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MULTISCALE MODELING OF GLIOMA INVASION: FROM
RECEPTOR BINDING TO FLUX-LIMITED MACROSCOPIC PDES∗
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Abstract. We propose a novel approach to modeling cell migration in an anisotropic envi-
ronment with biochemical heterogeneity and interspecies interactions, using as a paradigm glioma
invasion in brain tissue under the influence of hypoxia-triggered angiogenesis. The multiscale pro-
cedure links single-cell and mesoscopic dynamics with population level behavior, leading on the
macroscopic scale to flux-limited glioma diffusion and multiple taxis. We verify the nonnegativity of
regular solutions (provided they exist) to the obtained macroscopic PDE-ODE system and perform
numerical simulations to illustrate the solution behavior under several scenarios.
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1. Introduction. The migration behavior of tumor cells influenced by biochemi-
cal and biophysical components of their environment is one of the hallmarks of cancer
[29]. Glioma, one of the most common types of brain cancer, exhibits a high ten-
dency to diffusive infiltration, thereby exploiting the anisotropy of brain tissue [25,
26]. Gliomas in advanced stages (commonly called glioblastoma) develop large pro-
portions of necrosis and are hypoxic, with exuberant angiogenic activity [5, 6]. The
microscopic interplay of glioma cells among each other, with the surrounding struc-
tures, and with acidity (among other chemical cues) is decisive for the development
and spread of the whole tumor. Understanding (some of) the complicated processes
involved in the evolution of a neoplasm can potentially help to improve therapy plan-
ning or even suggest new approaches. Here we propose a multiscale modeling approach
to glioma invasion which connects single-cell behavior with tumor scale dynamics.

Most of the available continuous models of glioma invasion are set exclusively on
the macroscopic scale (for a recent review also addressing such settings, see, e.g., [2]),
upon relying on simple flux balance, and many of them are versions or extensions of
a model proposed by Murray some decades ago [47]. Such reaction-diffusion systems
have been further enlarged to include drift terms describing motility adjustment to
extracellular signals; see, e.g., [11, 12, 31, 35] for models explicitly dedicated to glioma,
or the review in [37] for settings with multiple taxis in the larger context of cell
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686 DIETRICH, KOLBE, SFAKIANAKIS, AND SURULESCU

migration. Another modeling approach uses kinetic transport equations (KTEs) in the
kinetic theory of active particles (KTAP) framework [3] to characterize the dynamics
of distribution functions of densities of tumor cell sharing—supplementary to time and
position—one or several kinetic variables (velocity and so-called activity variables).
Among those models, [13, 15, 16, 19, 20, 21, 33, 38, 49, 57] refer to effects of brain
tissue anisotropy on glioma invasion. In those works, macroscopic limits are employed
to deduce systems of reaction-(myopic)diffusion-taxis PDEs. Thereby, the taxis terms
obtained in [13, 15, 16, 19, 20, 21, 33, 38] are due to a multiscale approach which
takes into account subcellular dynamics (receptor binding to soluble and insoluble
components of the extracellular space), leading in the mesoscopic KTE to transport
terms w.r.t. activity variables and turning rates depending on the same. The works
[9, 30, 34, 41, 43, 44] address motility of eukaryotes in a heterogeneous environment,
without specifically relating to glioma, but those models could also be employed to
describe several migration aspects of this particular cell type. Still in this KTAP
framework, there are alternatives leading on the macroscopic scale to various types
of taxis. On the one hand, they are offered, e.g., in [38, 43] by using turning rates
depending on the pathwise gradient of some chemotactic signal, as originally proposed
in [48] for bacteria swimming. On the other hand, [9, 15] consider cell stress and
forces depending on the chemical and physical composition of the environment and
acting on the cells, translating into transport terms w.r.t. the velocity variable in
the corresponding KTE. In fact, the macroscopic limit of the KTE in [15] led to a
novel kind of haptotaxis, according to the dynamics of the mesoscopic tissue density
depending on the local orientation of tissue fibers.

In the present note we propose an approach which, though closely related to that
in [15], involves some differences in the description of single-cell velocity dynamics
(both speed and direction are varying) and in the way we do the transition to the
macroscopic level, on which a flux-saturated reaction-diffusion-taxis equation for the
evolution of glioma cell density is obtained.

Flux limitations were considered increasingly often in connection with models
describing cell motility, in order to alleviate the infinite speed of propagation triggered
by linear diffusion and the excessive influence of the latter on the spread of cells.
They can be encountered not only in the (nonlinear) diffusion part, but also in taxis
terms, and reflect some kind of optimal transport in compliance with the respective
population of cells to one or several tactic signals. While models directly including
such terms on the macroscopic scale by a balance of fluxes were considered, e.g., in [12,
35], a careful derivation from KTEs was provided formally in [4] and rigorously in [51].
Both works were addressing cell chemotaxis, the former also obtaining flux-limiting
self-diffusion. The deduction was achieved in both cases by an appropriate choice
of the signal response function involved in the turning operator and depending on
the directional derivative of the (chemotactic) signal. Here we propose an alternative
approach which starts at the single-cell scale by characterizing velocity dynamics, in
particular having it influenced by spatial gradients of tissue, acidity, and isospecific
cell densities. On the mesolevel this translates into a transport term w.r.t. the velocity
variable, which carries such gradients. By a formal macroscopic limit we deduce for
the glioma cell density a PDE with flux-limited diffusion and chemo- and haptotaxis.

The rest of this paper is organized as follows: Section 2 provides the setup of
microscopic and mesoscopic dynamics of glioma cells and the macroscopic evolution
of the factors in the tumor microenvironment which influence the development and
spread of the neoplasm. Section 3 contains the derivation of a fully macroscopic
system featuring the interactions between glioma cell density, acidity, tissue, and
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MULTISCALE MODELING OF GLIOMA INVASION 687

vascularization. For the obtained model with flux-limited pH-taxis, self-diffusion,
and haptotaxis, the nonnegativity and upper bounds of regular enough solutions
are proved, provided such solutions exist and the initial conditions satisfy analo-
gous bounds. Numerical simulations are performed in section 4. Eventually, section
5 provides a discussion of this work’s outcome, along with some perspectives.

2. Multiscale modeling. In this model the following aspects are to be taken
into account:

• migration of cancer cells due to pH gradients, tissue gradients, and population
pressure, incorporating the effects of tissue alignment;

• binding of cancer cells to tissue fibers;
• influence of acidic environment on tumor evolution;
• vascularization.

The multiscale modeling approach follows ideas in several previous papers [13,
15, 16, 19, 20, 21, 33, 38]. New in this note is the microscopic description of velocity
dynamics, which is akin to that in [15], as it involves (signed) gradients of tactic
signals, but here the cell speed is no longer constant and the cell density distribution
influences the cell motility. The performed upscaling is related, though different from
earlier limiting procedures, and leads to a highly complex macroscopic PDE-ODE
system featuring for glioma cell density self-diffusion and multiple taxis, all of which
are flux-limited.

2.1. Microscopic scale.

2.1.1. Dynamics of the receptor binding state y. Let R denote the amount
of cell receptors which are able to bind to surrounding tissue. For simplicity we assume
R to be constant. The amount of free receptors on a cell in binding state y is then
given by R − y, with y ∈ Y := (0, R). Let k+ denote the attachment rate of a free
receptor to adjacent tissue fibers, and let k− denote the corresponding detachment
rate. Then the process of binding and unbinding in dependence of the macroscopic
tissue density Q(t, x) is described by

(R− y) +
Q

KQ

k+−−⇀↽−−
k−

y,

where the constant KQ > 0 represents the tissue carrying capacity. The corresponding
ODE obtained by mass action kinetics is

ẏ = k+(R− y)
Q

KQ
− k−y =: G(Q, y).(2.1)

2.1.2. Dynamics of cell velocity v. The migration of cancer cells is affected
by different gradients. Increasing gradients of acidity have a repelling effect, whereas
the cells are attracted by gradients of tissue density. The smaller the amount of cell
receptors bound to tissue, the more sensitive it reacts towards tissue gradients. We
further assume that cancer cells try to avoid regions of high cell densities. Under these
assumptions, the preferred direction of a cell can be modeled by a weighted sum of
the gradients −∇xh, ∇xQ, and −∇xM , where M represents the macroscopic tumor
cell density. We choose

b = (1−ρ1−ρ2)
−∇h√(

Kh

X

)2
+ |∇h|2

+ρ1
R− y
R

∇Q√(
KQ

X

)2

+ |∇Q|2
+ρ2

−∇M√(
KM

X

)2
+ |∇M |2

,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

9/
22

 to
 5

1.
9.

21
5.

16
0 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



688 DIETRICH, KOLBE, SFAKIANAKIS, AND SURULESCU

where ρ1, ρ2 ∈ (0, 1) are constants, Kh > 0 is another constant representing a thresh-
old acidity level beyond which the cancer cells cannot advance through the cell cycle
leading to mitosis [60, 61], and X > 0 is yet another constant to be selected in
correspondence to appropriate time and length scales. We will address this issue in
subsection 2.4. Typically, glioma cells migrate along tissue fibers; they preferentially
follow the white matter tracts consisting of bundles of such fibers [26, 27]. Diffusion
tensor imaging (DTI) provides a means to assess (with the aid of the water diffusion
tensor DW ) the anisotropic brain structure down to the level of voxels with edges of
1–2 mm. The joint effect of fiber tract orientations and preferred direction relating to
gradients leads to a change in velocity orientation of the form

DW b =

N∑
i=1

αiωiω
T
i b =

N∑
i=1

αiωi〈ωi, b〉,

where ωi are normed eigenvectors of DW with corresponding eigenvalues αi. The
acceleration is then given by

g(t, x) = a1
KM −M
KM

DW b, a1 > 0,

where the factor KM−M
KM

is due to limited motility in crowded regions.
A cell which is not exposed to external signal gradients can slow down or move

randomly, even in the opposite direction. We model deceleration by a term −a2v,
a2 > 0. Altogether we obtain the following equation for velocity dynamics:

∂v

∂t
= g(t, x)− a2v =: S(v, y, h,Q,M).(2.2)

We see that g(t, x) is bounded:

|g(t, x)| =
∣∣∣∣a1

KM −M
KM

DW b
∣∣∣∣ = a1

KM −M
KM

∣∣∣∣∣
N∑
i=1

αiωi〈ωi, b〉

∣∣∣∣∣ ≤ a1αmax

(the boundedness of M by its carrying capacity KM will be shown in subsection 3.5).
Starting with speed s := |v| ≤ smax := a1

a2
αmax and assuming the water diffusion

tensor DW to be constant in time, the speed smax cannot be exceeded. In the case
of a water diffusion tensor which varies in time and space, αmax and hence also smax
depend on t and x, and we have s = |v| ≤ s̄max := max

0≤t≤T, x∈R3
smax(t, x).

For the cell positions we consider as usual the ODE system dx
dt = v.

2.2. Mesoscopic scale. We consider the cell density function p : [0, T ]×RN ×
V × Y → R+, V ⊂ RN , Y ⊂ R+

0 , depending on time t, position x, velocity v, and
activity variable y. The velocity vector v = sθ contains information on the speed
s ∈ [0, smax] and direction θ ∈ SN−1 of a cell. The scalar variable y denotes the
amount of cell surface receptors bound to tissue. The macroscopic tumor cell density
is obtained by averaging over all velocities and all activity variables:

M(t, x) =

∫
Y

∫
V

p(t, x, v, y)dv dy.

Then the dynamics of p can be described by way of a kinetic transport equation of
the form

∂p

∂t
+∇x · (vp) + ∂y(G(Q, y)p) +∇v · (S(v, y, h,Q,M)p) = β(p),(2.3)
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MULTISCALE MODELING OF GLIOMA INVASION 689

where the right-hand side β(p) accounts for source terms (proliferation) to be ad-
dressed below. This is another difference compared to previous models [9, 13, 15, 16,
19, 20, 21, 30, 33, 49] in the kinetic theory of active particles (KTAP) framework [3],
where the right-hand side usually describes velocity reorientations by way of a turning
operator in integral form.

The proliferative activity of cancer cells depends on their actual binding state.
Without connection to the surrounding tissue, cells cannot perform mitosis and might
even die through anoikis [23, 40]. On the other hand, too many bounds also inhibit
cell division. We will factorize the proliferation rate into a part µ1, which is indepen-
dent of y, and a part µ2, which depends on y and for which we choose µ2(y) = y(R−y)

R2 .
Therewith, the proliferation is nearly turned off when there are too few or too many
receptors bound to tissue. The y-independent part of the proliferation rate is mod-
eled due to the assumption of glioma cells not being able to proliferate and migrate
at the same time, also known as the go-or-grow dichotomy [25, 63]. Unlike previous
models [13, 21, 33, 37, 56, 65], in which the tumor cells are split into mutually exclu-
sive migrating and proliferative subpopulations, the mentioned dichotomous behavior
is taken here into account only by relating the y-independent part of the prolifera-
tion rate to cell speed in a decreasing manner. As the adaptation of speed to the
surrounding environment happens fast compared with the time needed for prolifera-
tion, we approximate the velocity by the quasi-steady state v∗ of its dynamics. The
corresponding speed is denoted by s∗ = |v∗|. Upon also taking into account the detri-
mental influences of a highly acidic environment as well as of population pressure by
surrounding cancer cells, we propose for the y-independent part of the proliferation
rate

µ1(M,h, s∗) = µ
smax − s∗

smax

(
1− M

KM

)
Kh

Kh + h
,

with µ > 0 being a constant. After proliferation, the binding state of the daughter
cells might differ from the original state.

Assuming that the receptor binding states of daughter cells are distributed sym-
metrically around the quasi-steady state y∗ of (2.1), i.e.,

∫
Y

(y−y∗)χ(t, x, y, y′)dy′ = 0,
and assuming that they do not depend on the original activity states of the mother
cells, we are led to choosing

β(p) = µ1(M,h, s∗)

∫
Y

µ2(y′)χ(t, x, y)p(t, x, v, y′)dy′,

where χ is a probability kernel representing the likelihood of cells to receive a receptor
binding regime y after division. As such, it holds that

∫
Y
χ(t, x, y)dy = 1. We also

assume here that the activity-dependent component µ2 of the proliferation rate does
only depend on the receptor binding regime available at the initiation of mitosis.

2.3. Macroscopic scale.

2.3.1. Tissue. The acidity produced by the tumor cells by upregulated glycol-
ysis degrades the surrounding tissue. Assuming that the latter is regenerated in a
logistic way, we take

∂tQ = c1Q

(
1− Q

KQ
− M

KM

)
− c2

h

Kh + h
Q,(2.4)
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690 DIETRICH, KOLBE, SFAKIANAKIS, AND SURULESCU

with c1, c2 > 0 constants. The constant Kh > 0 has the same significance as above in
µ1. For the initial condition we choose

Q(0, x) = KQ

(
1−

√
tr(DW (x))

3dref

)
(2.5)

proposed in [20], where the constant dref is the maximum value (taken over all posi-
tions x) any of the entries of DW can reach (corresponding to the diagonal entries of
DW for no surrounding tissue).1

2.3.2. Acidity and vascularization. The dynamics of acidity concentration h
in the tumor microenvironment is modeled by

∂th = Dh∆h+ γ
M

KM +M

(
1− h

Kh

)
+

− δhe,(2.6)

where the second term on the right-hand side describes proton production by tumor
cells which is limited by the acidity threshold Kh, whereas the third term describes
uptake by blood vessels which are represented by the density e of endothelial cells. In
fact, it can be shown that all solutions h of (2.6) stay nonnegative and never exceed
Kh (if 0 ≤ h(0, x) ≤ Kh), so that the second term on the right-hand side can be taken
without the positive part of the parenthesis therein.

The tumor itself stimulates growth of blood vessels by producing certain growth
factors. The latter are increasingly expressed when the cancer cell environment be-
comes hypoxic; this is typically occurring at sites with high tumor cell density. Since
we do not want to inflate the model with yet another space-time-dependent variable
explicitly accounting for the concentration of such a growth factor, we propose instead
a chemotactic bias of endothelial cells towards regions with lower pH and choose for
their evolution

∂te = De∆e− ςe∇ ·
(
e

(
1− e

Ke

)
∇h
)

+Ge(h,M)e

(
1− e

Ke

)
.(2.7)

The growth term Ge(h,M) should be increasing w.r.t. h and M , and could be as-
signed, e.g., the form Ge(h,M) = µe

hM
KhKM+hM . The dependency on the product

hM relates to the fact that cancer cells typically express VEGF (vascular endothe-
lial growth factors, the main chemoattractant for endothelial cells) in larger amounts
when they are in a hypoxic (thus also acidic) environment. Moreover, we assume that
the tactic sensitivity is decreasing with the amount of available vasculature. Indeed,
abundant vascularization would mean that the endothelial cells have formed (a large
amount of) capillaries and are therefore organized in those structures. As a conse-
quence, they would reduce their tendency to turn towards whatever tactic signal they
might perceive, but rather remain in that structure.

2.4. Nondimensionalization. Before deducing a macroscopic model, we
nondimensionalize equations (2.3)–(2.7). To this aim, we define

t̂ =
t

τ
, x̂ =

x

X
, ŷ =

y

R
, v̂ =

v

smax
, p̂ =

Rsmax
KM

p,

Q̂ =
Q

KQ
, ĥ =

h

Kh
, ê =

e

Ke
, M̂ =

∫∫
p̂dv̂dŷ.

1Recall that DW (x) assesses the diffusivity of water molecules in a voxel with center at x, which
is highest when the tissue -if available- is perfectly aligned, i.e. when there are two zero eigenvalues
and the third, dominant eigenvalue dictates the local orientation.
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MULTISCALE MODELING OF GLIOMA INVASION 691

Note that (with ŝ = s/smax)

M̂ =

∫ 1

0

∫
SN−1

∫ 1

0

p̂ dŷdθdŝ =

∫∫
V×Y

Rsmax
KM

p · 1

Rsmax
d(v, y) =

M

KM
.

Doing the above transformations on the terms of (2.3) and multiplying the outcome
by Rτsmax

KM
we arrive at

∂t̂p̂+∇x̂ · (v̂p̂) + τk−∂ŷ

(
Ĝ(Q̂, ŷ)p̂

)
+ a2τ∇v̂ ·

(
Ŝ(v̂, ŷ, ĥ, Q̂, M̂)p̂

)
= µτβ̂(p̂),(2.8)

where we took X = smaxτ and where

Ĝ(Q̂, ŷ) = κ̂(1− ŷ)Q̂− ŷ, with κ̂ :=
k+

k−
,

Ŝ(v̂, ŷ, ĥ, Q̂, M̂) =
a1

a2smax
(1− M̂)DW b̂− v̂,

with

b̂ = (1− ρ1 − ρ2)
−∇ĥ√

1 + |∇ĥ|2
+ ρ1(1− ŷ)

∇Q̂√
1 + |∇Q̂|2

+ ρ2
−∇M̂√

1 + |∇M̂ |2
,

β̂(p̂) = (1− M̂)η̂

∫ 1

0

ŷ′(1− ŷ′)χ̂(ŷ)p̂(ŷ′)dŷ′,

η̂(ĥ, ŝ∗) =
1− ŝ∗

1 + ĥ
, ŝ∗ =

s∗

smax
, χ̂(ŷ) = Rχ(Rŷ).

Note that
∫ 1

0
χ̂(ŷ)dŷ =

∫ 1

0
Rχ(Rŷ)dŷ =

∫ 1

0
Rχ(y) 1

Rdy = 1.
Equation (2.4) is rescaled as

∂t̂Q̂ = ĉ1Q̂(1− Q̂− M̂)− ĉ2
ĥ

1 + ĥ
Q̂,(2.9)

with ĉi = ciτ (i = 1, 2) and the initial condition becoming

Q̂(0, x̂) = 1−

√
tr(DW (x̂))

3dref
.

From (2.6) we obtain

∂t̂ĥ = D̂h∆ĥ+ γ̂(1− ĥ)
M̂

1 + M̂
− δ̂ĥê,(2.10)

where D̂h = Dhτ
X2 = Dh

τs2max
, γ̂ = γτ

Kh
, δ̂ = δτKe. Finally, we obtain from (2.7)

∂t̂ê = D̂e∆ê− ς̂e∇ ·
(
ê(1− ê)∇ĥ

)
+ Ĝe(ĥ, M̂)ê(1− ê),(2.11)

where D̂e = De

τs2max
, ς̂e = ςeKh

τs2max
, Ĝe(ĥ, M̂) = µe

τĥM̂
1+ĥM̂

.

In the following we will drop the hat symbol from all variables for simplicity of
writing. We are still free to choose the scaling constant τ and set τ := 1/µ, which
means that our typical time corresponds to the (average) proliferation time of glioma
cells. Thus, we obtain the nondimensonalized system
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692 DIETRICH, KOLBE, SFAKIANAKIS, AND SURULESCU

∂tp+∇x · (vp) +
k−

µ
∂y (G(Q, y)p) +

a2

µ
∇v · (S(v, y, h,Q,M)p) = β(p),(2.12a)

∂tQ = c1Q(1−Q−M)− c2
h

1 + h
Q,(2.12b)

∂th = Dh∆h+ γ(1− h)
M

1 +M
− δhe,(2.12c)

∂te = De∆e− ςe∇ · (e(1− e)∇h) +Ge(h,M)e(1− e),(2.12d)

with

G(Q, y) = κ(1− y)Q− y,(2.12e)

S(v, y, h,Q,M) =
a1

a2smax
(1−M)DW b− v,(2.12f)

b = (1− ρ1 − ρ2)
−∇h√

1 + |∇h|2
+ ρ1(1− y)

∇Q√
1 + |∇Q|2

+ ρ2
−∇M√

1 + |∇M |2
,(2.12g)

β(p) = (1−M)η(h, s∗)

∫ 1

0

y′(1− y′)χ(y)p(y′)dy′, η(h, s∗) =
1− s∗

1 + h
,(2.12h)

Ge(h,M) = νe
hM

1 + hM
, νe :=

µe
µ
.(2.12i)

The kinetic equation (2.12a) is still characterizing mesoscopic dynamics of cancer cells,
as p depends on time, position, velocity, and the activity variable (amount of receptors
bound to tissue fibers). Thus, the attempt to solve system (2.12) numerically has to
face the high dimensionality of the phase space RN ×

(
(0, 1)× SN−1

)
× (0, 1), which is

quite inconvenient. Therefore, in the next section we aim at deducing a macroscopic
counterpart of (2.12a), to be coupled with the rest of equations in (2.12).

3. Derivation of a fully macroscopic system.

3.1. Assumptions and notation. We make the following simplifying assump-
tions, which will be needed in the process of obtaining a closed system by integrating
w.r.t. y and v:∫

V

∫
Y

(v − v∗)(y − y∗)pdydv ≈ 0,

∫
V

∫
Y

(y − y∗)2pdydv ≈ 0,∫
V

∫
Y

(vi − v∗i )(y − y∗)2pdydv ≈ 0, and ∇x ·
∫
V

∫
Y

(vi − v∗i )(v − v∗)pdydv ≈ 0,

where vi is the ith component of the vector v and y∗ = Q
Q+1/κ and v∗ = a1

a2smax
(1 −

M)DW b are the quasi-stationary states of the correspondingly nondimensionalized
microscopic dynamics (2.1) and (2.2). Thus, we assume that some of the second order
moments for the tumor cell distribution w.r.t. deviations of v and y from their steady
states are negligible, which is reasonable, since the microscopic dynamics of receptor
binding and velocity innovations happen very fast2 in comparison to the (mesoscopic)
behavior of cell groups sharing the same regimes of activity and kinetic variables.3

Cell velocities are reported here to a velocity steady state v∗, which can be seen as
a kind of average cell velocity adopted by a bunch of cells moving with compara-
ble speed in a rather common direction. Indeed, cancer cells are often moving as

2on a time scale of seconds or even less, see e.g. [39] for a reference.
3Glioma cells need hours to move just a few microns, see e.g. [53].
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MULTISCALE MODELING OF GLIOMA INVASION 693

collectives—especially in the regions where this kind of migration is favored by the
underlying tissue (and blood vessel) structure; see, e.g., [28] and references therein.
Likewise, the third order moment involving (y − y∗)2 vanishes. The (partial) second
order moment w.r.t. v is not required to nullify vi, but only its divergence.

Subsequently we use the following notation:

M(t, x) :=

∫
V

∫
Y

pdydv, My(t, x) :=

∫
V

∫
Y

ypdydv, Mv
i (t, x) :=

∫
V

∫
Y

vipdydv,

(3.1)

Mv(t, x) :=

∫
V

∫
Y

vpdydv = (Mv
i )
N
i=1 .

3.2. Boundary conditions w.r.t. kinetic variables. Due to the performed
nondimensionalization, the domains Y and V are given by

Y = (0, 1) and V = BN1 (0) = (0, 1)× SN−1.

As in earlier works [9, 19, 20, 21, 34] we assume p to be compactly supported in the
V × Y space.

Remark 3.1. Equation (2.12a) is of transport type with respect to y and v.
Hence, boundary conditions w.r.t. these variables need only be prescribed at the
inflow boundary of Y and V .

• Inflow boundary of Y : The dynamics of y is given by ẏ = G(Q, y), with
the right-hand side (2.12e). A binding state y ∈ ∂Y is part of the inflow
boundary if G(Q, y) ·n ≤ 0, where n is the outward normal on the boundary.
On ∂Y = {0, 1} it holds that

G(Q, 0) · n(0) = κQ · (−1) ≤ 0 and G(Q, 1) · n(1) = −1 < 0.

Hence, the inflow boundary of Y coincides with ∂Y . Thus, boundary condi-
tions can be prescribed on the whole of ∂Y .

• Inflow boundary of V : The dynamics of v is determined by v̇ = S(v, y, h,Q,M)
with the right-hand side (2.12f). Now let v ∈ ∂V, so |v| = 1. The correspond-
ing outward normal vector is then given by n = v, and we obtain

S(v, y, h,Q,M) · n =

〈
a1

a2smax
(1−M)DW b, v

〉
− 〈v, v〉

=
a1

a2smax
(1−M)

〈
N∑
i=1

αiωi 〈ωi, b〉 , v

〉
− |v|2

≤ a1

a2smax
(1−M)

∣∣∣∣∣
N∑
i=1

αiωi 〈ωi, b〉

∣∣∣∣∣− 1

≤ a1

a2smax
αmax |b|︸︷︷︸

<1

−1

<
a1

a2smax

a2

a1
smax − 1 = 0.

Hence, V only has an inflow boundary, and therefore boundary conditions
can be prescribed on the whole of ∂V .
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694 DIETRICH, KOLBE, SFAKIANAKIS, AND SURULESCU

3.3. Equations for the moments (3.1). Let us integrate (2.12a) w.r.t. y and
v:

∂tM+∇x ·Mv+
k−

µ

∫
V

∫
Y

∂y(G(Q, y)p)dydv+
a2

µ

∫
V

∫
Y

∇v · (S(v, y, h,Q,M)p)dydv

=

∫
V

∫
Y

β(p)dydv.

The third and fourth terms on the left-hand side are zero due to the chosen boundary
conditions. For the integral on the right-hand side we find∫

V

∫
Y

β(p)dydv =

∫
V

∫
Y

(1−M)η(h, s∗)

∫
Y

y′(1− y′)χ(y)p(y′)dy′dydv

= (1−M)η(h, s∗)

∫
V

∫
Y

y′(1− y′)p(y′)dy′dv︸ ︷︷ ︸
(A)

,

(A) =

∫
V

∫
Y

y(1− y)p(y)dydv =

∫
V

∫
Y

yp(y)dydv −
∫
V

∫
Y

y2p(y)dydv

= My −
∫
V

∫
Y

(y − y∗)2p(y)dydv︸ ︷︷ ︸
≈0

−
∫
V

∫
Y

2y∗yp(y)dydv +

∫
V

∫
Y

(y∗)2p(y)dydv

= My − 2y∗My + (y∗)2M

⇒
∫
V

∫
Y

β(p)dydv = (1−M)η(h, s∗)
(
My − 2y∗My + (y∗)2M

)
.

Hence, we obtain the macroscopic equation

∂tM +∇x ·Mv = η(h, s∗)(1−M)
(
My − 2y∗My + (y∗)2M

)
.(3.2)

To obtain a closed system we need further equations for the moments My and Mv.
To this aim, we multiply (2.12a) by y and integrate again w.r.t. y und v:

∂tM
y +∇x ·

∫
Y

∫
V

vypdydv +
k−

µ

∫
V

∫
Y

y∂y(G(Q, y)p)dydv

+
a2

µ

∫
V

∫
Y

y∇v · (S(v, y, h,Q,M)p)dydv =

∫
V

∫
Y

yβ(p)dydv.(3.3)

Again, the fourth term is zero due to the chosen boundary conditions. The third term
on the left-hand side can be computed by partial integration:

k−

µ

∫
V

∫
Y

y∂y(G(Q, y)p)dydv = −k
−

µ

∫
V

∫
Y

G(Q, y)pdydv

= −k
−

µ

∫
V

∫
Y

(κQ(1− y)− y)pdydv

=
k−

µ
(κQ+ 1)My − k−κ

µ
QM.

For the remaining terms we find

∇x ·
∫
V

∫
Y

vypdydv=∇x ·
∫
V

∫
Y

(v − v∗)(y − y∗)pdydv+∇x ·
∫
V

∫
Y

(vy∗ + v∗y)pdydv

−∇x ·
∫
V

∫
Y

y∗v∗pdydv

= ∇x · (y∗Mv + v∗My − y∗v∗M),
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MULTISCALE MODELING OF GLIOMA INVASION 695∫
V

∫
Y

yβ(p)dydv = η(h, s∗)(1−M)

∫
V

∫
Y

yχ(y)dy

∫
Y

y′(1− y′)p(y′)dy′dv

= η(h, s∗)(1−M)y∗(My − 2y∗My + (y∗)2M),

where we used the symmetry of χ around y∗:∫
Y

yχ(y)dy =

∫
Y

(y − y∗)χ(y)dy︸ ︷︷ ︸
=0

+y∗
∫
Y

χ(y)dy︸ ︷︷ ︸
=1

= y∗.

Putting the above terms together, we find from (3.3)

∂tM
y+∇x · (y∗Mv + v∗My − y∗v∗M) +

k−

µ
(κQ+ 1)My − k−κ

µ
QM

= η(h, s∗)(1−M)y∗(My − 2y∗My + (y∗)2M).

(3.4)

To find an equation for Mv, we repeat the computations from above, now multiplying
(2.12a) by vi instead of y. Integration w.r.t. v and y yields

∂tM
v
i +∇x ·

∫
V

∫
Y

vivpdydv +
a2

µ

∫
V

∫
Y

vi∇v · (S(v, y, h,Q,M)p)dydv

=

∫
V

∫
Y

viβ(p)dydv.

We compute the terms separately:

∇x ·
∫
V

∫
Y

vivpdydv = ∇x ·
∫
V

∫
Y

(vi − v∗i )(v − v∗)pdydv

+∇x ·
∫
V

∫
Y

(viv
∗ + v∗i v − v∗i v∗)pdydv

= ∇x · (v∗Mv
i + v∗iM

v − v∗i v∗M).

For simplicity of writing we will use the notation S(v, y) := S(v, y, h,Q,M), but keep
in mind the dependency on the macroscopic quantities h,Q,M . We compute∫

V

∫
Y

vi∇v · (S(v, y)p)dydv

=

∫
Y

∫
V

vi∂vi(Si(v, y)p)dv +

N∑
j=1,j 6=i

∫
V

vi∂vj (Sj(v, y)p)dv

dy

=

∫
Y

∫
V 6=i

∫
Vi

vi∂vi(Si(v, y)p)dvidṽdy

+

N∑
j=1,j 6=i

∫
Y

∫
V6=j

vi

∫
Vj

∂vj (Sj(v, y)p)dvjdṽdy

=

∫
Y

∫
V 6=i

vi Si(v, y)p|∂Vi︸ ︷︷ ︸
=0

−
∫
Vi

Si(v, y)pdvi

 dṽdy

= −
∫
Y

∫
V

Si(v, y)pdvdy = −
∫
Y

∫
V

(g̃ip+ y˜̃gip− vip)dvdy

= −g̃iM − ˜̃giM
y +Mv

i ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

9/
22

 to
 5

1.
9.

21
5.

16
0 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



696 DIETRICH, KOLBE, SFAKIANAKIS, AND SURULESCU

where we used the notation v = (vi, ṽ) ∈ Vi × V6=i = V , along with (recall (2.12f))

S(v, y) = g(y)− v = g̃ + y˜̃g − v,

g̃ :=
a1

a2smax
(1−M)DW

(
(1−ρ1−ρ2)

−∇h√
1+|∇h|2

+ρ1
∇Q√

1+|∇Q|2
+ρ2

−∇M√
1+|∇M |2

)
,

˜̃g := − a1

a2smax
ρ1(1−M)DW

∇Q√
1 + |∇Q|2

.

Eventually,∫
V

∫
Y

viβ(p)dydv

= η(h, s∗)(1−M)

∫
V

∫
Y

vi

∫
Y

χ(y)y′(1− y′)p(y′)dy′dydv

= η(h, s∗)(1−M)

∫
V

∫
Y

viy
′(1− y′)p(y′)dy′dv

= η(h, s∗)(1−M)

(∫
V

∫
Y

(vi − v∗i )(y − y2)p(y)dydv + v∗i

∫
V

∫
Y

(y − y2)p(y)dydv

)
= η(h, s∗)(1−M)

(∫
V

∫
Y

(vi − v∗i )(y − y∗)p(y)dydv + y∗
∫
V

∫
Y

(vi − v∗i )p(y)dydv

−
∫
V

∫
Y

(vi − v∗i )(y − y∗)2p(y)dydv −
∫
V

∫
Y

(vi − v∗i )(2yy∗ − (y∗)2)p(y)dydv

+

∫
V

∫
Y

v∗i yp(y)dydv −
∫
V

∫
Y

v∗i (y − y∗)2p(y)dydv

−
∫
V

∫
Y

v∗i (2yy∗ − (y∗)2)p(y)dydv

)

= η(h, s∗)(1−M)

(
y∗Mv

i − y∗v∗iM −
∫
V

∫
Y

vi(2yy
∗ − (y∗)2)p(y)dydv + v∗iM

y

)

= η(h, s∗)(1−M)

(
v∗i (2y∗ − 1)(y∗M −My) + y∗(1− y∗)Mv

i

)
,

where we used
∫
V

∫
Y
viypdydv =

∫
V

∫
Y

(viy − (vi − v∗i )(y − y∗)) pdydv, in virtue of
our assumptions in subsection 3.1.

Hence, summarizing the terms calculated above, we find

∂tM
v
i +∇x · (v∗Mv

i + v∗iM
v − v∗i v∗M) +

a2

µ

(
Mv
i − g̃iM − ˜̃giM

y
)

= η(h, s∗)(1−M)
(
v∗i (2y∗ − 1)(y∗M −My) + y∗(1− y∗)Mv

i

)(3.5)

for i = 1, 2, . . . , N . Together, (3.2), (3.4), and (3.5) form a closed macroscopic system.

3.4. Upscaling. The aim of this subsection is to derive a single macroscopic
equation for M from the system (3.2)–(3.5) by scaling methods. For this we take a
closer look at the involved parameters. In the literature, the following values can be
found:

• smax ∼ 0.8− 1 µm
min [46, 53];

• αmax ∼ 12 · 104 µm
2

min [58] (9 · 104 µm
2

min in white matter, 3% SD; 13.8 · 104 µm
2

min
in gray matter, 7% SD);
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MULTISCALE MODELING OF GLIOMA INVASION 697

• µ ∼ 10−5 − 1.5 · 10−5 1
sec = 6 · 10−4 − 9 · 10−4 1

min [62]; this is in agreement
with the values provided for τ in [8];

• k− ∼ 0.6 1
min [19, 39].

There does not seem to be reliable data on a1 (with units 1
µm·min ), which is the

parameter scaling cell acceleration, and thus we can so far estimate

a2 =
a1αmax
smax

∼ 12a1 · 104 1

min
.

Setting

ε :=
µ

a2
≈ 5

a1
10−9,

this is a very small number, no matter what (reasonable) value a1 takes. We estimate
ε ∼ O(10−3) (at most, rather smaller, in virtue of the tiny masses and stresses of
cells). On the other hand we also have

µ

k−
≈ ε,

which motivates us to set τ = 1/ε, and hence the time is scaled by ε. Our choice of
the typical length X = smaxτ suggests that we should have the same ε-scaling for the
space variable.

Applying these estimates to our equations (3.2), (3.4), (3.5) deduced above, we
get

∂tM +∇x ·Mv = η(h, s∗)(1−M)
(
My − 2y∗My + (y∗)2M

)
,(3.6)

ε∂tM
y + ε∇x · (y∗Mv + v∗My − y∗v∗M) + (κQ+ 1)My − κQM

= εη(h, s∗)(1−M)y∗(My − 2y∗My + (y∗)2M),(3.7)

ε∂tM
v
i + ε∇x · (v∗Mv

i + v∗iM
v − v∗i v∗M) +Mv

i − g̃iM − ˜̃giM
y

= εη(h, s∗)(1−M)
(
v∗i (2y∗ − 1)(y∗M −My) + y∗(1− y∗)Mv

i

)
.(3.8)

We consider Hilbert expansions for the moments

M = M0 + εM1 + · · · ,
Mv = Mv

0 + εMv
1 + · · · ,

My = My
0 + εMy

1 + · · ·

in (3.6)–(3.8) and sort by orders of ε, considering only the leading order terms.
From (3.7) we have

(κQ+ 1)My
0 = κQM0 ⇒ My

0 =
κQ

κQ+ 1
M0 = y∗M0.(3.9)

Equation (3.8) yields

Mv
0,i − g̃iM0 − ˜̃giM

y
0 = 0,

where g̃i = g̃i(M0). Using (3.9) we find

Mv
0,i = (g̃i + y∗ ˜̃gi)M0 = gi(y

∗)M0.(3.10)
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698 DIETRICH, KOLBE, SFAKIANAKIS, AND SURULESCU

Collecting leading order terms in (3.6) and using (3.9) and (3.10), we find

∂tM0 +∇x · (g(y∗)M0) = η(h, s∗)
(
y∗ − (y∗)2

)
M0(1−M0),(3.11)

where

g(y∗) =
a1

a2smax
(1−M0)DW b(y∗),

(3.12a)

b(y∗) = (1− ρ1 − ρ2)
−∇h√

1 + |∇h|2
+ ρ1(1− y∗) ∇Q√

1 + |∇Q|2
+ ρ2

−∇M0√
1 + |∇M0|2

.

(3.12b)

This is a genuinely macroscopic reaction-diffusion-taxis PDE for the leading term M0

in the Hilbert expansion of the macroscopic glioma density M ; thus it is supposed
to approximate the tumor density dynamics for ε→ 0.4 The rest of the equations in
(2.12) were already macroscopic.

For convenience of notation we will subsequently write M instead of M0. We
summarize the full macroscopic system characterizing glioma dynamics under the
influence of tissue, acidity, and vasculature:

∂tM +∇x · (g(y∗)M) = η(h, s∗)
(
y∗ − (y∗)2

)
M(1−M),(3.13a)

∂tQ = c1Q(1−Q−M)− c2
h

1 + h
Q,(3.13b)

∂th = Dh∆h+ γ(1− h)
M

1 +M
− δhe,(3.13c)

∂te = De∆e− ςe∇ · (e(1− e)∇h) +Ge(h,M)e(1− e),(3.13d)

with coefficients given in (3.12) and with η(h, s∗) and Ge(h,M) as in (2.12h) and
(2.12i), respectively. The system features self-diffusion, repellent pH-taxis, and hap-
totaxis, all of which involve limited fluxes. The diffusivity, tactic sensitivity functions,
and even the proliferation rate depend on the solution components, directly or via the
steady state y∗ of receptor binding dynamics. Thus, although macroscopic, they still
carry information from the lowermost (subcellular) level modeled here.

So far we considered the space variable x ∈ RN ; however, we should actually deal
with a bounded region in which glioma cells, normal tissue, acidity, and endothelial
cells are evolving. Let Ω ⊂ RN be such a bounded domain, with a smooth enough
boundary. Through the rescaling x→ εx, the domain on which (3.13) holds is Ω̃ = εΩ,
with outer unit normal vector ν(x) at x ∈ ∂Ω̃. We are therefore interested in the
boundary conditions on ∂Ω̃. Assuming no normal mass flux across the boundary, we
obtain the mesoscopic no-flux condition [52]∫

V

∫
Y
vp(t, x, v, y) · ν(x) dy dv = Mv(t, x) · ν(x) = 0

for all x ∈ ∂Ω̃, t > 0.
(3.14)

Following [52] we write the boundary of the phase space as

∂Ω̃× V × Y = (Γ+ ∪ Γ− ∪ Γ0)× Y,

where

4This is just a formal deduction; a rigorous study of convergence raises considerable challenges
and goes beyond the scope of this work.
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MULTISCALE MODELING OF GLIOMA INVASION 699

Γ± := {(x, v) ∈ ∂Ω̃× V : ±v · ν(x) > 0}, Γ0 := {(x, v) ∈ ∂Ω̃× V : v · ν(x) = 0}.

We assume that Γ0 has zero measure w.r.t. the Lebesgue measure on ∂Ω̃ × V and
consider the trace spaces

L2
± := L2(Γ± × Y ; |v · ν(x)|dσ(x)dvdz).

Moreover, p is supposed to be regular enough so that we can define the traces p|Γ±×Z ∈
L2
±, and that for a fixed t > 0

p|∂Ω̃×V×Y (t, x, v, y) = lim
x̃∈Ω̃
x̃→x

p(t, x̃, y) for each x ∈ ∂Ω̃.

Assuming that a regular Hilbert expansion is valid in Ω̃, we can therefore compute
the trace by simply passing to the corresponding limit in the Hilbert expansions for
p(t, x, v, y) and accordingly also for the moments, in particular for Mv. Thus, the no-
flux condition (3.14) becomes (at leading order, also recall our previous convention of
using the notation M for M0)

Mv(t, x) · ν(x) = g(y∗)M(t, x) · ν(x) = 0, x ∈ ∂Ω̃, t > 0,(3.15)

upon using (3.10). The other PDEs in (3.13) were introduced in subsection 2.3.2
directly on a macroscopic level, and thus we can simply impose no-flux conditions:

Dh∇h · ν = 0 on ∂Ω̃, t > 0,(3.16a)

De∇e · ν = 0 on ∂Ω̃, t > 0.(3.16b)

To simplify notation we will use in the following Ω instead of Ω̃.
System (3.13) with boundary conditions (3.15), (3.16) has to be supplemented

with adequate initial conditions. These can be the tumor cell distribution (or an
approximation of it) observed at diagnosis, some estimate of the macroscopic volume
fraction of the tissue (e.g., most simply fractional anisotropy, as in [16, 19] or as-
sessed from DTI data as in [13, 20, 33, 38]), some (estimated) acidity distribution at
diagnosis, and a given distribution of endothelial cell density.

3.5. Invariant sets of regular solution components. In this section we
prove boundedness and nonnegativity of the components of a sufficiently smooth so-
lution to (3.13). We first prove the following lemma.

Lemma 3.2. Let u ∈ R and let M ∈ C1,2((0, T )× Ω) be a classical solution to

Mt=∇ · (a(t, x,M,∇M)(u−M)∇M)+∇ · (b(t, x,M,∇M)(u−M))+c(t, x,M),
(3.17)

0 = (a(t, x,M,∇M)(u−M)∇M + b(t, x,M,∇M)(u−M)) · ν on ∂Ω,
(3.18)

M(0, x) = M0(x) ≤ u,
(3.19)

where a : (0, T ) × Ω × R × Rn → Rn×n, b : (0, T ) × Ω × R × Rn → Rn are con-
tinuously differentiable in all variables, and c : (0, T ) × Ω × R → R is continuous
in all variables and Lipschitz w.r.t. M on [u − ε, u + ε] for some ε > 0. Further-
more, let ξTa(t, x,M,∇M)ξ ≥ 0 and let c(t, x, u) = 0. Then M(t, x) ≤ u for all
(t, x) ∈ (0, T )× Ω.
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700 DIETRICH, KOLBE, SFAKIANAKIS, AND SURULESCU

Proof. Assume there exist (t0, x0) ∈ (0, T ) × Ω̄, such that M(t0, x0) is a (not
necessarily strict) maximum of M(t0, ·) with M(t0, x0) > u. Consider now a C1 path
z : [t̃0, t0] → Ω̄ of (local) maxima of M with M(t̃0, z(t̃0)) < u and z(t0) = x0. As
M ∈ C1,2((0, T )× Ω), such a path indeed exists. Define Z(t) := M(t, z(t)). Now we
distinguish three cases:

(i) The point where M intersects the value u for the first time lies in the interior
of Ω. In this case, (t0, x0) can be chosen such that x0 ∈ Ω. Then the whole
path z(t) can be chosen to lie in the interior of Ω (after possibly shortening the
time interval [t̃0, t0]). Then, as M has a maximum in z(t) for each t ∈ [t̃0, t0],
it holds that ∇M(t, z(t)) = 0. Now we find

dZ

dt
=

∂M

∂z︸︷︷︸
=∇M=0

dz

dt
+
∂M

∂t
=
∂M

∂t

= ∇ ·
(

(u−M)a(t, z(t),M,∇M)∇M
)

+∇ ·
(

(u−M)b(t, z(t),M,∇M)
)

+ c(t, z(t),M)

= −∇M ·
(
a(t, z(t),M,∇M)∇M + b(t, z(t),M,∇M)

)
+ (u−M)∇ ·

(
a(t, z(t),M,∇M)∇M + b(t, z(t),M,∇M)

)
+ c(t, z(t),M)

= (u−M)∇ ·
(
a(t, z(t),M,∇M)∇M + b(t, z(t),M,∇M)

)
+ c(t, z(t),M)

= (u− Z)∇ ·
(
a(t, z(t),M,∇M)∇M + b(t, z(t),M,∇M)

)
+ c(t, z(t), Z).

(ii) The path lies completely on ∂Ω (after possibly shortening the time interval
[t̃0, t0]). By the boundary condition it holds that ((u−M)a(t, x,M,∇M)∇M+
(u−M)b(t, x,M,∇M))·ν = 0. Since M(t, z(t)) is a maximum on ∂Ω, it holds
that ∇M · ν⊥ = 0 for all ν⊥⊥ν (otherwise, there would be an increase on ∂Ω
and M(t, z(t)) could not be a maximum). Hence, we find(

(u−M)a(t, x,M,∇M)∇M + (u−M)b(t, x,M,∇M)
)
· ∇M = 0.(3.20)

Furthermore, dz
dt⊥ν, since z(t) lies by assumption completely on ∂Ω. Hence,

∇M · dzdt = 0 and we find

dZ

dt
=
∂M

∂z

dz

dt
+
∂M

∂t
=
∂M

∂t
.

Now we have to distinguish again between two cases:

(i.a) M(t1, z(t1)) = u for some t1 ∈ (t̃0, t0) and M(t, z(t)) 6= u in a neighborhood
of t1: For M(t, z(t)) 6= u, we divide (3.20) by u−M to obtain(

a(t, z(t),M,∇M)∇M + b(t, z(t),M,∇M)
)
· ∇M = 0.

Since it holds that
(
a(t, z(t),M,∇M)∇M + b(t, z(t),M,∇M)

)
· ∇M = 0

everywhere except in t1, by the continuity of all involved functions this also
holds true in t1.

(ii.b) M(t, z(t)) = u on some closed time interval: Then on the boundary points
t̃0 and t0 we can use the same argumentation as in the case above to obtain
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MULTISCALE MODELING OF GLIOMA INVASION 701(
a(t, z(t),M,∇M)∇M + b(t, z(t),M,∇M)

)
·∇M = 0. In the interior of the

interval, M(t, z(t)) = Z(t) is constantly u, and hence it holds that dZ
dt = 0.

Then, using M = u, we find

0 =
dZ

dt
=
∂M

∂t

= ∇ ·
(

(u−M)a(t, z(t),M,∇M)∇M
)

+∇ ·
(

(u−M)b(t, z(t),M,∇M)
)

+ c(t, z(t),M)

= −∇M ·
(
a(t, z(t),M,∇M)∇M + b(t, z(t),M,∇M)

)
.

+ (u−M)∇ ·
(
a(t, z(t),M,∇M)∇M + b(t, z(t),M,∇M)

)
+ c(t, z(t),M)

= −∇M ·
(
a(t, z(t),M,∇M)∇M + b(t, z(t),M,∇M)

)
.

Hence, in both cases we find∇M ·
(
a(t, z(t),M,∇M)∇M+b(t, z(t),M,∇M)

)
=

0 and conclude that

dZ

dt
=
∂M

∂t

= ∇ ·
(

(u−M)a(t, z(t),M,∇M)∇M
)

+∇ ·
(

(u−M)b(t, z(t),M,∇M)
)

+ c(t, z(t),M)

= −∇M ·
(
a(t, z(t),M,∇M)∇M + b(t, z(t),M,∇M)

)
+ (u−M)∇ ·

(
a(t, z(t),M,∇M)∇M + b(t, z(t),M,∇M)

)
+ c(t, z(t),M)

= (u−M)∇ ·
(
a(t, z(t),M,∇M)∇M + b(t, z(t),M,∇M)

)
+ c(t, z(t),M)

= (u− Z)∇ ·
(
a(t, z(t),M,∇M)∇M + b(t, z(t),M,∇M)

)
+ c(t, z(t), Z).

(iii) The path begins in the interior of Ω and intersects the value u on ∂Ω: In this
case, the result

dZ

dt
= (u− Z)∇ · (a(t, z(t),M,∇M)∇M + b(t, z(t),M,∇M)) + c(t, z(t), Z)

is obtained by combination of the cases above.
We now interpret ∇·

(
a(t, z(t),M,∇M)∇M+b(t, z(t),M,∇M)

)
on the path z(t)

as a function of time rather than a function of M , so ∇ ·
(
a(t, z(t),M,∇M)∇M +

b(t, z(t),M,∇M)
)

=: k(t). Then we obtain an ODE

·
Z= k(t)(u− Z) + c(t, z(t), Z).

As the right-hand side is Lipschitz continuous w.r.t. Z on the interval [u − ε, u + ε],
there exists a unique solution to any initial value Z(t̃0) in [u − ε, u + ε]. For initial
value u, Z ≡ u is the unique solution. For initial data in [u − ε, u), this solution
cannot be intersected. Hence, Z(t) ≤ u for all t ∈ [t̃0, t0], which is a contradiction to
Z(t0) > u. This proves M(t, x) ≤ u for all (t, x) ∈ (0, T )× Ω.

Remark 3.3. Analogously, for (u −M) replaced by (M − u) in equation (3.17)
and initial data M0 > u, one can prove M(t, x) ≥ u by defining a path of local minima
instead of maxima.
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702 DIETRICH, KOLBE, SFAKIANAKIS, AND SURULESCU

Now we are in a position to prove the following result.

Lemma 3.4. Let (M,Q, h, e) ∈
(
C1,2((0, T )× Ω)

)4
, T > 0, be a classical so-

lution to system (3.13) with boundary conditions (3.15) and (3.16) and initial data
M0(x), Q0(x), h0(x), e0(x) ∈ [0, 1] for all x ∈ Ω. Then it holds that 0 ≤ M(t, x),
Q(t, x), h(t, x), e(t, x) ≤ 1 for all (t, x) ∈ (0, T )× Ω.

Proof. Applying Lemma 3.2 and Remark 3.3 to (3.13a), we obtain 0 ≤ M ≤ 1.
By application of a standard comparison principle for PDEs5 to (3.13c), we get 0 ≤
h ≤ 1.

Bringing (3.13d) into nondivergence form we can apply the same theorem to
obtain 0 ≤ e ≤ 1.

Finally, consider (3.13b). Obviously, 0 is a subsolution, so 0 ≤ Q. As we already
showed nonnegativity of h, 1 is a supersolution of (3.13b) and we conclude that
Q ≤ 1.

4. Numerical simulations. With a number of numerical experiments, we study
the model (3.13) in its derived form and with slight modifications. To this end we
employ a second order finite volume scheme on an equidistant mesh over an either
rectangular domain in two dimensions (200×200 control volumes) or a cuboid domain
in three dimensions (128 × 128 × 128 control volumes) with no-flux conditions at
the boundaries. The scheme employs central upwind fluxes obtained by discretizing
(3.12a) at the center of the mesh cell interfaces through central differences, averaging,
and interpolation of the brain data. To prevent oscillatory behavior of solutions
we use the minimized-central slope limiter [59]. For the time stepping we use the
implicit-explicit midpoint scheme from [50], which lets us treat the stiff diffusion of the
acidity and of the endothelial cells implicitly. This strategy together with the limited
fluxes in the model allows for large time increments in the computations. For more
details on the method we refer the reader to [37, 36, 54], where the same numerical
approach was applied to similar 2D advection-reaction-diffusion problems, and to [55,
22], where it was applied in a 2D and 3D hybrid atomistic-macroscopic cancer invasion
model. The algorithms were implemented in MATLAB [45] and the visualizations
were produced by MATLAB [45] and PARAVIEW [1]. In all experiments we have
employed a preprocessed DTI data set from [14] to derive the speed smax and the
initial tissue concentration Q0; see [32] for details on the processing.

The first numerical experiments that we consider (Experiments 1–4) are con-
ducted over the spatial domain Ω1 = [0, 1] × [0, 1.2155] and over the time interval
t ∈ [0, 25], which is roughly comparable to a period of three months. The initial
conditions are accordingly given, for every (x, y) ∈ Ω1, through

M0(x, y) = 0.25e−
1
ε ((x−0.3)2+(y−0.65)2),

(4.1a)

e0(x, y) = e−
1
ε ((x−0.4)2+(y−0.8)2) + e−

1
ε ((x−0.4)2+(y−0.7)2) + e−

1
ε ((x−0.4)2+(y−0.6)2),

(4.1b)

h0(x, y) = 0.03M0(x, y) + 10−2.8,

(4.1c)

where ε = 8 × 10−4. The initial condition Q0 for the spatial distribution of brain
tissue density is given in (2.5). Figure 1 shows the initial amounts (volume fractions)

5[17], Theorem 13.5.
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MULTISCALE MODELING OF GLIOMA INVASION 703

glioma cells (M)

0

0.1

0.2

tissue (Q)

0.8

0.9

1

acidity (pH)

6.6

6.8

7

endothelial cells (e)

0

0.5

fractional anisotropy

0

0.5

Fig. 1. Initial amounts of the four solution components (M,Q, h, e)T of the system (3.13) and
fractional anisotropy on the spatial domain [0, 1] × [0, 1.2155]. The forms of the initial amounts are
given in (4.4).

of the four unknowns (M,Q, h, e)
T

of the system (3.13). In this and all subsequent
plots we convert the proton concentration h into pH-values by pH = − log10(h) and
represent acidity by way of those values.

Experiment 1—dominant haptotaxis. In this first experiment we investigate
the dynamics exhibited by the model (3.13) when augmented with the initial condi-
tions (4.4) and using the parameter set given in Table 1. A particular feature of this
experiment is that glioma cell migration is dominated by haptotaxis rather than by
random movement or negative acidotaxis, according to the values of the respective
weight parameters ρ1 = 0.75, ρ2 = 0.015, and 1 − ρ1 − ρ2 = 0.235 in Table 1 along
with their role in (3.12b). The parameter ranges in this experiment were inspired
from various previous works [18, 13, 37, 8]; the actual parameter values were derived
following numerical experimentation with the aim of highlighting qualitative features
of the model solutions. Better justified parameter values can be considered/deduced
after employing specialized parameter estimation methods and upon comparing our
model predictions with experimental and/or measurement data.

The time evolution of numerically computed amounts of glioma cells M , acidity
pH, and endothelial cells e is exhibited in Figure 2 with the corresponding initial
conditions shown in Figure 1. The glioma cells (of density M) respond to gradients of
the (anisotropic) brain tissue (of density Q), while at the same time the tumor acts as
a source of protons (of concentration h). The acid, in turn, diffuses in the environment
and serves as chemoattractant for the endothelial cells (of density e). This justifies
the more pronounced vascularization, directed towards lower pH levels. The acid (by
way of hypoxia) is also responsible for the degradation of brain tissue; this, along
with the physiological regeneration of the extracellular matrix, is visualized in the
first panel of Figure 6 through a (relative) comparison between the tissue densities
Q0 and QT at the initial and final computation times, respectively.

Experiment 2—dominant acidotaxis. In this experiment we consider the
same modeling setting as in Experiment 1 augmented with the same initial conditions
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704 DIETRICH, KOLBE, SFAKIANAKIS, AND SURULESCU

Table 1
Dimensionless parameters employed in Experiment 1 (dominant haptotaxis) and in Experiment

5 (dominant haptotaxis in 3D). The parameter values were chosen based on previous experience and
after extensive numerical experimentation with the aim of highlighting qualitative properties of the
various model variants under discussion.

Symbol Description Value

Dh acid diffusion 10−4

De endothelial cell diffusion 10−6

c1 tissue proliferation 3 × 10−4

γ glioma production of acid 10−2

νe endothelial cell proliferation 5 × 10−3

c2 acid degradation of tissue 5 × 10−3

δ acid uptake by endothelial cells 8 × 10−4

ςe acidotaxis of endothelial cells 1.5 × 10−1

ρ1 weight of haptotaxis in glioma migration 7.5 × 10−1

ρ2 weight of diffusion in glioma migration 1.5 × 10−2

k tissue carrying capacity 10−2

a1/a2 relation between glioma acceleration and deceleration 1

g
li
om

a
ce
ll
s
(M

) t “ 6.25 t “ 12.5 t “ 18.75 t “ 25

0

2

¨10´2

a
ci
d
it
y
(p
H
)

6.6

6.8

7

en
d
ot
h
el
ia
l
ce
ll
s
(e
)

0

0.5

Fig. 2. Simulation results for Experiment 1 (dominant haptotaxis). Time evolution (vertical
columns) of glioma cell density M , acidity pH, and endothelial cell density e over the domain
[0, 1] × [0, 1.2155]. The glioma cells respond via haptotaxis to the anisotropic brain tissue. The
acid, produced by the tumor cells, diffuses in the environment and serves as chemoattractant for the
endothelial cells, and as degradation agent for the brain tissue; cf. Figure 6. The vascularization is
more pronounced and directed towards lower pH levels (hence towards the main tumor mass).

(4.4), and the same parameter set given in Table 1, except for the parameters ρ1,
ρ2 weighting the motility behavior of glioma cells. In particular, we consider in this
experiment a glioma migration regime dominated by acidotaxis (meaning that the
tumor cells are repelled by low pH) and accordingly choose ρ1 = 0.4, ρ2 = 0.015, and
1− ρ1 − ρ2 = 0.585.
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MULTISCALE MODELING OF GLIOMA INVASION 705
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Fig. 3. Simulation results of Experiment 2 (dominant acidotaxis). In the same setting as in
Experiment 1, the weight parameters ρ1 and ρ2 controlling the migration of glioma cells have been
set in favor of the repellent acidotaxis. The main effect, when compared to Figure 2, is the drop of
glioma density at the location of the initial tumor, and the wider spread away from it.

The time evolution of (M,pH, e) is shown in Figure 3, which, similarly to Experi-
ment 1, exhibits the spread of glioma in the anisotropic brain tissue and a pronounced
vascularization towards the lower pH region. We also see in Figure 6 that the acid-
induced tissue degradation is qualitatively similar in the two experiments, although
quantitatively slightly lower in this experiment.

In contrast to Experiment 1 and the corresponding simulations in Figure 2, in
the current experiment the glioma cell density drops significantly at the initial tumor
location, while at the same time spreads further away from it. Since the diffusion-
related weight parameter ρ2 is the same between the two experiments, as are the
rest of the parameters and modeling assumptions, this suggests that the observed
difference in glioma invasion is due to the repellent pH-taxis and its domination over
haptotaxis.

Experiment 3—no flux limitation. In this experiment we modify model
(3.13) by removing the flux limitation; this is obtained by replacing (3.13b) with

b(y∗) = −(1− ρ1 − ρ2)∇h+ ρ1(1− y∗)∇Q− ρ2∇M.(4.2)

The rest of the model components, initial conditions, and parameters are as set in Ex-
periment 1 and Table 1. The corresponding simulation results are shown in Figure 4.
When compared with Experiment 1 and Figure 2, they reveal a qualitatively similar
evolution of the acidity and a similar vascularization pattern. The same holds true
when comparing the degradation of the brain tissue between the two experiments;
this is seen in Figure 6. The tumor, however, exhibits in the current experiment a
clearly higher spatial fragmentation, with more fractal margins (which are character-
istic for glioblastoma; see, e.g., [24]) and a more confined invasion. This is actually the
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Fig. 4. Simulation results for Experiment 3 (no flux limitation). A major modification of model
(3.13) and Experiment 1 by replacing the saturated flux (3.12b) with the “classical” version 4.2. The
effect is a much higher level of spatial tumor fragmentation (in particular exhibiting more irregular
margins) and less spread than in Figure 2.

expected effect of flux-saturated motility which eludes, among others, the nonphysical
infinite speed of propagation typically connected with linear diffusion.

Experiment 4—unilateral interspecies attraction. In this experiment we
replace the indirect chemotaxis of endothelial cells towards acidity produced by the
tumor with a direct attraction of the endothelial cells towards the neoplasm, i.e., let
them follow gradients of glioma density.6 Concretely, we replace (3.13d) with

∂te = De∆e− ςe∇ · (e(1− e)∇M) +Ge(h,M)e(1− e).(4.3)

This model adaptation has a substantial and direct impact on the endothelial cell dis-
tribution due to the expected much lower diffusivity of glioma cells when compared
to that of acidity. To account for this fact, to produce simulations that can be qual-
itatively compared with the previous experiments, among others, to ensure a similar
cell velocity, and to do as few changes in the parameter set as possible, we enhance
the diffusion and decrease the tactic sensitivity of the endothelial cells. Accordingly,
we adjust the corresponding parameters to De = 2 × 10−5 and ςe = 3 × 10−2. The
other parameters and initial conditions are the same as in Experiment 1 and Table 1.
The corresponding simulation results are shown in Figures 5 and 6 and exhibit glioma
growth, acidity evolution, and brain tissue degradation that are qualitatively similar
to Experiment 1 and Figure 2, with a tumor core inferring less cell depletion and the
tumor mass showing a more homogeneous structure than that in Figure 3 and lower
cell densities than that in Figure 2. On the other hand, the vascularization is in this

6In [37] we proposed another model for tumor invasion with multiple taxis and unilateral inter-
species repellence, considering the go-or-grow dichotomy (also encountered in glioma development)
and letting the migrating cells move away from the proliferating phenotype.
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Fig. 5. Simulation results for Experiment 4 (unilateral interspecies attraction). A major
modification of model (3.13) and Experiment 1 by letting the endothelial cells follow gradients of
glioma density instead of acidity gradients. Hence, (3.13d) was replaced with (4.3). The main effect
is on the vascularization, which is less directed and less pronounced than in Figure 2.

|Q
0
´
Q

T
|{
Q

0

Experiment 1 Experiment 2 Experiment 3 Experiment 4

0

0.5

1
¨10´3

Fig. 6. Relative difference between the initial (Q0) and the final tissue density (QT ) for all
experiments studied here. Both the effects of tissue regeneration and degradation are visible. The
tumor-related tissue degradation, in particular, is evident by the shadow cast on the acidic region
(due to hypoxia).

case less directed and less pronounced than in Experiment 1. Instead, the endothelial
cells seem to leave their original sites and migrate in a rather diffusion-dominated
way, occasionally forming smaller aggregates of high density. Still, these comparative
results should be viewed under the light of the significant model adaptation from
(3.13d) to (4.3).

Experiment 5—dominant haptotaxis in 3D. The final numerical experiment
considers the full brain in 3D and is conducted over the cuboid domain Ω2 = [0, 1]×
[0, 1.2155]× [0, 1.069] and the time interval t ∈ [0, 150]. The initial conditions for the
glioma cells and the acidity are given, for every (x, y, z) ∈ Ω2, through

M0(x, y, z) = 0.1e−
1
ε ((x−0.63)2+(y−0.608)2+(z−0.631)2),(4.4a)

h0(x, y) = 0.03M0(x, y) + 10−2.8,(4.4b)
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708 DIETRICH, KOLBE, SFAKIANAKIS, AND SURULESCU

where ε = 5 × 10−5. The initial condition Q0 for the spatial distribution of brain
tissue density is given in (2.5). To account for the initial density of endothelial cells
(which is not explicitly available in a typical DTI brain data set) we have used—
for simple illustrative purposes—the random variables e0|C = (10−2 + uC)Q0|C on
each numerical control volume C ⊂ Ω2, where uC ∼ U(0, 10−3) denotes uniformly
independent and identically distributed random variables for all control volumes C.
The parameters employed here are the same as in Experiment 1 and can be found
in Table 1. The simulation results are presented in Figure 7. To allow for a better
inspection of the glioma M we have visualized it through the isosurface corresponding
to a density of 10−5. The panel (a) shows the time evolution of the glioma M and
the brain tissue Q, from which a part has been extracted for the illustration. A closer
inspection in panels (d) and (e) reveals the nonuniform growth and the dynamical
adaptation of the glioma M as seen also in the 2D Experiments 1–4. Protrusion of
the glioma to the surrounding tissue is evident. Also, the pH level in the neighbor-
hood of the glioma is decreased similarly to the 2D experiments as shown in panel
(c). Contrary to the previous experiments, the initial density e of endothelial cells
is random and accounts for a full 3D vasculature of the brain in this experiment.
Panel (b) shows the evolution of their density and clearly exhibits the effects of their
diffusion, mostly seen at the periphery of the tissue Q, as well as of their chemotaxis
towards the lower pH levels; the latter effect is mostly visible in the vicinity of the
glioma M .

5. Discussion. The bottom-up modeling approach proposed here is inspired
by [15] and also related to the simplified earlier setting in [9], but differs from those
formulations by the way in which the upscaling was performed and, essentially, by the
form of the obtained macroscopic PDE for glioma density evolution, which features
flux-limited self-diffusion, haptotaxis, and repellent pH-taxis. Moreover, the constant
glioma cell speed assumption made in [9, 15] was relaxed, which influenced not only the
scaling, but also the macroscopic motility and source terms. As mentioned in section
1, our approach leading to flux-saturated motility terms is different from that in [4,
51], since those terms originate here in the single-cell dynamics provided in (2.2) and
the corresponding transport term w.r.t. cell velocity in the KTE (2.3) rather than the
cell turning operator. The method suggests that including (via Newton’s second law)
appropriate mechanical and chemical influences exerted on the cells can lead on the
macroscale to yet other drift and/or diffusion terms, possibly with flux limitation. The
deduction performed here is merely formal; a rigorous one, which follows a different
limiting procedure and another form of flux saturation on the cell scale, is addressed
in [64], where there is (tactic) flux limitation only in the macroscopic PDE for the
first order correction.

The flux-saturated diffusion obtained in (3.13) eludes the nonphysical infinite
speed of propagation and involves a nonlinearity accounting at least partially for
intraspecific cell interactions. In contrast, the model with flux-limited chemo- and
haptotaxis formulated in [35] directly on the macroscale considers intrapopulation
cell-cell interactions by way of an adhesion operator involving nonlocality w.r.t. space.
In [18] it has been recently proved that terms characterizing cell-cell and cell-tissue
interactions described as spatial nonlocalities actually lead (in the rigorous limit of
shrinking radius of the corresponding region) to taxis and self-diffusion. Other ways
to model mutual cell interactions use avoidance of crowding in (some of) the motility
and/or source terms, in a local or nonlocal manner; see [10] for a review concerning
settings with various types of nonlocalities. Lately, more attention has been attached
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MULTISCALE MODELING OF GLIOMA INVASION 709

Fig 7. Simulation results for Experiment 5 (dominant haptotaxis in 3D). (a) Time evolution
of the brain tissue Q along with the 10−5 isosurface of the glioma M . The tissue regeneration and
degradation processes are in action, although their effects are not very visible. The colorbar on the
right corresponds to the tissue Q. The tumor grows significantly in size and attains the particu-
lar geometric conformation seen in (d). (b) Time evolution of the initially random vasculature e
along with the 10−5 isosurface of the glioma M . The most prominent effects are those of diffusion
and chemotaxis towards higher pH levels. (c) The time evolution of the pH, along with the 10−5

isosurface of glioma M , shows the way the acid h spreads through the tissue. (d) Close-up of the
10−5 isosurface of the tumor at three different time instances. (e) A plane-cut through the tumor
at t = 150 reveals the regions and distribution of higher tumor densities.

to obtaining nonlocal kinetic models for cell migration characteristics depending on
cell density [42], some obtained, too, by macroscopic limits [43, 44]. In the present
work the intrapopulation exchange is modeled on the one hand via logistic-type lim-
itation of growth and on the other hand by accounting for changes in cell velocity
orientation which are due to population pressure and motility limited by crowding.
As such (besides flux saturations), our approach is yet different from [43, 44, 42],
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710 DIETRICH, KOLBE, SFAKIANAKIS, AND SURULESCU

who do not account for single-cell velocity dynamics, but rather describe velocity and
speed innovations by way of adequately chosen turning kernels and turning rates.

Systems with flux-limited diffusion and drift raise several challenges. Among
others, the different structure of diffusion terms does not allow one to directly apply
the usual theoretical tools for handling parabolic PDEs, and the solutions have poor
regularity, possibly developing transient or even perpetual singularities; we refer the
reader to [7] for a review of (single) PDE models featuring flux limitations and their
mathematical issues. Results about qualitative analysis of systems involving PDEs
of reaction-diffusion-taxis type with one or several flux-saturated motility terms are
unknown. Even systems with multiple taxis of a more “usual” kind (see [37] for a
very recent review) exhibit manifold challenges w.r.t. well-posedness and qualitative
properties of their solutions, and we are not aware of any results concerning models
of the type obtained in (3.13), even if none of the terms in (3.12b) would infer flux
limitation.
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