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Abstract. The purpose of this article is to introduce and motivate the
notion of Minkowski (or box) dimension for measures. The definition is
simple and fills a gap in the existing literature on the dimension theory
of measures. As the terminology suggests, we show that it can be used
to characterise the Minkowski dimension of a compact metric space. We
also study its relationship with other concepts in dimension theory.

1. Introduction

It is well-known that the Hausdorff and packing dimensions of a compact
metric space X can be approximated arbitrary well from below by the
Hausdorff and packing dimensions of measures supported on X; see e.g. [9,
§10]. We prove an analogous result for the Minkowski (or box) dimension.
This first involves introducing upper and lower Minkowski dimensions for
measures, and then proving that the Minkowski dimensions of X can be
approximated arbitrary well from above, and indeed are attained by, the
Minkowski dimensions of measures fully supported on X. As working with
measures is a rather standard approach in determining the Hausdorff or
packing dimension of sets, we expect our new notion to become a useful
concept in fractal geometry. Indeed, since the first version of this paper was
available online it has already found use in [3] where the authors studied the
convergence rate of the chaos game. Perhaps most interestingly, it is shown
in [1] that the Minkowski dimension characterizes the existence of Sobolev
embeddings. Moreover, our conclusions on Minkowski dimension led us to
consider the Frostman dimension and the Assouad spectrum of measures
in the last two sections. This has also already found use in [25] and [15],
respectively.

The upper Minkowski dimension of µ is defined to be the infimum of all
s > 0 for which there is a constant c > 0 such that µ(B(x, r)) > crs for
all x ∈ X and 0 < r < 1. We show that the upper Minkowski dimension
of a compact set X is the minimum of the upper Minkowski dimensions
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of measures supported on X. Recall that the Hausdorff dimension of an
analytic set X is, by Frostman’s lemma, the supremum of all s > 0 for which
there exists a measure µ supported on X satisfying µ(B(x, r)) 6 Crs for
all x ∈ X and r > 0 for another constant C > 0 independent of x and
r. Therefore, interestingly, the natural pair with symmetric properties is
the Hausdorff dimension and upper Minkowski dimension (of sets). This
is perhaps surprising because it is more often the Hausdorff and packing
dimensions which behave as a pair.

In order to motivate our new concept and place it in context, we study
further properties of the Minkowski dimensions of measures. So as to
present a complete picture, we fill in some gaps in the literature concerning
notions related to the Minkowski dimension including the packing dimension,
Assouad spectrum and Frostman dimension. We show that if 0 < r < 1 in
the definition of Minkowski dimension is not assumed to be uniform, then
the analogous definition leads to packing dimension. We also show that
the upper Minkowski dimension of a measure is attained as the limiting
value of the Assouad spectrum of the measure as the parameter θ tends to
zero. This is analogous to the situation for sets and further justifies the use
of the term Minkowski dimension. The Assouad spectrum is a continuum
of dimensions depending on a parameter 0 < θ < 1 and is related to the
more familiar Assouad dimension. Finally, we observe that, interestingly,
the limiting behaviour of the lower spectrum is different from the Assouad
spectrum.

2. Minkowski dimension

Let (X, d) be a metric space. Since we use only one metric d on X, we
simply denote (X, d) by X. A closed ball centred at x ∈ X with radius r > 0
is denoted by B(x, r). We say that X is doubling if there is N ∈ N such
that any closed ball of radius r > 0 can be covered by N balls of radius r/2.
Furthermore, we call any countable collection B of pairwise disjoint closed
balls a packing. It is called an r-packing for r > 0 if all of the balls in B
have radius r. An r-packing B is termed maximal if for every x ∈ X there is
B ∈ B so that B(x, r) ∩B 6= ∅. Note that if B is a maximal r-packing, then
2B = {2B : B ∈ B} covers X. Let X be compact and write

Nr(X) = max{#B : B is an r-packing} <∞.
The upper and lower Minkowski dimensions of X are

dimM(X) = lim sup
r↓0

logNr(X)

− log r
,

dimM(X) = lim inf
r↓0

logNr(X)

− log r
,

respectively. If dimM(X) = dimM(X), then the common value, the Minkowski
dimension of X, is denoted by dimM(X). Note that equivalent definitions of
Minkowski dimensions are given using variants on the definition of Nr, see
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e.g. [10, §2.1]. Also, the Minkowski dimension is often referred to as the box
or box-counting dimension.

The above definitions, and also the definitions of other set dimensions in
the coming sections, extend naturally to all subsets of X by considering the
restriction metric. Let µ be a fully supported finite Borel measure on X. We
define the upper and lower Minkowski dimensions of µ to be

dimM(µ) = inf{s > 0 : there exists a constant c > 0 such that

µ(B(x, r)) > crs for all x ∈ X and 0 < r < 1}
(2.1)

and

dimM(µ) = inf{s > 0 : there exist a constant c > 0 and a sequence (rn)n∈N

of positive real numbers such that lim
n→∞

rn = 0 and

µ(B(x, rn)) > crsn for all x ∈ X and n ∈ N},

respectively. In Theorem 2.1, we will connect these to the Minkowski
dimensions of the support X. This connection appears to be rather delicate
as not having a uniform 0 < r < 1 in (2.1) leads to packing dimension; see
Theorem 3.5. It is easy to see that

dimM(µ) = lim sup
r↓0

sup
x∈X

logµ(B(x, r))

log r

and

dimM(µ) = lim inf
r↓0

sup
x∈X

logµ(B(x, r))

log r
,

see [3, Lemma 1.1]. This characterization gives an easy way to compare the
Minkowski dimensions to local dimensions of the measure, and therefore also
to the Hausdorff and packing dimensions. If dimM(µ) = dimM(µ), then the
common value, the Minkowski dimension of µ, is denoted by dimM(µ). Our
definitions are different to that of Pesin [29, §7]. He introduced quantities
which are at most the Minkowski dimension of X whereas ours are at least.
As the following theorem shows, the Minkowski dimension of a set can be
recovered from the Minkowski dimension of measures supported on the set,
that is, there is a variational principle.

Theorem 2.1. If X is a compact metric space, then

dimM(X) = min{dimM(µ) : µ is a fully supported finite Borel measure on X},
dimM(X) = min{dimM(µ) : µ is a fully supported finite Borel measure on X}.

Proof. Let us first consider the claim for the upper Minkowski dimension. Let
µ be a fully supported finite Borel measure on X and suppose dimM(µ) < s <
∞. It follows that there exists a constant c > 0 such that µ(B(x, r)) > crs



4 KENNETH J. FALCONER, JONATHAN M. FRASER, AND ANTTI KÄENMÄKI

for all x ∈ X and 0 < r < 1. If {Bi}Ni=1 is an r-packing, then

Ncrs 6
N∑
i=1

µ(Bi) 6 µ(X).

Since this holds for every r-packing, we see that Nr(X) 6 c−1µ(X)r−s for
all 0 < r < 1 and hence, dimM(X) 6 s. This proves one direction of the
desired result.

To show the other direction, we may assume dimM(X) <∞ since otherwise
there is nothing to prove. Let k ∈ N and choose a 2−k-packing Bk such that
N2−k(X) = #Bk. Note that, by the definition of N2−k(X), Bk is maximal

and hence, 2Bk covers X. Write Nk = N2−k(X) and {B(xk,i, 2
−k)}Nki=1 = Bk.

Fix s > dimM(X), choose C > 1 such that Nk 6 Ck−22ks for all k ∈ N, and
define

µ =
∑
k∈N

k−2
Nk∑
i=1

N−1
k δxk,i ,

where δx is the Dirac measure at x. Since

µ(X) =
∑
k∈N

k−2
Nk∑
i=1

N−1
k =

∑
k∈N

k−2 <∞,

µ is a fully supported finite Borel measure on X. Given x ∈ X and 0 < r < 1,

choose k ∈ N such that 2−k+1 < r 6 2−k+2. Since {B(xk,i, 2 ·2−k)}Nki=1 covers

X, there exists i ∈ {1, . . . , Nk} such that xk,i ∈ B(x, 2 · 2−k) ⊂ B(x, r).
Therefore,

µ(B(x, r)) > k−2N−1
k > C−12−ks

which proves dimM(µ) 6 s. Since s > dimM(X) was arbitrary, it follows that
dimM(µ) = dimM(X), completing the proof.

The claim for the lower Minkowski dimension is proved similarly. To see
that dimM(X) 6 dimM(µ) for all fully supported finite Borel measures µ,
just replace arbitrary radii 0 < r < 1 by the appropriate sequence (rn)n∈N
in the corresponding argument for the upper Minkowski dimension. To see
the other direction, let (kn)n∈N be a strictly increasing sequence of natural
numbers such that dimM(X) = limn→∞ logN2−kn (X)/ log(2kn). Let n ∈ N
and choose a 2−kn-packing Bn such that N2−kn (X) = #Bn. Note that, by
the definition of N2−kn (X), Bn is maximal and hence 2Bn covers X. Write

Nn = N2−kn (X) and {B(xn,i, 2
−kn)}Nni=1 = Bn. Fix s > dimM(X), choose

C > 1 such that Nn 6 Ck−2
n 2kns for all n ∈ N, and define a fully supported

finite Borel measure

µ =
∑
n∈N

k−2
n

Nn∑
i=1

N−1
n δxn,i .

Write rn = 2 · 2−kn for all n ∈ N and notice that, for each x ∈ X and n ∈ N,
we have

µ(B(x, rn)) > k−2
n N−1

n > C−12−kns



MINKOWSKI DIMENSION FOR MEASURES 5

and dimM(µ) = dimM(X) as required. �

Theorem 2.1 generalizes the result of Tricot [31, Lemma 4] whose proof
relies on an argument symmetrical to Frostman’s lemma and covers only the
upper Minkowski dimension. We also remark that, Theorem 2.1 contains
most useful information when the Minkowski dimensions are finite. This
holds for any compact doubling metric space, for example.

Recall that a measure µ on X is doubling if there is a constant C > 1 such
that

0 < µ(B(x, 2r)) 6 Cµ(B(x, r)) <∞
for all x ∈ X and 0 < r < 1. The measures constructed in Theorem 2.1
are clearly not in general doubling measures. We show that sometimes
this cannot be avoided. Specifically, in Proposition 4.4, we show that for a
large class of inhomogeneous self-similar sets there does not exist a doubling
measure supported on the set with upper Minkowski dimension equal to that
of the set. We emphasize that by inhomogeneous self-similar set, we do not
refer to self-similar sets, but a generalization due to Barnsley and Demko [5]
which incorporate a given ‘condensation’ set

3. Packing dimension

The upper and lower packing dimensions of µ are

dimp(µ) = inf{dimp(A) : A ⊂ X is a Borel set such that µ(X \A) = 0},
dimp(µ) = inf{dimp(A) : A ⊂ X is a Borel set such that µ(A) > 0},

respectively, where dimp(A) is the packing dimension of A ⊂ X; see [9,
§10.1] and [10, §3.5]. It is well-known that the packing dimension of X
can be approximated arbitrary well from below by upper and lower packing
dimensions of measures; see [9, Proposition 10.1]. Since the question whether
the suprema can be attained here does not seem to be so well documented,
we present the full details in the following.

Theorem 3.1. If X is an analytic subset of a metric space, then

dimp(X) = max{dimp(µ) : µ is a finite Borel measure on X}
= sup{dimp(µ) : µ is a finite Borel measure on X}.

Proof. Write sn = dimp(X)− 1
n for all n ∈ N. For every n ∈ N, by the result

of Joyce and Preiss [21, Theorem 1], there exists a compact set Kn ⊂ X
such that 0 < Psn(Kn) < ∞, where Ps is s-dimensional packing measure;
see Cutler [6] or [10, §3.5] for the definition. Define

µn =
Psn |Kn
Psn(Kn)

and µ =
∑
n∈N

2−nµn,

and note that µ is a Borel probability measure.
To show the first equality, letA ⊂ X be a Borel set with µ(X\A) = 0. Since

1 = µ(A) =
∑

n∈N 2−nµn(A), we have µn(A) = 1 and Psn(Kn∩A) = Psn(Kn)
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Figure 1. Illustration for the set X in Example 3.2.

for all n ∈ N. Therefore, Psn(A) > Psn(Kn ∩ A) = Psn(Kn) > 0 and
dimp(A) > sn = dimp(X) − 1

n for all n ∈ N. It follows that dimp(A) =

dimp(X) and hence, dimp(µ) = dimp(X).
To see the second equality, fix n ∈ N and let A ⊂ X be a Borel set such

that µn(A) > 0. Since Psn(A) > Psn(Kn ∩ A) = µn(A)Psn(Kn) > 0, we
have dimp(A) > sn = dimp(X) − 1

n and hence, dimp(µn) > dimp(X) − 1
n

giving the claim. �

By relying on the result of Davies [8], see also Rogers [30], or Howroyd
[18], it is possible to modify Theorem 3.1 for the Hausdorff dimension. The
following example can also be easily modified for the Hausdorff dimension.

Example 3.2. In this example, we exhibit a compact set X ⊂ R2 for which

dimp(X) > dimp(µ)

for all finite Borel measures on X. Let 0 < s 6 2 and sn = s(1− 1
2n) > 0 for

all n ∈ N. For each i ∈ {1, . . . , 4} define a map ϕi : R2 → R2 by setting

ϕi(x) =
x+ ti

3
,

where t1 = (0, 0), t2 = (0, 2), t3 = (2, 2), and t4 = (2, 0). Write ϕi =
ϕi1 ◦ · · · ◦ϕik for all i = i1 · · · ik ∈ {1, . . . , 4}k and k ∈ N. Denote the element
1 · · · 1 of {1, . . . , 4}k consisting only of 1s by jk. Let Xn ⊂ R2 be a compact
set with dimp(Xn) = sn for all n ∈ N. Define

X = {0} ∪
∞⋃
k=0

⋃
i∈{2,3,4}

ϕjki(Xk+1);

see Figure 1 for illustration. Observe that X ⊂ R2 is compact and, as it
contains sn-dimensional subsets, dimp(X) > sn for all n ∈ N and hence
dimp(X) > s. Let µ be a finite Borel measure on X. If µ(X \B(0, r)) = 0
for all r > 0, then µ is supported at the origin and therefore, has dimension
zero. But if there is r > 0 such that µ(X \B(0, r)) > 0, then, by choosing
A = X \ B(0, r), we have µ(A) > 0 and dimp(A) 6 sn < s for some n ∈ N.
Therefore, dimp(µ) < s as claimed.
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Let us next examine whether there exists a result analogous to Theorem
2.1 for the packing dimension. Define the lower s-density of µ at x ∈ X by

Θs
∗(µ, x) = lim inf

r↓0

µ(B(x, r))

(2r)s

and notice that, as a function of s, it is increasing.

Lemma 3.3. If X is a compact doubling metric space and dimp(X) < s,
then there exists a fully supported finite Borel measure µ on X such that

Θs
∗(µ, x) > 0

for all x ∈ X.

Proof. By [28, §5.9], X has a cover {Xn}n∈N of compact sets such that
Xn ⊂ X and dimM(Xn) < s for all n ∈ N. Therefore, for each n ∈ N, by
Theorem 2.1, there exist a fully supported Borel probability measure µn on
Xn and a constant cn > 0 such that

µn(B(x, r)) > cnr
s

for all x ∈ Xn and 0 < r < 1. The measure µ =
∑

n∈N 2−nµn is a fully
supported Borel probability measure on X and satisfies

lim inf
r↓0

µ(B(x, r))

(2r)s
> lim inf

r↓0

∑
k∈{n∈N:x∈Xn} 2−kckr

s

(2r)s
> 0

for all x ∈ X. �

Define the density dimension of µ to be

dimΘ(µ) = inf{s > 0 : Θs
∗(µ, x) > 0 for all x ∈ X}.

Note that dimΘ(µ) 6 dimM(µ) for all measures µ. The following example
shows that the inequality can be strict.

Example 3.4. In this example, we exhibit a compact set X ⊂ R and a fully
supported finite Borel measure µ on X for which

dimΘ(µ) < dimM(µ).

Let X = {0} ∪ {1/n}n∈N and define

µ = δ0 +

∞∑
n=1

δ1/n

n2
,

where δx is the Dirac mass at x. Notice that µ is clearly fully supported
and µ(X) = 1 +

∑∞
n=1 n

−2 = 1 + π2/6 < ∞. Therefore, by Theorem 2.1,

dimM(µ) > dimM(X) = 1
2 .

Let s > 0. Fix n ∈ N and choose 0 < r < min{1
2(n2 +n)−1, n−2/s}. Notice

that the ball B( 1
n , r) contains only the centre point 1

n . Therefore,

µ(B( 1
n , r)) = µ({ 1

n}) = n−2 > rs.

Since also µ(B(0, r)) > 1 > rs, we have shown that Θs
∗(µ, x) > 0 for all

x ∈ X and s > 0. Therefore, dimΘ(µ) = 0.
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The following theorem, which generalizes the result of Cutler [7, Lemma
3.3], is analogous to Theorem 2.1. In fact, Theorems 2.1 and 3.5 together
show that any set with packing dimension strictly less than upper Minkowski
dimension supports finite Borel measures satisfying the property described
in Example 3.4.

Theorem 3.5. If X is a compact doubling metric space, then

dimp(X) = min{dimΘ(µ) : µ is a fully supported finite Borel measure on X}.

Proof. Let us first show the claim with minimum replaced by infimum. If
µ is a fully supported finite Borel measure on X and dimΘ(µ) < s, then
Θs
∗(µ, x) > 0 for all x ∈ X and thus, by the result of Cutler [6, Theorem

3.16], dimp(X) 6 s. On the other hand, if dimp(X) < s, then, by Lemma
3.3, there exists a fully supported finite Borel measure µ on X such that
Θs
∗(µ, x) > 0 for all x ∈ X and hence, dimΘ(µ) 6 s.
Let us now show that there exists a measure whose density dimension

achieves dimp(X). Write sn = dimp(X) + 1
n for all n ∈ N. By the first part

of the proof, there exists a fully supported finite Borel measure on X such
that dimΘ(µn) < sn and therefore, Θsn

∗ (µn, x) > 0 for all x ∈ X and n ∈ N.
Define

µ =
∑
n∈N

2−nµn

and notice that, as in the proof of Lemma 3.3, Θsn
∗ (µ, x) > 0 for all x ∈ X

and n ∈ N. Hence, dimΘ(µ) 6 sn = dimp(X) + 1
n for all n ∈ N yielding

dimΘ(µ) = dimp(X) as required. �

We remark that, by relying on the result of Cutler [7, Lemma 3.5], it is
possible to establish an analogue of Theorem 3.5 for Hausdorff dimension.

4. Assouad spectrum and Lq-dimensions

Recall that if q ∈ R, then the Lq-spectrum of µ is

τq(µ) = lim inf
r↓0

logMq(µ, r)

log r
,

where Mq(µ, r) = sup{
∑

B∈B µ(B)q : B is an r-packing of X}, and the Lq-
dimension of µ is

dimLq(µ) =
τq(µ)

q − 1

for q 6= 1. It is well known that dimp(µ) 6 dimp(µ) 6 dimLq(µ) for all
−∞ < q < 1; see [24, Theorem 3.1] and references therein.

Following Käenmäki, Lehrbäck, and Vuorinen [23], see also [11], we define
the Assouad dimension of µ to be

dimA(µ) = inf{s > 0 : there exists a constant c > 0 such that

µ(B(x, r))

µ(B(x,R))
> c
( r
R

)s
for all x ∈ X and 0 < r < R < 1}.
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It is easy to see that dimA(µ) < ∞ if and only if µ is doubling; see [20,
Lemma 3.2] and [12, Proposition 3.1]. Although the property this definition
captures has been studied earlier (see e.g. [17, §13]), the Assouad dimension
of measures was explicitly defined in [23] where it was called upper regularity
dimension. Recall also that, by the result of Fraser and Howroyd [12, Theorem
2.1], we have dimLq(µ) 6 dimA(µ) for all −∞ < q < 1. Following Hare and
Troscheit [16], we define the Assouad spectrum of the measure µ by setting

dim θ
A(µ) = inf{s > 0 : there exists a constant 0 < c 6 1 such that

µ(B(x, r))

µ(B(x, rθ))
> c
( r
rθ

)s
for all x ∈ X and 0 < r < 1}

for all 0 < θ < 1. It follows immediately from the definitions that dim θ
A(µ) 6

dimA(µ) for all 0 < θ < 1 and that dimM(µ) 6 dimA(µ). The role of the
parameter θ, as the following proposition shows, is to introduce a spectrum
of dimensions having values between the upper Minkowski dimension and
the Assouad dimension.

Proposition 4.1. If X is a compact metric space and µ is a fully supported
finite Borel measure on X, then

dimp(µ) 6 dimLq(µ) 6 dimM(µ) 6 dim θ
A(µ) 6 min

{
dimA(µ),

dimM(µ)

1− θ

}
for all −∞ < q < 1 and 0 < θ < 1. Moreover, dimM(µ) = limθ↓0 dim θ

A(µ).

Proof. Counting from left to right, the first inequality was already stated
and referred to above. Let us show the second inequality. Fix −∞ < q < 1,
choose dimM(µ) < s, and let B be an r-packing. Since µ(B) > crs for all
B ∈ B where c > 0 is a constant,∑
B∈B

µ(B)q =
∑
B∈B

µ(B)µ(B)q−1 6 cq−1
∑
B∈B

µ(B)rs(q−1) 6 cq−1µ(X)rs(q−1).

This implies Mq(µ, r) 6 cq−1µ(X)rs(q−1) for all 0 < r < 1 and τq(µ) >
s(q − 1). Hence dimLq(µ) 6 s as claimed.

To show the third inequality, fix 0 < θ < 1 and let t > s > dim θ
A(µ). This

means that there is 0 < c < 1 such that

µ(B(x, r))

µ(B(x, rθ))
> cr(1−θ)s (4.1)

for all x ∈ X and 0 < r < 1. Since X is compact and µ is fully supported,
there exists γ > 0 such that

µ(B(x, 1
2)) > γ (4.2)

for all x ∈ X. Indeed, if this was not the case, then there would exist a
sequence (xn)n∈N of points in X such that µ(B(xn,

1
2)) < 1

n for all n ∈ N.

By compactness, X can be covered by finitely many balls of radius 1
4 . If B

is one of the covering balls and contains infinitely many points xn1 , xn2 , . . .
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from the sequence (xn)n∈N, then µ(B) 6 µ(B(xni ,
1
2)) 6 1

ni
for all i ∈ N and,

consequently, µ(B) = 0. This cannot be the case since µ is fully supported
and therefore, the sequence (xn)n∈N can contain only finitely many distinct
points. But this means that there is a point x appearing infinitely often
in the sequence (xn)n∈N and therefore, µ(B(x, 1

2)) = 0. This contradiction
proves (4.2).

Fix 0 < r < 1 and choose k ∈ N such that rθ
k−1

< 1
2 6 r

θk . This implies

k <
log( log 2

− log r )

log θ
+ 1 and r−θ

ks > 2θs. (4.3)

Now, by (4.1), the fact that rθ
k
> 1

2 , (4.2), and (4.3),

µ(B(x, r)) =
µ(B(x, r))

µ(B(x, rθ))

µ(B(x, rθ))

µ(B(x, rθ2))
· · · µ(B(x, rθ

k−1
))

µ(B(x, rθk))
µ(B(x, rθ

k
))

> ckr(1−θ)srθ(1−θ)s · · · rθk−1(1−θ)sµ(B(x, 1
2))

> c
( log 2

− log r

) log c
log θ

r(1−θk)sγ

> c
( log 2

− log r

) log c
log θ 1

r−(s−t) r
t2θsγ

for all x ∈ X. Since (− log r)log c/ log θr−(s−t) → 0 as r ↓ 0, it follows that
there is a constant c′ > 0 such that µ(B(x, r)) > c′rt for all x ∈ X and
0 < r < 1 and hence, dimM(µ) 6 t as required.

Let us then show the fourth inequality. Fix 0 < θ < 1 and observe that
dim θ

A(µ) 6 dimA(µ) by definition. Therefore, let s > dimM(µ)/(1− θ). This

means that there is c > 0 such that µ(B(x, r)) > cr(1−θ)s for all x ∈ X and
0 < r < 1. Since now

µ(B(x, r))

µ(B(x, rθ))
> cµ(X)−1r(1−θ)s

for all x ∈ X and 0 < r < 1, we get dim θ
A(µ) 6 s as required.

The final identity follows by letting θ → 0 in the third and fourth inequal-
ities. �

In fact, the upper Minkowski dimension of a measure can be expressed in
terms of the limiting behaviour of the Lq-dimensions.

Proposition 4.2. If X is a compact metric space and µ is a fully supported
finite Borel measure on X, then

dimM(µ) = sup
−∞<q<1

dimLq(µ) = lim
q→−∞

dimLq(µ)

Proof. In light of Proposition 4.1 and the fact that dimLq(µ) is decreasing
in q, it suffices to prove that dimM(µ) 6 limq→−∞ dimLq(µ). To this end, let

t < dimM(µ) and q < 0. Therefore, there exist a point x ∈ X and a sequence
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(rn)n∈N of positive real numbers tending to 0 such that µ(B(x, rn)) 6 rtn for
all n ∈ N. Since {B(x, rn)} is trivially an rn-packing of X, we get

Mq(µ, rn) > µ(B(x, rn))q > rtqn

for all n ∈ N and therefore, τq(µ) 6 tq and dimLq(µ) > tq
q−1 . Letting q → −∞

we see that limq→−∞ dimLq(µ) > t which proves the result as the choice of

t < dimM(µ) was arbitrary. �

Following Assouad [2], we define the Assouad dimension of a set X to be

dimA(X) = inf{s > 0 : there exists a constant C > 1 such that

Nr(B(x,R)) 6 C
(R
r

)s
for all x ∈ X and 0 < r < R < 1}.

It is easy to see that dimA(X) < ∞ if and only if X is doubling. A
simple volume argument shows that dimA(X) 6 dimA(µ) for all doubling
measures µ on X. Vol′berg and Konyagin [32, Theorem 4] have constructed
a compact doubling metric space X such that dimA(X) < dimA(µ) for all
fully supported doubling measures µ on X; see also the result of Käenmäki
and Lehrbäck [22, Theorem 5.1]. Following Fraser and Yu [13, 14], we define
the Assouad spectrum of X to be

dim θ
A(X) = lim sup

r↓0

log sup{Nr(B(x, rθ)) : x ∈ X}
(θ − 1) log r

= inf{s > 0 : there exists a constant C > 1 such that

Nr(B(x, rθ)) 6 C
(rθ
r

)s
for all x ∈ X and 0 < r < 1}

for all 0 < θ < 1. Recall that, by [14, Proposition 3.1], dimM(X) =
limθ↓0 dim θ

A(X).

Proposition 4.3. If X is a doubling metric space and µ is a fully supported
locally finite Borel measure on X, then

dim θ
A(X) 6 dim θ

A(µ)

for all 0 < θ < 1.

Proof. Fix 0 < θ < 1 and let s > dim θ
A(µ). Then there is c > 0 such that

µ(B(x, r))

µ(B(x, rθ))
> cr(1−θ)s (4.4)

for all x ∈ X and 0 < r < 1. Let x ∈ X, choose λ > 21/θ, and fix

0 < r < rθ = min

{(
λθ−1

2
− 1

λ

)1/(1−θ)
,

1

λ

}
.

Let {B(x1, r), . . . , B(xP , r)} be a packing of B(x, rθ) for some P ∈ N. Since
X is doubling, we only need to consider finite packings. By [24, Lemma
2.1], we see that {1, . . . , P} can be partitioned into sets I1, . . . , IM , where
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M ∈ N depends only on X and λ, such that each collection {B(xi, λr)}i∈Ij
is a packing of B(x, rθ). Since

2 + 2λr1−θ 6 2 + 2λ

(
λθ−1

2
− 1

λ

)
= λθ

and

B(xi, λr) ⊂ B(x, rθ + λr) ⊂ B(xi, 2r
θ + 2λr) ⊂ B(xi, (λr)

θ)

for all i ∈ N, we have, by (4.4),

1 >
∑
i∈Ij

µ(B(xi, λr))

µ(B(x, rθ + λr))
>
∑
i∈Ij

µ(B(xi, λr))

µ(B(xi, (λr)θ))
> #Ijc(λr)

(1−θ)s

for all j ∈ {1, . . . ,M}. Therefore,

P =
M∑
j=1

#Ij 6
M

c(λr)(1−θ)s =
M

cλ(1−θ)s

(rθ
r

)s
and

Nr(B(x, rθ)) 6
M

cλ(1−θ)s

(rθ
r

)s
for all x ∈ X and 0 < r < rθ. Hence, dim θ

A(X) 6 s as claimed. �

We consider a tuple Φ = (ϕi)
N
i=1, where N > 2 is an integer, of contracting

mappings acting on Rd. The invariant set associated to Φ is the unique
non-empty compact set X ⊂ Rd satisfying

X =

N⋃
i=1

ϕi(X);

see [19]. Let us now assume that each of the map ϕi is a similitude, i.e.
satisfies |ϕi(x) − ϕi(y)| = ri|x − y| for some contraction coefficient 0 <
ri < 1. In this case, the corresponding invariant set is called self-similar.
Furthermore, if C ⊂ Rd is compact, then the inhomogeneous self-similar set
with condensation set C associated to Φ is the unique non-empty compact
set XC ⊂ Rd such that

XC = C ∪
N⋃
i=1

ϕi(XC) = X ∪
⋃
i∈Σ∗

ϕi(C),

where X is the self-similar set associated to Φ, see [4, 5]. Here the set Σ∗ is
the set of all finite words

⋃
n∈N Σn, where Σn = {1, . . . , N}n for all n ∈ N.

If i = i1 · · · in ∈ Σn for some n ∈ N, then σk(i) = ik+1 · · · in ∈ Σn−k for
all k ∈ {0, . . . , n − 1}. The set Σ = {1, . . . , N}N is the set of all infinite
words. If i = i1i2 · · · ∈ Σ, then i|n = i1 · · · in ∈ Σn for all n ∈ N. Finally, if
i = i1 · · · in ∈ Σn for some n ∈ N, then ϕi = ϕi1 ◦ · · · ◦ ϕin .

We say that Φ satisfies the condensation open set condition (COSC)
with condensation set C if there exists an open set U ⊂ Rd such that
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C ⊂ U \
⋃N
i=1 ϕi(U), ϕi(U) ⊂ U for all i ∈ {1, . . . , N}, and ϕi(U)∩ϕj(U) = ∅

whenever i 6= j. Without the reference to the condensation set C, this is the
familiar open set condition which, by [19], implies that

dimH(X) = dimA(X) = dimsim(Φ), (4.5)

where the similitude dimension dimsim(Φ) is the unique number s > 0 for

which
∑N

i=1 r
s
i = 1.

The following proposition extends the observation of Vol′berg and Konya-
gin [32, Theorem 4] to the Assouad spectrum. It also shows that in a
large class of inhomogeneous self-similar sets there does not exist a doubling
measure which achieves the minimum in Theorem 2.1.

Proposition 4.4. Let C ⊂ Rd be a non-empty compact set and let Φ be a
tuple of contractive similitudes satisfying the COSC with condensation set C.
Suppose that dimA(C) < dimsim(Φ). Then the inhomogeneous self-similar
set XC satisfies

inf
0<θ<1

(dim θ
A(µ)− dim θ

A(XC)) > 0 and dimM(XC) < dimM(µ)

for all doubling measures µ fully supported on XC .

Proof. Observe that, by Proposition 4.3, inf0<θ<1(dim θ
A(µ)−dim θ

A(XC)) > 0
for all fully supported finite Borel measures µ. It suffices to show that this
infimum is positive for all doubling measures µ since then, dimM(XC) <
dimM(µ) follows from [14, Proposition 3.1] and Proposition 4.1.

Write s = dimsim(Φ) and let µ be a doubling measure on XC . By [22, Theo-
rem 4.1] and (4.5), we have dim θ

A(XC) 6 dimA(XC) = max{dimA(X),dimA(C)} =
s for all 0 < θ < 1. Hence, to show the claim, it is enough to prove that

inf
0<θ<1

dim θ
A(µ) > s. (4.6)

We follow [22, proof of Theorem 5.1] to see that if x ∈ C, then there are
i ∈ Σ, 0 < % < dist(X,C), and 0 < c < 1 such that

µ(B(ϕi|n(x), %ri|n)) 6 µ(ϕi|n(XC)) 6 cn−mrsσm(i|n)µ(ϕi|m(XC))

6 cn−mrsσm(i|n)µ(B(ϕi|n(x), ri|m diam(XC)))
(4.7)

for all n ∈ N and m ∈ {1, . . . , n}. Indeed, the second inequality in (4.7)
holds since, by [22, Equation (5.4)], µ(ϕi|n(XC)) 6 crσn−1(i|n)µ(ϕi|n−1

(XC)).

Write r = mini∈{1,...,N} ri and let η = 1
2 log c/ log r > 0. Note that cr−η < 1

and rk 6 rj for all j ∈ Σk and k ∈ N. For each 0 < θ < 1 and n ∈ N choose
m ∈ {1, . . . , n} such that

ri|m diam(XC) 6 (%ri|n)θ < ri|m−1
diam(XC). (4.8)

Relying on (4.7) and (4.8), we see that

µ(B(ϕi|n(x), %ri|n))

µ(B(ϕi|n(x), (%ri|n)θ))
6 cn−mrsσm(i|n) 6 (cr−η)n−mrs+ησm(i|n).
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Since n−m→∞ and (cr−η)n−m → 0 as n→∞, it follows that dim θ
A(µ) >

s + η > s for all 0 < θ < 1. Noting that η does not depend on θ, we have
thus shown (4.6) and finished the proof. �

5. Lower spectrum

A natural counterpart to the Assouad dimension is the lower dimension
introduced by Larman [26]. Analogously to the Assouad spectrum, the lower
dimension gives rise to the lower spectrum. The lower spectrum of µ is

dim θ
L(µ) = sup{s > 0 : there exists a constant C > 1 such that

µ(B(x, r))

µ(B(x, rθ))
6 C

( r
rθ

)s
for all x ∈ X and 0 < r < 1}

for all 0 < θ < 1 and the Frostman dimension of µ is

dimF(µ) = sup{s > 0 : there exists a constant C > 1 such that

µ(B(x, r)) 6 Crs for all x ∈ X and 0 < r < 1}.

Proposition 5.1. If X is a compact metric space and µ is a fully supported
finite Borel measure on X, then

dim θ
L(µ) 6 dimF(µ)

for all 0 < θ < 1.

Proof. Let 0 < θ < 1 and t < s < dim θ
L(µ). Fix 0 < r < 1 and choose k ∈ N

such that rθ
k−1

< 1
2 6 r

θk . This implies

k <
log( log 2

− log r )

log θ
+ 1 and r−θ

ks 6 2s.

Similarly as in the proof of Proposition 4.1, we see that

µ(B(x, r)) =
µ(B(x, r))

µ(B(x, rθ))

µ(B(x, rθ))

µ(B(x, rθ2))
· · · µ(B(x, rθ

k−1
))

µ(B(x, rθk))
µ(B(x, rθ

k
))

6 Ckr(1−θk)sµ(X) 6 2sCµ(X)

(
− log r

log 2

) logC
− log θ

rs−trt

for all x ∈ X. Since (− log r)− logC/ log θrs−t → 0 as r ↓ 0, it follows that
there is a constant C ′ > 1 such that µ(B(x, r)) 6 C ′rt for all x ∈ X and
0 < r < 1. Hence, dimF(µ) > t as required. �

The lower spectrum of X is

dim θ
L(X) = sup{s > 0 : there exists a constant 0 < c 6 1 such that

Nr(B(x, rθ)) > c
(rθ
r

)s
for all x ∈ X and 0 < r < 1}

for all 0 < θ < 1. Recall that, by Theorem 2.1, [14, Proposition 3.1], and
Proposition 4.1, limθ↓0 dim θ

A(X) = inf{limθ↓0 dim θ
A(µ) : µ is a fully supported
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finite Borel measure on X}. The following example shows that there is no
analogous result for the lower spectrum.

Let q > p > 1 and N ∈ {2, . . . , pq} be integers, and A ⊂ {0, . . . , p− 1} ×
{0, . . . , q−1} a set of N elements. A Bedford-McMullen carpet is the invariant
set X ⊂ [0, 1]2 associated to a tuple (ϕi)

N
i=1 of distinct affine mappings which

all have the same linear part diag(1
p ,

1
q ) and the translation part is from the

set {( jp ,
k
q ) ∈ [0, 1]2 : (j, k) ∈ A}. Write nj = #{k : (j, k) ∈ A} to denote the

number of sets ϕi([0, 1)2) the vertical line {( jp , y) : y ∈ R} intersects. If there

is n ∈ N such that nj = n for all j with nj 6= 0, in which case we say the
Bedford-McMullen carpet X has uniform fibers, then

dimH(X) = dimM(X) = dimA(X);

otherwise,

dimH(X) < dimM(X) < dimA(X);

see [27]. Here dimH denotes the Hausdorff dimension; see [10, §3.2] or [28,
§4].

Example 5.2. In this example, we exhibit a compact set X ⊂ R2 for which
there exist η > 0 such that

lim
θ↓0

dim θ
L(X)− lim

θ↓0
dim θ

L(µ) > η

for all finite Borel measures µ on X. By the result of Fraser and Yu
[13, Theorem 3.3], for any Bedford-McMullen carpet X it is the case that
limθ↓0 dim θ

L(X) = dimM(X). Let X be a Bedford-McMullen carpet such
that dimH(X) < dimM(X). Write η = (dimM(X) − dimH(X))/2 > 0 and
notice that

lim
θ↓0

dim θ
L(X) > dimH(X) + η. (5.1)

Let µ be a finite Borel measure on X. If s < dimF(µ), then there is a
constant C > 1 such that µ(B(x, r)) 6 Crs for all x ∈ X and 0 < r < 1.
Since µ(X) 6

∑
i µ(Ui) 6 C

∑
i diam(Ui)

s for all δ-covers {Ui}i of X, we
get Hsδ(X) > µ(X) > 0 for all δ > 0 and, consequently, the s-dimensional
Hausdorff measure of X is Hs(X) = limδ↓0Hsδ(X) > 0. It follows that

dimH(X) > dimF(µ). (5.2)

Finally, by (5.1), Proposition 5.1, and (5.2),

lim
θ↓0

dim θ
L(X)− lim

θ↓0
dim θ

L(µ) > dimH(X) + η − dimF(µ) > η

as desired.

By the result of Fraser [11, Theorem 6.3.1], limθ↓0 dim θ
L(X) = dimM(X)

for every invariant set X associated to a tuple of bi-Lipschitz contractions.
Therefore, any such X satisfying dimH(X) < dimM(X) has the property
described in Example 5.2.
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By (5.2) and the Frostman’s lemma (see e.g. [28, Theorem 8.8]), we have

dimH(X) = sup{dimF(µ) : µ is a finite Borel measure on X}.

Therefore, recalling Theorem 2.1, the natural pair with symmetric properties
is Hausdorff dimension and upper Minkowski dimension. This is interesting
as usually Hausdorff and packing dimensions (or measures) form the natural
pair.
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