.

Example As an example, consider the Pi-Forall program in Figure 1. The example in the Before
segment of the figure (Figure 1a) shows the syntax data type, AST, for a minimal λ -calculus with numbers
(NumA), variables (VarA), applications (AppA) and lambdas (LamA). An evaluator for the language is given
on Line 7, which reduces terms in the standard way. Adding an index to the data type AST is shown in
the After segment (renamed to AST2), where an index parameter, a of type List Nat is added to the data
type. This may arise in trying to index the AST with a context. All corresponding constructors of the type
are adjusted to reflect this new data type parameter. The eval function is also refactored by changing
its type to take an erasable argument vars : List Nat, and by indexing any AST arguments. Pattern
matching clauses are updated, as are recursive calls.
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1 data AST : Type where
2 NumA of (c : Nat)
3 VarA of (a : Nat)
4 AppA of (e1 : AST) (e2 : AST)
5 LamA of (a : Nat) (body : AST)
6
7 eval : Env -> AST -> Maybe Nat
8 eval = \env term . case term of
9 NumA c -> Just c

10 VarA v -> lookup v env
11 AppA e1 e2 ->
12 case e1 of
13 LamA a body ->
14 case (eval env e2) of
15 Nothing -> Nothing
16 Just e2V -> eval (Cons (Tup a e2V ) env) body
17 _ -> Nothing
18 LamA a body -> Nothing

(a) Before

1 data AST2 (a : List Nat) : Type where
2 NumA2 of (c : Nat)
3 VarA2 of (a : Nat)
4 AppA2 of (vars1 : List Nat)
5 (vars2 : List Nat)
6 (e1 : AST2 vars1)
7 (e2 : AST2 vars2)
8 LamA2 of (vars1 : List Nat)
9 (a : Nat)

10 (body : AST2 vars1)
11
12 eval : [vars : List Nat] -> Env ->
13 AST2 vars
14 -> Maybe Nat
15 eval = \

[vars] env term . case term of
16 NumA2 c -> Just c
17 VarA2 v -> lookup v env
18 AppA2 vars1 vars2 e1 e2 ->
19 case e1 of
20 LamA2 vars3 a body ->
21 case (eval [vars2] env e2) of
22 Nothing -> Nothing
23 Just e2V ->
24 eval [vars3]
25 (Cons (Tup a e2V ) env) body
26 _ -> Nothing
27 LamA2 vars1 a body -> Nothing

(b) After

Figure 1: Adding an index to the AST data type, before and after the refactoring.

3.2 Unifying Constructor Indices

This refactoring allows multiple data type parameter instances to be unified within a constructor. A
constructor is selected, and the parameter positions to be unified are identified. Any functions over the
data type must be refactored in order to correspond with the unified indices. This may not always be
possible.

Example Consider the example in Figure 2. In this example, we have refactored two constructors of
the original AST data type from Figure 1. Firstly AppA has been refactored to unify the data type indices:
the result is that vars1 is now passed in both places as a parameter to AST. The LamA constructor has

1 data AST3 ... where
2 ...
3 AppA3 of (vars1 : List Nat)
4 (e1 : AST3 vars1)
5 (e2 : AST3 vars1)
6 LamA3 of (vars3 : List Nat) (a : Nat)
7 (body : AST3 (Cons a vars3))
8
9 ...

10 AppA3 vars1 e1 e2 ->
11 case (eval3 [vars1] env e2) of
12 Nothing -> Nothing
13 Just e2V ->
14 case e1 of
15 LamA3 vars3 a body ->
16 eval [Cons a vars3]
17 (Cons (Tup a e2V ) env) body
18 _ -> Nothing
19 ...

Figure 2: After unifying indices in the AppA constructor, and constraining the index of the LamA
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1 data ASTEn (v : List Nat) : Type where
2 ...
3 VarAE of (vars : List Nat) (a : Nat)
4 (prf : Elem Nat a vars)
5 ...
6
7 convert : (vars : List Nat) -> (a : AST) -> Maybe (ASTEn vars)
8 convert = \vars a . case a of
9 NumA c -> Just (NumAE c)

10 VarA a ->
11 case (isElem a vars) of
12 Yes prf -> Just (VarAE vars a prf)
13 No t con -> Nothing
14 AppA a b ->
15 case (convert vars a) of
16 Nothing -> Nothing
17 Just a1 ->
18 case (convert vars b) of
19 Nothing -> Nothing
20 Just b1 -> Just (AppAE vars a1 b1)
21 LamA a body ->
22 case (convert (Cons a vars) body) of
23 Nothing -> Nothing
24 Just body2 -> Just (LamAE vars a body2)
25
26 eval : [vars : List Nat] -> Env -> ASTEn vars -> Maybe Nat
27 eval = \[vars] env term . case term of
28 ...
29 VarAE vars v prf -> lookup v env
30 ...

Figure 3: After adding an Elem proof constraint to the variable constructor

also been refactored so that the index parameter on Line 6 is changed to a construction clause: Cons a

vars3.

3.3 Add a Proof Obligation to a Data Constructor

The refactoring adds a new parameter to a data constructor that represents a proof obligation that needs
to be satisfied. The proof obligation will be represented as a dependent type, and the proof itself will be
supplied as a member of that type in the expressions where the constructor is used. Suppose a type τ has
a constructor α , and we wish to add a proof obligation that satisfies the type ∆γ (i.e. the type ∆ with γ

as an index), the refactoring would add a new parameter to the constructor to bind γ if it is not already
declared, and then add the proof in the final argument position.

Example As an example, consider the Pi-Forall program in Figure 3. Here, we visit the variable
(VarAE) constructor case for AST where we wish to add a membership proof obligation that the variable
a is a member of vars. This is useful to build a variant of AST that we can classify as enriched: forming
a syntax that also keeps the scoping of variables as part of its representation. We can provide such a proof
via the Elem type, which, on Line 4, we use to provide a proof obligation that a is a member of vars;
here, Nat is simply a type parameter passed to Elem. The refactoring also adds the binding for vars.
All expressions and functions over this data type also need to be transformed. In our example, we also
must refactor our eval function to pattern match on the proof; this is demonstrated on Line 29. In this
example we also employ the use of a conversion function that provides an interface between the original
AST definition from Figure 1, called convert. We will make more use of this function in Section 3.4, but
for now it provides a useful function for converting between the original syntax and its enriched version.
We so far envisage this function to be supplied by the programmer. However, it might be possible for
such a function to be semi-automatically generated, as it contains a large amount of boilerplate code that
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1 data ASTS (v : SnocList Nat) : Type where
2 NumA of (c : Nat)
3 VarA of (vars : SnocList Nat) (a : Nat)
4 (prf : SnocElem Nat a vars)
5 AppA of (vars1 : SnocList Nat)
6 (e1 : ASTS vars1)
7 (e2 : ASTS vars1)
8 LamA of (vars3 : SnocList Nat) (a : Nat)
9 (body : ASTS (SCons vars3 a))

10
11 convert : (vars : SnocList Nat)
12 -> (a : AST) -> Maybe (ASTS vars)
13 convert = \vars a . case a of
14 NumA c -> Just (NumAS c)
15 VarA a ->
16 case (isElemSnoc a vars) of
17 Yes prf -> Just (VarAS vars a prf)
18 No t con -> Nothing
19 AppA a b ->
20 case (convert vars a) of
21 Nothing -> Nothing
22 Just a1 ->
23 case (convert vars b) of
24 Nothing -> Nothing
25 Just b1 -> Just (AppAS vars a1 b1)
26 LamA a body ->
27 case (convert (SCons vars a) body) of
28 Nothing -> Nothing
29 Just body2 -> Just (LamAS vars a body2)
30
31 eval : [vars : SnocList Nat] -> Env
32 -> ASTS vars -> Maybe Nat
33 eval = \[vars] env term . case term of
34 NumAS c -> Just c
35 VarAS vars v prf -> lookup v env
36 AppAS vars1 e1 e2 ->
37 case (eval [vars1] env e2) of
38 Nothing -> Nothing
39 Just e2V ->
40 case e1 of
41 LamAS vars3 a body ->
42 eval [SCons vars3 a]
43 (Cons (Tup a e2V ) env) body
44 _ -> Nothing
45 LamAS vars1 a body -> Nothing

Figure 4: Refactoring List to SnocList

converts between structures, apart from Lines 12–14 which have to scrutinised by a decision procedure to
provide a proof obligation. This convert function is not unlike ornaments [12], providing mechanisms
to convert between different types. Generation of these functions is an avenue of future work.

3.4 Transforming Index Types

In our final transformation, we propose a refactoring that allows the transformation of an index type.
Suppose we have a data type foo with index bar : T1, the refactoring allows us to transform T1 into
a supplied type, T2. This requires all constructors to be refactored to transform the index into an index
over the new type, and all functions and expressions must correspond with the new index type. This
requires types signatures of functions over Foo T1 to be transformed into Foo T2. Cases where indices
are constructed in the original program must be refactored into constructed cases for the new type.

Example As an example, consider the Pi-Forall program in Figure 4. Here the refactoring has changed
the original List Nat index of AST into a SnocList, to match usual presentations where the newest
bound variable is at the end. Each constructor referencing the original index in the AST data type has
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been refactored to reference SnocList instead. The original construction in the LamAS case has been
replaced to use SCons from the SnocList type. The conversion function, on Line 11, is refactored to
use SnocList and most of the refactoring proceeds in an expected way. The original eval function is
also refactored to reference the new index type.

4 Related Work

Though there is a considerable body of work on refactoring typed functional programs, this has not been
carried over to dependent types. An overview of the scope of this kind of refactoring, as well as the
technologies that support it, is given by Li and Thompson [17].

The discussion of indexed types given here is related to the theory of ornaments, as developed by
McBride [12], and applied to more practical programming problems by Williams, Dagand and Rémy [20],
who characterise ornaments informally thus: “a data type ornaments another if they both share the same
recursive skeleton” which allows programs that only operate on that underlying structure to be transferred
from one to the other.

On the other hand, there is little work on refactoring of proofs. An exception is the work of Aspinall,
Dietrich, and Whiteside [19, 7]; although this can be seen through the lens of “propositions as types;
proofs as programs”, the thrust of this work is to see the refactorings from the logical point of view,
using that terminology and mindset.

5 Conclusions and Future Work

This work represents a first step towards our longer-term goal: to build a refactoring tool for dependently-
typed programs in the Pi-Forall system. We chose Pi-Forall because it contains the essential features of
dependent types, despite being small in comparison with other languages in the area, including Agda, and
indeed Idris. Building a prototype tool for Pi-Forall should expose us to the main challenges of the area,
and should also allow any insights to be transferred to building tools for these better-known systems. We
will focus on developing refactorings that facilitate the introduction and transformation of programming
constructs, which leverage the unique features offered by dependently-typed languages. The ultimate
aim of such a refactoring tool is to assist the programmer in taking advantage of the potential safety
guarantees that dependent types represent, and to enable programmers to more easily and safely effect
potentially wide-ranging changes over diverse and complex programs.
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